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Abstract

Large volumes of data are produced, published and exchanged over the In-
ternet. Such data is often in a semi-structured format which is typically irregular
and therefore challenging to analyze. High-level data analysis languages are built
on top of implicit parallel data processing platforms that handle distribution of
computations and data. Currently, work is being performed on the Nested Rela-
tional Calculus for Semi-structured Data (sNRC), which combines well-known
formalisms from the Nested Relatonal Calculus for querying nested data with
modern approaches for large-scale data analysis.

This work presents a first of its kind system for parallel evaluation of sNRC
queries built on top of an implicit parallel framework called Flink. Previous work
on an optimization called input projection recombined and modified to present
an input projection algorithm for sNRC. This optimization has as goal to improve
the performance and scalability of the parallel sNRC system by reducing the size
of the input dataset.

The system is evaluated with the XMark benchmark on a cluster of up to 16
quad CPU nodes, and for datasets of up to 141 GB. We show that the presented
parallel sNRC system is capable of processing large-scale datasets and that it
can facilitate future work on sNRC. Moreover, it is shown that the presented
input projection algorithm strongly improves the performance and scalability for
sNRC queries that require partitioning.
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Chapter 1

Introduction

As the Internet is continuously developing, social networks keep growing in popularity
and mobile communications contribute to an enormous amount of data being gener-
ated. A large portion of the data that is published on the Internet or exchanged between
distributed applications or web applications is in a semi-structured data format such as
the popular XML or JSON formats [27]. Semi-structured data is nested and typically
irregular, and the data may have no schema or an incomplete schema. It is most often
encountered during the exploratory phases of data analysis [10].

Analysis of semi-structured data has many interesting use cases, but it is also a
very challenging topic. The amount and complexity of semi-structured data require a
huge amount of effort to be invested in order to retrieve valuable insights. Approaches
for efficient analysis of large amounts of semi-structured data are very desirable and
have therefore become a much researched topic by both industries and academia.

Long before the ‘big data’ trend, much research had already been performed in
the area of nested relational databases [47, 40, 43, 21]. This research was later for-
malized in a Nested Relational Calculus (NRC) and Nested Relational Algebra [13,
47, 33] which influenced well-known query languages for semi-structured data such
as XQuery [11].

In order to analyse large amounts of data implicit parallel data processing frame-
works [17] can be leveraged. By implitly parallel we mean that the framework handles
distribution of computations and data accross the available computation nodes. Exam-
ples of such implicit parallel frameworks are the well-known MapReduce [23], Spark
[49] or Flink [5]. Because existing query languages for semi-structured data were
not capable of handling large amounts of data in terms of volume and velocity, new
high-level data analysis languages [36, 10, 44] were developed on top of such implicit
parallel data processing frameworks.

Recently work has been presented that connects the formalisms provided by the
NRC and NRA with modern approaches for large-scale data analysis. It has been
shown that the NRC can provide a solid basis for a data flow language [30] and
that NRC is suitable for expressing MapReduce optimisations [28]. Ongoing work
is performed on a dialect of the NRC, called the Nested Relational Calculus for Semi-
structured Data (sNRC). The sNRC uses the well-known formalisms from the NRC
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1.1 Research Objectives Introduction

to design a language for querying semi-structured data [29]. This language has as its
goals to be well-understood in terms of semantics and expressive power, to be easily
implementable on an implicit parallel data processing framework to process large-scale
data and to allow application of well-known optimisation techniques.

The goal of this work is to explore the capabilities of the sNRC to fulfil its goals,
and to create opportunities of further research on the topic of sNRC. First, a reference
system for parallel evaluation of sNRC expressions is presented that uses a well-known
technique called input projection. This reference system is improved upon by devel-
oping a more sophisticated input projection algorithm. Furthermore, the improved
parallel sNRC system is evaluated and compared to the reference system on a cluster
using a popular benchmark for semi-structured data. The experiments provide insights
in the performance of the parallel sNRC system and the results of the input projection
optimization. In the remainder of this chapter these goals will be linked to a set of
research objectives, the contributions of this thesis will be summarized and an outline
of the thesis will be provided.

1.1 Research Objectives

The goal of this thesis as stated above can be described by a set of research questions.
These research questions are answered based on our findings in the remainder of this
thesis.

RQ1: Which state-of-the-art parallel data processing platform is suitable for im-
plicit parallelization of the Nested Relational Calculus for Semi-Structured Data?

As was already stated in the introduction, there are several different parallel data
processing platforms available. By researching the qualities and shortcomings of each
of the data processing platforms and aligning these with the goals for a parallel sNRC
system, a platform needs to be chosen for implicit parallelization of the sNRC.

RQ2: How can an input semi-structured dataset be fragmentized to allow process-
ing by a streaming data processing platform?

Like with other parallelized systems for querying semi-structured data [17, 36, 10]
we cannot always load a complete semi-structured dataset into memory. This also
complies with our goal to investigate whether the sNRC is suitable for processing
large-scale datasets. The selected data processing platform features a streaming data
processing engine. Such a streaming data processing engine is not built to load a com-
plete semi-structured dataset into memory. Instead it is designed to process smaller
chunks or elements and therefore it is required to fragmentize the input dataset into a
collection of smaller elements. After answering RQ1 and RQ2 a Reference Parallel
sNRC System can be designed.

RQ3: How can a reference input projection approach be improved upon to further
reduce the size of the input semi-structured dataset?

2



Introduction 1.2 Contributions

The approach for the Reference Parallel sNRC system is to apply a technique
called input projection to fragmentize the input dataset to allow processing on a parallel
data processing platform. The initial approach taken for the reference parallel sNRC
implementation can be improved upon in particular for queries that use partitioning
operations. Further reducing the size of the input semi-structured dataset is expected
to result in improved performance and scalability. Therefore, it is investigated how to
improve upon the reference parallel sNRC input projection to develop an Improved
Parallel sNRC System.

RQ4: What is the effect of the improved input projection on the performance in
terms of runtime and scalability of the improved parallel sNRC system compared to
the reference system?

As a final research question we investigate how and when applying the improved
input projection improves the performance in terms of runtimes and scalability of the
reference parallel sNRC system. To do this a suitable benchmark should be chosen.
Both the reference and improved system should be evaluated on datasets of varying
sizes and clusters of varying sizes to answer this research question.

1.2 Contributions

In this section we summarize the contributions of this work. Based on the work pre-
sented in the remainder of this thesis to answer the above research questions we iden-
tify the following contributions:

• A Parallel sNRC System Implementation: A working, first of its kind, parallel
sNRC system is presented in this thesis. It is demonstrated how sNRC fulfils
one of its goals, by indeed allowing implementation on an implicit parallel data
processing framework. The qualities and flaws of the available data processing
systems are outlined and discussed. We motivate and present the design of the
parallel sNRC system and discuss how challenges were overcome. Having a
first system is crucial to allow further research in the area of (parallel) sNRC.

• Input Projection for sNRC: We have applied a first optimization to the paral-
lel sNRC system in the form of input projection. A necessary reference system
is presented to adapt sNRC to an implicit parallel data processing framework.
Next, an improved version is presented that uses a static sNRC expression anal-
ysis algorithm and combines existing state-of-the-art approaches for input pro-
jection to further reduce the size of the input dataset.

• Evaluation of the Parallel sNRC System and Input Projection: Using a set
of experiments on both a single node, as well as a cluster of up to 16 nodes and
datasets of up to 141 GB we evaluate the parallel sNRC system with the refer-
ence and improved input projection approaches. It is shown how the improved
input projection is a strong improvement over the reference, and consistently
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improves on an existing approach regarding the size of the input dataset. More-
over, the systems are evaluated using the well-known XMark [41] benchmark
for semi-structured data. Queries from the XMark benchmark are categorized
and the performance in terms of runtime and scalability for both systems is in-
vestigated and discussed for each of the categories.

1.3 Thesis Outline

The remainder of this thesis is outlined in this section. In Chapter 2 we provide back-
ground information consisting of scientific and industrial work that is relevant for the
work presented in this thesis. In Chapter 3 a choice for a implicit parallel data pro-
cessing framework is motivated. It is discussed what the challenges are of implicitly
parallelizing sNRC on this framework, and how these challenges were overcome. In
particular the need for input projection is motivated and a reference approach is pre-
sented. In Chapter 4 the need for improving upon the reference input projection ap-
proach is motivated. An improved approach that uses static sNRC expression analysis
is presented, along with a proof of correctness. Additional optimizations based on ex-
isting input projection approaches are performed and a more sophisticated algorithm
for applying the projection is provided. In Chapter 5 the reference and improved par-
allel sNRC systems are evaluated and compared. The relative reduction of the input
dataset by the input projection algorithms is investigated. By using a benchmark for
semi-structured data, the runtimes and scalability of both systems are evaluated and
compared on clusters of up to 16 nodes and datasets of up to 141 gigabytes. Finally,
in Chapter 6 this work is concluded by summarizing the obtained insights. The work
and process are reflected on and possible directions for future research are provided.
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Chapter 2

Background and Related Work

This chapter aims to provide the reader with sufficient background information to un-
derstand the content and decisions made in the upcoming chapters of this thesis. A
background introduction to query languages for semi-structured data is presented as
well as the history of such query languages. Additionally, data processing platforms
that allow for parallelized processing of large datasets, state-of-the-art query languages
for semi-structured data, approaches to implicitly parallelize existing query languages
for semi-structured data and approaches to handle datasets larger than the available
amount of memory are discussed.

2.1 Data Processing Platforms

Processing huge quantities of data in parallel is a challenging task. To help developers
with fragmentation of the data over a cluster of computers and with distribution of the
computations, parallel data processing frameworks have become widely adopted [17].

A very popular framework is MapReduce [23] and its open source implementation
Hadoop. MapReduce programs take as input a set of key/value pairs and output a set
of key/value pairs as well. The computation consists of two functions that are written
by the user. The Map function takes an input key/value pair and produces a set of
intermediate key/value pairs. All intermediate key/value pairs are then grouped and
all pairs with the same key are passed to a Reduce function. The Reduce function
takes the set of all values that belong to a key and produces a set of output values.
The Hadoop implementation of MapReduce also comes with the widely used Hadoop
Filesystem (HDFS) [42] which is a distributed filesystem that features fault-tolerance
and high throughput through replication. The HDFS is capable of storing very large
datasets. Examples exist of companies that store petabyte scale datasets on the HDFS
1.

The Dryad [31] platform by Microsoft models each program as a Directed Acyclic
Graph (DAG). In this model a data processing task is modelled as a directed graph
starting at the input sources and ending at a data sink. The vertices are computational
units that can be programmed by the users through a functional interface. The edges
are channels for communicating data through files, TCP pipes and shared-memory.
Dryad schedules handles parallel execution of the DAG and achieves parallelism by

1https://wiki.apache.org/hadoop/PoweredBy
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2.1 Data Processing Platforms Background and Related Work

scheduling the vertices simultaneously on multiple cores or nodes in a cluster. Further
optimizations are performed at runtime, for example to reduce network communication
by introducing aggregation vertices. A set of language extensions called DryadLINQ
[48] allows writing imperative or declarative operations for datasets. These programs
are automatically translated into a distributed execution plan for Dryad.

The simplicity of the MapReduce model is also a shortcoming. The Map and Re-
duce operations alone are not a good fit for naturally and efficiently expressing more
complex data processing tasks [8]. Moreover, MapReduce and Dryad use an acyclic
model that does not support reusing a dataset accross multiple operations [49]. Modern
platforms use more powerful abstractions for parallel data processing [17] to facilitate
more complex operations and reusing datasets accross multiple operations. Two of
such processing platforms are Spark [49] and more recently Flink (previously Strato-
sphere) [5]. Both these platforms support iterative processing through cyclic dataflows.
Spark was designed with the reusability of datasets in mind, filling gaps in areas such
as iterative machine learning algorithms. To achieve this, Spark introduces an abstrac-
tion called Resilient Distributed Datasets (RDDs) to partition a collection of read-only
objects across a set of machines. RDDs are typically kept in memory and can easily be
reconstructed when a partition is lost. Similar to Dryad, Spark allows users to use op-
erations such as the well-known map, reduce, filter and foreach by passing functions.
These operations are performed in parallel for the RDDs.

Flink uses a programming model of Parallelization Contracts (PACTs) [8] which
is a generalization of the MapReduce model that also works on key/value pairs. A
PACT consists of an Input Contract and an Output Contract that define properties on
the input and output data of the PACTs User Function (UF). Each PACT is responsible
for partitioning the input values and the execution of its UF. The default set of PACTs
in Flink contain the Map and Reduce PACT that we know from the MapReduce model
as well as three PACTs that process two sets of input values: the Match, CoGroup
and Cross. Flink features an optimizer that performs a cost-based optimization on a
PACT program. After optimization the PACT program is compiled into a DAG and
provided to Flink’s execution engine Nephele. Similar to Dryad, each vertex contains
PACT code and each edge is a communication channel. The input and output contracts
ensure that the UF in each PACT gets the data in its required format. Finally, the DAG
is spanned to create a parallel data flow where each vertex may have multiple parallel
instances that will be executed. This parallelization is determined automatically by the
PACT compiler.

Both Spark and Flink offer an API for processing streams of data. To achieve
this, Spark uses micro-batches. Flink on the other hand uses true streaming based
on Google’s Dataflow Model [4], resulting in a lower latency of pipelined operations
[50]. In contrast to Spark, Flink offers automatic off-heap memory management [24].
Flink’s features operators that are capable of running with very low memory available,
and can spill data to disk very efficiently. This ensures that Flink will not run out of
memory, regardless of the size of the dataset.

6



Background and Related Work 2.2 Nested Relational Calculus

2.2 Nested Relational Calculus

The Nested Relational Calculus (NRC) [47] is a query language that can be used to
write functional programs that work with and iterate over collection types such as bags,
sets and lists. NRC uses a predefined set of base data types that can be combined to
introduce nesting and to create finite collections.

The NRC originates from Codd’s well-known powerful model for representing re-
lational data in large databases [20]. Codd separated the internal representation in the
database from the model, allowing more flexibility to change the internal representa-
tion when needed. Codd’s work imposes a first normal form requirement on relational
databases. This was not considered as the correct approach for modern databases [47],
so a variety of nested relational database designs followed [40, 43, 21]. These designs
allow use of nested relations without losing the expressive power of Codd’s original
model.

Finally, Wong introduces the Nested Relational Calculus (NRC) as a nested rela-
tional language and the Nested Relational Algebra (NRA) [13, 47, 33]. Wong’s goal
is to formalize the calculi and algebras from the previous nested relational database
designs, and to reduce the complexity that was introduced over time without losing ex-
pressive power. The NRC and NRA have some useful properties: for example Wong
shows that functions that are definable in the algebra have polynomial time complex-
ity, and he presents a set normalization rules [46].

Hidders, Kwasnikowska, Sroka, Tyszkiewicz and Van Den Bussche [30] have
demonstrated that the NRC is very useful as a basis for developing a formal and graphic
workflow notation for dataflows. By combining the workflow formalisms of Petri nets
with the NRC operations for complex values they design a language that allows con-
struction of dataflows that are guaranteed to generate output and that have a convenient
graphical representation.

In different work Grabowski, Hidders and Sroka [28] show that the NRC can also
be used to represent existing optimizations for data processing systems. They state that
using the NRC as a basis for such optimizations is a more general and elegant approach
that combines classical optimizations and system-specific ’ad-hoc’ formalisms.

2.3 Semi-structured Data

Semi-structured data has become widely used on the internet: consider for example
HTML websites and the XML and JSON data formats that are hugely popular for
exchanging data on the modern web. We have also seen a growth in popularity for
database systems that use a semi-structured data model for storage, such as MongoDB
or eXistdb. This increased usage of semi-structured data models also requires new
methods for effectively handling, manipulating and querying (large amounts of) semi-
structured data.

Semi-structured data is typically irregular. This means that the data has no schema
or a partial schema. Data is not always present and the same concepts may be rep-
resented in different ways. The schema and the values itself are intertwined in the

7



2.4 Query Languages for Semi-Structured Data Background and Related Work

dataset. Semi-structured data is most often found during the exploration phase of data
analysis [10].

2.4 Query Languages for Semi-Structured Data

The Nested Relational Calculus, the Object Exchange Model (OEM) for exchanging
semi-structured data and OEM’s query language [37] have served as inspiration for
designing query languages for semi-structured data [45]. The UnQL [16] language
introduces a tree model for semi-structured data. The authors focus mainly on XML
data and shows how the tree model can be queried using structural recursion. StruQL
[26] was built to deal with managing websites of increasing size. The authors use a
graph model based on OEM to handle semi-structured data from heterogenous sources.
Queries are optimized by pushing the queries to the data sources, and by exploiting in-
dices when available. Quilt [18] served as the basis for the standardized XML query
language XQuery [11]. Quilt formalized concepts from previous XML query lan-
guages, abbreviates its path expressions from XPath [9] and takes important lessons
from SQL.

Recently, following the Big Data hype and the introduction of mainstream data
processing platforms such as the open source MapReduce [23] implementation Hadoop,
more languages that allow analysis of large semi-structured datasets have come to see
the light. Yahoo has introduced Pig Latin [36], which seeks to fit in between the declar-
ative SQL language and the procedural low-level MapReduce approach. Pig Latin uses
high-level relational algebra style primitives to allow for traditional database optimiza-
tions and uses a nested data model of atomic values, tuples, bags and maps. Pig Latin
programs are compiled to a set of Hadoop MapReduce jobs. Facebook has introduced
Hive [44] as a data warehousing solution on top of Hadoop. Hive’s query language
HiveQL does not uniformly handle nested data collections, but currently does have
support for querying JSON data. IBM has developed Jaql [10], a scripting language
designed for the analysis of large semistructured datasets. Jaql shares many goals with
Pig, but focuses on reusability and composability of the scripts and allowing the use of
partial data schemas.

Fegaras, Li, Gupta and Philip introduced their language MRQL for querying XML
on top of a MapReduce environment in 2011 [25]. Their work originates from a desire
to have a declarative query language that is amenable to optimization for a MapReduce
environment. They state that it is not possible to apply traditional relational query
optimization techniques to the MapReduce domain. Where Pig and Hive perform
several rule based optimizations, MRQL distinguishes itself by applying a richer set
of cost-based optimizations. The optimizer focuses only optimizing the join operators
however. Currently, MRQL is only an Apache Incubator project supporting various
raw data formats, such as XML, JSON and CSV, and data processing platforms, such
as Hadoop, Spark and Flink.
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Figure 2.1: Phases of query planning in Spark SQL. All rounded rectangles represent
Catalyst trees. From [6].

In 2015 a new module called SparkSQL [6] for the popular general purporse
data processing framework Spark was released to support relational processing for
Spark’s Resilient Distributed Datasets as well as other data sources. This module in-
cludes support for semi-structured data sources such as JSON. SparkSQL operates on
DataFrames, which are equivalent to tables in a traditional relational database. For
optimization SparkSQL uses its newly developed Catalyst optimizer. Catalyst is an
extensible optimizer that considers a SparkSQL program as a tree with rules that can
be applied to manipulate the tree. Developers can add new optimization rules them-
selves. The optimizer is used during multiple phases of query planning for SparkSQL
as shown in figure 2.1. To handle JSON sources, SparkSQL automatically infers the
schema from the data and registers the dataset as a table.

PAXQuery [17] follows a different approach by applying implicit parallelization to
the existing XQuery language for XML. The authors convert the Xquery to an equiva-
lent in the XML Tuple Algebra [34] where the query is unnested. The XML tuple data
is then converted to a custom Flink nested data format and the algebraic expressions are
converted to a sequence of Flink operations on the data. By automatically translating
XML queries into Flink plans, PAXQuery relies on the automatic optimizations that
are performed by Flink. PAXQuery is evaluated using a set of modified queries from
the XMark [41] benchmark and it is shown to scale up well with moderate overhead
as the data volume and number of nodes increases.

