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Abstract—This paper introduces an energy management sys-
tem (EMS) aiming to minimize electricity operating costs using
reinforcement learning (RL) with a linear function approxima-
tion. The proposed EMS uses a Q-learning with tile coding
(QLTC) algorithm and is compared to a deterministic mixed-
integer linear programming (MILP) with perfect forecast in-
formation. The comparison is performed using a case study
on an industrial manufacturing company in the Netherlands,
considering measured electricity consumption, PV generation,
and wholesale electricity prices during one week of operation. The
results show that the proposed EMS can adjust the prosumer’s
power consumption considering favorable prices. The electricity
costs obtained using the QLTC algorithm are 99% close to
those obtained with the MILP model. Furthermore, the results
demonstrate that the QLTC model can generalize on previously
learned control policies even in the case of missing data and can
deploy actions 80% near to the MILP’s optimal solution.

Index Terms—Q-learning, tile coding, energy management
system, mixed-integer linear programming

I. INTRODUCTION

Buildings incorporating a battery energy storage system
(BESS), and photovoltaic (PV) systems, are expected to play
a critical role in future power systems [1]. The growing
share of flexible resources (e.g., BESS, electric vehicles) and
renewable energy sources (e.g. PV), as well as the introduction
of new local market mechanisms, enables the transformation
of classic consumers into prosumers. Due to their features,
prosumers are attractive candidates to participate in demand
response (DR) programs, e.g., through time-varying prices,
balancing service offerings, or congestion relieving [2]. To do
this, prosumers must rely on an Energy Management System
(EMS), which aims to define the optimal control strategies
by optimizing the planning and operation of the various
energy resources, aiming for a specified objective (usually
minimizing total operational cost) [3]. Mathematical optimiza-
tion formulations based on mixed-integer linear programming
(MILP) and stochastic programming can define an optimal
energy management strategy [4]. However, their computational
burden increases rapidly if the problem grows in complexity,
e.g., more sophisticated system dynamics or more decision
variables are added. Another disadvantage of such classical
methods is the required time for updating a control strategy
since reacting in time can become infeasible.

Reinforcement learning (RL) algorithms offer an alterna-
tive solution to the drawbacks faced by classic mathematical
formulations. RL algorithms learn a control strategy by di-
rectly interacting with a dynamic system (its environment).
By doing so, an RL agent assesses the performance of a
sequential decision for each possible state-action pair by a
reward function. Conventional Q-learning calculates a Q-value
and recursively stores it in a table. If the size of this table
is large enough and the RL algorithm is well designed, the
obtained policy function can generalize the agent’s optimal
operation [5]. However, storing these values becomes infeasi-
ble as the number of state-action pairs increases, for instance,
when considering continuous variables. This problem is known
in the literature as the curse of dimensionality. A solution for
this problem is approximating the Q-values using parametric
or non-parametric functions [6], [7].

Recent showed that deep reinforcement learning (DRL) al-
gorithms can achieve satisfactory control strategies for energy
management problems [8]. For instance, the authors in [9]
proposed a DRL to control a battery in a small microgrid
using deep Q-networks (DQNs). Similarly, a double deep
Q-learning algorithm is introduced in [10]. However, since
DRL methods are based on artificial neural networks, global
convergence is not guaranteed and might present stability
issues due to hyperparameter settings [11]. Therefore, DRL
algorithms need extensive hyperparameter tuning to achieve
stable performance [12]. Linear function approximation meth-
ods can also effectively approximate Q-values [6], [13]. Com-
pared to DRL, linear function approximation methods might
showcase less generalization potential yet better convergence
guarantees than DQNs [14]. Convergence guarantees should
be prioritized overbroad generalization since applicable gen-
eralization is only useful with convergence to good-quality
solutions [15]. Another advantage is that their linear behavior
is far more transparent than these non-linear function approxi-
mation methods, making these methods more favorable from a
debugging and engineering point of view. Although several RL
algorithms have been used for the optimal energy scheduling
problem [16], to the best of the authors’ knowledge, Q-
learning with tile coding (QLTC) has yet to be used for flexible
industrial prosumers. Therefore, the main contribution of this
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paper is to introduce an EMS for a flexible industrial prosumer
based on Q-learning with tile coding. The proposed algorithm
can learn an effective control policy by minimizing the day-
ahead electricity costs. The proposed approach also includes
a reward function for fast convergence.

