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Abstract—This paper introduces a hypothesis testing problem
to detect whether a noisy simplicial signal lives in some specific
Hodge subspaces or not. This is of particular relevance for
edge flows in a network since they exhibit, under normal
circumstances, different properties in Hodge decomposition. For
example, a traffic flow in a road network is often conservative
and that can be localized in a particular Hodge subspace.
We propose two Neyman-Pearson optimal detectors for this
task: the Simplicial Hodge Detector (SHD) and the Constrained
Simplicial Hodge Detector (CSHD). They compare the energy
of the simplicial embeddings in different Hodge subspaces and
distinguish between the two hypotheses. The SHD utilizes the
maximum likelihood estimation, while CSHD incorporates signal
prior information to estimate the simplicial embeddings. These
detectors are validated through numerical simulations on both
real-world and synthetic data, indicating great potential in
practical applications.

Index Terms—Signal processing over higher-order networks,
detection theory, topological signal processing.

I. INTRODUCTION

Data with higher-order structures contain more intrisic
information than graphs or Euclidean structured data such
as images [1] [2] [3]. These structures include simplicial
complexes, cell complexes, and hypergraphs [2] [4] [5] and
encode multi-way relations while graphs are limited only to
pair-wise relations. For example, flows can be modeled as
signals supported on a set of edges [6] [7], thereby exploiting
concepts in a higher-order network framework. Tools in signal
processing and machine learning have been developed to
process signals defined on higher-order networks such as
convolutional and trend filters [8] [9], neural networks [10],
Fourier analysis [11], and autoregressive model [12].

Central to these processing techniques is their algebraic rep-
resentation of the underlying structure via the Hodge Laplacian
[11] [13] [14]. The Hodge decomposition of this Laplacian
states that any simplicial signal (data defined over simplices
of a given level) comprises the sum of three components
which are the gradient, the curl, and the harmonic component
[8] [15]. These components live in orthogonal subspaces and
carry specific interpretations. For example, for edge flows, for
example, the gradient component is induced by the difference
of signals defined on the nodes, which is similar to the
relationship between electric potential and current. The curl
component is the edge flow around triangles, which can be
regarded as the local circulations. And the harmonic compo-
nent is the flow-conservative part [8]. The projections of the
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signal components in the specific subspaces yield their Hodge
embeddings, which are the bases for analyzing simplicial
signals.

Many real-world signals with a higher-order structure pos-
sess distinctive properties that can be characterized by their
Hodge embeddings. Two such properties are the curl-free
and the divergence-free property [16]. Curl-free means that
the sum of the edge flows circulating around triangles is
zero, and divergence-free means the total amount of edge
flows entering a node equals the flow leaving this node [8].
For instance, in a currency exchange market, the arbitrage
free condition indicates that the logarithm exchange rate flow
is curl-free, which means that profit cannot be made by
exchanging between different currency pairs repeatedly [6].
Likewise, in a road network, traffic flows are often divergence-
free since the cars on roads are conservative [8] [17].

When abnormalities occur, such as estimation error or data
missing [6] [17], the above signal properties are no longer
satisfied. Therefore, it is meaningful to detect such cases from
a few measurements in a mathematically tractable way. This
falls naturally under a matched subspace detection (MSD) per-
spective (the signal is in one particular subspace, e.g., gradient
or not) [18]. While machine learning classifiers can be used,
they often lack tractability or require a large amount of data.
Therefore, we rely on MSD principles to build optimal and
mathematically tractable detectors that can act as classifiers
in a limited data regime. Related works on MSD have been
proposed in the graph domain, such as the bandlimited signal
detector in [19] and the blind graph topology detector in [20]
but they do not apply to data on higher-order networks.

We propose a hypothesis test problem to detect whether a
simplicial signal lives in a specific Hodge subspace or not.
We exploit the Hodge subspace projections of the different
components [8] and due to their orthogonality the embeddings
have different shapes and probability distributions. Then, we
consider a generalized likelihood ratio test to estimate the
signals from noisy observations [21] and make the following
contributions.

• We develop a MSD theory for simplicial signals based
on the properties of the different Hodge subspaces.

