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Abstract

Keywords: 3D Reconstruction, Image Enhancement
Multiview Stereo (MVS) reconstruction techniques have made significant advancements with

the development of deep learning. However, their performance often deteriorates in low-light condi-
tions, where feature extraction and matching become challenging. Traditional image enhancement
solutions are insufficient for MVS tasks in low illumination, relying on manual adjustments. We intro-
duce an end-to-end MVS framework incorporating a diffusion-based image enhancement algorithm
with MVS to build an end-to-end framework for improving the performance of MVS in low-light
conditions. This integration improves color rendering and visualization of 3D reconstructions and
slightly enhances geometric shapes. Our method uses a feature adapter to integrate the enhanced
images from the Low-light Diffusion model into CasMVSNet, refining the feature maps in poorly lit
environments. Validation on the DTU and Tanks and Temples datasets demonstrates our model’s
robustness and generalizability across various lighting conditions and MVS pipelines, including Ge-
oMVSNet and MVSNet. Our approach simplifies the training process by requiring only the training
of an adapter rather than a multi-view image enhancement model, underscoring the effectiveness of
incorporating image enhancement into learning-based MVS frameworks for low-light conditions.

Zhang Chi
Academic Year 2024

ii



Acknowledgments
I would like to extend my deepest gratitude to my supervisors, Nail Ibrahimli and Prof. Nan Lian-
gliang. Your unwavering support, insightful guidance, and compassionate understanding during
times of frustration have been invaluable. Your encouragement and wisdom have not only shaped
this work but also helped me grow as a researcher and an individual.

A heartfelt thank you to my parents and friends. Your unconditional support and comforting
presence have been my anchor. Without your belief in me and your steadfast support, the journey
would have been much more daunting. You are the colors in my world, making every day brighter
and more meaningful.

A special nod to the perpetually gloomy weather of the Netherlands. Your consistent drizzle and
cloudy days have provided ample opportunity for me to hone my culinary skills. Every rainy day was
a chance to practice cooking, turning what could have been a dreary day into a delightful culinary
adventure.

Thank you all for being the pillars of my strength and the light in my life.
. . .

iii



MVS Multiview Stereo

FPN Feature Pyramid Network

CNN Convolutional neural network

VAE Variational Auto Encoder

DWT Discrete Wavelet Transform

IDWT Inverse Discrete Wavelet Transform

HFRM High Frequency Reinforcement Module

RAM Random-Access Memory

GPU Graphics Processing Unit

SSR Single Scale Retinex

MSR Multi-Scale Retinex

GAN Generative Adversarial Network

Structure From Motion SfM

iv



Contents

Abstract ii

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Questions and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work 4
2.1 Low Illumination Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Traditional Image Enhancement Methods . . . . . . . . . . . . . . . . . . . 4
2.1.2 Learning-based Low Illumination Enhancement . . . . . . . . . . . . . . . . 5

2.2 Multi-view Stereo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Traditional MVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Learning-based MVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 MVS under low illumination . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Methodologies 13
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Image Enhancement Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Cross-Frame Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Feature Adapter Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Learning-based MVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.6 Training Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Depth Filtering and Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.7.1 Depth filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.7.2 Depth fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.8 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8.1 Depth Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.8.2 Point Clouds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Experiment Results and Discussion 19
4.1 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Implemention Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.1 Image Enhancement Model . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2.2 Training Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.3 Feature Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.4 Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

v



4.3.1 Pretrained Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3.2 Implementation Tools and Framework . . . . . . . . . . . . . . . . . . . . . 22
4.3.3 Training and Testing Settings . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.4 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.1 Evaluation on DTU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.2 Tanks and Temples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.5 Ablation experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5.1 Ablation Experiment 1: only feature adapter . . . . . . . . . . . . . . . . . 32
4.5.2 Ablation Experiment 2: only image enhancement input . . . . . . . . . . . . 32
4.5.3 Ablation Experiment 3: Without Multi-scale Input . . . . . . . . . . . . . . 32
4.5.4 Ablation Experiment 4: Framework Applicability to Other MVS Pipelines . . 32
4.5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6.1 Color Rendering and Balancing . . . . . . . . . . . . . . . . . . . . . . . . 32
4.6.2 Geometric and Depth Estimation Evaluation . . . . . . . . . . . . . . . . . 33
4.6.3 Training Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.6.4 Robustness and Generalizability of Our Methods . . . . . . . . . . . . . . . 33
4.6.5 Design of Feature Adapter . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.6.6 pros and cons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Conclusion and limitations 36
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 39

Appendices 43
A Related works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.1 Discrete Wavelet Transformation . . . . . . . . . . . . . . . . . . . . . . . 43
A.2 Diffusion Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

B Image Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
C Qualitative result of 3D reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 53

C.1 DTU: color . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
C.2 DTU: geometric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
C.3 Tanks and Temples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

vi



Chapter 1

Introduction

1.1 Background and Motivation
In the dynamic domains of computer science and information technology, the imperative for advanced
3D modeling techniques has intensified. Central to this development is 3D reconstruction technology,
an integral aspect of contemporary computational vision. 3D reconstruction technology plays a
critical role in domains such as the preservation of historical heritage, augmented and extended
reality (AR/XR), video game, and animation development [45, 51]. Among the myriad techniques
available for 3D reconstruction, Multiview Stereo (Multiview Stereo (MVS)) is an advantageous
approach with high cost-efficiency and rapider processing capabilities [12].

There are two distinct branches of MVS algorithms: traditional MVS and learning-based MVS.
Both traditional and learning-based MVS algorithms operate by matching correspondences in over-
lapped multi-view images to recover 3D representations from correspondences [66, 56, 5, 4]. The
primary difference between traditional and learning-based MVS lies in the space where correspon-
dences are matched. Traditional MVS matches correspondences directly in images’ RGB space,
whereas learning-based MVS techniques match correspondences in the feature space derived from
neural networks [66, 73, 15, 33, 67, 72, 62, 21, 40, 69].

While traditional MVS can produce high-quality 3D reconstructions in ideal conditions, it strug-
gles with textureless and non-Lambertian surfaces [46, 41, 6]. In contrast, learning-based MVS
exhibits greater robustness and effectively addresses many challenges faced by traditional MVS [55].
The advancements in learning-based MVS have led to new benchmarks for MVS in completeness,
resource efficiency, and robustness.

Despite significant advancements, current learning-based methods face challenges in low- illumi-
nation environments [46, 41, 6]. While effective under optimal lighting conditions, completeness and
accuracy of learning-based MVS decreases a lot in poorly lit settings such as subterranean spaces
or dimly-lit indoor areas like tunnels and mines [46, 41, 6].

Current solutions for low illumination problems in MVS involve using traditional image enhance-
ment algorithms to manually adjust image contrastness and brightness or training an additional
end-to-end model for low illumination, which requires an additional low illumination dataset.

Traditional image enhancement algorithms, such as histogram equalization [53], Retinex theory
[30], gamma correction [3], and wavelet transformation [27], are not end-to-end and require man-
ual parameter adjustments for each scene, which is highly empirical. Incorrect settings can reduce
enhancement effects or negatively impact 3D reconstruction [3, 29]. Recent advancements in artifi-
cial intelligence have led to end-to-end image enhancement algorithms such as EnlightenGAN [22],
RetinexNet [54], and Diff-Retinex [70], but these are designed for single-frame enhancement and
have not been applied to MVS.

Another approach to address low illumination in MVS is to train a learning-based model specifi-
cally for these conditions. To our knowledge, three end-to-end studies have attempted this [46, 55].
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DEMVSNet [18] has shown limited improvement on synthesized datasets. LOLIMVSNet by Wang
et al. [55] requires paired low illumination multi-view datasets, which are challenging to obtain. Su
et al. proposed zero-inference training methods [16, 46], but these often result in overexposure in
normally lit images.

A significant research gap exists: no end-to-end framework directly integrates existing single-
frame image enhancement models with MVS to improve 3D reconstruction under low illumination.
Traditional techniques require manual adjustments, which are labor-intensive. Current end-to-end
solutions necessitate training new models for low-illumination conditions, which is computationally
demanding and requires comprehensive low-illumination multi-view datasets [46].

This thesis aims to bridge this gap by developing a method that seamlessly integrates existing
image enhancement models with learning-based MVSNet. We aim to enhance 3D reconstruction
performance under low illumination without imposing significant computational demands or requiring
low-illumination multi-view training datasets.

1.2 Research Questions and Objectives
Given the challenges and research gaps identified, the central research question of this thesis is:
To what extent can existing single-frame image enhancement models be utilized to en-
hance the performance of MVS in low illumination conditions?

The primary question can be subdivided into three specific research objectives:

1. Which image enhancement model is suitable for MVS tasks under low illumination?

2. What architecture is suitable for integrating image enhancement models into MVS to boost
3D reconstruction?

3. How can image enhancement models, which typically contain millions of parameters, be effi-
ciently utilized for 3D reconstruction tasks to minimize computational demands while main-
taining good performance?

Research Objectives: This research includes the following objectives:

1. Select the appropriate image enhancement model for MVS.
We will compare image enhancement results and select a model that can reveal features
obscured by low illumination while retaining details to ensure multi-view consistency.

2. Build a framework that effectively integrates the low light image enhancement model with the
learning-based MVS model.
The framework should not only produce visually discernible images but also enhance the
performance of the MVS model in both low light and normal light scenarios.