II. RL AND TILE CODING BACKGROUND

In RL, a decision-making problem is expressed in the form
of a finite Markov Decision Process (MDP), defined as the
tuple ⟨S,A(s),R, p, γ⟩, where S is the state space, A(s) the
action space, R the set of rewards, which are all finite, and γ
∈ (0,1] is the discount factor. Variable p : S × S × A(s) →
[0,1] is the state-transition probability function and describes
the environment’s dynamics, usually not available and must be
learnt by interaction. The RL agent’s goal is to maximize the
cumulative discounted reward, i.e., the return Gt, following:

Gt
.
=

T∑
k=t+1

γk−t−1Rk =

∞∑
k=0

γkRt+k+1 (1)

A RL agent follows a policy defined as a mapping function
that determines the action selection from a certain state,
denoted with π(s) : S → A(s). The action-value function
or Q-value function estimates how good a particular action is
in a given state while following policy π by estimating the
expected return, Eπ .

Qπ(s, a)
.
= Eπ

[
Gt

∣∣St = s,At = a
]

(2)

Eventually, in the case of a finite MDP, the agent finds an
optimal policy π∗ that yields the highest reward. The opti-
mal Bellman equation that describes the relationship between
consecutive Q-values is then given by:

Q∗(s, a) = E
[
Rt+1 + γmax

π
Q∗(St+1, a

′)
∣∣St = s,At = a

]
=

∑
s′,r

p(s′, r|s, a)
[
r + γmax

a
Q∗(s

′, a′)
]

(3)

Q-learning directly approximates the action-value function
by updating estimates based on other estimates, i.e., boot-
strapping. Hereby, it has relatively fast learning capabilities. A
Q-function, when approximated by a linear function, can be
expressed as:

Q̂(s, a,w)
.
= w⊤x(s, a) .

=

d∑
i=1

wixi(s), (4)

where w is a parameter vector, d the dimensionality, and
x(s, a) the feature vector that represents state-action pairs. Tile
coding linear function approximation divides the entire state
space into smaller grid-like sub-parts. Each sub-part is called
a tile, m, and has a component mi for each state variable,
|m| = |S|. One layer of tiles together is called a tiling, n.
Multiple layers of tilings are present in tile coding, each with
a small offset of 1/n. The number of tiles and tilings together
determine the function approximation resolution in the corre-
sponding state space dimension, described by 1/(mi·n). Fig. 1
shows the configuration of two different tile coding settings

Fig. 1: The Q-value function approximation for a two-dimensional
state space under different tile coding settings and an identical
resolution.

Grid (𝑷𝒕𝑮)

Controllable 
Loads (𝑷𝒕𝑪𝑫)

PV (𝑷𝒕𝑷𝑽)

BESS (𝑷𝒕𝑩)

Non‐controllable
Loads (𝑷𝒕𝑫)

EMS

Fig. 2: The energy management system’s layout and its components.

that result in an identical Q-function approximation resolution.
The binary feature vectors, used to represent the feature vector
x(s, a), make tile coding computationally very efficient, since
the number of active features is constant for every state. In-
stead of performing d amount of additions and multiplication,
it adds up the n amount of active parameters, making tile
coding the most functional feature representation for modern
computers. For a more detailed explanation, see [15].

III. SYSTEM LAYOUT AND BOUNDARY CONDITIONS

As illustrated in Fig. 2, the smart building’s energy man-
agement problem consists of an electricity consumer with
controllable and non-controllable loads, local PV generation
PPV
t , and a BESS PB

t . All controllable and non-controllable
loads present in the system aggregate to a controllable demand
(CD) and a non-controllable power demand denoted with PCD

t

and PD
t , respectively. The power balance for every discrete

time step t is expressed as:

PG
t = PD

t − PPV
t + PB

t + PCD
t , (5)

where PG
t denotes the grid power demand, that has a one-way

transport limit PG
min ≤ PG

t . The smart building participates in
an DR program where the EMS receives the wholesale day-
ahead prices (DAP), expressed as:

min C =
∑
t∈T

etP
G
t ∆t, (6)

where C denotes the electricity costs, et the DAP, ∆t the
difference in hours between two subsequent time steps, and
T is the set of discrete time steps. The CD is modeled as a
tuple of CD actions, aCD(s), as shown in (7). It is assumed
that the CD can always increase or decrease its power output
with the same case-specific maximum CD power rate, PCD

max.