• Inspired by the MSD for graphs [19] and [20], we propose
two simplicial detectors, the Simplicial Hodge Detector
(SHD) and the Constrained Simplicial Hodge Detector
(CSHD). They are energy-type detectors which consider
the projection of the signals in Hodge subspaces. SHD
exploits the maximum likelihood principle to estimate
the embedded signal, while CSHD considers the prior
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information and exploits regularized maximum likelihood
estimators.

• We conduct experiments on real-world and synthetic
datasets to verify the effectiveness of the proposed de-
tectors.

II. PRELIMINARY

A. Simplicial Complexes

Given a set of vertices V , a k-simplex Sk is a subset of V
containing k + 1 elements. A simplicial complex of order K,
PK , is a finite collection of k-simplices Sk for k = 0, 1, ...,K
satisfying the inclusion property: for any Sk ∈ PK , all of its
subsets Sk−1 ⊂ Sk are included in the simplicial complex,
i.e., Sk−1 ∈ PK . The number of k-simplices in PK is Nk.
By considering the geometric embedding of the simplicial
complex into the Euclidean space, a node can be seen as a
0-simplex, an edge as a 1-simplex, and a (filled) triangle as
a 2-simplex; see Figure 1. A graph is therefore a simplicial
complex of order K = 1 including nodes and edges.

The adjacencies between different simplices can be de-
scribed by the incidence matrices Bk ∈ RNk−1×Nk which
represent the relationship between (k-1)-simplices and k-
simplices [11]. These incidence matrices can be used to build
the Hodge Laplacian matrices that can represent the structure
of a simplicial complex

L0 = B1B
⊤
1

Lk = B⊤
k Bk +Bk+1B

⊤
k+1, k = 1, . . . ,K − 1

LK = B⊤
KBK .

(1)

Except for L0 and LK , the other intermediate Laplacians Lk

consist of the lower Laplacian Lk,ℓ = B⊤
k Bk and the upper

Laplacian Lk,u = Bk+1B
⊤
k+1. They represent the lower-

adjacencies (e.g., how two edges are adjacent via a common
node), and the upper-adjacencies (e.g., how two edges are
adjacent by being the faces of the same triangle) of k-simplices
respectively.

A k−simplicial signal sk =
[
sk1 , . . . , s

k
Nk

]⊤ ∈ RNk is
supported on k-simplices where entry ski corresponds to the
ith k-simplex [11]. For simplicity of notation, hereafter, 0−,
1− and 2−simplicial signal are denoted as v, f and t. They
represent node, edge, and triangle signals, respectively. A
simplex can have two orientations and for processing purposes.
We follow the lexicographical ordering of the vertices to define
the reference orientation. If the value of the signal is positive,
the set orientations are consistent with the real situation. If it
is negative, the set orientations are opposite.
B. Hodge Decomposition

The Hodge decomposition states that the space of the
k−simplicial signal RNk can be decomposed into three or-
thogonal subspaces

RNk ≡ span
(
B⊤

k

)
⊕ kernel (Lk)⊕ span (Bk+1) (2)

where ⊕ is the direct sum operator. In this paper, we focus on
edge flows due to their wider applicability, i.e., 1−simplicial
signal. Then, span

(
B⊤

1

)
, span (B2) and kernel (L1) are the

gradient, the curl, and the harmonic subspace with dimension

(a) Edge flow f . (b) fG. (c) fC. (d) fH.

Fig. 1: Hodge decomposition of the simplicial signal for
a simplicial complex of order two. The edge flow can be
decomposed into three different components: the gradient fG,
the curl fC and the harmonic component fH .

NG, NC and NH , respectively. To reveal the relationships
between the different Hodge subspaces, we consider the eigen-
decomposition of the first Hodge Laplacian

L1 = UΛU⊤ (3)

where U ∈ RN1×N1 is an orthonormal matrix that collects
the eigenvectors and Λ = diag(λ1, ...λN1) ∈ RN1×N1 is a
diagnal matrix that collects the corresponding eigenvalues. The
columns of U can be rearranged into [UG UC UH] with the
following explanation.

