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SUMMARY

In this report the motion of a homogeneous, incompressible, inviscid, and
electrically conducting fluid generated by Lorentz forces in case of weak
influence of the fluid motion on the current distribution is studied. The
Lorentz forces arlse from an electric current dlstrlbutlon and its ’
associated magnetlc fleld The electrlc currents are 1njected 1nto the fluld
from a p01nt source, located at the apex of a non—conductlng rlght c1rcular
cone. The fluid occupies the whole outer space.

This can be regarded as a prlmltlve model of what happens in the nelghbourhood
of the electrode 'in the arc weldlng process and in arc furnaces, viz. a
quantity of liquid metal is heated by 1n3ectlon of a large steady current at a
point on its surface. ' ’ ' » ’
This essentially three—dimensional semi—infinite, axisymmetric, non- linear
problem is solved for the practlcally reallstlc case in Wthh the magnetlc
Reynolds number is small and the current flows almost 1sotrop1cally from the
point source. _ _ .

The problem con51dered in thlS report is a generallzatlon and exten51on of

the inviscid flat wall problem, whlch has been studled by Shercllff
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1. INTRODUCTION

The'problem to be considered in this report is the calculation of .the motion
of a homogeneous, incompre551ble, inviscid, and electrically conducting fluid
generated by Lorentz forces, when the. .electric current distribution .is weakly
disturbed by tne fluid motion. The Lorentz forces are generated by electric
currents, injected into the,fluid from_a_pOint source, and their associated
magnetic field. The point source of electric current is located .at the vertex
of a non—conducting right Circular cone of arbitrary vertical angle. The fluid
occupies the whole space outside the cone._ ‘

The present'development is a special,case of the general analysis of this
problem, described in report LR-228, Jansen (1977), when the fluid is a liquid
metal or an ionized,gas; i.e. the magnetic Reynolds number is small.:

The configuration, as considered here, is a primitive model, suggested by -
source problems appearing 1n arc- and fusion welding, arc furnaces, mercury arc
rectifiers, weldpools and electrochemistry, where a large electric current
enters a body of electrically conducting liquid or gas practically from a point
on a rigid insulating or free boundary The electric current diverges through
the fluid and leaves through a second electrode at some distance.

It was remarked by Zhigulev (1960) and Shercliff (1970) that the

rotationality of the Lorentz force does not allow.the fluid to remain at rest
in these conditions, and therefore it lS the cause of the motion. A two-
dimenSional analogue does not. exist, since there the Lorentz force is
irrotational and a suitable pressure field can fully compensate the Lorentz
force,isee appendix 1. , .

In three-dimensional configurations the Lorentz force can give rise to Violent
motions in the fluid. Experiments on weldpools in arc welding by Woods &
Milner (1971) and by Kublanov & Erokhin .(1974) showed that the Lorentz force ..
is the primary cause of fluid motion A subsidiary cause of motion is the -

action of the arc plasma jet on the surface of the weldpool, while the effects

. of the heat transfer and of the temperature distribution are subordinate.

Tables of properties of liquid metals, see. Hughes & Young (1966), show that
the viscosity, density and electrical conductivity decrease for increasing
temperature. However in this .prototype situation, the properties of the flu1d
are assumed to be uniform throughout _

ConSidering liquid metals or low—temperature plasmas, the magnetic Reynolds
number and the magnetic Prandtl number are usually small, and the hydrodynamic

Reynolds number is usually large. When the magnetic Prandtl number is small,




the magnetic field diffuses much more rapidly than the vorticity and magnetic
boundary layers are much thicker than viscous ones. This justifies simplifi-
cations such as omission of viscosity in the magnetic boundary layer. In these
conditions the influence of the induced fluid flow upon the electric corrent
distribution is small, and the current spreads‘almost isbtropically outwards
from the point source.’ ) ' o |
Furthermore, over most of the flow field inertia forces are much'greater than
‘viscous forces. Only in the viscous boundary layer on the cone and in the
fluid jet along the axis of symmetry, they are of the same order'of magnitude.
Semi-infinite flow fields, generated by Lorentz forces due to a point source
located on a plane boundary, at ‘'small magnetic Reynolds number have been
investigated by several authors. A first attempt has been made by Zhlgulev
(1960) , show1ng that a solution of the problem might be obtained on u51ng a
similarity method. A detailed explanatlon and formulation of the problem has
been given by Shercliff (1970), who studied the inviscid fluld motion and its
perturbing effect on the electric -current distribution. The author showed that
‘if the flow upstream (near the wall) approaches an irrotational flow, then

the flow downstream (along the axis of symmetry) isvnecessarily singular'on the
axis of symmetry. ‘ 7

To obtain a well-behaved solution; Sozou (1971) tried to remove the
singularity by including viscous effects and assuming a finite velocity aloné
the axis of symmetry. However he fouhd that strong singularities develcp from
the axis into the velocity field, when the‘hydrodynamic Reynolds humber exceeds
a critical value. Taking typical values for liquid metals, this upper hound |
leads to a maximum current of about 1 A, which is very low compared with the
normal welding currents of several hundreds amps.

From the behaviour of the viscous solution, Sozou concluded that the inviscid
solution with a weak singularity on the axis of symmetry is not physically
realistic. In my opinion Sozou's conclusion is not right. Within the framework
of calculation, as done by Sozou, there is no finite laminar viscous solutioh
in a conical domain around the axis of symmetry, when the hydrodynamlc Reynolds
number exceeds a certain critical value. For that reason no conclusion about
the inviscid solution can be drawn from the behaviour of Sozou's viscous
solution in case of the hydrodynamic Reynolds number tending to infinity.

In report LR-228, Jansen (1977) investigated the inviscid flow outside a more
general semi-infinite configuration, viz: a right circular cone of arbitrary
vertical angle, at arbitrary magnetic Reynolds number. A detailed study of the

analytical behaviour showed that the inviscid fluid flow alWays contains a



weak singularity on the axis. The fact that the mass flow through a small disk,
with the centre on and perpendicular to the axis of symmetry remains finite and
becomes zero when the radius of the disk approaches zero, implies that the
inviscid flow with a weak singularity on the axis of symmetry' is physically -
realistic. However the singularity in the velocity field on the axis also
implies a singularity in the space charge density at that place, and as a conse-
gquence the component of the electric field normal to the axis is not identically
zero, as the boundary condition requires. Nevertheless the length scale in .
which these effects become dominant is beyond the scope of the continuum :
hypothesis, see Batchelor (1967) and Jansen (1977), so that they can be ignored.
In view of the fact that in.case of a liquid metal, to be considered here, the
effect of viscosity is small and limited to the .boundary layer at. the cone

and the fluid jet and since it is not necessary to invoke viscosity to achieve

. a steady state, as remarked by Shercliff (1970), the viscous forces will be
neglected in this report.

The fluid motion generated in a semi-infinite domain-outside a right circular
cone of arbitrary vertical angle will‘be examined; including the mutual weak
interaction betweén the fluid ﬁotion}and the electric current distribution at

small magnetic Reynolds’number; on using sﬁraightforward expansions.




2. FORMULATION OF THE PROBLEM

In this: chapter a review is given of the configuration, the governing equétions,
the boundary conditions and the expressions of the other fieldquéntities, as
derived in report LR-228, see Jansen (1977). '
Consider a uniform, incompressible, inviscid and electrically conducting fluid
of constant density p and electrical conductivity o, occupying the entirevspace
exterior to an electrically non-conducting right circular cone of arbitrary
‘vertical angle. In this semi-infinite axisymmetric configuration a spherical
polar co-ordinate system (r, 6, @) is chosen, with the origin at the vertex of
~the cone and the line 6 = 0,7 &long the axis of the cone, see figure 1. The
generators of the cone are given by 6 = 60, for O <'60 < 7. The flat wall
configuration, as studied by Shercliff (1970), is a special case 6f this

general one.

C=C°

o @

[ 1}
]
-—

Figure 1. The configuration

A total electric current IO from an ideal constant current source is supplied
through the cone at 6 = 7 by an infinite thin filament. The current enters the
fluid at the vertex of the cone, passes through the fluid and leaves through

a second electrode, spherically shaped, centred in the origin and located at



large distance.

We consider steady fluid flow with overall symmetry about the axis (3/3p = 0),
leaving r and 6 as the only independent variables. Note that it will usually
be convenient to work with ¢ = cos(6) instead of 6. Since rotation of the
fluid about the axis of symmetry and the azimuthal component of the current
density are not induced, neither by the electric current distribution, nor by
the fluid motion, they are assumed to be 1dentlcal)to Zexo (vw = O,:J(p = 0).
The magnetic field is then purely azimuthal: B = B@ i@. Moreover the electric
field is irrotational, see (2.5), yielding Ew = 0.

The‘governing equations of steady, inviscid M.H.D., after elimination of H and

_Qare
divv =0, - | . (2.1)

p (v.grad) v + grad p = JdxB, (2.2)

Jd=0(E+vxB), (2.3)
WJ = curl B, o ’ kj,é)
curl E =0, | (2.5)
Po =E€EdIiVE . (2.6)
In (2.1) - (2.6) v reéresents the Velbcity, p the pressure distribution, g_the

electric current density, B the magnetic field, E the electric‘field, pe.the
space charge density, P the density, 6 the électric conductivity, € the
permittivity and finally U is the permeability; which takes the vacuum value,
because the fluid is assumed to be noﬁ-magnetic. In this semi~infinite
configuration the total electric current Io' and therefore the current density
and)its associated magnetic field'generating Lorentz forces, are considered as
the cause of the fluid motion. Hence the pressure- and the electric field are
not imposed in this problem. |

They are merely a result of the fluid motion, the electric current density_
and the maghetiC»field.

After elimination bf P, E and J the equations, which govern the generation of

fluid motion become




divv =0, (2.7)
pu curl (g.xbz) = curl (curl(B) x B) , (2.8)
curl curl B = Ol curl (v x B) , | ‘ (2.9)

where 9 15 the vdrticity,'given by

w = curl v

(2.10)

The mass conservation equation (2.7) can be satisfied identically by introdu-
cing a Stokes' stream function Y. In terms of spherical polar co-ordinates, the

corresponding velocity components are

R 1)
Ve T 2 3c '’
r
1 Y ' : :
V, = — ——p/====x o , (2.11)
, 8 c /1~c2 dr i ‘
v =0,
€3]
where ¢ = cos (9).

