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Magnetic field norm SLAM using Gaussian process regression in
foot-mounted sensors

Frida Viset∗, Jan Tommy Gravdahl†, and Manon Kok∗

Abstract— We propose an application of magnetic field norm
simultaneous localisation and mapping to measurements from
a foot-mounted sensor for pedestrian navigation. The algorithm
is, to the best of the authors’ knowledge, the first three dimen-
sional drift-compensating indoor navigation method using only
accelerometer, gyroscope and magnetometer measurements that
does not rely on assumptions about the spatial structure of the
indoor environment. We use a Rao-Blackwellized particle filter
to simultaneously and recursively estimate the magnetic field
norm map using reduced rank Gaussian process regression,
and the position and orientation of the sensor. Our experiments
demonstrate that our algorithm results in a drift-free position
estimate using measurements collected from a foot-mounted
sensor while walking around inside a hallway.

I. INTRODUCTION

Precise indoor navigation using only body-worn sensors
can be used in emergency response scenarios [1], in health-
care [2], and in commercial applications such as shopping
malls and virtual reality gaming [3]. Navigation using only
body-worn accelerometers and gyroscopes suffers from inte-
gration drift [4]. Outdoors, drift-free position estimates can
be achieved when accelerometer and gyroscope measure-
ments are combined with global navigation satellite system
(GNSS) signals [5]. Indoors, GNSS signals are typically
not available [1], [2], [3]. One way to limit the drift is
to use a foot-mounted sensor, to detect the stance phase
of the foot and use this to improve the position, velocity,
and orientation estimates [6]. We remove the remaining drift
using measurements from foot-mounted sensors by taking
advantage of the rich spatial variations in the indoor magnetic
field norm [7], by simultaneously navigation and mapping
(SLAM) with the magnetic field norm anomalies.

A foot-mounted combined tri-axis gyroscope and ac-
celerometer have previously been used to obtain accurate
position estimates using the zero velocity update-aided ex-
tended Kalman filter (ZUPT-aided EKF), proposed by [6].
A tri-axis accelerometer, gyroscope and magnetometer can
be integrated into the shoe of substantial footwear [8]. Our
proposed algorithm builds on the open-source implementa-
tion of a ZUPT-aided EKF in [8]. The position estimate
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Fig. 1. Estimated magnetic field norm indoors from measurements from
foot-mounted sensor.

from a ZUPT-aided EKF is accurate for indoor position
estimation on a shorter time scale. Still, over time, integration
of velocity estimation errors causes the position estimation
error to increase [9].

Magnetic field SLAM has previously been used to achieve
drift-free position estimates in two dimensions, by combining
odometry from a foot-mounted sensor with magnetic field
measurements [10]. Magnetic field SLAM using Gaussian
process regression has been demonstrated to give drift-free
position estimates using magnetic field measurements and
encoder measurements from a cleaning robot [11]. Gaussian
process regression scales in computational complexity with
the number of input points [12]. Reduced-rank Gaussian
process regression is a feasible and computationally tractable
strategy for magnetic field mapping in indoor environ-
ments [13]. Computationally tractable Magnetic field SLAM
using reduced-rank Gaussian process regression in a Rao-
Blackwellized particle filter was proposed by [14] and used
for on-board magnetic field measurements to compensate
for position estimation drift in three dimensions. While the
method proposed by [10] is limited to only two dimensions,
the method proposed by [14] is not but relies on measure-
ments from a camera in a hand-held smartphone in addition
to the accelerometer and a gyroscope.

The contributions of this paper are twofold. Firstly, we
propose an algorithm for online indoor localisation using
only a foot-mounted tri-axis gyroscope, accelerometer and
magnetometer using magnetic field norm SLAM. Secondly,
we illustrate the benefit of the algorithm over existing
methods by estimating the position of a pedestrian in the
hallway depicted in Fig. 1. To the best of the author’s knowl-
edge, this is the first indoor pedestrian navigation algorithm
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that uses only a body-worn gyroscope, accelerometer and
magnetometer, that compensates for drift upon revisitation
of previously visited areas, that allows for three dimensional
position estimation, and that does not rely on prior map
information. We use similar assumptions that were used
by [9] to model the sensors’ motion and stance phases
and a similar method for magnetic field mapping that was
proposed by [14]. We formulate a joint state-space model
for the simultaneous estimation of the foot-mounted sensors’
position, velocity orientation and the magnetic field map. Our
filter is accurate for short trajectories in a comparable way
to the filter implemented by [9]. It compensates for drift in
longer trajectories by recognising patterns in the magnetic
field anomalies in a comparable way to the filter implemented
by [14]. Our proposed algorithm finds a position estimate
in three dimensions and achieves similar accuracy as [10]
achieves in two dimensions.