• Gradient eigenvectors: UG ∈ RN1×NG collects the
eigenvectors of L1,ℓ corresponding to the eigenvalues
λG,i > 0 and span the gradient space span (B⊤

1 ).
• Curl eigenvectors: UC ∈ RN1×NC collects the eigenvec-

tors of L1,u corresponding to the eigenvalues λC,i > 0
and span the curl space span (B2).

• Harmonic eigenvectors: UH ∈ RN1×NH collects the
eigenvectors of L1 corresponding to the zero eigenvalues
λH,i = 0 and span the harmonic space kernel(L1).

The Hodge decomposition also implies that for any
1−simplicial signal f , there exist three signals of orders 0,
1, and 2 so that we can decompose the 1−simplicial signal as

f = B⊤
1 v + fH +B2t. (4)

Thus, any edge flow can be written as a sum of three flows f =
fG + fC + fH (see also Fig. 1) with the following explanation:

• Gradient component: fG = B⊤
1 v ∈ span(B⊤

1 ) is a
flow in the gradient space and the gradient operator B⊤

1

maps node signals v into edge signals f . It is induced
by taking the difference between the node pair signal
values. Eigenvectors UG span the gradient space and
the corresponding gradient embedding is f̂G = U⊤

Gf =
U⊤

GfG ∈ RNG .
• Curl component: fC = B2t ∈ span(B2) is a flow in

the curl space and the curl adjoint operator B2 maps
triangle signals t into edge signals f . It is the edge flow
that circulates around a triangle. Eigenvectors UC span
the curl space and the corresponding curl embedding is
f̂C = U⊤

Cf = U⊤
CfC ∈ RNC .

• Harmonic component: fH ∈ kernel(L1) is the flow in
the harmonic space kernel (L1) with dimension NH that
satisfies L1fH = 0. Eigenvectors UH span the harmonic
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space and the corresponding harmonic embedding is f̂H =
U⊤

Hf = U⊤
HfH ∈ RNH .

Simplicial embeddings indicate that the gradient eigenvectors
UG are orthogonal to the curl and harmonic component
fC and fH. This also holds similarly for the curl and the
harmonic eigenvectors. Based on this orthogonality, in the
next section, we propose the Hodge subspaces detectors. These
three components exhibit two diverse properties that are seen
in real signals:

• Curl-free: curl(f) = B⊤
2 f is the curl operator which mea-

sures the curl of an edge flow. Its ith element represents
the aggregate flow across all edges that constitute the
ith triangle. If curl(f) = 0, f is a curl-free flow. By
definition, the gradient and harmonic flow are curl-free.
For example, an ideal currency exchange rate flow is curl-
free [6].

• Divergence-free: div(f) = B1f is the divergence operator
which measures the divergence of an edge flow. Its ith
element represents the total flow passing through the
ith node. If all the elements in div(f) are zero, f is a
divergence-free edge flow. By definition, the curl and the
harmonic component are divergence-free. The traffic flow
tends to be divergence free as the number of the cars in
a road network is conservative [8].

III. HODGE SUBSPACE DETECTORS

Real-world signals belong to one or more of the Hodge
subspaces. However, under noisy observations or anomalies,
their projections will not be located only in these subspaces.
Therefore, detecting such a signal subspace spillage is of inter-
est to reveal anomalies in the data. When no anomalies or noise
is present, this detection is straightforward. However, that be-
comes challenging under noisy observations. Our objective is
to detect whether a noisy edge flow signal belongs to a certain
Hodge subspace or not. Specifically, let x ∈ RN1 denote
the real edge flow and f the corresponding corrupted flow
with some zero-mean Gaussian noise n ∼ N

(
0N1

, σ2IN1

)
.

A hypothesis test for this problem can be formulated as

H0 : x lives in some specific Hodge subspaces
H1 : x does not live in these Hodge subspaces. (5)

If flow x lives in some specific subspace, we consider that
subspace is spanned by the eigenvectors

U∆ ∈ {UG,UC,UH, [UG,UC], [UG,UH], [UC,UH]}.
(6)

Notice that eigenvectors U∆ may be a union of two different
conventional subspace eigenvevectors such as [UG,UH] if the
signal lives in two different subspaces e.g., a curl-free signal.
This allows writing the flow x as x = U∆x̂∆. Likewise, let
us also consider the complement (orthogonal) eigenvectors to
U∆ which is