Shercliff (1970) pointed out that the semi-infinite problem does not contain
any fundamental length- of velocity scale. The inviséid préblem is only
characterized by three assignable magnitudes, namély pu)‘Ou and qu. ' 7
Nevertheless, thé introduction of a similar solution method, as stated hefe—

after, involves the definition of a characteristic dimensionless parameter

oul . .
. _ o 1 ‘ :
% =2 Vo | | | - 2a2)

which gdverns the form of the equations.

It turns out that Kb is a form of the magnetic Reynolds number Rm. We shall
. : - - oule o . L
find that Rm = (ou) x (velocity) X r becomes o o= Kb' Since there is no

fundamental length- of velocity scale in this problem and Kb takes over Rm's




ﬁérmal role, henceforth Kb will be denoted as the effective magnetic Reynolds
number. In practical welding and arc fufnagé Qevices IO has a magnitude of a
few hundred ampéres.'Considering the physical properties of liguid metals it
turns out that is usually small compared to unity, viz.

K, = (1077 a 107 x [1_].

In case of low magnetic Reynolds number diffusion of the magnetic field is
dominant. The imposed magnetic field, and in this problem the current distri-
bution as well, are hardly affected by the fluid motion. Thus at first instance
J and B can be directly calculated from the purely electric problem.of this
configuration. The momentum equation (2.8) shows that the associated Lorentz
forces, which drive the inviscid fluid motion, must balance the inertia forces
throughout. In addition the left hand side of the equatibn shows that in the
induced flow field the directions of the generated vorticity'and veiocity vec-
tors cannot coincide. | ,

A dimensional analysis, see Zhigulev. (1960) and Shercliff (1970), leads to

the intreduction of a similarity solution for the Stokes' stream function.
Since in this report the interaction between the fluid motion and the electric
current distribution is included, the expressions of the similar solution of
the Stokes' stream function and the azimuthal component of the magnetic field

become, see Jansen (1977)

(r,o) = 2 /B ()l | | - (2.13)
uI v
.y _ _O© f(c)
B(D(r,c) = o /—Z ’ (2.14)
r l-c

where g and f are dimensionless functions of c, C and Kb and do not depend on

the radial distance variable r.

uI
Note that the typical choice of the factor 5 in (2.14), inserts a simple
boundary condition for f, being independent of .- Moreover the factor

5%— %—in (2.13), is effectively a diffusivity for the corfesponding velicities,

see (2.18), having the dimensions (length x velocity), like all diffusivities.
This form of the solutions is suggested by the fact that there is no natural
length- or velocity scale in the problem, and Kb is the sole dimensionless

parameter that can be constructed.
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Applying (2.13) and (2.14) to the equations (2.8) - (2.10), the equations to be

solved are considerably simplified. The azimuthal component of the curl of

Euler's equation takes the form

&g° _ 4f as
dc3 _1-—c2,dc

The vorticity w is purely azimuthal, w = w 1@, where

w__fg b/ 1-c? a%g
Too2m o r2 2

The curl of Ohm's law, in azimuthal’directioh, is given by

o’ _ g ar [ 29 2 agl,
2‘Kb[ 2dc+{ 227 2 ac
, (1-c™) Sl=c

(2.15)

(2.16)

(2.17)

In this way the mathematics of the problem has been reduced to a system of two

coupled non-linear ordinary differential equations. In case of small Kb' to be

considered here, solutions of f and g, and likewise of the fluid motion and the

electric current distribution are obtained by straightforward expansions.

From (2.13) and (2.14), the vector components of the velocity and current

density'become

goly=
K-

qf
Il
i
N H N =
:iiO =l'0
By
= .
= Q
A

and

(2.18)



1

3 _lo1at

r 271 2 dc '’
Jg =0, _ ) , ' : L {2.19)
J =0.

6]

Note that the velocities and vorticity, generated in the inviscid fluid, are
directly proportional to the total electric current, supplied by the point

’ electrode. Also the velocity turns out to be related to the Alfvén'velocity
‘ B
1 —Q

Vou

The boundary conditions, which must behsatisfied by the velocity— and electro-
magnetic field have been extensively discussed in report LR-228, Jansen (1977).
Here we will give a brief review.

The magnetic field has to be continuous across the boundary on the cone and

identical to zerc at the axis of symmetry. From (2.14) we obtain-

f(c) =1
o .
(2.20)

£(1) =0 .

ExpresSion (2. 19) shows that the boundary condltlons of the electrlc current
density are satlsfled. »
The boundary condltlons of the inviscid flow fleld requlre that the normal
components of the veloc1ty at the cone wall and ~at the axis are zero. It

follows from (2. 18) ‘that

g(so) =0,

lim {__pg = + 14 1—c2vg%} =0 .
ctl Y 1-c

As remarked by Shercllff (1970) and Jansen (1977) an 1nv1501d flow with flnlte

(2.21)

velocities throughout the entire field does not exist. However an 1nv1301d
flow solution, which satisfies the boundary condltlons, can be obtalned when a

weak s1ngular1ty in the velocity fleld along the ax1s of symmetry 1s permltted-

by introducing
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g =~V 1—c2 h (l+o(1)) , for ctl ' “ (2.22)

where h is a positive constant, given by (2.25). For c¢ approaches unity one
obtaines (see (2.18) and figure 1) A

dg ch

—_— O ——— e - O

<
D
R
|
Bl
Slo
e
R

for c#1 . (2.23)

Vo= O(1—c2) >0,

I
> / .
z T e r v l-c

Since the boundary condition at ¢ =1 (2.21) is still satisfied by (2.22), this
solution of the inviscid problem does not involve fluid sources or sinks at

the axis of symmetry.

Shercliff (1970) noted that if the flow upstream (near the cone wall) approaches
an irrotational flow, then the flow downgtream (along the axis of symmetry) is
necessarily singular on the axis. . 7

As pointed out in report LR-228, this particular solution implies that the mass
flow through a small disk, with its centre on, and pérpendicular to the axis of
symmetry, remains finite. Moreover the mass flow becomes zero, when the radius
of the disk approaches zero. In addition, the investigation of the inviscid
flow at arbitrary effective magnetic Reynolds number, showed that now a real
solution of the inviscid flow always exists and that physically non-realistic
phenomena, like electric current inversion, does nbt occur.

Although the viscous forces are neglected in this problem, the above arguments
justify the conclusion that the inviscid flow with a weak singularity along the
axis of symmetry is physically realistic. o

The velocity field, i.e. v, Vg and Y, is determined by Euler's equation (2.15).
Integration of the equation three tihes and some integrations by parts, and to-
gether with the boundary conditions (2.20) - (2.23), lead to the equation of

motion in integral form, see Jansen (1977)
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¢ 2 c 2.2
2 (1+c)? £ (1-c)? £2 (¢) 2(c-cy) h -
I T2 7 At T | T dt s e, (2.20)
(1+t) (1-t) vvl_co
© o

with the constant h, as defined in (2.22) , "denoting the expression

at . (2.25)

2 .
The derivative of g 1is given by

C
2 2
M- e [ 2O
< ' (1+t)
o o

dt + (1-¢)

— 0
-
N
a
N
a
i
0
o)
o
[\ S

The above expressions show that the sign of g and so the direction of the flow
are arbitrary. In view of the direction of the Lorentz force J x B, being
purely meridional and positive in the direction of —Ee, andrby consideration

of the velocity field, as found in experiments by Maecker (1955), Nestor (1962),
Woods & Milner (1971) and Kublanov & Erokhin (1974), an outward jet flow along
the axis of symmetry is chosen; i.e. v, and g are positieve, see (2.23). Since
the Lorentz force creates vorticity, Shercliff (1970) cbnciuded that flow from
the region of zero vorticity (along the cone wall) is the natural one to choose.
Moreover, Jansen (1977) showed that the chosen direction of the inviscid flow is
in agreement with the direction of the expected viscous flow. This choice of
&

sign of g also implies that h and are positive. So we obtain

dc
=C
. e
g =+ 92 ’
(2.27)
dg _ 1 dg®
dc 2g dc '
and at the boundary c = co, we find
dg 1—2h2 | | |
{d—c} = + 2 : (2.28)

c=c 1-c
o o
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dg

The other boundary values of g and 3o are given in (2.21) - (2.23).
For some fieldquantities the value of‘d gwis needed. From (2.26) one obtains
S ' dc
c c v
2 2 2 2 2 2
4h
dc {1+t) (1-t) 1-c 1—cO
o o
where
d2 1 d2g2 dq 2 N ‘
2 2512 " %\&) [ | - (2.30)
dc 9 ac '

The values of the radial current density Jr.and the magnetic field Bw are
obtained from Ohm's law (2.17). This equation has been integrated two times and

substitution of the boundary conditions (2.20) - (2.21) yields, see Jansen (1977)

c . . .
e K U-0) g [AU-e B as |
£ = 1- + - ) 2 o + (t—Co) at dt +
Co Co 1-t 1-t~
. ' c ) ‘
o
1 . : C
Kb(c—c ) ' .
_ o g 2f  d4f » '
- Tec j T+t { 2 d’t}'dt" | : (2.31)
c o
and
_ e L y
af 1 2Kbgf Kb g 2(1.cot)f af
dc 1-c * 2 1-c 2 2 + (t—co) Tt dt +
o 1-c o 1-t 1-t
o
1
T I- ( Tat { 2f2 B g%} ate . i (2.32)
I 1-t E

By setting Kb = 0 in the above expressions, one obtains the expressions of Jr

and B@ of the purely electric problem
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for K_ = 0 ' (2.33)

L =
B,LD - 2TTr(1—c‘o) A+e

As expected, Jr is now independent of @, whereas. the magnetic field is a func-

tion of_tan(%).

In order to study the behaviour of the other fieldquantities at small effective-
magnetic Reynolde number,'generally_valid-expressions and conclusions are used,
as derived in report LR-228, Jansen (1977).

Integratiohiof.Euler's equation (2.2) with respect to r and c leads to an

expression of the pressure distribution

) I 22 2 '
o d 2 A
lém™r dc

where P, is a reference pressure at infinity.'Note that p#< P et.the cone wall,
p > P, at the axis and p = p, at some 6 in between - Moreover in above expression.
the well- known term of magnetlc origin is absent..

The vector components of the electric field are obtained from Ohm's law (2.3).

They are

I
=92 1 ) _4df —gf_
By = Zno 2 { ac T % 2} ’

" (2.35)

The radial eomponent is positive, while on the interval [co,l] the angular
component changes sign when v, does, see (2.18). Above expressions indicate the
explicit electric field nature of the (v x B)-term from Ohm's law, viz. the
angular component of v x B does induce a E6, but not a Je. As noted by Jansen
(1977), the component of the electric field normal to the axis, Es_is not identi-
cal to zero at the axis of symmetry, as the boundary condition requires.

