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Abstract 

The involvement of cyclists in road crashes has not been decreasing with the same magnitude as the 

involvement of other road users. In particular, the interactions between cyclists and motorized traffic 

can lead to high-severity crashes. To improve the safety of these interactions, a thorough understanding 

of road user behaviour is first needed. In this study, we focused on drivers overtaking cyclists on rural 

roads. The two main objectives of this study were to develop models that predicted: (a) drivers’ decisions 

to perform either a flying or an accelerative overtaking manoeuvre in the presence of oncoming traffic, 

and (b) the lateral comfort distance that drivers maintain from cyclists during the overtaking. 

A driving simulator study was designed to assess driver decision-making during the overtaking. The 

37 drivers who participated in the study each performed seven overtaking manoeuvres with oncoming 

traffic. Out of the 259 overtaking manoeuvres, 168 were flying and 91 were accelerative. Binary logistic-

regression models with mixed effects predicted the type of overtaking strategy (flying or accelerative). 

Driving speeds were found to significantly affect the strategy. The overall performance of the models 

predicting the strategy was 85-90%. Models were also developed for predicting the lateral comfort 

distance. The results show that the lateral comfort distance is mostly affected by the longitudinal distance 

between the subject vehicle and the oncoming vehicle, the longitudinal distance between the subject 

vehicle and the cyclist, and the presence of an oncoming vehicle—as well as by the drivers’ 

characteristics (sensation seeking in flying overtaking manoeuvres and ordinary violations in 

accelerative manoeuvres). The root mean square error, which was used to assess the performance of the 

models, ranged from 0.56-0.62. 

In conclusion, the models predicting the overtaking strategy performed reasonably well, while the 

models predicting lateral distance did not provide accurate predictions. The models predicting 

overtaking strategy may support 1) the development and evaluation of active safety systems, 2) the 

design of automated driving, and 3) policy making. 

 

Keywords: Overtaking, Cyclists, Driver Behaviour, Driving Simulator, Active Safety Systems, 

Automated Driving  
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1. Introduction 

Cycling is a sustainable and affordable transport mode which has major health, environmental, and 

economic benefits (Fishman, Schepers, & Kamphuis, 2015; Wegman, Zhang, & Dijkstra, 2012). On the 

other hand, cyclists are vulnerable road users, and their involvement in road crashes has not been 

decreasing with the same magnitude as other road users (Santacreu, 2018). In the Netherlands, cyclist 

fatalities constitute about 30% of the total number of road deaths (SWOV, 2017); in Sweden, cyclists 

are the most frequently injured road users (Trafikverket, 2014); in the US, 840 cyclists were killed in 

motor vehicle crashes in 2016, accounting for 2.2% of all traffic deaths that year (NHTSA, 2018); and 

in New Zealand, cyclists are ten times more likely to be involved in a serious or fatal crash per kilometre 

travelled than car drivers (Balanovic et al., 2016). These statistics raise tremendous concerns, especially 

as cycling’s popularity has been increasing in many western countries in the last few years (Pucher & 

Buehler, 2017). The most serious type of crash for cyclists involves a collision with a vehicle (Wegman 

et al., 2012), including the scenario of a vehicle approaching a cyclist from behind and overtaking 

him/her (Feng, Bao, Hampshire, & Delp, 2018; Kay, Savolainen, Gates, & Datta, 2014). This type of 

interaction occurs mostly on rural roads, where the injuries can be more severe (Boufous, de Rome, 

Senserrick, & Ivers, 2012). Despite the higher severity of vehicle-cyclist crashes on rural roads, there 

have been very few studies, compared to those on urban roads (Dozza & Schwab, 2017; Llorca, Angel-

Domenech, Agustin-Gomez, & Garcia, 2017). To mitigate or even prevent this type of crash via 

infrastructural, educational, or technological solutions, a thorough understanding of these interactions 

and of drivers’ overtaking decisions processes is first needed.  

In the literature, some studies have investigated drivers’ cyclist-overtaking behaviour, with the focus 

on the lateral distance maintained from the cyclist during overtaking; however, none of these studies, to 

the best of our knowledge, has developed mathematical models for predicting either drivers’ overtaking 

strategies or the lateral comfort distances. The word “comfort” is included in the term because we argue 

that the lateral distance that a driver keeps from a cyclist during the overtaking process is triggered by 

the comfort feeling of being not too close to the cyclist. The comfort distance was explained by Summala 

(Summala, 2007). The following paragraphs summarize the state of the art with respect to the behaviour 

of drivers’ as they overtake cyclists.  

One of the earliest studies to investigate the behaviours of drivers when overtaking cyclists was 

conducted by Walker (2007). The author collected data on the proximity of drivers to the cyclist during 

overtaking manoeuvres on various highways in the United Kingdom. Walker found that drivers 

increased their lateral distances during overtaking when the cyclist appeared from behind to be a long-

haired female, and provided less space when he was wearing a helmet. In a follow-up study, Walker, 

Garrard, and Jowitt (2014) found that drivers do not adjust their lateral clearance when the cyclist’s 

appearance is varied to indicate different types of cyclists with different skill and/or experience levels.   
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Shackel and Parkin (2014) instrumented a bike with an ultrasonic distance detector and forward- and 

side-facing cameras. It recorded the proximity and speed of motor traffic passing as it was ridden at one 

meter from the kerb. The results revealed that on narrower lanes with lower speed limits and no centre-

line markings, the overtaking speeds were lower. Drivers also passed more slowly if they were driving 

a long vehicle or in a platoon, or when vehicles approaching from the opposite direction arrived at the 

passing point within five seconds.  

Llorca et al. (2017) instrumented two bicycles with laser rangefinders, a GPS tracker, and three video 

cameras and rode them along seven rural road segments in Spain. The researchers collected data on the 

lateral clearance between the overtaking motor vehicle and the bicycle, the motor vehicle speed and 

type, its left lane occupation (i.e. ), the interaction with opposing traffic, and the cyclists’ perceived 

safety. The analysis of the data revealed that the combined factors of lateral clearance, vehicle type, and 

vehicle speed were more significantly correlated with the cyclists’ perceived risk than lateral clearance 

alone. In a finding similar to Walker (2007), heavy vehicles kept lower clearances to the cyclists than 

passenger cars. The authors also concluded that the current lateral distance standards (1.5 metres at 50 

km/h in Spain) are not sufficient to guarantee safe overtaking manoeuvres, as they do not account for 

other factors such as the overtaking speed or the presence of heavy vehicles.  

