<]
TUDelft

Delft University of Technology

Self-adaptive Executors for Big Data Processing

Omranian Khorasani, Sobhan; Rellermeyer, Jan S.; Epema, Dick

DOI
10.1145/3361525.3361545

Publication date
2019

Document Version
Final published version

Published in
Middleware 2019 - Proceedings of the 2019 20th International Middleware Conference

Citation (APA)

Omranian Khorasani, S., Rellermeyer, J. S., & Epema, D. (2019). Self-adaptive Executors for Big Data
Processing. In Middleware 2019 - Proceedings of the 2019 20th International Middleware Conference:
Proceedings of the 20th International Middleware Conference (pp. 176-188). (Middleware 2019 -
Proceedings of the 2019 20th International Middleware Conference). Association for Computing Machinery
(ACM). https://doi.org/10.1145/3361525.3361545

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1145/3361525.3361545
https://doi.org/10.1145/3361525.3361545

Green Open Access added to TU Delft Institutional Repository

‘You share, we take care!’ — Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

https://www.openaccess.nl/en/you-share-we-take-care

Self-adaptive Executors for Big Data Processing

Sobhan Omranian Khorasani
Delft University of Technology
S.OmranianKhorasani@tudelft.nl

Abstract

The demand for additional performance due to the rapid
increase in the size and importance of data-intensive applica-
tions has considerably elevated the complexity of computer
architecture. In response, systems offer pre-determined be-
haviors based on heuristics and then expose a large number
of configuration parameters for operators to adjust them to
their particular infrastructure. Unfortunately, in practice this
leads to a substantial manual tuning effort. In this work, we
focus on one of the most impactful tuning decisions in big
data systems: the number of executor threads. We first show
the impact of I/O contention on the runtime of workloads
and a simple static solution to reduce the number of threads
for I/O-bound phases. We then present a more elaborate solu-
tion in the form of self-adaptive executors which are able to
continuously monitor the underlying system resources and
detect contentions. This enables the executors to tune their
thread pool size dynamically at runtime in order to achieve
the best performance. Our experimental results show that
being adaptive can significantly reduce the execution time
especially in I/O intensive applications such as Terasort and
PageRank which see a 34% and 54% reduction in runtime.

CCS Concepts - Software and its engineering — Mul-
tithreading; Software performance.

Keywords Self-Adaptive Executors, Big Data, Apache Spark

ACM Reference Format:

Sobhan Omranian Khorasani, Jan S. Rellermeyer, and Dick Epema.
2019. Self-adaptive Executors for Big Data Processing. In Middle-
ware ’19: Middleware ’19: 20th International Middleware Conference,
December 8—13, 2019, Davis, CA, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1 145/3361525.3361545

1 Introduction

Growing problem sizes and an increasing appetite for in-
corporating big data analytics into decision processes has

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Middleware ’19, December 8—13, 2019, Davis, CA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7009-7/19/12...$15.00
https://doi.org/10.1145/3361525.3361545

Jan S. Rellermeyer
Delft University of Technology
J.S.Rellermeyer@tudelft.nl

176

Dick Epema
Delft University of Technology
D.H.J.Epema@tudelft.nl

pushed the demand for additional performance out of the
computer hardware. With the looming sunset of Moore’s
Law [11], architects are no longer able to deliver performance
improvements in a completely transparent way by increas-
ing the clock frequency. Instead, they were forced to add new
features such as multiple compute cores per CPU (which re-
quires explicit parallelization efforts to leverage) and on-chip
memory controllers (which leads to non-uniform memory
access). This trend, however, has not only increased the com-
plexity of computer systems but also made the landscape
more heterogeneous. System software has responded by pro-
viding a default behavior based on heuristics or empirical
evidence, and then exposing a large and increasing num-
ber of tuning knobs for operators to adjust these implicit
assumptions and tailor the system to the concrete hardware.

In the latest version of Apache Spark (2.4.2), there are a
total of 117 functional parameters (summarized in Table 1),
the majority of them directly affecting the performance of
the system [6]. Trying to find the suitable configuration pa-
rameters is not a trivial task for users since it requires a deep
understanding of both the hardware and software, and how
they interact. We are not the first to realize this problem and
several remedies have been proposed ranging from using lo-
cal search techniques [7] to online services that use artificial
intelligence for determining optimal configurations [21, 26].

In this work, we focus on providing a thorough solution
to one configuration aspect of particular importance for the
resulting performance: the problem of threading. The state
of the art in big data processing for the parallel portion
of the execution is to probe the number of physical CPU
cores as the default and instantiate a thread pool of equiva-
lent size. Indeed, this setting is typically tunable through a
launch-time configuration parameter. However, the implicit
underlying assumption behind this design is that big data
processing is primarily and uniformly CPU-bound, an as-
sumption that we refute by experimental evidence in Section
3. Instead, our results show that different phases of big data
workloads experience different limitations and therefore war-
rant a more differentiated approach to threading, beyond the
scope of a single static configuration parameter. We present
a drop-in replacement for the Spark Executor that is able
to adjust the number of threads based on two sources of
reflection. First, we infer structural properties of the work-
load to identify phases that are likely not CPU-bound (in our
concrete example I/O bound instead). In Section 4 we present
an initial model that distinguishes between generic, proba-
bly CPU-bound stages of the pipeline and likely I/O-bound

https://doi.org/10.1145/3361525.3361545
https://doi.org/10.1145/3361525.3361545
https://www.acm.org/publications/policies/artifact-review-badging/#functional
https://www.acm.org/publications/policies/artifact-review-badging/#available

Middleware 19, December 8-13, 2019, Davis, CA, USA Sobhan Omranian Khorasani, Jan S. Rellermeyer, and Dick Epema

Category #Parameters
Shuffle 19
Compression and Serialization 16
Memory Management 14
Execution Behavior 14
Network 13
Scheduling 32
Dynamic Allocation 9
Total 117

Table 1. Number of functional parameters in Spark

stages. With this simple approach, we are able to improve the
runtime of workloads like Terasort by almost 40% without
changing the program. In the second step (Section 5), we
develop a controller that dynamically adjusts the number of
threads, to avoid contention, by monitoring I/O wait time
and throughput. As we show in the evaluation (Section 6),
this solution is able to perform more fine-grained dynamic
adaptations and, for problems like PageRank where the static
solution only delivers marginal improvements, reduces the
execution time by more than 50%.

2 Problem Statement and Related Work

The ongoing trend towards higher CPU core counts with
only marginal improvement in clock speed for new processor
generations has increased the pressure on users to effectively
parallelize and schedule their workloads. Fortunately, com-
monly used Big Data programming models and frameworks
take care of the parallelization into tasks and scheduling
them to machines in the computer cluster. The question,
however, remains how to adjust the number of threads per
computer to achieve the best system utilization and workload
throughput.