This fact implies that the space charge density, given by
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€T
&)

2
-_o1 dg , df dg .
Pe © 210 3 5 {f 12 T e dc} ’ - (2.36)

is singular at the axis of symmetry. As denoted in chapter 1 and report LR-228
it excludes the applicability of the usual M.H.D. approximation: neglect of the
effect op pe. However, in view of the very small length scale in which the
influence of the space charge density might be dominant, the approkimation does
apply within the continuum hypothesis. It is clear that on the axis of éymmetry
both the sipgularity in the space charge density and Es # 0 are caused by the
weak singularity at that place in the velocity fiéld,‘which must be permitﬁed
in order to obtain a real solution of the inviscid flow. o

The electric potential U, associated with the electric field by the equatidn,
E=-grad U .,

satisfies e (2.37)

I
oot g )
. o l-c
where U_.is the potential at large radial distance. Using the general properties
of g and £, as derived in report'LR—228, it is clear that U » U, thfoughout
the entire field. o
The functions f and g and the pgrameter Kb' as used in the reports, are con-

nected with those that have been defined by Shercliff (1970) for the inviscid

flat wall problem. The relations are

f = 21TfSh v
g = Zﬂgsh ' (2.38)
sh

where the subscript sh refers to quantities introduced by Shercliff.
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3. REGULAR PERTURBATION SOLUTIONS OF THE FUNCTIONS .f AND g FOR SMALL VALUES

OF THE PARAMETER Kb

3.1. Introduction

In the following sections asymptotic expansions for small values of the parameter

Kb will be carried out by straightforward expansions, which in general take

the form
n
g(c) = i=0 Ky g, () for K < Ky max . (3.1)
_ ¢ & 49
where Z(c) = £, dc ’ g, a3 etcetera.

The magnitude of Kb max depends on the function to be expanded and is more-or-
less determined by the condition |Cnl<lcn_1l for ¢ €[co,1] and .

n=1,2,...... » N; where N is the number at which the series is truncated.

3.2. General expressions of the regular perturbation solutions of f and g

As shown in the previous chapter the dimensionless functions f and g determine
the solutions of the velocity- and electromagnetic field of the problem.

In ordef to simplify the expressions of the asymptotic solutiqns, functions

Pm' Qm, Rm and Sm have been introduced, see appendix 2. Applying Euler's
equation in integral form, see (2.24) - (2.28), the asymptotic solutions of the

functions g and g% ;, which determine the inviscid flow field, now become

oo

" .
glc) =12 Kb gn(c) ’
n=0
where . (3.2)
g (c) = Vg 2(C) ’
o o
2
v 2 2 2(c-c )
2 _ (1+o) (1-¢)
9, (c) = > PO( ) 5 QO(C) - 5 P (1) ,
(l—co)
n-1 2
_ 1 (+0)? _ u-e?
gn(C) = 79— {— ) gmgn_m + 5 Pn(C) 2 Qn (c) +
o] m=1
2(c—co)2
- 5 P (1)} for n = 1,2,3,...
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The expression of the derivative of g(c). yields.

dg > n dgn
- %E o

n=0

where (3.3)
dg ' n-1 | ‘dg
n_ L ioy g By (14c) P_(c) +
dc 2g n-m dc . n
o m=0
: -4(c-co) y
+ (1-¢) 9 (¢) = ——= P (1)} for n = 0,1,2, ...
n 2 'n
(1-co)

The constant h, which couples the;vélOCity'along the axis of symmetry and the

one along the cone wall, as it appears from (2.22) and (2.28), reads

oo
h=¢ KEh ,
. n=

0 n
where
— , - }
ho = //ho ’ | (3.4)
o 14c .
2 N
h = —1p (1) ,
e} l-c - "0 7
o
' 1 n=-1 1+co ’
h =—=——49~- 2 .hh + P (1) for n =1,2,3,...
n 2h m n-m l-c n
o m=1 o
dgn
At the boundaries 9, and 3 satisfy inter alia
gn(co) =0
for n =0,1,2,...
gn(l) =0,
and (3.5)
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dg

while a‘complete survey of the behav1our of g and EEE at the boundaries is

glven in appendix 3.

d B
The -electromagnetic field is determlned by the functlons f and di . The

asymptotic solutlons, obtalned from Ohm s law in 1ntegral form, see (2 31) -

(2.32), are

(o)
n
f(e) =12 Kb fn(c),
n=0
where (3.6)
f>(c) _ l-¢ ,
o) 1-c
o
(1-c) (e-c,) |
fn(c) = 1o Rn_l(c) - 1o Sn—l(C) for n =1,2,3,...
o o .
The derivative of f satisfies
[o¢)
af _ n ffﬂ
de Kb dec '
n=0
where : A ' (3.7)
dfo 1 |
de l-c ’
o
df_ , -l R _,(@ s, (c) }
— = z g f - - = for n =1,2,3,...
dc 2 m n-m-1 1~-c i-c . ‘
1-c¢” m=0 o , o

The expressions of Rn—l and Sn—l are given in appendix 2.

At the boundaries f satisfies

f (¢c)=1,

o o

fn(co) =0 for n = %,2,3,... ' (3.8)
fn(l) =0 for n =0,1,2,...
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. af
n
For more details about the behaviour of»fn_and aE—-at the boundaries see

appendix 3.
In report LR-228 general relations and properties of the velocity- and electro-
magnetic fieldquantities at arbitrary effective magnetic Reynolds number have

been derived. In order to check these results for small values of the parameter

2
2
Kb, asymptotic solutions of g , g%—- and h? are needed. They are
2 - 2
.n
g (c) =X Kb gn(c) ’
n=0
where
5 n
g (c) =2 g (c)g (c) ,
n -
m=0
o .
d9 _ n EE_
dc Kb dec '
n=0
where (3.9)
O 0 Y9
dc Im ac '
‘ m=0
and
2 = 2
n“ =1 K n,
n=0 n
where
n
2= nn__,
n m n-m
m=0
dgm
- i i - (3.4).
where 9., P and hm are given in (3.2) (3.4)

Note that for n > 1 for example gi(c), as stated in (3.9), is unequal to the

square of g (c¢), given in (3.2).
E n
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3.3. Analytical calculation of the zero-order perturbation solutions fé and go

This is the case where the current and the associated magnetic field are ob-
tained from the purely electric problem with a non-movable medium, see (2.33).
Now the electromagnetic field is not disturbed by the fluid motion and the
electric current flows isotrbpiéally outwards from thé origin. The solution of

the velocity field is the one, which is generated by these electromagnetic

fieldquantities.
In the previous section the following expressions of the zero-order solutions
fo and gi have been found, see (3.2) - (3.7)
1-¢
£, = 1-c ’
o
o __ 1
de = 1l-c_ '
o
2 2 2(c-c )2
2 (1+4c) (1-c) o
9o = > Po(c) - 5 Qo(c) R P (1) , , (3.10)
: (1-c )~ .. : :
N (o] .
' dg2 4(c-c_)
e - (1+c) Po(c) + (1-¢) Qo(c) - ——————E-Po(l) ,
(1-c )
o
1+c
2 o
by = I-c P, 1) - \

Substitution of fo(c) in the expressions of Po(c) and Qd(c),:see appendix 2,

gives
, 1 4(c—co)
PO(C) = ————3 {C'-Co + mc—;—)+ 4 ln(1+co) - 4 ll’l(1+C)} '
(1-c ) o
o
whence for c = 1
(34¢c ) (1-c ) .
P (1) = 1 [ ° ° 44 In(l+c ) - 4 ln(2)} , T (3.11)
o 2 1 1+c i o )
(1-c ) o
o
and
c-c
Qo(c) =

2
(1—co)
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2
2 99, 2
Hence the expressions of go(c), a3 and hO become .

2 v _ 2 L2
go(c) =a_ +ac+anc +_a3(1+c)‘ln(1+c) .

3+ (2;2 + a3)c + 2a3K1+c) In(1+c) _ o {3.12)

1
h ——2—(ao-a2—2a3) ’

where the coefficients a, ~ ag. being only dependent on c s are given by

2co(1+co) 2(1+co)(1—3co) 8ci
aj = - 3+ 7 ln(1+co) + ——————Z—ln(Z) ;
_ (1-c ) (1-c ) (1-c )
o o o
2(1+c )2 4(1l+c )2 l6c
o o o
a1 = 3 + 2 ln(1+co) - ——————Z-ln(2) . : (3.13)
(1-c ) (1-c ) (1-c )
o o o
2(1+c ) 2(1+co)(3—c ) g
a2 = - 03 - 2 - ln(1+c ) + —_————Z ln(2) ’
(1-c )~ (1-c ) (1-c )
o o , o
a2
3 (1-c )2
o]
. - 2 2
Note that a, - a5 satisfy the boundary conditions go(co) = go(l) =0,
dg dg 2 ) . :
=2 = 0 and {—2 = -2h", as derived in report LR-228, Jansen (1977).
dc Jeooc dc Jo=1 (o}
dgo
Now the solutions of 9, and qo are obtained from (3.2) - (3.4), viz.

Q

i
o)
0 N

2
dg 1 dgo
dc 2go dc

"h '=/h_2 . | | . ' (3.14)

with

{dgo} _ 1—2ho
dc c=co 2

1-c
o)
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In case of the flat wall configuration: c, = 0, as considered by Shercliff

(1970), the coefficients reduce to

a =90,
o
a, = 2,
for ¢ =0 (3.15)
o .
a, = -2 {1 - 4ln(2)} ’
a3 = -2 .

. 2
The zero-order perturbation solutions of fo and g, now take the form

£ = l-¢ ,
O
dfO
@& -t
2 ‘ 2 : 2 ’ E
9, = 2c = 2 91 -~ 41n(2) pc”™ - 2(1+c)“1n(l+c) , for Ccy =0 (3.16)
dgi _ - : ' '
3o = -2 {3 - 81n(2)} ¢ - 4(l+c) 1n(l+c) ,
h® =3 - 4ln(2) ,
o]

On using (2.38), it is clear that the above expressions are identical to those,
found by Shercliff (1970).