Bella and Silvestri (2017) also conducted a driving simulator experiment to investigate the influence 

of the road’s cross-section configurations and its geometric elements on drivers’ interactions with 

cyclists. They found that wider bicycle lanes ensured higher lateral clearance between the driver and the 

cyclist; on straight road sections, drivers maintained the same driving speeds whether there was a cyclist 

or not, and the lateral clearance was smaller than on curved road sections. Additionally, on left curves 

drivers tended to cut the curve when overtaking, exposing themselves to a higher risk of a collision with 

oncoming vehicles. 

Bianchi-Piccinini, Moretto, Zhou, and Itoh (2018) conducted a driving simulator study in Japan in 

which 36 Japanese drivers (21 males and 15 females) performed seven cyclist-overtaking manoeuvres 

on a rural road, with oncoming vehicles approaching at different nominal times to collision (TTC). The 

authors found a significant correlation between the overtaking strategy and the nominal TTC: as the 

TTC decreased, more drivers used the accelerative strategy, because they slowed down and waited for 

the oncoming vehicle to pass before accelerating to overtake the cyclist. The study also found that the 

minimum lateral safety margins were larger in accelerative manoeuvres than in flying manoeuvres, 

which are conducted without waiting for any oncoming traffic to clear the oncoming lane in the 

overtaking zone. Furthermore, during flying manoeuvres the drivers were also closer to the cyclist 

during the steering away and passing phases (see Dozza, Schindler, Bianchi-Piccinini, and Karlsson 

(2016) for precise definitions of the overtaking phases). These reduced safety margins during flying 

manoeuvres may be due to the possible risk of a collision with the oncoming traffic. 
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Evans, Pansch, and Singer-Berk (2018) instrumented a bike with 3FT radar and a GoPro video 

camera. They measured the passing vehicles’ lateral distances and encroachments on the opposite lane 

on urban and suburban roads with different bicycling facilities. The results of the study show that the 

overall encroachment rate was low. The presence of a vehicle in the adjacent lane travelling in the same 

direction played the biggest role (except for facility type) in reducing the distance between a cyclist and 

a vehicle during a pass. 

Feng et al. (2018) investigated which factors affect drivers’ cyclist-overtaking manoeuvres using 

naturalistic driving data collected in Ann Arbor, Michigan. The results show that a substantial amount 

of overtaking involved drivers’ crossing the solid centreline, although drivers rarely completely crossed 

into the other lane (with all the four wheels) even when there was no oncoming traffic. Dozza et al. 

(2016), who instrumented an electric bicycle with a LIDAR and two cameras, recorded 145 overtaking 

manoeuvres performed by car and truck drivers on public rural roads in Sweden. The authors identified 

four overtaking phases and quantified corresponding driver comfort zones accordingly. Unlike the study 

by Feng et al. (2018), who used a single measure to quantify lateral distance when overtaking, the 

comfort zone is a continuous measure that can be calculated as the minimum lateral distance between 

the cyclist and the vehicle at each time point during the different phases of an overtaking. Dozza et al. 

found that oncoming traffic had the most impact on the comfort zone, while neither vehicle speed, lane 

width, shoulder width, nor posted speed limit significantly affected the driver’s comfort zone. When a 

vehicle is approaching, drivers drive significantly closer to the cyclist not only when passing, but also 

when approaching and steering away from the cyclist. Bianchi-Piccinini et al. (2018) and Kovaceva, 

Nero, Bärgman, and Dozza (2018) found similar results—from research with a driving simulator and 

the UDRIVE naturalistic dataset, respectively. 

Finally, Abe, Sato, and Itoh (2018) were interested in understanding the factors that affect driver’s 

trust in the behaviour of automated vehicles when passing a scooter or a bicycle. For that purpose, they 

first conducted a driving simulator experiment to investigate the overtaking behaviour of human drivers. 

The obtained data were used to parametrize the design of an automated vehicle in the driving simulator, 

and then varied to study the effects of different automated driving settings on drivers' trust. The results 

show that drivers trusted the system more when it applied driving speeds similar to the ones applied by 

human drivers, but maintained greater lateral distances and started the passing manoeuvres earlier than 

did human drivers.  

 

2. Research Gaps and Research Questions 

From the review of the state of the art, it is clear that there are still knowledge gaps to be filled in 

order to fully understand drivers’ decisions to perform flying or accelerative overtaking manoeuvres, 

especially when there is oncoming traffic. Understanding the factors that affect this decision is 
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important, as the two strategies differ significantly. Accelerative overtaking manoeuvres are safer than 

flying overtaking manoeuvres: the drivers often drive at lower speeds, have better control of the 

interaction with the oncoming vehicle, and leave larger clearances to the cyclist in all overtaking phases 

(Dozza et al., 2016). A major drawback to studying overtaking strategies is the lack of mathematical 

models that can predict drivers’ overtaking strategies and lateral distances when overtaking cyclists.  

The research questions investigated in this study are the following: 

• Which factors significantly affect drivers’ decisions regarding the overtaking strategy and 

the lateral comfort distance from the cyclist? 

• How early (in terms of distance from the cyclist) and accurately can we predict a driver’s 

overtaking strategy?  

• Do the different factors impact the driver’s lateral comfort distance from the cyclist similarly 

(direction and magnitude) in flying versus accelerative overtaking manoeuvres?  

To answer these research questions quantitatively, the following two main objectives were defined: 

1) to develop a model that can predict a driver’s decision to perform a flying or accelerative overtaking 

manoeuvre when approaching a cyclist in the presence of oncoming traffic; and 2) to develop a model 

that can predict the lateral comfort distances that drivers maintain when approaching and overtaking a 

cyclist. The lateral comfort distance is defined in this study as the orthogonal component of the distance 

between the vehicle and the cyclist. The first objective is important for the design of active safety 

systems such as forward collision warning (FCW) and automated emergency braking (AEB). These 

systems typically act on a threshold of time-to-collision to the forward obstacle (Brannstrom, Coelingh, 

& Sjoberg, 2010) and are evaluated by Euro NCAP when overtaking a cyclist (EuroNCAP, 2017). They 

may prevent a rear-end crash with a cyclist when the driver has not decided which overtaking manoeuvre 

(flying or accelerative) to perform in a  timely manner (an indication that the driver may not have seen 

the cyclist). The AEB and FCW systems may also support a driver who misjudges the kinematics of an 

oncoming vehicle and opts for a flying overtaking strategy, potentially leading to a head-on collision. 