3. Minimize computational resource requirements.
This step is crucial because many low-light illumination models use architectures that require
significant computational resources. Since many 3D reconstruction models face Graphics
Processing Unit (GPU) Random-Access Memory (RAM) shortages, we should reduce compu-
tational demands as much as possible while preserving performance.

4. Evaluate integration methods and the impact of low illumination models on 3D reconstruction.
We aim to delineate how the different components of our designs contribute to improvement
and explore the mechanisms behind these improvements.

2



1.3 Research Scope
We focus on developing a novel architecture to combine image enhancement models with learning-
based MVS for a better 3D reconstruction process. Our goal extends beyond enhancing performance
in low-light conditions; we also aim to preserve or improve performance under normal lighting con-
ditions. The selection criteria for these methods will include accuracy, completeness, and computa-
tional resource demands of 3D reconstruction.

1.4 Thesis Outlines
This thesis is organized into five critical chapters, each addressing distinct aspects of the research
domain. Below is a detailed outline of each chapter:

• Chapter 2: Literature Review This chapter extensively reviews the existing literature related
to the field. It covers foundational theories, recent image enhancement techniques, and MVS
reconstruction advancements. These studies establish the foundation of our work.

• Chapter 3: Methodology Here, the research methodology is thoroughly detailed. It outlines
the proposed enhancements to existing MVS techniques and describes the novel integration of
image enhancement algorithms into the MVS process. It also introduces the training strategy
and how the evaluation is conducted.

• Chapter 4: Experiment Results and Discussion This chapter comprehensively explains
the implementation details, including the tools and parameters utilized. It discusses the ex-
perimental procedures, training methodologies, and the quantitative results of 3D reconstruc-
tion. Qualitative results from experiments conducted on the DTU and ’Tanks and Temples’
datasets are displayed, and ablation studies are presented to explore the efficacy of the pro-
posed methodology.

• Chapter 5: Conclusion and limitations The final chapter synthesizes the study’s findings
and discusses the limitations and future work.

• Appendices - Supplementary materials, including additional data on image enhancement
effects and detailed 3D reconstruction results, are provided in the appendices.

3



Chapter 2

Related Work

2.1 Low Illumination Enhancement
This section discusses traditional and learning-based approaches for low illumination image enhance-
ment.

2.1.1 Traditional Image Enhancement Methods
Although the traditional image enhancement methods are still dominant in the relevant research to
optimize the 3D reconstruction performance in a low-light environment [46]. The idea of traditional
image enhancement algorithms is either modifying the distribution of pixel values or utilizing physical
models to adjust gray levels [47, 45, 16].

Gray-level transformation and histogram equalization methods directly utilize mathematical func-
tions to transform the gray values of images. Gray-level transformation adjusts the contrastness and
brightness of dark regions by mapping the original gray value range to a broader range. Gray-Level
Transformation techniques include linear transformations [37] and non-linear transformations such
as logarithmic and gamma transformations [17, 50]. Unlike gray-level transformations, histogram
equalization modifies the pixel distribution. Global histogram equalization redistributes pixel values
across the entire image based on the cumulative distribution probability of original pixel values.
However, global histogram equalization can potentially obscure necessary details in well-lit regions
[36, 25]. Adaptive Histogram Equalization (AHE) and its variant Contrast Limited Adaptive His-
togram Equalization (CLAHE) apply localized adjustments to prevent the loss of detail and reduce
noise amplification in darker areas [74, 39].

Retinex Theory enhances images based on a physical assumption that color and brightness are
determined by the interaction of light and objects. Based on this assumption, the color of the object’s
surface is composed of red, green, and blue primary colors, and the lightness is determined by surface
reflectance and illumination strength. Applying this concept, Single Scale Retinex (SSR) and Multi-
Scale Retinex (MSR) use Gaussian blurring at different scales to adjust illumination, enhancing
image detail and color fidelity. SSR addresses single scale adjustments, potentially overlooking
subtle details, whereas MSR combines effects from multiple scales to better balance visibility and
color accuracy [23, 17].

Traditional image enhancement algorithms must adjust parameters manually and empirically and
lack generalizability. This limitation underscores the need for innovative learning-based methods to
enhance images across diverse conditions without extensive manual intervention.
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2.1.2 Learning-based Low Illumination Enhancement
Traditional image enhancement methods often bring problems after adjustment, such as amplifying
noise, losing details, and color distortion [46]. Many scholars have widely applied deep learning in
image enhancement in recent years. The learning-based image enhancement methods allow images
to be converted to normal light conditions automatically. The learning-based methods could be
divided into three categories:

1. Encoder-decoder based methods

2. Decomposition-based methods

3. Generative-based methods.

2.1.2.1 Encoder-decoder based methods

Encoder-decoder methods consist of an encoder that compresses the input image into latent space
and a decoder that reconstructs the enhanced image from latent space. Encoder-decoder structure
allows for end-to-end training, effectively mapping low-light images to enhanced versions [17, 47].

Many scholars have applied encoder-decoder structure for image enhancement [32, 48, 17, 38].
The first notable application of this method was LLNet [32], which uses a variational autoencoder
(VAE) [9] to enhance low illumination images. Chen et al. developed an end-to-end pipeline
using UNet [43, 7]. Tao et al. introduced a Convolutional neural network (CNN)-based method
incorporating an additional brightness channel to estimate transmission more accurately [48]. Ren
et al. combined an encoder-decoder structure with Recurrent Neural Networks (RNNs) to enhance
edge details and global information integration [38]. Zhang utilized attention layers [52] to focus
the enhancement process on salient features of the image [71].

Figure 2.1: The pipeline of encoder-decoder based image enhancement [32]

2.1.2.2 Decomposition-based Methods

Motivated by the success of Retinex Theory [30]. Many studies combine image decomposition
techniques with deep learning for image enhancement [17]. The basic idea of decomposition-based
methods consists of three steps. Firstly, using a physical model decomposes an image into distinct
components. Secondly, the different components are enhanced by neural networks. Lastly, all the
components are recombined to form the final version of improved images.

A commonly used decomposition method is the Retinex Theory. Based on Retinex Theory, images
can be decomposed into reflectance maps and illumination maps. RetinexNet decomposes images
and uses dual parallel networks to predict the reflectance and illumination maps separately. These
maps are then recombined to reconstruct the image [59]. URetinex-Net advances this concept by
incorporating an unfolding optimization module to enhance noise suppression and detail preservation
further [60].

Discrete Wavelet Transformation (DWT) is another effective decomposition technique for image
enhancement (see appendix A.1) [10, 44]. DWT transforms images from the temporal domain to
frequency domains. DWT is another commonly used technique to enhance low illumination images
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combined with deep learning. Rahman et al. [35] train separate modules on each frequency do-
main, which are then synthesized into enhanced images through Inverse Discrete Wavelet Transform
(IDWT). Xu et al. [61] introduces attention layers to process different frequency domains of Discrete
Wavelet Transform (DWT), significantly improving detail retention in low illumination images [61].

Figure 2.2: The structure of DWT multi-scale decomposition image enhancement model proposed
by Rahman et al. [35]

2.1.2.3 Generative-based Methods

In recent years, generative models have also been applied to image enhancement tasks [17]. Gener-
ative models have demonstrated the strength of enhancing detail capture and adaptability to varied
environments [17].

One of the architectures used in the generative-based image enhancement models is Generative
Adversarial Networks (GAN). A key advantage of Generative Adversarial Network (GAN) is their
ability to generate detailed enhancements without needing paired training data. EnlightGAN [22] is
trained on unpaired datasets [14] for image enhancement. Compared with other models, applying
EnlightenGAN shows a better ability to restore details and textures of images [22].

Another architecture used for image enhancement is diffusion models. The development of
generative models has demonstrated that diffusion models offer superior performance compared to
GAN [8]. The fundamental mechanism of diffusion models is to train a model predicting the noise
added to images in an autoregressive process. The diffusion model can generate images from noise
if the process is long enough. More explanation can be seen in appendix A.2

There are many studies combining the diffusion model with low illumination enhancement. Shad-
owDiffusion focuses on removing shadows while dynamically predicting masks during the denoising
process. DR2 [58] leverages a pretrained diffusion model to restore obscured facial features by
utilizing prior knowledge encoded in the diffusion model.

Diffusion-based methods can also be combined with image decomposition to achieve better
image restoration effects. One of the decomposed diffusion methods is Retinex-Diffusion [70]. This
approach integrates Retinex theory with diffusion processes, operating diffusion modules separately
on reflectance and illumination maps to enhance images.
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2.1.2.4 Low-light Diffusion

Currently, the state-of-the-art model for low illumination enhancement is low-light diffusion. The
low-light diffusion combines DWT with the diffusion model. Firstly, the image is decomposed into
high-frequency and low-frequency components via DWT. Secondly, low-light Diffusion employs two
parallel modules: the conditional wavelet-based diffusion module and high-frequency reinforcement
modules (HFRM) to independently enhance the low and high-frequency components. Lastly, the
final output of low-light diffusion is the combination of all components via IDWT.

One of the modules in low-light diffusion is the wavelet-based diffusion module. This module is
a conditional diffusion model that inputs DWT’s low-frequency components and outputs enhanced
low-frequency components.

The other module of low-light diffusion is the high-frequency reinforcement module (HFRM).
HFRM aims to enhance the high-frequency components of DWT decomposition [20]. The purpose of
HFRM is to restore the high-frequency parts of images, like details and textures. Unlike the wavelet-
based diffusion module, HFRM directly enhances high-frequency components of DWT decomposition
via attention blocks.