2
Curves of fo’ Igr Ig and its derivatives are shown in figures 4 - 9 for

several values of Cye Note that in this report the ¢ - axis in some figures
C—Cq

has been replaced by a normalized variable cn = , SO that crl = 0 at

1-cq4

c=c.andc_=1at c =1, whilec =c¢ for ¢ = 0.
o n n o

In order to determine the magnitude of the velocity.along the axis of symmetry

and along the cone wall at arbitrary value of Cor gi(c) has been éxpanded in

suitable power series. They are

-

n -
g _(c) i an(c co) , for c,<c 1+2cO
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where : : : C(3.17)

23
o, = a, + 5—-{3 + 2ln(1+co)} ’

2
2(—1)na3
. un = - - for n = 3,4,5,...
n(n—l)(n—2)(1+co)
and
2 (e o]
n
gO(C) = 7 Bn(l—c) for cg <cgt
n=1
where : ’ ' : o o v (3;18)
61 =a_ - a, - 2a3 ' ‘
33
82 =a, + 5—-{3 + 2ln(2)} ,
8a3
B, =~ — for n = 3,4,5,... :
2"n(n-1) (n-2) ' ' o
1—2hi 5
Note that o, = and B, = 2h_. Moreover o, and B, are positive for all
2”2 1 o 2 1 9re :
o
cO €(-1,1), as it follows from (3.20) and figure 3.
dg ‘
Series expansions of 9 and dc in powers of c=c and l-c now become
[eo]
: n
go(c) = X Yn(c—co) ,
n=1
dg %
o n
G Tk ) Ypyy feegdh
n=0 :
where (3.19)
Vi TV %

1
Yn = §§I»{an+1 - i_ Ym yn_m+1} for n = 2’3'4’7"
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and

o 1,
g (c) =% & (1-c)™7
o n

n=0 '
dg o ;
—2 -l i 6 (1mo)™F
dc 2 n .

n=0 ’

where (3.20)

1 n-1

Sy =25 {Bn+1 L
o .

§ & ‘}. ' for n = 1,2,3,...
m n-m “
m=1 e

(3.20) the radii of convergence

Note that in above series expansions (3.19)
might be close to respectively c = g and ¢ = 1._ ,

Examination of (3.12) shows that all derivatives of go(c) are finite in c = 1;
therefore go(c) satisfies a series expanéion in powers of (1—c)n+%, as stated

in (3.20). However, in report LR-228 a different behaviour of the derivatives

. : = k 2
d
of the general function gz(c) had been found, namely { E }, is singular

. 2
for k > 4. This is caused by the fact that the series expansion of g also

Y

contains terms of order (1-jc)m+ for m > 3. Nevertheless the appearance of these
terms in higher order perturbation solutions of g2 does not invoke any -
inconsistency.

The Lorentz force, generated by the electromagnetic fieldguantities of the
purely electric problém, induces a flow more-or-less parallel to the cone wall
in a direction towards the point electrode..In the neighbourhood of the origin
the flow is rathér abruptly turned off into a jet flow around the axis of
symmetry, directed from the point electrode, see figures 10 - 12.

An interesting feature is the behaviour of the tangential and normal components

of the unperturbed velocity field at the boundary of the cone and the axis

of symmetry, see figure 2.
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‘Figﬁre~2.

The firéf order approximation with respecf to c—co of the velocity component
parallel - to the cone wall is given by ‘ '

1. : :
~_9 /Bl ~ .
.Vtw,O'_'2ﬂ 0 r~Y1(1+Q(12)7 for ¢ = co .. . (3.21)

The normal component at the wall, in the direction of the fluid'afea,
approaches

I . o
‘vnw,o = /p - El(c co) (1+o(1)) fO? c=c

- where . . .'i3.22)

1 { 2
= dc Y, - 2(1-¢ )y}
1 2(1_c(2))3/2 o1 o’ 12

At the axis of symmetry the tangential velocity component in the direction of
i, yields
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I S e .
~2 Bl __ o N o
Via,o0 = Tn 0T (1+0 (1)) _ for c > 1, ; (3.23)
2 v 1-c .

while the normal component satisfies

-

~20 Bl ~
vna,o Sl p " €2 (1 c) (1+0(1)) for ¢ =1,
where B e (3.24)
1
62 = — (60 + 461) .
2V 2

The behaviour of Yl' 6 ‘2 as a function of COHlS sketched in figure 3.

1’A
The flgure shows that at the axis of symmetry the flow is always directed

parallel and towards the axis. In general the resultant of the velocity components
of the flow parallel to the cone wall is directed from the wall. However for

60 > 130. 46 Vnw,o changes sign, so that in that case the resultant is

directed towards the wall. It is clear that this effect is caused by the geometry
of the connguratlon. Moreover note that vrlw o a_nd‘vna o sat;sfy the inviscid
boundary condltlons.

The weak singularity in the jet flow at the axis, see (3.23), satisfies the
continuity condition (2.21), as pointed out-in-report LR-228. Moreover it results
in a finite mass flow WO through a small circle perpendicular to and centred

on the axis, given by
YV o IO vV DU ¢ 6OV l-c (1+0(1)) for c =1 , ' (3.25)

which approaches zero . for ¢4 1. In addition the above expression shows that
in first order of approximation (with respect to 1 - ¢) the mass flow thfough

a circle of constant radius remains constantly for all z > 0.
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2

: 0 .
€ -1 0 05, 1
-62 — CO
-05
-10

Figure 3. The behaviour of yl’"do':gl' €2 as-a function of Co-

Theorem 1: The function gi(c), as given by (3.12) and (3.13), satisfies

gz(c) >0 for ¢ < c <1 and -1 < c_ < 1.
o o o

Proof: We use the series expansion of gi(c) in powers of l-c¢, see (3.18), which

is valid for co.f c £ 1. Substitution of the expressions of a see - (3.13),

-a
o 3
in the expressions of Bi’ 82 and Bn and series expansion in powers of 1—cO gives

: n
- (l—co)
B, =21 .,
n=0 2™ (n+2) (n+3)
® (l1-c I
B, =-1L Q ’ for -1 < ¢ <1
2 e}

n=1 2% (n+2) (n+4)

and
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Bn = 16 for n = 3,4,5,...

2nn(n—1)(n—2)(1—co)2

Substitution of the above expreqs10ns in the series expansion of g (c), see

(3. 18), ylelds after some calculations

2 a(1-¢) o Ty (ercy)
gO(C) = 5 z n ’
(1—co) n=1 2 n{(n+1) (n+2)
where R
T (c,c) = n(1-c )™ - (n41) (1-0) (1-c )™ + (1-0)P*
n <’ =0 o o ¢ '
for n =1,2,3,..., ¢ <cg, -1< g < 1.
Note that g2(c) =0 for ¢ ='c¢ ,1; V
o o}
The expression of Tn(c,co) can be rewritten as
' n+l C~c0 n+l (nfl)(C—Cé)
Tolercg) = (1) {(1 T T ) T _1_?;_‘}

Since 1_co <1 for ¢ <1 and n + 1 > 2, we are able to apply Bernoulli's

inequalit?, given by

c-c n+l (n+1) (c=c_)
1 - S Q- for n > 1.
1-¢ 1-c -
[®] O

2
Hence it follows that Tn(c,co) > 0 for n > 1 and that go(c) is non-negative for

c <c¢c<1and -1 <c¢ < 1.
o o

———— 0 =-———-

2
Theorem 2: The function hi, as given in (3.12), satisfies 0 < hO < %~ for

-1 < ¢ < 1.
o

Proof: From (3.12), (3.18) and the expression of Bl’ as derived in theorem 1,

2
ho can be rewritten as
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(1-c )"
04

oy
I
S o™ 8

=0 27 (n+2) (n+3)

Since-0 <1 - cg <2 for -1 < c, < 1, it is cléar“thatvhz > 0 and in addition

that hi is bounded by

[e 0]

2 : 1
h™ < % _—
o n=0 (n+2) (n+3)
On using relation 0.2431, see Gradstheyn & Ryznik (1965), we find 0 < hi < 1.
e O ————
2
2 dgo dgo
In the same way it can easily be verified that go(c), go(c), I ' 3o and hQ

satisfy the lemmas which are proven in report LR-228, Jansen (1977).
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3.4. The higher order perturbation solutions of f and g and the regular

perturbation solutions of the electromagnetic- and velocity field

In the previous section we calculated the unpertﬁrbed electromagnetic- and
velocity field, répresented by‘fO and 95° Hence we are able to calculate fl'
From (3.6), (3.10) and appendix 2, the expression of f1 now takes the form

c - 1
-~ (2+c_+t) o le=c) oo, o
£,(c) = Uze) 5 J —2 7 9, (t) dt - o~ 3 J"(3+t)2 (t) dt ,
(1-c ) (1+t) (1-c ) (1+t)
o c ~o c .
O .
where, see (3.12) and (3.13)
. ‘IL

- : ’ . 2 2 2
go(c) = {aQ + ac + a,c + ag (1+c) ln(1+c)J .

Due to the appearance of both the logarithmic and power of ¢ terms in the
expression of go(c), I am unable to calculate £, and neither the higher order
perturbation solutions analytically. Therefore merely a numerical calculation
remains.

For instance, from (3.49) of LR-228, we can only conclude "that
af a
dc
c=

- {EE- > 0 for Kb << 1; i.e. the departure from the isotropic
1 c=c PR
current distribution is larger at the cone wall. than at the axis of symmetry

for sufficiently small vdluesvof the effective magnétic Reynolds number.On using
. the general integral expressions, as given by (3.2) = (3.9), and on applYing
the expressions of the unperturbed solutions, see (3.10) - (3.13), -the higher
order perturbation solutions have been calculated numerically, successively in a
sequence fl' 9y f2, Jor etcetera. For a detailed discussion of the numerical
‘ p;ogram see chapter 5. dfn dgn
In figgres 4 - 9 the solutions of the asymptotic expansions fn’ I’ I 3@
dg . '
2 n 1 1
gn, 3o are sketched for g'= 0,1,2,3 and <, =A§‘/§, 0, - 5 V2.
(60 = 450, 900, 1350). In these figures the c-axis has been replaced by a nor-
C-c
malized variable c_ = ° , sothat ¢, =0 atc=c¢c, ¢c. =1 at ¢ =1 and
n l-cq - n o n :

c, =c for S 0. Due to the large differences in magnitude for different cé,

sometimes it has been found necessary to apply different multiplication factors
in these figures. ‘
A detailed consideration of the perturbation solutions shows that in general

the course of a function is about the same for different cO
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However, in some cases for Cy = - %-/5, a slightly different behaviour is
found. Moreover it turns out that the magnitude of a function incréases_for
larger values of 60. )

Comparisbn of the n-th and (n+!)-th perturbation solution of a function for -
constant cO shows that in most cases the signs of ﬁhe solutions are roughly
speaking opposite and in addition that the magnitude of the (n+1)-th solution
is smaller than the magnitude of the preceding one. In general the magnitude
decreases for higher order of perturbation.