In both cases, the systems need to understand the driver’s intention to overtake in order to act 

appropriately.  

The second objective, developing a predictive model for the lateral comfort distance, is important in 

order to understand the factors (subjective characteristics as well as surrounding environmental 

characteristics such as the presence of oncoming vehicle) can influence drivers’ decision making. A 

better comprehension of those characteristics could provide valuable inputs for fine-tuning the 

behavioural models of automated vehicles, so they maintain safe driving behaviour when approaching 

and overtaking cyclists—while considering individual human differences and preferences. This 

consideration is important from the point of view of both the driver and the cyclist. For the overtaking 

driver there is a trade-off between the lateral comfort distances from the cyclist and from the oncoming 
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traffic, whereas the cyclist makes no such trade-off, and is likely to experience a shorter lateral distance 

to the overtaking vehicle as riskier. It might be expected that drivers’ trust and acceptance of automated 

vehicles would increase if automated vehicles are able to trade distances as humans do. 

  

3. Research Method 

3.1. Experiment and data collection  

A driving simulator experiment was conducted at the University of Tsukuba in Japan. The fixed-base 

driving simulator was equipped with a steering wheel, an accelerator pedal, a brake pedal, and a 

gearshift. The driving scene was shown on five screens as presented in Figure 1.  

The study involved 42 participants, but only the data for 37 participants could be used for the 

analyses. The other five were excluded due to simulation sickness, non-compliance with the 

experimental protocol, or missing data. The 37 participants (22 male and 15 female Japanese drivers) 

were 48.0 ± 19.1 years of age and had owned a driving licence for 23.5 ± 15.1 years. All the participants 

signed a consent form to confirm their participation in the study and permit the use of their collected 

data. In addition, they filled in a demographic questionnaire (the Driver Behaviour Questionnaire: DBQ) 

and the Arnett Inventory of Sensation Seeking (AISS) after the introductory session and after signing 

the consent form. We used the 28-item version of the DBQ which considered four behavioural factors: 

aggressive violations, ordinary violations, errors, and lapses (Lawton, Parker, Manstead, & Stradling, 

1997). Two items (4 and 22) were removed because they dealt with roundabouts, which were still 

uncommon intersections in Japan at the time of the study. Therefore, the DBQ questionnaire 

administered to the participants contained just 26 items. The AISS includes 20 items, with ten items for 

each of the two subscales, intensity and novelty (Arnett, 1994). The AISS was chosen instead of the 

Sensation Seeking Scale Form V (Zuckerman, Eysenck, & Eysenck, 1978) because the latter includes 

numerous items on alcohol and drug use and sexual behaviour—which might have made the participants 

uncomfortable. 

During the experiment, the participants first underwent a test trial followed by two experimental 

trials. The purpose of the test trial, Trial route, was to allow the participants to get comfortable in the 

driving simulator and get familiar with the scenery and the task (overtaking a cyclist). The experimental 

trials, Route 1 and Route 2, were designed to evaluate the drivers’ comfort zone boundaries and 

overtaking strategies without and with oncoming traffic, respectively (for more details about the 

experimental setup, please see Bianchi, Piccinini et al., 2018). 
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Fig. 1. The driving simulator used in the study. 

The trials were conducted on a two-lane rural road (one for each direction of travel) with no divider; 

Lanes were 3.2 m wide and the shoulders were 0.4 m wide. The data collected during Route 2 were used 

for the models described in this paper. The road was about 16 km long and the trial included seven 

overtaking manoeuvres with oncoming traffic. The manoeuvres occurred on straight stretches of road 

with good visibility, in the presence of a dashed centre line. The order of the overtaking manoeuvres 

(which varied in terms of nominal TTC) was not randomised among the participants, thus ensuring that 

different participants experienced the same environmental conditions during each manoeuvre (e.g., the 

length of the straight stretch of road).  The lack of randomization is not expected to be an issue, since 

the participants had already driven along the Trial route and Route 1; therefore, only marginal changes 

in participants’ behaviours should have occurred. During the trial, the participants were requested to 

overtake cyclists as they would in real life and to keep the speed of the vehicle as close as possible to 

the speed limit of 70 km/h.  

The cyclist to be overtaken by the participant was standing still until the subject’s vehicle was 100 

m away, at which point the cyclist started to move at a constant speed of 22 km/h, maintaining a constant 

distance of 0.3 m from the kerb of the road. The oncoming vehicle was standing still until the distance 

between the subject and oncoming vehicles reached a given distance (nominal TTC) which varied in 

different manoeuvres (Table 1). When the subject vehicle was 50 m away from the bicycle, the 

oncoming vehicle’s speed varied to ensure the specific value for TTC in spite of changes in the subject 

vehicle speed. 
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Table 1  
Distance and nominal Time-To-Collision (TTC) between subject and oncoming vehicles in the different 
overtaking manoeuvres  

Overtaking number 1 2 3 4 5 6 7 

Distance between oncoming 
and subject vehicle [m] 

500 350 480 450 520 400 380 

Nominal TTC [s] 9.0 6.0 8.5 8.0 9.5 7.0 6.5 

N.B.: the overtaking manoeuvres are reported in chronological order. During all manoeuvres, the cyclists were always 
in the same lane and travelling in the same direction as the subject vehicle.  
 

In Japan, there is no official quantitative threshold for the minimal lateral safety margin to cyclists (JAF, 

2017). However, some local governments, such as the Ehime Prefectural Government, recommend 

having at least 1.5 m lateral distance from the cyclist. With respect to the centre line in Japan, if the 

centre line is dashed and white,  the vehicle is allowed to cross it. 

3.2. Analysis technique 

The analysis technique comprised three steps. First, descriptive analysis and statistic tests were 

conducted (3.2.1), followed by the development of the predictive models for flying or accelerative 

overtaking manoeuvres (3.2.2) and the development of predictive models for the lateral comfort distance 

(3.2.3).   