The remainder of this paper is organised in the following
way: Section II defines the estimation problem. Section III
describes the sensor and kinematic models that constitute the
dynamic model. Section IV describes the magnetic field and
pseudo-zero velocity models that constitute the measurement
model. Section V presents the resulting algorithm. Section
VI shows the results of running our algorithm on an example
set of measurements, and section VII summarises the results
and discusses some possible directions for future research.

II. PROBLEM FORMULATION

Our focus is on estimating the position, velocity and ori-
entation of a foot-mounted tri-axis gyroscope, accelerometer
and magnetometer. The sensors’ position and orientation are
defined respectively as the translation and rotation from a
world frame w to a sensor frame s. The velocity is defined
as the time derivative of the position. The position pw and
velocity vw are both vectors in R3, while the orientation is
parametrised as a unit quaternion qws ∈ R4 s.t. ‖qws‖2 = 1.

The sensor frame is attached to the foot-mounted sensors,
with the origin at the sensors’ centre of mass, and with the
axes aligned with the tri-axis gyroscope and accelerometer.
The world frame is defined as a stationary frame with respect
to the earth, which without loss of generality, has origin equal
to the sensor frames’ origin at time t = 0, has zero yaw angle
displacement relative to the sensor frames’ orientation at time
t = 0, and whose z-axis is aligned with the local gravitational
acceleration. We assume that Coriolis acceleration can be
neglected in our model, as the magnitude of the Coriolis
acceleration is below 3.39 · 10−2(m/s2), which is smaller
than the accelerometer measurement noise we use in our
algorithm.

We estimate the posterior density p(x1:t | y1:t),

xt =
[
pw
t vw

t qws
t mt

]T
, (1)

yt =
[
ys

gyr,t ys
acc,t ymag,t yw

v,t
]T
, (2)

where mt denotes a vector encoding the magnetic field
map, ymag,t is the magnetic field norm measurement, ys

acc,t
is the accelerometer measurement, ys

gyr,t is the gyroscope

measurement, yw
v,t is a pseudo-measurement generated by a

zero-velocity detection method [6], and where the notation
y1:t refers to the set of vectors {y1, . . . , yt}. We estimate the
posterior density recursively. At each time step, we compute
the current probability density estimate p̂(x1:t | y1:t) given
only the previous probability density estimate p̂(x1:t−1 |
y1:t−1) and the incoming measurements yt. We perform the
recursive estimation in two steps: A dynamic update, and a
measurement update. The dynamic update estimate the prior
probability density

p(x1:t | ys
acc,1:t, y

s
gyr,1:t, y

s
mag,1:t−1, y

w
v,1:t−1), (3)

using an estimate of the previous posterior probability den-
sity p(x1:t−1 | y1:t−1), and the accelerometer and gyroscope
measurements at time t. The measurement update estimates
the posterior density p(x1:t | y1:t) using the estimate of the
prior density.

III. DYNAMIC MODELS

We model the gyroscope measurements as the angular
velocity in sensor frame affected by white noise according
to

ys
gyr,t = ωs

t + es
gyr,t, es

gyr,t ∼ N (0, σ2
gyr I3), (4)

where ωs
t is the sensors’ angular velocity, es

gyr,t is the
measurement noise, and σ2

gyr is assumed to be a known
variance. Similarly, we model the acceleration measurement
as the sensors’ acceleration in the sensor frame affected by
gravity and white noise according to

ys
acc,t = as

t + gs
t + es

acc,t, es
acc,t ∼ N (0, σ2

acc I3), (5)

where as
t is the sensors acceleration, gs is the gravity vector

in sensor frame, es
acc,t is the white noise process corrupting

the acceleration measurement, and σ2
acc is assumed to be a

known variance.
The change in orientation given gyroscope measurements

can be modelled recursively [15] for each timestep t as

qws
t = qws

t−1 � expq

(
T
2 (ys

gyr,t − es
gyr,t)

)
, (6)

where � denotes the quaternion product, and expq(·) maps
an orientation on axis-angle form to a quaternion (see [15] for
details on quaternion algebra). The acceleration of the sensor
can be found by subtracting the gravitational acceleration and
the noise from the measured acceleration, according to

aw
t = R(qws

t )(ys
acc,t − es

acc,t)− gw, (7)

where R(·) is an operator transforming a unit quaternion
to a rotation [16]. The position and velocity can then be
described by the first-order Taylor approximation of the first
and second discrete integral of acceleration

vw
t = vw

t−1 + Taw
t , (8)

pw
t = pw

t−1 + Tvw
t , (9)

where T is the timestep of the discrete-time approximation.



