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Abstract
In this paper we present a procedure to automatically design and verify the local behavior
of robots with highly limited cognition. All robots are: anonymous, homogeneous, non-
communicating, memoryless, reactive, do not know their global position, do not have global
state information, and operate by a local clock. They only know: (1) the relative location of
their neighbors within a short range and (2) a common direction (North). We have developed
a procedure to generate a local behavior that allows the robots to self-organize into a desired
global pattern despite their individual limitations. This is done while also avoiding collisions
and keeping the coherence of the swarm at all times. The generated local behavior is a
probabilistic local state-action map. The robots follow this stochastic policy to select an
action based on their current perception of their neighborhood (i.e., their local state). It is
this stochasticity, in fact, that allows the global pattern to eventually emerge. For a generated
local behavior, we present a formal proof procedure to verify whether the desired pattern
will always eventually emerge from the local actions of the agents. The novelty of the proof
procedure is that it is primarily local in nature and focuses on the local states of the robots
and the global implications of their local actions. A local approach is of interest to reduce the
computational effort as much as possible when verifying the emergence of larger patterns.
Finally, we show how the behavior could be implemented on real robots and investigate this
with extensive simulations on a realistic robot model. To the best of our knowledge, no other
solutions exist for robots with such limited cognition to achieve this level of coordination
with proof that the desired global property will emerge.

Keywords Pattern formation · Emergence · Self-organization · Formal verification ·
Liveness · Safety · Robot · Swarm

1 Introduction

The objective of swarm robotics is to enable several robots to collaborate toward a common
goal. The goal of pattern formation, which is when the swarm must form a desired spatial
configuration, has been a topic of significant attention with many applications for aerial
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robots (Achtelik et al. 2012; Saska et al. 2016), underwater robots (Joordens and Jamshidi
2010), satellites (Engelen et al. 2011; Verhoeven et al. 2011), and more. For safety reasons,
the behavior should also ensure that collision paths are avoided and that the swarm remains
coherent (i.e., the swarm does not break apart into multiple groups). Our principal interest
lies in developing a simple behavior to achieve pattern formation with a swarm of robots
with extremely low levels of cognition.

One relevant example of an extremely limited robot is miniature quad-rotors, henceforth
referred to asmicro air vehicles (MAVs). They are characterized by lowmemory and process-
ing capabilities due to their increasingly small size and mass (McGuire et al. 2016). When
operating in closed environments, where Global Navigation Satellite Systems (GNSSs) may
be unavailable, they should coordinate only using the relative position of their neighbors, of
which they may also be unable to discern the identity, as for instance in the system studied
by Faigl et al. (2013) or by Stegagno et al. (2016). Furthermore, intra-swarm communi-
cation may prove itself challenging to achieve in practice and is best kept at a minimum
(Hamann 2018). For example, our recent experiments showed how a small group of three
MAVs can already begin to suffer from relatively limited rate of communication and grow-
ing interference (Coppola et al. 2018; van der Helm et al. 2018). Finally, in our pursuit of a
minimalist swarm, we also expect all MAVs to be functionally homogeneous without pre-
allocated tasks. Mesbahi and Egerstedt (2010) refer to this as “assignment-free.” Accepting
all these limitations leads us to robots that have no knowledge of their surroundings except (in
what we assume to be a minimal requirement for collaboration) the current relative location
of their closest neighbors. The motivation behind this work was thus to determine a local
behavior with which a swarm of robots with such minimal knowledge could nevertheless be
able to both handle safety critical goals (i.e., collision avoidance and swarm coherence) as
well as systematically self-organize into a pattern. Moreover, we aimed for a simple reactive
behavior that could be concisely stored and processed even by the least capable of robots.

There are two fundamental challenges in the development of swarm behavior for such
limited robots:

1. the top-down automatic development of local rules from a global goal,
2. the bottom-up verification of whether the local rules will lead to the desired global goal.

The two main contributions in this paper directly address these two challenges. For our very
limited robots, we automatically define the local rules that they must follow in order to form
a pattern. As it will be seen, these rules are presented as a probabilistic state-action map that
can be automatically generated with a few steps. This is the first main contribution. We then
provide a method to automatically verify whether the swarm will always eventually form the
pattern, or whether certain other spurious results may occur. The proof procedure has the
novel aspect that it focuses on the analysis of local states of the agents, rather than all global
states of the swarm, in order to determine the successful formation of the global desired
pattern from any other initial pattern. This allows for computation tractability and constitutes
the second main contribution.

The generated local behavior of the robots is defined by a probabilistic local state-action
map. The local state of a robot is simply a discretized view of its current neighborhood, and
the actions are directions that it can move toward. This local state-action map can easily be
developed to simultaneously handle collision avoidance, avoidance of swarm separation, and
formation of a desired pattern. The swarm acts entirely stochastically only based on this. All
robots have the same state-actionmap. As the robots operate using local clocks, any robot can
move at any time. When it does, it uses the probabilistic state-action map to stochastically
select its next action out of the available options (with equal probability). The global pattern
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emerges from this stochastic process once all robots find themselves in local states in which
they cannot select any action to move anymore. This stochastic behavior means that the same
pattern will be formed in several different ways even when starting from the same initial
conditions, and how the pattern is formed is left to the robots. However, although it may not
necessarily be important how the goal is reached, it is important that it is reached. This is
the reason why we present an automatic verification procedure to verify whether the local
behaviors will always eventually lead to the intended higher-level behavior.

This paper is organized as follows. We first define the problem in Sect. 2. In Sect. 3, we
review other solutions to pattern formation and we explain the context and novelty of our
contributions. The methodology is then detailed in Sect. 4. Here, we explain how to generate
the probabilistic state-action map and we present the proof procedure to check whether the
desired pattern will always eventually emerge. We then perform extensive simulations of an
increasing level of fidelity. In this way, we explore different aspects of the behavior, from
the more fundamental to the more practical. Specifically, we start with an idealized system
operating on a discrete grid in discrete time steps (Sect. 5), moving on to accelerated particles
in continuous space, and finally to simulated MAVs with a realistic quad-rotor model and
sensor noise (Sect. 6). The insights gathered are further discussed in Sect. 7. Finally, Sect. 8
provides concluding remarks and summarizes future research directions.

2 Problem definition, constraints, and assumptions

The problem tackled in this paper is for a swarm of robots to reshuffle into a pattern while
avoiding collisions and group separation. In this work, a pattern P is an anonymous spatial
configuration of robots on a 2D planewith specific relative positions to one another.1 Let Pdes
be the desired final pattern that the swarm settles in. Considering our interest in robotics, Pdes
must be achieved while also avoiding collision paths and swarm separation. More formally,
we are interested in achieving a behavior that can ensure that the swarm is safe (Definition 1)
and live (Definition 2).

Definition 1 The swarm is safe if neither of the following events occurs: 1) a collisionbetween
two or more robots, 2) the swarm disconnects into two or more groups.

Definition 2 The swarm is live if, starting from any initial pattern P0 �= Pdes , it will always
eventually form the desired pattern Pdes , where the only restriction on P0 and Pdes is that
they have a connected sensing topology.

The robots have the following constraints:

C1 The robots are homogeneous (all entirely identical).
C2 The robots are anonymous (they cannot sense each other’s identity).
C3 The robots are reactive (they only select an action based on their current state).
C4 The robots are memoryless (they do not remember past states).
C5 No robot can be a leader or seed.
C6 The robots cannot communicate with each other.
C7 The robots only have access to their local state.
C8 The robots do not know their global position.
C9 The robots exist in an unbounded space.

1 This definition of pattern is adapted from the definition used in the context of cellular automata by Sapin
(2010).

123



62 Swarm Intelligence (2019) 13:59–94

C10 Each robot can only sense the relative location of its neighbors up to a short range.

The following assumptions are made:

A1 The robots all have knowledge of a common direction (i.e., North).
A2 The robots operate on a 2D plane.
A3 When a robot senses the relative location of a neighbor, it can sense it with enough

accuracy and update frequency to establish if a neighbor is moving or standing still
(e.g., hovering).

A4 P0, the initial pattern formed by the robots, has a connected sensing topology.

The rationale behind each assumption is:

– Assumption A1 is a typical assumption in several swarm designs (Ji and Egerstedt 2007;
Shiell andVardy 2016). On real robots, a common direction can be known using on-board
sensors such as, but not limited to, a magnetic sensor and/or a gyroscope (Conroy et al.
2005; Oh et al. 2015).

– Assumption A2 is representative of ground robots or MAVs flying at approximately the
same height.

– Assumption A3 deserves a more in-depth analysis. For general robotic platforms, rela-
tive localization is deemed a fundamental tool for collision avoidance and coordination.
Concerning MAVs, for instance, a sufficiently accurate relative localization technology
is required if collision avoidance (a basic behavior needed for them to swarm safely)
is required. There exist several technologies to achieve relative localization. Pugh et al.
(2009) and Roberts et al. (2012) used technology based on infrared (IR) signals. Basiri
et al. (2014) introduced an audio-based solution with a microphone array. Faigl et al.
(2013) and Roelofsen et al. (2015) proposed vision-based methods relying solely on
(one or more) on-board cameras. Coppola et al. (2018) and Guo et al. (2017) explored
relative localization sensors based on signal ranging. In this work, we will show that
fulfilling Assumption A3 up to a certain extent is paramount to provide safe behavior in
spite of all other constraints. In our final simulations, to be found in Sect. 6.3, we will
show that in practice the swarm can also function even when the robots are only able to
detect movements beyond a certain threshold velocity, rather than if adhering perfectly
to the assumption.

– Assumption A4 is needed for the entire swarm to begin acting as a collective. If Assump-
tion A4 were violated (and, for instance, the swarm was to begin as two separate groups
that cannot sense each other), then it could not ever be expected for the separate groups
to find each other in an unbounded space.

3 Related works and research context

Pattern formation is a well-studied problem in robotics. A review of existing solutions is
presented in Sect. 3.1. The swarm treated in this work sets itself apart by its minimalist
nature, constraining the knowledge of the robots to only the relative location of nearby
neighbors and the North direction. We then discuss the contributions and their context in
Sect. 3.2.

123



Swarm Intelligence (2019) 13:59–94 63

3.1 Review of approaches to pattern formation by a swarm of robots

The solutions to pattern formation found in the literature rightfully vary depending on the
sensing capabilities of the robots. In this section we review solutions present in the litera-
ture, starting from cases where the robots are more knowledgeable of their surroundings to
increasingly more minimalist cases more similar to our own (as introduced in Sect. 2).