aCD(s) =
[
− PCD

max, 0, P
CD
max

]
. (7)
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At each time step, the discrete action taken equals the
power output of the controllable demand PCD

t = aCD
t (s). The

power demand shifted at t is denoted with ∆PCD
t and updates

according to the following relationship:

∆PCD
t+1 = ∆PCD

t + PCD
t . (8)

The shifted power is limited by one time the maximum CD
power, given by −PCD

max ≤ ∆PCD
t ≤ PCD

max, ensuring the DR
has minimal impact on regular business operation. Another
constraint is that the total amount of power shifted over one
day is equal to zero, ∆PCD

|T | = 0. Controlling the loads does
not impact the overall power consumption.

The SOC of the BESS updates according to:

SOCt+1 = SOCt +
PB
t ∆t

EB
, (9)

where EB denotes the capacity of the BESS. The SOC should
stay within in its limits, SOCmin ≤ SOCt ≤ SOCmax.
The initial and final SOC are denoted with SOC0 and
SOC|T |, respectively. Whereas SOC|T | = SOC0 to guar-
antee continuous operation between subsequent days. The
power difference between each discrete action is defined by
∆PB = 2PB

max

/
(XB − 1), for which PB

max is the maximum
power output of the BESS. The following relationship de-
scribes the entire set of discrete BESS actions:

aB(s) =
[
− PB

max, (∆PB − PB
max), (2∆PB − PB

max),

..., (PB
max − 2∆PB), (PB

max −∆PB), PB
max

]
. (10)

The BESS’s ramp rate constraint prevents it from fast degra-
dation by limiting the current charge rate by the difference
between PB

max and the previous charge rate:

PB
t−1 − PB

max ≤ PB
t ≤ PB

t−1 + PB
max. (11)

IV. Q-LEARNING WITH TILE CODING

This section explains the various elements of the proposed
QLTC approach. The proposed QLTC uses the decaying ϵ-
greedy technique to balance exploration and exploitation,
described by the decaying function ϵ = 1

1+(λ i) , where λ is
the decay hyperparameter and i the i-th episode the agent
encounters. The pseudocode for the learning process of the
QLTC is depicted in Algorithm 1.

A. State Space and Action Space

This study proposes a state space design that minimizes the
number of state variables for fast convergence and generaliza-
tion while retaining enough variables to achieve high accuracy.
Constructing PN

t = PD
t − PPV

t reduces the number of state
variables while still taking both generation and consumption
into account. The relative electricity price enhances general-
ization between different training days. A state at t is given
by:

st =
〈
t, PN

t , SOCt,∆PCD
t , (êt − e)

〉
, st ∈ S (12)

The action space is a combination of the set of actions
from the BESS and the controllable demand, |A(s)| : aB(s)

Algorithm 1 Q-learning with tile coding learning process
1: Inputs:

Hyperparameters: α, γ, λ, episodes, m, n, IHT size
Variables: PCD

max, PB
max, XB , EB , SOCmin,

SOCmax, SOC0, PG
min

Data sets: et, PD
t , PPV

t ∀t ∈ T

Q-values (optional): IHT, w
2: Initialize:

Action space
3: for each episode do
4: Initialize:

Initial state S0

5: for each time step do
6: Blind: determine a(s)

7: Take at depending on ϵ-greedy
8: Receive r1t+1, r2t+1 and st+1

9: Blind: determine a(s)

10: Determine maxa Q̂(st+1, a, w)

11: w← w + α[r2t+1 + γ maxa Q̂(st+1, a, w)− Q̂(st, at, w)]

12: st+1 ← St

13: end for
14: end for
15: Outputs:

IHT, w

× aCD(s), given in (13). Therefore, the size of the state space
scales linearly with XB . The set of actions is state-dependent
since it is blinded based on whether the particular state is
located at an active boundary condition or not.

