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Abstract

The involvement of cyclists in road crashes hadieen decreasing with the same magnitude as the
involvement of other road users. In particular, ititeractions between cyclists and motorized tcaffi
can lead to high-severity crashes. To improve #fetg of these interactions, a thorough understandi
of road user behaviour is first needed. In thiglgtuve focused on drivers overtaking cyclists araku
roads. The two main objectives of this study werggvelop models that predicted: (a) drivers’ deos
to perform either a flying or an accelerative oakitig manoeuvre in the presence of oncoming traffic

and (b) the lateral comfort distance that driveesntain from cyclists during the overtaking.

A driving simulator study was designed to asses®ddecision-making during the overtaking. The
37 drivers who participated in the study each peréal seven overtaking manoeuvres with oncoming
traffic. Out of the 259 overtaking manoeuvres, @8e flying and 91 were accelerative. Binary ldgist
regression models with mixed effects predictedtype of overtaking strategy (flying or accelerajive
Driving speeds were found to significantly affdot tstrategy. The overall performance of the models
predicting the strategy was 85-90%. Models were disveloped for predicting the lateral comfort
distance. The results show that the lateral cordistance is mostly affected by the longitudinataince
between the subject vehicle and the oncoming vehibe longitudinal distance between the subject
vehicle and the cyclist, and the presence of ammimgy vehicle—as well as by the drivers’
characteristics (sensation seeking in flying ouen manoeuvres and ordinary violations in
accelerative manoeuvres). The root mean square etnch was used to assess the performance of the

models, ranged from 0.56-0.62.

In conclusion, the models predicting the overtalstrgtegy performed reasonably well, while the
models predicting lateral distance did not proviecurate predictions. The models predicting
overtaking strategy may support 1) the developnagt evaluation of active safety systems, 2) the

design of automated driving, and 3) policy making.

Keywords: Overtaking, Cyclists, Driver Behaviour, Driving Sihator, Active Safety Systems,
Automated Driving



1. Introduction

Cycling is a sustainable and affordable transpardenwhich has major health, environmental, and
economic benefits (Fishman, Schepers, & Kamphoit52Wegman, Zhang, & Dijkstra, 2012). On the
other hand, cyclists are vulnerable road users,thanl involvement in road crashes has not been
decreasing with the same magnitude as other raad (Santacreu, 2018). In the Netherlands, cyclist
fatalities constitute about 30% of the total numbkroad deaths (SWOQOV, 2017); in Sweden, cyclists
are the most frequently injured road users (Trafiket, 2014); in the US, 840 cyclists were killed i
motor vehicle crashes in 2016, accounting for 2d%ill traffic deaths that year (NHTSA, 2018); and
in New Zealand, cyclists are ten times more likelpe involved in a serious or fatal crash perrkiddre
travelled than car drivers (Balanovic et al., 20T6jese statistics raise tremendous concerns,iaipec
as cycling’s popularity has been increasing in mamgtern countries in the last few years (Pucher &
Buehler, 2017). The most serious type of crasleyolists involves a collision with a vehicle (Wegma
et al., 2012), including the scenario of a vehapproaching a cyclist from behind and overtaking
him/her (Feng, Bao, Hampshire, & Delp, 2018; Kagy@&ainen, Gates, & Datta, 2014). This type of
interaction occurs mostly on rural roads, whereitljigries can be more severe (Boufous, de Rome,
Senserrick, & Ivers, 2012). Despite the higher sgvef vehicle-cyclist crashes on rural roads,réne
have been very few studies, compared to thoselmanuoads (Dozza & Schwab, 2017; Llorca, Angel-
Domenech, Agustin-Gomez, & Garcia, 2017). To mitgar even prevent this type of crash via
infrastructural, educational, or technological $olus, a thorough understanding of these interastio

and of drivers’ overtaking decisions processesssfieeded.

In the literature, some studies have investigateeid’ cyclist-overtaking behaviour, with the facu
on the lateral distance maintained from the cydising overtaking; however, none of these studees,
the best of our knowledge, has developed matheahaticdels for predicting either drivers’ overtaking
strategies or the lateral comfort distances. ThelWwoomfort” is included in the term because weugrg
that the lateral distance that a driver keeps faooyclist during the overtaking process is triggeng
the comfort feeling of being not too close to thelist. The comfort distance was explained by Sutama
(Summala, 2007). The following paragraphs summdhieestate of the art with respect to the behaviour

of drivers’ as they overtake cyclists.

One of the earliest studies to investigate the Yiehes of drivers when overtaking cyclists was
conducted by Walker (2007). The author collected da the proximity of drivers to the cyclist dugin
overtaking manoeuvres on various highways in théddnKingdom. Walker found that drivers
increased their lateral distances during overtalthgn the cyclist appeared from behind to be a-long
haired female, and provided less space when hewsagng a helmet. In a follow-up study, Walker,
Garrard, and Jowitt (2014) found that drivers do agjust their lateral clearance when the cyclist's

appearance is varied to indicate different typesyofists with different skill and/or experiencedds.



Shackel and Parkin (2014) instrumented a bike anthltrasonic distance detector and forward- and
side-facing cameras. It recorded the proximity sypeled of motor traffic passing as it was riddeonat
meter from the kerb. The results revealed thataoromer lanes with lower speed limits and no centre
line markings, the overtaking speeds were loweivdds also passed more slowly if they were driving
a long vehicle or in a platoon, or when vehiclegrapching from the opposite direction arrived & th

passing point within five seconds.

Llorca et al. (2017) instrumented two bicycles Watker rangefinders, a GPS tracker, and three video
cameras and rode them along seven rural road ségimedpain. The researchers collected data on the
lateral clearance between the overtaking motorcletdnd the bicycle, the motor vehicle speed and
type, its left lane occupation (i.e. ), the int¢i@t with opposing traffic, and the cyclists’ peired
safety. The analysis of the data revealed thatahgbined factors of lateral clearance, vehicle tyoe
vehicle speed were more significantly correlatethwhe cyclists’ perceived risk than lateral clemea
alone. In a finding similar to Walker (2007), heaxghicles kept lower clearances to the cyclists tha
passenger cars. The authors also concluded thautrent lateral distance standards (1.5 metr&§ at
km/h in Spain) are not sufficient to guarantee safertaking manoeuvres, as they do not account for

other factors such as the overtaking speed orrsepce of heavy vehicles.