Several solutions are based on the assumption that each robot in the swarm can directly
sense every other robot. In this case, the topology of the swarm is said to be fully connected
or complete. This endows each robot with a global view of the swarm. This type of swarm
is found to self-stabilize to an equilibrium only by means of attraction and repulsion forces
(Gazi and Passino 2004). Izzo and Pettazzi (2005, 2007) showed how the attraction and
repulsion forces alone could be tuned such that the swarm stabilizes into a desired pattern.
However, the results had two limitations: (1) the swarm can unpredictably form spurious
patterns depending on the initial conditions due to the presence of spurious equilibria, (2)
they were limited to symmetric patterns. Asymmetry is difficult for a homogeneous non-
communicating swarm to resolve, and it was tackled with the use of neural networks in later
work (Izzo et al. 2014; Scheper and de Croon 2016). Formation control algorithms have also
been proposed, whereby the robots are allocated positions/distances to achieve and maintain
with respect to the other robots (Pereira and Hsu 2008; de Marina Peinado 2016). With this
strategy, the swarm will quickly form the desired pattern. However, it is required to specify
the necessary inter-robot distances/locations without anonymity.

To address that the swarm may not always begin in a fully connected topology, Ji and
Egerstedt (2007) andMesbahi and Egerstedt (2010) proposed the use of a gathering algorithm
so that all robots come together prior to initiating the pattern formation task. In several
scenarios, however, being in a fully connected topology is simply not viable, and we must
accept that the topology of the system is just connected, and not fully connected. For instance,
if robots sense each other using on-board cameras or IR sensors, as could likely be the case
forMAVs or ground robots, they will be unable to see behind other robots or beyond a certain
distance.2 Tanner (2004) and Rahmani et al. (2009) showed how to control swarms with a
static connected topology, yet when the robots can only sense their closest neighbors, the
topology of the swarm will not be static, but it will change depending on the current relative
positions. Falconi et al. (2010) showed how to combine local positioning information together
with a communication protocol in a consensus algorithm. Similarly to formation control,
however, this algorithm requires specifying the formation parameters without anonymity.
Another popular solution found in the literature is to use seed robots: these are robots in the
swarm that do not move and act as a reference to the other robots. Rubenstein et al. (2014)
used this to enable an impressively large swarm of simple robots to form shapes. Four seed
robots were manually placed in a cross-formation, and the other robots then circled around
them and “filled up” the shape. Instead, Wessnitzer et al. (2001) used seed robots to build up
patterns in a chain-like fashion, starting from a seed robot that recruits other robots. A seed
was also used for a system of self-arranging blocks by Grushin and Reggia (2008, 2010).
Here, a static seed block acted as a reference for others to determine their correct relative
position (through communication with neighbors), virtually providing them with a global
reference albeit while still only making use of local communication. Bonabeau et al. (2000)

2 As already mentioned near the end of Sect. 2, there is a vast amount of solutions for relative localization in
swarm robotics, and it is also a separate topic of exploration in our own current research (Coppola et al. 2018;
van der Helm et al. 2018). Here, we declare the challenge outside of the scope of this work and we deem it
sufficient to assume that the robots are endowed with the necessary sensors to sense neighboring robots within
a short omni-directional range.
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also studied the rules for the construction of a structure by robots. The robots would begin
by placing blocks next to a seed block according to specific rule sets, whereby the blocks
could no longer be moved once a robot had placed them. This created a slowly evolving
construction. More recently, Werfel and Nagpal (2008) and Werfel et al. (2014) developed
and implemented an algorithm in order to coordinate the construction task for a teamof robots.
This algorithm also relied on the use of a seed block, which the robots could use as a unique
shared reference to determine where to place the other blocks. However, in general, the use
of a reference (which for pattern formation would be a seed robot) requires that other robots
can identify it, which is not the case here given that the robots are all anonymous. Moreover,
when they are all functionally homogeneous, no robot can be assigned as the seed. Without
communication, they cannot elect one themselves either, as otherwise explored by Yamauchi
andYamashita (2014), Derakhshandeh et al. (2016), andDi Luna et al. (2017), where a swarm
could self-elect a leader/seed robot.

We now move to even simpler systems. For homogeneous and anonymous robots with
no seeds, Klavins (2002) proposed to encode a pattern as a graph and a collection of its
sub-graphs. This technique set the way for the use of graph grammars, later developed
in Klavins (2007) for self-assembly by a team of robots. The robots randomly drifted in a
confined environment and could latch together upon encounter. Once latched, they could
communicate their state and determine whether the connection formed a part of the total
graph, in which case they would remain attached. Otherwise, they would detach and continue
drifting. Using this approach, the pattern would slowly assemble. Similar strategies were
studied by Smith et al. (2009), Arbuckle and Requicha (2010), Arbuckle and Requicha
(2012), Fox and Shamma (2015). In more recent work, Haghighat and Martinoli (2017)
proposed an algorithm for the automatic encoding of such rules for rotationally symmetric
modules. However, the local rules used in these studies do not incorporate the additional
fundamental constraints of the robots that are studied in this work, namely that the robots
cannot: collide, latch together, randomly drift apart, or (most importantly for these algorithms
to work) communicate. Without communication it is not possible for the assembly to grow,
because the robots are not capable of knowing more than their local state at any point and
thus require a different decision-making process on the level of the individual agent.

Intra-swarm communication is a very powerful tool. It allows robots to share their inten-
tions and their perspectives. It was used in several works that we already discussed and more,
including consensus algorithms (Falconi et al. 2010, 2011, 2015), leader-election algorithms
(Di Luna et al. 2017), or bidding algorithms for task allocation (Gerkey and Matarić 2004).
More recently, Slavkov et al. (2018) studied how to use a communication architecture to
diffuse activation values across the swarm. The swarm could then rearrange itself so as to
protrude in regions of high activation values, creating emergent morphologies. Communi-
cation can also double as a sensor. Nembrini et al. (2002) and Winfield et al. (2008) used
communication to enable a swarm to remain connected even in the presence of obstacles by
repeatedly checking for connectivity with the neighbors through a broadcast and listening
protocol. In Winfield and Nembrini (2012), the robots communicate their adjacency matrix
to one another in order to extend their knowledge beyond what their sensors allow, which is
found to increase the coherence performance.

Despite its advantages, considering the practical difficulties in ensuring a high-throughput
and reliable intra-swarm wireless communication (Hamann 2018; Coppola et al. 2018), we
have taken an interest in establishing a behavior that also does not natively require com-
munication, such that it can work even when such hardware is not available. Once even
communication is removed, few works, to the best of our knowledge, explore the coordina-
tion of a swarm of robots that is as limited as the one presented in this work. Krishnanand and
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Ghose (2005) developed alignment behaviors by which they could form non-finite grids and
lines. Flocchini et al. (2005) explored the gathering problem, whereby all robots must aggre-
gate together as much as possible. Yamauchi and Yamashita (2013) examined the formation
power of very limited agents, but a behavior to achieve the patterns was not developed. This
leaves a knowledge gap in the field of minimalist swarming.

3.2 Contributions and research context

There are two principal scientific contributions in this paper:

1. An automatic procedure to extract the local behavior so that a swarm of robots with
extremely limited cognition and no communication can form a desired pattern, while
also avoiding collisions and maintaining a connected sensing topology.

2. An automatic proof procedure to verify whether the set of local rules will always eventu-
ally cause the swarm to generate the pattern. We present a primarily local analysis of the
behavior which allows to verify that the global pattern can be achieved from any initial
pattern P0. The large advantage of such a local analysis is that it limits the computational
explosion of global proof methods.

Automatic procedures to generate local rules that create high-level functions are already
present in the literature. Two notable recent works in this domain are from Rubenstein et al.
(2014) and Werfel et al. (2014). Both systems demonstrate an efficient distributed behavior.
Looked at from above, we see that the global goal is slowly reached by the robots. The
difference with our work stems from the limitations of our robots, which do not (and cannot,
in light of their limited cognition) rely on a reference. As a result, their behavior is fully
dictated by their local environment without any global context. Furthermore, unlike the
system tackled by Grushin and Reggia (2008, 2010), our robots also cannot see far, meaning
that they do not knowwhat they will find when they move. Therefore, they cannot knowingly
move toward local target locations. This is why they must rely on a probabilistic scheme.

The final pattern is automatically encoded from the larger pattern within the state-action
map under this rule: if a robot finds itself in a local state that may constitute the global
desired pattern, it will not take any action. This eventually gives rise to the pattern once all
robots end up in such states. Conceptually, the breakdown of a large pattern into smaller parts
resembles graph grammar approaches, as for instance used by Klavins (2007) or Haghighat
and Martinoli (2017). In our case, however, the robots cannot communicate and must only
use the knowledge that a neighbor is (or is not) there in order to decide their next action.
Furthermore, the robots cannot detach and drift freely, which restricts how the swarm can
evolve. Overall, this means that the pattern does not slowly assemble, but rather forms by the
stochastic (inter)actions of the robots. The phenomenon can only be detected at the macro-
scale and not by the robots themselves. This behavior is characteristic to emergent processes
(Bonabeau and Dessalles 1997), and its complexity is the reason that we also need to verify
that our desired pattern is the sole emergent result.

Our verification of the emergent property (i.e., the final pattern) is based on a formal anal-
ysis of the swarm, inspired byWinfield et al. (2005). Dixon et al. (2012) and Gjondrekaj et al.
(2012) applied this with the use of model checking and demonstrated its potential. However,
an issue with model checking is that it performs an exhaustive search of all global states
(Clarke et al. 1999) and it is subject to a computational explosion as the size of the swarm
grows. Konur et al. (2012) tackled this using macroscopic swarm models. These models
efficiently describe the evolution of the swarm by means of one finite state machine (Win-
field et al. 2008). However, macroscopic models typically assume that robots are uniformly
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distributed, or, in general, make probabilistic assumptions about the presence of robots in
a given area (Lerman et al. 2001; Prorok et al. 2011). These assumptions may be suitable
for more abstract spatial goals, such as aggregation, exploration, or coherence, but they do
not apply to pattern formation, which by definition has a strict requirement on the spatial
arrangement. To be able to verify the emergent property yet keep the computations low, we
focus on a local analysis of the behavior. With this novel analysis, we provide a set of local
conditions that, if met, guarantee that the swarm will always eventually self-organize into the
desired pattern. Unlike the macroscopic models discussed above, this analysis means that we
do not merely assume that there is enough free movement/motion in the swarm, but use the
conditions to check that this is in fact the case. With this, we limit the global analysis only to
the discovery of spurious patterns. However, this search only needs to be executed on a very
restricted subspace, for which we provide a methodology to identify the candidates.