As already mentioned in a previous section2 note that for n # 0, e.qg. gi is not
. : ; : . o dgn v dg ' :
identical to the square of;gn, likewise ac 2g

n dec °

Within the validity of the reqular perturbation exéansion at small values of

the effeé?ive magnetic Reynolds numbex Kb’ the_effgct of the‘interaction between
thé current distributicn and the generated fluid motion is rather small. In order
to distinguish the effect of the mutual influence the fieldquantities are modi-
fied and separated into an unperturbed term, also called zero-order perturbation,
and a total perturbation part; i.e. the sum, starting with n = 1, of the higher
order perturbation solutions, multiplied by the appropriate power of Kb. In case

of the stream function Y, see (2.13), it is carried out in the following way.

Let

Vo

ol

IO
ll):?ﬁ\/

whére @lis the modified stream function, depending mefely on r and c, satisfies
¥=rgl),

which in turn, is separated into an unperturbed- and a total perturbation part,

given by

<
I

@o + A, ‘ (3.26)

where, see (3.2)
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o0
- n
Aw—rZ Kbgn(_c)‘-
- n=1
In the same way the modification and separation of the radial component of the

electric current density, see -(2.19), take the form

o —
Jp = > Iy ¢
2Tr
where
3 =£E-—3 +A3 ’
r dc r,o r
and, see (3.7) ‘ - ' (3.27)
_ df
Jr,o - T dc
® n dfn
AJr =- 1 ‘Kb dc
n=1

In addition the azimuthal component of the magnetic field, see (2.14),Iis

modified and separated into

UIO
—— B ,
O] 21 T

w
I

and, see (3.6) . | ~ : . (3.28)
£ (c)
-
@0 v 1—02
o0

AB = = ¥ TE (o) .
® vV 1-¢” n=1 Kb n
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In principle an infinite number of perturbation terms needs to be calculated.
Since however the magnitude decreases for higher order of perturbation, see
figures 4 - 9, we are able to truncate the series expansion; For all field-
quantities this has been done at N = 12.
Streamllnes of constant w and A} are shown in figures 10 - 12 for' c '='%~/§, 0,
3 Y2 and K = 10 Kb ha .»Here Kb}max is the maximum value of Kb‘for'
which still an asymptotic convergence of the truncated series has been found.
Numerical calculations show that Kb,max depends on the value of‘cO and to a less

extent on the function to be expanded. It turns out that Kb mnax is larger for
6 14

~1=c [c

L /3 V3. e

5 3 < co However the total perturba ion part of the fieldguantities

smaller 60; roughly speaking Kb max for g, on

has not been calculated for the extreme upper bound of Kb,max' By way of
precaution and in order to guarantee the asymptotic conVergence of all field-
quantities at certain values of Ky and c, s @ value hai been chosen which is
estimateg to be smaller; namely K?,max = 10 for cO = 5-/5, Kb,max = 5 for

c, = 0 and Kb,max = 2 for C, = - 5-/7._

The graphs of streamlines of constant wo~represent the flow field as generated
by the isotropic current distribution and its associated magnetic field. The
figures of constant Ay streamlines show the effect of the interaction between
the fluid motion and the electromagnetic field. For a certain value‘of the
effective magnetic Reynolds number Kyr the summation of @O and the relating

Ay equals the total flow field, see (3'26)'.

The graéhs of Ay show that the total perturbation part of the flow field is
divided into two parts, separated by a streamline A@ - 0 at an angle.

6 ~ 0.8 - 0.9'80. Moreover theéy indicate that the velocities of the base flow
are reduced in nearly the whole flow field, except near the surface of the cone
where the velocity towards the point electrode increases. For larger Kb this
effect grows, whereas the increase of velocity is more concentrated to the cone
wall. At Kp = Kb,max the influence of the total perturbation term A@ upon the
base solution @O is at most about 10 per cent.

Note that the preceding remarks about the behaviour of the modified stream
function as a function of Kb only deal with the local differences in the velocity
field at different values of Kb' If an increase of Kb is caused by a larger total
electric current IO, then both the velocities in the entire flow field and the

magnitude of the stream function J increase proportionally with the total

electric current, as it appears from (2.12), (2.13), (2.18) and (3.26).
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Figure 10. Streamlines of constant wo and Ay for 60 = 45° ang Kb =10 7, 1, 10.
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Figure 12. Streamlines of constant wo and Ay for 60 = 135° ana K = 10 °, 1, 2.
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(o]

Figure 13. The electric current distributions Er”o and AEr for 60 = 45~ and

K = 10'2, 1, 10.
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- 6,=90°

- L= o)
Figure 14. The electric current distributions J, o and AJr for 60 = 90 and
-2 !

Kb=10 . 1, 5.
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Go=135°

‘ — — o
Figure 15. The electric current distributions Jr o and AJr for 60 = 135 and

-2 '

Kb =10 , 1, 2.
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Figure 16. The base- and perturbed magnetic fields'ﬁw o and Aﬁé for 60 = 45
and K_ = 1072, 1, 10.
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Figure 17. The base- and perturbed magnetic fields E@ o
and K_ = 1072, 1, s.

and AB_ for 8 = 90
- o
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Figure 18. The base- and perturbed magnetic fields §¢ o and A§¢ for 60 = 135°
. r
and Kb = 10 2, 1, 2.
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By comparison of graphs of A@ for different values of Kb and constant co;>it

is clear that the effect of the perturbed flow field is almost proportional

to Ky for K < 1, but less than proportional fof Ky > 1. This behaviour appears
also from the graphs of the current density and the magnetic field, see figures
13 - 18. Since the other fieldquantities to be calculated in next section, are
derived from the electromagnetic— and flow field, we are able to state generally
that in case of calculation of total fieldquantities for Kb < 1 the omission

of perturbation solutions of order n > 2 gives a good approximation. ‘

In figures 13 -~ 15 the modified isotropic current distribution Er, -and the
total perturbation part Ajr are sketched for c, = %—/5, 0, - %5/5 and-Kg‘= 10_2,
1, Kb,max' As it appears from (3.27),Athe summa;ion of both terms equals the
.total electric current distribution for a certain value of Kb.

Graphs of A3r indicate that the interaction between the fluid motion and the
electromagnetic field; i.e. the v x B - term in Ohm's law, changes the isotropic
current distribution into a current distribution being ldrger both near the

axis of symmetry and the cone wall, but smaller in the middle area of 6.
Featur;ng the phenomenon at constant Io’ this effect grows up for larger Kb'

in which the increase of the current density is more concentrated near the cone
wall and the axis of symmetry, whereas the decrease of current denSity in the
middlé area of 0 occurs over a wider angle.

The figures of the modified current densities show that the magnitude of the
isotropic current distribution decreases for larger GO, as was expected.
Howevef, out of the three forms of configuration, to be considered here, it
would appear that at constant Kb'the magnitude of the total perturbation curreat
distribution Ajr is smallest for cy = 0. Note that comparison of the magnitudes
of the total perturbation current density at the cone wall and on the axis of
symmetry at fixed o and Kb ind}catef that the current density is larger at the
cone wall than on the axis for c, = 5—/5; 0 and 0 ¢ Kb < 1 and for Sy T % V2
and O f Kb < Kb,max' whereaé for c, = % /5, 0 and Kb = Kb,max the current
density on the axis of symmetry becomes larger.

In order to examine the shifting of the electric current towardé the axis of
symmetry and the surface of the cone, special angles 81 and 82 are introduced
at ASrV= 0, ibidem the total perturbation current distribution changes from
being outwards to being inwards, see figure 19. |

It is evidént now that the angles 81 and 62°are next to constant for small
values of K . Upon writing 61 = Xleo and 62 = AZGO' we find Al = 0.29 - 0.30
and X2 = 0.81 —‘0.82 for Kb < 1. Fgr'increasing Kb, upto Kb max’ the angles

14
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8:=0
c=1

Figure 19. -

61 and 6 - 8 become smaller, by which 6 . decreases faster than 6 —'6

Now we 1ntroduce electrlc currents Ia.O and AT a’ which are. respectlvely caused. -

14
by the isotropic- and total perturbatlon current distribution between 6 =

and 6 = 61. In the same way Iw o and AIw are the electric currents between,

’

0 =06, and 6 = QO. From (2.19), (3.6), (3.8) we find after some calculation

where
I (1-¢.)
Ia,o - Iofo(c ) = 1-¢ !
[o¢)
A1 =1 = £ (c,) o
o
n=1

and (3.29)
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I =1 + AT,
w w,0 w
where
I (c —co)
I =I{1—f(c)}= ’
w,0 o 2 —c
o
0
AT =-1_ 2 D E (e
- ° 4 K thter) -

Since it is more useful to consider the magnitude of these currents with respect

to the total electric current Io or the“isotropic current, we also define

I = —=
p,0 I, !
_ AT : ,
AT = ——E-, for p = a,w (3.30)
P I
o
AT
AT =
P IP,O
Typical values of Ia’ I, and derived quantities are given in tables 1 - 3 for

co = %-/51 0, - % Y2 and Kb = 10_2, 1, Kb,max' These tables show that, especially

for . < 1, the perturbation -currents AI_ and AI are next to proportional
~ : a \ o
to Kb.‘In.addition, for increasing Kb it ‘turns out that the ratio increases
AIW Tw : : a,o ) )
and ZE—-decreases nevertheless the fact that Eg-increases, does indicate that
a

a greater part of the total electric current, supplied by the point

electrode, is concentrated near the cone wall than.near the axis of symmetry.
Moreover, it turns out that for larger eo the ratio ;g- becomes smaller,
whereas the effect of shifting of more electric current towards the cone wall
becomes more pronounced.

Note that this effect is not affected by the difference in magnitude between
the electric current densities at the cone wall and on the axis of symmetry

for different values of Kb and co, as mentioned befo;e.