Bella and Silvestri (2017) also conducted a drivsimgulator experiment to investigate the influence
of the road’s cross-section configurations andgéemetric elements on drivers’ interactions with
cyclists. They found that wider bicycle lanes ersgurigher lateral clearance between the drivetlaad
cyclist; on straight road sections, drivers maimgdithe same driving speeds whether there wadiatcyc
or not, and the lateral clearance was smaller ¢macurved road sections. Additionally, on left asv
drivers tended to cut the curve when overtakingpsing themselves to a higher risk of a collisiotihhw

oncoming vehicles.

Bianchi-Piccinini, Moretto, Zhou, and Itoh (2018)ntlucted a driving simulator study in Japan in
which 36 Japanese drivers (21 males and 15 femaéefjrmed seven cyclist-overtaking manoeuvres
on a rural road, with oncoming vehicles approaclaindifferent nominal times to collision (TTC). The
authors found a significant correlation between diiertaking strategy and the nominal TTC: as the
TTC decreased, more drivers used the accelerdtategy, because they slowed down and waited for
the oncoming vehicle to pass before acceleratimmyéstake the cyclist. The study also found that th
minimum lateral safety margins were larger in aecdlve manoeuvres than in flying manoeuvres,
which are conducted without waiting for any oncognimaffic to clear the oncoming lane in the
overtaking zone. Furthermore, during flying manaesvthe drivers were also closer to the cyclist
during the steering away and passing phases (seeapP8chindler, Bianchi-Piccinini, and Karlsson
(2016) for precise definitions of the overtakingapls). These reduced safety margins during flying

manoeuvres may be due to the possible risk oflsionl with the oncoming traffic.



Evans, Pansch, and Singer-Berk (2018) instrumeatbike with 3FT radar and a GoPro video
camera. They measured the passing vehicles’ latestainces and encroachments on the opposite lane
on urban and suburban roads with different bicgchecilities. The results of the study show that th
overall encroachment rate was low. The preseneevehicle in the adjacent lane travelling in theea
direction played the biggest role (except for factlype) in reducing the distance between a cyelisl

a vehicle during a pass.

Feng et al. (2018) investigated which factors affirtvers’ cyclist-overtaking manoeuvres using
naturalistic driving data collected in Ann Arborjdfligan. The results show that a substantial amount
of overtaking involved drivers’ crossing the satehtreline, although drivers rarely completely seabs
into the other lane (with all the four wheels) eweimen there was no oncoming traffic. Dozza et al.
(2016), who instrumented an electric bicycle withlBAR and two cameras, recorded 145 overtaking
manoeuvres performed by car and truck drivers diigprural roads in Sweden. The authors identified
four overtaking phases and quantified correspondiivgr comfort zones accordingly. Unlike the study
by Feng et al. (2018), who used a single measupamtify lateral distance when overtaking, the
comfort zone is a continuous measure that can lealated as the minimum lateral distance between
the cyclist and the vehicle at each time pointmythe different phases of an overtaking. Dozza.et
found that oncoming traffic had the most impacttm comfort zone, while neither vehicle speed, lane
width, shoulder width, nor posted speed limit digantly affected the driver's comfort zone. When a
vehicle is approaching, drivers drive significantlgser to the cyclist not only when passing, bhsb a
when approaching and steering away from the cydistnchi-Piccinini et al. (2018) and Kovaceva,
Nero, Bargman, and Dozza (2018) found similar tesufrom research with a driving simulator and

the UDRIVE naturalistic dataset, respectively.

Finally, Abe, Sato, and Itoh (2018) were interestednderstanding the factors that affect driver’s
trust in the behaviour of automated vehicles whessmg a scooter or a bicycle. For that purposs, th
first conducted a driving simulator experimentriedstigate the overtaking behaviour of human dsiver
The obtained data were used to parametrize thgrdesian automated vehicle in the driving simulator
and then varied to study the effects of differantoeated driving settings on drivers' trust. Theuhes
show that drivers trusted the system more whepglied driving speeds similar to the ones appligd b
human drivers, but maintained greater lateral dista and started the passing manoeuvres earlier tha

did human drivers.

2. Research Gaps and Research Questions

From the review of the state of the art, it is clet there are still knowledge gaps to be filied
order to fully understand drivers’ decisions tofpem flying or accelerative overtaking manoeuvres,

especially when there is oncoming traffic. Undardiag the factors that affect this decision is



important, as the two strategies differ signifitgnfccelerative overtaking manoeuvres are safenth
flying overtaking manoeuvres: the drivers oftenverat lower speeds, have better control of the
interaction with the oncoming vehicle, and leavgéa clearances to the cyclist in all overtakingg#s
(Dozza et al., 2016). A major drawback to studyavgrtaking strategies is the lack of mathematical

models that can predict drivers’ overtaking strege@nd lateral distances when overtaking cyclists.
The research questions investigated in this stuelyhe following:

* Which factors significantly affect drivers’ decia® regarding the overtaking strategy and

the lateral comfort distance from the cyclist?

* How early (in terms of distance from the cyclistdeaccurately can we predict a driver’s

overtaking strategy?

« Do the different factors impact the driver’s lateramfort distance from the cyclist similarly

(direction and magnitude) in flying versus accdligeaovertaking manoeuvres?

To answer these research questions quantitatitredyfollowing two main objectives were defined:
1) to develop a model that can predict a drive€sision to perform a flying or accelerative oveitak
manoeuvre when approaching a cyclist in the presehoncoming traffic; and 2) to develop a model
that can predict the lateral comfort distances dhiaers maintain when approaching and overtaking a
cyclist. The lateral comfort distance is definedhis study as the orthogonal component of thexds
between the vehicle and the cyclist. The first ofdye is important for the design of active safety
systems such as forward collision warning (FCW) aotbmated emergency braking (AEB). These
systems typically act on a threshold of time-tdiswmin to the forward obstacle (Brannstrom, Coegling
& Sjoberg, 2010) and are evaluated by Euro NCAPnwdheertaking a cyclist (EuroNCAP, 2017). They
may prevent a rear-end crash with a cyclist wherdtiver has not decided which overtaking manoeuvre
(flying or accelerative) to perform in a timely nmeer (an indication that the driver may not havense
the cyclist). The AEB and FCW systems may also stpdriver who misjudges the kinematics of an
oncoming vehicle and opts for a flying overtakitigategy, potentially leading to a head-on collision
In both cases, the systems need to understandriver’sl intention to overtake in order to act

appropriately.