4 Designing and verifying the behavior of the robots

This section describes the design and verification of the probabilistic local state-action map
that dictates the behavior of the robots. We detail how the state-action map can be crafted
such that the swarm will remain safe (Definition 1) and (possibly) also live (Definition 2).
As we are dealing with robots with extremely limited knowledge, it can be expected that it
is not always the case that both properties can be achieved at the same time. Safety is a hard
requirement, but it will naturally restrict the ways in which the swarm can evolve. This could
lead the swarm to a livelock.

Definition 3 A livelock is a situation in which the swarm will endlessly transition through a
set of patterns (e.g., P0 → P1 → P2 → P0 → P1 → P2 → P0 . . . ) and cannot transition
to any other patterns.

Furthermore, the limited view that the robots have of their surroundings limits the knowl-
edge that they have of the structure, which may cause other (perhaps undesired) patterns to
form. We will refer to this situation as deadlock.

Definition 4 A deadlock is a situation in which the swarm forms an undesired pattern P �=
Pdes , where no robot in the swarm can take action.

We have developed proof procedures to verify that livelocks or deadlocks will not happen.
We will provide a set of conditions and checks that, if fulfilled, guarantee that the state-action
map constructed for a given pattern is such that livelocks and deadlocks do not occur, and
thus imply that the swarm is safe and live. The state-action map is developed and verified in
a formal domain, assuming robots to be idealized agents existing on a 2D grid and operating
in discrete time. Although this may seem restrictive, we will show in Sect. 6 how it can
be used on robots operating in a realistic setting. The idealized framework is described in
Sect. 4.1, and the method to design the probabilistic state-action map is detailed in Sect. 4.2.
The conditions to prove whether a state-action map is safe, free of livelocks, and free of
deadlocks are provided in Sects. 4.3, 4.4, and 4.5, respectively.

4.1 The formalized framework

Consider N agents (idealized robots) that exist in an unbounded discrete 2D grid. Each robot
is endowed with short-range omni-directional relative sensors and knowledge of North. In
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Fig. 1 Depictions of local state
and the actions that an agent can
take as used in this paper

(a) Example of an agent (black
circle) in a local state si, given
by the relative positions of its
neighbors (white circles)

(b) Possible actions that an agent
can take. It can move omnidirec-
tionally on the grid

this paper we will focus our attention to robots with omni-directional sensing and motion
capabilities, albeit the concepts presented hold for other state spaces and action spaces aswell.

In the idealized case, each agent Ri can sense the location of its neighbors in the 8 grid
points that surround it (Fig. 1a). Let si be the current state of agentRi , and let S be the local
state space of the agents. It follows that |S| = 28, as it represents all local combinations of
neighbors that could be sensed. To represent omni-directional motion, the agents are also
able to move to any of the 8 grid points surrounding it, as depicted in Fig. 1b. This forms the
action space of the agents, denoted A. Note that other discretizations of S or A could also
apply depending on the sensors and motors available on the robot of interest.

At time step k = 0, we assume the swarm begins in an arbitrary pattern P0 on the grid.
The only restriction on P0 is that it has a connected sensing topology (Assumption A4). At
each discrete time step, a random agent in the swarm takes an action and moves to a new
location on the grid.3

4.2 Developing the probabilistic state-actionmap

In analogy to biological systems, the behavior that we will design replicates these three rules:

1. be careful (do not take actions that are in collision course with others);
2. be social (do not take actions whereby the swarm might locally break apart);
3. be happy (when in a desired local state, do not move).

Let us begin with the full state-action map, given by Π = S × A. With Π , any agent Ri

in any state si ∈ S can stochastically take any action in A. Naturally, this can readily cause
both collisions and/or group separation, which we want to avoid (if the swarm separates, then
there is a chance that the two groups will never find each other, since they are operating in
an unbounded environment). Therefore, we scan through Π to identify all state-action pairs
that:

(a) are in the direction of a neighbor
These state-action pairswill lead to collisions (two agents occupying the same grid point).
They form the set Πcollision .

3 At first sight, this seems rigid and difficult to implement on real robots. It can be in part justified under the
intuition that the probability that two robots with different internal clocks begin to move at exactly the same
time is small. A similar assumption was also suggested byWinfield et al. (2005) as a method to model random
concurrency in the swarm. In Sect. 6 we will show that, if robots are able to sense whether their neighbors
are taking an action (assumption A3 from Sect. 2), then it can be exported to real robots. Multiple robots
within the swarm will move, yet locally only one neighbor will move on a first-come first-served basis. In the
idealized system, this is simplified to only one robot moving at one time step.
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Fig. 2 Examples of patterns and their respective desired states Sdes . The set Sdes can be intuitively extracted
from a pattern Pdes , making it easy for a designer to define the local behavior of the robots

(b) may cause the swarm to become disconnected
These actions will break the local connectivity of the agents (the local neighborhood
splits into two or more groups). They form the set Πseparation .

We then define Πsa f e:

Πsa f e = Π − (Πcollision ∪ Πseparation). (1)

If the agents follow Πsa f e, we can guarantee that the swarm remains safe while randomly
reshuffling. The proofs for this are provided in Sect. 4.3.

Πsa f e can be further modified to also make a desired pattern form. To do this, let us extract
the set of local states that the agents are in when the desired pattern Pdes is achieved. This
forms a set of local desired states, denoted Sdes , examples of which are shown in Fig. 2 for
different patterns.

If an agent Ri finds itself in a state si ∈ Sdes , then it should not move. The rationale
behind this is that, from its perspective, the goal has been achieved (although this may or
may not be the case at the global level, the robot does not know this). Therefore, for these
states, we exclude all possible actions. The state-action map to form a given pattern Pdes is:
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Fig. 3 FSM of agent behavior

(a) (b) (c) (d)

Fig. 4 Examples of an agent (black circle) in different states depending on the relative positions of its neighbors
(white circles). Specifically, a a state s ∈ Sblocked , all actions will cause a collision; b a state s ∈ Sblocked , all
actions will either cause a collision or the local topology to disconnect; c a state s ∈ Sactive ∩Ssimplicial , its
neighbors form one clique, which allows it to (potentially) travel freely away from or around its neighborhood;
d a state s ∈ Sactive ∩ S¬simplicial , its neighbors form two cliques, the agent can move, but it cannot leave
its neighborhood

Π f = Πsa f e − (Sdes × A). (2)

With Π f , the robots are capable of moving around until the swarm self-organizes into the
desired pattern. Sections 4.4 and 4.5 provide the procedures to prove whether Π f is such
that the desired pattern always eventually forms from any initial pattern P0.

The states in S can be divided into three groups:

Desired When in these states, the agent should not move. Π f does not map these states to
any action. Desired states are grouped in the set Sdes .

Blocked These are all states in S − Sdes where the agent cannot move because all actions
are unsafe. Π f does not map these states to any action. We group these states in
the set Sblocked .

Active These are states that Π f maps to one or more actions in A. We group these states
in the set Sactive.

Functionally speaking, Sblocked and Sdes are equivalent. In either case, the agent will not
move. Based on this, we also define the superset Sstatic = Sdes ∪Sblocked . Overall, the local
behavior of an agent is summarized by the finite statemachine (FSM) in Fig. 3. Two examples
of blocked states are shown in Fig. 4a, b.

Additionally to the taxonomy above, we also define a set of states as simplicial.4

Definition 5 A simplicial state is a state s ∈ S − Sblocked for which its neighbors form only
one clique.

Definition 6 A clique is a connected set of an agent’s neighbors.

Simplicial states are grouped under the set Ssimplicial . All states in S that are not simplicial
are denoted S¬simplicial . From this, it follows that Sblocked ⊆ S¬simplicial . An example of

4 These definitions are borrowed from, but not equivalent to, the typical definitions of simplicial node and
clique (Van Steen 2010). In standard graph theory, a simplicial node is a node whose neighboring nodes are
fully connected among each other, not just connected. Similarly, a clique is a fully connected set of neighbors,
whereas in our case it is just a connected set.
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a state that is both simplicial and active is shown in Fig. 4c. By contrast, a non-simplicial
active state is shown in Fig. 4d. An agent in a simplicial state could potentially move without
risking that the swarm ceases to be in a connected topology, unlike the non-simplicial case.
Intuitively, agents who happen to be in a simplicial state thus have the potential to travel
freely across the swarm and break livelocks. For this reason, simplicial states are going to be
an important element to the local proof procedure to determine whether the swarm is free of
livelocks, which can be found in Sect. 4.4.

4.3 Verifying safety

Our swarm consists of several agents that can choose to take actions at any point in time.
Safety can be guaranteed when agents do not simultaneously perform conflicting actions. To
formalize this, we bring forward Proposition 1.

Proposition 1 If the swarm never features more than one agent moving at the same time,
then the swarm can remain safe.

Proof Consider a connected swarm organized into an arbitrary pattern P . At a given time
t = t1, agent Ri decides to take an action based on action space A. This action should last
until t = t2. However, at time t1 < t < t2, an unsafe event takes place. It follows that the event
must have been the fault of agent Ri , because it was the only agent that moved. Therefore,
if agentRi could select only from safe actions, this would be sufficient to guarantee that the
swarm is safe at time t = t2. �	

Proposition 1 only applies to the idealized system and cannot be implemented on the real
system where robots use local clocks. This explains the importance for Assumption A3 from
Sect. 2: an agent must know whether its neighbors are executing an action. If then a robot
does not move whenever one of its neighbors is moving (on a first-come-first-served basis),
then the swarm can locally approach the formal requirement of Proposition 1 even if several
robots may be moving in different neighborhoods. We will return to this in Sect. 6.

Under the assumption that the conditions of Proposition 1, if Πsa f e meets the conditions
in Propositions 2 and 3, then the swarm is safe.

Proposition 2 If an agent is the only agent moving in the entire swarm, and Πsa f e is such
that the agent can only select actions in directions that can be sensed by its on-board sensors,
then no collisions will occur in the swarm.

Proof Consider an agentRi in a swarm. Following Proposition 1, we know that the agent will
be the only agent to move. The agent moves in the environment according to the action space
A. If all actions in A lead to a location that is already sensed, then agent Ri can establish
whether the action will cause a collision, and it can choose against performing these actions.

�	
Proposition 3 If an agent is the only agent moving in the entire swarm, and Πsa f e is such
that the agent can only select actions where, at its next location, all its prior neighbors and
itself remain connected, then the whole swarm will remain connected.