3.2.1. Descriptive Analysis & Statistics 

First, drivers’ speed profiles and their longitudinal distances from the cyclists for each overtaking 

manoeuvre were plotted against the cumulative distance driven along the road. Each manoeuvre was 

categorized as either flying or accelerative based on the minimum speed of the subject vehicle, from 

100 m away from the cyclist until the driver reached the cyclist. If the minimum speed was less than 10 

m/s, the overtaking was categorized as accelerative, otherwise it was categorized as flying. The threshold 

of 10 m/s was chosen after analysing the speed profiles of the subject vehicles when approaching and 

overtaking the cyclist during the manoeuvres (Figure 2): the whole set of overtaking manoeuvres could 

be divided in two clusters using a speed of 10 m/s. 

3.2.2. Predictive Continuous Model for Flying or Accelerative Overtaking Manoeuvres 

Each participant performed seven overtaking manoeuvres in the driving simulator; for each one there 

were multiple observations—such as clustered longitudinal data, as reported by (West, Welch, & 

Galecki, 2014). Because all observations from the same participant are by definition correlated, a Linear 

Mixed Model (McCulloch & Neuhaus, 2001) with both fixed and random effects was applied. Random 

effects allow the residuals associated with the longitudinal measures on the same unit of analysis to be 

correlated, thus taking into account the clustering effect. Linear mixed-effect models have been used in 

previous studies to model driver overtaking behaviour (Farah, 2013), driver speed behaviour on curves 
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(Farah, Daamen, & Hoogendoorn, 2018), and the modelling choices of control transitions in automated 

driving (Varotto, Farah, Toledo, van Arem, & Hoogendoorn, 2017). The models developed in this study 

were estimated using the ‘lme4’ package (Bates et al., 2014) and validated using the ‘rpart’ package 

(Therneau, Atkinson, Ripley, & Ripley, 2018) in the R statistical program (Team, 2013).  

The first step in building the model was to define the earliest time point when we could predict 

whether a driver was going to perform a flying or accelerative manoeuvre. This decision point was 

defined as the time when 100 metres separated the cyclist from the subject vehicle approaching from 

behind. This distance is close to the limit of the typical detection range for many commercial radars used 

for active safety. At this distance, an active safety system may start predicting the type of overtaking 

manoeuvre which will be performed, and use this prediction to inform the decision-making and threat-

assessment algorithms for FCW and AEB. Based on the defined decision point of 100 m, three models 

were estimated. The first model (A1) was based on observations when the subject vehicle was 80-100 

m from the cyclist, the second (A2) when the subject vehicle was 50-70 m away, and the third (A3) when 

the subject vehicle was 20-40 m away from the cyclist.   

Since the response variable can only take two possible values, flying (1) or accelerative (0), it is 

binary; a binary logistic regression model with mixed effects was found to be suitable in this case. A 

general specification of the model is presented in Eqs. (1) to (3): 

 ��� = �1   �	   
� + 
 ∙ �� + ��� + ��� ≥ 0
0 ����                                 (1) 

                                                    log � �(��� !|#$�)
!&�(��� !|#$�)' = 
� + 
 ∙ �� + ��� + +���       (2) 

                                                 ((��� = 1)��* = +,- (./0.$∙#$�012�0012/)
!0+,- (./0.$∙#$�012�0012/)                                       (3) 

where: ��� is the response variable which takes a value of 1 for a flying manoeuvre or 0 for an 

accelerative one; 3 and � are the indices for the driver and the overtaking number, respectively; 
� is the 

mean intercept; 
 is the row vector of fixed-effect parameters corresponding to the column vector of 

the explanatory variables �; ��� and ��� are  random-effect parameters for the intercepts, which are 

assumed to follow normal distributions with mean 0 and standard deviations of 41�� and 41��, 

respectively. 

The three models (A1, A2, A3) were tested by examining different explanatory variables related to 

the relative distances and speeds of the cyclist and subject and oncoming vehicles, as well as drivers’ 

characteristics. Initially, variables (such as the relative distances and speeds) were identified from the 

literature as the ones most likely to significantly affect the overtaking decision; further analysis was 

performed to determine whether additional explanatory variables improved the performance of the 

models.  
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3.2.3. Predictive Continuous Model for the Lateral Comfort Distance  

The main purpose of this model is to predict the lateral comfort distances after the driver decides to 

overtake the cyclist and performs the overtaking manoeuvre. The model can be used by vehicle 

manufacturers to fine-tune the algorithms that govern the behaviour of automated vehicles, so that the 

vehicles adopt safe driving behaviour when approaching and overtaking cyclists while, at the same time, 

considering differences between humans as well as their preferences. Since the dataset comprises 

multiple overtaking manoeuvres belonging to the same participant, and multiple observations belonging 

to the same overtaking manoeuvre, the developed models should account for these correlations. This is 

clustered longitudinal data, meaning that the lateral comfort distance is measured continuously for each 

overtaking manoeuvre, with the different overtaking manoeuvres clustered for each driver. Therefore, 

the random effects in the model are associated with both the clusters (i.e. drivers), and the units of 

analysis within these clusters (i.e. overtaking). The formulation of this mixed model is presented in Eq. 

(4): 

                                       567��8 = 
� + 
  ∙ �8 + 9�� + 9�� + :8                                              (4) 

where: 567��8 is the lateral comfort distance for driver 3, overtaking number ;, and observation < 

(dependent variable); 
� is the average lateral comfort distance for the population; 
 is the row vector 

of fixed-effect parameters corresponding to column vector of the explanatory variables �8; �8 is the 

column vector of explanatory variables of observation <; 9�� is the driver-specific residual (effect of 

clustering observations at the driver level), 9��~>(0, 4��); 9�� is the overtaking-specific residual 

(effect of clustering overtaking-level observations), 9�� ~>(0, 4��); and :8 is the observation-specific 

error term, :8~>(0, A�), where A� is the covariance matrix. Different covariance structures for the 

residuals were examined and the estimation results were compared. The models were estimated using 

the R statistical program using the ‘nlme’ package (Pinheiro et al., 2017), and the ‘lme’ function, which 

allowed us to define the variance-covariance structure of the residuals. The Restricted Maximum 

Likelihood (REML) estimation method (which is often preferred to ML estimation) was applied, 

because it produces unbiased estimates of covariance parameters by taking into account the loss of 

degrees of freedom that results from estimating the fixed effects in β (West et al., 2014). Different 

models’ specifications were tested by examining different explanatory variables, adopting a strategy 

similar to the one used for predicting the overtaking manoeuvre type (Section 3.2.2). 