The second objective, developing a predictive méatethe lateral comfort distance, is important in
order to understand the factors (subjective chariatics as well as surrounding environmental
characteristics such as the presence of oncomihigleg can influence drivers’ decision making. A
better comprehension of those characteristics cquivide valuable inputs for fine-tuning the
behavioural models of automated vehicles, so thaewntain safe driving behaviour when approaching
and overtaking cyclists—while considering indivildauman differences and preferences. This
consideration is important from the point of viebwoth the driver and the cyclist. For the oventaki

driver there is a trade-off between the lateral footdistances from the cyclist and from the onaugni



traffic, whereas the cyclist makes no such tradeaoid is likely to experience a shorter laterataice
to the overtaking vehicle as riskier. It might bgected that drivers’ trust and acceptance of aatedh

vehicles would increase if automated vehicles hle @ trade distances as humans do.

3. Research Method
3.1. Experiment and data collection

A driving simulator experiment was conducted atuinéversity of Tsukuba in Japan. The fixed-base
driving simulator was equipped with a steering whea accelerator pedal, a brake pedal, and a

gearshift. The driving scene was shown on fiveestseas presented in Figure 1.

The study involved 42 participants, but only theadfor 37 participants could be used for the
analyses. The other five were excluded due to sitinl sickness, non-compliance with the
experimental protocol, or missing data. The 37igpeants (22 male and 15 female Japanese drivers)
were 48.0 = 19.1 years of age and had owned andrlidence for 23.5 + 15.1 years. All the particifsa
signed a consent form to confirm their participatio the study and permit the use of their colldcte
data. In addition, they filled in a demographic sfiannaire (the Driver Behaviour Questionnaire: DBQ
and the Arnett Inventory of Sensation Seeking (Al&f$er the introductory session and after signing
the consent form. We used the 28-item version®DiBQ which considered four behavioural factors:
aggressive violations, ordinary violations, err@sd lapses (Lawton, Parker, Manstead, & Stradling,
1997). Two items (4 and 22) were removed becausg dlealt with roundabouts, which were still
uncommon intersections in Japan at the time of ghely. Therefore, the DBQ questionnaire
administered to the participants contained justét®s. The AISS includes 20 items, with ten iteors f
each of the two subscales, intensity and noveltynéf, 1994). The AISS was chosen instead of the
Sensation Seeking Scale Form V (Zuckerman, Eyseékysenck, 1978) because the latter includes
numerous items on alcohol and drug use and sertahMour—which might have made the participants

uncomfortable.

During the experiment, the participants first unekmt a test trial followed by two experimental
trials. The purpose of the test tridkjal route, was to allow the participants to get comfortahl¢he
driving simulator and get familiar with the scenand the task (overtaking a cyclist). The experitalen
trials, Route land Route 2 were designed to evaluate the drivers’ comforiezboundaries and
overtaking strategies without and with oncomindfita respectively (for more details about the

experimental setup, please see Bianchi, Piccinial.e2018).



Fig. 1. The driving simulator used in the study.

The trials were conducted on a two-lane rural r(@ee for each direction of travel) with no divider;
Lanes were 3.2 m wide and the shoulders were @t The data collected durifpute 2vere used
for the models described in this paper. The road al@ut 16 km long and the trial included seven
overtaking manoeuvres with oncoming traffic. Thenoguvres occurred on straight stretches of road
with good visibility, in the presence of a dashedtee line. The order of the overtaking manoeuvres
(which varied in terms of nominal TTC) was not ramised among the participants, thus ensuring that
different participants experienced the same enwiemtal conditions during each manoeuvre (e.g., the
length of the straight stretch of road). The latkandomization is not expected to be an issunegesi
the participants had already driven along the Toate and Route 1; therefore, only marginal change
in participants’ behaviours should have occurredrify the trial, the participants were requested to
overtake cyclists as they would in real life andkéep the speed of the vehicle as close as pogsible
the speed limit of 70 km/h.

The cyclist to be overtaken by the participant w@hnding still until the subject’s vehicle was 100
m away, at which point the cyclist started to mawva constant speed of 22 km/h, maintaining a eonst
distance of 0.3 m from the kerb of the road. Theoomng vehicle was standing still until the distanc
between the subject and oncoming vehicles reaclgdea distance (nominal TTC) which varied in
different manoeuvres (Table 1). When the subjetticke was 50 m away from the bicycle, the
oncoming vehicle’s speed varied to ensure the Bpe@alue for TTC in spite of changes in the subjec

vehicle speed.



Tablel

Distance and nominal Time-To-Collision (TTC) betwesubject and oncoming vehicles in the different
overtaking manoeuvres

Overtaking number 1 2 3 4 5 6 7

Distance between oncoming
and subject vehicle[m]

Nominal TTC [g 90 60 85 80 95 70 65

N.B.: the overtaking manoeuvres are reported inradiogical order. During all manoeuvres, the cychgése always
in the same lane and travelling in the same doads the subject vehicle.