Proof Consider a connected swarm of N agents. The graph of the swarm is connected if
any node (agent) Ri features a path to any other node (agent) R j . Consider the case where
agentRi takes an action. If, following the action, agentRi is still connected to all its original

123



Swarm Intelligence (2019) 13:59–94 71

neighbors, then the connectivity of the graph was not affected. If agent Ri only selects
actions where, at its final position, this principle is respected, then it will be able to move
while guaranteeing that the swarm remains connected. �	

4.4 Verifying against the presence of livelocks

We now provide the proof procedure to check that the system can form the patterns and will
do so without ending up in livelocks. Let us begin at the global level and define a directed
graph GP = (VP , EP ). The vertices VP represent all possible patterns that the swarm could
generate. The edges EP represent all global pattern transitions that could take place whenever
one agent in the swarm executes an action fromΠ f . Our final objective is to establishwhether
Π f is such that GP always features a path from any vertex (i.e., an arbitrary initial pattern
P0) to the global desired pattern Pdes . If this is the case, then it is proven that livelocks will
not occur.

This problem could be tackled by directly inspecting GP , but an exhaustive computation
of GP quickly becomes intractable (Dixon et al. 2012). Otherwise, livelocks (if existent)
could be found using heuristic search algorithms, as done by Sapin (2010) to find loops
(gliders) for Game of Life Cellular Automata. However, should we not find any, then it is
not guaranteed that livelocks do not exist. It only means that the heuristic search did not
find them. We thus take a different route and extract local conditions that, if respected, also
guarantee the global property. Although this comes at the cost of imposing certain local
restrictions that may not necessarily be required at the global level, it bears the advantage
that they can be verified at the local level and thus independently of the number of robots in
the swarm.

In the following analysis, it is assumed that P0 always has a connected sensing topology
(Assumption A4) and that it has Ndes agents, where Ndes is the number of agents required
to form Pdes . We also assume that deadlocks are not present. This is not required and is
merely done for simplicity. The absence of deadlocks can be verified independently by the
methodology in Sect. 4.5.

4.4.1 Ensuring motion

We begin by showing that, if no deadlocks are present, then any pattern P �= Pdes will always
have at least one agent in an active state, as per Lemma 1.

Lemma 1 For a swarm of Ndes agents, ifSstatic is such that the desired pattern Pdes is unique
(i.e., no deadlocks can occur), any arbitrary pattern P �= Pdes will feature at least 1 agent
with a state s ∈ Sactive.

Proof By definition: Sstatic ∩ Sactive = ∅ and Sstatic ∪ Sactive = S. For a swarm of Ndes

agents that can be in states s ∈ S, Ndes instances of states s ∈ Sstatic can only coexist into
Pdes , which is known to be the unique outcome. Therefore, it follows that any other pattern
must feature at least one agent that is in a state s /∈ Sstatic, meaning that it is in a state
s ∈ Sactive. �	
Lemma 1 says that if the swarm cannot be in a deadlock, then it must always have at least
one agent that is active, unless Pdes forms. Therefore, if we can establish that no livelocks
can occur, then we know that the swarm will always eventually self-organize into Pdes . To
do this, we need to analyze the local state transitions that an agent can experience over time.
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4.4.2 The local state transition graphs

To conduct a local analysis, let us look at Π f and define its role from the perspective of an
agent. When an agent in the swarm experiences a transition from state s to a state s′, this can
be due to three events:

Event 1 The agent was in a state s ∈ Sactive and computed an action in Π f . When this
happens, some neighbors may disappear from view, while new neighbors may come
into view.

Event 2 The agent did not move, but one of its neighbors did. In this case, the neighbor may
also have moved out of view.

Event 3 The agent did not move, but some other agent which was previously not in view
has moved into view and has become a new neighbor.

Based on the above, let GS = (VS , ES) be a directed graph where each vertex VS
represents a different local state s ∈ S, such that VS = S, and the edges ES represent
all local state transitions that an agent could experience. More specifically, let us define
ES = E1 ∪ E2 ∪ E3, where E1 are all edges describing Event 1, E2 are all edges describing
Event 2, and E3 are all edges describing Event 3. Similarly,G1

S = (VS , E1),G2
S = (VS , E2),

G3
S = (VS , E3). The graphs G1

S , G
2
S , and G3

S are illustrated in Fig. 5.

4.4.3 Local achievability of desired states

As a prerequisite for a pattern to form, we require that Π f ensures that any local state can
experience a local transition to a desired local state. If this is the case, we will say that the
pattern is achievable, as defined by Definition 7.

Fig. 5 Exemplary depiction of portions of G1
S = (VS , E1), G

2
S = (VS , E2), and G3

S = (VS , E3) (from
left to right). Green nodes indicate a desired state, blue nodes indicate an active state, and red nodes indicate a
blocked state. The states are visually depicted within each node, showing the agent (in black) and its neighbors.
In G1

S the edges E1 represent transitions where the agent itself executes an action (shown by the arrows),
from which it may probabilistically end up in several local states depending on what it finds after it has
moved (notice the bifurcations in the arrows). Note how in G1

S both the green node (desired) and the red node

(blocked) act as sinks, because in these states the agent will not take actions. In G2
S the edges E2 represent

state transitions experienced by the agent when a neighbor of the agent executes an action. This is shown by
one of the neighbors (in white) taking an action. Finally, in G3

S the edges E3 represent state transitions that
occur when another agent moves into view and becomes a new neighbor. This is shown by the red agents in
the transitions
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Definition 7 A pattern Pdes is achievable if all local states Sdes can be reached starting from
any local state in S.

If a pattern is achievable, then there are no restrictions on the local states that can be
present in P0, else there might be certain starting patterns with agents in local states that are
unable to transition to certain desired states. This is proven by Lemma 2.

Lemma 2 If the digraph G1
S ∪ G2

S shows that each state in S features a path to each state
in Sdes , then Pdes is achievable independently of the local states that compose P0.

Proof Pdes is formed if and only if all agents have a state s ∈ Sdes , where Sdes ⊆ S. Consider
an arbitrary initial pattern P0 for which the local states of the agents form an arbitrary set
S0. Via Lemma 1 we know that there is at least one agent in the swarm that is active for any
pattern P0 �= Pdes , and in turn any set of states S0 �= Sdes . As the active agents move, they
will experience transitions described by G1

S , and their neighbors will experience transitions
described by G2

S . By the unified graph G1
S ∪ G2

S we describe the local transitions that an
agent experiences as it moves and as its neighbors move. Consider a state s ∈ S0 that is
incapable (either by its own actions or by the actions of its potential neighbors) to transition
to a state in Sdes . It follows that having this state in S0 may mean that a state in Sdes cannot be
achieved, and in turn that Pdes cannot be realized. However, if it is possible for any state in
S to experience local transitions such that it may reach any state Sdes , it follows that Pdes is
achievable independently of the local states that compose P0 (i.e., the set S0), because there
is no state s ∈ S0 that is incapable of experiencing the necessary transitions that would lead
it to be in a state Sdes . By purposely ignoring the role of G3

S , we restrict the analysis such
that:

1. Any state s that has too few links for a desired state will have to be active and move to a
position where it is surrounded by enough agents. It cannot wait for a local desired state
to arise by other agents moving in from outside of its neighborhood.

2. Any state s ∈ Sblocked can only become active by the actions of a neighbor.
3. The transitions that occur must occur because of changes in the local neighborhood.

This additional restriction ensures that the system can rely on the actions of an agent and/or
its neighbors. �	

By fulfilling the condition of Lemma 2, we ensure that any initial state could potentially
turn into a desired state and avoid placing local-level restrictions on P0. However, this is still
only a local property, and it does not yet fully confirm that, at the global level, Pdes will
always eventually form from any initial pattern P0, which is the property that we wish to
verify. We continue our analysis in Sect. 4.4.4.

4.4.4 Ensuring the presence of agents with simplicial states

In Sect. 4.2 we have already discussed that an agent in a state s ∈ Ssimplicial ∩ Sactive can
potentially move away from its neighborhood. This is an important property. Intuitively, an
agent in this state has sufficient freedom for the swarm to escape any livelock. To exemplify
this, let us once again consider the global graphGP as introduced at the beginning of Sect. 4.4,
and consider the example in Fig. 6a. When the global pattern formed by the swarm is such
that no agent is in a simplicial state, then the swarm is unable to exit the livelock. There is
an agent in the swarm that can move, but, because Π f is designed to keep the swarm safe, it
cannot leave its neighborhood and can only move left and right. The result is that the swarm
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(a) (b)

Fig. 6 Illustrations of how a swarm can transition between different patterns, based on movements of the
agents that are in active states. More specifically, the figure shows a portion of GP for two possible desired
patterns. The arrows between the nodes are swarm transitions that happen as a result of one of the robots
taking an action. Notice that the livelock in a does not feature any agents with a state that is both active and
simplicial. There is an agent in an active state (in the middle), but because it is not simplicial, it cannot escape
its neighborhood and repeatedly moves right and left, causing the livelock

cycles endlessly between the two patterns. By contrast, the patterns in Fig. 6b always have
an agent in a simplicial state and no livelocks occur. In this section, we introduce the local
conditions necessary such that any vertex (pattern) in GP always eventually transitions to a
pattern with at least one agent with a state that is both active and simplicial (unless Pdes is
reached). This will be an important stepping stone to the final verification in Sect. 4.4.5.

Let PAS be the set of all patterns where one or more agents are in a state s ∈ Ssimplicial ∩
Sactive (the subscript “AS” stands for “Active and Simplicial”). We wish to ensure a pattern
P ∈ PAS ∪ Pdes will be reached from any other pattern. This is verified via Lemma 3. In
this lemma we also make use of a graph G2r

S ⊆ G2
S , which only considers the transitions in

G2
S that do not feature a neighbor leaving the neighborhood when moving, but only holds

transitions about the agent. We also single out a special state in Sblocked , which is the one
that is fully surrounded by neighbors as in Fig. 4a. We refer to this state as ssurrounded .

Lemma 3 If the following conditions are satisfied:

1. for all states s ∈ Sstatic ∩ S¬simplicial − ssurrounded , none of the cliques of each state
can be formed only by agents that are in a state s ∈ Sdes ∩ Ssimplicial ,

2. G2r
S shows that all static states with two neighbors will directly transition to an active

state,

then a pattern in P ∈ PAS ∪ Pdes will always be reached from any other pattern P /∈
PAS ∪ Pdes .