A(s) =
〈
aB(s), aCD(s)

〉
(13)

B. Reward Function

Since RL agents maximize their return, the objective func-
tion is reformulated as maximizing the negative electricity
costs CQLTC, resulting in the reward function given by (14).
This representation is the standard approach for energy man-
agement problems in literature.

r1t = −etP
G
t ∆t (14)

This study proposes a new reward function design for
energy management problems, given in (15). It subtracts the
daily average electricity price from the standard function at
the corresponding time step.

r2t = −(et − e)PG
t ∆t (15)

A MILP optimization model has been implemented, mim-
icking the proposed QLTC. The optimal electricity costs
reached by the MILP optimization method are denoted by
CMILP and calculated following the expression in (6). Simi-
larly, costs reached by the QLTC algorithm are denoted by
CQLTC. The QLTC performance is assessed as a percentage of
the relative electricity costs between the QLTC and the MILP.
This performance is denoted by η in (16). C0 is the electricity
costs for a zero power output control strategy for the BESS
and CD.

η =
CQLTC − C0

CMILP − C0
· 100% (16)
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TABLE I: Variables and hyperparameter settings.

CD PCD
max = 50 kW

BESS XB = 11, PB
max = 50 kW, EB = 75 kWh

SOCmin = 20%, SOCmax = 100%, SOC0 = 20%

Grid PG
min = -560 kW

α0=0.64 , γ = 1.0, 15000 episodes, λ = 0.0006

QLTC IHT size = 8388608

m =
[

24, 10, 10, 3, 20
]
, n = 32

V. CASE STUDY

The effectiveness and performance of the proposed algo-
rithm are evaluated on a smart building in the Netherlands that
operates heavy industrial machinery, i.e., heating, ventilation,
and air conditioning systems, an electric water heater, and
other building-related devices. These continuous processes can
be adjusted partly but not stopped entirely. The seasonal power
consumption patterns indicate that 50 kW of power demand
is controllable. The smart building’s 800 kWp PV system can
deliver a maximum of 560 kW of power to the grid. The BESS
sizes to a maximum power output of 50 kW and a capacity of
75 kWh. The utilized variables and the hyperparameter settings
of the QLTC agent are summarized in Table I.

A. Training, Validation, and Test Sets

Consumption, PV generation, and DAP prices data from
June-August are examined and divided into a training, valida-
tion, and test set. The validation and test sets consist of one
week of data starting from Monday, July first and Monday,
July 15th, respectively. The training set consists of the three
summer months minus the test set. Hyperparameter tuning
and operational performance evaluation is done by training
and directly deploying the learned policy on the same day
as the validation set data. Generalization is evaluated by
training the agent on the entire training set and deploying the
learned policy on the test set, where the agent learns upon the
previously learned Q-values during training.

B. Operational Performance on the Validation Set

The QLTC agent’s convergence is proved by learning repeti-
tively on the first day of the validation set without memorizing
previously learned Q-values. Fig. 3 (a) shows that the QLTC’s
moving average (MA) returns with 95% confidence interval
(CI) consistently converges to a value close to the negative
CMILP. This subfigure proves that the QLTC’s control policy
convergence is guaranteed, provoked by the tile coding’s linear
function approximation on a relatively small optimization
problem. The greedy policy depicted in Fig. 3 (b) illustrates
the policy improvement throughout the learning process. After
roughly 5700 episodes, the MA return stabilizes at an identical
value as the MILP, demonstrating that the agent repetitively
finds an equal rewarding control strategy.

Fig. 4 shows the operation for the entire week of the
validation set. Subfigure (b) depicts that the agent operates
accordingly, it increases power output during low prices, and

Fig. 3: MA return with 95% CI for 20 repetitive simulations on the
first day of the validation set. (a) Complete policy. (b) Greedy policy.

TABLE II: Electricity costs of the QLTC compared to the MILP
optimum and a zero output control policy.

Mon 1st Tue 2nd Wed 3rd Thu 4th Fri 5th Sat 6th Sun 7th
0h-24h 24h-48h 48h-72h 72h-96h 96h-120h 120h-144h 144h-168h Total

CMILP 132.22 116.69 89.05 96.84 122.50 11.17 7.10 C575.57
CQLTC 132.22 116.70 89.05 96.91 122.56 11.32 7.11 C575.85
C0 138.22 122.07 95.05 101.26 127.49 14.47 10.26 C608.82

η 100% 99.94% 100% 98.46% 98.92% 95.49% 99.78% 98.94%

it decreases power output during high prices. Subfigure (c)
shows that the QLTC’s control policy of the BESS is very
similar to the MILP control strategy. Between hours 0 & 26, 45
& 60, and 146 & 157 the charge-discharge cycle are identical.
Between time steps 31 & 34, the MILP model discharges and
charges, while the QLTC gives zero output.