500 350 480 450 520 400 380

In Japan, there is no official quantitative thrddror the minimal lateral safety margin to cycligd AF,
2017). However, some local governments, such a£thme Prefectural Government, recommend
having at least 1.5 m lateral distance from thdistydNith respect to the centre line in Japarthd

centre line is dashed and white, the vehicleltswadd to cross it.
3.2. Analysis technique

The analysis technique comprised three steps., Festcriptive analysis and statistic tests were
conducted(3.2.1), followed by the development of the predictive med®er flying or accelerative
overtaking manoeuvrg8.2.2)and the development of predictive models for #terbl comfort distance
(3.2.3)

3.2.1. Descriptive Analysis & Statistics

First, drivers’ speed profiles and their longitualinlistances from the cyclists for each overtaking
manoeuvre were plotted against the cumulative mistalriven along the road. Each manoeuvre was
categorized as either flying or accelerative basedhe minimum speed of the subject vehicle, from
100 m away from the cyclist until the driver reaghiee cyclist. If the minimum speed was less than 1
m/s, the overtaking was categorized as acceleratikierwise it was categorized as flying. The thodd
of 10 m/s was chosen after analysing the speedgwaff the subject vehicles when approaching and
overtaking the cyclist during the manoeuvres (Fegelx. the whole set of overtaking manoeuvres could

be divided in two clusters using a speed of 10 m/s.
3.2.2. Predictive Continuous Model for Flying or Accelevat Overtaking Manoeuvres

Each participant performed seven overtaking man@sun the driving simulator; for each one there
were multiple observations—such as clustered lodgial data, as reported by (West, Welch, &
Galecki, 2014). Because all observations from émeesparticipant are by definition correlated, aglan
Mixed Model (McCulloch & Neuhaus, 2001) with botkdd and random effects was applied. Random
effects allow the residuals associated with th@ikodinal measures on the same unit of analysiseto
correlated, thus taking into account the clustesfigct. Linear mixed-effect models have been tised

previous studies to model driver overtaking behawigarah, 2013), driver speed behaviour on curves
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(Farah, Daamen, & Hoogendoorn, 2018), and the rindalhoices of control transitions in automated
driving (Varotto, Farah, Toledo, van Arem, & Hoodenrn, 2017). The models developed in this study
were estimated using the ‘Ime4’ package (Bated.eP@14) and validated using the ‘rpart’ package

(Therneau, Atkinson, Ripley, & Ripley, 2018) in tRestatistical program (Team, 2013).

The first step in building the model was to defthe earliest time point when we could predict
whether a driver was going to perform a flying ocelerative manoeuvre. This decision point was
defined as the time when 100 metres separatedytistdrom the subject vehicle approaching from
behind. This distance is close to the limit of tyygcal detection range for many commercial radses
for active safety. At this distance, an active safiystem may start predicting the type of overtgki
manoeuvre which will be performed, and use thigligt®n to inform the decision-making and threat-
assessment algorithms for FCW and AEB. Based oddfieed decision point of 100 m, three models
were estimated. The first modéil) was based on observations when the subject velade80-100
m from the cyclist, the secoiid2) when the subject vehicle was 50-70 m away, anthihg(A3) when

the subject vehicle was 20-40 m away from the st/cli

Since the response variable can only take two plessalues, flying (1) or accelerative (0), it is
binary; a binary logistic regression model with gdxeffects was found to be suitable in this case. A

general specification of the model is presenteigs. (1) to (3):

1 if '80+ﬁj'in+b0n+b0020
- L
Ini {0 else 1)
P(yni=1|Xj;)
lOg (1_p(yni=1|,]5(]-i)) = ﬁo + ﬁ] ' in + bOn + +b00 (2)
exp(Bo+B;j X ji+bon++boo)
PO = 1]X;;) = X jitbon+bo “

1+exp(fBo +ﬁj'in+b0n++b00)

where:y,; is the response variable which takes a value fufr & flying manoeuvre or O for an
accelerative onet andi are the indices for the driver and the overtakinmber, respectively, is the
mean interceptf; is the row vector of fixed-effect parameters cepanding to the column vector of
the explanatory variable$; by, andby, are random-effect parameters for the interceytsch are
assumed to follow normal distributions with mearad standard deviations ef,,,, and ¢;q,,

respectively.

The three modelgAl, A2, A3were tested by examining different explanatoryaldes related to
the relative distances and speeds of the cycldtsabject and oncoming vehicles, as well as drivers
characteristics. Initially, variables (such as télkative distances and speeds) were identified fifeen
literature as the ones most likely to significardafyect the overtaking decision; further analysesw
performed to determine whether additional explayat@riables improved the performance of the

models.
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3.2.3. Predictive Continuous Model for the Lateral Comforstance

The main purpose of this model is to predict therkl comfort distances after the driver decides to
overtake the cyclist and performs the overtakinghoeaivre. The model can be used by vehicle
manufacturers to fine-tune the algorithms that gotke behaviour of automated vehicles, so that the
vehicles adopt safe driving behaviour when approgchind overtaking cyclists while, at the same time
considering differences between humans as welhes preferences. Since the dataset comprises
multiple overtaking manoeuvres belonging to theesparticipant, and multiple observations belonging
to the same overtaking manoeuvre, the developeeismstould account for these correlations. This is
clustered longitudinal data, meaning that the #teosmfort distance is measured continuously fohea
overtaking manoeuvre, with the different overtakingnoeuvres clustered for each driver. Therefore,
the random effects in the model are associated bgth the clusters (i.e. drivers), and the units of

analysis within these clusters (i.e. overtakind)e Tormulation of this mixed model is presente&

(4):

LCDyot = Bo + Bj - Xjr + ton + Moo + & (4)

where:LCD,,,; is the lateral comfort distance for driwerovertaking numbes, and observation
(dependent variablep, is the average lateral comfort distance for theupation;3; is the row vector
of fixed-effect parameters corresponding to colurantor of the explanatory variablés; X;. is the
column vector of explanatory variables of obseormati u,, is the driver-specific residual (effect of
clustering observations at the driver leyel),~N (0, 0o,); Uoo IS the overtaking-specific residual
(effect of clustering overtaking-level observatigng, ~N (0, gy,); ande; is the observation-specific
error term,e;,~N(0, R;), whereR; is the covariance matrix. Different covarianceustures for the
residuals were examined and the estimation resdts compared. The models were estimated using
the R statistical program using the ‘nime’ packégaheiro et al., 2017), and the ‘Ime’ function,ialn
allowed us to define the variance-covariance satrecof the residuals. The Restricted Maximum
Likelihood (REML) estimation method (which is oftgareferred to ML estimation) was applied,
because it produces unbiased estimates of covaripa@meters by taking into account the loss of
degrees of freedom that results from estimatingfitterl effects inp (West et al., 2014). Different
models’ specifications were tested by examiningedgnt explanatory variables, adopting a strategy

similar to the one used for predicting the overigkinanoeuvre typesection 3.2.2

4. Results

In this section, we first present descriptive stats (Section 4.1)f the dataset, followed by the
results of the predictive models for flying or aecative overtaking manoeuvréSection 4.2and the

predictive models for the lateral comfort distaf8ection 4.3)
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4.1. Descriptive statistics

The dataset resulted in 259 overtaking manoeutfSscategorized as flying and 91 as accelerative.
Figure 2 presents drivers’ speed profiles and tlwigitudinal distances from the cyclists for each
overtaking manoeuvre against the cumulative digtatlong the road. The TTC for each overtaking

manoeuvre is plotted at the top of each sub-figure.
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Fig. 2. Speed profiles and the longitudinal distance framdyclist as a function of the cumulative distaalmag

the road for each overtaking manoeuvre.