The different means to enable concurrency have been a
long and contentious topic in the design of large-scale and
performance-critical systems. Before the multi-processor and
multi-core era, much of the discussion revolved around the
question of either using multiple concurrent threads [17],
typically in a timesharing setup [15], or handling all process-
ing in a single, continuously running thread [4]. While the
second model avoids costly context switches and scheduler
overhead, it requires the application to actively manage the
different states associated with the concurrent workflows
and essentially perform soft context switches itself.

As soon as the hardware supports true parallelism, the
single-threaded design is no longer a favorable option ex-
cept for very specific designs (e.g., the main event loop in
Node.js [20]) that prioritize scalability and low latency over
throughput. Instead, multi-threading is now the dominant
approach in modern systems. Servers (or services) formally
implement a producer-consumer pattern with the server
socket producing work by accepting incoming connections

177

worker threads consuming the work by performing the nec-
essary operations to serve the request. However, having an
unbounded number of threads (e.g., by instantiating a new
thread per incoming connection) is not an option in view of
limited compute resources since this leads to an unbound
wait queue and therefore unbounded latency. As a result,
systems typically instantiate an either fixed-sized or limited-
sized pool of worker threads that continuously handle tasks.
Re-using the same threads through a pool eliminates the
static cost of repeatedly allocating new threads.

Finding the right thread pool size to maximize perfor-
mance is an involved task. In the idealized case of entirely
CPU-bound tasks and no further processes computing for
CPU time, choosing as many threads as there are hardware
execution contexts available is the logical choice. However,
as soon as the workload involves I/O operations, threads can
no longer utilize their entire time slice and the wait time for
the I/O operation to complete leads to an underutilization of
the CPU. In this case, common knowledge suggests to use
more threads than physical cores, with concrete numbers
ranging up to twice the core count or more (e.g., for GNU
Make [19, 22]). Using too many threads, however, can also
hurt the performance by creating I/O contention [18]. The
optimal number of threads that saturates but not overwhelms
the I/O subsystem highly depends on the workload and even
the environment (e.g., concurrently running processes that
compete for resources like CPU, cache lines, memory, net-
work, or storage) and in practice needs to be determined
through a tedious, manual, experimentation-driven process.

The problem is severe enough in practice that some au-
thors demanded to take the decision of threading out of the
hands of programmers (or operators if the choice is exposed
as a configuration parameter) and centralizing the authority
over concurrency within the operating system. Von Behren
at al. were among the first to criticize the virtual processor
model of threading [24]. With Cappricio [25], the authors pre-
sented a user-level threading library that features a central
resource-aware scheduler that is able to adapt the number
of threads to the global system utilization.

Apple introduced a task-based abstraction for concurrency
with OS X in Grand Central Dispatch [16]. This central fa-
cility allows developers to submit tasks and it maintains a
single system-wide thread pool to execute them, thereby
relieving the developer or operator from any tuning efforts
and ensuring fairness across multiple applications.

For the broader problem of parameter tuning, several sys-
tems were proposed to externalize the tuning parameters
and allow a central controller to make global decisions as,
e.g., in ActiveHarmony [2]. Domain-specific solutions ex-
ist for Java enterprise servers [28] or Oracle databases [5].
Karcher and Pankratius presented Pepetuum [9], an auto-
matic system-wide performance tuner for multi-core appli-
cations that they embedded into Linux. The system is able
to dynamically adjust the number of threads but requires

Self-adaptive Executors for Big Data Processing

e OI 3sta

0

1200 1100 1600

0
Time (s)

Figure 1. I/O wait and CPU usage of different stages of
applications

changes to all participating applications in order to expose
this tuning parameter and allow for performance measure-
ments. In addition to these white-box approaches, several
systems for black or gray-box tuning were proposed. Those
systems do not require changes to the application but, as a
consequence of not understanding the semantics of tuning
parameters, are restricted to more or less elaborate searches
within the parameter space. One example in the big-data
domain is MRonline [13] for automatic performance tuning
of Hadoop.

In the context of big data processing, the subtle interaction
between threads and I/O is of particular importance since
large amounts of data need to be moved through the system
in order to derive insights. Traditional solutions for full or
semi-automatic performance tuning have limitations. Offline
tuners require multiple full runs of the system in order to
approach the momentarily optimal solution. However, since
the workload characteristics of big data platforms is primar-
ily determined by the user program, these results are then
not applicable to other workloads. Online solutions often
fail to react quickly enough to adapt to the different phases
within a data processing pipeline. These shortcomings moti-
vated our research into improving the adaptivity of threading
inside big data processing frameworks like Apache Spark
and leveraging the knowledge of the workload structure,
rather than relying on generic external approaches that are
agnostic to the workload.

3 Adaptive Executors

The responsible entities for task execution in Spark (Execu-
tors) use thread pools whose size is by default the number
of available virtual cores based on the implicit assumption
that most tasks are primarily CPU-bound. This setting can
be explicitly overridden by the operator of the system as ap-
plication performance can be bound by a different resource
such as disk or memory rather than only CPU. For instance,

178

Middleware *19, December 8-13, 2019, Davis, CA, USA

’ Application | Input Size | I/O Activity Diff.
Aggregation 17.87 GiB 37.44GiB | + 109%
Bayes 3.50 GiB 9.80 GiB | + 180%
Join 17.87 GiB 21.06 GiB + 18%
LDA 0.63 GiB 3.83 GiB + 508%
NWeight 0.28 GiB 10.23 GiB | + 3553%
PageRank 18.56 GiB 128.3 GiB +591%
Scan 17.87 GiB 112.56 GiB + 530%
Terasort 111.75 GiB 429.35 GiB | + 284%
SVM 107.29 GiB 203.92 GiB +90%

Table 2. I/0O activity of Spark applications relative to their
input size

multiple sources report that executors on large simultaneous
multithreading (SMT) machines running with more than a
certain number of concurrent tasks may lead to poor HDFS
I/O throughput [3, 14]. Figure 1 shows the average CPU us-
age of various applications in every stage of their execution.
The mpstat command line tool in Linux was used to collect
this information on each node and the results were averaged
across the cluster. There are two main observations. (1) We
can see that almost in all cases the CPU is not fully utilized.
For example, in Terasort stages, the CPU usage is 6, 15, and
9% respectively. (2) This also suggests that each stage of exe-
cution might be dominated by a different system resource.
This would make the (static) decision of determining the
number of threads based on a single resource (e.g., CPU) not
optimal. Additionally, the color of bars in Figure 1 represent
the average percentage of time that CPU has waited for disk
I/0. This also suggests that some stages are more I/0-bound
than the others which corroborates the need of having a
dynamic solution. Similar to many other configuration prop-
erties in Spark, the deciding parameter for determining the
number of threads cannot be changed once the application
has started and must be set in advance. This is problematic
since in practice big data applications often have multiple
stages of execution, each of which could have distinct char-
acteristics that benefit from different set of parameters. Our
adaptive executors address this behavior by differentiating
between tasks that are likely to be compute-bound and for
which thus the current approach of using as many threads
as physical cores is feasible, from those tasks are that are
almost certainly not. For the latter class of tasks, we focus on
those that are likely to cause a high amount of I/O activity.

