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Abstract
This paper introduces a strategy for learning oppo-
nent parameters in automated negotiation and using
them for future negotiation sessions. The goal is to
maximize the agent’s utility while being consistent
in its performance over various negotiation scenar-
ios. While a number of reinforcement learning ap-
proaches in the field have used Q-learning, this pa-
per uses the newer Proximal Policy Optimization
algorithm. Machine learning has been used in op-
ponent modeling, classifying opponents, and learn-
ing strategies, but there have been few attempts to
store and re-use this information. In an experimen-
tal setup, it is shown that this approach outperforms
a baseline in terms of individual utility.

1 Introduction
Negotiation is an inherent process in every human life. It
can be defined broadly as a discussion aimed at reaching an
agreement. Although negotiation can bring significant bene-
fits, more than half of American employees do not negotiate
their salaries [3]. What if it could be done automatically on
your behalf? It is only natural that in the past few decades
there has been a growing need to delegate the negotiation pro-
cess to autonomous agents.

As technology plays an increasingly important role in our
lives, the importance of reliable automated negotiation is also
growing. Online dispute resolution, internet-of-things, e-
commerce, or resource management [2], to name a few, could
all benefit from developments in this field. Advances in auto-
mated negotiation promise to save time, reduce costs and lead
to better outcomes [1].

In the same way that humans do, agents should be able to
learn from their negotiating sessions to improve themselves
continuously. Agents that do not adapt can be easily exploited
by other agents given enough negotiating sessions [18] and
adaptation usually results in improved performance.

The use of machine learning in this field has seen grow-
ing interest in recent years and techniques such as Bayesian
learning, genetic algorithms [13] or Q-learning [14] have all
been used. Some agents can classify the opponent’s bidding
strategy and adjust their own strategy accordingly [16], while
other agents can estimate the opponents’ preferences and ex-
ploit them [5]. A party (agent) that performs well against one
opponent might perform poorly against another and the same
can be said for domains. An agent that is able to learn could
help face these issues by being able to generalize on both op-
ponents and domains.

Although agents today can effectively learn and improve,
there is still a long way to go until they can represent us in
day-to-day life. It would require agents to be largely au-
tonomous and have excellent knowledge regarding the do-
main and the preferences of the person it represents, as well
as be able to adapt to each new opponent.

The research question this paper aims to answer is: Can
an agent learn a latent representation of an opponent and use
that representation to improve its performance?

An opponent model or “latent representation” is defined
simply as knowledge about aspects of an agent, which are
hidden or not available, meaning they must be inferred from
the agent’s actions. In the context of this research, a latent
representation consists of the bidding strategy of the oppo-
nent, however other opponent modeling techniques exist [7].
An improvement is defined as an increase in the metrics used
to evaluate the agents, such as average utility gained, percent-
age of agreements, and distance from the Pareto frontier.

Reinforcement learning (RL) is a machine learning ap-
proach in which agents try to maximize their reward while
interacting with their environment. This way, agents can learn
from their experiences in a bias-free way, compared to solu-
tions proposed by humans. In this case, the environment is
the negotiation taking place between the agent and its oppo-
nent, while the actions it can take are the offers sent and the
decision to accept or reject, which are directly influenced by
the policy. More specifically, Proximal Policy Optimization
(PPO) is used, which is a state-of-the-art RL algorithm that is
easy to implement, sample efficient, and easy to tune[15].

The goal of our work is to increase the agent’s utility using
machine learning in order to extract information about the
opponent, which can be stored for later negotiation sessions.
To the knowledge of the authors, PPO has not yet been used
in this field, and storing information about past opponents,
then reusing it is an approach yet unexplored. A new, simple
solution is proposed for learning how the opponent concedes,
building on the work of Yasumura et al. [19].

2 Related work
Opponent modeling is a topic frequently studied in the field of
automated negotiation. There exists a large number of stud-
ies concerning the main approaches to learning about the op-
ponent: modeling the opponent’s strategy or the opponent’s
preferences. Modeling the opponent’s strategy by learning
certain parameters is the focus of this paper.