2.5 Nested Relational Calculus for Semi-Structured Data

As we have seen in the previous section there have been many developments in the area
of querying semi-structured data in the last two decades. The query languages have
become more sophisticated over time, though they have drifted away from theoretical
calculi such as the NRC. Hidders et al. [29] have developed a dialect of the Nested
Relational Calculus, called the Nested Relational Calculus for Semi-structured Data
(sNRC). The goal of sNRC is to design a language that (1) is well-understood, (2) can
be leverage implicit parallelization of existing data processing platforms and (3) allow
the application of well-known optimization techniques. Moreover, sNRC is a solid
basis for designing a data workflow notation [29, 22]. The work on sNRC connects
the trend of implicit parallelization of query languages for semi-structured data with
the well-understood theoretical basis of the NRC.
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2.5.1 sNRC Data Model

The sNRC uses a simple nested data model called the sNRC Data Model which uses
the following concepts [29]:

1. B is the set of basic value constants such as strings, booleans and integers.

2. Bags are denoted as {{1,2,3,a,b,c}} and an empty bag is denoted as /0. The ad-
ditive bag union is denoted as ] and {{ f (x̄) | ϕ(x̄)}} denotes bag comprehension.

3. 〈x,y〉 is an ordered pair containing values x and y.

4. V is the set of nested values. An element in V is a bag where each element is
either a basic value in B or an ordered pair 〈x,y〉 with x,y ∈ V . Bags may be
heterogeneous, and only finitely nested values are permitted.

2.5.2 sNRC Syntax

The original syntax for the calculus over bags that sNRC uses is defined as follows:

E ::= in | X |C | 〈E,E〉 | E.1 | E.2 | (2.1)
/0 | E ]E | {[E | X ∈ E, . . . ,X ∈ E]} | (2.2)

B(E) | ˙set(E) | E .
= E (2.3)

Here X are variables, C are basic value constants, {[e|∆]} is the flattening bag
comprehension and B are user-defined functions. To ensure the definedness of the
result of an expression E, all input and output values are assumed to be bags. For
operators that do not expect a bag, a rule of thumb is that they are mapped over the
elements of the bag instead, flattening the result if needed.

2.6 Input Projection for Semi-Structured Data

As we have seen in the previous sections, query languages for semi-structured data rely
on the optimizers of the data processing platform on which they are built [6, 17, 25].
Input Projection techniques were developed to help single machines cope with nested
datasets that are too large for memory. Input Projection is an optimization that given a
dataset and a query produces a projected dataset of at most the same size and on which
evaluation of the query generated the same result.

One goal of this thesis is to evaluate whether input projection is a useful optimiza-
tion for modern query languages for semi-structured data, that make use of implicit
parallelization. We expect that reducing the size of the input can provide speedups for
such languages by improving throughput for partitioning steps, by reducing the time
required for serialization and by reducing the overall memory footprint of the dataset
resulting in less time spent on garbage collection. In this section we will provide an
overview of the most popular input projection techniques.

Jagadish, Lakshmanan, Srivastava and Thompson [32] present a Tree Algebra for
XML (TAX) that is complete for the relational algebra and uses a labeled tree as a data
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model. An important part of their work is the concept of a Pattern Tree. A pattern tree
is a node-labeled and edge-labeled tree, where each node has a distinct label and each
edge describes a parent-child (pc) or ancestor-descendant (ad) relationship. A pattern
tree is accompanied by a set of boolean predicates that can be applied to the nodes. See
Figure 2.2 for an example of an XML dataset modelled as a tree and two pattern trees.
Given a collection of data trees and a pattern tree it is now possible to find embeddings
of the pattern tree in the data trees such that the nodes in the embedding match the
structure of the tree, and the nodes in the embedding verify the set boolean predicates.
Though the authors state to be working on an implementation of TAX, called Timber,
no experiments were performed unfortunately.

Figure 2.2: (a) A one-tree XML database and (b,c) Two pattern trees. From [32]

Many XML querying systems followed that model, representing XML selection
patterns as a tree with parent-child and ancestor-descendant relationships. The tree is
generally matched by first matching the structural relationships against the database,
and then joining these matches together. Bruno, Koudas and Srivastava [15] general-
ize two approaches for the two steps into an algorithm called TwigStack. The work
on TwigStack is further generalized in the Twig2Stack algorithm, which uses the Gen-
eralized Tree Pattern model that is more suitable for modelling XPath and XQuery
statements [19].

Marian and Siméon [35] present an XML input projection algorithm to improve the
capability of XQuery engines to work on datasets that are larger than memory. The full
data model needed to be built in memory to allow using the full complexity of XQuery.
Their approach uses a static path analysis algorithm that analyses a query before it is
executed by applying a set of inference rules in a bottom-up fashion. Marian and
Siméon use a different model than the pattern tree. Instead, their static path analysis
algorithm results in a set of projection paths, each describing one part of the input
nested dataset that are required for computing a complete and correct answer to the
query. A loading algorithm is then used to match each of the paths to obtain the
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projected dataset of reduced size. Their approach produces paths that include the full
path from the root of the document. Moreover, the presented loading algorithm is
inefficient when the number of projection paths increases. Bressen et al. [14] build on
the work of Marian and Siméon to further reduce the size of a projected dataset by
pruning unnecessary siblings and descendants. To achieve this, they require the use of
an index structure to effectively perform the transformations.
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Chapter 3

Reference Parallel sNRC System

One of the goals of this thesis is to implicitly parallelize the Nested Relational Calculus
for Semi-structured Data (sNRC). In this chapter a first, or reference, approach for an
implicitly parallelized sNRC system is described and the decisions that were made
while designing the reference system are motivated.

3.1 Apache Flink as Implictly Parallel Data Processing
Platform

In the previous chapter several popular implicitly parallel data processing platforms
were outlined. For this thesis Apache Flink is chosen as the data processing platform
that will be used to implicitly parallelize sNRC. In this section this decision will be
motivated.

In the background information chapter it was discussed how XQuery is inspired
by the Nested Relational Calculus. It has already been shown that Flink can be used to
efficiently implicitly parallelize XQuery [17]. Because XQuery and NRC show many
similarities, we are confident that efficient implicit parallelization of sNRC using Flink
as a data processing platform is also possible.

When we compare the alternatives we again find that Flink is a suitable data pro-
cessing platform to use. When we consider MapReduce we find a very mature platform
in Hadoop and a very general programming model that has been shown to scale very
well. However, this model is not a natural fit to more complex operations such as joins
[8] which requires the programmer to work around the programming model, poten-
tially resulting in bad performance [38]. Moreover, the Flink model contains the map
and reduce operators as well as many other operators. Dryad was discontinued by Mi-
crosoft in favor of a Hadoop implementation for its cloud computing platform Azure.

There is no up-to-date scientific comparison of Flink and Spark, but the two are
frequently compared on different channels such as specific conferences [7], the well-
known Question and Answer site for programmers StackOverflow [3, 1, 2], interviews
with Spark or Flink core team members [50] as well as many blogs of individual peo-
ple. Because the Spark and Flink core members with in-depth knowledge of the plat-
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forms actively participate in these comparisons we have chosen to utilize this informa-
tion to come to a decision.

The main differences between Flink and Spark are that Flink is a streaming en-
gine that can emulate batch processing, while Spark is a batch engine that can emu-
late streaming using micro-batches. As also discussed in the background section this
means that Flink can pipeline the data between different operators without having to
wait for intermediate results. This can result in lower latencies. Additionally, Flink has
efficient mechanisms for spilling data to persistent disks when datasets get too large
for memory and easy-to-use automatic configuration and optimization mechanisms.
Spark is a more mature platform that supports technologies that Flink does not support
at this moment. These technologies are not relevant for the work in this thesis however,
and therefore we choose Flink as a data processing platform based on the advantages
listed above.

For this thesis Apache Flink version 0.10.1 is used. Flink offers both a Java and a
Scala API. Both the Scala and the Flink Scala API are used for the query implementa-
tions, and Java was used for developing the data model and data loading algorithms.

3.2 sNRC Data Model

The sNRC Data Model for which the input projection is defined is described in [29]
and briefly described in this Thesis in Section 2.5.1. To make further discussion easier
we provide several definitions of properties of sNRC data.

Definition 3.1 (Direct sub-element relationship). x is a direct sub-element of y if:

• x is a basic value in B or an ordered pair 〈a,b〉, y is a bag, and x ∈ y

• x is a bag, y is a tuple and x .
= y.1 or x .

= y.2

Definition 3.2 (Sub-element relationship). x is a sub-element of y if:

• x is a direct sub-element of y

• x is a basic value in B or an ordered pair 〈a,b〉, y2 is a bag, x ∈ y2, and y2 is a
sub-element of y

• x is a bag, x .
= y2.1 or x .

= y2.2, and y2 is a sub-element of y

Using the concepts of the sNRC data model, a definition of an sNRC Dataset can
also be provided:

Definition 3.3 (sNRC Dataset). An sNRC Dataset is a 2-tuple (N,V ) where:

• N is a collection of elements from the set of nested values V contained by the
dataset. Each element in N except for those in V have a super-element in N.

• V is a bag of top-level sNRC values in N. These are the values that do not have
a super-element.
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3.2.1 sNRC Data Model Implementation

The description of the sNRC data model was provided in the Background chapter in
Section 2.5.1 and useful properties are defined earlier in this section. In this subsection
it will be described how the sNRC data model was implemented for the reference
implicit parallel sNRC system. Figure D.1 in Appendix D shows an UML diagram of
how the data model is structured.

The implementation of the Data model strictly follows the sNRC data model. We
distinguish between a Bag and Data. A Bag contains sNRC Data elements, which are
either a Basic Value from B or an Ordered Pair 〈x,y〉 with x,y ∈ V .

The original sNRC data model is untyped. In the implementation all data is ini-
tially untyped by instantiating the values as a String. Though a type system is hidden
from the user, there is a type system used in the background in order to allow com-
parison of values. When comparing two values, the system attempts to lazily convert
the value to a numeric value to allow comparison of numbers and booleans. Tuples
can only be compared to tuples, and only Singleton Bags may be compared to other
Singleton Bags or Basic Values by applying flattening. Tuples are excluded here to
prevent expensive comparisons due to unknown levels of nesting. See Table 3.1 for an
overview of currently supported comparisons.

Table 3.1: Comparison of sNRC - Flink types

String Int Double Boolean Tuple Bag
String Yes Yes Yes Yes No Singleton
Int Yes Yes Yes Yes No Singleton
Double Yes Yes Yes Yes No Singleton
Boolean Yes Yes Yes Yes No Singleton
Tuple No No No No Yes No
Bag Singleton Singleton Singleton Singleton No Singleton

All Data objects allow the same set of basic operations on the data such as compar-
isons and hashcode computation. Moreover, all data objects allow projection opera-
tions: selecting the first or second field or selecting by key. These operators only yield
a result for Ordered Pairs however. These projection operations will be discussed in
more detail later in this chapter. For Bags the projection operations are mapped over
all elements contained by the bag, as described in the original sNRC document [29].

3.3 Adapting to a Streaming Data Processing Engine

In the beginning of this chapter it was explained that Flink is a streaming dataflow
engine following Google’s Data Flow model [4]. Even though for this thesis the Flink
batch API is used, Flink treats batch applications as special cases of stream processing
applications. This means that operators are efficiently pipelined wherever possible,
reducing latency and increasing throughput by forwarding data from one operator to
another where possible.
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Like with other parallelized systems for querying semi-structured data [17, 36,
10] the entire dataset can not be loaded into memory. This also complies with one
of the goals of this thesis to process datasets that are much larger than the available
main memory. Instead it is necessary to fragmentize the dataset into a bag of smaller
elements, each of which fit into main memory. These fragments can then be processed
one at a time by the Flink operators, and streamed to the next operator when processing
is completed.

In this Thesis data generated by the XMark benchmarking tool [41] is used. XMark
generates semi-structured datasets in an XML format. The XMark benchmark will be
discussed in more detail in Chapter 5. In Figure 3.1 you can find a tree model that
describes the nested structure of an XMark generated dataset.

Figure 3.1: The nested data structure of the XMark benchmark dataset. From [41].

The Dataset has a single top-level nested value, with a key site. The datasets that
are used for this thesis are sufficiently large that the site nested value will not fit in
main memory of a computing node. If we consider the XMark Query 1 example and
examine the query in 3.2 more closely, we see that to answer this query only the sub-
elements with key person are required. Each of these elements with key person is only
a fraction of the site of the total dataset, and is a small enough fragment be processed
by Flink’s streaming engine. An example of the semi-structured data of such a person
object in XML format is shown in Listing 3.4. In the next sections it will be discussed
how input projection is used to fragmentize the dataset for the XMark queries by this
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reference system.

3.4 Extended sNRC Syntax

Before discussing how the actual input projection is implemented for the reference
system, an extended sNRC syntax is introduced in this section. The original sNRC
Syntax is described in [29] and briefly described in this thesis in Section 2.5. For
convenience and readability the extended sNRC syntax is used in this thesis from this
point onwards. The extended sNRC syntax is defined as follows:

Definition 3.4 (Extended sNRC Syntax).

E ::= in | X |C | 〈E,E〉 | E.1 | E.2 |
/0 | E ]E | {[E | X ∈ E, . . . ,X ∈ E]} |
B(E) | ˙set(E) | E .

= E | ˙size(E) |
E.[key] | E..[key]

The expressions that were appended to the original syntax can be (re-)written to
the original syntax as follows:

1. ˙size(E) computes the number of elements contained by a bag.

2. E.[key] is an alias for {[a | a ∈ E,a.1 .
= {{key}}]}. This expression selects tuples

that are direct sub-elements of an sNRC value based on their key.

3. E..[key] is similar to E.[key], but instead works on all sub-elements instead of
only the direct sub-elements. This is similar to the ’descendant’ relationship that
is well known from other languages such as the XQuery language [11].
For example we could write E..[key] where E is a bag with arbitrary elements as
follows:

X = E.[key]
˙while(X .2.[key] 6= /0)

X = X ]X .2.[key]

Note that a while loop is not present in the sNRC syntax, so it is assumed that
sNRC is implemented in a language that supports while loops. In this case Scala
1 is used. Flink also supports iterative distributed processing of datasets.

3.5 Input Projection

In order to fragmentize the input dataset we make use of a technique called Input
Projection. Input projection is a well known technique that has already been applied
to the domain of querying semi-structured data, in particular XML data. In Section 2.6
we have discussed these existing approaches. The definition of input projection that
will be used in this thesis is the following:

1http://www.scala-lang.org/
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Definition 3.5 (Input Projection). Input Projection is function that given an input
dataset and a query produces a projected dataset. A projected dataset is a dataset of
at most the same size as the original dataset for which evaluation of the query yields
the same result as for the original dataset.

For the reference system the first concern is to fragmentize the dataset to allow
parallelization of sNRC on Flink. Following the used definition for input projection,
the fragmentized dataset should contain at least the data that is required to compute
a correct result for an sNRC query. In Chapter 4 an improved input projection ap-
proach is presented that attempts to select at most those elements that are necessary
to correctly answer an sNRC query. Before providing the reference input projection
algorithm, some additional definitions and notations are introduced in the next section.

3.5.1 Projection Expressions

By using a fragment of the extended sNRC syntax we can define projection expres-
sions. A set of these projection expressions can be used to describe a subset of the
original dataset.

The following fragment of the Extended sNRC syntax is used for describing pro-
jection expressions:

Definition 3.6 (Projection Expression Syntax). E ::= E.1 | E.2 | E.[key] | E..[key]

And a Projection Expression is then defined as follows:

Definition 3.7 (Projection Expression). A projection expression is an sNRC expression
using a fragment of the extended sNRC syntax that is described in Definition 3.6 that
describes a subset of the input dataset.

3.5.2 Projected sNRC Dataset

By taking a finite set of projection expressions and an input sNRC dataset, a projected
sNRC dataset can be determined. Two concepts need to be defined for projection. First
the single projection operation is defined:

Definition 3.8 (Projection Operation). The operation Project(P,D) returns an sNRC
dataset resulting from evaluating projection expression P on sNRC dataset D.

And next we can generally define projection for an sNRC dataset:

Definition 3.9 (Projection). Given an sNRC Dataset D = (N,V ), and a set of projec-
tion expressions (P1,P2, . . . ,Pn). A projected sNRC Dataset D′ = (N′,V ′) is defined as
follows:

1. N′ ⊂ N.

2. n ∈ N′ if:

a) ∃i such that n ∈ Project(Pi, D).

b) ∃n2, i such that n2 ∈ Project(Pi, D), n is a sub-element of n2.

3. V ′ = a bag containing all elements from N′ that do not have any super-elements
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3.5.3 Correctness Definition

One of the main goals of Projection Expressions as described in subsection 3.5.1 is
to ensure that the evaluation of a query on a projected sNRC dataset yields the same
results as on the original dataset. For an input projection algorithm to be correct, the
following theorem must hold:

Theorem 1 (Correctness). Let D be a sNRC dataset and E be an sNRC query. Let PE
be the set of projection expressions resulting from the input projection algorithm. Take
D′ to be the result of the projection of PE on D. It then holds that the results of the
evaluation of E on D and results of the evaluation of E on D′ are identical.

3.6 Reference Loading Algorithm

In this section it is described how projection is implemented for the reference parallel
sNRC system. The goal of this algorithm is to apply input projection to the input
dataset to fragmentize the input.

For the reference system the projection expressions are manually determined from
the original XMark queries. The chosen projection expressions are based on the ele-
ments over which is iterated by the original queries. For example for XMark query 1
as listed in Listing 3.2 a projection expression in.[site].2.[people].2.[person] is cho-
sen. Because all ‘person’ elements and their sub-elements are retrieved, this obviously
includes all data required to answer the query. The projection expressions that are
chosen for the reference input projection for each of the queries are listed in Appendix
A.

We will next describe how we apply the projection for the reference system based
on the chosen set of projection expressions. Taking inspiration from [32, 15] each
projection expression is modeled as a node-labeled and edge-labeled projection tree.
An edge may be labeled either ‘pc’ (parent-child) for a direct sub-element relationship
or ‘ad’ (ancestor-descendant) for all sub-elements following the extended sNRC syntax
from Section 3.4. The node label is the selection criterion, to select the input, the
first or second value, or to select based on a key value. In the case of the reference
system each node has at most one (direct) sub-element, so the projection tree could
be considered as a linked list. Figure 3.2 shows the projection expression for XMark
Query 1 as a pattern tree.

Figure 3.2: Projection Expression for XMark Query 1 modeled by an Input Graph

The reference algorithm also maintains a pattern tree that represents the location of
the parser with respect to the input. We will refer to this pattern tree as the input path.
Upon encountering a new element, it is appended to the input path. When encountering
the end of the element, it is removed from the input path. The input path and pattern
trees may be very efficiently compared using the Algorithm 3.6.2. False matches can
be found in O(d) while matches are confirmed in Θ(d), with d the depth of the pattern
tree. Most matches are completed in O(1), when the keys do not match.
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The reference system uses an event-based parser for parsing the XMark datasets.
The event based parser generates an event every time the start or ending of an element
occurs. The pseudocode presented in Algorithm 3.6.1 represents the code that han-
dles these events, maintains the input path and checks whether there is a match with
the projection expressions using the matchInput function defined in Algorithm 3.6.2.
Whenever there is a match, the complete current element is parsed to the sNRC data
model using the approach of Subsection 3.7.1. The sNRC element is then forwarded
as input to the Flink program that computes the answer to the query.