IV. MEASUREMENT MODELS

Similar to [8], we detect the stance phase of the step by
investigating when the function

D(ys
acc,t−W−1:t, y

s
gyr,t−W−1:t)

= 1
W

t∑
k=t−W−1

(
1
σ2

acc

∥∥∥∥ys
acc,k − g

ȳs
acc,t−W−1:t

‖ȳs
acc,t−W−1:t‖2

∥∥∥∥2

2

+ 1
σ2

gyr

∥∥ys
gyr,k

∥∥2

2

) (10)

is below a threshold γ [17]. The gravitational acceleration
magnitude is denoted g, where ȳt:t′ denotes the average of
the set of vectors yt, . . . , yt′ , ‖ · ‖2 denotes the 2-norm,
and W is a tunable detection window [17]. We model the
information from the zero-velocity detector similarly to [6]
as a pseudo-measurement of the velocity

yw
v,t = 03×1 = vw

t + ew
v,t, ew

v,t ∼ N (0, σ2
vI3), (11)

where ew
v,t is pseudo-measurement noise, and σ2

v is a tunable
parameter. The measurement is assumed to be given by this
model every time the zero-velocity detector is active [6], and
when it is inactive, we assume that the zero-velocity pseudo
measurement is not available, and model it as an empty set.

A tri-axis magnetometer measures the magnetic field. We
assume the magnetic field norm measurement is normally
distributed about the true magnetic field norm in the position
of the measurement, according to

ymag,t = ‖H(pw
t )‖2 + emag,t, emag,t ∼ N (0, σ2

mag) (12)

where H(pw
t ) is the magnetic field in the sensor position at

time t, ymag,t is the norm of the tri-axis magnetic field mea-
surement ys

mag,t, and emag,t is the magnetometer measurement
noise.

We consider the magnetic field norm to be a nonlinear
function ‖H(p)‖2 : R3 → R, mapping the position p to a
magnetic field norm. We model the nonlinear function using
a Gaussian process prior

‖H(p)‖2 ∼ N (0, κSE(·, ·)), (13)

with a squared exponential kernel

κSE(p, p′) = σ2
SE exp

−‖p−p′‖2
2

2l2SE
, (14)

to include the assumption that the magnetic field norm is
similar in nearby locations, and variations typically have the
magnitude σSE and length-scale lSE [14].

Recursive reduced-rank Gaussian process regression using
Hilbert-space methods can be used to estimate the magnetic
field norm as a scaled sum of basis functions in a finite
domain [18]. The basis functions are defined as solutions to
the negative Laplace equations that is subject to the Dirichlet
boundary condition [18]. The basis functions are denoted
φk : R3 → R, and the negative Laplace equations subject to
the Dirichlet boundary conditions are{

−∇2φk(pw) = λkφk(pw), pw ∈ Ω,
φk(pw) = 0, pw ∈ ∂Ω,

(15)

with λk denoting the eigenvalues over a closed and connected
domain Ω ⊂ R3 with edge ∂Ω.

The Gaussian process regression d-step ahead prediction in
a position pw

t can be approximated using a linear combination
of the Nm first basis functions according to

p̂(ymag,t|pw
t , m̂t−d) = N (µmag,t|t−d, St|t−d) (16a)
µmag,t|t−d = Φ(pw

t )m̂t−d (16b)

St|t−d = Φ(pw
t )Pm,t−dΦ(pw

t )T + σ2
mag, (16c)

where d ≥ 1 denotes a delay, and where m̂t−d and Pm,t−d
are computed recursively using all available measurements
up until time t− d, according to

St|t−1 = Φ(pw
t )Pm,t−1Φ(pw

t )T + σ2
mag, (17a)

Kt|t−1 = Pm,t−1Φ(pw
t )TS−1

t|t−1, (17b)

mt = mt−1 +Kt|t−1(ym,t − Φ(pw
t )mt−1), (17c)

Pm,t = Pm,t−1 −Kt|t−1St|t−1K
T
t|t−1, (17d)

with Φ(pw
t ) =

[
φ1(pw

t ) · · · φNm(pw
t )
]
. The recursion is

initialised with m̂0 = 0, Pm,0 = Λ, with

Λ =

S(
√
λ1) · · · 0

...
. . .