The typical pipeline for a big data application consists of
an initial phase in which the data is read (i.e., data ingestion),
then some transformation are applied to the dataset, and
ultimately the final output is written back to the disk. The
first generation of frameworks such as Hadoop stored all the
intermediate results on the local disk [12]. While in modern
in-memory processing systems like Spark the transforma-
tions should not directly contribute to I/O activity, there are

Middleware *19, December 8—13, 2019, Davis, CA, USA

B Default (32)
I 16 threads
B 8 threads

4 threads

500
1500 2 threads

1250 —

1000 —

Runtime (s)
o

g

|

500

250

T
32 16 8 4 2 bestfit
Number of Threads

(a) Terasort

Sobhan Omranian Khorasani, Jan S. Rellermeyer, and Dick Epema

2500

2000

1500 +

Runtime (s)

1000 —

500

32 16 2 bestfit

8 1
Number of Threads

(b) PageRank

Figure 2. The runtime effect of static solution on Terasort and PageRank

still cases in which they do. For instance, shuffle maps are
spilled out to disk for fault-tolerance or to reduce memory
pressure. As a result, big data processing frameworks pro-
duce a surprisingly high amount of I/O activity relative to
their input size. Table 2 shows the disk activity of various
applications in Spark. As we can see, with the exception of
the join workload, the ratio between input size and inter-
mediate I/O activity ranges between factors of 2x and more
than 30x. This further motivates our approach of examining
the interplay between thread count and I/O throughput.

4 Static Solution

As the first step toward having flexible parameters for dif-
ferent execution contexts, we modified Spark to identify the
I/O intensive stages and employ a user-defined value as the
number of threads in those stages. The I/O stages are con-
sidered to be the ones that read from or write to the disk
regardless of their input/output size. Since all the transforma-
tions and actions in Spark happen at the level of RDDs [27],
we modified them to let the executors know whether the
current stage should be considered as I/O. Transformations
such as textFile() and actions such as saveAsTextFile()
and saveAsHadoopFile() would all mark the stage as I/O.
For instance, the Terasort application consists of three stages,
all of which are considered to be I/O intensive since the first
two read from the disk and the last one writes the results,
whereas in the PageRank application, out of the total 5 stages,
only the first and the last stages use I/O operations while the
remaining stages primarily shuffle data.

Figure 2 shows how having different numbers of threads
for I/O stages affects the runtime of Terasort and PageRank
on 4 nodes. The x and y axis show the number of threads
and runtime respectively and the stages are separated by the
black lines. The non-1/O stages still use the default number
of threads (indicated by the gray color). It is clear that it

179

is not always efficient to use all the available cores in the
system. Additionally, the results suggest that different stages
could benefit from a different number of threads. By treating
I/O stages differently, compared to the default version, the
static solution is able to reduce the runtime of Terasort and
PageRank in the best case (8 threads) by 39.35% and 19.02%
respectively. It is important to note that these performance
gains do not require any modifications to the workload since
the solution is fully transparent to the user program. How-
ever, the approach comes with several limitations which is
mainly due to having to make static decisions. In Section 5,
we present a more elaborate dynamic solution that is capable
of eliminating each one of the following limitations while
still producing significant performance gains, sometimes
outperforming the static solution in practice.

L1: Parameters are fixed for all I/O stages The last bar
(i.e, BestFit) in Figure 2 shows the (hypothetical) best com-
bination of threads for each stage. For example, the first
stage of Terasort (Figure 2a) exhibits the best performance
when the number of threads is set to 4 whereas it is 8 for
the other two stages. Similarly, in Figure 2b, PageRank bene-
fits the most from having 16 and 8 threads in the first and
last stage respectively. This behavior greatly illustrates one
of the limitations of the static approach. Although we are
able to change the number of threads for the I/O stages, it is
not possible to differentiate between the different I/O stages.
In essence, we are not able to reach the optimal "BestFit"
performance with the static solution.

L2: Unable to identify every I/O stage Only considering
typical I/O operations (e.g., read and write) is not ideal since
there might exist other stages that use the disk but do not
explicitly use I/O actions. In case of Spark, shuffle stages use
the disk for storing intermediate data or any stage could use
the disk for spilling the cached data in memory. For example,

Self-adaptive Executors for Big Data Processing

200 -

Time (s)
4 0z 5oz =

i

il

Middleware ’19, December 8—13, 2019, Davis, CA, USA

= Mean Write Time
= Mean Read Time
Write Time
Read Time

Nodes

Figure 3. I/O performance variability in the DAS-5 cluster

1600 -1 'mml Default (32)
EE 16 threads
BN 8 threads

4 threads

2 threads

1400 4
1200

w

~— 1000

800

Runtime

600

400 H

200

32 16 8 4 2
Number of Threads

bestfit

(a) Aggregation

B Default (32)
Bl 16 threads
B 8 threads

4 threads

2 threads

6000

L

5000
—~
&2 4000

3000 H

Runtime

2000

1000

0- T T
32 16 bestfit

8 4 2
Number of Threads

(b) Join

Figure 4. The runtime effect of static solution on SQL applications

the shuffle stages in PageRank (stages 1 to 4), read 65.5GB
and write 59.4 GB of data which means they should also be
considered for tuning, even though they do not express that
they are I/O.