Low-light Diffusion was trained on the LOLv2 dataset [65]. This dataset includes 689 real-world
and 1000 synthesized paired low-illumination images. Low-light Diffusion achieves state-of-the-art
(SOTA) performance compared with other models like deep Retinex [59], EnlightenGAN [22] and
LLNet [32]. The results can be seen in 2.3

Figure 2.3: Comparison of Low-light Diffusion with other methods [20]
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Figure 2.4: Results of Low-light Diffusion on low illumination images [20]

2.2 Multi-view Stereo
The initial stage of image-based 3D reconstruction typically involves using the Structure From
Motion (SfM) algorithm to extract feature points and calibrate camera matrices. SfM can only
recover sparse point clouds from multi-view images. MVS aims to recover the dense point clouds
from multi-view images given the calibrated camera matrices [42]. This section introduces traditional
and learning-based MVS methods.

2.2.1 Traditional MVS
The basic principle of MVS is to find correspondences between multi-view images and extract 3D
representations of objects from correspondences. The choice of 3D representations to extract from
correspondences includes voxels, feature points, and depth maps. The depth map is the most
predominant in MVS compared with other representations. Once correct depth maps for overlapped
multi-view images are obtained, dense point clouds could be recovered.

The traditional methods in Multi-View Stereo (MVS) rely on the photometric consistency as-
sumption, which posits that the same 3D point in multiple images will have similar features in RGB
space. A classic approach is the plane sweeping algorithm introduced by Yang [64]. This technique
involves assuming the existence of multiple parallel planes at different depths in front of the camera.
Pixels are projected onto these planes across various views to determine the correct plane alignment.
If the correct plane is obtained, the correspondent pixels on neighboring views should share similar
RGB features.

Another classic algorithm is PatchMatch [4]. PatchMatch finds correspondences by dividing
the image into small patches. It employs a randomized search to find correspondences between
patches across stereo images quickly. This method iteratively refines the disparity map for each
pixel, enhancing the accuracy of the depth estimation. PatchMatch leverages efficient propagation
of good matches to neighboring pixels, significantly speeding up the computation compared to
traditional exhaustive search methods [5].
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While traditional MVS performs well under ideal conditions with consistent lighting and tex-
tures, it struggles with textureless surfaces, occlusions, and non-Lambertian materials. Conversely,
learning-based MVS methods have shown greater robustness, inference speed, and completeness.

2.2.2 Learning-based MVS
Unlike traditional MVS searches for correspondences in the RGB space, learning-based MVS ex-
tracts correspondences in the feature space derived from neural networks. Learning-based MVS
demonstrates superior performance on challenging objects, such as objects with non-Lambertian
and textureless surfaces.

The most popular learning-based MVS method is the cost volume regularization network, firstly
proposed in MVSNet by Yao et al. [66]. The MVSNet architecture comprises several key steps:

1. Feature Extraction: A feature extractor uses 2D CNN to derive feature space from the input
images. The extracted feature space contains more informative cues for depth estimation than
traditional RGB data.

2. Cost Volume Construction: Differentiable homography warping projects 2D feature space
into a 3D feature volume across views. The Z axis is divided by the depth range of images.
Then, MVSNet integrates multiple 3D feature volumes to create a cost volume.

3. Depth Estimation: Applies 3D convolution over the cost volume to predict the depth value
for each pixel.

Figure 2.5: Architecture of MVSNet [66]

Among many followers [72, 67, 73, 21], CasMVSNet is one of the most influential improvements.
CasMVSNet employs a coarse-to-fine strategy to enhance depth map estimation. This method
systematically refines depth maps across multiple scales using a sequence of cascaded networks,
each optimized for a specific resolution tier [15]. This hierarchical approach significantly improves
depth accuracy by progressively refining the depth maps at increasingly finer resolutions. Additionally,
using multiple scales allows the network to capture global context and fine details, leading to more
precise and robust depth estimations [15].

GeoMVSNet is another significant advancement in the realm of multi-view stereo (MVS) net-
works. It also follows the coarse-to-fine strategy but strengthens the geometry before the feature
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map and utilizes the confidence map during the cascading process to build probability volume em-
bedding during the depth regression process [73]. The GeoMVSNet achieves SOTA and greatly
improves MVS’s performance.

Despite the great advancements achieved by learning-based MVS, the challenge of low illumi-
nation conditions remains largely unaddressed. Low illumination negatively affects traditional and
learning-based MVS approaches [12].

2.2.3 MVS under low illumination
This section introduces both traditional methods and recent learning-based approaches developed
to enhance MVS performance on low illumination images.

2.2.3.1 MVS Using Traditional Image Enhancement Methods

Traditional methods have long been employed in image preprocessing to enhance low-illumination
images for 3D reconstruction and subsequently improve MVS performance. Substantial works utilize
traditional image enhancement algorithms for MVS.

Yeh [68] employs an enhanced HDR system to boost 3D reconstruction, which requires RGB-
D equipment and is not always accessible. Kanellakis [24] uses adaptive histogram techniques to
modify the pixel value distribution, enhancing 3D reconstruction outcomes. Alasal [2] applies color
balancing algorithms to improve image contrast for more effective 3D reconstruction. Ballabeni [3]
proposed an image enhancement pipeline specifically tailored for MVS, which includes color balance,
image denoising, gray level conversion, and image content enhancement.

Although traditional methods can largely reduce the effect of low illumination in MVS, traditional
methods are not end-to-end solutions for low illumination images. The selection and application of
these traditional methods are largely empirical. Incorrect choices and parameter settings may lead
to marginal improvements or even degraded results [29], which is the biggest drawback of traditional
methods.

2.2.3.2 Learning-Based Methods for 3D Reconstruction

To our knowledge, only three learning-based methods providing solutions to improve MVS in low
illumination images are emerging. Different from traditional methods, they are end-to-end solutions
for low illumination challenges.

Su et al. [46] developed an unsupervised enhancement model (ZDE3D) with seven convolution
layers tailored for 3D reconstruction tasks in challenging environments such as tunnels and under-
ground pipelines. Using the zero inference strategy [16], Su et al.’s model can be trained directly on
unpaired data [46].

However, Su et al.’s model has some notable drawbacks. Firstly, their model tends to make
images overexposed under normal lighting conditions. Secondly, ZDE3D may alter natural color
tones. Additionally, ZDE3D has difficulty restoring high-quality textures.

DEMVSNet [18] introduces a joint training method for noisy images. DEMVSNet adds a parallel
branch on existing learning-based MVS models to predict RGB images with depth values together.
The loss function is the joint loss of RGB loss and depth loss [18]. Due to the absence of paired
multi-view data, DEMVSNet utilizes synthesized multi-view datasets with the methods introduced in
[57]. It should be noticed that DEMVSNet’s improvement is not significant even on their synthesized
dataset compared with CasMVSNet and MVSNet [18].

Different from DEMVSNet and ZDE3D, LOLIMVS proposed by Wang [55] assembled a paired
multi-view low illumination dataset tailored for 3D reconstruction named LOLI100. This dataset
underpins a state-of-the-art approach where an image enhancement model and an MVS system
are trained consecutively on LOLI100. During depth estimation, their image enhancement model’s
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encoder is frozen, and its outputs are cascadedly added into the MVS decoder. This method sig-
nificantly advances performance under low-light conditions, setting new benchmarks. However, the
requirement for specialized data and the extensive training time needed for such dual models under-
score the challenges of deploying this technology in broader applications.

Cat

Lspa:Spatialloss

Lol:Colorloss

LEx:Exposureloss

Lou:Boundaryloss

Laro:Grouploss
Covl+ReluCov2+ReluCov3+ReluCov4+Relu Cov5+ReluCov6+ReluCov7+ReluTanh

Cat

Cat

Cov-ConvolutionalNeuralNetworkLayer
Relu-TheRectifiedLinearUnit(ReLU)
Tanh-TheHyperbolicTangentFunction
Cat-Concatenatesthegivensequenceoftensors
Loss-Lossfunction

Low-lightinputs(Images/Videoframes) Enhancedimageoutputs

Figure 2.6: Architecture of ZDE3D [46]

Figure 2.7: Architecture of DEMVSNet [18]
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Figure 2.8: Architecture of LoliMVS [55]
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Chapter 3

Methodologies

Section 3.1 introduces the overall structure of our model, outlining our architecture for integrating
image enhancement with MVS. Section 3.2 describes the image enhancement module and intro-
duces our original image enhancement model modification to preserve the multi-view consistency.
Section 3.3 MVS model we used. Section 3.4 describes how we integrate the results of the image
enhancement model with MVS to improve MVS performance. Section 3.5 explains the loss function
of training, and section 3.6 shows how we train the pipeline. Sections 3.7 and 3.8 present our
experiments’ depth filtering, fusion methods, and evaluation metrics.

3.1 Overview
Figure 3.1 illustrates the overall architecture of our model, which consists of three main components:
the diffusion-based image enhancement block, CasMVSNet for depth prediction, and a feature
adapter for refining CasMVSNet’s feature map.

Diffusion-Based Image Enhancement Block: We utilize pretrained Low-light diffusion to
enhance low illumination images [63]. This module enhances low illumination images, making them
more suitable for MVS.

CasMVSNet: We use the CasMVSNet model [15] for depth estimation from multi-view images.
Unlike the original CasMVSNet, which relies solely on extracted feature maps from input images,
our pipeline incorporates feature maps refined by the diffusion-based image enhancement model.