The speed profiles clearly distinguish two patterse including overtaking manoeuvres with a
speed drop of ~15 m/s (blue dashed lines), andttier one including overtaking manoeuvres with a
smaller speed drop of ~5 m/s (blue solid lines). d&finition (Dozza et al., 2015), accelerative
manoeuvres imply a significant reduction of speefdie the overtaking: for this reason, the overtgki
manoeuvres in the first identified pattern (witbped drop of ~15 m/s) were categorized as actetera
and the overtaking manoeuvres in the second ideshtgattern (with a speed drop of ~5 m/s) were



13

categorized as flying. Figure 2 shows these twardepetitive patterns: 1) the speed profiles ef th
flying and accelerative manoeuvres, and 2) theitodpal distance between the cyclist and the vehic
plotted against the cumulative distance. Driversgoming flying manoeuvres approached and passed
the cyclist faster because their relative speedee wegher than those performing accelerative
manoeuvres. (In Figure 2, the reader may notetligagirey solid lines reach a distance of zeroearli

than the grey dashed lines).

Figure 3 presents drivers’ lateral comfort distanaed their longitudinal distances from the cyslist
for each overtaking manoeuvre against the cumaalistance along the road. As in Figure 2, the TTC

for each overtaking manoeuvre is plotted at theofogach sub-figure.
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Fig. 3. The lateral distance and the longitudinal distanoen the cyclist as a function of the cumulativetdnce

along the road for each overtaking manoeuvre.

Figure 3 shows a clear distinctive pattern of #teral comfort distance that drivers maintain dyrin
flying (blue continuous lines) and accelerativaiébtlashed lines) overtaking manoeuvres. Drivers kep



14

shorter lateral comfort distances once they steawe from the cyclists when they performed flying
manoeuvres. Further, drivers passed the cycligigie@.e. drivers initiated the overtaking whearther

from the cyclist) in flying manoeuvres becauseiddwspeeds were higher.

Table 2 presents descriptive statistics of thesd#ffit measured or calculated variables per ovegaki
type (flying vs. accelerative), taking into accouwalt the observations from the time when the
longitudinal distance between the subject vehiotethe cyclist was 100 metres until the subjectaleh

reached the cyclist.

As can be seen from the results in Table 2, thewnweaitudinal distance between the subject vehicle
and the oncoming vehicle is, as expected, highefiyimg overtaking manoeuvres. This difference is
due to the fact that, in accelerative overtakinqhosauvres, the drivers in most cases waited for the
oncoming vehicle to pass before overtaking, leadingvhat we assigned as negative values of the
distances between the subject and oncoming vehiklesontrast, in flying manoeuvres, the driver
overtook the cyclist before the oncoming car adjveo the distance between the two vehicles was
positive for the entire manoeuvre. In addition, tean lateral distance from the cyclist was higoer
flying overtaking manoeuvres because drivers whifopmed a flying manoeuvre steered away from
the cyclist earlier. Drivers who performed flyinganoeuvres drove on average faster than drivers who

performed accelerative manoeuvres (as seen ind=Rjur

Table?2

Descriptive statistics of driver behaviour charastis in flying versus accelerative overtakingnoauvres (in
the last 100 metres of the subject vehicle’'s apgrda the cyclist).

Flying Overtaking Accelerative Overtaking

Factor
Mean Std. Mean Std.

Longitudinal distance between Subject | oo 217.77  153.92 193.53 162.17
and Oncoming Vehicles (m)
Lateral .d|stanc.e between Subject and LatDisSO 031 0.86 115 193
Oncoming vehicles (m)
Longltudmal dlstgnce between Subject LongDisSC 49.43 2924 50.86 26.66
vehicle and Cyclist (m)
Lateral d!stance between Subject VehICI?_atDisSC 1.49 0.38 1.20 0.42
and Cyclist (m)
Relative speed between Subject vehiclep o 4 28.67 11.19 26.12 11.46
and Oncoming vehicle (m/s)
Relative _speed between Subject veh|cleRelspeedsc 1226 299 477 3.90
and Cyclist (m/s)
Time-to-Collision between subject TTCSO 785 369 787 3.89

vehicle and oncoming vehicle (s)
Subject vehicle speed (m/s) SubjectvVehSpeed 18.37 .99 2 10.88 3.90

* the distance is considered positive when the onegnaffic is ahead of the subject vehicle and tiggavhen the oncoming traffic is behind
the subject vehicle.
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4.2. Estimation and result validation for the overtakiyge predictive model
4.2.1.Model estimation

Prior to model development and estimation, cor@lagnalysis was run to identify any high
correlations between the explanatory variablesifogint, but relatively low, correlations were fud
between AISS score and age (r = —0.370; p = 0.@&4)veen ordinary violations factor of the DBQ and
gender (= —-0.511; p=0.001), and between subject vehicledmend lateral distance between the
subject vehicle and the cyclist (r = 0.411; p <0Q)0 The correlation between the type of overtaking
(dependent variable) and the driving speed is fogmit (= 0.753; p < 0.001), indicating that the
driving speed is a strong predictor of the stratefygvertaking. The correlations among the varigble
presented in Table 2 guided the creation of diffensodels, the results of which are presented biera
3.