Table II shows that for all strategies, the electricity costs
during weekdays are significantly higher than during weekend
days, explained by the difference in grid demand. Both control
strategies obtain approximately C33 of electricity cost savings
for one week of operation compared to C0. The QLTC agent
finds a control policy above 98% near the MILP optimum
for each day of the validation set, except for Saturday, July
6th. Nonetheless, this slightly underperforming day reaches
an η above 95%. On average, the QLTC reaches a remarkable
98.94% near the MILP’s optimum.

C. Generalization on the Training Set

The agent follows the training process earlier described in
Section V-A. Fig. 5 (a) shows that for all three training days the
MA return consistently converges. Subfigure (b) depicts that
the QLTC agent settles at a control policy of η = 99% for all
three days. What stands out is that the greedy return already
starts at 40% for the third training day, indicating that the
agent already encountered similar state-action pairs in previous
training.

When a particular range of states is not present in the
training set, the agent has not determined accurate approximate
Q-values for those states. The relatively low performance
of 58.9% on Saturday, July 20th, can be designated to this
phenomenon. Fig. 6 (b) shows that the QLTC deploys an
unfavorable decision by increasing power output at t= 121,
a relatively high price. Also, the significant difference in SOC
and ∆PCD cycles between the two models indicate poor
approximation. Table III shows that the best performing days
are July 16th and 17th reaching an η of 91.5% and 95.7%,
respectively. The SOC and ∆PCD cycles appear very similar
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Fig. 4: Operation on the validation set. (a) Power levels, and price. (b) Power BESS, CD, and price. (c) BESS’s SOC (d) CD shifted.

Fig. 5: MA return with 95% CI for five repetitive simulations on the
first three days of the test set. (a) Complete policy. (b) greedy policy.

for those two days. On average, the QLTC agent finds a control
policy of η = 80.7% on the test set.

A good control policy lowers grid demand during high-
price moments and increases grid demand during low-price
moments. Due to this strong dependency on the relative price,
the training and testing process is repeated for five different
relative price tile settings, m5, without changing the other four
tile sizes. The last column in Table III shows that the agent
yields an average η of approximately 80% for 15, 20, and 25
m5 tiles. Thus, the agent outputs a decent control policy on
new data for a range of m5 tile settings, preceding the need
for extensive m5 hyperparameter search.

TABLE III: The η (%) measure on the test set under different tile
hyperparameter settings after training on the training set.

η (%) 15th 16th 17th 18th 19th 20th 21st
m5 0h 24h 48h 72h 96h 120h 144h Avg

10 70.6 70.7 92.9 25.0 69.4 62.7 65.7 65.3
15 74.5 90.6 92.1 91.2 82.3 63.8 71.0 80.8
20 86.8 91.5 95.7 79.7 78.4 58.9 74.0 80.7
25 86.0 92.1 91.5 84.5 80.5 47.2 74.8 79.5
30 86.6 83.7 96.3 73.0 65.1 50.6 76.1 75.9

VI. CONCLUSIONS

This research developed an EMS that minimizes the elec-
tricity costs for a smart building, using RL with linear func-
tion approximation. The proposed QLTC EMS has a novel
reward function for faster and more stable return convergence.
The QLTC also has a clever state space design that mini-
mizes the number of state variables to enhance generalization
while maintaining strong convergence. Another feature of the
QLTC’s design is aggregating controllable loads for better
convergence, implementation, and scalability. The QLTC EMS
effectively minimized the smart building’s electricity costs in
a case study by learning and deploying a control policy for
the next day of operation 99% near the MILP’s optimum. Fur-
thermore, the results showed that the QLTC agent generalizes
on previously learned data by deploying a control policy 80%
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Fig. 6: Operation on the test set. (a) Power levels, and price. (b) Power BESS, CD, and price. (c) BESS’s SOC. (d) CD shifted.

close to the MILP’s optimum on data it has not encountered
before.
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