Feature Adapter: This module connects the image enhancement model with CasMVSNet.
It employs Feature Pyramid Network (FPN) [31] to integrate multi-scale outputs from the image
enhancement model. In the top-down phase, CasMVSNet feature maps are refined by adding outputs
from the adapter’s corresponding level.
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Figure 3.1: Overview Architecture This figure presents the overall architecture of our framework.
The image enhancement block takes low-light images as input. It processes them through the DWT,
decomposing them into high-frequency (Imagek

H) and low-frequency (Imagek
L) components after k

times decompositions of DWT. The high-frequency components in diagonal (Imagek
H,D), horizontal

(Imagek
H,H), and vertical (Imagek

H,W ) directions are processed via a high-frequency reinforcement
module (HFRM 2.1.2.4). The low-frequency components are enhanced via a diffusion model.
Subsequently, the feature adapter takes components of DWT as input, where (Imagek

[H,L]) repre-
sents enhanced low-frequency and high-frequency components after the k times decomposition. The
outputs in the top-down stage are added to the corresponding levels of the original feature map.
The CasMVSNet uses the original structure, where "W" means differentiable homography warping,
"M" means cost volume construction, and "R" represents depth regression on cost volume.

3.2 Image Enhancement Module
This module is primarily designed to enhance images captured in low illumination conditions, making
it more for 3D reconstruction. We utilize Huang’s Low-light Diffusion model for low illumination
image enhancement [20]. According to Huang’s experiments, Low-light Diffusion demonstrates
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superior image enhancement capabilities and generates better image details [20]. For fairness, we
compare the results of low-light diffusion with other image enhancement methods in section 4.2.

3.2.1 Cross-Frame Attention
In both wavelet-based conditional diffusion and the HFRM module for low-light diffusion, the en-
hancement is applied to individual frames only [20]. To improve the consistency of enhancement
across multi-view images, we have adapted all single-frame attention blocks into cross-frame atten-
tion blocks, inspired by the method used in ViewDiff [19].

The original single-frame attention block in low-light diffusion is defined as:

Attn(Qn, Kn, Vn) = softmax
(
QnK

T
n√

dk

)
Vn (3.1)

where the query, key, and value matrices Qn, Kn, Vn are computed as follows, assuming Wq,Wk,Wv

are the projection matrices:

Qn = Wq × Imagen
H (3.2)

Kn = Wk × Imagen
H (3.3)

Vn = Wv × Imagen
H (3.4)

Here, Imagen
H represents the high and low-frequency components of a single-frame image.

In the cross-frame attention mechanism, Qn remains unchanged, but Kn and Vn are modified
to incorporate information from neighboring frames:

Kn = Wk × [Imagen−1
H ; Imagen

H ; Imagen+1
H ] (3.5)

Vn = Wv × [Imagen−1
H ; Imagen

H ; Imagen+1
H ] (3.6)

where [Imagen−1
H ; Imagen

H ; Imagen+1
H ] denotes the concatenation of the current image with its pre-

ceding and succeeding frames.
The weights Wq,Wk,Wv continue to use the pre-trained weights from the single-frame attention

model, ensuring seamless integration with the existing framework.

3.3 Feature Adapter Module
We do not directly utilize the enhanced images as input into MVS. We refine the feature maps of
learning-based MVS through the feature adapter module.

Our feature adapter employs an Feature Pyramid Network (FPN)-like structure with bottom-up
and top-down blocks. The original and enhanced images are initially concatenated and fed into the
bottom-up blocks. The outputs of the feature adapter are added to the original feature map at the
corresponding levels during the top-down blocks.

Inspired by Res2Net [13], we integrate multi-scale inputs from the Discrete Wavelet Transform
(DWT) decomposition into our feature adapter. Each component of the DWT decomposition is
individually enhanced by the Low-light Diffusion model. By incorporating components from different
frequency bands and scales, our feature adapter can utilize a broader range of useful features to
refine the feature map of the MVS model. This approach ensures that the enhanced multi-scale
features contribute effectively to improving the depth estimation process.
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Figure 3.2: Architecture of the feature adapter module integrating enhanced image outputs
(imageenc) with original CasMVSNet (imageori) input features. This figure illustrates the com-
prehensive architecture of the feature adapter, detailing how enhanced image outputs are merged
with the original input features. The Imagek

DW T indicates the inputs at different DWT levels, where
image size is scaled down to 1/2k of the original size, "c" denotes concatenation, "+" indicates ad-
dition, and "Conv" represents convolution blocks employed at both the bottom-up and top-down
stages of the FPN. "up2" means upsampling to 2 times of original size.

3.4 Learning-based MVS
Our framework builds upon CasMVSNet, employing the same architecture to estimate depth maps
from multi-view images. Unlike CasMVSNet, the feature map is refined by a feature adapter and
the Low-light Diffusion model.

3.5 Loss
The loss is the same as CasMVSNet [15], where we calculate the sum of mean absolute error (MSE)
between the predicted depth map and ground true depth map on each stage of depth estimation:

Loss =
N∑

k=1
λk · Lk (3.7)

The lk refers to the loss at the k stage, and λk refers to the loss weights at each stage. We apply
the same loss function to train our model during the training process.

3.6 Training Strategy
Our methodology uses pre-trained models for the Image Enhancement module and CasMVSNet.
Our framework freezes all the weights except for the feature adapter.

Such a training strategy saves computation resource demand. Also, it ensures that any enhance-
ments in performance can be unequivocally attributed to the feature adapter in our framework rather
than from extended training cycles on the established baseline models.
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3.7 Depth Filtering and Fusion
Our methodology adopts the depth filtering and fusion approach implemented in the code provided
by kwea123 [28].

3.7.1 Depth filtering
Dpeht filtering eliminates spurious or background points and ensures multi-view consistency of
the depth estimates, following the procedure outlined by Yao et al. [66]. Trustworthy points are
determined based on two criteria:
1. Geometric Consistencies

1. Pixel Consistency: By projecting the reference view pixels to the source view and back,
the reprojected pixel coordinates (preproj) must lie within one pixel of the original coordinates
(pori): |preproj − pori| < 1.

2. Depth Consistency: The original depth (dori) and the reprojected depth (dreproj) should not
differ by more than 1 mm: |dreproj − dori| < 1mm.

2. Confidence Threshold
Points with a predicted depth confidence (dpred) below a threshold, typically set at 0.999, are ex-
cluded. The confidence is the probability of the predicted depth relative to all depths post-softmax
operation.

3.7.2 Depth fusion
Depth fusion fuses the depth value across different views and determines the color of points. The
depth value is averaged across views, while the associated color is determined by the most frequent
value among the views.

3.8 Evaluation Metrics
Our evaluation framework includes both depth and point cloud estimation, scrutinized through the
following metrics:

3.8.1 Depth Estimation
1. Mean Absolute Error (MAE) We compute the MAE between the estimated depth map

and the ground truth within the valid mask region as MAE = 1
N

∑N
i=1 |dest,i − dgt,i|, where

dest,i and dgt,i are the estimated and ground truth depths, respectively, and N is the number
of valid pixels.

2. Accuracy Threshold: This is the ratio of estimated points within a defined threshold error
distance from the ground truth.

3.8.2 Point Clouds
1. Accuracy The mean distance from the reconstructed points to the nearest ground truth

points, gauging the precision of the reconstruction.

17



2. Completeness The mean distance from the ground truth points to the nearest reconstructed
points, assessing the coverage of the reconstruction.

3. Overall Metric A combined metric taking the average of the accuracy and completeness to
provide an aggregate performance measure.
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Chapter 4

Experiment Results and Discussion

4.1 Dataset Preparation
To rigorously evaluate and compare our proposed model, we utilized two distinct datasets: the DTU
dataset for baseline comparisons and the ’Tanks and Temples’ dataset to assess model generalizability
across varied environments.

DTU Dataset The DTU Dataset [1] comprises 119 scans featuring a variety of 80 toy objects.
This dataset is primarily collected in a controlled laboratory setting. For our experiments, the dataset
is divided into three subsets (several scans not used): 79 scans for training, 18 for validation, and
22 for testing, using the same scan split as CasMVSNet[15]. The DTU dataset is under controlled
lighting conditions in 7 classes. It should be noted that the DTU dataset is collected in a laboratory
environment. The split of the scan can be seen on: casmvsnet-pl.

Tanks and Temples ’Tanks and Temples’ dataset [26] offers a collection of both outdoor and
indoor scenes captured through laser scanning, presenting more complex and variable lighting and
textural conditions. This dataset is classified into three categories: intermediate, advanced, and a
training set. Notably, ground truth data is available only for the training set used for model fine-
tuning. The performance of models can be further evaluated by uploading the processed results to
the dataset’s official website for benchmarking. In our experiment, we test the performance of our
model on the intermediate set.

Including the ’Tanks and Temples’ dataset allows us to test the robustness and adaptability
of our model across different real-world settings, providing insights into its generalizability beyond
indoor environments.

4.2 Implemention Details
This section delineates the rationale and process behind selecting specific models and strategies for
constructing our pipeline. Critical decisions regarding the image enhancement algorithms, training
strategies, and feature fusion methods are discussed.