...
0 · · · S(

√
λNm)

 , (18)

where the function S(
√
λk) is the spectral density [19] of

the squared exponential kernel (14)

SSE(
√
λk) = σ2

SE

(
2πl2SE

) 3
2 exp(−λkl

2
SE

2 ). (19)

V. ESTIMATION

The system model is defined by (6)–(9), (11) and (16b)–
(16c). We consider this a nonlinear stochastic state-space
model where ys

gyr,t and ys
acc,t are noisy inputs to the dynamic

model, and where yw
v,t and ymag,t are measurements. The

measurements yw
v,t and ymag,t are linear functions of the

velocity and the magnetic field map vector. The measurement
ymag,t is, however, a nonlinear function of the position. Rao-
Blackwellized particle filters estimate states that are a result
of nonlinear state-space models with linear substructures.
Since our model is nonlinear, with some linear and some
almost linear substructures, we apply a Rao-Blackwellized
particle filter to a model with linearized substructures. The
model (6)–(8) is commonly linearised around the current
estimate in order to apply the EKF to include the zero-
velocity pseudo measurements [20]. The high accuracy of
this approach [6] confirms that (6)–(8) can safely be approx-
imated by linearisation. The state of a nonlinear stochastic
process with a conditionally linear substructure can be es-
timated using a Rao-Blackwellized particle filter [21]. We
take advantage of the approximately linear substructure of
our state-space model to estimate the posterior probability
density in (20) using a Rao-Blackwellized particle filter
[22]. The Rao-Blackwellized particle filter splits the state
vector into a conditionally linear and a nonlinear part. The
nonlinear part is represented by particles, where each particle



is considered a sample of the posterior probability density.
The linear part of each particle’s state is estimated with a
conditional Kalman filter, given the corresponding nonlinear
part of the particle’s state [22]. For the foot-mounted sensor,
we consider both the linear and the nearly linear structures
as linear substructures in the state-space model and estimate
the magnetic field, the orientation and the velocity as condi-
tionally linear states given the position of each particle. We
factorise the posterior density as

p(pw
1:t, v

w
1:t, q

ws
1:t,m1:t | y1:t)

= p(pw
1:t | y1:t)p(v

w
1:t, q

ws
1:t | y1:t, p

w
1:t)

p(m1:t | y1:t, p
w
1:t, v

w
1:t, q

ws
1:t),

(20)

and estimate the probability density p(pw
1:t | y1:t) with a par-

ticle filter, and the probability density p(vw
1:t, q

ws
1:t | y1:t, p

w
1:t)

using a conditional EKF given the position trajectory of
each particle, by taking advantage of the fact that the model
is approximately linear about the velocity and orientation.
The probability density p(m1:t | y1:t, p

w
1:t, v

w
1:t, q

ws
1:t) we

approximate with the probability density p(m1:t | y1:t, p
w
1:t)

because the measurement model of the magnetic field is
independent of the sensors’ velocity and orientation. The
density p(m1:t | y1:t, p

w
1:t) can then be estimated with a

conditional Kalman filter, by taking advantage of the fact
that the model is linear about the magnetic field vector.

The posterior density (20) is computed recursively using
a RBPF as summarised in Algorithm 1. To update the
orientation estimate, we parametrise the deviation between
the true and estimated orientation on axis-angle form [23]
according to

qws
t = expq

(
ηw
t

2

)
� q̂ws

t , (21)

where ηw
t ∈ R3 denotes an orientation deviation state. The

system is then linearised with respect to ηw
t ∈ R3. Algo-

rithm 1 initialises the posterior density estimate by setting
the position of all particles to zero, which is a reflection of
the fact that at t = 0, the displacement between the sensor
and world frame is zero. It uses any incoming pseudo zero-
velocity measurements to update the conditional velocity and
orientation state of each particle using an EKF measurement
update, defined as

Ki
t = P it|t−1H

T
t (σ2

v I3 +HtP
i
t|t−1H

T
t )−1, (22a)[

v̂w,i
t|t ,

η̂w,i
t

]
=

[
v̂w,i
t|t−1,

03×1

]
+Ki

t(yv,t − v̂
w,i
t|t−1), (22b)

P it|t = P it|t−1 −K
i
tHtP

i
t|t−1, (22c)

q̂ws,i
t|t = expq(

η̂w,i
t

2 )� q̂ws,i
t|t−1. (22d)

This update is based on a linearisation of (6)–(8), and of
(11), using the Jacobian Ht =

[
I3 03×3

]
.