4. Results  

In this section, we first present descriptive statistics (Section 4.1) of the dataset, followed by the 

results of the predictive models for flying or accelerative overtaking manoeuvres (Section 4.2) and the 

predictive models for the lateral comfort distance (Section 4.3).   
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4.1. Descriptive statistics  

The dataset resulted in 259 overtaking manoeuvres, 168 categorized as flying and 91 as accelerative. 

Figure 2 presents drivers’ speed profiles and their longitudinal distances from the cyclists for each 

overtaking manoeuvre against the cumulative distance along the road. The TTC for each overtaking 

manoeuvre is plotted at the top of each sub-figure. 

    

  

  

     
Fig. 2. Speed profiles and the longitudinal distance from the cyclist as a function of the cumulative distance along 

the road for each overtaking manoeuvre. 

The speed profiles clearly distinguish two patterns, one including overtaking manoeuvres with a 

speed drop of ~15 m/s (blue dashed lines), and the other one including overtaking manoeuvres with a 

smaller speed drop of ~5 m/s (blue solid lines). By definition (Dozza et al., 2015), accelerative 

manoeuvres imply a significant reduction of speed before the overtaking: for this reason, the overtaking 

manoeuvres in the first identified pattern (with a speed drop of ~15 m/s) were categorized as accelerative 

and the overtaking manoeuvres in the second identified pattern (with a speed drop of ~5 m/s) were 
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categorized as flying. Figure 2 shows these two clear repetitive patterns: 1) the speed profiles of the 

flying and accelerative manoeuvres, and 2) the longitudinal distance between the cyclist and the vehicle 

plotted against the cumulative distance. Drivers performing flying manoeuvres approached and passed 

the cyclist faster because their relative speeds were higher than those performing accelerative 

manoeuvres. (In Figure 2, the reader may note that the grey solid lines reach a distance of zero earlier 

than the grey dashed lines).  

Figure 3 presents drivers’ lateral comfort distances and their longitudinal distances from the cyclists 

for each overtaking manoeuvre against the cumulative distance along the road. As in Figure 2, the TTC 

for each overtaking manoeuvre is plotted at the top of each sub-figure. 

  

  

  

  

Fig. 3. The lateral distance and the longitudinal distance from the cyclist as a function of the cumulative distance 

along the road for each overtaking manoeuvre. 

Figure 3 shows a clear distinctive pattern of the lateral comfort distance that drivers maintain during 

flying (blue continuous lines) and accelerative (blue dashed lines) overtaking manoeuvres. Drivers kept 
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shorter lateral comfort distances once they steered away from the cyclists when they performed flying 

manoeuvres. Further, drivers passed the cyclists earlier (i.e. drivers initiated the overtaking when farther 

from the cyclist) in flying manoeuvres because driving speeds were higher. 

Table 2 presents descriptive statistics of the different measured or calculated variables per overtaking 

type (flying vs. accelerative), taking into account all the observations from the time when the 

longitudinal distance between the subject vehicle and the cyclist was 100 metres until the subject vehicle 

reached the cyclist.  

As can be seen from the results in Table 2, the mean longitudinal distance between the subject vehicle 

and the oncoming vehicle is, as expected, higher for flying overtaking manoeuvres. This difference is 

due to the fact that, in accelerative overtaking manoeuvres, the drivers in most cases waited for the 

oncoming vehicle to pass before overtaking, leading to what we assigned as negative values of the 

distances between the subject and oncoming vehicles. In contrast, in flying manoeuvres, the driver 

overtook the cyclist before the oncoming car arrived, so the distance between the two vehicles was 

positive for the entire manoeuvre. In addition, the mean lateral distance from the cyclist was higher for 

flying overtaking manoeuvres because drivers who performed a flying manoeuvre steered away from 

the cyclist earlier. Drivers who performed flying manoeuvres drove on average faster than drivers who 

performed accelerative manoeuvres (as seen in Figure 2).  

Table 2   

Descriptive statistics of driver behaviour characteristics in flying versus accelerative overtaking manoeuvres (in 

the last 100 metres of the subject vehicle’s approach to the cyclist). 

 

Factor  
Flying Overtaking Accelerative Overtaking 

Mean  Std. Mean  Std. 

Longitudinal distance between Subject 
and Oncoming Vehicles (m)*  

LongDisSO 217.77 153.92 193.53 162.17 

Lateral distance between Subject and 
Oncoming vehicles (m) 

LatDisSO -0.31 0.86 -1.15 1.93 

Longitudinal distance between Subject 
vehicle and Cyclist (m) 

LongDisSC 49.43 29.24 50.86 26.66 

Lateral distance between Subject vehicle 
and Cyclist (m) 

LatDisSC 1.49 0.38 1.20 0.42 

Relative speed between Subject vehicle 
and Oncoming vehicle (m/s) 

RelSpeedSO 28.67 11.19 26.12 11.46 

Relative speed between Subject vehicle 
and Cyclist (m/s) 

RelSpeedSC 12.26 2.99 4.77 3.90 

Time-to-Collision between subject 
vehicle and oncoming vehicle (s) 

TTCSO 7.85 3.69 7.87 3.89 

Subject vehicle speed (m/s) SubjectVehSpeed 18.37 2.99 10.88 3.90 
* the distance is considered positive when the oncoming traffic is ahead of the subject vehicle and negative when the oncoming traffic is behind 
the subject vehicle. 
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4.2. Estimation and result validation for the overtaking type predictive model 

4.2.1. Model estimation 

Prior to model development and estimation, correlation analysis was run to identify any high 

correlations between the explanatory variables. Significant, but relatively low, correlations were found 

between AISS score and age (r = −0.370; p = 0.024), between ordinary violations factor of the DBQ and 

gender (rs = −0.511; p=0.001), and between subject vehicle speed and lateral distance between the 

subject vehicle and the cyclist (r = 0.411; p < 0.001). The correlation between the type of overtaking 

(dependent variable) and the driving speed is significant (rs = 0.753; p < 0.001), indicating that the 

driving speed is a strong predictor of the strategy of overtaking. The correlations among the variables 

presented in Table 2 guided the creation of different models, the results of which are presented in Table 

3.  