In my opinion the electric current will be concentrated wholly to the cone wall
when Kb tends to infinity. That is from a physical point of view the most
realistic situation. However, it is not clear yet, whether this primitive model
satisfies this conjecture. For that reason a numerical calculafion'or singular

perturbation method will have to be carried out in order to clarify this



53

Ve o 50
-2 g |
K, 10 1 0
¢y 9.74 x 10-?, ’9.74 x 107t 9.76 x 1071
8, 13° 10" 13° 1" 11° 54
c, 7.99 x 1071 7.99 x 107} 7.98 x 107+
e, 567 57 36° 58' 37° 4"
[ 3,14 x 107% 3,14 x 107t 3,10 x 10°%
AT, 1.38 x 1074 1.34 x 1072 1.07 x 1071
AT, 4.39 x 107 | 4,27 % 1072 3,45 x 1071
T 8.88 x 1077 '8.88 x 1072 7.51 x 107°
a,0
I 2.49 x 1077 2,44 x 1073 2,00 x 107t
E; 2.80 x 174 2,75 x 1072 2.667x 101
1
?ELQ 354 3454 4.13
“a,0
AT - )
= e54 549 5-3?
a
. |
) 3.54 3.59 4.38
a
I .
///_ELQ 1.00 1,01 1,06
Ia,o '

Table 1.
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e = 90°
K, 1072 1 5
¢, 8,96 x 10~ 9.00 x 107t 9.15 x 1071
o, 26° 25' 25°% 45’ 23° 45’
¢, 2,81 'x 10°° 2.79 x 10‘l 2.74 x 10'1
o, 73° 41 73° 46’ 74° 6
I, . 2.81.x 10°% 2.79 x 1071 2.74 x 1071
’ .
CAT 3.46 x 1077 3.23x 107° 1.27 x 1071
BT, 1.23 x:107° 1.16 x 107+ 2,64 x 1071
I, 1.04.x 1071 Y.00 x 1071 5.50 x 107°
, ,
AT, 6.72 x 107° 6.46 x 1077 2.67 x 1077
AT, 6.46 x 1074 6.46 x 1072 3,14 x 107
T
Zw,0 2,70 2,79 3,22
Ia,o
AL, 5,15 5.00 1.75
— . J 3 o.f
AT, « .
I -
Tﬂ 2.70 2.92 3.59
a
A :
v [ w0 1.00 1.05 1.11
*a/ *a,o0

Table 2.




V2 e = 13°

1
2_ 0
1072 1 2
7.65 x 1070 7.78 x 1070 | 7,93 x 107}
20° 6" 38°% 54' 37° 34
3,40 x 107 | - 3,48 x 1071 | - 3.54 x 1071
109° 51 110° 21' | 11200 26’
2.15 x 107} 2.10 x 10°Y | " 2.07 x 107}
7.23 x 1074 6.31 x 107% | . 1.13 x 107}
5,36 x 1077 3,00 x 1070 | 5,46 x 107%
1.38 x 1071 1.30 x 1071 | " 1.21 x 1072
1.63 x 1074 1.60 x 10~2 3,00 x 1072
1.25 x 1077 1.23 x 107t 2.48 x 107*
1.56 1.62 1.71
4.23 3.4 , 3.77
1.56 1.87 2,12
1.00 1.15 1.24

Table 3.
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interesting topic. Namely from the behaviour at low Kb' Shercliff (1970). .stated
that a higher values of Kb the current flow might be confined wholly to the wall
and the axis, whereas Zhigulev (1960) expressed the opinion that the current
would be confined wholly to the axis at high Kb

Note that for cO = O and Kb , c1 and c2 possess the same values as foundb
by Shercliff. ‘

In figures 16 - 18 the magnitudes of the azimuthal component of the unperturbed-
and perturbed modified magnetic field ‘are given for c, = %-VFE, 6, - %-vfz and
Kb =10 %, 1"Kb,max' The graphs of ABqJ clearly 1nd1cate the increase of magnetic
field in the neighbourhood of the axis of symmetry and the decrease near the cone
wall, as a consequence of the shifting of electric current towards the axis and
cone wall for increasing Kb

Since ‘the zero—order radial component of the current deDSity is constant with
respect to 6,_the graphs Of'Bw;o also show‘thewbenaviour of the unperturbed
Lorentz force in negative ie—direction, as a function of 6.

As pointed out in the discussion.aBout the behaviour of the basic- and perturbed
flow field at increasing values of Kb’ the departure from isotropy of the radial
current distribution, due to electromégnetic induction, reduces the velocities

in almost the entire flow fieidl‘Only in the neighbourhood of the cone wall the
velocity increases a little. On the other nand this effect appears from‘the ‘
behaviour of h, being merely a function of co and_Kb, which mathematically
speaking couples the velocities on the axis of‘symmetry and at the cone wall, see
(2.18), (2.22), (2.23), (2.28).

Separation of h into a zero-order solution and a total perturbation part yields

where, see (3.4), (3.12), (3.13)

A 3+c_ 4 (1+c?) ' /1+co
h, = 5+ 3 1n \"3 ) ) (3.31)
(1-c ) (1-c )
(@] o]
Ah =% K'h .
n

h
Figure 20 shows the behaviour of ho and é‘—-for Kb < 1 as a function of -

It indicates that h slowly decreases for increasing Kb, by which the effect is



57

stronger for larger 60. Moreover, Ah turns out to be~proporti6hal to X for

Kb < 1. For larger Kb’ upto Kb max’ the magnitude of Ah becomes smaller and
, B :

an’

Figure 20. The behaviour of hO and éé—for Kb $1asa function pf-co

less proportionally. At Kb = Kb,max-theAmégnitUde gf h is abou# 90 pc. of that
of ho. Note that for larger Kb the weak singularity in the flow field at c = 1
has to remain, since an inviscid flow with finite radial veiocity on the axis

of symmetry does not exist, see Jansen (1977). )

Since graphs or expressions of the higher order derivatives of fn and gn,do

not enlarge the knowledge about the behaviour of the electromagnetic- and flow
field, they are omitted in this report. However, solutions obtained by numerical
calculations showed to be in full agreement with the behaviour, as derived in

report LR-228, Jansen (1977).
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4. REGULAR PERTURBATION SOLUTIONS OF THE OTHER FIELDQUANTITIES

In the preceding chapter the flow field ahd electfomagnetic field have been
determined. This enables us to calculate the other fieldquantities. In this
chapter the vorticity, pressure distribution, electric field, electric potential
- and space charge density will be ascertainsd and discussed. Their behaviour for
different values of tHeﬂeffec£ive‘maQnetic Reynolds number Kb will be shown in
figures. Therefore it is necessary to modify the expressions of the field-
quantities. Moreover, in order to. examine the influence of the interaction
between the fluid mofion and the electromagnetic field upon these fieldquantities,
they need to be separated into an unperturbed- and a total perturbation part.
Noté that in some figures, given in this chapter, lines of constant magnitude

of the modified and separated fieldquantities are given, whereas other ones
merely show the behaviour.as a- function of 0.

The vorticity, see (2.16), being pu;ély.azimuthal and generated by Lorentz

forces, satisfies

w = curl(v) = wi .
- = -
where (4.1)
w = - Eg_ N 1—c2 d2g
27 p r2 dc2

Introduction of a modified vorticity distribution‘& and separation into a

zero-order and a total perturbation term give

= (B3
To2mAfp !
where T (4.2)
w=w_ + A,
o)
2
o = v 1—c2 d 75
= - T 1
© r2 dc
1—c2 ® n d2gn
Aw = - ) 3
r2 n=1 Kb dc2
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Figure 21 shows lines of constant.LI)o for co'= %- 2; o, = %1Vf§. The Lorentz
forces generate vorticity in the”fluid in particular in a reglon near the point
electrode and the- cone wall. The flgure clearly indicates that the vort1c1ty
‘generated is carried downstream into the hlghly rotational jet flow along the
axis of symmetry. As pointed out by Shercliff (1970) the flow escapes into a
region of weaker Lorentz forces, preserv1ng its vort1c1ty _

For increasing values of Kb the vortlclty distribution increases in the neigh-
bourhood of the cone wall, whereas it slowly decreases in the remalnder of the
field. The singularity on the axis of symmetry.arises from the fluid foliowing
streamline Y = 0, which passes a region of infinite curl(J x B) at the origin.

The expression of the pressure distribution, see (2.34), obtained by integration

of Euler's equation, is given by

5 o .

MI 2 2 2 ' :

P =P, " 02 2 {d g + 29 2} ’ (4.3)
len dc 1-c :

where p, is a reference pressure at large radial distance. .Introduction -of a
modified pressure distribution p and separation into unperturbed- and perturbed

terms, lead to

I2
p=p+u° P
o 16Tr2r2
where _ _ o (4.4)
§:P+API
2 2
_ {d 9, 249 }
p.=- + r
© dc2 1—c2
o d2g2 292
- n n n
bp = -1 Kb{2+‘§}
n=1 dc 1-¢c

The behav1our of p and Ap, as function of Q,-is shown in figures 22 - 24 for
c, = 2 ~2, 0, ~ 2 2 and Kb 1, Kb,max' The graphs of the basic
modified pressure distribution show that P, consists of a large positive part
and a smaller negative part near the cone wall. It turns out that Eo = 0 at

0 ~0.7 - 0.8 80. At that place the pressure is equal to the value at infinity.
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Expressions (4.3) and (4.4) indicate that the pressure field is only.caused

by the fluid motion. Indirectly the pressure distribution .is indeed .generated

by fhe Lorentz fo?ces, however4it does not appear as such from theselekpressions.
As it appears from the graphs of 50 and A§ it is evident now that the behaviour
of 5 correséopds with the changes in the»flgid field for increasing Kb. Namely,
the pressure distribution then becomesvstronger negative in a smaller region
near the cone wall, whereas in generél the ﬁagnitude decreases in the remainder
of the field. |

The expressibns of the vector components of the electric field are, see (2.35)

g _o 1 [ af of
r~ 2mo 2 |  dc L2
. r 1-c¢
o1 (4.5)
o 1 £ dg

By modification and separation, the expressions of the electric field components

take the form

H

o 1 = .
Ei_.2_‘lT6'—_§Ei’ for i = r,0
r
. where (4.6)
E, = E, + AE. for i = r,0
i i,o i
_ dfo
Er,o - T a
o arf n-1 g
n m n—m—ll
AEr—Z Kb{_dc + X ——1_—2——- '
n=1 0 ¢
Ee,O=O 7
o n-1 £ dg '
Mg =-2 KT m gcml )
n=1 m=0 1-c

In figures 25 - 27 the vector components of the modified electric. field have

1 1 5 =2
been sketched for c_ = 5-1/2, 0("5 2 and K =10 7, 1, Kb,max'

They show that the zero-order radial component Er o is positive and constant
14

with respect to 6. The zero-order angular component EG o is identical to =zero.
14
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Moreover, the graphs of the total perturbation terms of the electric field
indicate that the magnitude of E increases in regions near the ax1s of symmetry
and the cone wall for larger values of Kb It is obvious that thlS effect is
caused by the increase of the electric current density in these reglons at larger
Kb. In addition, due to electromagnetic 1nductlon an angular component of the
electric field Ee is induced, being positive in a region near the axis and
negative near the cone wall. It turns out that Ee changes sign at an.angle .