The aforementioned approach is also split into two main
areas of focus, with some overlap: acceptance strategy mod-
eling and bidding strategy modeling. Razeghi et al. [14] use a
deep Q-network (DQN) to learn when to accept. They use the
utility of the received bid and the estimated opponent utility,
as well as the remaining time and target utility to determine
the acceptance or rejection probability.

In contrast, Bakker et al. [10] have introduced a reinforce-
ment learning framework using Q-learning for automated
agents, focusing on the bidding strategy. They discretize the
utility space into several bins and using the utility of previ-
ous bids, they estimate in which bin the utility of the next bid
should be.
The main approaches mentioned earlier can also overlap,
such as in the work of Bagga, Paoletti and Stathis [9].
They estimate parameters using statistical information de-
rived from received bids, which are then used to select bid-
ding and acceptance strategies that can change throughout the
session. They pre-train their model using supervised learning
(SL) using examples from previous negotiation sessions. The
strategy is then improved using reinforcement learning.



Finally, Yasumura et al. [19] propose another Q-learning
approach where the agent estimates how much it should con-
cede, based on how much the opponent and itself have already
conceded. The agent outputs the amount of concession for the
next bid to be sent and the reward function is similar to the
one used in this paper, specifically the utility at the end of the
agreement.

3 Methodology

The agents used for training and testing, as well as the main
agent in this paper, have been written using the GENIUS
FRAMEWORK [12]. Negotiation sessions will be bilateral,
and communication within a session will use the Stacked Al-
ternating Offers Protocol (SAOP) [4]. Given a set of issues
and values, a negotiation domain is a set containing the avail-
able bids, which are combinations of the issues and values.
A preference profile specifies the utility of each value, and a
utility function can compute the utility of any bid. This paper
uses linear additive utility functions, meaning the preference
for each issue is independent of what values other issues can
take. The domains and preference profiles are generated auto-
matically using a script and are split into training and test sets.
The domain size is chosen at random, but must be between
200 and 10000 bids. The number of issues is also chosen at
random and must be between 4 and 10 issues. The number of
values per issue is partly random, but it is also dependent on
the number of issues. Using a dictionary containing the set of
issues and values, two profiles are created, also in a random
fashion.

In order to answer the research question, the experiment
is split into two phases, training and testing. Agent training
is accomplished by online reinforcement learning using PPO.
Data is collected throughout each negotiation session, and the
policy updates its weights after a certain number of episodes.
One episode consists of one negotiation session. Initially, the
agent will be trained against multiple opponents, where the
goal is to learn a particular feature of the opponent. Then,
to test it, the agent will negotiate with another set of agents,
and the results will be compared with 2 agents, one using
reinforcement learning (referred to as the basic PPO agent)
and one not using it (referred to as the baseline). They will
negotiate against the same agents on the same domains. In
this case, for every session during training, a random agent
and a random domain are selected and this process is repeated
until the allocated time budget expires. Agents are tested by
negotiating against each opponent 50 times on a separate set
of domains. The same random seed is used so that there is
less variability and the results are more comparable. Average
utility, percentage of agreements, and the average distance
from the Nash point will be used in evaluating the agents.

ω ∈ Ω, pnash ∈ argmax(Uown(ω) ∗ Uopp(ω)) (1)

Expression 1 shows how to compute the Nash product,
where ω is a bid from the domain Ω, and pnash is the Nash
point, Uown is the agent’s utility functions while Uopp is the
utility function of the opponent.

4 Experimental Setup
4.1 Implementation
The most important implementation details will be covered
in this section, while specific values for parameters or minor
details are available on GitHub.

The most important method of the agent is
select action(observation). This receives an offer
from the other party and decides if the agent should accept or
reject and send a counter-offer. For the sake of simplicity, the
acceptance strategy used is ACnext, which accepts an offer
if the bid to be sent has lower utility than that received by the
opponent. The bidding strategy is determined by the policy,
using the state vector as input. The state is composed of 3
features: the opponent concession parameter, the concession
balance, and the time until the deadline (the progress). The
concession parameter is initialized to zero if no previous
negotiations against the opposing party have taken place, or
it is read from a file otherwise. The concession balance is the
difference between how much the agent has conceded from
the initial offer and how much the opponent has conceded
from their initial offer, as shown in Equations 2, 3, and 4,
where ω represents a bid, n is the number of the round, and
m is the final round number.