Algorithm 3.6.1: FINDNEXT()

global Reader
local InputPath,Pro jExp
while Reader has next

do



next← next Reader event

switch next



case START _ELEM


CurrentTag← current element tag
InputPath← InputPath+ InputNode(CurrentTag)
if matchInput(InputPath,Pro jExp)

then return ( true )
case END_ELEM remove last element from InputPath
case START _DOC InputPath← EmptyPath
case END_DOC return ( false )

return ( false )

Algorithm 3.6.2: MATCHINPUT(InputPath,Pro jExp)

if Pro jExp.value 6= InputPath.value
then return ( false )

if Pro jExp has parent

then


if InputPath has parent

then return (matchInput(InputPath.parent,Pro jExp.parent))
else return ( false )

if Pro jExp has ascendant

then


if InputPath has ascendant

then return (matchInput(InputPath.ascendant,Pro jExp.ascendant))
else return ( false )

return ( false )

This algorithm follows the definition of Input Projection from Definition 3.5. The
fact that the algorithm verifies the correctness theorem (Theorem 1) follows from the
selection procedure for the projection expressions in combination with the fact that
for each input element all sub-elements are loaded as well. In the evaluation chapter,
Chapter 5, it is shown through experimentation that the algorithm indeed results in a
successful fragmentation, allowing processing of datasets larger than main memory
using Flink. Additionally, it is shown that the algorithm produces projected datasets
that are smaller than the input dataset.

20



Reference Parallel sNRC System 3.7 Reference Parallel sNRC - Flink Architecture

3.7 Reference Parallel sNRC - Flink Architecture

In this section the architecture of the reference parallel sNRC system is described. This
system is built to execute sNRC equivalents of the queries from the XMark benchmark.
In Appendix D you can find the UML that describes the structure of the most important
classes of the reference parallel sNRC system.

The system is centered around a benchmark suite that consists of benchmark ob-
jects. Each of these objects represents a single sNRC XMark query implemented on
top of Flink. Tools to measure metrics such as the runtime wrap each benchmark
object.

The queries themselves are converted from the original XQuery definitions to Scala
sNRC - Flink code that uses the sNRC data model and the Flink Batch Processing API.
This translation from sNRC expressions to Flink operators is very natural. See for ex-
ample the code in for XMark query 1 in XQuery, sNRC and sNRC-Flink respectively
in Listings 3.1, 3.2 and 3.3. The bag comprehension naturally translates to a flat map,
and the conditional translates to a filter. All sNRC versions of the XMark queries
can be found in Appendix A. The sNRC - Flink implementations can be found in the
source code repository 2).

Listing 3.1: XMark Query 1 in XQuery
let $auction := doc("auction.xml") return
for $b in $auction/site/people/person[@id = "person0"]

return $b/name/text()

Listing 3.2: XMark Query 1 in sNRC
{[b.2.name.2 | b ∈ in.site.2.people.2.person,b.2.@id.2 .

= ”person0”]}

Listing 3.3: XMark Query 1 in sNRC-Flink
val input : DataSet[SNRCData] =

env.readFile(new XML2SNRCInputFormat("[site].2.[people].2.[person]"), inPath)
val person = input filter { _.select(".2.@id") equals "person0" }
val result = person flatMap { _.select(".2.name") }

The XML2SNRCInputFormat in Listing 3.3 handles parsing of the XML and frag-
mentizes the input by applying input projection based on the projection expressions of
the query. The input projection results in a bag of elements that is used for answering
the query. In the case of XMark query 1, this is a bag of ordered pairs that represent the
‘person’ elements. Note how the Flink Dataset fulfils the role of an sNRC bag. Both
are an unordered collection of elements that may contain duplicates and that allow
parallel processing of the contained elements.

3.7.1 XML to sNRC Data Model

The sNRC data model is designed to allow simple conversion of other semi-structured
data formats to the sNRC data model. For this thesis we will make use of a dataset

2https://github.com/PHameete/flink-snrc
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in the XML [12] format. In this section it is described how XML is converted to the
sNRC data format.

In Listing 3.4 a fragment from an XML dataset can be found that is used in this
thesis. The XML data model is centered around tags. The opening tag and closing tag
mark the beginning and end of an XML element. For example in Listing 3.4 ‘<name>’
and ‘</name>’ mark the beginning and ending of the ‘name’ element. All characters
between the opening and closing tag are the content of the element. This content can
consist of sequences of characters (this is the case for the ‘name’ element) as well as
other elements (this is the case of the ‘address’ element). Multiple elements with the
same tag are allowed to coexist. An element may also have attributes defined in the
opening tag, such as the attribute ‘id’ in the opening tag for the person element. Unlike
elements, attributes have only a single value and an attribute can appear at most once
for each element.

Listing 3.4: Person element from an XMark dataset in XML format
<person id="person0">

<name>Huei Demke</name>
<emailaddress>mailto:Demke@uu.se</emailaddress>
<address>

<street>95 Grinter St</street>
<city>Macon</city>
<country>United States</country>
<zipcode>32</zipcode>

</address>
<creditcard>8182 1228 4493 3873</creditcard>
<profile income="55386.86">

<education>High School</education>
<gender>male</gender>
<business>No</business>
<age>37</age>

</profile>
</person>

As was stated earlier, parsing XML to the sNRC data model is straightforward.
Each element in the XML dataset is converted to an sNRC ordered pair. The first
field of the ordered pair is a singleton bag containing the XML element’s tag value.
The second field of the ordered pair is a bag that contains the content and attributes
of the element. Character sequences are parsed as basic values. Attributes are parsed
as ordered pairs where the first field is a singleton bag containing the attribute’s name
prepended with a ‘@’ character to distinguish between attributes and content elements.
The second field of the attribute is also a singleton bag containing the value of the
attribute. All sub-elements of the parsed the element can be parsed as ordered pairs
recursively following this same approach.

When the XML data in Listing 3.4 is parsed using the above approach we end up
with the sNRC dataset in Listing 3.5.

Listing 3.5: Person element from an XMark dataset in sNRC format
{<{person}, {

<{id}, {person0}>,
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<{name}, {Huei Demke}>,
<{emailaddress}, {mailto:Demke@uu.se}>,
<{address}, {

<{street}, {95 Grinter St}>,
<{city}, {Macon}>,
<{country}, {United States}>,
<{zipcode}, {32}>

}>,
<{creditcard}, {8182 1228 4493 3873}>,
<{profile}, {

<{income}, {55386.86}>,
<{education}, {High School}>,
<{gender}, {male}>,
<{business}, {No}>,
<{age}>, {37}>

}>
}>}
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Chapter 4

Improved Parallel sNRC

In this chapter an improved input projection algorithm which computes projection ex-
pressions based on static analysis of an sNRC query is presented. It is proven by ap-
plying induction that the resulting projected dataset contains all elements required to
correctly answer the query. Finally it is shown how a set of projection expressions can
be combined into an annotated projection tree, and an improved loading algorithm that
applies the projection to the input dataset by using such a projection tree is presented.

4.1 Motivation for Improving the Reference System

In the previous section the design of the reference parallel sNRC that is built top of the
implicitly parallel data processing platform Apache Flink is discussed. By using an in-
put projection algorithm only the relevant elements are selected from the input dataset.
The reference parallel sNRC system from Chapter 3 selects all the sub-elements of
these elements as well. This approach results in a fragmentation that allows using the
streaming engine of Flink for the evaluation of sNRC queries. There is still room for
improvement however: as we will see in chapter 5 where the system is evaluated, the
reference system does not perform and scale well for more complex queries that for
example join two parts of the input dataset.

The goal of the improved input projection algorithm is to improve upon the refer-
ence system in terms of the size of the input data. We expect that reducing the size
of the input data will result in better performance and scalability for more complex
queries. Such complex queries have one or more partitioning steps, where the data
needs to be serialized and transmitted between the different nodes in the Flink clus-
ter. Appendix B shows all Flink execution plans for the used queries. For this work
we expect three effects of reducing the size of the input nested data. Each effect is
expected to reduce the runtime, and improve scalability for ‘complex’ sNRC queries
that contain one or more partitioning steps. The three effects that we expect are the
following:

1. When Flink operators cannot be directly chained (for example at partitioning
steps) the data needs to be serialized. Smaller nested values allow for quicker
serialization.
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2. When partitioning takes place, the serialized nested values are transmitted be-
tween the nodes in the Flink cluster. Smaller nested values are expected to result
in more throughput when sending values from one node to another.

3. Many nested values are processed by Flink’s operators. These values are read
as input, processed and then forwarded to the next operator. Values that are no
longer required by the operator are cleaned up by the garbage collector. Smaller
nested values have a smaller memory footprint, which we expect to result in less
time spent on garbage collection.

The following example describes how the reference system input projection can
be improved upon. Queries described by an sNRC expression are evaluated against a
dataset that can contain information about many different subjects as can be seen in
Figure 3.1. Many of these subjects may not be relevant for the evaluation of a particular
sNRC query. For XMark Query 1, the reference input projection algorithm selects
the person elements including all sub-elements as shown in Listing 3.4. However, to
answer XMark Query 1, only the id and name of the person are required. All other
information is obsolete. Listing 4.1 shows a person element, where only the required
elements are highlighted. Obviously, by selecting only the required elements the input
dataset can be reduced. The degree of the reduction depends on the query. For example
for XMark Query 10 (see Appendix A), the reduction is expected to be much less than
for XMark Query 1, because most sub-elements of the person element are required to
correctly answer that query.

Listing 4.1: Person element from an XMark dataset. Only the highlighted parts are
required to answer XMark query 1.

<person id="person0">

<name>Huei Demke</name>
<emailaddress>mailto:Demke@uu.se</emailaddress>
<address>

<street>95 Grinter St</street>
<city>Macon</city>
<country>United States</country>
<zipcode>32</zipcode>

</address>
<creditcard>8182 1228 4493 3873</creditcard>
<profile income="55386.86">

<education>High School</education>
<gender>male</gender>
<business>No</business>
<age>37</age>

</profile>
</person>

The remainder of this chapter describes the improved input projection algorithm.
The improved algorithm selects only the required sub-elements by static analysis of an
sNRC query to generate a set of more extensive (or more specific) projection expres-
sions than the set of projection expressions that the reference system uses to perform
input projection.
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4.2 Static sNRC Query Analysis

In this section the algorithm that is designed to analyze an sNRC query to compute a
set of projection expressions is presented. The approach that is followed is similar to
the approach that [35] used for analysis of XQuery expressions.

Though the sNRC syntax is more compact than the syntax of XQuery, analysis of
sNRC expressions provides similar challenges to the analysis of XQuery expressions,
each of which will be discussed in more detail.

4.2.1 sNRC Syntax and Normalization

A single query can be described by many different sNRC expressions. A simple ex-
ample can be provided based on sNRC XMark query 6:

˙size({[b..[item] | b ∈ in.[site].2.[regions]]})

Given that the same schema is used, this sNRC query can be rewritten to the fol-
lowing sNRC query:

˙size({[b | b ∈ in.[site].2.[regions]..[item]]})

Both sNRC queries will yield the same result when evaluated on the same dataset.
By rewriting each sNRC query to a normal form this challenge can be overcome.
Where [35] could make use of the normalization mechanisms that are present in the
XQuery core, sNRC does not yet have a set of formally defined normalization mech-
anisms. Normalization is possible for NRC [29, 46], and therefore likely possible for
sNRC. However, defining such a set of normalization rules and implementing a nor-
malization engine falls outside the scope of this thesis. Instead, the sNRC queries are
analyzed and executed as they are defined in Appendix A. It will be proved that each
set of projection expressions derived by the algorithm results in projected dataset that
allows correct evaluation of the query.

4.2.2 Variables

The sNRC syntax allows implicit declaration of variables, and binding of variables
during bag comprehension operations. An sNRC expression can be bound to a vari-
able in the environment by the static query analysis algorithm. The environment will
then bind the set of projection expressions used by the bound sNRC expression to the
variable name. Other sNRC expressions that access the variable can retrieve the set of
bound projection expressions from the environment to extend these projection expres-
sions if needed. In other words, the environment allows mappings a variable name to
a projection blueprint.

For simplicity and following the original sNRC definition in [29] it is assumed that
each variable has been renamed so that each iterator has a distinct variable name in the
environment.
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The following notation will be used for variables in the static expression analysis
algorithm:

Env `Var⇒ E1

To map a variable with name Var to an expression E1 in the environment. The envi-
ronment will bind the set of projection expressions used by E1 to the variable named
Var.

Env ` Get(Var)

To retrieve the set of projection expressions bound to the variable with name Var in
the environment.

4.2.3 sNRC Expression Composability and Context

From the used sNRC syntax (see Section 3.4) it is clear that sNRC expressions can
be composed in many different ways given that the same schema is used. Similar to
[35] this can be solved by deriving the projection expressions from the sNRC query
following a bottom-up approach.

Each distinct sNRC expression from the extended syntax works in the context of
0 or more other sNRC expressions. For example, an expression E1

.
= E2 uses the ex-

pressions E1 and E2. We will refer to this by saying that E1 and E2 are the context
expressions of E1

.
= E2. The input expression in is a data source, and therefore has

no context expressions. For the sNRC expression E.2 that selects that second field(s)
works in the context, the expression E is its context expression. It is clear from these
examples that each type of expression needs to be analysed individually to see how
they are composed, and which expressions form their context. These context expres-
sions co-determine the result of the expression.

The role that each context expression plays in the evaluation of a particular expres-
sion requires careful analysis as well. By showing a step-by-step example the approach
of the improved algorithm is demonstrated, as well as the challenge imposed by sNRC
expression composability. Consider for this example the following sNRC query:

{[{[x | y ∈ in.[auctions].2.[auction],x.2.[id] = y.2.[id]]} | x ∈ in.[people].2.[person]]}.2.[name]

This query reads the input and then joins two parts of the dataset based on an id and
then selects the name sub-element from each result of the join. The input expression
has no context expression and requires an empty projection expression corresponding
to the top-level nested value or ‘root’ of the sNRC dataset.

Following a bottom-up approach, the outter flattening bag comprehension can split
into two parts {[Target1 |Cond1]}where Target1 and Cond1 are both sNRC expressions
that form the context of the flattening bag comprehension. Both Target and Cond can
be composed of (multiple) other sNRC expressions.

The required projection expressions are first computed for the Cond1 context, and
next for the Target1 context, because the Cond1 expression determines when the flat-
tening bag comprehension generates output, and it binds the variables used for iterating
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over the input.

The Cond1 expression itself is composed of a single expression. This expres-
sion yields an obvious result, binding a projection expression in.[people].2.[person]
to variable x in the environment. The Target1 expression is an inner flattening bag
comprehension, which can again be split into two parts Target2 (x) and Cond2 (y ∈
in.[auctions].2.[auction],x.2.[id] = y.2.[id]). Again the first expression of Cond2 is ob-
vious, binding a projection expression in.[auctions].2.[auction] to the variable y in the
environment. The second expression of Cond2 is a comparison, which works in the
context of two other expressions: x.2.[id] and y.2.[id].

Both these expressions extend the expression paths of their context expressions
(variables x and y) to generate the projection expressions in.[people].2.[person].2.[id]
and in.[auctions].2.[auction].2.[id]. The target expression of the inner flattening bag
comprehension Target2 simply reuses the projection expressions bound to variable x.

The final set of projection expressions used by the inner flattening bag compre-
hension (or Target1) merges the sets of projection expressions used by Target2 and
Cond2:

in.[people].2.[person]
in.[people].2.[person].2.[id]
in.[auctions].2.[auction].2.[id]

This allows us to determine the final set of projection expressions used by the outer
flattening bag comprehension, by combining the sets of projection expressions used by
Target1 and Cond1:

in.[people].2.[person]
in.[people].2.[person].2.[id]
in.[auctions].2.[auction].2.[id]

The final step of the query is to perform a selection (.2.[name]) on the results of the
outer flattening bag comprehension. Following the bottom-up approach this means that
the projection expressions of the context expression are extended to get the following
set of projection expressions:

in.[people].2.[person].2.[name]
in.[people].2.[person].2.[id].2.[name]
in.[auctions].2.[auction].2.[id].2.[name]

This shows that an approach using a single set of projection expressions is not suffi-
cient. The final selection (.2.[name]) was applied to all projection expressions that were
used in its context expression (the outer flattening bag comprehension). However, not
all of the projection expressions that are used by the flattening bag comprehension are
returned as output. In this case, only the projection expression in.[people].2.[person]
describes the actual output of the flattening bag comprehension. The other paths,
in.[people].2.[person].2.[id] and in.[auctions].2.[auction].2.[id] are only used to de-
termine which values are returned as output.

The example above illustrates the need to distinguish between projection expres-
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sions that describe which input elements can become part of the output, and projection
expressions that describe input elements that are used to determine which elements
become part of the output. To overcome this, the definition of a projection expression
pair is introduced:

Definition 4.1 (Projection Expression Pair). A projection expression pair (PE,UPE)
consists of two sets of projection expressions that describe the output of an sNRC
expression. PE is a set of output projection expressions describing the input elements
that can become part of the output of the expression. UPE is a set of used projection
expressions describing the input elements that are used to determine the output of the
expression.

This new definition can now be applied to the example above. Consider the fol-
lowing part of the sNRC query of the example above:

{[{[x | y ∈ in.[auctions].2.[auction],x.2.[id] = y.2.[id]]} | x ∈ in.[people].2.[person]]}

The following projection expression pair describes the output of this sNRC query:

({in.[people].2.[person]},{in.[people].2.[person].2.[id].2.[name],in.[auctions].2.[auction].2.[id].2.[name]})

Observe that the first set in the projection expression pair is the set of output pro-
jection expressions of the query. These projection expressions describe the part of
the input that is output by the sNRC expression, in this case the ’person’ elements.
The second set of the projection expressions is the set of used projection expressions.
These expressions are indeed only determined which ’person’ elements are output by
the sNRC query, but are not part of the output itself.

The main notation that will be used to describe the static sNRC query analysis is
the following:

E⇒V

Where E is an sNRC expression, and V is a projection blueprint defined as follows:

Definition 4.2 (Projection Blueprint). A projection blueprint V is a set of sNRC nested
values that describes the structure of the output of expression E. Differently from
normal sNRC nested values, in V bags are sets and each basic value is a projection
expression ordered pair.

Several operations on projection blueprints are used in the static query analysis.
Union for projection blueprints is the same as union for sNRC bags. V .PE produces
the set that contains all output projection expressions contained by the nested structure
of V . V .UPE produces the set that contains all used projection expressions contained
by the nested structure of V .

4.3 Static sNRC Query Analysis Algorithm

In this section an improved algorithm used for projection is defined. This algorithm
uses a static analysis of an sNRC query to compute a set of projection expressions. As
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was found in the previous sections, each expression from the extended sNRC syntax
needs to be analyzed separately to define how the projection expressions can be derived
using a bottom-up approach. We therefore provide for each expression in the sNRC
syntax an inference rule [39] that can be applied.

4.3.1 Basic Value Constants

Basic value constants from B , the empty tuple 〈〉 and the empty bag /0 do not output or
use any input elements.

B ⇒ /0

〈〉 ⇒ /0

/0⇒ /0

There are no statements above the inference rule to indicate that there are no pre-
conditions for these statements.

4.3.2 Sequences

A sequence of expressions occurs for example when multiple expressions are com-
posed in the condition of a flattening bag comprehension, for example:

{[x | x ∈ site.2.auctions,x 6= 〈〉]}

Here x insite.2.auctions,x 6= 〈〉 are two separate expressions that are sequenced.

An empty sequence of expressions does not output or use or output any values
from the input dataset.

()⇒ /0

When the sequenced expressions have a projection blueprint these projection blueprints
are merged.

E1⇒V1
E2⇒V2

E1]E2⇒V1∪V2

4.3.3 Unions

Taking the union of two expressions is similar to sequencing two expressions, so again
the projection blueprints of the two expressions are merged.