4.2.1 Image Enhancement Model
The model selected for our study in image enhancement is the Low-light Diffusion model, as discussed
by Huang et al. [20]. This model performs better in enhancing images in dark environments than
other algorithms [22, 59, 20]. Compared to RetinexNet, the Low-light Diffusion model produces
images with less haze, better texture, and superior detail preservation. It also avoids the overexposure
effect commonly observed in RetinexNet. When compared to EnlightenGAN, the Low-light Diffusion
model provides superior illumination, enhancing low-light areas more effectively.
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We present the results of Low-light Diffusion with image enhancement models in Figure 4.1,
with the comparison between Low-light diffusion and other image enhancement models in Appendix
B.

4.2.2 Training Strategy
We chose four distinct training strategies to determine the optimal approach based on converged
training loss and computational resource demands. Our model consists of three main components:
a diffusion-based image enhancement block, CasMVSNet, and an adapter bridging the image en-
hancement block with CasMVSNet. Both the image enhancement module and CasMVSNet utilize
pretrained models. The strategies are detailed in Table 4.1, 4.2.

1. Adapter Only: Focuses on training only the adapter that connects the image enhancement
block to CasMVSNet. This optimizes the integration of enhanced images into the MVS
pipeline.

2. Adapter and MVS: Involves training both the adapter and CasMVSNet while keeping the
image enhancement block frozen.

3. Full Model Training: A comprehensive strategy that trains all blocks.

4. Image Enhancement and Adapter: Trains the image enhancement block alongside the
adapter.

Our findings indicate that training solely the adapter is the most efficient approach. Fine-tuning
the adapter and MVS converges at the lowest training errors. However, this improvement may not be
solely due to the image enhancement module and adapter. It could result from extended training of
CasMVSNe. Training the image enhancement model consumes considerable computational resources
and yields marginal gains. Therefore, We focused exclusively on training the feature adapter. This
strategy conserves resources and ensures that improvements primarily stem from our integration
design.

Table 4.1: Computation resource consumption of different training strategies and minimal training
loss after 5 epochs. The learning rate is 0.0001, and the optimizer is Adam.

Training Strategy Model Parameters Hours/Epoch GPU RAM Minimal Loss
Adapter 104 K 50 mins 3.2 GB 4.08

Adapter+MVS 1.1 million 2 hours 10 mins 5.4 GB 3.89
Image Enhancement + MVS 23.2 million 7 hours 50 mins 34 GB 4.12

Image Enhancement + Adapter 22.4 million 6 hours 59 mins 34 GB 4.28

Table 4.2: Parameters and GPU RAM consumption for different model blocks.

Model Block Model Parameters
Diffusion-based Image Enhancement blocks 22.3 million

Adapter 108 K
CasMVSNet 984 K
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(a) A (b) B (c) C

(d) D (e) E (f) F

(g) G (h) H

Figure 4.1: Low-light diffusion output. The first row is low illumination images, and the second row
is image enhancement of low illumination images. The last row is the details of enhancement, the
left is original, and the right is enhanced details
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4.2.3 Feature Adapter
The feature adapter aims to optimize feature extraction to enhance the quality and precision of
3D reconstruction. We chose from three feature adapter designs to refine the original feature map
utilizing the enhancement model.

1. Direct Concatenation: This method integrates the output of the image enhancement model
by directly concatenating it with the input of the primary feature extractor. This straightfor-
ward approach allows the primary feature extractor to immediately utilize the enhanced image
details, enriching the initial stages of feature processing.

2. FPN-based Integration: The output from the image enhancement model is fed into an
additional Feature Pyramid Network (FPN) [31]. The feature adapter enhances the original
feature maps by adding adapter outputs on original feature maps.

3. Multi-scale Feature Integration: This approach modifies the FPN-based integration by
using all enhanced components of DWT from low-light diffusion as introduced in section
2.1.2.4). These inputs are added to the bottom-up stage of the FPN. The resultant multi-
scale features on the top-down stage are subsequently integrated at corresponding levels of
the primary feature extractor within CasMVSNet.

Detailed comparisons of these methods are presented through ablation experiments 4.5.

4.2.4 Loss Function
We adopt the loss function used by the original CasMVSNet, as detailed in Equation 3.7.

4.2.5 Evaluation
The evaluation is conducted on scans with light classes 0,3, and 6 on the DTU dataset. Additionally,
we conduct evaluations on the ’Tanks and Temples’ dataset, which is captured under normal lighting
conditions. The results and their detailed analysis are in section 4.4. The methods are introduced
in section 3.8.

4.3 Implementation Details
This section introduces the details of the implementation of our experiments.

4.3.1 Pretrained Model
Our framework uses pretrained models for depth estimation and image enhancement. Specifically,
we employ the pretrained CasMVSNet model, provided by Kwea [28], and the low-light diffusion
model, developed by Huang [20]. The CasMVSNet model can be found at CasMVSNet_pl, and the
low-light diffusion model is available at Diffusion-Low-Light.

4.3.2 Implementation Tools and Framework
The implementation is built upon Kwea’s code [28], utilizing PyTorch [34] and PyTorch-Lightning
[11] framework. The experiments were conducted using an NVIDIA A100 PCIE with 40 GB GPU
RAM, hosted on the AutoDL platform [49] within an Ubuntu system. The configuration of loss
weights and CasMVSNet parameters remained unchanged from the original. The only modification
is a feature adapter that bridges the output from Low-light Diffusion to CasMVSNet, which is
introduced in previous sections.
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4.3.3 Training and Testing Settings
The specific settings for training and testing are detailed in Tables 4.3 and 4.4.

Table 4.3: Training Parameters and Hyperparameters.

Training Dataset DTU
Training Resolution (H,W) (512,640)
Input Views 3
Training Epochs 10
Feature Map Downsize Ratio 2
Cascaded Stages 5
Depth Interval 2.65mm
Ratio of Depth Interval [1.0, 2.0, 4.0]
Number of depth Hypothesis [8, 32, 48]
Batch Size 8
Learning Rate 0.0001
Optimizer Adam
Learning Rate Scheduler CosineAnnealingLR
Loss Function Mean Absolute Error
Loss weights on each level The same
Trainable Layer Feature Adapter
Image enhancement Model Low-light Diffusion

Table 4.4: Evaluation Parameters.

Testing Dataset DTU
Evaluation Resolution (H, W) (512, 640)
Input Views 3
Number of consistent Views 3
Confidence threshold 0.999
Generalization Dataset Tanks and Temples
Evaluation Resolution (H, W) (864, 1152)
Input Views 3
Number of consistent Views 3
Confidence threshold 0.999
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4.4 Evaluation results

4.4.1 Evaluation on DTU
We present the results of our experiments conducted on the DTU dataset. Our evaluation spanned
a broad spectrum of lighting conditions to thoroughly assess the performance of our model under
both low illumination and normal lighting. Our evaluations included color rendering and balancing,
geometric evaluation, and depth estimation.

• Point Cloud Geometric: Although there was a slight decrease in accuracy, we observed more
improvement in completeness. This trade-off resulted in an overall performance enhancement
across various lighting conditions, underscoring the effectiveness of our approach.

• Depth Estimation Level: We noted a reduction in the mean absolute error (MAE). However,
the improvement in the ratio of pixels with errors under thresholds of 4mm, 2mm, and 1mm
was modest, showing only about a 1% increase at various lighting conditions.

• Color Rendering and Balancing: Our method improves visualization by enhancing color
rendering and balancing, effectively removing dark regions. This results in better visual repre-
sentation across various lighting conditions.

Our algorithm improves the MVS low illumination images and could improve the performance
of normal light. Moreover, we observed that the effectiveness of our methods diminishes as the
brightness increases according to both the depth map and point cloud evaluation results. The
discussion section will analyze these results (see Section 4.6).

4.4.1.1 Quantitative Test

The quantitative results are listed in table 4.5 and table 4.6. Table 4.5 presents the testing results
for point clouds under three different lighting conditions: Light 0, Light 3, and Light 6. The metrics
evaluated are accuracy (Acc.), completeness (Comp.), and overall performance. Our method shows
a marginal improvement in overall performance compared to CasMVSNet. Specifically, our model
achieves better completeness across all lighting conditions, though the accuracy slightly decreases.

Table 4.6 compares our method with CasMVSNet on depth map estimation. The metrics include
mean absolute error (Abs Error) and the ratio of points with the mean absolute error below 1mm,
2mm, and 4mm (1mm Acc, 2mm Acc, 4mm Acc). Our method consistently shows a lower mean
absolute error across all lighting conditions. The improvement in 1mm Acc is slight, while the 2mm
and 4mm Acc remain comparable to CasMVSNet.

These results indicate that while our method provides notable enhancements in completeness and
slight improvements in depth map accuracy, the overall gains in geometric accuracy are marginal.