L3: Agnostic against the workload characteristics The
third limitation stems from the fact that the static solu-
tion does not take the workload characteristics such as in-
put/output size into account. While in the Sort application,
both input and output size are the same (e.g., 120GB), there
are other applications that read or write only small amounts
of data. In that case, there is not enough I/O activity to jus-
tify using fewer threads since the maximum throughput of
the disk is never reached. Furthermore, the static solution
is not always able to decrease the runtime. For example
in SQL applications such as Aggregation (Figure 4a) and
Join (Figure 4b), even for the I/O stages (i.e., first stage), the

180

default number of threads performs best. The underlying
reason can be explained by analyzing the difference in aver-
age disk utilization in I/O stages of these applications (Figure
5). For applications which benefit from the static solution
such as Terasort (Figure 5a), the average disk utilization in
the I/O stages is the highest (indicated in red) when 4, 8,
and 8 threads are used respectively which is exactly equal to
the output of static BestFit (Figure 2a) and corroborates the
reduction in runtime. PageRank (Figure 5d) follows the same
pattern in its data ingestion phase (stage 0) by having the
highest disk utilization at 16 threads which is also complies
with the static BestFit result shown in Figure 2b. However,
for Aggregation and Join workloads which do not follow the
same pattern, disk utilization in the read stage is significantly
lower when fewer threads are used, most probably due to the
additional transformations in that stage. In fact the average
CPU utilization for the first stage of Join and Aggregation

Middleware 19, December 8-13, 2019, Davis, CA, USA Sobhan Omranian Khorasani, Jan S. Rellermeyer, and Dick Epema

100

100
80 804
60 60
404 404

20 20

Average Disk Utilization (%)
Average Disk Utilization (%)

16 8 4 2 32
Number of Threads

16

(a) Terasort, Stage 0

100 100

Number of Threads

(b) Terasort, Stage 1

100

804

60

404

20

Average Disk Utilization (%)

8 4 2 32 16 8 4 2

Number of Threads

(c) Terasort, Stage 2

100

80 80

60 60
40 404

20

32 16 8 4 2 32
Number of Threads

204

Average Disk Utilization (%)
Average Disk Utilization (%)

16

(d) PageRank, Stage 0

Number of Threads

(e) Aggregation, Stage 0

80

60

404

204

Average Disk Utilization (%)

8 4 2 32 16 8 4 2

Number of Threads

(f) Join, Stage 0

Figure 5. Average disk utilization across all nodes in the I/O stage of different applications. The red bar represents the highest

average disk utilization

is 68% and 46% respectively whereas it is only 6% for the
Terasort. This means that the amount of computation done
in I/O stages differ between applications which reveals yet
another important limitation for the static solution. Since
the performance of I/O stages heavily depends on different
properties such as the input size and other transformations
in the same stage, it is not always guaranteed that using dif-
ferent number of threads is beneficial. Therefore, any static
decision could lead to a sub-optimal performance due to the
lack of information about the workload characteristics.

L4: Agnostic against inherent performance variability
The next limitation comes from the practical experience in
running actual workloads on large computer clusters. Fig-
ure 3 shows the difference in reading and writing 30 GB
of data in our nation-wide DAS-5 cluster [1]. Although the
machines have an identical setup, there is still a significant
gap in their actual performance. Having to manually identify
these differences and assess their impact could be a very
tedious tasks for the users. Even the heterogeneous and dy-
namic environment in which applications run in (e.g., Cloud)
could play an important role since an ideal state at one time
is not guaranteed to be the same at another [23].

L5: The solution still requires manual tuning The last
and perhaps the most prominent limitation of the static so-
lution is that the users still need to provide the parameter

181

values, which turns into a substantial manual tuning effort.
In other words, although the users are now able to select
different numbers of threads for the I/O stages, it is still their
responsibility to find the most suitable configuration.

Even though the static approach is a step forward from the
default behavior of Spark, its limitations hinders us from hav-
ing a true adaptive solution. In the next section, a dynamic
solution is presented which builds upon the static approach
and removes its limitations by monitoring the underlying
I/0 infrastructure and dynamically changing the number of
threads to achieve the best performance.

5 Self-adaptive Executors

The aforementioned limitations motivate the effort in seek-
ing an autonomic, self-adaptive solution based on observing
the runtime characteristics of the workload instead of putting
the burden on the users to find the suitable parameters. It is
now the framework’s responsibility to dynamically tune its
parameters for optimal performance.

The dynamic solution aims to address all the aforemen-
tioned limitations of the static approach. Concretely, the first
limitation (L1) is addressed by tuning each individual stage
of execution which enables the algorithm to find different
optimal thread number settings for different stages. Figure
6 shows the decisions by the dynamic solution for different
stages of Terasort. We see that the algorithm has decided

Self-adaptive Executors for Big Data Processing

Bl executor 0
B cxecutor 1
161 executor 2

executor 3

o
I

Number of Threads
'y
|

¥
I

0- T T
0 1
Stages

o

Figure 6. Selecting the thread number by the dynamic solu-
tion in different stages of Terasort for every executor

different number of threads for different stages which is the
desired behavior. Secondly, by considering every stage, it has
a chance to find a better configuration for stages which do
not explicitly perform I/O actions such as shuffle stages.
(addresses L2). The third limitation (L3) is addressed by
monitoring suitable performance metrics which are used
by the algorithm to infer whether using a certain number of
threads results in a better performance. In this case, if the
input/output size or the disk utilization is too low to justify
using fewer threads, then the performance metrics would
be able to capture this information and let the tuner decide
accordingly. Furthermore, by tuning each executor individu-
ally in each stage, it can potentially find different settings for
different executors based on their capabilities and removes
the need for manual intervention by the users (addresses L4).
In Figure 6, we see that the algorithm can potentially decide
a different setting for each executor in a stage. For example
in stage 1, executor 2 uses 4 threads whereas other executors
all use 8. This behavior would be most effective when there
is a large discrepancy between the (I/O) performance of the
machines.

In the realm of self-adaptive systems, having explicit feed-
back loops is a common trend with the aim of decoupling
system management activities from software development
cycles. A major breakthrough in making feedback loops ex-
plicit came with IBM's autonomic computing initiative with
its emphasis on engineering self-managing systems. One of
the key findings of this research is the blueprint for building
autonomic systems using MAPE-K (monitor-analyze-plan-
execute over a knowledge base) feedback loops [10]. The
managed element in this case is the thread pool whose per-
formance is monitored by various tools (i.e, sensors), analyzed
based on which a decision is planned and ultimately executed
in order to adjust its size. The feedback behavior of a self-
adaptive system which is realized with its control loops, is a
crucial feature and, hence, should be elevated to a first-class

182

Middleware *19, December 8-13, 2019, Davis, CA, USA

entity in its modeling, design, implementation, validation,
and operation.