E1⇒V1
E2⇒V2

E1,E2⇒V1∪V2
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4.3.4 Set

The set expression removes duplicate from the results of an sNRC expression. Because
in a projection blueprint all bags are sets this means that the set expression uses the
unchanged projection blueprint of its context expression.

E1⇒V1

˙set(E1)⇒V1

4.3.5 Reading input

Reading input provides access to the input dataset for the remainder of an sNRC query
and its static analysis. This is represented by the projection expression in. No input
elements are required to output the input elements.

in⇒{({in}, /0)}

4.3.6 Comparisons

A comparison expression never results in output elements originating from its con-
text expressions. Instead, a comparison expression always outputs a basic value (a
boolean) that represents the result of the comparison. All projection expressions of
the context expressions are therefore used projection expressions and not a part of the
output projection expressions.

E1⇒V1
E2⇒V2

E1
.
= E2⇒{( /0,V1.PE ∪V1.UPE ∪V2.PE ∪V2.UPE)}

This rule holds not just for ’ .
=’, but for all types of comparisons between two sNRC

expressions. Note also that the structure of the output in the projection blueprints of
the context expressions is lost. This does not affect the correctness though, because
the comparison produces no output projection expressions and output structure can
therefore be disregarded.

4.3.7 Size

The size expression counts the number of elements contained by the bag that is the
output of its context expression. Similar to a comparison, the size expression outputs
basic values that do not relate to any input elements. Therefore, all projection ex-
pressions contained by the context expression projection blueprint are used projection
expressions.

E1⇒V1

˙size(E1)⇒{( /0,V1.PE ∪V1.UPE)}
Similar to the comparison expression, the structure of the output of the context ex-

pressions is lost. Again this does not affect the correctness, because the size expression
produces no output projection expressions and structure can therefore be disregarded.
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4.3.8 Variables

As described above when a variable is bound to an sNRC expression E1, the environ-
ment binds the projection blueprint V1 that is used by E1 to the variable named Var in
the environment.

Env `Var⇒V1
E1⇒V1

Env ` Get(Var)⇒V1

4.3.9 Element Of and Iteration

The element of or iteration sNRC expression is crucial for bag comprehension. This
expression binds the iteration variable Var to the projection blueprint V1 that is used
by the sNRC expression E1 which produces the output over which is iterated.

Env `Var⇒V1
E1⇒V1

Env ` Get(Var)⇒V1

Iterating over expression E1 with iteration variable Var means that the output pro-
jection expressions of E1 are not extended further, unless they are accessed through
the iteration variable Var.

4.3.10 Bag Comprehension

As discussed in Section 4.2.3 a flattening bag comprehension is considered to be com-
posed of two elements: {[Target | Cond]}. The Cond expression binds the iteration
variables and determines which elements are to be passed on to the evaluation of
Target. The Target expression then determines the output of the bag comprehen-
sion. Note that both Cond and Target can be sequences of expressions to which the
’Sequence’ rule can be applied recursively. The Cond expression always contains at
least one ’Element Of’ expression to bind an iteration variable to the expression over
which is iterated.

Target⇒V1
Cond⇒V2

{[Target |Cond]}⇒V1∪{( /0,V2.PE ∪V2.UPE)}

Note that for the Target the projection blueprint is used as-is, preserving the out-
put structure. For the Cond an new projection expression pair where all projection
expressions from the Cond projection blueprint are added as used projection expres-
sions. Note that this causes the structure of the Cond expression to be lost. Because
the Cond expression produces no output elements, the structure can be ignored. If
the iteration variable is used in the Target expression, its projection blueprint will be
accessed through the variable.
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4.3.11 Ordered Pair

The ’Ordered Pair’ expression modifies the structure of the projection blueprint, by
introducing an extra level of nesting. Because the projection blueprint uses the sNRC
data model, this nesting can also be introduced in the projection blueprint to correctly
maintain the structure of the output.

E1⇒V1
E2⇒V2

〈E1,E2〉 ⇒ {〈V1,V2〉}

4.3.12 Selection Expressions

The set of selection expressions consists of the sNRC expressions that are used to
select sub-elements of nested values V . This set of expressions is the same set that is
used to describe projection expressions:

E ::= E.1 | E.2 | E.[key] | E..[key] | E..1 | E..2

What makes these steps important is that they extend the projection expressions
used in the projection blueprints. More specifically they retrieve the projection ex-
pressions from their context expressions and append to these to generate a new set of
projection expressions.

E1⇒V1

E1.[key]⇒{[x.[key] | x ∈V1]}

E1⇒V1

E1..[key]⇒{[x..[key] | x ∈V1]}

E1⇒V1

E1.1⇒{[x.1 | x ∈V1]}

E1⇒V1

E1.2⇒{[x.2 | x ∈V1]}
The selection expressions are mapped over the elements of the projection blueprint.

For projection expression pairs, the selection expression is applied to the first field (out-
put projection expressions). Sets of projection expressions, each projection expression
is extended with the selection expression. For ordered pairs the 6th normalization rule
of Wong [46] is applied. A selection of the first or second field on an ordered pair
expression will select the projection blueprint stored in the first field or second field
respectively.

4.3.13 User-Defined Functions

In this thesis no static sNRC query analysis for user-defined functions is defined. Be-
cause of the endless variety of operations that can be applied in a user-defined function
this is a topic of research by itself. If user-defined functions are used in a sNRC query
it is assumed that a correct projection blueprint is provided.
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4.3.14 Finishing the analysis

When the entire sNRC query has been analyzed using the bottom-up approach and the
above inference rules a single projection blueprint V is obtained. The set of output
projection expressions can be extracted by applying the V .PE operation. Similarly, the
used projection expressions can be extracted by applying the V .UPE operation. These
sets can be merged to obtain a final set of projection expressions.

4.4 Correctness

One of the main goals of Projection Expressions as described in subsection 3.5.1 is
to ensure that the evaluation of a query on a projected sNRC dataset yields the same
results as on the original dataset. It will be shown that the algorithm based on the infer-
ence rules of section 4.3 verifies the correctness theorem (Theorem 1 in the previous
chapter).

To prove this by using induction on the inference rules for each expression defined
in section 4.3 the following lemmas are needed:

Lemma 1 (Output Projection Expressions). Given the projection blueprint V of an
sNRC query E. Let D be the result of a projection of the output projection expressions
(OPE’s) V .PE on an sNRC dataset D. It holds that D′ contains all the elements that
are present in the result of the evaluation of E on D.

Proof (Output Projection Expressions). This lemma is validated by using induction on
the inference rule for each expression in section 4.3:

• Basic Value Constants: The OPE’s of these expressions is the empty set. Basic
Values do not return any elements from the input and therefore the set of returned
input elements is correctly contained by the empty set.

• Sequences: The OPE’s of a sequence are the union of the OPE’s of its context
expressions. If it is assumed by induction that the context expressions produce a
correct set of OPE’s then the inference rule for sequences will also produce a set
of OPE’s that contains all elements output by the sequence expression. An empty
sequence returns no elements and therefore the set of returned input elements is
correctly contained by the empty set.

• Unions: Similar to sequences, the OPE’s of a union are the union of the OPE’s
of its context expressions. If it is assumed by induction that the context ex-
pressions return a correct set of OPE’s then the inference rule for unions will
produce a set of OPE’s that contains all input elements output by the union
expression.

• Set: The set rule uses the OPE’s of its context expression. The set of elements
output by a set expression is a subset of the bag of elements output by its context
expression. Assuming by induction that the OPE’s of the context expression
are correct, the set of OPE’s generated the set rule will correctly contain all
elements output by the set expression.
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• Reading input: Reading the input returns the top level element of the sNRC
dataset. This is the same element that is accessed by projecting the input expres-
sion in to the dataset.

• Comparisons: Comparisons return a basic value that do not relate to elements
from the input dataset. Therefore, no input elements are output by these ex-
pressions and that the set of output elements is indeed contained by the empty
set.

• Size: The same reasoning as for comparisons holds here.

• Bag Comprehension: The output of the bag comprehension expression is the
output of its Target context expression. The bag comprehension rule includes
the total projection blueprint of the Target context expression in the projection
blueprint the bag comprehension. If it is assumed by induction that the OPE’s
contained by the projection blueprint of the Target context expression are cor-
rect, then the set of OPE’s of the bag comprehension correctly contains all out-
put elements.

• Ordered Pair: The projection blueprint of an ordered pair expression contains
an ordered pair that contains the exact two projection blueprints of the two con-
text expressions. Now assuming by induction that the OPE’s of both context
expressions were correct, the set of OPE’s of the projection blueprint of the or-
dered pair expression will correctly contain the output elements for both context
expressions.

• Navigation Expressions: The navigation expression rule by definition extends
all OPE’s of its context expression with the navigation expression itself by map-
ping over all elements of the projection blueprint. It is therefore trivial that the
output elements of the navigation expressions are also contained by the extended
OPE’s.

Lemma 2 (Variables). The output projection expressions (OPE’s) that are bound to
a variable in the environment allows reaching all elements that the variable iterates
over.

Proof (Variables). A set of OPE’s can only be bound to a variable in the environment
by two expressions: implicit binding of a variable to an expression and iteration over
an expression through the element of expression. In both cases the variable is instan-
tiated with the projection blueprint V that is required by the expression E that it is
associated with. As shown in the proof of Lemma 1 the set of OPE’s V.PE contains all
the input elements that are output by E.

Lemma 3 (Completeness). The projection blueprint V that is determined for an sNRC
expression E using the static sNRC query analysis algorithm from section 4.3 contains
all projection expressions that are determined for its context expressions.

Proof (Completeness). When observing the inference rules of section 4.3 this is ob-
vious. Every inference rule propagates either the entire projection blueprint, or the
sets of projection expressions of its context expressions into V . This means that all
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projection expressions are propagated, and therefore that V contains all projection
expressions of E’s context expressions.

Proof (Correctness). For Theorem 1 to be valid, D′ must contain all elements from D
that are needed to evaluate the expression E. With lemmas 1 and 2 it is shown using the
projection expressions of a context expression that the elements required to evaluate
that context expression are contained by D′. To validate that the final projection is
correct, the final set of projection expressions must contain all projection expressions
that are required by the expressions context expressions. This is shown in Lemma 3.

4.5 Projection Trees

Previously in this chapter we have provided the definition of a rule-based static sNRC
query analysis algorithm that produces a set of projection expressions that allows com-
puting a correct projection on the input dataset. The reference system applies each pro-
jection expression separately to the input dataset. This approach works, because the
projection expressions used by the reference system describe the the input elements,
which are loaded including all sub-elements. The projection expressions produced
by the static sNRC query analysis program are more complex, also describing which
sub-elements of the input elements should be loaded. This introduces a problem that
we will illustrate based on the set of projection expressions that was determined for
XMark Query 1 by the static analysis:

Listing 4.2: Projection Expressions for sNRC XMark Query 1
in.[site].2.[people].2.[person].2.[name].2
in.[site].2.[people].2.[person].2.[@id].2

The projection expression determined for the reference system was in.[site].2.[people].2.[person]
which loaded each person element and all its sub-elements when performing the input
projection.

For the set of projection expressions determined for the improved system, it is not
clear what the entry point of the input should be (in this case the ‘person’ element).
Taking inspiration from the work on a Tree Algebra for XML and Holistic Twig Joins
[32, 15] we can instead combine the projection expressions required by an sNRC query
into a tree. As will be discussed in the remainder of this chapter, such a tree structure
allows retrieving additional information about the structure of the input. Additionally
all projection expressions can be applied in a single pass over the input dataset at the
expense of a more complex loading algorithm.

4.5.1 Definition

As discussed in the previous section, projection expressions need to be combined into
a projection tree to allow derivation of additional information to perform the input
projection. A formal definition of a projection tree is now presented.

Definition 4.3 (Projection Tree). A Projection Tree is a node- and edge-labeled tree
(V,E) such that:
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Figure 4.1: Projection Tree for XMark Query 1

• Each node in V represents a selection expression: either selecting the input, the
first field of an element, the second field of an element, or an element based on
a key value.

• Each edge in E is labeled pc for direct sub-elements or ad for all sub-elements.

In Figure 4.1 projection tree equivalent is shown for the set of projection expres-
sions that are determined for sNRC XMark Query 1.

4.5.2 Annotated Projection Expressions

In this section we describe an extension of the static sNRC query analysis algorithm
to annotate the derived projection expressions. One annotation is required to find the
input elements. We define an input element as follows:

Definition 4.4 (Input Element). Given a projection tree (V,E), an input element is a
node in V that will become a top-level element in the projected dataset.

In the example of sNRC XMark Query 1 and the projection tree in Figure 4.1, the
person element is an input element. This means that when a person element is located
in the input dataset, the loading algorithm should from that point on start parsing the
input data. The first annotation that is introduced in this chapter is used to automati-
cally determine the input elements in a projection tree.
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A second annotation is is used as an optimization for counting operations. When
a projection expression describes input that is only read to be counted, the content of
this input is irrelevant and need not be loaded.

The first annotation is applied in the ’Element of and Iteration’ rule of the static
sNRC query analysis algorithm:

Env `Var⇒V1
E1⇒V1

V ′1 ` {[x.annotateVar(Var) | x ∈V1]}
Env ` Get(Var)⇒V ′1

When binding a projection blueprint to a variable in the environment, each output
projection path in the projection blueprint is annotated with the variable name. This
information is propagated when the projection blueprint is accessed through the vari-
able. Using this information it can be determined which variables are extended by
which projection expressions.

The second annotation is applied in the ’Size’ rule of the static sNRC query anal-
ysis algorithm:

E1⇒V1

˙size(E1)⇒{( /0,{[x.annotateSize | x ∈V1.PE]}∪V1.UPE)}

For a size expression, the output projection expressions of its context expression (in
this case V1.PE) describe the input for the size expression. All these output projection
expressions are therefore annotated with a size annotation (’#’) to indicate that these
elements are counted.

Note that both of these modified rules do not change the projection blueprints that
are determined by the original rules. The projection expressions contained by the
projection blueprints are only annotated with additional information. The correctness
is therefore unaffected.

4.5.3 Annotated Projection Tree

When converting a set of annotated projection expressions to a projection tree, the
annotations from the projection expressions are propagated into the projection tree.
The ’size’ annotation is used by the loading algorithm to determine whether the sub-
elements of an element need to be parsed. This is described in the next section. The
iteration variable annotation allows determining the input elements in the projection
tree.

When two or more projection expressions extend a projection expression based on
the same iteration variable, the projection expression stored in this iteration variable is
an input element. This is well-illustrated by sNRC XMark Query 1:

{[b.2.[name].2 | b ∈ in.[site].2.[people].2.[person],b.2.[@id].2 .
= {{person0}}]}
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This shows that it is not possible to select a more deeply nested input element
than: in.[site].2.[people].2.[person], because the ’name’ and ’@id’ sub-elements that
are selected must belong to the same ’person’ element bound to the iteration variable.
When only one projection expression extends a projection expression that is stored in
an iteration variable, no such interdependency exists and the final projection expression
can be used as input element. An example of that is sNRC XMark Query 6 which can
be found in Appendix A.

4.6 Improved Loading Algorithm

In this section we will describe the algorithm that is used to perform the projection
on the input dataset based on the annotated projection tree. Where the reference sys-
tem algorithm used XML parsing events, the improved loading algorithm uses a more
generic approach. The improved algorithm introduces a layer of abstraction by pro-
cessing sNRC parsing events. This allows the loading algorithm to work on any type
of nested data for which an adapter is available, as will be discussed in more detail in
the next section.

Similar to the reference loading algorithm, the improved loading algorithm main-
tains a projection tree that represents the location with respect to the input that we will
refer to as the input path. The reference algorithm consisted of two steps: first finding
the input element, and then parsing the entire input element and all its sub-elements.
The improved algorithm also follows a two step approach. First, the findNext, tu-
pleFind and secondFieldFind functions are used to find the input elements. The sec-
ond step is not as straightforward as for the reference system. The improved algorithm
uses the parseTuple, parseBag and parseNextBag functions to parse the input element
and only the sub-elements that are described by the projection tree.

Notice how all functions make use of a selectAction function. This function matches
the input path to a matching node in the projection tree, by following the input path
through the projection tree from the root. Then, based on the outcome it outputs the
following action:

• If the input path leads to a dead end: skip the current element (SKIP)

• If the input path leads to a leaf node that is not annotated with a count annotation:
parse the current element and all sub-elements (PARSE_ALL)

• If the input path leads to a leaf node that is annotated with a count annotation:
parse the current element without sub-elements (PARSE_EMPTY )

• If the input path leads to a node that is marked as input node: indicate that an
input node is found and start parsing from this element (INPUT )

• If none of the above holds: move to process the next element (MOV E)
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The following pseudocode fragments describe the functions that are used by the
improved algorithm as described above.

Algorithm 4.6.1: FINDNEXT()

global Reader, InputPath,Pro jTree
while Reader has next

do


next← next Reader event

switch next


case START _TUPLEreturn (tupleFind())
case END_TUPLE remove last element from InputPath
case END_DOC return (null)

return (null)

Algorithm 4.6.2: TUPLEFIND()

global InputPath,Pro jTreekey← reader.parseFirst()
InputPath← InputPath+SelectKeyNode(key)
action← selectAction(InputPath,Pro jTree)

switch action


case SKIP reader.skip()
case PARSE_ALL
case PARSE_EMPTY
case INPUT return (parseTuple(key))
case MOV E return (secondFieldFind())

Algorithm 4.6.3: SECONDFIELDFIND()

global InputPath,Pro jTreeInputPath← InputPath+SelectSecondNode
action← selectAction(InputPath,Pro jTree)

switch action


case SKIP reader skip tuple
case PARSE_ALL
case PARSE_EMPTY
case INPUT return (parseBag())

Algorithm 4.6.4: PARSETUPLE(key)

global Reader, InputPath,Pro jTree
action← selectAction(InputPath,Pro jTree)

switch action



case PARSE_ALL
{

remove last element from InputPath
return (reader.parseCompleteTuple())

case PARSE_EMPTY
{

remove last element from InputPath
return (ordered pairwithkeyandemptybag)

case INPUT

case MOV E
{

InputPath← InputPath+SelectSecondNode
return (parseBag())
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Algorithm 4.6.5: PARSEBAG()

global Reader, InputPath,Pro jTree
action← selectAction(InputPath,Pro jTree)

switch action



case PARSE_ALL
{

remove last element from InputPath
return (reader.parseSecond())

case PARSE_EMPTY
{

remove last element from InputPath
return (emptybag)

case INPUT
case MOV E return (parseNextBag())

Algorithm 4.6.6: PARSENEXTBAG()

global Reader, InputPath,Pro jTree
result← new Bagwhile Reader has next

do



next← next Reader event

switch next



case START _TUPLE

action← selectAction(InputPath,Pro jTree)

switch action


case SKIP reader.skip()
case PARSE_ALL
case PARSE_EMPTY
case MOV E
case INPUT result← result + parseTuple(key)

case END_TUPLE remove last element from InputPath
case END_DOC return (null)

return (result)

As expected, the evaluation of all sNRC XMark queries yields identical results
for projections computed by both the reference system loading algorithm as well as
the improved loading algorithm. In the evaluation chapter, Chapter 5 it is shown that
the improved loading algorithm also results in a successful fragmentation of the input
dataset, allowing processing by Flink. Moreover experiments are conducted to show
the improvement of this algorithm over the reference approach, and the improvement
compared to the algorithm of Marian and Simeon [35].

4.7 Improved Parallel sNRC - Flink Architecture

In order to support the static sNRC query analysis algorithm and the improved load-
ing algorithm several extensions implemented for the sNRC - Flink architecture with
respect to the reference system architecture. An UML diagram showing the structure
of the most important clases can be found in Appendix D.