Table 3 
Results of the binary logistic regression models (A1-A3) for the decision to perform flying or accelerative 
overtaking (reference category: accelerative overtaking manoeuvre), considering random effects while capturing 
the correlations through the driver-specific error term. 

 Model A1 (80-100 m) Model A2 (50-70 m) Model A3 (20-40 m) 

 Coeff. 

 

Std. 
Error 

Z value1 Coeff. 

 

Std. 
Error 

Z value1 Coeff. 

 

Std. 
Error 

Z value1 

  Fixed Effects   

Intercept (
�) -198.89 14.63 -13.60***  -167.94 16.59 -10.12***  -321.12 7.66 -41.90***  

Subject Vehicle Speed (
!) 13.55 0.94 14.28***  10.45 1.01 10.29***  20.80 0.52 39.75***  

  Random Effects   

412� 103.34 50.77 208.1 

412/  78.81 52.92 160.4 

  Model Performance   

Log Likelihood -101.0 -76.9 -67.9 

AIC2 210.1 161.8 143.7 

BIC3 241.1 193.5 175.9 

1Significance codes:  *** indicates p<0.001, ** indicates p<0.01, * indicates p<0.05 
2Akaike information criterion 
3 Bayesian information criterion 

The results in Table 3 show that drivers with higher driving speeds are more likely to perform a 

flying manoeuvre than an accelerative manoeuvre. In addition, model A3 has the lowest AIC value, 

which indicates, unsurprisingly, that the type of overtaking manoeuvre is best predicted by the driving 

speed when the subject vehicle is only 20 to 40 metres from the cyclist. We also estimated models that 

account for additional explanatory variables, such as whether there is an oncoming vehicle or not 

(dummy variable), the TTC between the subject and the oncoming vehicle, the longitudinal distance 

from the cyclist, and drivers’ characteristics (different factors of the DBQ and AISS scores). However, 
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these additional variables did not improve the models’ performances to an extent that it would justify 

their inclusion in the final selected models. In addition, for reasons of parsimony, since these models 

may run in real time in active safety systems, simpler predictive models are preferred. Interestingly, as 

the grouping in Figure 2 illustrates, drivers actually seem to decide on their overtaking strategy when 

they are more than 100 metres away from the cyclist; therefore, what the model captures is the outcome 

of the drivers’ decision-making process. In other words, the driver may have evaluated the other 

variables (TTC between the subject and the oncoming vehicles and longitudinal distance) earlier in order 

to decide which overtaking strategy to use, and thus whether to reduce speed. 

4.2.2. Model validation 

The results of the k-fold cross-validation with k=5 for the three models (A1, A2, A3) are presented in 

Table 4. To perform the cross-validation, the ‘caret’ library (Kuhn, Wing, & Weston, 2015) in R was 

used with GroupKFold (which ensures that the same group is not represented in both testing and training 

sets). For more information on the ‘caret’ library, please refer to (Kuhn, 2015). Based on the k-fold 

cross-validation, model A3 considering the data in the range of 20-40 metres performs better than the 

other two models A2, A1 considering the data in the ranges of 50-70 and 80-100 metres, respectively. 

This conclusion is in accordance with the conclusion reached based on the AIC values presented in 

Table 3. 

Table 4 

Results of the k-fold cross-validation for the two sets of models (k=5) 

Model 1 2 3 4 5 Average 

A1 (80-100 m) 0.864 0.879 0.811 0.851 0.827 0.847 

A2 (50-70 m) 0.826 0.865 0.902 0.883 0.899 0.875 

A3 (20-40 m) 0.851 0.809 0.991 0.882 0.973 0.901 

4.3. Estimation and validation results of the lateral comfort distance predictive model 

4.3.1. Model estimation 

Because the results showed a distinctive difference in the lateral comfort distance for flying versus 

accelerative manoeuvres (see Figure 3), separate models were developed to estimate the distance for the 

two manoeuvres. We decided to develop and estimate the models along a distance of 25 metres before 

and after the cyclist, since the findings by Dozza et al. (2016) indicate that the driver begins to steer 

away from the cyclist when the longitudinal distance is 16 metres for flying overtaking manoeuvres and 

11 metres for accelerative manoeuvres.  

Table 5 presents the results of the linear mixed-effect models estimated for flying and accelerative 

manoeuvres separately as well as the results of the baseline models, which include only an intercept, 
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without any explanatory variables. We compared the models based on the simple rules of thumb defined 

by Burnham and Anderson (2004), which indicate that when ∆�> 10 the �8D model is not supported, ∆� 
is defined as: ∆�= EF6� − EF6H��, where EF6� is the EF6 of the �8D model, and EF6H�� is the lowest 

EF6 one obtains among the set of models examined (i.e., the preferred model). The results indicate that 

the estimated models (AICM, BICM) perform better than the baseline models (AICB, BICB).  We also tested 

models that include neither an AISS score nor the score on the ordinary violations factor of the DBQ; 

however, they did not perform better than the ones presented in Table 5. 

Table 5 

Results of the mixed linear models for predicting the lateral comfort distance of the subject vehicle from the cyclist 
when the longitudinal distance is less than 25 metres, for both flying and accelerative overtaking.  

 Flying Overtaking (FO1) Accelerative Overtaking 
(AO1) 

 Coeff. Std. 
Error 

t value1 Coeff.  Std. 
Error 

t value1 

 Fixed Effects 

Intercept (
�) 2.81 0.30 9.26***  1.93 0.24 8.04***  

LongDisSO (
!), km. 2.86 0.12 23.76***  -0.28 0.04 -7.02***  

LongDisSC (
I), km. 4.48 0.44 10.18***  -6.29 0.19 -31.38***  

OncomingVeh (
J), (1=yes; 0=no)   -1.69 0.08 -19.45***  0.21 0.02 6.71***  

AISS (
K) -0.72 0.12 -5.70***     

OncomingVeh:AISS (
L) 0.61 0.03 17.17***     

DBQ Ordinary Violation (
M)    -0.29 0.12 -2.44**  

OncomingVeh: DBQ Ordinary Violation (
N)    -0.09 0.01 -7.58***  

 Covariance Parameters 

4�� (drivers)  0.16  0.21 

4�� (observations)  0.19  0.29 

4O (residual)  0.49  0.53 

 Model Performance 

Log LikelihoodM  -64547.7 -63800.1 

AICM  129113.5 127618.3 

BICM 129198.2 127701.9 

 Baseline Model Performance 

Log LikelihoodB -71010.7 -64644.2 

AICB 142029.5 129296.5 

BICB 142067.2 129333.7 

1Significance codes:  *** indicates p<.001, ** indicates p<0.01, * indicates p<0.05 