5.1 [M]onitor

The monitor senses the managed process (e.g., thread pool)
and its context, filters the accumulated data, and stores rele-
vant events in the knowledge base for future reference. As
we saw in Section 3, the significance of disk I/O in most big
data applications which stems from multiple sources such as
long data ingestion and writing phases and the persistence
of intermediate results makes it a viable metric for monitor-
ing. In order to measure the disk performance, the following
metrics are monitored:

1. Epoll wait time (¢): This system call waits for events
on a file descriptor.

2. I/O throughput (u) : The overall read/write throughput
of the tasks.

The strace tool in Linux is used to measure the epoll
wait time for an interval. For the I/O throughput, we use a
sampling approach in which each second the throughput of
the running tasks (reported by the Spark metric system) is
measured and then the total average represents the through-
put for a given interval. The first metric represents the time
spent waiting for a read or write request to complete and
the second indicates the overall read and write (either disk
or shuffle data) throughput of the tasks. Since epoll wait and
throughput contribute to the I/O performance in different
ways, in order to have a single value which incorporates both
metrics and represents the amount of I/O congestion, we di-
vided the epoll wait time by the throughput of the tasks and
then select the configuration where this value is minimized
(min({)):

&j .
= | cmin <J < Chax
Hj
where ¢, and ¢4 are the minimum and maximum num-
ber of threads and {; is the I/O congestion index, ¢; is the
accumulated epoll wait time and y; is the I/O throughput for
the interval in which the number of threads is set to j. An
interval (I;) is finished once j tasks have completed, inside of
which the performance of the current number of threads ({;)
is monitored. For instance, the interval for 16 threads (I;4)
starts by setting the thread pool size to 16 and then monitors
the performance of 16 concurrent tasks and finally finishes
as soon as they are all complete. At the end of each interval,
the control is passed to the next component to analyze the

gathered data.

4 (1)

5.2 [A]nalyze

The analyzer performs complex data analysis and reason-
ing on the symptoms provided by the monitoring function.
In concrete terms, the analyzer is responsible for finding
out which parameter values cause more contention on the

Middleware 19, December 8-13, 2019, Davis, CA, USA Sobhan Omranian Khorasani, Jan S. Rellermeyer, and Dick Epema

1750

. Fo.14
1500 500
Fo.12

1250

@

I/0 throughput (MB/s

lex

F0.10

600
1000

T
2

r0.08.

100

- 0.06

epoll wait time (s)
epoll wait time (s)

congestion inc

- 0.04 200
250
I 100

r0.02

1000

T
]

800 F 100

600 L <o

epoll wait time (s)

1/0 throughput (MB/s)

[60

200 L 1o

> 1 3 16 32 8= cpoll > 1 5
T) - /01
Number of Threads .
(a) Stage 0

T
16

Number of Threads

(b) Stage 1

3 -«
—-
-+

T T T T
2 4 8 16

Number of Threads

(c) Stage 2

Figure 7. Effect of having different number of threads on epoll wait time and throughput in one of the executors for different

stages of Terasort

underlying I/O infrastructure and potentially degrade the
performance.

Contention at the level of the disk can have implications
on both provided metrics whereby reading or writing beyond
the saturation level of a disk increases the epoll wait time
and diminishes its throughput. In order to demonstrate this
effect, Figure 7 shows the impact of having different numbers
of threads on these metrics for different stages of Terasort
on one of the executors. In stage 0 (Figure 7a), which is es-
sentially a read stage, the epoll wait time expectedly grows
as the number of threads increases. More interestingly, the
throughput is the highest when the executor uses only 4
threads. Similarly , stage 1 and 2 (Fig 7b and 7c) both see
a similar trend in epoll wait time, however throughput is
maximized at 8 threads. Recall that in Figure 2a, the (hypo-
thetical) best combination of threads was 4, 8 and 8 for the
three stages of Terasort respectively which is equal to the
minimum point of the congestion index (green line) in every
stage. Therefore, the dynamic solution selects the configu-
ration where the I/O congestion is minimized (indicated by
the arrow).

One could argue that average disk utilization shown in
Figure 5 is another good metric since it also gives a hint as
to which configuration is performing better. The first rea-
son why we chose the combination of epoll wait time and
throughput over other metrics is that in some cases disk
utilization is very similar between different settings. For
example in the first stage of Terasort (Figure 5a), all core
numbers achieve 91.13% disk utilization or higher and the
difference between the minimum and maximum is less than
6%. In such case, it is difficult to find out which configuration
has indeed performed better since they are all relatively high.
That is why we are combining two metrics in order to get
a more accurate view of the I/O performance. The second
reason is that although these metrics are primarily used for
disk I/O, unlike average disk utilization, they would also
work for network I/O since: a) epoll wait time tracks the

183

time spent waiting for events on any file descriptor which
in the case of a network I/O is a network socket, and b) the
I/O throughput considers both disk and shuffle data. There-
fore, the gathered monitoring values are still meaningful for
network operations such as shuffle and remote reads/writes.
In order to traverse through the problem space and eval-
uate different configurations, the analyzer employs a hill-
climbing algorithm in which it attempts to find a better so-
lution by making an incremental change to the solution. If
the change produces a better solution, another incremental
change is made to the new solution, and so on until no further
improvements can be found. In other words, the algorithm
always starts from the minimum number of threads (c;,i,) in
each stage and doubles the number of threads (in the interest
of keeping the settling time low) until it reaches the maxi-
mum thread threshold (c¢;,45). While these parameters are
configurable, in this work, c,,;,, is set to 2 and not 1 since it is
almost impossible that a single-thread outperforms multiple
ones and ¢4 is set to the number of virtual cores as it is
often the upper limit At the end of each interval, the analyzer
compares the performance between the current ({;) and the
previous ({j/,) interval and in case of a lower performance,
it rolls back to the core size of the previous interval and
executes the subsequent tasks without adjusting the number
of threads until the current stage finishes. The reason behind
the rollback, apart from being the essence of hill-climbing
algorithms, is because if a specific number of threads (c;)
perform worse than half of its size (c;/,), then most probably
increasing the number of threads (cj..) would only cause
more contention and thus lead to a degraded performance.
Additionally, the reason for starting from the bottom and
ascending rather than from the top and descending is two-
fold. Firstly, it is due to the scheduling mechanism in Spark
which assigns a new task to an executor as soon as it com-
pletes one. This means if we start from a higher number
of threads (e.g., 32) and halve each time, then by the time
the first interval is finished, 32 new tasks have already been

Self-adaptive Executors for Big Data Processing

assigned to be executed and thus halving the thread num-
ber would cause tasks to be queued which is in contradic-
tion with the scheduling mechanism of Spark. Secondly, we
have observed that most of the time, if maximum number
of threads indeed worsens the performance, then starting
from there can significantly affect the runtime in which case
starting from the bottom gives us a quicker route to finding
the optimal thread count.

5.3 [P]lan

As soon as the analyzer makes a decision, the planner is
notified whose job is to devise the procedure to enact a de-
sired alteration in the managed resource. The plan function
can take on many forms, ranging from a single command
to a complex workflow. In the proposed system, the only
requested alteration is adjusting the number of threads in
the thread pool which is as simple as calling the appropri-
ate method on the thread pool object. However, the internal
mechanisms of Spark do not expect this parameter to change.
Namely, the Spark scheduler keeps track of all the executors,
how many cores they have been launched with and more im-
portantly, their current number of free cores which controls
how many new tasks should be assigned to each executor.
This quickly unravels that changing something inside one
component such as the executor is not necessarily cascaded
through other components in the system, causing undesired
behavior. As a result, it is crucial that the planner is aware
of all the consequences a change might have and therefore
be able to select the appropriate courses of action which
preserve the system integrity.