U∆ ∈ {[UC,UH], [UG,UH], [UG,UC],UH,UC,UG}.
(7)

Then, the projection of f in the complement subspace is
f̂∆ = U⊤

∆
x + U⊤

∆
n = x̂∆ + n̂∆. The projections x̂∆

and n̂∆ represent the clean signal and noise in the different

Hodge subspaces, respectively. The projected noise satisfies
n̂∆ ∼ N

(
0N∆

, σ2IN∆

)
. Under hypothesis H0, if x lives

in the subspaces spanned by U∆, the projection U⊤
∆
x is

0 due to the orthogonality between the eigenvectors. Thus,
the projection of f in the complement subspace under H0

is only noise n̂∆. Therefore, the hypothesis test (5) can be
reformulated as

H0 : f̂∆ = n̂∆

H1 : f̂∆ = U⊤
∆
x+ n̂∆

. (8)

Equation (8) is the classical problem of detecting a signal
U⊤

∆
x corrupted by noise [18]. The true signal is unknown

and we have to estimate it. Next, we show how this problem
is solved by different matched subspace detection methods.

A. Simplicial Hodge Detector (SHD)

To distinguish between H0 and H1, we consider the gener-
alized likelihood ratio test (GLRT):

T (f̂∆) =
p
(
f̂∆; x̂

∗
∆1

,H1

)
p
(
f̂∆; x̂

∗
∆0

,H0

) H1

≷
H0

γ. (9)

Here p
(
f̂∆; x̂

∗
∆j

,Hj

)
is the probability density function and

x̂∗
∆j

is the maximum likelihood estimator (MLE) of the true
flow embedding under hypothesis Hj , j ∈ {0, 1}. Scalar γ is
the decision threshold. Since the noise is zero-mean Gaussian,
the probability density function is

p
(
f̂∆; x̂

∗
∆
,Hj

)
=

(
2πσ2

)−N
∆

2 exp

{
−∥f̂∆ − x̂∗

∆
∥22

2σ2

}
.

(10)
Under hypothesis H1, the MLE maximizes the probability
density function, thus, x̂∗

∆1
= f̂∆ while under hypothesis H0,

x̂∗
∆0

= 0. Therefore, the SHD is

TSHD(f̂∆) = ∥f̂∆∥
2
2/σ

2
H1

≷
H0

γ. (11)

When TSHD(f̂∆) is larger than threshold γ, the detector
decides H1. That is, the SHD decides H1 if the signal-
to-noise ratio of the complementary simplicial embedding
exceeds a threshold γ. The detector TSHD(f̂∆) has a Chi-
square distribution

TSHD(f̂∆) ∼

{
χ2
N∆

under H0

χ2
N∆

(δ) under H1
(12)

where N∆ are the degrees of freedom and δ is a noncentrality
parameter satisfying δ = ∥x̂∆∥

2
2
/σ2. The performance of

the SHD detector can be computed in closed-form [20].
Theoretically, the detection threshold γ is

γ = Q−1
χ2
N

∆

(PFA) (13)

where Qχ2
N

∆

(·) is the right-tail probability function and

PFA ≜ Pr{TSHD(f̂∆) > γ;H0} is the probability of false
alarm. The probability of detection is

PD ≜ Pr{TSHD(f̂∆) > γ;H1} = Qχ2
N∆

(δ)(γ). (14)
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B. Constrained Simplicial Hodge Detector (CSHD)
Simplicial embeddings could exhibit particular behaviors

among the subspaces. For example, they could be sparse
(i.e., bandlimited) or smooth. Exploiting this knowledge could
improve the performance of a hypothesis test [19]. The prior
knowledge can be utilized as a regularizer in the MLE problem
with respect to the simplicial embeddings. By regularizing the
maximum log-likelihood function, we have:

x̂∗
∆
= argmax

x̂∆

L (x̂∆)− µ · r(x̂∆) (15)

where L(·) is the log-likelihood function, r(x̂∆) is the regular-
izer on the simplicial embeddings and µ > 0 is a constant. For
instance, if the simplicial embedding x̂∆ is smooth and hence
low-pass, we can set the regularizer as r(x̂∆) = ∥Rx̂∆∥22.
Here R ∈ RN∆×N∆ is a diagonal matrix decreasing diagonal
elements. This allows to control the shape of estimated embed-
ding x̂∆ based on the low-pass prior. The embedding is then
estimated by solving the regularized least squares problem

argmin
x̂∆

1

2σ2
∥x̂∆ − f̂∆∥

2
2 + µ∥Rx̂∆∥

2
2 (16)

with the closed-form constrained MLE solution

x̂∗
∆
= (I+ 2µσ2R⊤R)−1f̂∆. (17)