Balance =

m∑
n=0

(Concessionn
own − Concessionn

opp) (2)

Concessionown = Uown(ωprevious)− Uown(ωlatest) (3)

Concessionopp = Uopp(ωprevious)− Uopp(ωlatest) (4)

Using the state vector, the policy has 2 outputs: the updated
opponent concession parameter and a utility goal. The latter
is then used to find a random bid above that utility goal, from
a sorted list containing all of the possible bids. At the end of
the negotiation session, the opponent concession parameter
is stored in a file named after the opponent it faced so that
it can be used in future sessions against the same opponent.
As the goal of the agent is to maximize individual utility, the
reward given to the PPO policy at the end of an episode is the
individual utility of the bid accepted at the end of the session
or 0 in the case where the time runs out or no deal is made.

4.2 Experiment
The agent is trained for 1 hour (approximately 1500 episodes)
against 17 agents on various domains. More details about
how this is done can be found in Section 3. The deadline for
one negotiation session is 10 seconds or until an agreement
is reached (whichever comes first). After that, a new session
begins, and so on.

There are 9 parties against which the agent is tested. Fifty
negotiation sessions are done against each of them separately,
and then metrics are computed. The different metrics are then
compared to see if there is an improvement on average or
specific opposing parties. The same is done for the other 2
agents: the baseline agent and the basic PPO agent. The for-
mer is a time-based conceder using ACnext for its acceptance



strategy. The latter (also trained for 1 hour), uses the utility
of the past 3 received bids as input for the policy to determine
an individual utility goal and one for the opponent. In order
to find a bid, it samples 1000 random bids and chooses the
one closest to both utility goals. It accepts when the received
offer has higher utility compared to the individual utility goal.

5 Results
Figure 1 shows the average utility gained against each oppo-
nent by the agent (in blue), the baseline (in red), and the basic
PPO agent using reinforcement learning (in yellow). In 6 out
of 9 cases, the agent outperforms the baseline and it always
outperforms the basic PPO agent. In the majority of the cases
where it outperforms the baseline, it does so by around 10%,
but there is some variance. In the 3 cases where the baseline
performs better than the agent, the percentage of agreements
is the main cause, being as low as 74% for the agent and
94% for the baseline when negotiating against Agent 67. As
mentioned before, there is no reservation value for any of the
agents, a session that does not result in an agreement awards
0 utility. Complete results can be seen in Tables 1 and 2.

Figure 1: Comparison of average utility

Figure 2: Comparison of average distance to the Nash point

6 Analysis
One important assumption made in this work is that oppo-
nents the agent has negotiated against will be faced again in

the future. It would be beneficial if the agent’s performance
would increase after repeated negotiations against the same
opponent. However, with the exception of a few outliers,
the opponent concession parameter does not change signifi-
cantly between sessions, as Figure 3 shows. In addition, the
agent does not improve its performance after several sessions
against the same opponent, meaning the value of the oppo-
nent concession parameter has converged within one session.

Figure 3: Evolution of the opponent concession factor at the end of
the negotiation throughout 50 sessions

In Figure 4 the value of the concession parameter is plotted
after each exchange of bids throughout 5 sessions, against
different opponents from the test set. It can be seen that
the value does not remain constant, but it decreases as the
session progresses. This suggests that how the opponent
concedes is not the only feature modeled by the neural
network. Due to the black-box nature of the policy and the
reward which only promotes high utility through any means,
it is hard to say what exactly the policy is outputting in order
to somehow classify the opponent. It is also dependent on
the concession balance and the time until the deadline. The
balance is itself dependent on the estimated utility of the
opponent. The Smith frequency model is used, which has an
accuracy of around 75% [6]. The performance of the agent
with regard to different accuracy of opponent models has
not been investigated, however, this could be the subject of
future work.