Table3

Results of the binary logistic regression modéid-A3 for the decision to perform flying or accelerativ
overtaking (eference category: accelerative overtaking manogyeonsidering random effects while capturing
the correlations through the driver-specific eterm.

Model A1 (80-100 m) Model A2 (50-70 m) Model A3 (20-40 m)

Coeff. Std. Zvalué |Coeff. Std. Zvalué |Coeff. Std. Zvalué
Error Error Error
Fixed Effects
Intercept ,) -198.89 14.63 -13.60" | -167.94 16.59 -10.12™ | -321.12 7.66 -41.90"
Subject Vehicle Speegy) 13.55 0.94 14.28" 10.45 1.01 10.29" 20.80 0.52 39.75"

Random Effects

by, 103.34 50.77| 208.1

Oy 78.81] 52.92 160.4
Model Performance

Log Likelihood -101.¢ -76.9 -67.9

AlIC? 210.1 161.8 143.7

BIC® 241.1 193.5 175.9

ISignificance codes: *** indicates p<0.001, ** imdites p<0.01, * indicates p<0.05
2Akaike information criterion
3Bayesian information criterion

The results in Table 3 show that drivers with higtiaving speeds are more likely to perform a
flying manoeuvre than an accelerative manoeuvreadition, model A3 has the lowest AIC value,
which indicates, unsurprisingly, that the type wédaking manoeuvre is best predicted by the dgivin
speed when the subject vehicle is only 20 to 4Gemdtom the cyclist. We also estimated models that
account for additional explanatory variables, sashwhether there is an oncoming vehicle or not
(dummy variable), the TTC between the subject &edancoming vehicle, the longitudinal distance

from the cyclist, and drivers’ characteristics fgliént factors of the DBQ and AISS scores). Howgver
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these additional variables did not improve the n&deerformances to an extent that it would justify
their inclusion in the final selected models. Idi&idn, for reasons of parsimony, since these nwdel
may run in real time in active safety systems, sampredictive models are preferred. Interestingly,
the grouping in Figure 2 illustrates, drivers atfjuseem to decide on their overtaking strategy nvhe
they are more than 100 metres away from the cydfistefore, what the model captures is the outcome
of the drivers’ decision-making process. In othesrds, the driver may have evaluated the other
variables (TTC between the subject and the oncorehiles and longitudinal distance) earlier inevrd

to decide which overtaking strategy to use, and thinether to reduce speed.
4.2.2. Model validation

The results of the k-fold cross-validation with kfgl the three modelg\1, A2, A3)are presented in
Table 4. To perform the cross-validation, the ‘tdierary (Kuhn, Wing, & Weston, 2015) in R was
used with GroupKFold (which ensures that the samefis not represented in both testing and trginin
sets). For more information on the ‘caret’ librapyease refer to (Kuhn, 2015). Based on the k-fold
cross-validation, modeA3 considering the data in the range of 20-40 magiezkorms better than the
other two model#\2, Alconsidering the data in the ranges of 50-70 anti80metres, respectively.
This conclusion is in accordance with the conclusieached based on the AIC values presented in
Table 3.

Table4

Results of the k-fold cross-validation for the teets of models (k=5)

Model 1 2 3 4 5 Average

Al (80-100 m) 0.864 0.879 0.811 0.851 0.827 0.847
A2 (50-70 m) 0.826 0.865 0.902 0.883 0.899 0.875
A3 (20-40 m) 0.851 0.809 0.991 0.882 0.973 0.901

4.3. Estimation and validation results of the laterahtart distance predictive model
4.3.1. Model estimation

Because the results showed a distinctive differémdlee lateral comfort distance for flying versus
accelerative manoeuvres (see Figure 3), separatelsnere developed to estimate the distance éor th
two manoeuvres. We decided to develop and estithatenodels along a distance of 25 metres before
and after the cyclist, since the findings by Doetral. (2016) indicate that the driver begins &est
away from the cyclist when the longitudinal distame 16 metres for flying overtaking manoeuvres and

11 metres for accelerative manoeuvres.

Table 5 presents the results of the linear mixéeeeimodels estimated for flying and accelerative

manoeuvres separately as well as the results dfakeline models, which include only an intercept,
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without any explanatory variables. We comparedibdels based on the simple rules of thumb defined

by Burnham and Anderson (2004), which indicate Wia¢nA;> 10 thei,, model is not supported;
is defined asA;= AIC; — AIC,,;,, WhereAIC; is theAIC of thei,, model, anddIC,,;, is the lowest

AIC one obtains among the set of models examinedtfieepreferred model). The results indicate that

the estimated modelaICw, BICw) perform better than the baseline modgl€g BICs). We also tested

models that include neither an AISS score nor toeeson the ordinary violations factor of the DBQ;

however, they did not perform better than the gmesented in Table 5.

Table5

Results of the mixed linear models for predicting fateral comfort distance of the subject veHiden the cyclist
when the longitudinal distance is less than 25 esefior both flying and accelerative overtaking.

Flying Overtaking (FO1) Accelerative Overtaking
(AO1)
Coeff.  Std. tvalué Coeff. Std.  tvalué
Error Error
Fixed Effects
Intercept 3,) 2.81 0.30 9.26 | 1.93 024 8.0%
LongDisSO B, ), km. 286 0.12 23.76 | -0.28 0.04 -7.07
LongDisSC £,), km. 4.48  0.44 10.18 | -6.29 0.19 -31.38
OncomingVeh §;), (1=yes; 0=no) -1.69  0.08 -19745| 0.21 0.02 6.7T
AISS (B,) -0.72 0.2 -5.70
OncomingVeh:AISSLK:) 0.61 0.03 17.17
DBQ Ordinary Violation ;) -0.29 0.12 -2.44
OncomingVeh: DBQ Ordinary Violatiorgg) -0.09 0.01 -7.58
Covariance Parameters
O,y (drivers) 0.16 0.21
0y, (Observations) 0.19 0.29
o, (residual) 0.49 0.53
Model Performance
Log Likelihoodu -64547.7 -63800.1
AICwm 1291135 127618.3
BICw 129198.2 127701.9
Baseline Model Performance