Plugging (17) instead of the MLE x̂∗
∆1

= f̂∆ into (10), we
obain the CSHD

TCSHD(f̂∆) = (∥f̂∆∥
2
2 − ∥f̂∆ − x̂∗

∆
∥22)/σ2

H1

≷
H0

γ. (18)

CSHD compares the nonmatched1 signal-to-noise ratio with
a threshold γ and decides H1 if it exceeds γ. The signal
energy term ∥f̂∆∥22 is corrected by ∥f̂∆− x̂∗

∆
∥22 based on prior

information. Its distribution is not Chi-square anymore and its
theoretical analysis is challenging.

IV. NUMERICAL RESULTS

We verify the proposed detectors through numerical results
on two real datasets: the Forex [6], and the Lastfm dataset [6],
as well as a synthetic dataset from the Chicago road network
[16]. Our results are averaged over 5× 104 realizations.

A. Datasets
Forex [6]. This dataset contains the exchange rates between
25 different currencies that satisfy the arbitrage free condition.
This currency exchange market can be described by a simpli-
cial complex contains 25 nodes, 300 edges and 2300 triangles.
The nodes represent different currencies, edges the exchange
rate between two currencies, and all triangles are considered
filled. If we take the logarithm of the exchange rates and model
them as edge flows, the arbitrage free condition indicates that
such flow is curl-free. In an ideal exchange rate scenario, the
flow is a gradient flow [8]. The technical task is to detect
whether an observed edge flow is a gradient flow.
Lastfm [6]. This dataset records the process of users switching
artists while playing music. The transition process can be

1∥f̂∆∥22 is the signal embedding energy and ∥f̂∆ − x̂∗
∆
∥22 can be regarded

as the corrected term which is the energy difference between MLE f̂∆ and
the constrained MLE x̂∗

∆
.

described by a simplicial complex with 657 nodes, 1997 edges,
and 1276 triangles. The artists are modeled as nodes, the
transitions between artists as edges, and the filled triangles
represent the transitions forming a closed loop for any three
artists. The edge flows depict the number of the transitions
between different artists. If the user switches from artist A to
B, then a unit is added on the edge between A and B. An
edge flow modeled in this way is divergence-free since the
user consistently moves on to different artists after one. The
task is to detect whether an edge flow is divergence-free.
Chicago road network [16]. This is the Chicago transporta-
tion network which can be modeled by a simplicial complex
with 546 nodes, 1088 edges and 112 triangles. The junctions
are the nodes, the roads are the edges, and the areas enclosed
by three roads are the triangles. Since the traffic flow can be
regarded as divergence-free when there is no congestion [8],
we generate synthetic curl flow on this simplicial complex. The
task is to detect whether an observed edge flow is divergence-
free or not.

B. Experimenal Setup
The experimental setup is summarized in TABLE I. For

the Forex dataset, we consider the real gradient flow under
hypothesis H0 and two flows under hypothesis H1 which are
a synthetic curl flow and the sampled version of the gradient
flow, respectively.

For the Lastfm, we consider the divergence-free user transi-
tion flows under H0 and two flows under hypothesis H1 which
are synthetic gradient flow and the sampled version of the user
transition flows, respectively.

For the Chicago Road network, we consider a synthetic curl
flow under hypothesis H0 and two different flows under the
hypothesis H1 which is a synthetic low-pass gradient flow with
ith element of the embedding x̂G,i ∼ N

(
exp(−i/5)⊤, 0.01

)
and the sampled version of the curl flows. Here, under H1 −
synthetic, the prior is that the signal is low-pass.