While the agent outperforms the baseline against most op-
ponents, it results in more no-agreement outcomes. It is likely
that it will perform worse than most agents when faced with
hardliner-type agents that do not concede by the end of the
session, as zero utility is worse than low utility. Usually, the
agent does not concede by a large margin, so the baseline
reaches outcomes that are closer to the Nash point against 6
out of 9 opponents. Even though the agent was not trained to
reach win-win outcomes, it is interesting to see it has learned
that being selfish, will usually yield a high individual utility.
An unexpected and equally interesting finding was that the
agent will begin to concede by a small margin (around 5%,
but it depends on how much the opponent concedes as well)



Concession Agent Baseline Agent

Opponent Average
utility Variance

Average
social
welfare

% of
agreements

Mean distance
to
Nash point

Average
utility Variance

Average
social
welfare

% of
agreements

Mean distance
to
Nash point

Agent 64 0.952 0.024 1.365 100.00% 0.457 0.832 0.007 1.510 100.00% 0.208
Agent 41 0.945 0.026 1.576 100.00% 0.249 0.976 0.001 1.478 100.00% 0.380
Agent 68 0.931 0.136 1.419 98.00% 0.385 0.864 0.005 1.583 100.00% 0.153
Agent 78 0.928 0.032 1.596 100.00% 0.219 0.824 0.004 1.631 100.00% 0.087
Agent 52 0.926 0.026 1.562 100.00% 0.242 0.843 0.004 1.617 100.00% 0.115
Agent 2 0.911 0.133 1.499 98.00% 0.273 0.813 0.005 1.601 100.00% 0.121
Agent 18 0.827 0.307 1.420 88.00% 0.211 0.906 0.021 1.536 98.00% 0.226
Agent 26 0.827 0.278 1.455 90.00% 0.184 0.799 0.018 1.593 98.00% 0.097
Agent 67 0.734 0.391 1.270 78.00% 0.201 0.838 0.051 1.454 94.00% 0.223

Table 1: Comparison of Concession Agent vs Baseline Agent

Concession Agent Basic PPO Agent

Opponent Average
utility Variance

Average
social
welfare

% of
agreements

Mean distance
to
Nash point

Average
utility Variance

Average
social
welfare

% of
agreements

Mean distance
to
Nash point

Agent 64 0.952 0.024 1.365 100.00% 0.457 0.626 0.015 1.416 100.00% 0.332
Agent 41 0.945 0.026 1.576 100.00% 0.249 0.548 0.053 1.359 88.00% 0.245
Agent 68 0.931 0.136 1.419 98.00% 0.385 0.615 0.015 1.422 100.00% 0.325
Agent 78 0.928 0.032 1.596 100.00% 0.219 0.628 0.017 1.500 100.00% 0.271
Agent 52 0.926 0.026 1.562 100.00% 0.242 0.602 0.023 1.443 98.00% 0.283
Agent 2 0.911 0.133 1.499 98.00% 0.273 0.593 0.018 1.399 100.00% 0.355
Agent 18 0.827 0.307 1.420 88.00% 0.211 0.587 0.045 1.423 92.00% 0.245
Agent 26 0.827 0.278 1.455 90.00% 0.184 0.582 0.021 1.396 98.00% 0.305
Agent 67 0.734 0.391 1.270 78.00% 0.201 0.560 0.056 1.396 88.00% 0.227

Table 2: Comparison of Concession Agent vs Basic PPO Agent

(a) Agent 18 (b) Agent 41

(c) Agent 52 (d) Agent 64

Figure 4: Evolution of opponent concession factor against different
opponents throughout 5 sessions

if the opponent begins to concede. However. when faced with
an opponent that does not concede, such as a hardliner agent,
it will not concede itself. This may point to the fact that the
agent is sensitive to the concession balance feature of the state
vector, and is reacting in a tit-for-tat manner.

From the results, one can see that the basic PPO agent per-
forms worse than the agent and the baseline. One possible
explanation could be the small number of random bids it sam-
ples (1000). Some domains have more than 10000 possible
bids, so it can be that the utility of the bid it sends is much
lower than the utility goal that the policy outputs. The deci-
sion to keep it as it is was made so that there is a common
baseline with the authors’ peers.