We then use the magnetic field measurement in the current
position to evaluate the likelihood of each particle according
to the weights

wit = p̂(ymag,t | pw,i
t|t−1, m̂

i
t−d, P

i
m,t−d)w

i
t−1, (23)

with the probability density estimate defined in (16a)–(16c),
and perform selective resampling with criterion Meff <
2/3M , where M is the number of particles, and Meff is
the effective number of particles (see [22]). The weights are
normalised at each timestep so that

∑N
i w

i
t = 1. As the

re-sampled particle cloud are samples from the estimated
posterior density p̂(pw

1:t | y1:t), we denote this step the
particle filter measurement update. We perform a recursive
update of the magnetic field norm map according to (17a)–
(17d) in a Kalman filter measurement update. We then
propagate the positions of our particles by simulating the
linear state as an uncertain input, according to

ṽw,i
t ∼ N (v̂w,i

t|t , HtP
i
t|t−1H

T
t ), (24a)

pw,i
t+1|t = pw,i

t|t + T ṽw,i
t , (24b)

where ṽw,i
t denotes the Monte-Carlo sampled velocity for

particle i at time t. We denote this step the PF dynamic
update, as it uses the information from the dynamic model
to update the particles so they are samples from the esti-
mated prior p̂(pw

1:t+1 | y1:t). We use the new positions of
each particle as a pseudo measurement of the linear states
according to the dynamic equations. The update is defined
as

Ki
t ← P it|tH

T
t T (T 2HtP

i
t|tH

T
t )−1, (25a)[

v̂w,i
t|t
η̂w,i
t

]
←
[
v̂w,i
t|t

03×1

]
+Ki

t(p
w,i
t+1|t − p

w,i
t|t − T v̂

w,i
t|t ), (25b)

q̂ws,i
t|t ← expq(

η̂w,i
t

2 )� q̂ws,i
t|t , (25c)

P it|t ← P it|t − TK
i
tHtP

i
t|t, (25d)

with the arrow indicating that the values on the right side
replace the values on the left. We denote this the EKF
dynamic measurement update according to the convention
in [22].

Finally, we perform an EKF dynamic update of the con-
ditionally approximately linear states by letting

v̂w,i
t+1|t = v̂w,i

t|t + T (R(q̂ws,i
t )ys

acc,t − gw), (26a)

η̂w,i
t+1|t = η̂w,i

t|t , (26b)

P it+1|t = FtP
i
t|tF

T
t +Git

[
σ2

acc,tI3 03×3

03×3 σ2
gyr,tI3

]
(Git)

T, (26c)

using the Jacobians

Ft =

[
I3 T [yw

acc,t×]
03×3 I3

]
, (27)

Gt =

[
TR(q̂ws,i

t−1|t−1) 03×3

03×3 −TR(q̂ws,i
t−1|t−1)

]
, (28)

of the dynamic model (6)–(8), where q̂ws,i
t−1|t−1 is the orien-

tation estimate of each particle, and [yw
acc,t×] is the scew-

symmetric matrix representation of the vector yw
acc,t [15].

In applying the Rao-Blackwellized particle filter as defined
in [22] to the state-space model in (6)–(8) and the magnetic
field norm measurement model, we made one modification.



The weights of the particles are only evaluated using the
magnetic field measurement, not the pseudo-zero-velocity
measurements. The zero-velocity pseudo measurements re-
duce the spread of the particle cloud, causing all the positions
of the particles to be the same at the end of each footstep.
This modification ensures that the spread of the particle cloud
is large enough to discover revisitation of previous positions.

Fig. 2. Experimental setup with foot-mounted sensor.