Firstly, all sNRC expression definitions and projection blueprint classes were added.
Each sNRC XMark query implementation now has a corresponding sNRC expression.
From the sNRC expression the projection blueprint can be determined using the rules
defined in this chapter. Secondly the projection tree classes are added, as well as a
parser to convert a set of projection expressions into a projection tree. The most im-
portant change is the addition of the improved loading algorithm that applies projec-
tion defined by the projection tree to the input dataset. Moreover, the improved parser
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works with an abstract nested data parser. This allows easy integration with other
nested data types such as JSON by adapting the respective parser to the interface.
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Chapter 5

Evaluation

In this Chapter we will discuss how we have evaluated the parallel sNRC implementa-
tions. The reference system from Chapter 3 with the reference input projection algo-
rithm and the system with the improved input projection algorithm from Chapter 4 will
be evaluated and compared. The benchmark that is used for the evaluation, XMark, is
discussed in more detail first. Next the single node setup, experiments and outcomes
are shown and discussed. This is followed by the setup, experiments and outcomes
of the experiments on a SURFSara cluster of up to 16 nodes, and datasets of up to
141GB.

5.1 XMark Benchmark

The benchmark for semi-structured data that is used to evaluate the parallel sNRC
systems introduced in this thesis is the widely used XMark benchmark [41]. XMark
offers a set of 20 varying queries that are modelled after typical real-world scenarios.
Each of the queries is designed to pose a particular challenge to an XML query proces-
sor. These challenges vary from simple lookups to lookups of elements that are deeply
nested and from complex joins to aggregations.

The queries are run on a single dataset that contains information about auctions,
including information about the auctioned items, buyers, sellers, and categories. A
tree overview of the nested data structure of the XMark dataset is shown in Figure 5.1.
XMark allows generating datasets of arbitrary sizes, and generation of split datasets.
Each split will contain a complete and valid structure from the root element of the
dataset, to where the previous split ended.

5.1.1 sNRC - XMark Benchmark Queries

The set of XMark queries that is used to test the system developed for this thesis does
not contain all 20 original XMark queries. The sNRC data model [29] also described
in Section 2.5.1 relies on the use of bags and tuples. The elements of a bag are by
definition not ordered. Though the data model allows modelling of an ordering of the
elements in a bag (by wrapping the elements in tuples) this is not a natural approach
for the sNRC data model.

XMark queries 2,3 and 4 as well as XMark queries 18 and 19 are not included
in the benchmark suite for this work, because their challenges to the query processor
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Figure 5.1: The nested data structure of the XMark benchmark dataset. From [41].

regard ordered access or sorting operations [41]. Though it would be interesting to see
how the presented parallel sNRC systems perform when dealing with such challenges,
it falls outside of the scope of this thesis because sNRC was not designed with ordering
in mind. The remaining 15 queries are included as described in the original XMark
publication. The full set of queries, and the used sNRC equivalents can be found in
Appendix A.

Table 5.1 shows a list of all XMark queries that are used for the sNRC XMark
benchmark. In this table you can find in the second column which parts of the input
dataset are used for the query (see Figure 5.1). The third column shows the number
of input elements and the complexity of their projection expressions. A simple path
contains only direct sub-element relationships, while a complex path also contains
non-direct sub-element relationships (see Section 3.2). The fourth column shows the
number and types of Flink operators that are used in the Flink execution plan for that
query. Each query uses the input and output operators, so these are omitted. A graph-
ical representation of the evaluation plans for each query can be found in Appendix
B. The fifth and final column shows the number of partitioning and broadcast steps
used in the Flink execution plan. These steps serialize the data and then exchange it
between Task Managers over the network. Forward operators are for forwarding data
from one operator to the next within a same node of the cluster. Because these For-
ward operators do not apply serialization or exchange data over the network they are
omitted from the table.

5.1.2 sNRC - XMark Benchmark Datasets

For the sNRC XMark local single node and SURFSara cluster experiments the same
set of 8 datasets is used, ranging from 1 GB to 141 GB in size. These datasets are
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Table 5.1: Overview of XMark queries used in the sNRC XMark Benchmark Suite
and their complexity.

Query Subsets Input Elements # Used Flink Operators # Hash Partitionings

XMark 1 Persons Simple (1)
Filter (1)
FlatMap (1)

XMark 5 Closed Auctions Simple (1)
XMark 6 Items (Full Dataset) Complex (1)
XMark 7 Prose (Full Dataset) Complex (3)

XMark 8
Persons
Closed Auctions

Simple (2)
Filter (2)
Map (2)
CoGroup (1)

Hash Partition (2)

XMark 9a
Items (Europe)
Persons
Closed Auctions

Simple (3)

Filter (3)
Map (5)
CoGroup (2)
Group Reduce (1)

Hash Partition (5)

XMark 9b
Items (Europe)
Persons
Closed Auctions

Simple (2)
Complex (1)

Filter (3)
Map (5)
CoGroup (2)
Group Reduce (1)

Hash Partition (5)

XMark 10 Persons Simple (1)

Filter (1)
FlatMap (1)
Map (1)
Group Reduce (1)

Hash Partition (1)

XMark 11
Persons
Initial Bids (Open Auctions)

Simple (2)
Filter (2)
Map (1)
FlatMap (1)

Broadcast (1)

XMark 12
Persons
Initial Bids (Open Auctions)

Simple (2)
Filter (3)
Map (1)
FlatMap (1)

Broadcast (1)

XMark 13 Items (Australia) Simple (1) Map (1)

XMark 14 Items (Full Dataset) Complex (1)
Filter (1)
FlatMap (1)

XMark 15 Closed Auctions Simple (1)

XMark 16 Closed Auctions Simple (1)
Filter (1)
FlatMap (1)

XMark 17 Persons Simple (1)
Filter (1)
FlatMap (1)

XMark 20 Persons Simple (1)
Map (1)
Group Reduce (1)

Hash Partition (1)
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Table 5.2: Datasets used for the sNRC - XMark Benchmark

Name Scaling factor Elements per file Size # Files
Split 1GB 10 20000 1.1GB 35
Split 2GB 20 40000 2.2GB 35
Split 4GB 40 40000 4.4GB 69
Split 8GB 80 80000 8.8GB 69
Split 18GB 160 80000 18GB 138
Split 36GB 320 160000 36GB 138
Split 71GB 640 160000 71GB 275
Split 141GB 1280 320000 141GB 275

generated using the XMark dataset generation tool. The datasets and parameters that
were used for generation are shown in Table 5.2.

5.2 Setups

In this section the configurations of the hardware and software that were used for
running the experiments are described. First the local single node setup, and second
the SURFSara cluster setup is discussed.

5.2.1 Local Single Node Setup

In this section we discuss the setup for the local single node experiments. Each of the
XMark queries is executed 5 times and the runtimes are measured in milliseconds. For
each query the fastest and slowest runtime are discarded, and the remaining 3 runtimes
are averaged to obtain a more reliable estimation of the runtime performance. The
local experiments are run on the datasets of 1GB, 2GB, 4GB and 8GB.

The local experiments were run on a single desktop PC. This desktop featured a
2.93Ghz 4 core CPU and 8 GB of RAM. The datasets are stored on a SSD drive. Flink
snapshots are written to a regular harddrive.

For software the Java JDK 1.8.0_71 was used in conjuction with Apache Flink
0.10.1. The benchmarks were submitted to a local Flink cluster configured with a Flink
parallelism parameter set to 4, 4096MB max memory for the Task Manager JVM and
512MB max memory for the Job Manager JVM.

5.2.2 SURFSara Cluster Setup

We now discuss the setup for our cluster experiments. These experiments use SURF-
Sara’s YARN cluster 1. The nodes in this cluster feature a 2.6 Ghz 8 core CPU and
64 GB of RAM. The benchmarks are submitted to a Flink cluster running on top of
YARN. The Flink Task Manager JVMs are configured to use a maximum of 16GB of
memory, the Flink Job Manager JVM was configured to use at most 4GB of memory.
The datasets are stored on the SURFSara YARN cluster Hadoop Filesystem (HDFS).
The HDFS is configured to replicate files 3 times over the filesystem.

1https://userinfo.surfsara.nl/systems/hadoop/description
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Table 5.3: SURFSara Cluster Configurations

# Worker Nodes Datasets Parallellism
1 1GB, 2GB, 4GB, 8GB 8
2 1GB, 2GB, 4GB, 8GB, 18GB 16
4 1GB, 2GB, 4GB, 8GB, 18GB, 36GB 32
8 1GB, 2GB, 4GB, 8GB, 18GB, 36GB, 71GB 64
16 1GB, 2GB, 4GB, 8GB, 18GB, 36GB, 71GB, 141GB 128

Table 5.4: Cluster Query Subset

Query Input Type Partitionings
XMark 1 Simple No
XMark 7 Complex No
XMark 8 Simple Yes (2)
XMark 9a Simple Yes (5)
XMark 9b Complex Yes (5)
XMark 15 Simple No

Table 5.3 shows the number of workers, used datasets and Flink parallelism pa-
rameter used for the different SURFSara cluster experiments.

Where for the local experiments the total set of sNRC XMark queries was used, we
can not use the full set of queries for the cluster experiments due to time limitations.
Instead a representative subset was chosen based on information listed in Table 5.1.
From the queries in the table 4 categories can be distinguished:

• Simple input paths and no partitionings

• Simple input with partitionings

• Complex input without partitionings

• Complex input with partitionings

For each category one or multiple representative subqueries are selected. The se-
lected queries are shown in Table 5.4.

XMark queries 1 and 15 are queries with simple projection expressions and with-
out partitioning steps. XMark query 7 is a query with multiple complex projection
expressions, but without partitioning steps. XMark queries 8 and 9a have input ele-
ments with simple projection expressions, and a varying amount of partitioning steps.
Finally XMark query 9b is an adapted version of the original XMark query 9a with
one input element modified to require a complex projection expression.

In addition to running the query benchmarks, a separate set of experiments is per-
formed to determine the time required to read the input dataset. For these queries only
the input dataset is loaded using the input projection algorithms. The actual queries
are not evaluated on the input dataset.
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5.3 Local Results

This section describes the results that were obtained when comparing the reference
system to the improved system in a set of experiments on a single node. First we will
compare the sizes of the input dataset after applying projection between the reference
system, the improved system and the algorithm of Marian & Siméon [35]. In the sec-
ond part the runtimes of the reference system and the improved system are compared
for the full set of queries and datasets of 1GB, 2GB, 4GB and 8GB.

5.3.1 Projection Sizes

In this first experiment the effectiveness of the sNRC projection algorithm presented
in Chapter 4 is assessed by comparing it to the reference algorithm and the work by
Marian & Siméon [35]. The goal as defined at the beginning of Chapter 4 is to reduce
the size of the input to: (1) speed up serialization of the nested values, (2) increase
throughput for partitioning and broadcasting between workers nodes and (3) reduce
memory footprint of the input data, resulting in less time spent on garbage collection
by the JVM.

The relative reduction of the size of the input after applying the projection is mea-
sured by comparing the total size of the serialized data after projection to the total size
of the serialized complete dataset. This experiment is performed for each query from
the sNRC XMark Benchmark suite on the Split 1GB dataset.

Figure 5.2: Relative projection sizes compared to the complete dataset.

Figure 5.2 shows the relative sizes of the input per query after projection for the
reference system, Marian & Siméon and the improved system respectively. As ex-
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pected, the improved projection performs much better than the reference system. We
see this more clearly in Figure 5.3. An exception is XMark query 5, where the refer-
ence system uses the same projection expression as the improved system. This results
in a projected dataset of the same size.

Figure 5.3: Relative projection size reduction of the snRC projection compared to the
reference system.

From Figure 5.2 we see that the sNRC projection performs as good or better than
Marian & Siméon on all XMark queries from the sNRC XMark benchmark suite: the
system further reduces the size of the input dataset by 32% on average for all queries,
and up to 92% for individual queries. In Figure 5.4 we can see the relative differences
more clearly. The observed improvement can be explained by the fact that the input
projection of the improved system does not include the nested structure from the root
to the input elements. Most improvement is achieved where this nesting is deep (as
can be seen for XMark query 15) or when the size of the nesting structure is relatively
large compared to the input (for example XMark queries 5, 6, 7 and 11 when input
elements are empty because the output contains a count operation).
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Figure 5.4: Relative projection size reduction of the snRC projection compared to
Marian & Siméon.

5.3.2 Runtimes

In the previous section we have investigated how much the improved system reduces
the size of the input dataset compared to the reference system. We expect the reduced
size of the input to have three effects that reduce the time required to evaluate an
sNRC XMark query on the parallel sNRC system. Tables E.1 and E.2 in Section E.1
of Appendix E show the complete list of runtime results for the local single node
experiments of the reference system and improved system respectively.

From the runtime results a few observations can be made, especially when the
characteristics of each query described in Table 5.1 are taken into account. Figure 5.5
provides insights by showing the relative difference in runtimes between the improved
system and the reference system for the local single node experiments.

It can be seen that the performance for queries that have input elements with sim-
ple projection expression and no partitionings (queries 1, 5, 13, 15, 16, 17) have very
similar performance between the reference and improved version for all dataset sizes.
The runtimes of the reference algorithm are slightly better, but the difference is re-
duced as the dataset size increases.

For the queries that have input elements with complex projection expressions, the
improved system shows greater runtimes than the reference system in this experiment.
This is apparent in Figure 5.5 for queries 7 and 14. On query 9a the improved system
shows smaller runtimes, but the equivalent with a complex projection expression shows
a drop in relative runtime reduction. An exception is query 6, which has a complex
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projection expression for its input element but performs better on the improved system
regardless. The results for query 6 can be explained by two observations. Firstly, the
improved system does not parse the sub-elements of the input elements, because the
result of the query is a count operation which has been optimized in the improved sys-
tem. Secondly, the complex projection expression for the input elements of query 6 is
not as complex as the projection expressions used for queries 7 and 14. Queries 7 and
14 select from all sub-elements starting at the root of the dataset, while the projection
expression for query 6 first has a simple component, allowing the loading algorithm to
skip a large part of the input before processing all sub-elements.

The queries that have one or more partitionings (queries 8, 9a, 9b, 10, 11, 12 and
20) all perform better on the improved system, with an exception of query 10. This
can be explained by the fact that the reduction of the input is not as significant as for
the other queries with partitionings (see Figure 5.3) and the fact that the challenge of
query 10 is formatting the output [41], for which no optimizations are introduced in
the improved system. The Flink web interface timeline for query 10 shows that indeed
more than half of the total time is spent on writing the output.

5.4 SURFSara Cluster Results

In this section the results of the experiments on a SURFSara cluster of up to 16 nodes
and datasets of up to 141GB are shown. In Section E.2 of Appendix E the full re-
sult tables are shown. In this section plots are shown to investigate the differences
in runtimes between the reference and improved system, as well as to investigate the
scalability of the two systems.

5.4.1 Runtimes

In this section we observe the runtimes for the cluster experiments of both the refer-
ence system and improved system. It is discussed how the performance differs for the
different types of queries identified in Table 5.4 earlier in this chapter, when the num-
ber of nodes changes, and when the size of the dataset changes.

Effect of Dataset Size on Runtimes

First the effect of the size of the dataset on the runtimes of both systems is investi-
gated. Figures 5.6, 5.7, 5.8 and 5.9 show the runtimes of all queries for the cluster
experiments for both systems for datasets of 141GB, 36GB, 4GB and 1GB.

Taking a closer look at these plots as well as the results shown in Section E.2 of
Appendix E it can be seen that the improved system consistently has better runtimes
for the queries with partitioning steps (queries 8, 9a, 9b). This gap in performance
increases as the size of the dataset increases. At a dataset size of 141GB the reference
system has a runtime of at most 3,34 larger than the runtime of the improved system.
As the size of the dataset approaches 1GB, this gap approaches zero for all queries
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with a partitioning step.

When we investigate query 9b which has partitioning steps as well as a complex
projection expression for one of its input elements, we see that the runtimes are very
similar to the runtimes of query 9a for both systems when the dataset is large. As the
size of the input dataset decreases the runtime for the improved system approaches the
runtime of the reference system faster than for queries without a complex input. This
indicates that the impact of the complex input on the performance of the improved sys-
tem becomes relatively small when the size of the input dataset increases. This same
effect is observed for query 7 which is discussed below.

Queries without partitioning steps and with simple projection expressions for the
input elements perform very similarly for both the reference system and the improved
system. This observation complies with the results of the single node experiments
discussed in the previous section. The results of the read-only experiments in Section
E.2 show that indeed the times for reading the data are very similar between the two
systems and as expected reducing the input dataset size does not have much effect on
this type of queries.

Finally, the query without partitioning steps but with a complex projection expres-
sion for its input elements (query 7) is considered. In Figure 5.6 it can be seen that
the performance is similar for the reference and improved system for a large dataset,
slightly favouring the reference system. However, when the input dataset size de-
creases this gap increases as well as can be seen in Figures 5.7, 5.8 and 5.9. As stated
above, this indicates that the impact of the complex input on the runtimes becomes
smaller as the size of the input dataset increases.

Effect of Cluster Size on Runtimes

In the remainder of the section the effect of the number of nodes in the cluster on the
runtimes of the queries for both the reference system and improved system is investi-
gated. To do this we look at the results of both systems for the 8GB dataset, because
this dataset was used for all cluster size configurations.

The runtimes and relative difference in runtimes of the reference system and im-
proved system are as you would expect for an 8GB dataset based on our previous
findings: Performances for both systems are similar for queries 1 and 15, which have
no partitioning steps and simple projection expressions for the input elements. Query
7, which has no partitioning steps and complex projection expressions for the input
elements, is evaluated between 1.84 and and 1.68 times faster on the reference system.
Queries 8, 9 and 9a, which have partitioning steps, show between 1.31 and 3.11 times
better runtimes on the improved system. For query 9a we see again that the effect of
the complex projection expression supresses the performance gain from the improved
input projection, but the improved system still shows runtimes that are between 1.31
and 2.21 times better.
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Figure 5.6: Runtimes of the reference system compared to the runtimes of the im-
proved system on a cluster of 16 nodes and a dataset of 141GB.

Figure 5.7: Runtimes of the reference system compared to the runtimes of the im-
proved system on a cluster of 16 nodes and a dataset of 36GB.
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Figure 5.8: Runtimes of the reference system compared to the runtimes of the im-
proved system on a cluster of 16 nodes and a dataset of 4GB.

Figure 5.9: Runtimes of the reference system compared to the runtimes of the im-
proved system on a cluster of 16 nodes and a dataset of 1GB.
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Figure 5.10: Runtimes of the reference system compared to the runtimes of the im-
proved system on a cluster of 16 nodes and a dataset of 8GB.

These observations hold for all number of nodes. As we for example see in Fig-
ures 5.10 and 5.11 the runtimes stay relatively the same. An exception is the single
node experiment on the cluster (see Figure 5.12, where we observe the same effect
as reducing the dataset size: The performance for queries 1 and 15 remains the same,
but reference system now performs much better on query 7 and the gap between the
reference system and the improved system is reduced for queries 8, 9a and 9b. This
effect is easily explained. In the case of a single node the partitioning steps need not
serialize the data and transmit it over the network to other nodes. This means that two
of the three expected results of the optimizations for the improved system stated at the
beginning of this chapter lose their effect.

5.4.2 Scalability

In this section it is evaluated how well the reference system and improved system scale.
To do this the number of nodes and size of the dataset are doubled each time, scaling
from 1 node and an 8GB dataset to 16 nodes and a 141GB dataset. Figure 5.13 and
5.14 show the results for the reference system and improved system respectively.

The results indicate that both the reference system as well as the improved system
queries 1, 7 and 15 scale linearly, with minor overhead. As we know from Table 5.1
these queries have operations that do not require partitioning, but solely rely on read-
ing the input and applying map and filter operations. As was also also observed by
Camacho-Rodríguez et al. [17], these operations are very well parallelizable by Flink.
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Figure 5.11: Runtimes of the reference system compared to the runtimes of the im-
proved system on a cluster of 4 nodes and a dataset of 8GB.