The results indicate that, during flying overtaking manoeuvres, when the longitudinal distance to the 

oncoming vehicle is larger, drivers also keep a larger lateral distance from the cyclist while overtaking. 
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This is expected, as the risk of a head-on collision decreases with increasing longitudinal distance to the 

oncoming vehicle. However, for accelerative overtaking manoeuvres, the opposite effect was found: the 

larger the distance from the oncoming vehicle the smaller the lateral distance from the cyclist. This is 

possibly because in the range of 25 metres from the cyclists in accelerative overtaking, the oncoming 

vehicle is already behind the subject vehicle, so the distance is recorded as negative. Notice that the 

coefficient (-0.28) is much smaller than the one for flying overtaking (2.86). Similarly, in flying 

overtaking manoeuvres, the larger the longitudinal distance between the subject vehicle and the cyclist, 

the larger the lateral comfort distance—while in accelerative manoeuvres the lateral comfort distance is 

smaller. This difference between accelerative and flying overtaking manoeuvres can be explained as 

follows: in the former, while drivers follow the cyclist, they keep a small lateral distance to let the 

oncoming traffic pass. Once they begin overtaking, the lateral distance increases. For flying overtaking, 

it is the opposite. Drivers have a large lateral distance to the cyclist before overtaking, to prepare for the 

passing phase, but the lateral distance gets reduced when they overtake the cyclist, due to the oncoming 

traffic. The results in Table 5 also show that, when there is an oncoming vehicle that has not yet passed 

the subject vehicle, drivers who are performing a flying overtaking maintain a smaller lateral distance 

than those performing an accelerative overtaking. This is probably because of the low number of 

observations where there was an oncoming vehicle in the range of distance starting at 25 metres from 

the cyclist. Scores on the AISS were found to be significant for flying manoeuvres: drivers who had 

higher scores in AISS kept a shorter lateral comfort distance from the cyclist when overtaking. 

Furthermore, they were willing to get closer to the oncoming vehicle, indicating the essence of sensation 

seeking. The scores for the ordinary violations DBQ factor were significantly correlated with the 

accelerative manoeuvres: drivers with higher scores kept a smaller lateral comfort distance from the 

cyclists. Additionally, there is an interaction effect with the presence of an oncoming vehicle, indicating 

that these drivers get even closer to the cyclist when an oncoming vehicle is approaching. None of the 

other factors of the DBQ were found to be statistically significant.  

4.3.2. Model validation 

The results of the k-fold cross-validation using the Root Mean Squared Error (RMSE) as an accuracy 

measure for the models are presented in Table 6.  

Table 6 

Results of the Root Mean Squared Error (RMSE) in predicting the lateral comfort distance (m.), used in the k-fold 
cross-validation for the two sets of models (k=5) 

Model 1 2 3 4 5 Average 

FO1 0.50 0.49 0.57 0.60 0.62 0.56 

AO1 0.78 0.59 0.57 0.48 0.69 0.62 
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The validation results indicate that the models cannot accurately predict the lateral comfort distance, 

although the explanatory variables are statistically significant. This means that there are other 

explanatory variables beyond the ones considered so far which affect the lateral comfort distance. 

Further research is needed to identify them.  

5. Discussion & Conclusions  

In this study, we had two main objectives: first to predict the type of overtaking manoeuvre (flying 

or accelerative) that a driver will perform when approaching a cyclist, and to predict the comfort lateral 

distance that a driver maintains from the cyclist during the overtaking manoeuvre.  

Binary logistic regression models were developed to predict which manoeuvre a driver will perform 

when approaching a cyclist in the presence of an oncoming vehicle. In all models, the subject vehicle 

speed has been shown to be a good indicator of the driver’s choice, in line with the findings of Bianchi-

Piccinini et al. (2018) and Dozza et al. (2016), showing that the subject vehicle speed is different in the 

two manoeuvres. The suggested explanation for this difference is that drivers adapt their speed once 

they have decided which overtaking manoeuvre to perform. Our results suggest that this decision is 

made when drivers are further than 100 metres away from the cyclist. This is a somewhat unexpected 

result, since it proves that the overtaking strategy is decided on quite early (about 5 s before reaching 

the cyclist), leaving enough time for both intervention and warning systems to help the driver. Our 

models account for the correlations among the observations for the same overtaking and the same driver 

by including an overtaking-specific error term and a driver-specific error term, respectively. The results 

show that it is very important to take individual variability into account when predicting which 

overtaking strategy a driver may opt for. The main difference between the three models is the distance 

from the cyclist (80–100 m, 50–70 m, and 20–40 m). The models’ estimation results indicate that the 

overtaking strategy is best explained by the driving speed when the subject vehicle is 20 to 40 metres 

from the cyclist (model A3). Moreover, when these models were validated on a new dataset, model A3 

performed better than models A1 and A2.  

The developed predictive models for the lateral comfort distance showed that the following four 

factors significantly affect the lateral comfort distance of the subject vehicle when it is -25 to 25 metres 

away from the cyclist longitudinally: 1) the longitudinal distance between the subject vehicle and the 

oncoming vehicle, 2) the longitudinal distance between the subject vehicle and the cyclist, 3) the 

presence of an oncoming vehicle, and 4) the drivers’ characteristics. The extent of the impact these 

variables have on the lateral comfort distance also depends on whether the overtaking manoeuvre is 

flying or accelerative. Furthermore, higher scores on the AISS and  Ordinary Violations DBQ factor 

significantly decrease the lateral comfort distance. These results highlight the importance of accounting 

for these variables when developing active safety systems and automated driving. However, it should 

be noted that the validation results indicate that the models cannot accurately predict the lateral comfort 
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distance, even though the explanatory variables that were investigated are statistically significant. This 

lack of predictive power indicates that there might be other explanatory variables in addition to those 

that were considered which also affect the lateral comfort distance and therefore further research is 

needed on this topic. 