Algorithm 1 Magnetic field norm SLAM for foot-mounted
sensor
Input: {yacc,t, ygyr,t, ym,t}Nt=1

Output:
{
pt|t
}N
t=1

Initialisation: pw,i
0|−1 = 03×1, v̂w,i

0|−1 = 03×1, q̂ws,i
0|−1 = qws

0 ,
P i0|−1 = P0, m̂i

0 = 0Nm×1, P im,0 = Λ, wit
1: for t = 1 to N do
2: if (D(yacc,(t−W−1):t, ygyr,(t−W−1):t) < γ) then
3: Extended Kalman filter measurement update ac-

cording to (22a)- (22d).
4: end if
5: Particle filter measurement update according to (23).

if Meff >
2
3M then Resample, set wit = 1

M .
6: Kalman filter measurement update given by (17a)–

(17d).
7: Particle filter dynamic update using ṽw,i

t , a Monte-
Carlo sampled velocity according to (24a)-(24b).

8: Extended Kalman filter dynamic measurement update
according to (25a)-(25d).

9: Extended Kalman filter dynamic update according
to (26a)- (26c).

10: end for

VI. EXPERIMENTAL RESULTS

Measurements were collected using an Xsens MTi 100
IMU at a frequency of 100Hz. Fig. 2 shows the experimental
setup on a foot. We collected measurements while the test
subject was walking around in circles in the hallway in
Fig. 1. We marked checkpoints with tape on the floor in the
indoor environment where the measurements were collected,
as shown in Fig. 4. The test subject stepped only on the

checkpoints while collecting the measurements. The root-
mean-squared revisitation error of the position estimate was
calculated at the marked checkpoints.

The domain Ω, used to define the basis functions in (15),
is chosen as the smallest possible cuboid where each point
is no closer than 2 meters of any position trajectory esti-
mate to avoid boundary effects. We centred the magnetic
field measurements by subtracting the mean magnetic field
measurement of the full measurement sequence. The centred
magnetic field norm measurements from the IMU in the in-
door environment had variations with a magnitude of around
1, so we chose σ2

SE = 1. As the magnetic field anomalies tend
to rapidly change along the z-direction close to the floor [24],
we set the length-scale lSE = 0.3 meters to accurately
estimate the details of the magnetic field norm variations
in the indoor environment. The measurement noise was set
slightly higher than the sensors’ magnetometer measurement
noise of σmag = 0.001, to σmag = 0.01, to compensate for
errors in the model. We choose to down-sample the magnetic
field measurements to 10Hz to reduce the computational
load. This measurement frequency is still high enough to map
the magnetic field anomalies [14]. To investigate how many
basis functions were necessary to approximate the GP pre-
diction accurately, we sampled 200 simulated magnetic field
measurements from the chosen GP prior and 100 simulated
magnetic field test values in non-overlapping test positions.
The prediction accuracy of the simulated magnetic field value
in the test-positions was compared with the accuracy of the
reduced-rank GP prediction in the same 100 test positions.
The root-mean-squared prediction error in the test positions
is displayed in Fig. 3 for a varied number of basis functions.
The reduced-rank GP prediction converges to the true GP
prediction at approximately 2000 basis functions, so Nm was
chosen to be 2000.

Our position estimation results are compared with the
position estimates from an open-source implementation of
the ZUPT-aided EKF from [8] applied to the same measure-
ments. As the sensor is front-mounted, we can expect the
position estimate to drift more compared to what is reported
for heel-mounted sensors [17]. The parameters for the ZUPT-
aided EKF were chosen to give as good position estimates
as possible given the test subjects’ walking patterns. The
accelerometer and gyroscope standard deviations were set
to σacc = 0.12ms−2 and σgyr = 0.006◦s−1, respectively.
The threshold γ for the zero-velocity detector was set to
2 · 107, and the time window W = 12. The measurement
noise of the velocity pseudo-measurement was set to σv =
0.12. The initial covariance for the position, velocity and
orientation was set to P0 = 0.0012I9. The strength of
the local gravity field in Delft is g = 9.81ms−2 [25]. For
Algorithm 1, the zero-velocity parameters, the gyroscope
and the accelerometer measurement noise were given the
same values in the ZUPT-aided EKF. The initial velocity
and orientation covariance in the proposed Algorithm 1 was
set to P0 = 0.0012I6, to reflect the initial covariance in the
ZUPT-aided EKF. The delay was chosen as d = 2 seconds.