Figure 5.12: Runtimes of the reference system compared to the runtimes of the im-
proved system on a cluster of 1 node and a dataset of 8GB.
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Figure 5.13: Runtimes for the reference system on a cluster when scaling up from a
single node and an 8 GB dataset to 16 nodes and a 141 GB dataset.

Queries 8, 9a and 9b do require operations that use partitioning and these queries
we see different results. Both systems suffer from more overhead when scaling up
these queries than for queries that do not use partitioning. However, the improved
system scales much better for these queries than the reference system. In the case of
query 8, the reference system exhibits up 2.85 times greater runtimes when scaling up.
In the case of the improved system this is at most 1.36 times greater.
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Figure 5.14: Runtimes for the improved system on a cluster when scaling up from a
single node and an 8 GB dataset to 16 nodes and a 141 GB dataset.
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Chapter 6

Conclusions and Future Work

In this chapter this thesis is concluded by summarizing and discussing the results,
and reflecting on the work done to provide suggestions for future work. First our
most important observations from the literature and experiments are summarized as
answers to the the research questions that were stated in the introduction of this thesis.
The process and work presented in this thesis are then discussed to identify strengths
and points for improvement to finally present opportunities for future work.

6.1 Research Objectives

RQ1: Which state-of-the-art parallel data processing platform is suitable for implicit
parallelization of the Nested Relational Calculus for Semi-Structured Data?

In Chapter 2 existing popular data processing platforms such as Hadoop, Spark
and Flink were discussed, as well as query languages for nested data that are built on
top of these platforms. In Chapter 3 these platforms are matched to the goal of query-
ing nested datasets that are larger than main memory with sNRC in parallel. Flink
and Spark are two modern data processing platforms that naturally support complex
operations such as joins, which are required to allow maping sNRC queries to the data
processing platform. Though Spark is a more mature platform, Flink is used for this
thesis due to its truly streaming engine. This results in lower latencies by pipelin-
ing data between different operators. Flink features automatically managed memory,
execution plan optimizations and efficient mechanisms for spilling data to disk when
necessary. Moreover, its programming model allows it to easily be extended to support
the sNRC data model.

RQ2: How can an input semi-structured dataset be fragmentized to allow process-
ing by a streaming data processing platform?

In Chapter 2 a technique called Input Projection is discussed. Input projection is a
popular approach for fragmentizing and trimming an input nested dataset before pro-
cessing a specific query. These approaches were not designed with parallel systems
in mind, but they are determined to be good fit to the problem in this thesis. In this
work a set of Projection Expressions defines which parts of the input are needed to
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evaluate a specific sNRC query. We refer to these parts as the input elements. The
projection expressions are used to compute a projected dataset, which is a dataset that
is smaller than the original dataset but still allows correct evaluation of an sNRC query.
A loading algorithm is presented to compute the projected dataset based on the set of
projection expressions. This answer, combined with the platform chosen at RQ1 re-
sulted in a Reference Parallel sNRC System.

RQ3: How can a reference input projection approach be improved upon to further
reduce the size of the input semi-structured dataset?

In Chapter 4 an Improved Parallel sNRC System is presented that uses static
sNRC query analysis to determine a set of more detailed projection expressions. These
projection expressions also describe which sub-elements of the input should be loaded.
The static query analysis consists of a set of inference rules for bottom-up processing
of an sNRC query to determine the set of projection expressions. A proof based on
induction is provided to show that the set of determined projection expressions results
in a valid projected dataset. By combining annotating the projection expressions and
combining them into a projection tree several additional small optimizations are done.
Finally, a more sophisticated loading algorithm is presented that uses the projection
tree to compute the projected dataset.

RQ4: What is the effect of the improved input projection on the performance in
terms of runtime and scalability of the improved parallel sNRC system compared to
the reference system?

In Chapter 5 both the reference system and improved system are evaluated using
the XMark benchmark. The improved input projection algorithm is shown to reduce
the size of the input dataset by 73% on average and by up to 99.6% compared to the
reference system and by 32% on average and up to 92% compared to the approach of
Marian and Siméon [35].

The set of queries from the XMark benchmark is evaluated on a single node, as
well as a cluster of up to 16 nodes and dataset sizes of up to 141 GB. On a single node
both systems perform similarly for queries with simple input expressions and without
operations that require partitioning. For queries with complex input expressions and
without operations that require partitioning, the reference system performs better due
to the more complex loading algorithm of the improved system. For queries that do
require partitioning, the improved system consistently performs much better.

The results from the cluster experiments shows similar results to the single node
experiment. For queries with simple input expressions and without operations that
require partitioning both systems perform similarly. For queries with complex input
expressions that do not require partitioning the reference system performs better. How-
ever, as the dataset size increases this gap is closed. For queries that have operations
that do require partitioning the improved system performs much better. As the dataset
size increases, the size of this gap increases.

Finally the scalability of the reference and improved system is investigated. It is
found that both systems seem to scale linearly with minor overhead for queries that do
not require partitioning. For queries that do require partitioning, the improved system
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shows to scale much better than the reference system, showing a increase in runtime
by a factor of 1,36 compared to 2,85 for the reference system.

6.2 Discussion and Reflection

In this section the process and results presented in this thesis are reflected on and
discussed.

Firstly, sNRC is a generic query language for nested data. In this thesis the system
is only evaluated using the XMark benchmark and a corresponding XML dataset. De-
spite this the parallel sNRC system is capable of supporting other nested data formats
such as JSON. Supporting a wider range of data formats would also open the door to
evaluate the system using a wider range of benchmarks or real-world datasets. The
XMark dataset is a very popular benchmark with a well-designed set of queries, how-
ever using a wider variety of benchmarks would allow getting a better understanding
of the performance of the system.

Secondly, the system presented in this thesis should be compared to other implic-
itly parallel systems for querying nested data. There is no previous work on sNRC it-
self to which could be compared. Other work has presents a paralellization of XQuery
on Flink that is also evaluated on the XMark dataset. Even though their system fo-
cusses specifically on XML, while the system presented in this thesis is generic, a
comparison would be valuable. Their work uses a modified set of queries, and their
source code is unavailable. This made it it infeasible to perform a comparison within
this thesis. Other systems such as Apache Pig or SparkSQL are very mature and utilize
a large set of optimization techniques. Such a comparison would be unfair at this level
of maturity of the parallel sNRC system. In order to get the system to a next level of
maturity suggestions for future work are provided in the next section.

Finally, the number of repetitions for the experiments should be increased. Though
I believe that given the time and resources available the decisions made in the exper-
imental setup were the right ones, increasing the number of repetitions will further
increase the reliability of the results. It is well known that shared clusters are not con-
sistent in terms of performance. Our chosen approach was to filter the best and worst
result, and to average the remaining results. This has increased the reliability, but some
fluctuations in the results are still apparent. Increasing the number of repetitions would
suppress these fluctuations further.

6.3 Future Work

In this thesis an implicitly parallel sNRC system built using Flink as a data processing
platform is presented. It is valuable to have a first system to explore the possibilities
of parallelized sNRC and to facilitate future work. In this section I will present the
directions for future work that I believe will be most interesting and valuable.

Firstly, sophisticated input projection algorithm as optimization for the parallel
sNRC system. It is shown that this stand-alone optimization is crucial to the system
and yields good results in terms of scalability and runtimes for more complex queries.
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Moreover, this input projection algorithm is shown to produce correct projections re-
gardless of how an sNRC query is formulated. This opens doors for developing a
system of normalization and rewriting rules for sNRC. Such a set of rules can then
for example be used to investigate the possibilities of a cost-based rewriting engine for
sNRC. it will be valuable to gain insights into the effects of different optimizations.
Referring back this work, it would be interesting to define a set of rules that deter-
mine when apply the improved input projection algorithm and when to use a simple
approach.

Secondly, as the parallel sNRC system gains more maturity in terms of supported
data formats and optimizations it will be valuable to compare the parallel sNRC sys-
tem to existing systems for querying nested data. In order to do this, a standard
benchmark for comparing parallel nested data querying systems should be chosen or
developed. This will provide more insights into the strengths and weaknesses of sNRC
compared to existing systems. Additionally, it will be helpful to determine how and
in which situations the formalisms that underlie sNRC can be used to an advan-
tage.
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Appendix A

Used sNRC equivalents of XMark
benchmark queries

In this appendix the used sNRC query equivalents for the XMark queries are shown.
These sNRC queries are evaluated on the XMark dataset converted to the sNRC data
model. Moreover we present the projection expressions used by the reference system,
and the projection expressions used by the improved system. The ’size’ annotation is
represented by a ’#’ and the input elements are annotated with a ’*’.

XMark Query 1

Return the name of the person with ID ‘person0".

XQuery

let $auction := doc("auction.xml") return
for $b in $auction/site/people/person[@id = "person0"]

return $b/name/text()

sNRC

{[b.2.[name].2 | b ∈ in.[site].2.[people].2.[person],b.2.[@id].2 .
= {{person0}}]}

Reference Projection Expressions

<IN>.[site].2.[people].2.[person]

Improved Projection Expressions

<IN>.[site].2.[people].2.[person]*.2.[name].2
<IN>.[site].2.[people].2.[person]*.2.[@id].2

XMark Query 5

How many sold items cost more than 40?
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Used sNRC equivalents of XMark benchmark queries

XQuery

let $auction := doc("auction.xml") return
count(
for $i in $auction/site/closed_auctions/closed_auction
where $i/price/text() >= 40
return $i/price

)

sNRC

˙size({[i | i ∈ in.[site].2.[closed_auctions].2.[closed_auction], i.2.[price].2≥ {{40}}]})

Reference Projection Expressions

<IN>.[site].2.[closed_auctions].2.[{closed_auction}]

Improved Projection Expressions

<IN>.[site].2.[closed_auctions].2.[closed_auction].2.[price]*#

XMark Query 6

How many items are listed on all continents?

XQuery

let $auction := doc("auction.xml") return
for $b in $auction//site/regions

return count($b//item)

sNRC

˙size({[b..[item] | b ∈ in.[site].2.[regions]]})

Reference Projection Expressions

<IN>.[site].2.[regions]..[item]

Improved Projection Expressions

<IN>.[site].2.[regions]..[item]*#

XMark Query 7

How many pieces of prose are in our database?

XQuery
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let $auction := doc("auction.xml") return
for $p in $auction/site
return
count($p//description)
+ count($p//annotation)
+ count($p//emailaddress)

sNRC

{[ ˙size(p.2..[description])+ ˙size(p.2..[annotation])

+ ˙size(p.2..[emailaddress]) | p ∈ in.[site]]}

Reference Projection Expressions

<IN>..[description]
<IN>..[emailaddress]
<IN>..[annotation]

Improved Projection Expressions

<IN>..[description]*#
<IN>..[emailaddress]*#
<IN>..[annotation]*#

XMark Query 8

List the names of persons and the number of items they bought.

XQuery

let $auction := doc("auction.xml") return
for $p in $auction/site/people/person
let $a :=
for $t in $auction/site/closed_auctions/closed_auction
where $t/buyer/@person = $p/@id
return $t

return <item person="{$p/name/text()}">{count($a)}</item>

sNRC

{[〈p.2.[name].2, ˙size({[t | t ∈ in.[site].2.[closed_auctions].2.[closed_auction],

t.2.[buyer].2.[@person].2 .
= p.2.[@id].2]})〉 | p ∈ in.[site].2.[people].2.[person]]}

Reference Projection Expressions

<IN>.[site].2.[closed_auctions].2.[closed_auction]
<IN>.[site].2.[people].2.[person]

Improved Projection Expressions

<IN>.[site].2.[closed_auctions].2.[closed_auction]*#
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<IN>.[site].2.[closed_auctions].2.[closed_auction]*#.2.[buyer].2.[@person].2
<IN>.[site].2.[people].2.[person]*.2.[name].2
<IN>.[site].2.[people].2.[person]*.2.[@id].2

XMark Query 9a

List the names of persons and the names of the items they bought in Europe.

XQuery

let $auction := doc("auction.xml") return
let $ca := $auction/site/closed_auctions/closed_auction return
let

$ei := $auction/site/regions/europe/item
for $p in $auction/site/people/person
let $a :=
for $t in $ca
where $p/@id = $t/buyer/@person
return
let $n := for $t2 in $ei where $t/itemref/@item = $t2/@id return $t2
return <item>{$n/name/text()}</item>

return <person name="{$p/name/text()}">{$a}</person>

sNRC

{[〈p.2.[name].2,{[{[t2.2.[name].2 | t2 ∈ in.[site].2.[regions].2.[europe].2.[item],

t2.2.[@id].2 .
= t.2.[itemre f ].2.[@item].2]} | t ∈ in.[site].2.[closed_auctions].2.[closed_auction]]} |

p ∈ in.[site].2.[people].2.[person]]}

Reference Projection Expressions

<IN>.[site].2.[closed_auctions].2.[closed_auction]
<IN>.[site].2.[people].2.[person]
<IN>.[site].2.[regions].2.[europe].2.[item]

Improved Projection Expressions

<IN>.[site].2.[closed_auctions].2.[closed_auction]*.2.[itemref].2.[@item].2
<IN>.[site].2.[closed_auctions].2.[closed_auction]*.2.[buyer].2.[@person].2
<IN>.[site].2.[people].2.[person]*.2.[name].2
<IN>.[site].2.[people].2.[person]*.2.[@id].2
<IN>.[site].2.[regions].2.[europe].2.[item]*.2.[name].2
<IN>.[site].2.[regions].2.[europe].2.[item]*.2.[@id].2

XMark Query 9b

This is a variant of XMark Query 9a (the original XMark Query 9) which introduces
a descendant (or sub-element) relationship for the closed auctions for additional com-
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plexity.
sNRC

{[〈p.2.[name].2,{[{[t2.2.[name].2 | t2 ∈ in.[site].2.[regions].2.[europe].2.[item]

t2.2.[@id].2 .
= t.2.[itemre f ].2.[@item].2]} | t ∈ in.[site]..[closed_auction]]} |

p ∈ in.[site].2.[people].2.[person]]}

Reference Projection Expressions

<IN>.[site]..[closed_auction]
<IN>.[site].2.[people].2.[person]
<IN>.[site].2.[regions].2.[europe].2.[item]

Improved Projection Expressions

<IN>.[site]..[closed_auction]*.2.[itemref].2.[@item].2
<IN>.[site]..[closed_auction]*.2.[buyer].2.[@person].2
<IN>.[site].2.[people].2.[person]*.2.[name].2
<IN>.[site].2.[people].2.[person]*.2.[@id].2
<IN>.[site].2.[regions].2.[europe].2.[item]*.2.[name].2
<IN>.[site].2.[regions].2.[europe].2.[item]*.2.[@id].2

XMark Query 10

List all persons according to their interest and use French markup in the result.

XQuery

let $auction := doc("auction.xml") return
for $i in
distinct-values($auction/site/people/person/profile/interest/@category)

let $p :=
for $t in $auction/site/people/person
where $t/profile/interest/@category = $i
return
<personne>
<statistiques>
<sexe>{$t/profile/gender/text()}</sexe>
<age>{$t/profile/age/text()}</age>
<education>{$t/profile/education/text()}</education>
<revenu>{fn:data($t/profile/@income)}</revenu>

</statistiques>
<coordonnees>
<nom>{$t/name/text()}</nom>
<rue>{$t/address/street/text()}</rue>
<ville>{$t/address/city/text()}</ville>
<pays>{$t/address/country/text()}</pays>
<reseau>
<courrier>{$t/emailaddress/text()}</courrier>
<pagePerso>{$t/homepage/text()}</pagePerso>
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</reseau>
</coordonnees>
<cartePaiement>{$t/creditcard/text()}</cartePaiement>

</personne>
return <categorie>{<id>{$i}</id>, $p}</categorie>

sNRC

{[〈i,{〈{personne},〈{statistiques},{〈{sexe}, t.2.[pro f ile].2.[gender].2〉,〈{age}, t.2.[pro f ile].2.[age].2〉,
〈{education}, t.2.[pro f ile].2.[education].2〉,〈{revenu}, t.2.[pro f ile].2.[@income].2〉}〉
〈{coordonnees},{〈{nom}, t.2.[name].2〉,〈{rue}, t.2.[address].2.[street].2〉,〈{ville}, t.2.[address].2.[city].2〉,
〈{pays}, t.2.[address].2.[country].2〉,〈{reseau},{〈{courrier}, t.2.[emailaddress].2〉,
〈{pagePerso}, t.2.[homepage].2〉〉}〉}〈{cartePaiement}, t.2.[creditcard].2〉〉}〉 |
i ∈ ˙set(in.[site].2.[people].2.[person].2.[pro f ile].2.[interest].2.[@category].2),
t ∈ in.[site].2.[people].2.[person], t.2.[pro f ile].2.[interest].2.[@category].2 .

= i]}

Reference Projection Expressions

<IN>.[site].2.[people].2.[person]

Improved Projection Expressions

<IN>.[site].2.[people].2.[person]*.2.[profile].2.[interest].2.[@category].2
<IN>.[site].2.[people].2.[person]*.2.[profile].2.[gender].2
<IN>.[site].2.[people].2.[person]*.2.[profile].2.[education].2
<IN>.[site].2.[people].2.[person]*.2.[profile].2.[age].2
<IN>.[site].2.[people].2.[person]*.2.[profile].2.[@income].2
<IN>.[site].2.[people].2.[person]*.2.[address].2.[city].2
<IN>.[site].2.[people].2.[person]*.2.[address].2.[street].2
<IN>.[site].2.[people].2.[person]*.2.[address].2.[country].2
<IN>.[site].2.[people].2.[person]*.2.[name].2
<IN>.[site].2.[people].2.[person]*.2.[emailaddress].2
<IN>.[site].2.[people].2.[person]*.2.[homepage].2
<IN>.[site].2.[people].2.[person]*.2.[creditcard].2

XMark Query 11

For each person, list the number of items currently on sale whose price does not exceed
0.02% of the person’s income.

XQuery

let $auction := doc("auction.xml") return
for $p in $auction/site/people/person
let $l :=
for $i in $auction/site/open_auctions/open_auction/initial
where $p/profile/@income > 5000 * exactly-one($i/text())
return $i

return <items name="{$p/name/text()}">{count($l)}</items>
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sNRC

{[〈p.2.[name].2, ˙size({[i | i ∈ in.[site].2.[open_auctions].2.[open_auction].2.[initial],

p.2.[pro f ile].2.[@income].2 > {5000∗ i.2}]})〉 | p ∈ in.[site].2.[people].2.[person]]}

Reference Projection Expressions

<IN>.[site].2.[people].2.[person]
<IN>.[site].2.[open_auctions].2.[open_auction]

Improved Projection Expressions

<IN>.[site].2.[people].2.[person]*.2.[profile].2.[@income].2
<IN>.[site].2.[people].2.[person]*.2.[name].2
<IN>.[site].2.[open_auctions].2.[open_auction].2.[initial]*#
<IN>.[site].2.[open_auctions].2.[open_auction].2.[initial]*#.2

XMark Query 12

For each richer-than-average person, list the number of items currently on sale whose
price does not exceed 0.02% of the person’s income.

XQuery

let $auction := doc("auction.xml") return
for $p in $auction/site/people/person
let $l :=
for $i in $auction/site/open_auctions/open_auction/initial
where $p/profile/@income > 5000 * exactly-one($i/text())
return $i

where $p/profile/@income > 50000
return <items person="{$p/profile/@income}">{count($l)}</items>

sNRC

{[〈p.2.[name].2, ˙size({[i | i ∈ in.[site].2.[open_auctions].2.[open_auction].2.[initial],

p.2.[pro f ile].2.[@income].2 > {5000∗ i.2}]})〉 | p ∈ in.[site].2.[people].2.[person],

p.2.[pro f ile].2.[@income].2 > {50000}]}

Reference Projection Expressions

<IN>.[site].2.[people].2.[person]
<IN>.[site].2.[open_auctions].2.[open_auction]

Improved Projection Expressions

<IN>.[site].2.[people].2.[person]*.2.[profile].2.[@income].2
<IN>.[site].2.[people].2.[person]*.2.[name].2
<IN>.[site].2.[open_auctions].2.[open_auction].2.[initial]*#
<IN>.[site].2.[open_auctions].2.[open_auction].2.[initial]*#.2
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XMark Query 13

List the names of items registered in Australia along with their descriptions.