4.4.1.2 Qualitative Test

The qualitative results are illustrated in Figures 4.2, 4.4, and 4.3. These results highlight two key
advantages of our model over the original method:

1. Our model recovers more points, particularly in featureless areas, while maintaining the quality
in normally lit areas. (See Figure 4.3, 4.4, and more results in Appendix C.1)

2. The appearance of point clouds is notably improved, with enhanced color and surface details,
leading to a more visually appealing representation of objects. (See Figure 4.2 and more results
in Appendix C.2 )
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Light: 0 Acc. ↓ Comp. ↓ Overall ↓
CasMVSNet 0.328 0.472 0.400

Ours 0.330 0.460 0.395
Light: 3 Acc. ↓ Comp. ↓ Overall ↓

CasMVSNet 0.327 0.464 0.395
Ours 0.328 0.454 0.391

Light: 6 Acc. ↓ Comp. ↓ Overall ↓
CasMVSNet 0.315 0.457 0.386

Ours 0.315 0.452 0.384

Table 4.5: The testing result of points cloud on DTU, in lighting condition 0,3,6

Light: 0 Abs Error 1mm Acc 2mm Acc 4mm Acc
Ours 6.39 70% 82% 90%

CasMVSNet 6.85 69% 82% 90%
Light: 3 Abs Error 1mm Acc 2mm Acc 4mm Acc

Ours 6.27 69% 83% 90%
CasMVSNet 6.70 69% 82% 90%

Light: 6 Abs Error 1mm Acc 2mm Acc 4mm Acc
Ours 6.23 70% 84% 91%

CasMVSNet 6.59 70% 84% 90%

Table 4.6: Comparison of Ours and CasMVSNet Methods on depth map estimation. Abs Error is
the mean absolute error, and 1mm Acc, 2mm Acc, and 4mm Acc is the ratio of points with the
mean absolute error below 1mm, 2mm, and 4mm
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(a) CasMVSNet (b) Ours

(c) CasMVSNet (d) Ours

Figure 4.2: This is the comparison of color between the original CasMVSNet and our proposed
model
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(a) Ours (b) CasMVSNet

(c) Details on our model (d) Details on CasMVSNet

Figure 4.3: Qulitative evaluation of our methods with CasMVSNet on scan24
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(a) Ours (b) CasMVSNet

(c) Details on our model (d) Details on CasMVSNet

Figure 4.4: Qulitative evaluation of our methods with CasMVSNet on scan28
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(a) Ours (b) CasMVSNet

(c) Ours (d) CasMVSNet

Figure 4.5: Qulitative evaluation of on ’tanks and temples’, the scan name: Lighthouse
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(a) Ours (b) CasMVSNet

(c) Ours (d) CasMVSNet

Figure 4.6: Qulitative evaluation of on ’tanks and temples’, the scan name: Family

4.4.2 Tanks and Temples
Our evaluation of the ’Tanks and Temples’ dataset demonstrates an overall performance improve-
ment, corroborating the generalizability of our methods across different datasets. Notably, qualitative
assessments reveal enhanced completeness in featureless regions.

4.4.2.1 Quantitative Test

Despite the intermediate set of ’Tanks and Temples’ being captured in outdoor environments under
normal lighting conditions, our model exhibits improvements in overall performance. Detailed results
are presented in Table 4.7.

Model F1 Score
Proposed Model 46.24

CasMVSNet 45.30

Table 4.7: F1 scores of test results on ’Tanks and Temples’
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4.4.2.2 Qualitative Test

Figures 4.5 and 4.6 show the outcomes of our model on the ’Tanks and Temples’ dataset, highlighting
the enhanced details and improved model performance in various outdoor scenes. More samples can
be found in Appendix C.3.

4.5 Ablation experiments
We conducted a series of ablation tests to assess the contributions of each component within our
design. The goals were to determine (1) whether the image enhancement method contributes to
the improvement of MVS, (2) whether our feature adapter designs effectively refine the feature
map, and (3) whether the framework works for other MVS pipelines such as GeoMVSNet [73]. The
quantitative results of different ablation experiments can be seen in Table 4.8.

Light: 0 Acc. ↓ Comp. ↓ Overall ↓
CasMVSNet 0.328 0.472 0.400

Ours 0.330 0.460 0.395
Only feature adapter 0.326 0.475 0.401
Without DWT input 0.329 0.462 0.396

Only image enhancement input 0.329 0.465 0.397
GeoMVSNet (original) 0.383 0.392 0.388

GeoMVSNet (ours) 0.343 0.338 0.340
MVSNet (original) 0.540 0.492 0.523

MVSNet (ours) 0.547 0.485 0.516
Light: 3 Acc. ↓ Comp. ↓ Overall ↓

CasMVSNet 0.327 0.464 0.396
Ours 0.328 0.454 0.391

Only feature adapter 0.326 0.463 0.395
Without DWT input 0.327 0.456 0.392

Only image enhancement input 0.328 0.457 0.393
GeoMVSNet (original) 0.342 0.344 0.343

GeoMVSNet (ours) 0.322 0.302 0.312
MVSNet (original) 0.538 0.501 0.520

MVSNet (ours) 0.542 0.493 0.518
Light: 6 Acc. ↓ Comp. ↓ Overall ↓

CasMVSNet 0.315 0.457 0.386
Ours 0.315 0.452 0.384

Only feature adapter 0.316 0.459 0.388
Without DWT input 0.313 0.456 0.385

Only image enhancement input 0.316 0.454 0.385
GeoMVSNet (original) 0.348 0.294 0.321

GeoMVSNet (ours) 0.325 0.282 0.304
MVSNet (original) 0.535 0.491 0.513

MVSNet (ours) 0.541 0.493 0.517

Table 4.8: The testing result of points cloud on DTU, in lighting condition 0,4,6
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4.5.1 Ablation Experiment 1: only feature adapter
We evaluated the isolated impact of a feature adapter by integrating it into the original CasMVSNet
architecture without the image enhancement model. This adapter operates in parallel to the original
feature extractor and adds the outputs with original feature maps. The results indicate that adding
the feature adapter without any image enhancement contents did not improve performance. On
the contrary, it resulted in a slight decrease. This suggests that merely increasing the complexity of
the feature extraction process without enhancing the input features does not contribute to better
performance.

4.5.2 Ablation Experiment 2: only image enhancement input
This experiment involved directly concatenating the outputs from the image enhancement block
with the input image before processing them using the original FPN structure within CasMVSNet.
While this method showed improved performance, particularly under low illumination conditions, it
did not surpass the enhancements observed with our integrated approach using the feature adapter.
These results confirm that incorporating image enhancement boosts MVS performance, especially
in challenging lighting conditions.

4.5.3 Ablation Experiment 3: Without Multi-scale Input
Our design takes the multi-scale output from the Low-light Diffusion model. To test the effectiveness
of this multi-scale strategy, we conducted an ablation experiment by removing the multi-scale inputs.
Instead, we only used the final output: the enhanced images from the inverse discrete wavelet
transform (IDWT), which combines all enhanced components. This approach allows us to evaluate
the contribution of multi-scale features to our overall method.

4.5.4 Ablation Experiment 4: Framework Applicability to Other MVS
Pipelines

To evaluate the generalizability of our framework, we extended it to other MVS pipelines, specifically
GeoMVSNet [73] and MVSNet [66]. We integrated the same feature adapter design into these
models. The parallel feature adapters process the refined images from the enhancement model and
add the adapter output with the original feature maps.

4.5.5 Summary
The results of our ablation experiments are presented in Tables 4.8. Experiment 1 shows that
simply increasing network complexity by adding the feature adapter without image enhancement
results in only marginal improvements. Experiment 2 demonstrates that incorporating the image
enhancement model significantly improves the performance of our framework. Experiment 3 reveals
that our design, which includes the parallel feature adapter and multi-scale input, provides only
marginal improvements compared to simply concatenating the image enhancement output.

4.6 Discussion

4.6.1 Color Rendering and Balancing
The qualitative results reveal our model’s enhanced color rendering and balancing effects. The model
improves visualization by enhancing color details and illumination in low-light conditions. However,
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although the illumination of the images is improved, the enhancement effects are still imbalanced.
Shadows and occlusions remain problematic, especially in regions with occlusions that block light.

4.6.2 Geometric and Depth Estimation Evaluation
The experimental results indicate that although improvements are observed, they are relatively
marginal and not very pronounced. This suggests that while our framework has the potential to
enhance the process of 3D reconstruction, there is still significant room for improvement.

From the quantitative results in geometric evaluation: Table 4.5 and Table 4.7 and depth esti-
mation 4.6, Our method shows a slight increase in completeness but a marginal decrease in accuracy.
This trade-off results in an overall enhancement in performance across various lighting conditions
but remains subtle.

Qualitative results from both the ’Tanks and Temples’ and DTU datasets further illustrate our
model’s ability to recover more points in shadowed or otherwise featureless regions, as shown in
Figures 4.4, 4.3, 4.5 and 4.6. However, the accuracy of these newly added points is relatively low
compared to the original MVS points. The newly added points are not as dense and smooth as those
in well-lit areas, indicating that while our model enhances completeness, it does not significantly
improve the precision of 3D reconstructions.

The geometric and depth estimation evaluations show that our framework can potentially improve
3D reconstruction, particularly in filling void regions. However, the improvements are modest, and
there is ample room for further enhancement in both accuracy and completeness.

4.6.3 Training Strategies
According to Tables 4.2 and 4.1, fine-tuning only the feature adapter achieves the second lowest
training loss while demanding the least computational resources. Our method is highly efficient in
terms of resource usage. However, incorporating the entire MVS model into the training process
results in the lowest training loss. Despite this, including the MVS model in training can introduce
risks such as overfitting and dataset bias since the improvement may stem from extended training
epochs on the pre-trained MVS model. Additionally, this approach increases computational resource
demands.

For our research, which aims to explore the contributions of newly added components, we decided
not to include the MVS model in training. This ensures that improvements are solely attributed to
the new components, adhering to the principle of control variables.

In practical applications, if computational resources are sufficient, incorporating more frozen
layers and even the MVS model into training could lead to better performance. This approach
might enhance both accuracy and completeness, making it a reasonable choice for achieving higher-
quality results.