5.4 [E]xecute

The final component in the control loop is the execute func-
tion which ultimately changes the behavior of the managed
resource using effectors based on the actions recommended
by the plan function. These actions include first changing
the number of threads for an executor and then notifying
the scheduler for updating its internal registries. For the first
case, the thread pool object in Java conveniently exposes
a method (setMaximumPoolSize()) which can be used to
adjust its size. For the second case, since this was not sup-
ported by default in Spark, we had to extend the messaging
protocol to facilitate a mechanism for executors to notify the
scheduler about any changes in the size of their thread pool
to make sure that the scheduler has the same view on the
number of threads each executor is currently using.

6 Evaluation

The previous experiments motivated our main design choices
for self-adaptive executors. We have enhanced Apache Spark
to employ our self-adaptive executors and show their per-
formance benefits in the following section using several
community benchmarks.

184

Middleware *19, December 8-13, 2019, Davis, CA, USA

’ Name Type \ Size ‘
Terasort micro 120 GiB
Join sql bigdata
Aggregation | sql bigdata
Page Rank | web search | gigantic

Table 3. Spark applications and problem sizes used in the
experiments

6.1 Experimental Setup

In order to evaluate the performance of self-adaptive execu-
tors, we run Spark applications on the DAS-5 cluster, using
4 nodes, each with 56 GB of memory and 32 virtual (16 with
HyperThreading) cores. The storage system consists of a
HDD with 7’200 rpm and a SATA 6.0 Gbit/s interface. We
used the HiBench benchmarking suite [8] to conduct the
experiments.

Table 3 shows the various applications used in the exper-
iments as well as their input sizes. The input data is read
from HDFS (Hadoop version 2.9.1) with the replication fac-
tor equal to the number of nodes (i.e., 4) to make sure all
executors achieve maximum locality during the read stages.
We compare the runtime of various applications against two
methods:

e Default Spark: which uses all the available virtual cores
in the system.

e Static BestFit: which represents the theoretical opti-
mum derived by combining the per-stage best setting
determined by the results of the static solution.

6.2 Performance Results

Figure 8 compares the performance between the proposed
method and the default behavior of Spark as well as the static
BestFit solution. The numbers inside each stage represent
the number of used threads out of the total available cores
across the machines (omitted for the very short stages due
to space limitations). In all cases, both solutions are able to
reduce the runtime compared to the default version.

In case of Terasort (Figure 8a), the static BestFit and dy-
namic executor reduce the runtime by 47.5% and 34.4% re-
spectively. The reason why the BestFit is able to outperform
the dynamic approach is that all three stages in Terasort
are considered I/O intensive and while the dynamic algo-
rithm needs to explore and evaluate the performance of all
the possible core settings, the static solution starts from an
optimized number of threads and therefore is able to finish
faster.

However, in stages where the static solution fails to iden-
tify them as sensitive to I/O activity (see Section 4), the
dynamic approach is able to outperform the static BestFit.
For example, in PageRank (Figure 8b) the static approach
employs different number of threads only for the first (read)
and last (write) stages which reduces the overall runtime

Middleware 19, December 8-13, 2019, Davis, CA, USA Sobhan Omranian Khorasani, Jan S. Rellermeyer, and Dick Epema

1750 |
1500 |
—~ 1250
%
)
o
£ 1000
s
g
]
5
/7 750
500 |
32/128
250 |
32/128
o 16/128
default static-bestfit dynamic
(a) Terasort
700 |
600 |
500 |
—
&
@ 400
E
2
E 32/128
300 |
=4
200 -
1004

default

static-bestfit dynamic

(c) Aggregation

3000
2500
2000
n
z
E
-2 1500
]
]
/=
1000 4 32/128
32/128
5004 64/128
32/128
i 64/128
default static-bestfit dynamic
(b) PageRank
1750
1500
1250
z
o
£ 1000
E
£
e 750
500
250
o 128/128
default static-bestfit dynamic

(d) Join

Figure 8. The performance of the dynamic solution compared to the default and the static BestFit. The numbers in each stage
represent the number of used threads out of the total available cores across the machines.

by 16.28%, whereas the dynamic approach does it for all
the stages and by doing so it is able to achieve a significant
54.08% and 45.15% reduced runtime compared to the default
and the static versions, respectively.

For SQL applications such as Aggregation and Join, which
did not benefit from the static approach (see Section 4) due
to the additional computations performed in their I/O stages,
the dynamic approach is able to reduce the runtime by ad-
justing the number of threads in the other stages. Specifically,
the dynamic solution increases the performance by 6.83%
and 2.54% for Aggregation and Join respectively. The dimin-
ishing effect in the runtime reduction for these particular
type of applications suggests that the self-adaptive executors
perform better in applications which have pure I/O stages,
potentially causing contention on the disk.

The scalability of the dynamic solution in terms of cluster
size should not be limited since every nodes makes a local
decision on the optimal thread count. Figure 9 confirms this
by juxtaposing the 4 node Terasort results with the results
from a 16 nodes setup for which the input size has been scaled
up proportionally. Most notably, it can be observed that the

185

default settings do not scale (execution time is significantly
higher in the 16 node experiment despite constant resources
to problem size ratio) while both the static and dynamic
solution achieve nearly the same execution time.

5000 default (16 nodes)
static-bestfit (16 nodes)
dynamic (16 nodes)
4000 default (4 nodes)
static-bestfit (4 nodes)

il

dynamic (4 nodes)
3000

_
wn
)
Q
]
2
]
=
~

2000

1000

default static-bestfit dynamic

Figure 9. Assessing the scalability of the dynamic solution
using Terasort on 16 nodes

Self-adaptive Executors for Big Data Processing

2000
B Default (32)
B 16 threads
BN 8 threads

4 threads

2 threads

1750 +

1500 +

1250

1000

Runtime (s)

750 H

500 +

250 4

T

8 1
Number of Threads

T T
32 16 2 bestfit

(a) HDD

Middleware *19, December 8-13, 2019, Davis, CA, USA

B Default (32)
B 16 threads
BN 8 threads

4 threads

2 threads

800

600

400

Runtime (s)

200

32 16 8 4 2 bestfit
Number of Threads

(b) SSD

Figure 10. The effect of HDDs and SSDs on the performance of the static solution for Terasort

500

1

300

Runtime (s)

4

200

32/128

32/128

64/128 56/128

128/128
static-bestfit

128/128

default dynamic
Figure 11. The effect of SSDs on the dynamic solution for
Terasort

6.3 SSD vs HDD

The effect of the number of threads on I/O performance is
highly dependent not only on the nature of the applications
but also the underlying I/O infrastructure. If the disk is able
to provide a high throughput, then it might be able to service
more concurrent I/O requests without becoming a source of
bottleneck. Modern high-end servers widely use Solid State
Drives (SSDs) as their storage device which are typically
more expensive than Hard Disk Drives (HDDs) when mea-
sured by cost per Gigabyte of storage but in return provide a
higher I/O Operations Per Second (IOPS). In order to analyze
the effect of SSDs on the behavior of self-adaptive executors,
we ran Terasort on an identical setup (see Section 6.1) with
the exception of using SSDs as the storage device. Figure 10
compares the results for the previously shown static solution
for HDDs versus the SSD version in different stages.