Log Likelihoods -71010.7 -64644.2
AICg 142029.5 129296.5
BICs 142067.2 129333.7

ISignificance codes: *** indicates p<.001, ** indies p<0.01, * indicates p<0.05

The results indicate that, during flying overtakmgnoeuvres, when the longitudinal distance to the

oncoming vehicle is larger, drivers also keep gdatateral distance from the cyclist while oventak
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This is expected, as the risk of a head-on cotlisiecreases with increasing longitudinal distandbé
oncoming vehicle. However, for accelerative ovartgknanoeuvres, the opposite effect was found: the
larger the distance from the oncoming vehicle tnaler the lateral distance from the cyclist. Tisis
possibly because in the range of 25 metres frontyhbsts in accelerative overtaking, the oncoming
vehicle is already behind the subject vehicle,lgodistance is recorded as negative. Notice tleat th
coefficient (-0.28) is much smaller than the one flging overtaking (2.86). Similarly, in flying
overtaking manoeuvres, the larger the longitudilisthnce between the subject vehicle and the tyclis
the larger the lateral comfort distance—while inederative manoeuvres the lateral comfort distagmce
smaller. This difference between accelerative dyidg overtaking manoeuvres can be explained as
follows: in the former, while drivers follow the clst, they keep a small lateral distance to let th
oncoming traffic pass. Once they begin overtakihg lateral distance increases. For flying ovengki

it is the opposite. Drivers have a large lateratatice to the cyclist before overtaking, to prepar¢he
passing phase, but the lateral distance gets rdduoen they overtake the cyclist, due to the onogmi
traffic. The results in Table 5 also show that, whigere is an oncoming vehicle that has not yetquhs
the subject vehicle, drivers who are performindyand overtaking maintain a smaller lateral distanc
than those performing an accelerative overtakirfys Ts probably because of the low number of
observations where there was an oncoming vehidleenmange of distance starting at 25 metres from
the cyclist. Scores on the AISS were found to lgaicant for flying manoeuvres: drivers who had
higher scores in AISS kept a shorter lateral cotnélistance from the cyclist when overtaking.
Furthermore, they were willing to get closer to timeoming vehicle, indicating the essence of sesat
seeking. The scores for the ordinary violations DB@tor were significantly correlated with the
accelerative manoeuvres: drivers with higher sckegg a smaller lateral comfort distance from the
cyclists. Additionally, there is an interactionesft with the presence of an oncoming vehicle, etthg

that these drivers get even closer to the cycligman oncoming vehicle is approaching. None of the
other factors of the DBQ were found to be statidiycsignificant.

4.3.2. Model validation

The results of the k-fold cross-validation usingoot Mean Squared Error (RMS&$ an accuracy

measure for the models are presented in Table 6.

Table6

Results of th&koot Mean Squared Error (RMSiB)predicting the lateral comfort distance (m.)edign the k-fold
cross-validation for the two sets of models (k=5)

Model 1 2 3 4 5 Average
FO1 050 0.49 0.57 0.60 0.62 0.56
AO1 0.78 0.59 0.57 0.48 0.69 0.62
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The validation results indicate that the modelsyoaaccurately predict the lateral comfort distance
although the explanatory variables are statisticalgnificant. This means that there are other
explanatory variables beyond the ones considerefhrsahich affect the lateral comfort distance.

Further research is needed to identify them.
5. Discussion & Conclusions

In this study, we had two main objectives: firsptedict the type of overtaking manoeuvre (flying
or accelerative) that a driver will perform wherpegaching a cyclist, and to predict the comforedat

distance that a driver maintains from the cycligting the overtaking manoeuvre.

Binary logistic regression models were developepréalict which manoeuvre a driver will perform
when approaching a cyclist in the presence of aoming vehicle. In all models, the subject vehicle
speed has been shown to be a good indicator afriver’s choice, in line with the findings of Biamie
Piccinini et al. (2018) and Dozza et al. (2016)wimg that the subject vehicle speed is differarthie
two manoeuvres. The suggested explanation fordiffisrence is that drivers adapt their speed once
they have decided which overtaking manoeuvre téopar Our results suggest that this decision is
made when drivers are further than 100 metres dxoay the cyclist. This is a somewhat unexpected
result, since it proves that the overtaking strategdecided on quite early (about 5 s before reach
the cyclist), leaving enough time for both intertten and warning systems to help the driver. Our
models account for the correlations among the @bsiens for the same overtaking and the same driver
by including an overtaking-specific error term andriver-specific error term, respectively. Theutes
show that it is very important to take individuakriability into account when predicting which
overtaking strategy a driver may opt for. The ndifference between the three models is the distance
from the cyclist (80-100 m, 50-70 m, and 20—40 The models’ estimation results indicate that the
overtaking strategy is best explained by the dg\peed when the subject vehicle is 20 to 40 metres
from the cyclist (model A3). Moreover, when thesedels were validated on a new dataset, model A3

performed better than models Al and A2.

The developed predictive models for the lateral foohdistance showed that the following four
factors significantly affect the lateral comforstdince of the subject vehicle when it is -25 tarizres
away from the cyclist longitudinally: 1) the longitinal distance between the subject vehicle and the
oncoming vehicle, 2) the longitudinal distance kesw the subject vehicle and the cyclist, 3) the
presence of an oncoming vehicle, and 4) the driwdraracteristics. The extent of the impact these
variables have on the lateral comfort distance dbjgends on whether the overtaking manoeuvre is
flying or accelerative. Furthermore, higher scarashe AISS and Ordinary Violations DBQ factor
significantly decrease the lateral comfort distafideese results highlight the importance of acdognt
for these variables when developing active safgsyesns and automated driving. However, it should

be noted that the validation results indicate thatmodels cannot accurately predict the latenafodt
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distance, even though the explanatory variabldsibee investigated are statistically significaritis
lack of predictive power indicates that there migatother explanatory variables in addition to éhos
that were considered which also affect the latecahfort distance and therefore further research is

needed on this topic.
5.1. Research Methodology

Driving simulators may not always provide ecologicavalid results (Boda et al., 2018);
nevertheless, they have been informing the dedigictive safety systems (e.g. for system acceptance
(Lubbe & Davidsson, 2015)) and their evaluatio.(eelping define EuroNCAP scenarios) for several
years. Although they provide an artificial enviroemt, driving simulators are still the best place fo
drivers to experience critical situations withoevere ethical and safety concerns. The use ofvangri
simulator for studying drivers’ overtaking strategpeant that the oncoming vehicle speed and TTC
could be accurately measured, thus overcomingitalion of previous studies that used instrumented
bicycles (Dozza et al., 2016; Evans et al., 2008)the other hand, in driving simulator studids ot
possible to investigate the safety perceptionydists while being overtaken by vehicles (as wasa]

for example, in the study by Llorca et al. (2013)ng instrumented bicycles).