7 Responsible Research
7.1 Ethical aspects
Discussions about the ethical aspects of AI tend to revolve
around the negative impact artificial intelligence can have
on human lives. However, AI is a rapidly growing indus-
try with billions of dollars invested annually by companies
[17], promising to bring many ethical benefits to society in the
coming years. More specifically, autonomous agents can rep-
resent humans in salary negotiations, helping bridge the wage
gap between men and women and helping reduce income in-
equality by providing trustworthy and improved performance
compared to the average human negotiation tactics. Negotiat-
ing agents could also improve the way we distribute resources
and increase efficiency or reduce shortages in the global econ-
omy [2]. Problems that we are currently struggling to solve
could be easily tackled by bias-free AI in the coming years,
provided there is enough trust to adopt these new technolo-
gies. Ideally, trust is directly proportional to the performance



of these agents, which shows that first there needs to be fur-
ther development in the field before a large-scale adoption for
complex tasks such as economic planning is possible [8].

Nonetheless, there are negative ethical aspects to consider
as well. Backdoor attacks on neural networks [11] can fool
even well-trained agents. This type of attack consists of ”poi-
soned” data being fed into the network, essentially leading to
classification errors. This data has a special trigger, that can
be later exploited by the attacker to influence the decision-
making process of the policy. In the context of automated
negotiation, this trigger could lead an agent to accept a bad
outcome for itself, for the benefit of the opponent. Whether
it is the fault of bad actors or errors in the system, automated
negotiation could also lead to inequality. Say, for example,
people could negotiate their electricity prices with the energy
company using autonomous agents. Knowledgeable people,
which could have had access to higher education could cre-
ate better agents that get them advantageous prices, while less
knowledgeable people would get worse prices. The same can
be said for rich and poor people, the former being able to af-
ford better agents, while the latter cannot, further exacerbat-
ing the gap between the upper and lower classes. Nonethe-
less, it is up to us to use technology for our own betterment,
or for our own decline.

7.2 Reproducibility
The repository containing the implementation of the PPO al-
gorithm and the agents will be made public. To reproduce the
results from this paper, all one needs to do is download the
repository and run the train and test files on the same domains
and against the same agents as specified in the methodology
and experiment sections.

8 Conclusions and Future Work
This paper has set out to answer the following question: Can
an agent learn a latent representation of an opponent and use
that representation to improve its performance? PPO was
used to learn and store an opponent parameter in a bilateral
negotiation. It uses the concession balance, the progress, and
the previously learned opponent parameter to output a utility
goal and update said parameter.

Trained and tested over multiple domains and against mul-
tiple opponents, this research has shown that by learning how
the opponent concedes, the agent outperforms the baseline
in terms of individual utility in the majority of cases. The
value modeled by the agent is learned within one negotiation
session, so there is no need for multiple sessions to reach its
maximum performance against an opponent. The policy has
become sensitive to how the opponent concedes and it will
employ a tit-for-tat strategy, without conceding too much.
This enables it to take advantage of the fact that opponents
are more likely to accept worse offers in the end, while still
receiving a high individual utility.

Future work can be done in creating a more sophisticated
state vector in order to have noticeable improvement after
more negotiation sessions. As mentioned before, the state
vector depends on the accuracy of the opponent model, so
research into how this affects the performance of the agent

could prove useful. In addition, a recurrent neural network
could be used, that might be better suited for this problem.
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for Automated Negotiations Should Be Adaptive. Net-
nomics, 5(2):101–118, November 2003.

[19] Yoshiaki Yasumura, Takahiko Kamiryo, Shohei
Yoshikawa, and Kuniaki Uehara. Acquisition of a
concession strategy in multi-issue negotiation. Web
Intelligence and Agent Systems, 7(2), January 2009.


	Introduction
	Related work
	Methodology
	Experimental Setup
	Implementation
	Experiment

	Results
	Analysis
	Responsible Research
	Ethical aspects
	Reproducibility

	Conclusions and Future Work