6 ~0.52 - 0.58 8§ o whichAmore—or—less coincides with the minimum value of AE .
It should be notlced that in this problem the angular component of' the electrlc'
field does not imply an angular. component of the- current den51ty, however‘f:e
only causes a space charge dlstrlbutlon, which will be discussed hereafter. This
fact clearly displays here, the typical electrlc field character of the.v x B +:
term of Ohm's law. ) » )

As already noted in report LR-228, see Jansen (1977), the component of the -
electric field normal to the axis of symmetry has a finite value at c = 1.

This is in contrast with the boundary condition, which requires~that-Eé is
identical to zero there.

The electric potential U, related to the electric field E by the equation
E =-grad U ,

is given by the expression, see (2.37) .. - : A " (4.7)

I
o 1 daf gf
= + — — - I ——
v="Y 210 r { ac " % 2} !
1-c
where U, is the potential at large radial distance. Expressions (4.5) and (4.7)
show that the angular dependence of U and E are ldentical
Introduction of a modified electric potentlal U and separatlon into a ba51c—

and a total perturbation solution yield

where . ' i ‘ (4.8)

c
1l

U + AU,
(o]
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____+Z —_—
' de m=0 1—c2

g

]
I
S ™ 8

n { at, n-1 gmfn—m—l}
=1

Lines of constant electric potentials 56 and AU are given in figures 28 - 30
for co,=-% VFE, o, - %nJa-and Kb =.1O—2, 1, Kb,max; The - graphs show -that the
basic potential-Ud is constant for fixed r, as to be expected. Moreover they’
indicate that the potential difference in radial direction increases for larger
Kb. In the neighbourhood of the axis of symmetry and the cone wall this effect
is much stronger than in the middle region of 6. It is caused by the facts that
the total electric current Io is supplied by an ideal constant electric current-
source and. that for increasing values of Kb the electric currents are shifted
towards regions near the axis and the cone wall.

The space charge density Pgr See {2.36), given by

2 .
_ho1 [ &g, aedql |
Pe = 210 3 Kb{f 2t ac dc} ' (4.9)
r dc
is caused by the angular component of the electric field and is genérated by

electromagnetic induction.

Rewriting pe.into a modified and separated form, we obtain

el

o}

e 2m0

1 =
3pe'
r

where : : : ’ ‘ (4.10)

0 n-1° dg df  dg
- n n-m-1 m n-m-1
bog =2 K I {fm 2 * 3% ac }
n=1 m=o

The behaviour of the modified space'charge distribution as a function of 6 is

. . — 1 1 = _2
sketched in figures 31 - 33 for C, =3 VFE, 0, - 3 v 2 and Kb =10 -, 1, Kb,max'
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Since 5 e,0 = 0, it indicates that in case of absence of fluid motion no space
charge density is generated. The figures show that Ap is negative in a region
near the cone wall, changes sign at an angle 6 ~ 0.26 - 0.33 9 and becomes’
pos1t1ve in the neighbourhood of the axis. As denoted in report LRr-228, the space
charge density possesses a weak singularity of order (1—c-) % at the axis of
symmetry, which shows that ES has a finite value at ¢ = 1, instead of the zero-
value required by the boundary condition. Nevertheless this phenomenon does not
involve the appearance of electric sources on the axis of symmetry.

It will be clear that the 51ngular1ty in the space charge density and the fact
that E is not identical to zero at the axis, are both caused by the weak

51ngular1ty in the flow field at that place, which needs to be permitted in |

order to Pbtain a real inviscid flow solution, see Jansen (1977).
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Figure 21. Lines of constant E% for GO = 450, 900, 1350.
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— — -2
Figure 22. The pressure distributions P, and AP for 60 = 45° and Kb =10 , 1,

10.
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Figure 23. The pressure distributions ﬁévand AB forAGO = 9OQ and»Kb =10 , 1,
5.
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Bo=135°

— — -2
Figure 24. The pressure distributions P and Ap for 60 = 135° and Kb =10 7, 1,
2.
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Figure 25. The vector components of the modified electric field for 90 = 450

and Kb'= 10_2, 1, 10.
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80=90°
x107"
Figure 26. The vector components of the modified electric field for 60 = 90°
2

and K_ = 10°%, 1, s.




70

Figure 27. The vector components of the modified electric field for 80 = 135°

and K_ = 10“2, 1, 2.
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Figure 28. Lines of constant electric potentials ﬁo and AU for 60 = 45° and

K = 10"2, 1, 10.
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Figure 29. Lines of constant electric potentials Uo‘ and AU for 60’ = 90° and

2

Kb=1o“,1, 5.




Figure 30. Lines of constant electric potentials

A0=25x10"%

U and AU for 9
o o
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Figure 31. The space charge density Ape for 60 = 450 and Kb =10 ~, 1, 10.
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Figure 32. The space charge density Aﬁe for 90

90° and K = 1072, 1, s.
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Figure 33. The space

B=135°

charge density Aﬁe for 90

135° and K, = 10




77

5. THE NUMERICAL COMPUTATION

In section 3.3 the unperturbed electromagnetic- and flow fields, represented by
fo and 9o have been calculated analytically.. As remarked in section 3.4, due to
the fact that the obtained expression of'gO consists-of a square root, being
composed of both logarithmic- and algebraic functions, it ‘'was not possible to'
calculate the integrals in expressions of higher order.perturbation solutions

analytically. By numerical calculation of.the integrals Pn(c);'Qn(c), Rn;l(c),7'

Sn_l(c),_see (3.2) = (3.7) and appendix 2, we were able to determine the

higher order perturbation solutions of f, g, .h, gg,‘§%~, successively in a
df1 , dg1 ) df2‘ . 892 : o 7 o

sequence: fl' 3c ! gl’ - ra f2, P g2, 2, e f3, ..... : etcetera.

In order to obtain accurate results it has been carrled out up to and 1nclud1n§
the 12th order perturbatlon solution. Some results for n = O - 3 are glven in
section 3.4. v ' ’ '

The numerical 1ntegratlon has been performed in double- prec131on on us1ng the
Fortran subroutine DQSF, see IBM/SSP (1970). The program, belng translated here
into the programmer's language PL/1, has been modified in such a way ‘that the.v
stepsize has to be positive and the number of 1ntegratlon steps is mlnlmal 10
The integration procedure computes integral values at equldlstant p01nts for
values of the integrant given in these p01nts, by u51ng Slmpson s rule togetherv“
with Newton's 3/8 rule or a comblnatlon of these two rules The local truncatlon
error at each step is of order of the stepsize to the fifth power

The integrants of Pn(c) Q (c), Rn— (c), s (c), see appendlx 2, do not con-

1
tain any singularity onkthe interval c, g

-

n-1
c < 1. However,lln most cases at ¢ =1
an analytically calculated value of the 1ntegrant needs to be given 1n the o
program, in order to prevent numerlcal problems, such as zero- leldlng.or over—dv
flow at that place. ' ‘ o " '
Since perturbation - solutlons of lower order appear .in integral expre551ons of
higher order perturbation solutions, both the integrals and perturbatlon |
solutions have been calculated at m + 1 equldlstant points between co and 1.
A moderate accuracy is obtalned by  taking m = 1000 for g > Q and .
m = 2000 for c, < 0.
The obtained results now have been used in su1table equatlons, derlved from
Euler's equation ‘and Ohm's “law, which are glven in this report and in report
LR-228, to calculate the perturbation solutions:

2 3 2 3 2 22 32

d fn d fn e 9, d 9, 5 dgn d 9, dg

2 I 7 2 r ! g 14 I 14
dc dc3 dc dc3 n’ de dc2 dc3

for n =0 - 12.
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Since for this operation no numerical integration needs to be performed, these
perturbation solutions have been calculated at a much smaller number, viz. k,
equidistant points on the interval [co,l] . By taking k = 51, we obtained a. :
gooa quantitative view of the behaviour of these functions. They showed to'be
~in full agreement with the results, as derived in report LR-228.

For Kb‘= 10_2, 10_1, 1, Kb,max the zero-order .and total perturbation part of
the solutions of all calculated.functions, including the modified other field-
quantities, viz. vorticity, pressure distribution, electric field, electric
potential and space charge distribution, have been determined at k equidistant
points. A part of the results is given in sections 3.4 and 4.

The complete numerical calculatlon has been carried out for several angles

of the right circular cone, v1z. =-— VF-’ E'Vf_"ﬁ ' '% - %3 - “’w[;- w/_—
or §_ = 30°, 45°, 60°, 90°, 120 135 , 150°.

In thlS report only a llmlted part of the numerlcally obtalned results is given,
since no essentlally different behaviour of the fieldquantities has been found
for different values of Cor Moreover some results only have been determined

in order to check the propertles and behav1our of these functions, as derived
in report LR—228

The numerical calculatlon shows that for Kb <1 all fleldquantltles can be
approximated rather accurately by the zero- and flrst order perturbation solu—
tions. Then the contrlbutlon of the second- and hlgner order perturbation
solutions’is negligible.‘ ‘ , | _
The typical choices: 1000 or 2000 1ntegratlon steps, double precision and trun-
cation at the 13th perturbatlon solutlon, show an overall good accuracy of the
results. Since the express;ons of higher order perturbatlon solutions are =
composed of lower ones, we may‘expect.accunulationlof errors. However it turns,
out that the effect of errors is more-or—less‘compensated; e.g. at ¢ = %é’

c, = 0 the following relative errors have been found: for f1 2.42 x 10 7, for

gq: 6.67 x 10 6, whlle for f12- 6.18 X 10 > and for Iyp¢ 3.96 x 10 5. This

effect also appears from ‘the numerlcal calculatlon of the total perturbation

solutions, even at Kb = Kb max’ v1z. at ¢ = c_ =0, Kb = 5, Af possesses a

2" "o
- -5
relative error of 2.16 x 10 ° and Ag of 1.23 x 10 ~.
In general we may conclude that the functions have been calculated with a

rather good accuracy, namely ‘the overall relative error, 1s less than 10
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6. FORCES EXERTED ON THE FLUID AND THE CONE WALL

The electric current distribution and its'associeted‘magnetic fieid give
Lorentz forces acting on the fluid ana the configuration. In the three-
dimensional configuration the Lorentz forces induce a pressure distribution as
well as a fluid motion in the movable medium. The fluid motion can be evidently
distinguished into a jet flow along the axis of symmetry,umoving rapidly away
from the origin, and an entraining flow more-or-less parallel to the cone wall,
moving slowly towards the axis of symmetry, in the remaining part7ofﬁthe fluid.
Since a jet can be produced only if momentum is supplied to the fluid continually,
it is of particular interest to examine the forces actlng on the fluid and the
flux of momentum in detail. '

From .Euler's equatlon,'see (2.2), which here represents the balance of forces
per unit volume, the respectlve forces acting on a selected portlon of fluid
are determined by integration of each term of thls equatlon over a chosen

volume V, giving the momentum equatlon in integral form'

ll,ewoars [ wav-[[ sxzaw. e

In this equation the terms represent from left to right: tHe inertia force Ei’

the pressure force Ep and the Lorentz force FL

The volume V to be chosen is the region between two sphere-sectors, centred

l C=

/ehcl

8:0 | 8=0
cz=1 1

(b)

Figure 34.