The first stage which consists of pure read operation, the
default number of threads (32) performs best for SSD un-
like the HDD version which shows 4. This difference can

186

be explained by considering how HDDs and SSDs work un-
der the hood. In order to read data, HDDs have to wait for
their mechanical head to move to the appropriate position
which is exacerbated by having more number of concurrent
threads, while it is not the case for SSDs. These devices sup-
port full random access at a uniform latency, resulting in a
much higher read throughput. Figure 12a and 12b show the
difference in I/O throughput in the first stage when ran with
different number of threads on HDD and SSD respectively.
As we can see, with HDD the mean throughput varies quite
significantly between different settings with 4 being the max-
imum whereas in the case of SSD, it is more uniform. The
performance degradation in HDDs with higher number of
threads is most likely due to the additional head movement,
which does not exist in SSDs.

The second stage, consisting of a read operation and a
shuffle map which writes intermediate shuffle data, has also
changed where SSD benefits the most from 16 threads com-
pared to 8 in HDD. The write speed in SSDs is slower than
the read since the data cannot be written to a page unless it
is first erased. However, only the entire blocks are erasable
which means in order to write a single bit of data to a page,
it is necessary to copy all the pages in the block to a staging
area, erase the entire block and then write all the pages and
the new data back to the erased block. This overhead would
explain why the maximum number of threads in this stage
does not yield the best performance. If we compare the I/O
throughput of this stage between HDD (Figure 12c) and SSD
(Figure 12d), we can see that not only SSDs provide a higher
throughput as expected, but also perform better when more
threads are used.

The last stage which includes shuffling the data (network
I/0) and writing the output (disk I/O) is the same between
both settings. This is expected as network I/O is not heavily
influenced by the underlying disk storage.

Middleware 19, December 8-13, 2019, Davis, CA, USA Sobhan Omranian Khorasani, Jan S. Rellermeyer, and Dick Epema

[

0
SR 4101 VAN T v o Y A
/200000
i o o S ALYl RN I)
-
2. 150000
e .
1) ===z Mean
e
£ 100000 -
o 6
= 50000 3
4
0- 2
0 50 100 150
Time (s)

(a) Stage 0, HDD

250000 -
200000 - 78 I SRES I 7|0 ikl =) o Wy e A

150000 -

100000 -

I/O Throughput (KB/s)

1(‘|l) l-l)()
Time (s)

(c) Stage 1, HDD

)
3

0
)
N
g 200000
-
2 150000
e .
2 ===z Mean
£ 100000 - 32
o 6
= 50000 [
4
0- 2
0 0 20 30 10 50 60
Time (s)
(b) Stage 0, SSD
250000 -
n
)
N .
%_unmnm
21
B 150000~
80 s
5 ===z Mean
2100000 - [
o . 16
= 50000 - . 8
4
2

60 80 100 120

Time (s)

0 20 10

(d) Stage 1, SSD

Figure 12. I/O throughput of Terasort with HDDs and SSDs

Regardless of the concrete storage device, both static and
dynamic solutions are able to reduce the Terasort execution
time, despite to a lesser extent for SSDs (20.23% vs. 47.48% for
static and 16.73% vs. 34.4% for dynamic) since these devices
are less susceptible to thread contention for stages involving
heavy disk I/O.

The performance discrepancy between HDD and SSD
is another reminiscent of how tuning decisions can differ
amongst different setups. While these results were obtained
on two particular configurations, they could potentially be
entirely different on another cluster which once again em-
phasizes the importance of having a dynamic mechanism
for deciding the suitable parameter values.

7 Conclusions and Outlook

Tuning the number of threads for big data processing frame-
works like Spark is a tedious but necessary task in order to
gain best performance. As we have shown in this paper, the
difference in runtime between the default setting of using
one executor thread per physical core and the optimal setting
can easily be 2x. Much of this effect can be attributed to I/O

187

contention. We have presented a static solution for thread
pool tuning that only differentiates between phases likely
to be I/O-bound and the other phases for which no struc-
tural evidence for I/O activity exists. This solution is able
to produce good speedup for workloads like Terasort which
have many I/O-bound phases but falls short for workloads
like PageRank. Using a dynamic approach in the form of self-
adaptive executors that employ a MAPE-K style control loop
to measure system metrics and adjust the thread pool size ac-
cordingly, even such complex workloads can be accelerated
substantially, all without any changes to the workload itself.
Our implementation serves as a drop-in replacement for the
Spark executor and has been released under the Apache-2
license on GitHub'. Despite shown for Spark, we envision
this approach to be highly applicable to a broad range of
different big data processing frameworks and even consider
it a blueprint for the design of novel frameworks designed
with the goal of liberating the user from the difficult task of
manually tuning the worker thread count.

Lhttps://github.com/SobhanOmranian/spark-dca

https://github.com/SobhanOmranian/spark-dca

Self-adaptive Executors for Big Data Processing

References
[1] Henri Bal, Dick Epema, Cees de Laat, Rob van Nieuwpoort, John

[13

(14

[15

[16

(17

(18

[19

[20

[t

]

—_ =

=

—

[t

Romein, Frank Seinstra, Cees Snoek, and Harry Wijshoff. 2016. A
medium-scale distributed system for computer science research: In-
frastructure for the long term. Computer 49, 5 (2016), 54-63.

I-H Chung and Jeffrey K Hollingsworth. 2004. Automated cluster-based
web service performance tuning. In Proceedings. 13th IEEE International
Symposium on High performance Distributed Computing, 2004. IEEE,
36-44.

Cloudera Blog. 2015. How to Tune your Apache Spark
Jobs. https://blog.cloudera.com/blog/2015/03/how-to-tune-your-a
pache-spark-jobs-part-2/. Accessed: 2019-05-03.

Frank Dabek, Nickolai Zeldovich, Frans Kaashoek, David Maziéres, and
Robert Morris. 2002. Event-driven programming for robust software.
In Proceedings of the 10th workshop on ACM SIGOPS European workshop.
ACM, 186-189.

Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani,
and Graham Wood. 2005. Automatic Performance Diagnosis and
Tuning in Oracle.. In CIDR. 84-94.