The results in Fig. 7 compares the revisitation errors



0 500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

Fig. 3. The blue line shows the RMSE of the predicted magnetic field norm
in of a reduced-rank GP prediction against the number of basis functions
that was used to approximate the true GP prediction. The black dotted line
shows the RMSE of the true GP prediction of the magnetic field norm.

between Algorithm 1 and the ZUPT-aided EKF from [8].
The two position estimates have similar accuracy at the
beginning of the trajectory. Still, over time, the position
estimate from Algorithm 1 does not drift away from the
true position, unlike the position estimate obtained using the
ZUPT-aided EKF from [8]. The RMSE position estimate at
the checkpoints using the ZUPT-aided EKF is 1.68 meters,
and using Algorithm 1 it is 0.16 meters.

The trajectory and magnetic field norm map of the current
highest-weight particle is displayed for four different times
in Fig. 5. The magnetic field estimation certainty is visibly
higher near the checkpoints. This is because the checkpoints
mark the location of the stance phase of the foot. In these
locations, more magnetic field measurements are available,
which gives a more confident prediction. The details of the
magnetic field anomalies become more apparent when the
area is visited multiple times, as can be seen, by comparing
Fig. 5(a), that shows the magnetic field map estimate after
one lap, with Fig. 5(d), that shows the magnetic field map
at the end of the six laps around the 12 checkpoints.
These results reflect how Gaussian process regression with
a squared exponential kernel predicts the function value
more confidently close to previous measurements [26]. The
estimated magnetic field is visibly rich in spatial variation,
which makes it possible for the particle filter to compensate
for drift in the position estimate, as can be seen in Fig. 6.
The figure compares the position trajectory for six laps
around the marked checkpoints with the positions estimated
with the ZUPT-aided EKF from [8] with the estimate using
Algorithm 1.

VII. CONCLUSIONS AND FUTURE WORK

The experimental results demonstrate how Algorithm 1 for
foot-mounted sensors compensates for drift by recognising
patterns in the magnetic field norm anomalies in previously
visited positions. The results illustrate the removal of drift
in a short trajectory in a fixed size domain.

It is worth mentioning that using 2000 basis functions
to store the magnetic field in the particle filter is com-
putationally demanding. This is because each of the M

Fig. 4. The twelve labelled checkpoints used for collecting measurements.

(a) t = 2s (b) t = 19s

(c) t = 38s (d) t = 100s

Fig. 5. The black trajectory show the current highest weight particle, and
the positions of all the particle are marked with black dots. The colour
correspond to the predicted magnetic field norm value, and the opacity is
inversely proportional with the variance of the estimate.

Fig. 6. Comparison of the position trajectories obtained from the ZUPT-
aided EKF from [8] and the proposed Algorithm 1 for foot-mounted sensor.
The top plot shows the error in the xy-plane, and the bottom plot shows the
error along the z-dimension.
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Fig. 7. The average checkpoint revisitation error for each of the five laps is
plotted as a circle. Each blue line show the revisitation error of the ZUPT-
aided EKF from [8] of one of the twelve checkpoints developing over time.
Each black line shows the revisitation error of Algorithm 1 of one of the
twelve checkpoints developing over time. The top plot shows the revisitation
errors of the x and y-coordinates only, while the bottom plot compares the
revisitation errors of the three dimensional position.

particles has a magnetic field state vector estimate m̂i
t that

has dimension Nm, and a magnetic field state covariance P im
that has dimension Nm×Nm. The number of required basis
functions decreases when the length scale of the anomalies
lSE relative to the size of the domain Ω increases [14].
A way to reduce the number of necessary basis functions
is, therefore, to use multiple tiles that each map a smaller
domain. This method was implemented by [14], and the
results they present indicate that executing the reduced-rank
GP regression for magnetic field mapping in multiple tiles
rather than a single domain covering all of the estimated
positions is feasible.

Further research could be in the direction of making a map
of all three magnetic field components instead of only the
magnetic field norm. For the method to be useful in search
and rescue scenarios, it could be useful to investigate if it
can be made tolerant to changes in the magnetic field due to
building collapse or extreme temperatures. Another possible
direction is to investigate if maps from multiple sources could
be fused to one map so that measurements from multiple
people moving around in the same space could be used to
improve on each other’s estimates. A question that would
have to be answered before the method could be used in
practice is to investigate how different movement patterns
can be taken into account, such as crawling, jumping, running
or moving up or down an elevator.
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