Since these detectors are energy-based, we keep the flows
under H1 − synthetic with the same energy as those under
H0 for a fair setting. The sampled version of flows under
the H1 − sampled simulates a setup when not all the flows
are observed. And we want to detect from these partial
measurements weather the observed flow is anomalous or not.
The sampling rate is 50% for all experiments and the missing
values in the sampling are filled with zero.

As for the baseline, it is intuitive to transform the edge flows
into node signals in corresponding line-graph [17] and exploit
graph-based detectors. Therefore, we build line graphs and
consider the blind-SMSD (B-SMSD) [20] as a baseline. For
the bandwidth of the B-SMSD we pick 20% of the line-graph
eigenvectors corresponding to the eigenvalues with smaller
magnitudes to form the band and compare the out-of-band
signal-to-noise ratio with the threshold γ following [20].
C. Performance Comparision

TABLE II shows the experimental results. The area under
curves (AUCs) of the receiver operating curves (PD vs PFA)
of the SHD for the theoretical and the experimental results
concord in all the cases, thereby affirming the validity of the
theoretical framework. The baseline graph detector B-SMSD
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TABLE I: Experimental setup. The sampling rate in H1 − sampled is 50% and the missing values in the sampling are filled
with zero. The ith diagonal element of the matrix R is exp(i/20) and µ = 1 for all datasets.

Dataset H0 H1 − synthetic H1 − sampled SNR U∆

Forex [6] Gradient flow x = B2t, t ∼ N
(
0, 0.3× 10−1I

)
Sampled flow in H0 -12dB [UC UH]

Lastfm [6] Non-gradient flow x = B⊤
1 v, v ∼ N

(
0, 5.0× 101I

)
Sampled flow in H0 -12dB UG

Chicago [16] x = B2t, t ∼ N
(
0, 2.3× 10−2I

)
x̂G,i ∼ N

(
exp(−i/5)⊤, 0.01

)
Sampled flow in H0 -15dB UG

TABLE II: Area under the curves (AUC). SHD-Th. and SHD-
Exp. represent the theoretical and empirical results. Values in
bold represent the model that achieved the best results in the
experiment (theoretical results are not included).

Dataset SHD-Th. SHD-Exp. CSHD B-SMSD [20]

Forex Syn. 0.71 0.71 0.56 0.45
Samp. 0.55 0.55 0.51 0.37

Lastfm Syn. 0.99 0.99 0.50 0.39
Samp. 0.59 0.59 0.51 0.22

Chicago Syn. 0.75 0.75 0.85 0.52
Samp. 0.53 0.53 0.51 0.41

fails to detect the anomalies since it fails to discriminate
and merges the different edge flow components, ultimately,
confirming that the line-graph is not a suitable choice for this
task.

The CSHD shows its effectiveness of detecting the anoma-
lies that existed in the simplicial signals. However, the CSHD
should be considered only when the prior information is
relevant for the task at hand. In the Forex and the Lastfm
datasets, the embeddings are not low-pass. Thus, instead
of improving the performance, the enforced low-pass prior
reduces the CSHD’s performance. When the prior information
is precise as in the Chicago synthetic case, the AUC of the
CSHD is the best. For the Chicago sampled case, the low-pass
prior is not holding anymore. Thus, CSHD performs worse
than SHD. The results validate the idea that incorporating prior
knowledge enhances the accuracy of estimating x̂∆, thereby
contributing to the improved performance.

V. CONCLUSIONS

This paper studied the problem of detecting different sim-
plicial components from noisy observations where Hodge
embeddings satisfy particular properties of interest such as
divergence-free or curl-free. We took the edge flows as an
example to discuss various simplicial components induced
by the Hodge decomposition and their properties. To detect
whether an edge flows is in some specific Hodge subspaces
or not, we proposed two hypotheses and exploit the simplicial
embeddings of these flows w.r.t. the underlying topology.
Based on the orthogonality between different Hodge sub-
spaces, we developed the simplicial Hodge detector, which
compares the energy of the subspaces’ projections with the
threshold to make a decision. Then, we considered prior
information to enhance the detector performance and proposed
the constrained simplicial Hodge detector. The numerical
experiments verified the effectiveness of these two detectors
and indicated that they are more suitable for simplicial edge
flow detection compared with graph detectors.
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