Further advances in simulation technology coulchgps link a driving simulator with a cycling
simulator in order to investigate these interactioRurthermore, future naturalistic studies with
enhanced sensor technology could measure the ckstdn the surrounding vehicles from both the
cyclist’s and driver’s perspectives, providing dalohial data to test the present models. Overagarch
of the interactions between drivers and cyclisttlvanefit from hybrid research approaches comiginin

data collected from different research methodsuenaly improved technology.
52. Implicationsfor Policy Making, Active Safety, and Automated Driving

In this study, drivers characterized by higher AIS&res maintained shorter lateral comfort
distances from the cyclist during flying overtakinganoeuvres. Previous research found that lateral
comfort distance (and, in general, all measuresonfifort distance from cyclists in all overtaking
phases) are reduced during flying overtaking mawn@sy often below the legal minimum (Bianchi-
Piccinini et al., 2018; Dozza et al., 2016; Kovaxeval., 2018). This dangerous practice call#fose
responsible for enforcing regulations and providithgver training programs to educate drivers
regarding the implications of their lateral passitigtance on cyclists’ safety. Furthermore, road
authorities can increase drivers’ awareness difstg@and the minimum lateral clearance prescried
the law by posting additional information on thadpperhaps in the form of warning signs (Dozza et
al., 2016).

Our results may also contribute to the developroéattive safety systems, such as FCW and AEB,
by helping to determine thresholds for warnings ameérventions that are within driver comfort

boundaries (and therefore more likely to be acddpiaBoth FCW and AEB may warn a driver
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approaching a cyclist from behind, or even initiataking if the driver does not initiate an oventak
manoeuvre in time. For example, the fact that 99%riwers would have initiated a flying manoeuvre
by a certain time (and that drivers preferring aneterative manoeuvre would have already slowed
down by then) may justify a warning from a FCW systat that time. This study confirmed that the
start of the overtaking manoeuvre depends on theegly chosen by the driver, and that this decision
made early enough that warnings and interventiostesys can be effective. Threat assessment
algorithms for FCW and AEB could, by applying madsimilar to the ones presented in this paper,
predict the driver's overtaking strategy and inelutis information in the system’s decision-making
algorithms. Of course, field tests should verifg #cological validity of the models presented iis th

paper because the models were built on data cetlécta virtual environment.

Because our models detect when the decision tonperdin overtaking flying manoeuvre is made,
they can also improve the threat assessment fenfiat head-on collisions within the passing phase
(Brannstrom et al., 2010). In fact, although tlhigling needs to be replicated in real-world traffic
indicates the presence of a large time window witlthich the driver would be likely to accept a
warning. Therefore, FCW (or a mild AEB) may preventdriver from performing a dangerous
overtaking manoeuvre a few seconds before themgagsiase—when such an intervention would be
useful, acceptable, and safe. This scenario caulddduded in the Euro NCAP protocol to assess AEB
as a driver overtakes a cyclist; today, the prdtooty focusses on preventing rear-end collisiofts w
cyclists (EuroNCAP, 2017).

All the models described in this study may improwe design of automated vehicles by guiding
them to overtake a cyclist as a human driver wdoldvithout compromising safety. These models may
also help an automated vehicle avoid surprisingdiiser-passenger by tailoring the overtaking
manoeuvre to the driver-passenger’s individual attaristics (from AISS and DBQ measurements).
However, it is worth keeping in mind that the spfet all road users should be prioritized during th
development of automated driving. In fact, automatehicles have the capacity to be safer than human
drivers and increase cyclist comfort by adapting ldteral clearance and approaching distance to the

cyclist's perceived safety.
5.3. Limitationsand Future Work

Despite the promising results, this study has stmi¢ations that should be considered in future
research. The data in this study was obtained &dniving simulator experiment in Japan, and thareef
the results should be validated using naturalia from the field and drivers from other courstrie
Furthermore, testing the ability of the developeadeis to predict the type of overtaking manoeuvre
and the lateral comfort distance based on othexsdts would be a stronger validation than the eross
validation analysis conducted in this study. Anotlitation of the current study is linked to the

realism of the driving environment with respecthe cyclist: a) the cyclist was standing still Uittie
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subject’s vehicle was within 100 m of the bicydi,the cyclist was riding with constant speed and
lateral position, and c) the cyclist’'s appearanes the same in all overtaking manoeuvres. Future
driving simulator studies could introduce some afaitity into the cyclist's behaviour and appearance
in order to examine its impact on drivers’ decisi@bout the type of overtaking manoeuvre and the
lateral comfort distance that drivers maintain wluvertaking. Connected driving and riding simuigito
may make it possible for the virtual environmentcapture both driver behaviour and the cyclist's
perception of that behaviour, during overtaking oguvres in different conditions. It has been shown
that drivers who do not cycle may have more negadittitudes towards cyclists than drivers who do
(Fruhen & Flin, 2015). Future studies should alscoant for the drivers’ cycling experience, since i
might influence the type of overtaking manoeuvre e comfort distance maintained from the cyclist.
In this study we have classified the overtaking osuvres as either flying or accelerative baseden t
minimum speed of the subject vehicle, from 100 nayafvom the cyclist until the driver reached the
cyclist using a cut-off threshold of 10 m/s. Thisitd have led to misclassification, and thereféutyre
research should further investigate the validityhig threshold. Finally, the cycling facility ty@dso
plays an important role, as has been shown by BaetlsSilvestri (2017); therefore, future studiesusti

also take road design into account when investigatiivers’ cyclist-overtaking strategies.
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