XQuery

let $auction := doc("auction.xml") return
for $i in $auction/site/regions/australia/item
return <item name="{$i/name/text()}">{$i/description}</item>

sNRC

{[〈i.2.[name].2, i.2.[description].2〉 | i ∈ in.[site].2.[regions].2.[australia].2.[item]]}

Reference Projection Expressions

<IN>.[site].2.[regions].2.[australia].2.[item]

Improved Projection Expressions

<IN>.[site].2.[regions].2.[australia].2.[item]*.2.[name].2
<IN>.[site].2.[regions].2.[australia].2.[item]*.2.[description].2

XMark Query 14

Return the names of all items whose description contains the word ‘gold’.

XQuery

let $auction := doc("auction.xml") return
for $i in $auction/site//item
where contains(string(exactly-one($i/description)), "gold")
return $i/name/text()

sNRC

{[i.2.[name].2 | i ∈ in.[site].2..[item], ˙contains(i.2.[description].2,{gold})]}

Reference Projection Expressions

<IN>.[site].2..[item]

Improved Projection Expressions

<IN>.[site].2..[item]*.2.[name].2
<IN>.[site].2..[item]*.2.[description].2
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XMark Query 15

Print the keywords in emphasis in annotations of closed auctions.

XQuery

let $auction := doc("auction.xml") return
for $a in
$auction/site/closed_auctions/closed_auction/annotation/
description/
parlist/
listitem/
parlist/
listitem/
text/
emph/
keyword/
text()

return <text>{$a}</text>

sNRC

{[a | i ∈ in.[site].2.[closed_auctions].2.[closed_auction].2.[annotation].2
.[description].2.[parlist].2.[listitem].2.[parlist].2.[listitem].2.[emph].2.[keyword].2]}

Reference Projection Expressions

<IN>.[site].2.[closed_auctions].2.[closed_auction].2.[annotation].2.[description].2
.[parlist].2.[listitem].2.[parlist].2.[listitem].2.[text].2.[emph].2.[keyword]

Improved Projection Expressions

<IN>.[site].2.[closed_auctions].2.[closed_auction].2.[annotation].2.[description].2
.[parlist].2.[listitem].2.[parlist].2.[listitem].2.[text].2.[emph].2.[keyword].2*

XMark Query 16

Return the IDs of those auctions that have one or more keywords in emphasis.

XQuery

let $auction := doc("auction.xml") return
for $a in $auction/site/closed_auctions/closed_auction
where
not(
empty(
$a/annotation/description/parlist/listitem/
parlist/listitem/text/emph/
keyword/
text()

)
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)
return <person id="{$a/seller/@person}"/>

sNRC

{[a.2.[seller].2.[@person] | a ∈ in.[site].2.[closed_auctions].2.[closed_auction],

a.2.[annotation].2.[description].2.[parlist].2.[listitem].2.[parlist].2.[listitem].2.[emph].2.[keyword].2 .
= /0]}

Reference Projection Expressions

<IN>.[site].2.[closed_auctions].2.[closed_auction]

Improved Projection Expressions

<IN>.[site].2.[closed_auctions].2.[closed_auction]*.2.[annotation].2.[description]
.2.[parlist].2.[listitem].2.[parlist].2.[listitem].2.[text].2.[emph].2.[keyword].2

<IN>.[site].2.[closed_auctions].2.[closed_auction]*.2.[seller].2.[@person]

XMark Query 17

Which persons don’t have a homepage?

XQuery

let $auction := doc("auction.xml") return
for $p in $auction/site/people/person
where empty($p/homepage/text())
return <person name="{$p/name/text()}"/>

sNRC

{[p.2.[name].2 | p ∈ in.[site].2.[people].2.[person], p.2.[homepage].2 .
= /0]}

Reference Projection Expressions

<IN>.[site].2.[people].2.[person]

Improved Projection Expressions

<IN>.[site].2.[people].2.[person]*.2.[name].2
<IN>.[site].2.[people].2.[person]*.2.[homepage].2

XMark Query 20

Group customers by their income and output the cardinality of each group.

XQuery

let $auction := doc("auction.xml") return
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<result>
<preferred>
{count($auction/site/people/person/profile[@income >= 100000])}

</preferred>
<standard>
{
count(
$auction/site/people/person/
profile[@income < 100000 and @income >= 30000]

)
}

</standard>
<challenge>
{count($auction/site/people/person/profile[@income < 30000])}

</challenge>
<na>
{
count(
for $p in $auction/site/people/person
where empty($p/profile/@income)
return $p

)
}

</na>
</result>

sNRC

incomes = in.site.2.people.2.person.2.pro f ile.2.@income

{{〈{pre f erred}, ˙size({[a | a ∈ incomes.2,a≥ {{100000}}]})〉
〈{standard}, ˙size({[b | b ∈ incomes.2,a < {{100000}},a≥ {{30000}}]})〉
〈{challenge}, ˙size({[c | c ∈ incomes.2,c < {{30000}}]})〉
〈{na}, ˙size({[d | c ∈ incomes,c.2 .

= /0]})〉}}

Reference Projection Expressions

<IN>.[site].2.[people].2.[person]

Improved Projection Expressions

<IN>.[site].2.[people].2.[person]*#
<IN>.[site].2.[people].2.[person]*#.2.[profile].2.[@income].2
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Flink Execution Plans for sNRC
XMark Queries

In this Appendix the Apache Flink execution plans for the sNRC XMark queries from
chapter A are shown. These plans are used by Flink to execute the sNRC queries in a
distributed manner. The plans are generated by using Flink’s Plan Visualizer on JSON
exports of the Flink execution plans.

XMark Query 1

The Flink execution plan for the sNRC implementation of XMark Query 1 is shown in
Figure B.1.

Figure B.1: Flink Execution Plan for sNRC XMark Query 1

XMark Query 5

The Flink execution plan for the sNRC implementation of XMark Query 5 is shown in
Figure B.2.
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Figure B.2: Flink Execution Plan for sNRC XMark Query 5

XMark Query 6

The Flink execution plan for the sNRC implementation of XMark Query 6 is shown in
Figure B.3.

Figure B.3: Flink Execution Plan for sNRC XMark Query 6

XMark Query 7

The Flink execution plan for the sNRC implementation of XMark Query 7 is shown in
Figure B.4.

Figure B.4: Flink Execution Plan for sNRC XMark Query 7

86



Flink Execution Plans for sNRC XMark Queries

XMark Query 8

The Flink execution plan for the sNRC implementation of XMark Query 8 is shown in
Figure B.5.

Figure B.5: Flink Execution Plan for sNRC XMark Query 8

XMark Query 9

The Flink execution plan for the sNRC implementation of XMark Query 9 is shown in
Figure B.6.

Figure B.6: Flink Execution Plan for sNRC XMark Query 9

XMark Query 10

The Flink execution plan for the sNRC implementation of XMark Query 10 is shown
in Figure B.7.
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Figure B.7: Flink Execution Plan for sNRC XMark Query 10

XMark Query 11

The Flink execution plan for the sNRC implementation of XMark Query 11 is shown
in Figure B.8.

Figure B.8: Flink Execution Plan for sNRC XMark Query 11

XMark Query 12

The Flink execution plan for the sNRC implementation of XMark Query 12 is shown
in Figure B.9.

Figure B.9: Flink Execution Plan for sNRC XMark Query 12

XMark Query 13

The Flink execution plan for the sNRC implementation of XMark Query 13 is shown
in Figure B.10.

Figure B.10: Flink Execution Plan for sNRC XMark Query 13
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XMark Query 14

The Flink execution plan for the sNRC implementation of XMark Query 14 is shown
in Figure B.11.

Figure B.11: Flink Execution Plan for sNRC XMark Query 14

XMark Query 15

The Flink execution plan for the sNRC implementation of XMark Query 15 is shown
in Figure B.12.

Figure B.12: Flink Execution Plan for sNRC XMark Query 15

XMark Query 16

The Flink execution plan for the sNRC implementation of XMark Query 16 is shown
in Figure B.13.

Figure B.13: Flink Execution Plan for sNRC XMark Query 16

XMark Query 17

The Flink execution plan for the sNRC implementation of XMark Query 17 is shown
in Figure B.14.
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Figure B.14: Flink Execution Plan for sNRC XMark Query 17

XMark Query 20

The Flink execution plan for the sNRC implementation of XMark Query 20 is shown
in Figure B.15.

Figure B.15: Flink Execution Plan for sNRC XMark Query 20
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Appendix C

sNRC: NRC as a Data Analytics
Workflow Notation

NOTE: The work that is shown in this appendix is property of Jan Hidders and his
colleagues. This work on the Nested Relational Calculus for Semi-Structured data is
used as a basis for this thesis. Because it is work in progress that is not yet published,
this tidied up version is included as an appendix.

Goal of document

This is a working document that describes our investigations into the design of a data
analytics workflow language. The languages are based on well-known formalisms
such as NRC and formal versions of XQuery. The intent is to design a language
that (1) is well-understood in terms of semantics and expressive power, (2) can be
efficiently implemented specifically on back-ends offering large scale parallelised pro-
cessing and (3) allows the application of well-known optimisation techniques such as
cost-based query rewriting. Moreover, the language comes in different textual and
graphical notations that can be used for both theoretical analysis and workflow-like
graphical presentations of the analytical workflows.

The Underlying Data Model: Nested Values

To define the data model on which we will operate, we postulate the following sets and
basic concepts:

• C denotes the set of basic value constant denotations (like booleans, strings,
integers, etc.), B denotes the set of basic values, we distinguish one special
basic value constant denoted as 〈〉

• bags / multisets are denoted as {{1,1,2}}, the additive bag union is denoted as ],
we use {{ f (x̄) | ϕ(x̄)}} to denote bag comprehension. The empty bag is denoted
as /0.

• ordered pairs containing values x and y are denoted as 〈x,y〉
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• V denotes the set of nested values, which are bags of items, where items are
either (1) a basic value in B , (2) an ordered pair 〈v1,v2〉 where v1,v2 ∈ V . Note
that we do not allow bags of bags, and that tuples can contain only bags. We
explicitly allow heterogeneous bags, i.e., bags that contain elements of different
types. We will allow only finitely nested values, i.e., we assume V is the smallest
set that satisfies this definition.

– The ordered pair 〈x,y〉 can also be understood as a key-value pair, rather
then a small tuple. So JSON objects can be represented as bags of such
pairs. That captures the idea that field names are first class citizens in the
language.

– It may seem odd that we allow only bags in ordered pairs, but it is a con-
sequence of the “all expressions return a bag” principle that is followed in
this language and simplifies its semantics and allows us to ignore typing.

– As a shorthand we will let 〈〉 denote the pair 〈 /0, /0〉, and 〈v〉 the value 〈 /0,v〉.

NRC for semistructured data: sNRC

We give here a formal definition of the dialect of NRC we will study here.

Preliminary notions

We postulate the following sets and basic concepts:

• X denotes the set of variable names

• B denoting the set of basic (user-defined) functions, with each b ∈ B we associ-
ated a binary relation [[b]] that associates nested values with nested values

The syntax of sNRC

The syntax for the calculus over bags we intend to use:

E ::= in | X |C | 〈E,E〉 | E.1 | E.2 |
/0 | E ]E | {[E | X ∈ E, . . . ,X ∈ E]} |
B(E) | ˙set(E) | E .

= E.

Here in denotes the input value, X denotes variables, C basic value constants, {[e | ∆]}
denotes the flattening bag comprehension (i.e., it is a comprehension which addition-
ally flattens the result to avoid bags of bags), B the basic user-defined functions. The
function ˙set() eliminates duplicates and non-basic values. The expression e1

.
= e2

compares basic values and returns a bag containing as many occurrences of 〈〉 as there
are pairs of occurrences in e1 and e2, respectively, that represent the same basic value.
E.g., comparing the value {{1,2,2,3,3,4}} with {{2,2,3}} using the .

= operator results
in {{〈〉,〈〉,〈〉,〈〉,〈〉,〈〉}}.

We allow for denotations of values the same short-hands as for the values them-
selves: 〈〉 denotes the value 〈〉= 〈 /0, /0〉 and 〈e〉 denotes 〈e〉= 〈 /0,e〉. We let {[e | ]} also
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be simply denoted as {[e]}. We will use in the right-hand side of comprehensions the
short-hand (e1

.
= e2), z ∈ (e1

.
= e2) with z some fresh variable.

The ˙set() operator may seem weak, but does allow us to express duplicate elim-
ination as it happens in the relational model. For example, if R1 contains a bag of
pairs containing singleton basic values then the corresponding set can be expressed as
{[〈x,y〉 | x ∈ ˙set(r.1),y ∈ ˙set({[z.2 | z ∈ r,z.1 .

= x]})]}. Note that these expressions can
also be used to simulate reasoning in settings where the input contains no duplicates
and only singleton fields, by replacing the input relation R1 with this expression. If
this expression is called r′ we can determine if f (r)≡ g(r) for such R1 by determining
if f (r′)≡ f (r′).

The semantics of sNRC

To ensure the definedness of the result of each expression in a semistructured and
possibly untyped setting we will assume that all values, both inputs and outputs, are
bags. This is similar to the approach taken in XQuery. In fact the language is similar
to XQuery core as studied in terms of expressive power and evaluation complexity by
Koch (2006) and Benedikt (2009). Note that this means that the expression 12 in fact
denotes the bag {{12}} rather then the number 12. The rule of thumb for operators
that normally do not expect a bag is that they are mapped over the elements of the
bag. So e.1 in fact constructs a bag by iterating over each element from the result of
e and for each pair returning the first element. Also as in XQuery, the comprehension
automatically flattens the result to avoid the construction of bags directly nested inside
bags. So, for example {[{[5]} | x ∈ e]} is equivalent to {[5 | x ∈ e]} which returns a bag
containing only the number 5 and is of the size of the result of e. Indeed {{e}} is always
equivalent to e. Consequently the expressions {[1]} and 1 both denote the value {{1}},
and the expressions 1]2 and {[1]}]{[2]} both denote {{1,2}}.

The semantics is defined in terms of propositions of the form Γ ` e⇒ v where
Γ is variable binding, i.e., a function that maps variable names to items, e an NRC
expression and v a bag of nested values that represents the result of the evaluation of
e under Γ. Note that Γ maps variable names to items, rather then nested values, i.e.,
variables are bound to basic values and ordered pairs but not to bags. This is done
for the sake of simplicity as in this research we mostly use variables to iterate over
the elements of a bag. Moreover, assigning a bag b to a variable x can be simulated
by assigning the item 〈 /0,b〉 and everywhere that x occurs freely in the expression
replacing it with x.2.
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Γ ` x⇒{{Γ(x)}} Γ ` c⇒{{c}}
Γ ` e1⇒ v2 Γ ` e2⇒ v2

Γ ` 〈e1,e2〉 ⇒ {{〈v1,v2〉}}

Γ ` e⇒ v

Γ ` e.i⇒{{u | 〈w1,w2〉 ∈ v,u ∈ wi}} Γ ` /0⇒ /0

Γ ` e1⇒ v Γ ` e2⇒ w

Γ ` e1] e2⇒ v]w

Γ ` e⇒ v

Γ ` {[e |]}⇒ v

Γ ` e2⇒{{v1, . . . ,vm}} ∀m
i=1(Γ[x 7→vi] ` {[e1 | ∆]}⇒ wi)

Γ ` {[e1 | x ∈ e2,∆]}⇒ ]m
i=1wi

Γ ` e⇒ v (v,w) ∈ [[b]]

Γ ` b(e)⇒ w

Γ ` e⇒ v

Γ ` ˙set(e)⇒{x | x ∈ v,x ∈ B}

Γ ` e1⇒ v Γ ` e2⇒ w

Γ ` e1
.
= e2⇒{{〈〉 | c1 ∈ v,c2 ∈ w,c1 = c2,c1 ∈ B}}

Note that the iterators in the comprehension iterate over all the elements of a bag.
The semantics of an sNRC expression can be interpreted as a total function that maps
variable bindings to a nested values, presuming that all user-defined functions are also
total functions that map nested values to nested values.

NRA for semistructured data: sNRA

We give here a formal definition of the dialect of NRA that is the algebraic counterpart
of sNRC.

The syntax of sNRA

As an algebraic counterpart of sNRC we present sNRA. It has the following syntax:

F ::= id | λC | F ◦F | λ〈F,F〉 | π1 | π2 |
λ

/0 | λ] | fmap(F) | λ× | B | ˙set | λ .
=.

Note that we annotate some constructs with λ to indicate they denote functions rather
then values.

The semantics of sNRA

The semantics of the algebra is defined by the following rules. They define the propo-
sition (x,y) ∈ [[e]] which denotes that the function associated with e maps the value x
to the value y.
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x ∈ V
(x,x) ∈ [[id]]

x ∈ V
(x,c) ∈ [[λc]]

(x,y) ∈ [[ f ]] (y,x) ∈ [[g]]

(x,z) ∈ [[g◦ f ]]

(x,y) ∈ [[ f ]] (x,z) ∈ [[g]]

(x,{{〈y,z〉}}) ∈ [[λ〈 f ,g〉]]
x ∈ V y = {{vi | 〈v1,v2〉 ∈ x}}

(x,y) ∈ [[πi]]

x ∈ V
(x, /0) ∈ [[λ /0]]

x ∈ V y = {{z | 〈u,v〉 ∈ x,z ∈ (u] v)}}
(x,y) ∈ [[λ]]]

x ∈ V y = {{v | z ∈ x,({{z}},u) ∈ [[ f ]],v ∈ u}}
(x,y) ∈ [[fmap( f )]]

x ∈ V y = {{〈{{s}},{{t}}〉 | 〈u,v〉 ∈ x,s ∈ u, t ∈ v}}
(x,y) ∈ [[λ×]]

x ∈ V y = {z | z ∈ x,z ∈ B}
(x,y) ∈ [[ ˙set]]

x ∈ V y = {{〈〉 | 〈u,v〉 ∈ x,s ∈ u, t ∈ v,s = t,s ∈ B}}
(x,y) ∈ [[λ

.
=]]

Note that no rule is specified for basic functions in B since their semantics was
already postulated.

The relationship between sNRA and sNRC

There is a direct relationship between NRA and NRC in expressive power. To illustrate
this we show that they can be mapped to each other.

Mapping sNRA to sNRC

Each sNRA expression can be represented by an sNRC expression with a single special
free variable in that represents the input value, and vice versa. We let e[x/e′] denote the
expression e with all free occurrences of x replaced with e′.

M(id) = in
M(λc) = c
M(g◦ f ) = {[M(g)[in/x] | x ∈M( f )]}
M(λ〈 f ,g〉) = 〈M( f ),M(g)〉
M(πi) = in.i
M(λ /0) = /0

M(λ]) = in.1] in.2
M(fmap( f )) = {[M( f )[in/x] | x ∈ in]}
M(λ×) = {[〈y,z〉 | x ∈ in,y ∈ x.1,z ∈ x.2]}
M(b) = b(in)
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M( ˙set) = ˙set(in)
M(λ .