Proof Consider an agentRi with state si ∈ Sstatic ∩S¬simplicial . By definition, si must have
more than one clique, unless si = ssurrounded . If si = ssurrounded and P �= Pdes then one
of Ri ’s neighbors must be in a state s ∈ Sactive ∩ Ssimplicial , or else there must exist other
agents beyond Ri ’s direct neighborhood. If si �= ssurrounded , then the neighbors of agent
Ri form two or more cliques. In all cases, the pattern P �= Pdes extends in two or more
directions that stem from agent Ri . If we trace any branch, because only a finite number of
agents Ndes exists, we have the two following possible situations:
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Fig. 7 Illustration of two exemplary loops that “collapse.” Notice that the active states present at the borders
cause a chain reaction until eventually a simplicial active agent is present. This is a property that can be
determined by inspecting G2r

S , which will show that the static agents will become active and propel the chain
reaction

1. The branch eventually features an agent R j with state s j ∈ Ssimplicial . In the extreme,
this is a leaf on the edge of the pattern. Here, we can have two situations:

(a) s j ∈ Sdes∩Ssimplicial . If this exists, then the simplicial agent is also static. Therefore,
it is possible that the entire pattern does not feature any active and simplicial agent.

(b) If s j /∈ Sdes ∩ Ssimplicial , then s j ∈ Sactive ∩ Ssimplicial and so we are done.

If, by design, states s ∈ Sdes ∩Ssimplicial cannot be combined to form the clique of a state
in Sstatic ∩ S¬simplicial − ssurrounded , then it is guaranteed that s j /∈ Sdes ∩ Ssimplicial .
Therefore, we can locally impose that situation (b) always occurs, that situation (a) never
occurs, and we thus guarantee that s j ∈ Sactive ∩ Ssimplicial . This is the first condition
of this Lemma.

2. If all branches from agentRi only feature non-simplicial states, then this is only the case
if the branches form loops, otherwise at least one leaf would be present as in situation
1. However, it can be ensured that a loop will always collapse and feature one simplicial
active agent. In a loop, all agents have two cliques, each formed by one neighbor. G2r

S
tells whether any static agent with two neighbors, by the action of its neighbors, will
become active. This is the second condition of this Lemma. If this is the case for all
states, then we know that the action of any neighbor will cause a chain reaction about the
loop. This will eventually cause the loop to collapse about one corner point and create
a simplicial leaf, unless Pdes forms. In either case, we reach a pattern P ∈ PAS ∪ Pdes .
The collapse of two exemplary loops is depicted in Fig. 7.

In summary, by creating the conditions such that situation 1(a) never occurs, we restrict the
possible patterns that can exist outside of PAS ∪ Pdes to patterns with only loops (situation
2). If P0 is a loop, then through G2r

S we know that loop patterns will collapse into a pattern
that exists within PAS ∪ Pdes . Else, P0 already exists within PAS ∪ Pdes . This means that any
pattern P0 will either exist within PAS ∪ Pdes , or will transition into PAS ∪ Pdes . �	
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4.4.5 Local proof conditions to guarantee that livelocks do not occur

With the conditions from Lemma 3 we ensure that a simplicial active agent will always be
present regardless of P0. We can now introduce Theorem 1, which we use to determine that
Pdes will eventually form from P0 without livelocks.

Theorem 1 If the following conditions are satisfied:

1. Pdes is achievable,
2. a pattern in P ∈ PAS ∪ Pdes will always be reached from any other pattern P /∈

PAS ∪ Pdes ,
3. G1

S shows that any agent in any state s ∈ Sactive ∩ Ssimplicial can move to explore all
open positions surrounding its neighbors (with the exception of when a loop is formed
or when it enters a state s ∈ Sstatic),

4. in G3
S , any agent in any state s ∈ Sstatic only has outward edges toward states s ∈ Sactive

(with the exception of a state that is fully surrounded along two or more perpendicular
directions),

then Pdes will always eventually be reached from any initial pattern P0.

Proof Consider a swarm of Ndes agents arranged in a pattern P0. If Pdes is achievable, via
Lemma 2, P0 can be composed of any combination of local states without impacting the
local ability of the agents to transition into the states Sdes (this is the first condition in this
theorem). Then, through Lemma 3 we know that if P0 /∈ PAS ∪ Pdes , then it will always
eventually form a pattern P ∈ PAS ∪ Pdes (this is the second condition in this theorem).
In the following, we will show that any pattern P ∈ PAS ∪ Pdes will keep transitioning
until it forms Pdes . We observe the case where at least one agent, agentRi , exists with state
si ∈ Sactive ∩ Ssimplicial . As agent Ri moves, one of the following events can happen:

1. AgentRi enters a state s′
i /∈ Ssimplicial . Via Lemma 3, at least one other agent is (or will

be) in state s ∈ Sactive ∩ Ssimplicial , taking us to point 3 in this list.
2. Agent Ri enters a state s′

i ∈ Sstatic. If Pdes is not yet achieved, then at least one other
agent in the swarm is in an active state (Lemma 1). If the active agent(s) are in state
s ∈ Sactive ∩ S¬simplicial , then this takes us back to point 1 in this list. If the active
agent(s) are in state s ∈ Sactive ∩ Ssimplicial , this takes us to point 3 in this list.

3. Agent Ri , and/or the agent(s) taking over, keeps moving and each time enters a state
s′
i ∈ Sactive ∩ Ssimplicial . Via G1

S we know that it can potentially explore all open
positions surrounding all its neighbors (this is the third condition of this theorem). As
it moves, its neighbors also change, such that it always can potentially explore all open
positions around all agents, and thus all open positions in the pattern (see Fig. 8a for a
depiction). This means that the swarm can evolve toward a pattern that is closer to the
desired one.

Any situation will always develop into the situation of point 3. This is free of livelocks, as
all possible livelock situations are mitigated:

1. It may happen that a simplicial and active agent cannot actually visit all open positions
in the swarm because, at the global level, it is enclosed in a loop by the other agents.
Alternatively, it may happen that it itself creates a loop while moving (this is the first
exception to condition 3 of this theorem). By Lemma 3, the loop will always collapse,
meaning that a new agent will enter a state s ∈ Sactive ∩ Ssimplicial . The new agent will
be able to travel to all positions external to the loop, avoiding a livelock. This resolution
is depicted in Fig. 8b.
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Fig. 8 Illustration of how an agent with a state that is active and simplicial can travel to all open positions in
the structure

2. Agent Ri can travel about all open positions in the swarm. Let us assume the extreme
case in which Ri is the only agent that can potentially do this in the entire swarm. Via
G3

S , we can verify that, unless Pdes forms, this must eventually cause at least one static
agent to become active (following the fourth condition of this theorem). Consider a static
agentR j which becomes active whenRi becomes its neighbor. This may lead to one of
the following developments, all of which avoid livelocks.

(a) Agent Ri remains in state s′
i ∈ Sactive ∩ Ssimplicial . The pattern can keep evolving

further. A livelock is avoided.
(b) Agent Ri enters a state s′

i ∈ Sactive ∩ S¬simplicial . By Lemma 3, another simplicial
and active agent will be present elsewhere in the swarm. A livelock is avoided.

(c) As per the second exception to condition 3 of this theorem, agent Ri enters a state
s ∈ Sstatic upon becoming a neighbor of agent R j , before agent R j moves. In this
case, the departure of agent R j will bring it back to a state si ∈ Sactive taking us
back to points 2(a) or 2(b) in this list.

(d) Agent Ri enters a state s ∈ Sstatic upon becoming a neighbor of agent R j , after
agentR j moves. At this point, eitherR j will move back to its original position and
agent Ri will return to a state si ∈ Sactive ∩ Ssimplicial and keep moving, or R j

will continue to move elsewhere. In either case, when agent R j moves, it will also
cause other neighbors to become active. In turn, these will move, and Ri , who also
neighbors them, will then return to being in an active state, bringing us back to points
2(a) or 2(b) in this list.

(e) AgentRi , after agentR j hasmoved, enters the position (and state) thatwas originally
taken by agent R j . As in point 2(d) in this list, it is not possible that agent R j will
always only free Ri in exactly the same way that agent Ri freed agent R j , because
G3

S shows that motions of agent R j will free any static agent in the neighborhood,
and not just agent Ri .

There is an exception to the fourth condition of this theorem, which is the static state that
is fully surrounded by other agents along two perpendicular axes. In this case, G3

S may
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show that the agent will not directly become active. However, it is trivially impossible
(since there is a finite number of agents) for the swarm to only feature agents that are
surrounded. A situation where all agents are all surrounded cannot occur; at least one
agent will not be surrounded. This justifies the exception to the fourth condition in this
theorem.

With the above it is confirmed that (1) any open position in the pattern can potentially be
filled, and (2) no livelocks will arise. This means that the swarm will evolve into all patterns
in PAS ∪ Pdes . Therefore, Pdes will always eventually be formed starting from any pattern
P0. �	

We thus conclude the proof procedure to check that livelocks will not occur. We showed
that by fulfilling a set of local conditions we can determine that the pattern will be achieved
from any initial configuration of the swarm. These conditions, being local in nature, are
more strict than it is potentially required at the global level. It can be seen that it is actually
the agents’ ability to stochastically select from a pool of actions that endows them with the
potential to keep exploring new neighborhoods and ensure that the swarm keeps evolving
without livelocks. A primary condition is the important presence of agents in simplicial active
states, which brings interesting insights. Here, we note the following:

– Any desired state with only one neighbor violates the first condition of Lemma 3. This is
because this desired state can form the clique of a blocked state on its own. If this occurs,
the local conditions are too restrictive to formally guarantee that the swarm will not run
into livelocks.

– Removing a dependency on North (Assumption A1) may lead to a violation of the first
condition of Lemma 3. This is because desired states become rotation invariant.

4.5 Verifying against the presence of deadlocks

We now have means to verify that no livelocks will occur, but to know that the swarm will
always self-organize into the desired pattern, we must also show that no deadlocks can form.
That is, there can be no pattern other than the desired pattern Pdes where none of the agents can
take an action. Let us begin, once again, withGP as introduced in Sect. 4.4. Similarly as to the
livelock, we could search exhaustively thoughGP for possible nodes with no outgoing edges.
Alternatively, we could repeatedly simulate the swarm and experimentally checkwhether any
other pattern forms, but this would not strictly ensure that other patterns cannot manifest.5

In this work, we still choose to search through GP . However, to counter the computation
explosion, we show that if no livelock exists then it is only necessary to search through a
small subset of GP , and we also provide a method to quickly scan through the remaining
subspace (alternatively, if livelocks may exist, then there is technically also no reason to
search for deadlocks since we already know that the swarm may evolve undesirably).