Anastasios Gounaris and Jordi Torres. 2018. A Methodology for Spark
Parameter Tuning. Big Data Research 11 (March 2018), 22-32. https:
//doi.org/10.1016/j.bdr.2017.05.001

Holger H Hoos. 2011. Automated algorithm configuration and param-
eter tuning. In Autonomous search. Springer, 37-71.

Shengsheng Huang, Jie Huang, Yan Liu, Lan Yi, and Jinquan Dai. 2010.
Hibench: A representative and comprehensive hadoop benchmark
suite. In Proc. ICDE Workshops. 41-51.

Thomas Karcher and Victor Pankratius. 2011. Run-time automatic
performance tuning for multicore applications. In European Conference
on Parallel Processing. Springer, 3-14.

Jeffrey O Kephart and David M Chess. 2003. The vision of autonomic
computing. Computer 1 (2003), 41-50.

Laszlo B Kish. 2002. End of Moore’s law: thermal (noise) death of
integration in micro and nano electronics. Physics Letters A 305, 3-4
(2002), 144-149.

Woo-Hyun Lee, Hee-Gook Jun, and Hyoung-Joo Kim. 2015. Hadoop
Mapreduce Performance Enhancement Using In-Node Combiners.
International Journal of Computer Science and Information Technology
7,5 (Oct. 2015), 1-17. https://doi.org/10.5121/ijcsit.2015.7501

Min Li, Liangzhao Zeng, Shicong Meng, Jian Tan, Li Zhang, Ali R Butt,
and Nicholas Fuller. 2014. Mronline: Mapreduce online performance
tuning. In Proceedings of the 23rd international symposium on High-
performance parallel and distributed computing. ACM, 165-176.

REA Group. 2017. How We Optimise Apache Spark Jobs. https://ww
w.rea-group.com/blog/how-we-optimize-apache-spark-apps/. Ac-
cessed: 2019-05-03.

Dennis M Ritchie and Ken Thompson. 1978. The UNIX time-sharing
system. Bell System Technical Journal 57, 6 (1978), 1905-1929.
Kazuki Sakamoto and Tomohiko Furumoto. 2012. Grand central dis-
patch. In Pro Multithreading and Memory Management for iOS and OS
X. Springer, 139-145.

Jerome Howard Saltzer. 1966. Traffic control in a multiplexed computer
system. Ph.D. Dissertation. Massachusetts Institute of Technology.
Charles E. Skinner and Jonathan R. Asher. 1969. Effects of storage
contention on system performance. IBM Systems Journal 8, 4 (1969),
319-333.

StackOverflow. 2010. GNU make: should the
of jobs equal the number of CPU cores in a system?
https://stackoverflow.com/questions/2499070/gnu-make-should-the
-number-of-jobs-equal-the-number-of-cpu-cores-in-a-system.
Stefan Tilkov and Steve Vinoski. 2010. Node. js: Using JavaScript to
build high-performance network programs. IEEE Internet Computing
14, 6 (2010), 80-83.

number

[21] TuneUp.ai. [n. d.]. Performance Tuning as a Service. https://tuneup.ai.

188

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Middleware *19, December 8-13, 2019, Davis, CA, USA

Unix StackExchange. 2015. How to determine the maximum number
to pass to make -j option? https://unix.stackexchange.com/questions
/208568/how-to-determine-the-maximum-number-to-pass-to-mak
e-j-option.

Alexandru Uta and Harry Obaseki. 2018. A Performance Study of Big
Data Workloads in Cloud Datacenters with Network Variability. In
Companion of the 2018 ACM/SPEC International Conference on Perfor-
mance Engineering. ACM, 113-118.

J Robert Von Behren, Jeremy Condit, and Eric A Brewer. 2003. Why
Events Are a Bad Idea (for High-Concurrency Servers).. In HotOS.
19-24.

Rob Von Behren, Jeremy Condit, Feng Zhou, George C Necula, and
Eric Brewer. 2003. Capriccio: scalable threads for internet services. In
ACM SIGOPS Operating Systems Review, Vol. 37. ACM, 268-281.
Nezih Yigitbasi, Theodore L. Willke, Guangdeng Liao, and Dick Epema.
2013. Towards Machine Learning-Based Auto-tuning of MapReduce.
In 2013 IEEE 21st International Symposium on Modelling, Analysis and
Simulation of Computer and Telecommunication Systems. IEEE. https:
//doi.org/10.1109/mascots.2013.9

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauley, Michael J. Franklin, Scott Shenker, and
Ton Stoica. 2012. Resilient Distributed Datasets: A Fault-tolerant
Abstraction for In-memory Cluster Computing. In Proceedings of
the 9th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI’12). USENIX Association, Berkeley, CA, USA, 2-2.
http://dl.acm.org/citation.cfm?id=2228298.2228301

Yan Zhang, Wei Qu, and Anna Liu. 2005. Automatic performance
tuning for j2ee application server systems. In International Conference
on Web Information Systems Engineering. Springer, 520-527.

https://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
https://blog.cloudera.com/blog/2015/03/how-to-tune-your-apache-spark-jobs-part-2/
https://doi.org/10.1016/j.bdr.2017.05.001
https://doi.org/10.1016/j.bdr.2017.05.001
https://doi.org/10.5121/ijcsit.2015.7501
https://www.rea-group.com/blog/how-we-optimize-apache-spark-apps/
https://www.rea-group.com/blog/how-we-optimize-apache-spark-apps/
https://stackoverflow.com/questions/2499070/gnu-make-should-the-number-of-jobs-equal-the-number-of-cpu-cores-in-a-system
https://stackoverflow.com/questions/2499070/gnu-make-should-the-number-of-jobs-equal-the-number-of-cpu-cores-in-a-system
https://tuneup.ai
https://unix.stackexchange.com/questions/208568/how-to-determine-the-maximum-number-to-pass-to-make-j-option
https://unix.stackexchange.com/questions/208568/how-to-determine-the-maximum-number-to-pass-to-make-j-option
https://unix.stackexchange.com/questions/208568/how-to-determine-the-maximum-number-to-pass-to-make-j-option
https://doi.org/10.1109/mascots.2013.9
https://doi.org/10.1109/mascots.2013.9
http://dl.acm.org/citation.cfm?id=2228298.2228301

	Abstract
	1 Introduction
	2 Problem Statement and Related Work
	3 Adaptive Executors
	4 Static Solution
	5 Self-adaptive Executors
	5.1 [M]onitor
	5.2 [A]nalyze
	5.3 [P]lan
	5.4 [E]xecute

	6 Evaluation
	6.1 Experimental Setup
	6.2 Performance Results
	6.3 SSD vs HDD

	7 Conclusions and Outlook
	References