4.6.4 Robustness and Generalizability of Our Methods
Quantitative and qualitative evaluations of our approach maintain marginal improvements across
varying lighting conditions, datasets, and MVS methods, demonstrating our model’s adaptability
and robustness.

The marginal improvement is consistent in different lighting conditions. However, as lighting
intensity increases, the extent of these improvements diminishes, as evidenced by our experimental
results on the DTU dataset. This trend can be attributed to the inherent characteristics of the
low-light diffusion process, which introduces less additional content in already well-lit images, thus
providing limited enhancement under such conditions.
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The performance of our model on the ’Tanks and Temples’ dataset further validates that it per-
forms well in laboratory environments and shows commendable improvements in outdoor and brightly
lit environments. This observation underscores our model’s capability to enhance 3D reconstruction
in varied real-world conditions.

Additionally, we tested our framework with different learning-based MVS methods, including
CasMVSNet [15], MVSNet [66], and GeoMVSNet [73]. The results indicate that our framework is
robust and generalizable across various MVS methods. We found that while CasMVSNet and MVS-
Net showed marginal improvements, the enhancement is relatively pronounced with GeoMVSNet.
This indicates that our framework’s effectiveness can vary based on the choice of the underlying
MVS method.

Overall, our framework demonstrates robust performance and generalizability. It consistently
improves across different scenarios, lighting conditions, datasets, and MVS methods.

4.6.5 Design of Feature Adapter
Our ablation experiments 1-3 are designed to dissect the individual contributions of each archi-
tectural component within our model, enhancing our understanding of their roles in improving 3D
reconstruction performance under varied lighting conditions. These experiments yielded two key
findings:

First, our tests reveal how each design component influences the MVS. We discovered that while
multi-scale input offers only marginal improvements, the diffusion-based image enhancement model
contributes most to performance enhancement. Although feature adapters alone provide modest
benefits, their combination with the image enhancement model results in the best performance
compared to using the image enhancement model in isolation.

Second, the ablation experiments’ results validate the effectiveness of our architectural decisions
and open pathways for further improvements. The observed synergy among the components con-
firms that our integrated approach is more effective in achieving more improvements than other
methodologies.

4.6.6 pros and cons
4.6.6.1 Pros

Our method enhances the performance of Multi-View Stereo (MVS) in low illumination conditions,
demonstrating robustness and generalizability across various scenarios. This extends the applicability
of image-based 3D reconstruction.

Our approach is robust and adaptable to different lighting conditions, showing consistent im-
provements in low and normal light environments. This capability is validated by quantitative and
qualitative evaluations on the DTU and Tanks and Temples datasets. Additionally, our framework
is easy to transfer to other MVS pipelines, such as GeoMVSNet and MVSNet, highlighting its
versatility.

Secondly, our method simplifies the MVS process by eliminating the need for individual pre-
processing steps like manual brightness adjustments. This end-to-end framework is efficient and
lightweight, requiring minimal computational resources. This makes it particularly useful in time-
sensitive applications such as emergency response planning and rapid environment assessments.

Thirdly, our technique significantly improves the visual quality of 3D models. Enhancing the
color visualization and rendering effects produces clearer and sharper images of objects captured in
low light. This enhancement is crucial for accurate color and texture information and is vital for
realistic 3D model rendering. Our method improves the geometric details, surface textures, and
colors, making the 3D reconstructions more detailed and vibrant. This is essential for historical site
documentation, augmented reality, gaming, and animation applications.
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Lastly, the improvements observed in our methods are not significant for MVSNet and CasMVS-
Net, with only very slight performance enhancements. This indicates that further optimization and
studies are needed while our framework shows potential.

Our framework demonstrates potential improvements in low-light conditions and efficiency in the
MVS process. However, significant areas require further investigation and refinement to realize their
full potential. Although the improvements in geometric shape and depth estimation are marginal,
they do indicate a positive trend and potential for further development.

4.6.6.2 Cons

However, there are several limitations and questions that remain unanswered in our research, indi-
cating that the results are far from perfect:

Firstly, multi-view consistency in the original image enhancement model is a challenge. Although
we used multi-frame attention and a feature adapter to fuse the output to mitigate this issue, multi-
view inconsistencies still exist. Fine-tuning the image enhancement model for multi-view consistent
enhancement is necessary but is also more expensive and complex.

The optimal type of image enhancement model for MVS remains an open question. We used
a basic method to select the image enhancement model from three commonly used models by
comparing their image enhancement results. More quantitative analysis and a broader selection
from a larger pool of image enhancement models are necessary for better improvements. Ensuring

Secondly, our model’s contribution to geometric accuracy lacks deep analysis. To evaluate the
final contribution of our methods, we need at least a mask on the dark regions and well-lit regions
from the original methods and compare the accuracy and completeness in these areas. In this way,
we can quantify the contribution of our framework to dark regions and gain deep insight into the
interaction between our framework and multi-view images.

Lastly, the improvements observed in our methods are not significant for MVSNet and Cas-
MVSNet, with only very slight performance enhancements. This indicates that while our framework
shows potential, its effectiveness can vary depending on the specific MVS pipeline used, and further
studies and optimization are needed.

In summary, while our framework demonstrates potential improvements in low-light conditions
and efficiency in the MVS process, significant areas require further investigation and refinement to
realize their full potential.
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Chapter 5

Conclusion and limitations

5.1 Conclusion
This thesis investigates enhancing 3D reconstruction in low illumination environments by leveraging
the prior knowledge of diffusion processes embedded within an existing image enhancement model.
We propose a streamlined and efficient framework integrating CasMVSNet with a diffusion-based
image enhancement model, Low-light Diffusion. Our pipeline is composed of three primary compo-
nents:

1. Diffusion-based Image Enhancement Model: This model processes images captured in
low illumination conditions, enhancing them to resemble those taken under normal lighting
conditions.

2. Original CasMVSNet: It performs depth estimation with a feature map refined by the
feature adapter.

3. Multi-scale Feature Adapter: A novel adapter that merges the architectures of FPN and
Res2Net. This adapter connects the diffusion-based image enhancement model with CasMVS-
Net. It takes multi-scale inputs from Low-light diffusion outputs [20] during the bottom-up
stage of the FPN. The adapter’s outputs integrate with the original features at corresponding
levels through addition during the top-down stage.

Training is confined to the feature adapter, enhancing the efficiency of our method. This targeted
training approach conserves computational resources while preserving the improvements.

Our results answered the research questions:

1. Which image enhancement model is suitable for MVS tasks under low illumination?
Our evaluation identified the Low-light Diffusion model proposed by [20] demonstrating su-
perior performance to other image enhancement algorithms. Firstly, our method performs
better enhancement effects, improving illumination and preserving details in poorly lit areas.
Secondly, the framework exhibits improvements when using the Low-light Diffusion model,
enhancing both color visualization and geometric shape reconstruction in MVS tasks.

2. What architecture is suitable for integrating image enhancement models into MVS
to boost 3D reconstruction?
We have developed a feature adapter that integrates multi-scale output from a low-light
diffusion to refine the feature maps extracted by the FPN within CasMVSNet. The ablation
experiments explored different integration architectures, including the image enhancement
model and the multi-scale input design. Results indicate that our feature adapter design has
provided more significant improvements than other methods, showing its effectiveness and
versatility.
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3. How can image enhancement models, which typically contain millions of parame-
ters, be efficiently utilized for 3D reconstruction tasks to minimize computational
demands while maintaining good performance?
Our training strategy is only to train the feature adapter while all layers in the pretrained model
are frozen. We tested different training strategies, and the proposed training strategy achieved
the goal of training on fewer computation resources while the performance was not largely
degraded. In addition, our methods save the computation resources and help measure the
final study goal. Since all the weights of CasMVSNet and the image enhancement model are
frozen, the training is only implemented on the adapter network, so we could ensure that the
improvements only come from the adapter integrating the diffusion-based image enhancement
model and CasMVSNet. This excludes the possible intervention from which the improvement
may come, such as increased training on CasMVSNet or the image enhancement model.

Finally, the main research question is answered:
To what extent can we utilize the prior knowledge of the existing image enhancement
model to improve the performance of MVS?

To enhance MVS performance in low-illumination, our model introduces an effective end-to-
end framework that utilizes an image enhancement model to improve 3D reconstruction. Our
experiments, conducted on both the DTU dataset and the ’Tanks and Temples’ dataset under
various lighting conditions, indicate that our architecture significantly enhances color rendering and
visualization of 3D reconstructions. Additionally, we observed a slight improvement in geometric
shape accuracy and a notable improvement in completeness.

Furthermore, our framework was tested on other MVS pipelines, including GeoMVSNet and
MVSNet. The results show that our method is robust and adaptable across different MVS frame-
works, maintaining its effectiveness in various scenarios. The improvements were relatively more
significant in challenging lighting conditions, showcasing the robustness and generalizability of our
approach. This adaptability highlights the potential for our framework to be applied broadly, im-
proving MVS performance in diverse real-world applications.

5.2 Limitations
Our research, while contributing to the field of 3D reconstruction in low illumination environments,
has certain limitations that should be noted:

1. Accuracy vs. Completeness: Our methods improve overall performance but at the ex-
pense of accuracy. This trade-off, favoring completeness, may reduce the perceived benefits,
particularly in precision-critical applications.