4.5.1 Restricting the search space

By definition, deadlocks are patterns P �= Pdes where all agents are in a state s ∈ Sstatic =
Sdes ∪Sblocked . By Proposition 4 the search space is restricted to patterns that contain at least
one agent with state s ∈ Sdes .

5 Considering that the self-organization of the pattern resembles an emergent property, Darley (1994) argues
that this would be more efficient.
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Proposition 4 A deadlock cannot consist only of agents with state s ∈ Sblocked .

Proof Following the same reasoning in Lemma 3, any finite pattern, at its edges, features one
of the following:

1. an agent with state Ssimplicial . By definition, however, Sblocked ∩ Ssimplicial = ∅,
2. agents with a state S¬simplicial forming a loop boundary. Then, at least one agent must

be in a state Sdes , else it would be in a state s ∈ Sactive, which we are not concerned
with.

Therefore, in both occurrences, there must be at least one agent with state s /∈ Sblocked . �	
Then, for a certain class of patterns, it can be shown that all agents must be in a state

s ∈ Sdes , as per Proposition 5.

Proposition 5 If the conditions of Lemma 3 hold and Sdes ⊆ Ssimplicial ∪ ssurrounded , then
all agents in a deadlock must be in a state s ∈ Sdes .

Proof If Sdes ⊆ Ssimplicial ∪ ssurrounded , then all states in Sdes are either simplicial or
ssurrounded . By the first condition of Lemma 3, none of the states in Sdes can satisfy the
cliques of any state Sstatic ∩ S¬simplicial − ssurrounded . This means that they cannot ever
coexist in the same pattern. By Proposition 4, however, at least one agent must exist with
state s ∈ Sdes . Therefore, all agents in the spurious pattern must be in a state s ∈ Sdes .
Alternatively, this proposition can also be verified by a local inspection. �	

Therefore, if a pattern is such that Sdes ⊆ Ssimplicial ∪ ssurrounded , we can further restrict
our search to patterns that only have agents in Sdes . The patterns shown in Fig. 2, with the
exception of the hexagon and the line, meet this condition (the line, however, also does not
meet Lemma 3).

4.5.2 Finding spurious patterns

In this section we detail our implementation to find spurious patterns for an arbitrary set Sdes .
To sort through the possibilities more efficiently, we analyze state combinations to determine
whether they could potentially make a pattern. By first analyzing combinations we need not
concern ourselves with the spatial arrangement but only determine whether the states could
potentially be combined together independently of order. It is only if such a combination is
found that we explore its spatial arrangement, which is done using spanning tree graphs.

Preliminaries Consider a set Sdes . Because the agents can sense each other omni-
directionally, then any two states “match” when two neighbors could have those two states
and be neighbors. We introduce two tools to summarize how the states in an arbitrary set
Sdes match:

– Match-Direction matrix, denoted D, is a square matrix (d × d) that holds the directions
along which any two states in Sdes are reciprocal to each other.

– Match-Count matrix, denoted M , is a square matrix (d × d) that holds the number of
directions along which any two states in Sdes match. M is symmetric. Intuitively, this is
because if agent Ri is a neighbor of agentR j , then agentR j is a neighbor of agentRi .

For example, consider the set Sdes = {s1, s2, s3, s4} in Fig. 9.
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Fig. 9 Set Sdes used for examples in Sect. 4.5.2. li , i = 1, . . . , 8 represent the 8 directions where a neighbor
is expected. In a binary representation, if li = 0 then a neighbor is not expected in that direction, and if li = 1
then a neighbor is expected. The states s1,…,s4 are realizations of this

For this set:

D(Sdes) =

⎧
⎪⎪⎨

⎪⎪⎩

− [l2] − [l3]
[l6] − [l4] [l5]
− [l8] − [l7]
[l7] [l1] [l3] −

⎫
⎪⎪⎬

⎪⎪⎭

M(Sdes) =

⎡

⎢
⎢
⎣

0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

⎤

⎥
⎥
⎦

All entries with 0 in M(Sdes) correspond to empty entries in D(Sdes). From M(Sdes)we can
quickly extract that state s1 can never connect to itself or to s3, but it can connect to states
s2 and s4.6 With D(Sdes) we can see that s1 can match with s2 along l2 and with s4 along
l3. Note that D(Sdes), although not strictly symmetric, also has a symmetry to it: each link
always features, at its symmetry position, a link along the opposite direction. For example,
if s1 matches with s2 along direction l2, then s2 matches with s1 along l6. Therefore, the two
matrices essentially provide a local summary of which states can be neighbors and which
cannot. This will be used in the following analysis.

Combination analysis A combination of local states should meet a set of conditions inde-
pendently of how they are arranged. Using these conditions, it is possible to quickly restrict
the search space without performing a more computationally expensive spatial analysis. The
conditions are:

1. The topology graph is finite and undirected For any finite undirected graph G = (V , E),
the sum of the vertex degrees must be equal to twice the amount of edges (Van Steen
2010; Ismail et al. 2009). As a consequence, the graphwill always feature an even amount
of vertices with an odd degree. This is known as the handshaking theorem (Ismail et al.
2009). In our context, this translates to the fact that any valid combination should feature
an even amount of states that expect an odd number of neighbors.

2. The neighbor expectations are reciprocal In a combination, each state that expects a
neighbor in one direction should have at least another state expecting a neighbor in the
opposite direction.

3. The pattern is finite For each direction, there should be at least one state in a combination
that does not expect a neighbor along that direction. Else, the pattern cannot be finite.

4. The pattern has edges For each direction, there must be at least one state in the combina-
tion that expects a neighbor in that direction, but not in the opposite direction. Otherwise,
no state in the combination should expect any neighbor along either direction.

5. The states can match with each other along all expected directions Each state in a com-
bination should be capable of being potentially matched (i.e., be a neighbor of) to the

6 If analyzed visually, s1 cannot connect to itself because it expects a neighbor to its right (l3) and top-right
(l2), yet if it were to connect to itself, then the robot next to it would have a neighbor to its left, which thus
cannot be s1. Also, s1 cannot connect to s3 because s1 does not expect a neighbor to be right above itself (at
l1), whereas s3 would expect a neighbor to be there because it expects a neighbor on its top-left (at l8), and
vice versa.
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(a) (b) (c) (d)

Fig. 10 Examples of: a an invalid spanning tree, because the graph is not connected; b an impossible spanning
tree, because one agent is expected to have more neighbors than it can support; c an impossible spanning tree,
because some states end up with unfulfilled neighbor expectations; d a possible spanning tree

other states in a combination sufficient to cover its expected neighborhood. This infor-
mation is provided by M(Sdes) and D(Sdes). The reasoning is best explained via an
example. Consider a swarm of 4 agents with Sdes as in Fig. 9 and a potential combina-
tionCi = {s1, s1, s2, s3}. Using M(Sdes), we observe pair-wise matches that are possible
between the states in Ci . M(Sdes) tells us that s1 only matches with s2 in one direction.
In D(Sdes) we can see that this is direction l2 from the perspective of s1, and l6 from the
perspective of s2. However, Ci features two instances of s1 and only one instance of s2.
This means that one instance of s1 can never be satisfied—the combination cannot exist.
This can be checked for all states.

Spanning trees analysis Combinations that have the potential to form a pattern are analyzed
further. We do this by composing spanning tree graphs. Let Ti (Ck) represent an arbitrary
spanning tree generated from a combination Ck . The nodes of Ti are the states in Ck , and
the edges of Ti are one of the connections between the states. A representative spanning tree
must meet the conditions below.

– It is acyclic.
– It is simple (no duplicate edges).
– The edges must at least meet the match conditions in M(Sdes), or else we know that the

edges are impossible because the two states can never be neighboring states.
– It is connected. If operating by Π f , then the swarm is connected. This means that it can

be represented by a connected spanning tree. If Ti (Ck) is not connected, as in the example
in Fig. 10a, then it is invalid.

– The degree of each state should be less than or equal to the number of neighbors that an
agent in that state expects. If the degree of a node in Ti (Ck) is larger than the degree of
the state, then Ti (Ck) is invalid and the spanning tree is discarded, as for the example in
Fig. 10b.

– The spatial arrangement must be feasible. All other conditions above depend on the
properties of the spanning tree graph and are not (directly) dependent on the spatial
arrangement of the states. In this last condition, we analyze the spatial arrangement of
the graph to see if all neighboring states match without lose ends (i.e., “unfulfilled neigh-
bors”), or loops where two states are eventually expected to occupy the same positions.
For instance, Fig. 10c shows a spanning tree that fails this test. D(Sdes) can be used to
quickly generate the full pattern.

If a possible spanning tree is found, as in Fig. 10d, then a possible pattern has been
identified and it can be checked to determine whether it is equivalent to Pdes or whether it is
spurious. A variety of methods can be used to do so automatically (Loncaric 1998).
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Fig. 11 Normalized histograms
of the actions taken before the
pattern is achieved for the
different patterns tested. The
plots are separated in two for
scale differences. The bin width
was adjusted to show the overall
trend for each pattern. The cross
with 20 robots is excluded for
scale reasons, with the lowest
amount of steps measured being
≈ 2.5 ∗ 105

5 Evaluation of the idealized system

Webegin by evaluating the performance of the idealized swarm as described in Sect. 4.1. This
allows us to investigate more fundamental properties and gain initial high-level insights. We
also explore how further tuning ofΠ f could affect the statistical performance of the swarm in
forming a desired pattern more quickly. The latter leads to insights on possible optimization
strategies, which we discuss further in Sect. 7.3.

The simulation environment used in this section replicates the idealized framework from
Sect. 4.1. We simulated idealized agents on a discrete 2D grid world operating in discrete
time. At each time step, one random agent with state s ∈ Sactive executes an action based on
Π f . All tests begin by initializing the agents in a random pattern P0 and end when all agents
are in a state s ∈ Sstatic.

We evaluated the formation of the patterns from Fig. 2. All patterns were successfully
achieved, with no collisions or separation ever occurring. This also happened for the line,
which did not pass the proof andwas additionally also prone to spurious patterns.Generally, as
the complexity of the pattern and size of the swarm grew, the cumulative actions taken by the
swarm to go from P0 to Pdes also grew significantly. The swarm is successfully safe and forms
the desired patterns, even though (as expected due to the low cognition of the robots) it can
take a significant amount of steps before the swarm self-organizes into the pattern. This can
be appreciated in the histograms of the results shown in Fig. 11, split in two graphs to address
the difference in scale. Note that the line with 50 robots performed better than the T with only
12 robots. When we also analyze the mean number of actions per agent, we see that the his-
tograms of the line with 50 robots and the triangle with 9 robots are comparable. This implies
that there is a deeper correlation with shape complexity that should be explored further.