5.1. Research Methodology 

Driving simulators may not always provide ecologically valid results (Boda et al., 2018); 

nevertheless, they have been informing the design of active safety systems (e.g. for system acceptance 

(Lubbe & Davidsson, 2015)) and their evaluation (e.g. helping define EuroNCAP scenarios) for several 

years. Although they provide an artificial environment, driving simulators are still the best place for 

drivers to experience critical situations without severe ethical and safety concerns. The use of a driving 

simulator for studying drivers’ overtaking strategy meant that the oncoming vehicle speed and TTC 

could be accurately measured, thus overcoming a limitation of previous studies that used instrumented 

bicycles (Dozza et al., 2016; Evans et al., 2018). On the other hand, in driving simulator studies it is not 

possible to investigate the safety perceptions of cyclists while being overtaken by vehicles (as was done, 

for example, in the study by Llorca et al. (2017) using instrumented bicycles). 

Further advances in simulation technology could perhaps link a driving simulator with a cycling 

simulator in order to investigate these interactions. Furthermore, future naturalistic studies with 

enhanced sensor technology could measure the distances to the surrounding vehicles from both the 

cyclist’s and driver’s perspectives, providing additional data to test the present models. Overall, research 

of the interactions between drivers and cyclists will benefit from hybrid research approaches combining 

data collected from different research methods and using improved technology. 

5.2. Implications for Policy Making, Active Safety, and Automated Driving 

In this study, drivers characterized by higher AISS scores maintained shorter lateral comfort 

distances from the cyclist during flying overtaking manoeuvres. Previous research found that lateral 

comfort distance (and, in general, all measures of comfort distance from cyclists in all overtaking 

phases) are reduced during flying overtaking manoeuvres, often below the legal minimum (Bianchi-

Piccinini et al., 2018; Dozza et al., 2016; Kovaceva et al., 2018). This  dangerous practice calls for those 

responsible for enforcing regulations and providing driver training programs to educate drivers 

regarding the implications of their lateral passing distance on cyclists’ safety. Furthermore, road 

authorities can increase  drivers’ awareness of cyclists and the minimum lateral clearance prescribed by 

the law by posting additional information on the road, perhaps in the form of warning signs (Dozza et 

al., 2016). 

Our results may also contribute to the development of active safety systems, such as FCW and AEB, 

by helping to determine thresholds for warnings and interventions that are within driver comfort 

boundaries (and therefore more likely to be acceptable). Both FCW and AEB may warn a driver 
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approaching a cyclist from behind, or even initiate braking if the driver does not initiate an overtaking 

manoeuvre in time. For example, the fact that 90% of drivers would have initiated a flying manoeuvre 

by a certain time (and that drivers preferring an accelerative manoeuvre would have already slowed 

down by then) may justify a warning from a FCW system at that time. This study confirmed that the 

start of the overtaking manoeuvre depends on the strategy chosen by the driver, and that this decision is 

made early enough that warnings and intervention systems can be effective. Threat assessment 

algorithms for FCW and AEB could, by applying models similar to the ones presented in this paper, 

predict the driver’s overtaking strategy and include this information in the system’s decision-making 

algorithms. Of course, field tests should verify the ecological validity of the models presented in this 

paper because the models were built on data collected in a virtual environment.  

Because our models detect when the decision to perform an overtaking flying manoeuvre is made, 

they can also improve the threat assessment for potential head-on collisions within the passing phase 

(Brannstrom et al., 2010). In fact, although this finding needs to be replicated in real-world traffic, it 

indicates the presence of a large time window within which the driver would be likely to accept a 

warning. Therefore, FCW (or a mild AEB) may prevent a driver from performing a dangerous 

overtaking manoeuvre a few seconds before the passing phase—when such an intervention would be 

useful, acceptable, and safe. This scenario could be included in the Euro NCAP protocol to assess AEB 

as a driver overtakes a cyclist; today, the protocol only focusses on preventing rear-end collisions with 

cyclists (EuroNCAP, 2017). 

All the models described in this study may improve the design of automated vehicles by guiding 

them to overtake a cyclist as a human driver would do, without compromising safety. These models may 

also help an automated vehicle avoid surprising its driver-passenger by tailoring the overtaking 

manoeuvre to the driver-passenger’s individual characteristics (from AISS and DBQ measurements). 

However, it is worth keeping in mind that the safety of all road users should be prioritized during the 

development of automated driving. In fact, automated vehicles have the capacity to be safer than human 

drivers and increase cyclist comfort by adapting the lateral clearance and approaching distance to the 

cyclist’s perceived safety. 

5.3. Limitations and Future Work 

Despite the promising results, this study has some limitations that should be considered in future 

research. The data in this study was obtained from a driving simulator experiment in Japan, and therefore 

the results should be validated using naturalistic data from the field and drivers from other countries. 

Furthermore, testing the ability of the developed models to predict the type of overtaking manoeuvre 

and the lateral comfort distance based on other datasets would be a stronger validation than the cross-

validation analysis conducted in this study. Another limitation of the current study is linked to the 

realism of the driving environment with respect to the cyclist: a) the cyclist was standing still until the 
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subject’s vehicle was within 100 m of the bicycle, b) the cyclist was riding with constant speed and 

lateral position, and c) the cyclist’s appearance was the same in all overtaking manoeuvres. Future 

driving simulator studies could introduce some variability into the cyclist’s behaviour and appearance, 

in order to examine its impact on drivers’ decisions about the type of overtaking manoeuvre and the 

lateral comfort distance that drivers maintain while overtaking. Connected driving and riding simulators 

may make it possible for the virtual environment to capture both driver behaviour and the cyclist’s 

perception of that behaviour, during overtaking manoeuvres in different conditions. It has been shown 

that drivers who do not cycle may have more negative attitudes towards cyclists than drivers who do 

(Fruhen & Flin, 2015). Future studies should also account for the drivers’ cycling experience, since it 

might influence the type of overtaking manoeuvre and the comfort distance maintained from the cyclist. 

In this study we have classified the overtaking manoeuvres as either flying or accelerative based on the 

minimum speed of the subject vehicle, from 100 m away from the cyclist until the driver reached the 

cyclist using a cut-off threshold of 10 m/s. This could have led to misclassification, and therefore, future 

research should further investigate the validity of this threshold. Finally, the cycling facility type also 

plays an important role, as has been shown by Bella and Silvestri (2017); therefore, future studies should 

also take road design into account when investigating drivers’ cyclist-overtaking strategies. 
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