=) = (in.1 .
= in.2)

Mapping sNRC to sNRA

We show that each sNRC expression with a single free variable in can be represented
by an sNRA expression:

M′(in) = id
M′(c) = λc
M′(〈e1,e2〉) = λ〈M′(e1),M′(e2)〉
M′(e.i) = πi ◦M′(e)
M′( /0) = λ /0

M′(e1] e2) =
λ]◦ λ〈M′(e1),M′(e2)〉

M′({[e |]}) = M′(e)
M′({[e | x ∈ e′]}) = fmap(M′(e[in/in.1,x/in.2]))◦ λ×◦ λ〈id,M′(e′)〉
M′({[e | x ∈ e′,∆]}) = M′({[{[e | ∆]} | x ∈ e′]})
M′(b(e)) = b◦M′(e)
M′( ˙set(e)) = ˙set◦M′(e)
M′(e1

.
= e2) =

λ .
=◦ λ〈M′(e1),M′(e2)〉

A note on n-ary functions

In the previous setting we used sNRA and sNRA to define unary functions, i.e., func-
tions with one input parameter, but we can easily interpret these functions also as n-ary
functions for some n as follows: if we interpret f : V → V as n-ary then we get the
function f [n] : V n→V such that f [n](v1, . . . ,vn)= f ({{〈v1,{{〈v2, . . .{{〈vn, /0〉}} . . .〉}}〉}}).
And, vice versa, if we take an n-ary function f [n] then we can interpret it as a unary
function f which is defined such that f (v) = f [n](v.1,v.2.1, ...,v(.2)n−1.1).

It follows that we can view sNRC and sNRA also as definition languages for n-
ary functions. In that case the notion of semantical equivalence changes somewhat
since the n-ary interpretation only considers some parts of the input. However, we
can define it in terms of the original notion of semantical equivalence. For that we
introduce a special short-hand in sNRC denoted as in[n], which is defined by induction
on n such that (1) in[0] = /0 and (2) in[n+1] = 〈in.1,(in[n])[in/in.2]〉. For example, in[3] =
〈in.1,〈in.2.1,〈in.2.2.1, /0〉〉〉. Informally this function interprets the input as a tuple of
n elements and projects on those. We now say that an sNRC expression e is an n-ary
expressions if it holds that e[in/in[n]] ≡ e.

Likewise for sNRA we can define the corresponding projection function id[n] which
is defined by induction on n such that (1) id[0] = λ /0 and (2) id[n+1] = λ〈π1, id[n] ◦π2〉.
For example, id[3] = λ〈π1,

λ〈π1,
λ〈π1,

λ /0〉 ◦π2〉 ◦π2〉. Then, for an sNRA expression f
we say it is an n-ary function if it holds that f ◦ id[n] ≡ f .

When defining n-ary functions in sNRC we will adopt the convention to let ini

with i ≤ n denote the i’th input value. This is essentially a syntactic short-hand for
in(.2)i−1.1. We will from now on assume that all user-define functions are n-ary, and
the notation b(e1, . . . ,en) will be used to denote the passing of n parameters to function
b.
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Theorem C.0.1 (n-ary functions in sNRC). For every n-ary function in sNRC there is
an equivalent sNRC function that uses no in but only ini for i≤ n.

A graphical notation for sNRC/sNRA

We introduce a graphical notation called DAWN to represent the n-ary functions that
can be defined by sNRC and sNRA. The general notation is the usual workflow style
as is shown for example in Figure C.1. Every workflow has zero or more input ports,
and exactly one output port. If a port has multiple outgoing edges it means the output
is copied for each output edge. If an input port has multiple incoming edges, it means
all the inputs are combined with an additive bag union. So the input of h is the bag
union of the output of f and g. Every output port needs to have at least one outgoing
edge, i.e., the result of every component must be used somewhere. The input ports
of the whole workflow have zero or more outgoing edges. So not all inputs must
be necessarily used. The output port of the whole workflow must have at least one
incoming edge, or it will not have a defined value. The workflow must be acyclic, i.e.,
if we consider each component as a single node, then the connecting edges do not form
a directed cycle.

g

f i

h

Figure C.1: General workflow notation

We will define the semantics of workflows in terms of sNRC expressions denoting
n-ary functions, and so do not use in but do use ini. Consider the example in Fig-
ure C.1. Assuming that we have sNRC expressions e f , eg, eh and ei for the correspond-
ing components, then the semantics of the whole workflow is given by {[(xi.2] xh.2) |
x f ∈ 〈 /0,e f (in1, in2)〉,xg ∈ 〈 /0,eg(in2)〉,xi ∈ 〈 /0,〈 /0,ei()〉,xh ∈ 〈 /0,eh(x f .2] xg.2)〉〉]}. Here
expressions of the form e(e1, . . . ,e2) are a short-hand for e[in1/e1,...,inn/en]. Note that if
we do not wrap the results of the components in a pair, they will be iterated over rather
then assigned as a whole to the iterating variable.

We of course allow the workflows to be recursively nested, so a component in the
workflow can itself be again a complex workflows.

A special feature is that input ports of a component can be marked as iterating,
which is indicated by a star, as is shown in Figure C.2. The meaning is that for these
ports the incoming bags are iterated over, i.e., the function is applied to each ele-
ment of the bag (wrapped as a singleton bag). If multiple ports are marked, then all
combinations of the elements are taken. So in the figure the computed function is
{[e f (x,y, in3) | x ∈ in1,y ∈ in2]}.
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f*

*

Figure C.2: Iterating input ports

The primitive components we need to represent the functions in sNRC and sNRA
are shown in Figure C.3. They consist of components for: (1) constants c, (2) the pair
constructor, (3) the projection operators, (4) the empty bag, (5) the basic value equality
operator, (6) user-defined functions and (7) the set operator that returns a set of basic
values.

c <.,.> .1 .2

∅ = setb

Figure C.3: Primitive workflow components

From the previous the following will be clear.

Theorem C.0.2. For every DAWN workflow with n input ports there is an equivalent
n-ary sNRC expression.

The converse also holds.

Theorem C.0.3. For every n-ary sNRC expression there is an equivalent DAWN work-
flow with n input ports.

The mapping is illustrated in Figure C.4.
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1

n

i

(1)

c

(2) (3)

<.,.>

e2

e1

.ie

(4)

∅

(5) (6)

e2

e1

(7)

e[x/id3]
*

e’

(8)

be2

e1

e3

(9)

sete

(10)

=

e2

e1

Figure C.4: Mapping n-ary sNRC expressions to DAWN workflows
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Appendix D

Used sNRC equivalents of XMark
benchmark queries

In this appendix we show various UML diagrams of the sNRC - Flink reference and
sNRC - Flink improved system.

Data Model

This UML describes the structure of the sNRC Data Model.

SNRCData

SNRCTuple

1

0..*

<<abstract>>

SNRCType

SNRCString

<<Interface>>

SNRCNumeric

1

SNRCInt

SNRCBoolean

SNRCDouble

compareTo(o : SNRCData) : Int

1

2

convertToNumeric : void

<<Interface>>

WritableComparable

SNRCBag

items : List[SNRCData]

items : List[DawnData]items : List[DawnData]items : List[DawnData]items : List[DawnData]

items : List[DawnData]

Figure D.1: UML Diagram of the Data Model package
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Reference Parallel sNRC Architecture

This UML describes the most important classes of the reference parallel sNRC archi-
tecture that is used to execute the XMark Benchmark queries.

Figure D.2: UML Diagram of core classes of the reference parallel sNRC system

Improved Parallel sNRC Architecture

This UML describes the most important classes of the improved parallel sNRC ar-
chitecture that is used to execute the XMark Benchmark queries. The static sNRC
query analysis, improved loading algorithm and nested data parser interface and XML
implementation have been added.
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Figure D.3: UML Diagram of core classes of the improved parallel sNRC system
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Appendix E

Complete Experiment Results

This appendix shows the complete list of results of the evaluation of the reference
and improved parallel sNRC systems. This is the full list of results after pruning and
averaging the results to increase reliability as described in Chapter 5. All displayed
results are runtimes in milliseconds.

E.1 Local Single Node Experiment Results

E.1.1 Reference System Results

Table E.1: Local Single Node results for the reference system. The first column shows
the dataset size. The other columns show the runtime in milliseconds for that specific
query.

XMark 1 Xmark 5 Xmark 6 Xmark 7 Xmark 8 Xmark 9a Xmark 9b Xmark 10
1GB 4042 3343 4862 4786 21187 43484 42301 67373
2GB 8337 6784 9972 9733 50245 84872 85751 151911
4GB 17695 15603 20116 20326 91559 159466 161287 288895
8GB 44718 37596 46016 46738 183460 334008 339600 588333

Xmark 11 Xmark 12 Xmark 13 Xmark 14 Xmark 15 Xmark 16 Xmark 17 Xmark 20
1GB 11643 8615 6082 12468 3102 4389 4616 12226
2GB 24114 19306 11333 24166 6017 8576 8770 22455
4GB 59788 46074 22591 45805 14443 18720 18600 56160
8GB 173551 128133 49248 89094 38750 45973 45338 103397

E.1.2 Improved System Results
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Table E.2: Local Single Node results for the improved system. The first column shows
the dataset size. The other columns show the runtime in milliseconds for that specific
query.

XMark 1 Xmark 5 Xmark 6 Xmark 7 Xmark 8 Xmark 9a Xmark 9b Xmark 10
1GB 4692 4107 3295 17006 14471 18269 33636 67870
2GB 9465 7928 6302 33952 26321 33462 62108 145606
4GB 20390 18137 14832 61584 53829 67846 122786 287615
8GB 46426 42139 40068 117313 109583 142949 243515 573438

Xmark 11 Xmark 12 Xmark 13 Xmark 14 Xmark 15 Xmark 16 Xmark 17 Xmark 20
1GB 10724 9654 6023 30852 4097 5016 5242 6626
2GB 20831 17972 11964 57167 7710 9009 9534 12070
4GB 42786 37713 21529 101601 17465 19926 19965 25239
8GB 98735 82379 53135 199721 43876 45147 47228 53795
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E.2 Cluster Experiment Results

E.2.1 Reference System Results

Table E.3: Cluster results for the reference system. The first column shows the number
of nodes and dataset size. The other columns show the runtime in milliseconds for that
specific query and configuration.

XMark 1 Xmark 7 Xmark 8 Xmark 9a Xmark 9b Xmark 15
1 Node - 1GB 6835 8923 17946 16636 17104 6719
1 Node - 2GB 13861 16777 32686 29958 28623 13118
1 Node - 4GB 24616 41178 76656 61443 88272 23549
1 Node - 8GB 51430 89719 149222 117384 165534 47961

2 Nodes - 1GB 4742 7210 13595 14007 17224 4349
2 Nodes - 2GB 7378 11601 28985 24864 29884 7319
2 Nodes - 4GB 13406 17653 35542 34740 30653 13716
2 Nodes - 8GB 26295 43750 88442 82340 92195 24478
2 Nodes - 18GB 51395 83078 169541 126964 181264 48426

4 Nodes - 1GB 3381 5998 13055 12738 16105 3052
4 Nodes - 2GB 6112 10550 17327 20811 25442 5372
4 Nodes - 4GB 8180 15334 29222 26834 36885 7597
4 Nodes - 8GB 16428 28734 54597 42598 59144 15024
4 Nodes - 18GB 26171 39273 86007 61716 81434 26510
4 Nodes - 36GB 52651 92128 171340 128514 178411 51885

8 Nodes - 1GB 3911 5914 15243 13249 14825 3002
8 Nodes - 2GB 5468 7870 16123 16697 19675 5452
8 Nodes - 4 GB 6368 9455 18822 19632 22842 5274
8 Nodes - 8 GB 10592 18018 35916 35331 45748 9910
8 Nodes - 18 GB 15018 26100 88156 61706 69081 16666
8 Nodes - 36 GB 29903 57243 120306 100575 107613 27637
8 Nodes - 71 GB 55458 83370 177746 130676 177944 53044

16 Nodes - 1 GB 2782 4429 12549 11460 12673 2921
16 Nodes - 2 GB 4160 9352 16970 15161 18821 5135
16 Nodes- 4 GB 5863 8847 17158 15912 20592 5605
16 Nodes - 8 GB 7777 15100 27200 24286 32119 8711
16 Nodes - 18 GB 9880 17296 36242 36679 42786 9961
16 Nodes - 36 GB 18768 35890 62919 70939 88734 18832
16 Nodes - 71 GB 33424 54625 112265 114826 115224 31015
16 Nodes - 141 GB 66989 104189 202409 144248 205242 59066
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Table E.4: Cluster results for the reference system when only reading the input data.
The first column shows the number of nodes and dataset size. The other columns show
the runtime in milliseconds for that specific query and configuration.

XMark 1 Xmark 7 Xmark 8 Xmark 9a Xmark 9b Xmark 15
1 Node 1 6731 7760 14201 21424 21264 6730
1 Node 2 GB 13235 14647 27941 41649 42103 12175
1 Node 4 GB 25918 27477 52561 78470 79334 25578
1 Node 8 GB 47165 50984 98222 140735 150299 47520

2 Nodes - 1 GB 4987 4962 8787 13848 13684 3654
2 Nodes - 2 GB 7420 9628 14590 22043 20750 6078
2 Nodes - 4 GB 14395 16045 28344 42431 41424 12249
2 Nodes - 8 GB 24158 30760 53461 78541 82280 24650
2 Nodes - 18 GB 49421 55848 102026 150290 149461 47343

4 Nodes - 1 GB 4172 4236 5805 9369 9899 2601
4 Nodes - 2 GB 5205 5940 10571 18734 18396 5241
4 Nodes - 4 GB 7829 8593 14942 22345 22629 7410
4 Nodes - 8 GB 14870 16967 30060 43530 45893 13517
4 Nodes - 18 GB 29366 32672 62387 93165 92181 28446
4 Nodes - 36 GB 50896 59799 107314 160175 161022 51321

8 Nodes - 1 GB 3565 3455 4825 7431 8027 2360
8 Nodes - 2 GB 5882 5043 8828 16908 16510 4426
8 Nodes - 4 GB 5351 6125 9747 15234 15890 4560
8 Nodes - 8 GB 9735 10602 19455 29932 30263 9188
8 Nodes - 18 GB 14413 17093 29856 46050 47461 14851
8 Nodes - 36 GB 28348 35965 60819 96126 96266 26419
8 Nodes - 71 GB 47210 56919 98607 147355 146021 46258

16 Nodes - 1 GB 3101 4808 4529 7536 7735 2318
16 Nodes - 2 GB 4225 5461 6815 11793 13365 3768
16 Nodes - 4 GB 4800 5331 8279 14337 16060 4611
16 Nodes - 8 GB 8568 8840 17203 29478 28709 7811
16 Nodes - 18 GB 9779 11513 18393 30300 31552 8555
16 Nodes - 36 GB 18946 22571 42280 63204 63876 17551
16 Nodes - 71 GB 29009 45042 66156 93867 92595 29241
16 Nodes - 141 GB 66514 67143 134152 159053 163847 64737
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E.2.2 Improved System Results

Table E.5: Cluster Results for the Improved system. The first column shows the num-
ber of nodes and dataset size. The other columns show the runtime in milliseconds for
that specific query and configuration.

XMark 1 Xmark 7 Xmark 8 Xmark 9a Xmark 9b Xmark 15
1 Node - 1GB 7483 8591 75767 59466 60666 6440
1 Node - 2GB 13086 16868 163870 117447 93435 13110
1 Node - 4GB 27239 29513 239098 137480 110573 24687
1 Node - 8GB 48257 48567 237444 241430 216246 46190

2 Nodes - 1GB 4357 4904 29504 26741 25948 3700
2 Nodes - 2GB 7661 8442 56015 48062 47299 6807
2 Nodes - 4GB 14116 17995 172470 122030 121151 13044
2 Nodes - 8GB 25495 30123 312230 204755 180421 23887
2 Nodes - 18GB 49567 49378 318017 226881 234393 47879

4 Nodes - 1GB 3115 3571 16794 15643 15787 2694
4 Nodes - 2GB 5996 6507 47422 38458 38845 5423
4 Nodes - 4GB 8104 9406 57316 45713 46879 7633
4 Nodes - 8GB 14924 19161 169870 123493 130968 13470
4 Nodes - 18GB 26362 29577 243453 173020 171645 26195
4 Nodes - 36GB 54629 62432 547970 389840 373796 48949

8 Nodes - 1GB 3672 4107 16032 15592 17848 2880
8 Nodes - 2GB 4692 5629 26955 28212 28160 4723
8 Nodes - 4 GB 5888 6915 47761 41917 41506 4947
8 Nodes - 8 GB 8769 10705 77807 65350 62008 9862
8 Nodes - 18 GB 14641 21290 185936 134958 133790 14848
8 Nodes - 36 GB 28562 35710 294355 195261 210531 29790
8 Nodes - 71 GB 58407 67898 530046 389219 385334 58118

16 Nodes - 1 GB 2450 3442 13605 13006 11598 2454
16 Nodes - 2 GB 3837 6019 24231 22191 23659 4051
16 Nodes- 4 GB 7528 6003 31192 29525 31333 5236
16 Nodes - 8 GB 7884 9439 75124 56287 58596 9589
16 Nodes - 18 GB 12872 12923 99406 86769 86823 11174
16 Nodes - 36 GB 17394 27052 199082 137588 149391 18436
16 Nodes - 71 GB 31628 41952 293738 191831 192626 29981
16 Nodes - 141 GB 70057 97524 678003 425385 423332 70002
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Table E.6: Cluster results for the improved system when only reading the input data.
The first column shows the number of nodes and dataset size. The other columns show
the runtime in milliseconds for that specific query and configuration.

XMark 1 Xmark 7 Xmark 8 Xmark 9a Xmark 9b Xmark 15
1 Node - 1 GB 9315 13401 16861 24625 44664 9852
1 Node - 2 GB 13974 18075 29110 42985 58736 13787
1 Node - 4 GB 25067 42739 50629 81433 161987 25330
1 Node - 8 GB 48995 57055 96840 149685 192287 47010

2 Nodes - 1 GB 4459 5298 8016 12080 18747 3924
2 Nodes - 2 GB 7814 14567 15444 24324 56356 7120
2 Nodes - 4 GB 13774 22770 26644 42795 87305 12858
2 Nodes - 8 GB 25823 43851 49603 76879 177537 24868
2 Nodes - 18 GB 50111 69535 101404 150758 251645 49724

4 Nodes - 1 GB 5652 5359 5971 9807 18419 2832
4 Nodes - 2 GB 5424 7471 9605 14709 26789 5056
4 Nodes - 4 GB 8618 14946 17342 26630 52369 7866
4 Nodes - 8 GB 15319 21927 30483 47823 74155 15733
4 Nodes - 18 GB 25884 33404 50616 77667 109401 23946
4 Nodes - 36 GB 50521 73277 98059 151046 262492 47824

8 Nodes - 1 GB 5294 4745 5424 9534 16234 2661
8 Nodes - 2 GB 8565 7875 8640 15088 25526 4350
8 Nodes - 4 GB 6532 8944 10253 16480 29598 5495
8 Nodes - 8 GB 9715 17069 19793 31407 57385 9607
8 Nodes - 18 GB 14032 28237 28909 44257 101685 14239
8 Nodes - 36 GB 27515 49949 55859 86551 184481 27426
8 Nodes - 71 GB 52739 101699 99441 164553 356284 56792

16 Nodes - 1 GB 5619 6363 5001 8178 15682 2527
16 Nodes - 2 GB 6849 8819 8853 13310 27492 3909
16 Nodes - 4 GB 6667 8440 9529 15595 30059 5004
16 Nodes - 8 GB 8950 15901 17623 26999 55282 8655
16 Nodes - 18 GB 10408 20815 20683 32217 70340 10444
16 Nodes - 36 GB 18424 30808 36978 53658 105083 16762
16 Nodes - 71 GB 29999 50670 62744 90165 179554 30104
16 Nodes - 141 GB 67142 98450 137025 195959 349166 63314
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