Motivated by the increasingly low performance of larger and/or more complex patterns,
we explored certain alterations of the behavior in order to investigate whether it was possible
to achieve the pattern faster than in the baseline tests above. We tested this for the triangles
with 4 and 9 robots and the hexagon, for which the expected number of actions were fewer
and the differences could be better investigated. We explored the following alterations:

– Alteration 1 (ALT1): same as baseline; however, when an agent moves at time step k, the
same agent will not move at time step k + 1 (unless it is the only active agent).

– Alteration 2 (ALT2): same as ALT1; additionally, all states with more than 5 neighbors
are now not mapped to any actions.
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– Alteration 3 (ALT3): same as ALT2; additionally, all actions must ensure that all agents in
the neighborhood, following the action, have at least one neighbor at North, South, East
or West, else the state-action pair is discarded from Π f . For the triangle with 9 agents,
we made one exception to this, and it is the state s = [

1 0 1 0 0 0 1 0
]
(following the

layout in Fig. 9) for which otherwise a spurious pattern could also form.
– Alteration 4 (ALT4): same as ALT3; additionally, all states with more than 4 neighbors

are now not mapped to any actions.

ALT3 and ALT4 stem from the intuition to let agents “cut-corners” and have fewer func-
tionally active states. In turn, however,ALT3 andALT4do nomeet the conditions of Lemma2
for the hexagon of 6 robots, and do not meet Condition 3 of Theorem 1 for all patterns tested
with it. This is because some states in Ssimplicial lost their property of enabling the agent to
potentially move freely around its neighborhood. Functionally, they behaved like states in the
set S¬simplicial , and a few even like states in Sblocked . Normalized distributions for the num-
ber of steps to completion using ALT1-ALT4 are shown in Fig. 12a–c for the triangle with
4 agents, the hexagon, and the triangle with 9 agents, respectively. For ALT1 and ALT2 the
final pattern is achieved in all cases. As the size of the pattern grows, ALT1 andALT2 are seen
to provide a marginally better performance, but not significantly so. The real improvement is
seen with ALT3 and ALT4. By blocking more local states and cutting corners, the swarm is
less chaotic and forms the pattern orders of magnitude faster. As expected through Lemma 2,
however, ALT3 and ALT4 prevented the hexagon from forming. Instead, failing condition 3
of Theorem 1 did not stop ALT3 and ALT4 from achieving the triangles with 4 and 9 robots.
This could imply that Theorem 1, by nature of featuring local conditions, becomes more
restrictive than necessary for some global patterns. This was also the case for the line with
50 agents, because the line also does not meet the condition. Alternatively, it could also be
possible that the robots were simply “lucky” to not encounter deadlock situations during any
of our simulations.

6 Implementing the behavior on robots

Until now, we have dealt with idealized agents on a 2D grid. In this section, we describe how
the behavior can be brought to real robots operating in continuous time and space and using
local clocks. We test the behavior in two stages of fidelity: (1) accelerated particles, and (2)
simulated MAV flights, showing that the behavior is also robust to noise.

6.1 Robot behavior

The robots can sense omni-directionally all their neighbors within a range ρsensor and can
determine whether their neighbors are computing an action (Assumption A3). A robot Ri

determines its discrete local state si ∈ S following the bearing based discretization in Fig. 13a.
All robots act following the FSM in Fig. 13b. This FSM locally enforces that only one

robot in the neighborhood can move at any time. Following this FSM, a robot will initiate
and pursue an action from Π f if and only if no other robot in a neighborhood is sensed to be
already doing so, which locally recreates the conditions of the idealized system. Therefore,
even thoughmultiple robots around the swarm can take actions at the same time, this does not
occur at the local level. If two robots who are not neighbors become neighbors while both are
executing an action, the actions will interrupt, ensuring safety. Using tad j > 0 and twait > 0
the robots have allocated time to execute attraction, repulsion, and alignment behaviors. As
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(a) (b)

(c)

Fig. 12 Normalized histograms of actions to completion by different alternations of the state-action spaces
for three patterns. The bin width was adjusted to show the overall trend for each case

these alignments maneuvers are minimal, they are not sensed by neighbors as actions and
therefore create natural time windows whereby robots take turns in taking actions.

We have designed a unified attraction, repulsion, and alignment behavior that allows the
robots to naturally arrange in a grid structure whenever not executing an action. Consider
a robot Ri and its neighbor R j . The robots are controlled according to a North-East (NE)
frame of reference. The commanded velocity of Ri along North (and, equivalently, East) is
given by:

vNcmdi j
= (vri j + vbi j ) cos(βi j )

︸ ︷︷ ︸
Attraction and repulsion

− vbi j cos(2βdes − βi j ).
︸ ︷︷ ︸

Alignment

(3)

The first term handles attraction and repulsion. The second term aligns Ri at a bearing βdes

toR j . βi j is the bearing ofRi toR j with respect to North. vbi j is the desired radial velocity.
The attraction–repulsion velocity vri j is:

vri j = −kr
1

|ρi j | + 1

1 + e−ka(|ρi j |−ρs )
, (4)

where kr ≥ 0 is the repulsion gain, ka ≥ 0 is the attraction gain, ρi j is the range between
Ri and R j , ρs is a shift in the attraction term used to tune the equilibrium distance to ρdes .
Equation 4 has Lyapunov stability (Gazi and Passino 2002). For given ρdes , kr , and ka , one
can extract ρs such that vri j = 0. The two robots are in equilibrium (vNcmdi j

= vEcmdi j
=

vNcmd ji
= vEcmd ji

= 0) when βi j = βdes , β j i = βdes ± π , and vri j = vr ji = 0. Note that
Eq. 3 is reciprocal. For each βdes , there exists a corresponding equilibrium point at βdes ±π .
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(a) (b)

Fig. 13 State discretization and FSM of robot behavior

This is due to the identities sin(β+π) = − sin(β) and cos(β+π) = − cos(β). Furthermore,
multiple desired bearingsβdes can be defined, such that each robot can gravitate to the one that
is closest to its current β. We provided the robots with βdes = {0, π/4, π/2, 3π/4}, making
them adjust all the 8 bearings to each other that match the idealized grid. For βdes = π/4
and βdes = 3π/4, then we define ρdes = √

2m instead of ρdes = 1m. For a robot Ri which
senses m neighbors, the complete command along North is vNcmdi

= ∑m
j=1 vNcmdi j

, and the
equivalent for East. This is unless the closest neighbor is at a distance ρ < ρsa f e, in which
case only the closest neighbor is considered.

6.2 Simulation tests with accelerated particles

We begin by testing the behavior from Sect. 6.1 on accelerated particles in an unbounded
2D space. This allows us to quickly test the performance of large swarms while remaining
independent of the dynamics of any particular robot.

The simulations in these sections have been executed on an in-house simulator called
Swarmulator. Swarmulator is a light-weight swarm simulator designed to quickly develop
and prototype spatial swarm behavior.7 Swarmulator’s simplicity and emphasis on quick
prototyping is the reason that it was chosen for this phase. Each robot is simulated as a point
in an unbounded 2D space by a detachedC++ thread, thus simulating a randomasynchronicity
and minimizing the simulation artifact that would otherwise stem from simulating the swarm
in a loop. To further reduce simulation artifacts, the robots initiate the behavior with a random
local time 0 < t < twait . Other detached threads handle animation and logging, allowing
automatic checks of global properties. In the simulations: ρsensor = 1.6m, ρdes = 1m,
ρsa f e = 0.5m, tad j = 1.8s, twait = 3.6s, kr = 1, ka = 5, vaction = 1m/s, vb = 10m/s.
The state-action map Π f is as in ALT4 from Sect. 5.

Results The results for the triangles with 4 and 9 agents from Sect. 5, using the controller
fromALT4, were validated in this continuous setting. Figure 14a, b shows sample trajectories
over time.8 We can see that the agents reshuffle until the desired pattern is achieved. All

7 The source code can be found at https://github.com/coppolam/swarmulator/tree/SI_PatternFormation.
8 Videos of other sample runs are available at https://www.youtube.com/playlist?list=PL_KSX9GOn2
P8BYpwA-_WfXmtb7CRnVhC3.

123

https://github.com/coppolam/swarmulator/tree/SI_PatternFormation
https://www.youtube.com/playlist?list=PL_KSX9GOn2P8BYpwA-_WfXmtb7CRnVhC3
https://www.youtube.com/playlist?list=PL_KSX9GOn2P8BYpwA-_WfXmtb7CRnVhC3


86 Swarm Intelligence (2019) 13:59–94

Fig. 14 Simulated trajectories to
the desired patterns

(a) (b)

(c)

simulations were repeated 50 times. The triangle with 4 agents was achieved successfully in
50 out of 50 trials, with generally fast convergence times (within 100 seconds of simulated
time). The triangle with 9 agents was achieved successfully in 49 out of 50 trials. Only one
trial experienced a separation. This happened as two non-neighboring agents chose to perform
an action at approximately the same time, came into each other’s view, but the alignment
maneuvers that followed were such that two agents (who were the link between two parts of
the swarm) momentarily moved further than 1.6m apart, which was the limit of the sensor.
Although we could be more lenient and accept the fact that the swarm quickly reconnects,
as done by Winfield and Nembrini (2012), the issue is noted and should be tackled in future
work to further guarantee safety even in a continuous setting. Nevertheless, this was the only
“unsafe” event that took place out of thousands of maneuvers executed over all 50 trials. We
also successfully simulated the behavior of the swarm with large groups tasked with making
a line with 50 robots, for which a sample trajectory is shown in Fig. 14c. Here, it is interesting
to see how the line slowly forms as robots all over the swarm begin to align themselves as
required.

6.3 Micro air vehicle simulations

Having developed and tested a behavior that can be used in a continuous domain, we now
explore whether it can be used when robots have more realistic dynamics and reaction times.
This section provides a proof of concept and shows how the selected algorithm can work on
a team of real MAVs with the relevant dynamic constraints and perturbations.