2. Fine-tuning on the DTU Dataset: Our model is fine-tuned exclusively on the DTU dataset,
characterized by controlled lighting conditions. The dataset’s lowest lighting class does not
adequately represent severe low-light environments. In addition, the DTU dataset is collected
in a laboratory environment, which can only represent the indoor environment. This limitation
may result in less robustness and generalizability of our proposed model. Expanding our
training to include datasets with a broader range of illumination environments, especially
those incorporating severe low-light effects and outdoor scenes, would enhance the robustness
and applicability of our findings.

3. Single-Frame Image Enhancement Model: Our current image enhancement model is
trained on single frames due to limited computational resources and the absence of a suitable
multi-view low illumination dataset. Although we incorporate a cross-frame attention block
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in the high frequency Reinforcement Module (HFRM), it is not enough to replace training on
multi-view datasets. This results in a lack of multi-view consistency, potentially degrading the
quality of the final output.

4. Computational Resource Requirements: Despite our efficient fine-tuning approach, which
significantly reduces the demand for computational resources, the image enhancement model
still requires up to 20 times more parameters than the original CasMVSNet. This requirement
means that substantial computational resources are still necessary for processing, which could
be a limitation in resource-constrained environments.

5.3 Future work
Several promising directions could be pursued to enhance the performance of our study. The first is
to develop a multi-view low illumination dataset for MVS. Current datasets predominantly feature
ideal lighting conditions. Even for the darkest class of DTU, there are still many well-lit regions.
Only incorporating normal lighting conditions limits the study of MVS and reduces the robustness
of pretrained MVS models, which are typically optimized for normal lighting conditions only.

Another direction is to expand the range of image enhancement methods to improve the robust-
ness and overall performance of the image enhancement model. Enhancing images with challenges
beyond low illumination, such as haze, fog, or overexposure, could also be addressed. These con-
ditions could be improved by integrating sophisticated image enhancement algorithms with MVS
using similar or more advanced architectures.

Additionally, generative-based methods hold great potential beyond image enhancement, extend-
ing to tasks like frame interpolation, occlusion removal, and texture addition in textureless areas.
Particularly, there is a compelling case for developing a multi-view consistent diffusion model that
enhances multi-view images in a way that is more conducive to 3D reconstruction. Such a model
would ensure consistency across different viewpoints, significantly improving the quality and accu-
racy of the modeling results. Emphasizing a multi-view approach is crucial, as relying solely on
single-frame enhancement could lead to inconsistencies in the 3D structure, underscoring the im-
portance of adopting a multi-view consistent generative model to achieve superior and more reliable
reconstruction outcomes.

Given the observed decrease in performance enhancement with increased brightness, future work
could also focus on adapting the integration strategy to adjust based on dynamic ambient lighting
conditions. Exploring more advanced methods for seamlessly integrating image enhancement outputs
with MVS features could yield more significant improvements, particularly in varied environmental
conditions.
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Appendices

A Related works

A.1 Discrete Wavelet Transformation
Discrete Wavelet Transformation (DWT) is a signal processing technique that decomposes a signal
into its constituent frequency components, providing both time and frequency information. This
method is particularly useful for analyzing non-stationary signals where frequency components vary
over time.

The fundamental concept of DWT involves passing the signal through a series of high-pass and
low-pass filters to create detailed and approximated coefficients. These coefficients represent the
signal’s high-frequency and low-frequency components, respectively.

Mathematically, the DWT of a signal x(t) can be expressed as:

x(t) =
∞∑

k=−∞
cj0,kϕj0,k(t) +

∞∑
j=j0

∞∑
k=−∞

dj,kψj,k(t)

where ϕj0,k(t) are the scaling functions, ψj,k(t) are the wavelet functions, cj0,k are the approxi-
mation coefficients, and dj,k are the detail coefficients.

The DWT operates by performing the following steps:

1. Decomposition: The signal is decomposed into approximate and detail coefficients using
a series of high-pass and low-pass filters. This process can be recursively applied to the
approximate coefficients to create a multi-level decomposition.

2. Thresholding: Coefficients are often thresholded to remove noise and irrelevant information,
retaining significant signal components.

3. Reconstruction: The signal is reconstructed by combining the thresholded coefficients, ef-
fectively denoising or compressing the signal.

DWT is widely used in various applications, including signal denoising, image compression, and
feature extraction in machine learning. Its ability to capture both time and frequency information
makes it a powerful tool for analyzing complex signals and enhancing image details in low-light
conditions.

Inverse Discrete Wavelet Transformation (IDWT) is the process of reconstructing the original
signal from its wavelet coefficients. This involves reversing the steps of the DWT to transform the
frequency domain information back into the time domain, thus reconstructing the original signal.

The IDWT can be mathematically expressed as:

x(t) =
∞∑

k=−∞
cj0,kϕj0,k(t) +

∞∑
j=j0

∞∑
k=−∞

dj,kψj,k(t)

where ϕj0,k(t) are the scaling functions, ψj,k(t) are the wavelet functions, cj0,k are the approxi-
mation coefficients, and dj,k are the detail coefficients.
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The steps involved in IDWT are:

1. Reconstruction of Approximations and Details: Using the inverse of the high-pass and
low-pass filters applied in DWT, the approximation and detail coefficients are combined to
reconstruct the signal at each level.

2. Combining Coefficients: The combined coefficients at each level are then iteratively com-
bined to reconstruct the original signal.

A.2 Diffusion Models
The fundamental mechanism of diffusion models is an autoregressive process of adding and reversing
noise. The forward diffusion process begins by gradually adding Gaussian noise to an image across
a series of steps. This can be represented mathematically as:

xt = √
αtxt−1 +

√
1 − αtϵ, ϵ ∼ N (0, I)

where xt is the image at step t, αt is a variance schedule over time, and ϵ is the noise vector. In
the reverse diffusion process, the model aims to reconstruct the original image by estimating and
subtracting the added noise iteratively. This is modeled by a neural network, typically a UNet, which
predicts the noise that was added at each step:

ϵ̂ = f(xt, t, θ)

where f is the function approximated by the UNet, t is the timestep, and θ represents the model
parameters. In reverse diffusion processes, the model generates images from noisy images at t step
to t− 1 step:

xt−1 = 1
√
αt

xt − 1 − αt√
1 − α2

t

ϵ̂(xt, t)


As long as timesteps are large enough, the image at timestep t is approximate to Gaussian noise.
The diffusion model can generate images from noise.
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B Image Enhancement

(a) A (b) B (c) C

(d) D (e) E (f) F

(g) D (h) E (i) F

Figure 1: The image input to image enhancement model in scan 23 of DTU, from top to bottom is
image in lighting condition 0,3,6
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(a) A (b) B (c) C

(d) D (e) E (f) F

(g) G (h) H (i) I

Figure 2: Enhanced image using RetinexNet in scan 23 of DTU, from top to bottom is the image
in lighting condition 0,3,6
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(a) A (b) B (c) C

(d) D (e) E (f) F

(g) G (h) H (i) I

Figure 3: Enhanced image using EnlightenGAN Diffusion in scan 23 of DTU, from top to bottom
is the image in lighting condition 0,3,6
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(a) A (b) B (c) C

(d) D (e) E (f) F

(g) G (h) H (i) I

Figure 4: Enhanced image using Low-light Diffusion in scan 23 of DTU, from top to bottom is the
image in lighting condition 0,3,6
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(a) A (b) B (c) C

(d) D (e) E (f) F

(g) D (h) E (i) F

Figure 5: The image input to the image enhancement model in scan 23 of DTU, from top to bottom,
is the image in lighting conditions 0,3,6
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(a) A (b) B (c) C

(d) D (e) E (f) F

(g) G (h) H (i) I

Figure 6: Enhanced image using RetinexNet in scan 23 of DTU, from top to bottom is the image
in lighting condition 0,3,6
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(a) A (b) B (c) C

(d) D (e) E (f) F

(g) G (h) H (i) I

Figure 7: Enhanced image using EnlightenGAN Diffusion in scan 23 of DTU, from top to bottom
is the image in lighting condition 0,3,6
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(a) A (b) B (c) C

(d) D (e) E (f) F

(g) G (h) H (i) I

Figure 8: Enhanced image using Low-light Diffusion in scan 23 of DTU, from top to bottom is the
image in lighting condition 0,3,6
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C Qualitative result of 3D reconstruction

C.1 DTU: color

(a) Ours (b) CasMVSNet

(c) Ours (d) CasMVSNet

Figure 9: Color enhancement: scan 117 and scan 56
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(a) Ours (b) CasMVSNet

(c) Ours (d) CasMVSNet

Figure 10: Color enhancement: scan 38 and scan 40
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(a) Ours (b) CasMVSNet

(c) Ours (d) CasMVSNet

Figure 11: Color enhancement: scan 17 and scan 43
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C.2 DTU: geometric

(a) Ours (b) CasMVSNet

(c) Ours (d) CasMVSNet

Figure 12: Qualitative results on scan 17
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(a) Ours (b) CasMVSNet

(c) Ours (d) CasMVSNet

Figure 13: Qualitative results on scan 11
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(a) Ours (b) CasMVSNet

(c) Ours (d) CasMVSNet

Figure 14: Qualitative results on scan 11
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C.3 Tanks and Temples

(a) Ours (b) CasMVSNet

(c) Ours (d) CasMVSNet

Figure 15: Qulitative evaluation of on ’tanks and temples,’ the scan name: M60
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(a) Ours (b) CasMVSNet

(c) Ours (d) CasMVSNet

Figure 16: Qulitative evaluation of on ’tanks and temples’, the scan name: Panther
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