The simulationswere executed usingRobot Operating System (ROS) (Quigley et al. 2009)
and the Gazebo physics engine (Koenig and Howard 2004). The hector-quadrotor model
provided by Meyer et al. (2012) simulates the dynamics of a quad-rotor MAV. Each MAV
is simulated on a separate module and runs independently, with the higher-level controller
running at 10Hz. The same simulation environment was used in both Coppola et al. (2018)
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Fig. 15 Exemplary results of
ROS simulations

(a) (b)

(c)

andMcGuire et al. (2017) with successful replication of the controllers on real-world MAVs,
and it was chosen for this reason. We assumed that the MAVs could measure the position of
their nearest neighbors up to 1.6m, and that they could then sense whenever a neighbor was
moving at more than 0.1m/s, which they would interpret as the neighbor taking an action. All
other control parameters were kept the same as in the Swarmulator trials, with some minimal
tuning to suit the new dynamics (namely: vb = 2, tad j = 1.5, twait = 3).

Results The results of Sect. 6 were successfully replicated using this set-up. We show two
sample trajectories of flights in Fig. 15a, b.9 As for the accelerated particles, the triangle
with 4 MAVs was generally reached within only 100s of flight, and in 48 out of 50 cases it
was completed before the final simulation time of 500s. As expected based on our idealized
simulation, the flight time was not enough for such a high success rate also with the signif-
icantly more complex triangle with 9 MAVs. 20 out of 50 cases finished the triangle within
the maximum simulation time of 5000s for these simulations. Nevertheless, the MAVs never
collided with each other and the swarm never separated in any of the trials, showing that the
idealized rules translate well to realistic dynamics.

Simulation results with sensor noise Additionally, we explored the performance of the
behavior under the influence of noise in the relative position readings of neighbors by applying
Gaussian noise with standard deviation of 0.1m and 0.1 rad for relative range and bearing,
respectively. The only change was that the MAVs could see up to 2m instead of 1.6m in
order to restrict false negatives. The results were robust to the noise. Consider, for instance,
the 300s flight with 9 MAVs shown in Fig. 15c. It can be seen that the swarm distances are
kept, while the swarm still reshuffles, and no collisions occur. The discretization imposed
by the state-action map is such that the behavior is robust to sensor noise. The behavior is

9 Videos are available at https://www.youtube.com/playlist?list=PL_KSX9GOn2P8BYpwA-_WfXmtb
7CRnVhC3.
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(a) (b) (c)

Fig. 16 Development of an asymmetric triangle and test on ROS

robust even when the same set-up from the noiseless case is used, without any filtering of
the Gaussian noise (e.g., using a Kalman filter or a low pass filter), which would otherwise
drastically improve the results further.

7 Discussion

7.1 Intuitive and verifiable design of complex behaviors

The approach presented in this paper allows a swarm designer to intuitively define local
behavior of cognitively limited robots faced with a global task. It is merely necessary to
divide the global task into its locally observable constituents and incorporate this into the
state-action map of the robots. Doing so provides the robots with a behavior that forms the
pattern, even though the robots are incapable of locally knowing when/if this ever occurs.

Having such an intuitivemethod allows us to form patterns that (for systemswith similarly
limited capabilities) had previously not been achieved using an explicit design. In this paper
we showed six patterns as examples, but the limits of the algorithm do not stop there. Izzo
et al. (2014) and Scheper and de Croon (2016), for instance, both proposed neural networks
to tackle the formation of an asymmetric triangle, whereby the difficulty was that three non-
communicating homogeneous robots could not resolve the asymmetry. However, using the
approach presented in this paper, it becomes easy to form any asymmetric triangle. The
desired states to develop Π f are readily extracted, as in Fig. 16a, and the dimensions of the
triangle can be tuned by adjusting the attraction and repulsion forces along North and East.
The asymmetric triangle is then obtained as exemplified in Fig. 16b, c.

In this work we focused on pattern formation, but we postulate that this framework could
also be extended to other global tasks such as organized navigation or task allocation. In
future work, we aim to investigate how the framework can be generalized.

7.2 Generating arbitrary patterns without livelocks and deadlocks

Section 4.2 showed how Π f can be readily computed for any pattern. However, because of
how limited the robots are, it is not necessary that the swarm is able to reach this pattern
from any initial conditionwhile being free of livelocks or deadlocks. Deadlocks and livelocks,
however, stem from the limited knowledge that is available to the robots. If the robots could see
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further, or remember past states, or communicate, they would be able to form more complex
patterns andwould be able tomovemore freely. Theoretically then, any pattern can be formed
provided that the state space is sufficiently detailed to uniquely represent the desired goal
and allow enough freedom to the robots. In line with the goals of generalizing the scheme
that was presented here, we also wish to determine how providing the agents with some extra
capabilities can allow more complex goals to emerge. This is while resting on the knowledge
that the swarm can also operate when these extra capabilities malfunction. Furthermore, the
proof conditions presented in this paper have been shown to be more restrictive than it can
turn out to be in a real swarm. The advantage of using local properties are that we do not need
to analyze the global states of the swarm, yet this comes at the cost of possibly being more
strict than required from the global perspective. At this moment, however, we have seen that
patterns that do not respect some of the conditions still form in our simulations, such as the
line pattern. Indeed, it may be that the subset of global states that represent a deadlock or
livelock is very small compared to the total state space, making such failures possible, yet
extremely unlikely. More focused investigations should be conducted in order to understand
when it is possible to be more lenient on some conditions while still ensuring that livelocks
and deadlocks do not arise.

7.3 Time for self-organization

In Sect. 5, generally speaking, it was found that as the size of the swarm and the intricacy of
the pattern grow, the pattern could form only after a possibly unrealistic number of actions
by the robots. This property was expected in light of all the limitations of the robots, as it
becomes increasingly unlikely that the agents’ random actions will lead to the desired global
pattern.10 However, there are two important things to note:

1. In real robot swarms, several actions will be taking place at the same time, so the time
to completion will be faster than expected. For instance, in Fig. 14c the line is seen to
slowly form across the entire swarm, whereas this is not the case for the idealized system.

2. Our investigations in Sect. 5 showed that it is possible to improve performance by several
orders of magnitude by further altering the local state-action map.

The latter leads to questions about how to best alter a local state-action map. The alterations
in this work were done manually, using intuition, for exploratory purposes. The problem
could be solvedmore optimally usingmachine learningmethodologies such as reinforcement
learning or evolutionary robotics. The objective would be to alter Π f such that, statistically,
the time for the robots to self-organize into a desired pattern is minimized. Here, the local
proofs would allow us to verify that the alterations are such that the system is still guaranteed,
at all times, to always eventually reach the pattern.

7.4 Toward real-world implementations and applications

The simulations using ROS in Sect. 6.3 provide a large degree of confidence in the possibility
to implement the system on real MAVs (or other robots). Provided that the necessary sensory
information is available, then they are able to follow the behavior even when behaving by
their own internal clock and in the presence of sensor noise, and this is without the aid of any
additional filtering. We then find that the local behavior can also be used simply to guarantee

10 In popular adage, one might say that there is no such thing as a free lunch.
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collision avoidance and swarm coherence in spite of all limitations of the robots. This has
several applications of its own. For instance, it can be used to preemptively guarantee that a
robotic sensor network never separates in multiple groups.

7.5 Scalability of proof procedure

Our proof procedure focused as much as possible on the local level, making it largely inde-
pendent of the number of agents in the swarm, and thus able to mitigate state explosion
issues. Most notably, we are able to prove, only by a local-level analysis, that livelocks will
not exist when starting from any initial pattern. A key element of this proof was an analysis
of the simplicial states and the intuition that they could help the swarm to resolve livelocks.
Nevertheless, the complete proof still requires us to verify that deadlock patterns will not
occur, and this part is still done using an ultimately global analysis. We have shown how to
mitigate the computational explosion by looking at a limited subset of state combinations
and using a procedure to quickly sort through the possibilities, yet the issue is not yet fully
eliminated. In future research, there should be efforts to further mitigate its effects for finite
patterns. Here, we expect that the match matrices introduced will be a fundamental tool to
analyze local connections between the robots.

For now, three solution directions have been identified in order to mitigate the computa-
tional explosion. The first is to focus on the agents at the border of the structure, assuming
that all other agents will be enclosed by these agents. The second avenue is to use repeating
sub-patterns. The local states could be made such that the agents can arrange into infinitely
repeating patterns (e.g., infinitely connecting hexagons) and create a large complex structure
without defining or checking the larger structure in full. This we actually already did, in part,
for the line pattern. The third solution, perhaps most trivial, is to allow robots that have been
blocked for a long time to temporarily perform partially unsafe maneuvers, which might set
the system free from deadlocks (but may come at other costs).

8 Conclusion and future work

In this paper we introduced a method to design the local behavior of robots in a swarm so
as to form desired global patterns in spite of extremely limited cognitive abilities. Because
the robots only know the relative location of their closest neighbors and have no memory of
the past, they cannot take “purposeful” actions. Therefore, a mechanism has been designed
that makes the global pattern emerge from the local, stochastic behaviors of the agents.
Approaching the problem from top-down, the method simply requires one to identify the
local states that build the desired global pattern in order to design the behavior. Then, to close
the loop, we presented a proof procedure to verify whether the desired pattern will always
eventually emerge from the stochastic interactions of the agents. An important insight from
these proofs is the crucial role that simplicial states play in helping the swarm to avoid
livelocks and minimizing the possibility of deadlocks. It is important to note here, however,
that should we find that livelocks and deadlocks are possible, then this tells us that the robots
have an insufficient sensory knowledge for the desired global goal to always eventually
happen, which is equally valuable information when designing a robotic swarm. Despite
developing the behavior for idealized agents on a grid world, we have shown very promising
results that show that the behavior can be successfully reproduced by robots operating in
continuous time and space, with local clocks, even in the presence of noise.
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Themethodology presented here has been used for pattern formation. At its core, however,
it is based on the more general idea of synthesizing a global goal into a probabilistic state-
action map executed by the robots, and the verification of the global property by ensuring
that the swarm features agents with a state that empowers them to help the swarm evolve (i.e.,
simplicial states). With a modified mapping, we expect this strategy to also be applicable
to systems with significantly different state and action spaces. Furthermore, following the
positive results of the simulations presented in this paper, future work will focus on bringing
this framework to real-world robots. A primary challenge that must be solved for this to
happen is to use an optimization procedure to enable larger and more complex patterns to
form faster. A second challenge is to explore the best ways of dealing with potential false
positives or false negatives. These situations may cause the robot to take a misguided action.
We expect that this can be solved by further limiting the state-action map whenever a state
cannot be clearly identified. Finally, it would be valuable to investigate the impact of removing
the knowledge of a common North direction on the ability to create certain patterns, making
the system even more independent from the environment.
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