80

on the origin, with radii r, and r, and the cone wall, Viz.‘rl'f r £ rz;
0 0% 60 , 0 £ @< 2n , see figure 34a.
Owing to the symmetry, only the axial components of the forces are non-zero

and for these we have

|
I

. J” p (v.V)v @v = F, i,
=i =" =T i,z 2
\Y c
J”v Vp av = Fp'z i, S ' : (6.2)

=l gxBav=r i . - ' '
_L JJJVE - le_z. [

|
|

On substltutlng of sultable expre551ons, relations and boundary conditions,
as given 1n the precedlng chapters and in the appendices and after making use

of some elementary calculations, we obtain

uI Y
i,z 4m r1
2
HI r
2
F _=-—21n <——:—2—>'(1—2h ), - (6.3)
‘P2 4m Ty
p o (2
L,z _ 4m " r, !

+F =F_, - 4 T (6.4)

so that, as denoted by Shercliff (i970),:no physical principle is offended.
It is worth noting that the ﬁon;zero éomﬁonent of the Lorentz force is indepen-
dent on the value of Kb. Note thét'the}%@rentz force is a result of injection
into the fluid of electric current“éuppl;ed by an ideal constant current source.
Moreover, it turns out that the shifting of the electric current flow towards
the axis of symmetry gndlthe cone wéll, as if occurs for larger Kb' does not
influence the‘tdtél Lorentz force exerted on the fluid inside volume V.
In addition the Lorentz force balances the sum of the pressure force and the

2

1
inertia force. Since in general 0 < h~ < 5+ as proven in lemma 2 of report
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LR-228, it is clear that both forces are p051t1ve for all values of Kb However.
in case of small Kb as be considered here, the respectlve magnltudes prlmarlly
depend on the value of c o' See figure 20 of section 3.4. In that sectlon it has o
also been found that the magnitude of h slowly decreases for larger values of
Kb' up to and including Kb max’ Hence 1t follows that for 1ncreas1ng Kb the
total pressure force increases, whereas the total 1nert1a force decreases.
Hereafter the volume- 1ntegral express1on of the 1nertla force w1ll be rewrltten
into a surface 1ntegra1 representlng the flux of momentum across surfaces |
bounding volume V. Since the jet can be produced only if momentum is supplled
contlnually to the fluid, we may conclude that for larger Kb the jet flow be—
comes weaker and in consequence that the dlscharge of fluld 1n z- wise dlrectlon
decreases. ' » . _ ’ _
The expression'of'the mass flow.Y iniaxlal direction through4a small disk with
its centre on and perpendicular to the axis of symmetry}‘as given in report

LR-228,
Y=o jJ X;n_ds o Io-/ oMU h r l—c2, for ¢ +.1 ' o ,(6.5)‘
. s ' s T T

clearly-indicates (in view of the behaviour of h) -the decrease of the discharge -
of: fluid in axial direction for larger Kb;'by which it justifies above
conclusion about the behaviour of the jet flow. '

All three of the expressions of the forces, given in (6.3),; diverge
logarithmically as r, > 0 -and r, > . Since'the Lorentz force generates and
balances the-pressure force and inertia force in the fluid, it is-clear” that"-
the singularities in the expressions of the latter ones are a-result of those

in the expression of the former one. Therefore we restrict ourselves here to

a discussion of the singularities appearing in the expression of the Lorentz
force.

The appearance of singularities for r, > 0 and r2f+ © in the exXpression of ,
the total Lorentz force imparted to the fluid in volume V has been extensively
discussed -by Moffatt (1978), in particular ‘the consequences for the- fluid

motion and the flux of momentum. In view of solutions found ‘in numerical
computation by Sozou & English (1972) and from 'a:note made by Shercliff (1970),
the author suggests that inversion of electric current for some values of .0 might
be the answer to resolve the difficulties. '

As remarked in the introduction of this report, we assume that the electric

current, being injected into the fluid by the point electrode, leaves through

a second electrode at some distance. On account of the pure radial distribution
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of the electric current density a spherical-shaped second electrode is chosen,
being sitnated at larde radial distance, centred on the origin and enclosing
completely a certain body of flnld

The ex1stence of a second electrode at large radlal dlstance 1s even in this
semi-infinite conflguratlon essentlal because otherw1se no electrlc current
can flow through the fluid. In fact, the supposed supply of electric current
by the p01nt electrode into the fluid 1nd1rectly 1mplles the presence of a |
second electrode. Namely, an ideal constant current source without ohmlc load
does not supply any electric current. 7 ‘

In view of the applied similarity.method in order to obtain solutions of the
electroﬁagnetic— and fluid fieldquantities as well as the introduction of an
ideal conStant current source as supplier of electric current, it is evident
now that reversed current flow for any 6, 0 Sve < 60., will immediately_cause
an electrical short- c1rcu1t1ng between the electrodes. Moreover, in report
LR-228, see Jansen (1977), it Has been proven that in case of'inviscid fluiga .
reversed electric current flow does not occur for any Kb. Hence from a physical
and mathematical point of view, we conclude that the type of solution, as dis-
cussed by Moffatt, in order to resolve the difficulties must be rejected as
being unrealistic.

However, by assuming a second spherical electrode at a large but finite radial
distance Y the total Lorentz force exerted on the fluid inside volume V remains

finite as r, » «©, for the radial current density is 'identical to zero as

2
x, > ry. Only in the hypothetical case that the second electrode is situated
at infinity, the Lorentz force does diverge logarithmically as r, > ®. However -

in that case the fluid needs an infinite flux of momentum to be carried downstream.

The axial component of the Lorent:z force‘FL 2

r

as r; + 0. This difficulty is caused by.the application of the very simple model

given in (6.3) becomes infinite

of configuration, where the electric current is.concentrated in a mathematical
point at the wall/fluid interface. The most reasonable way to resolve this
difficulty is of wcourse to replace the point electrode by an electrode of
finite size. .

Therefore we consider the semi-infinite axisymmetric configuration of ‘a disk -
electrode with radius a, located in a flat non-conducting wall, see figure 35.
On the analogy of the point electrode model a total electric¢ current IO is
supplied by the disk electrode into the conducting fluid occupying the whole

outer space.
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Figure 35.

In case of small Kb where the current and its magnetic field are expected to. be
undisturbed by the fluid motion, the non-zero components of the magnetic field - -

and the electric current distribution, expressed .in oblate spherical co-ordinates

n,%,¢), are
5 Mo icesio) .
® ~ 27ma cosh(n) sin(g) '
. R "(6.6)
e C

J
P :
" 2ma® Vcosh?(m) - sinZ(z) coshin)
In this configuration we now calculate the total: Lorentz force imparted on
the fluid in a volumelﬁ bounded by two oblate hemisphercids at n = hl and
n = N, and the flat wall and/or -the surface of the‘disklelectrdde at
s ’ ' ' m '

= — i < < < < = < <
L =7, viz. n £n g Myr 05055, 05 0<2m.
Owing to. the symmetry only the axial component of the .Lorentz.force is non-zero

and for that we obtain
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where ] (6.7)

UIZ cosh (n,)
~ ) 2
ln { } )

FL,z = an cosh ()

To investigate this result in detail_énd‘in relation to the point electrode
model, we make use of a relation between cosh(n) and the variables of the

spherical polar co-ordinates, viz.

1/(r 2 .i r 2 2 2 2 )
cosh(n) = §{<3> + 1} + 3 {(Z) —_1} + 4 <§) cos” (D) (6.8) |
|

The corresponding asymptotic forms

cos?(8) (1 +o(1)), for = o+

cosh(n) = 3

o iR
+
vle

(6.9)

2
cosh(n) =1 + E) COSZ(e) (1 + o(1)), for §-+ 0

P

cleérly indicate that in case of an electrode of finite size the total Lorentz
: : g . . . r
force exerted on. the specific volume of fluid remains finite as‘nl, gﬂ+ 0;

whereas for n E'* © an identical logarithmic behaviour is found. Consequently,

27
in this configuration an analogous behaviour of the induced total pressure— and
inertia forces is to be expected. ’

In view of the fact that the finite electrode configuration more approaches
situations that occur in practice, and the absence of the logaﬁithmic 4
singularity in the expression of the total Lorentz force at the disk electrode,
1t is obvious that from sclutions obtained in the p01nt electrode conflguratlon
no conclusions can be drawn about the actual behaviour of the electromagnetic-
and fluid fieldquantities in the neighbourhocd of an electrode. Therefore,

at the moment it is not necessary to consider phenomena, such as local cav1tatlon
and intermittency in the electric durrent passing to the flUld{ which mlght

be caused by the presence of a point electrode in the mathenatical‘model.
Nevertheless, the consideration of the semi-infinite point electrode configura-
tion does be very useful. Primarily, in facing with the difficulty of solving
non-linear partial differential equations, the prototype model reduces the
difficulties of the analytical treatment. Secondly, the solutions found in the
point electrode model turn out to be identical to the far field solutions of

the finite electrode configuration. On the other hand the application of the

finite electrode model will be the answer to difficulties that



85

occur in the point electrode configuration. Such as, the singular behaviour of
the space charge density and the being unequal tolgere of the normal component
of the electric field on the axis of symmetry in the inviscid problem. Moreover,
in the viscous fluid the non—existence of a fluid motigp’;n a'conical region
around the axis of symmetry for small values of Kﬂ' see Sozou (1971), and the
appearance of electric current inversion, as found by Sozou & English (1972).
The expressions of the forces, aetiné on‘thevspecificﬁportionlof fiuid, have
been obtained by integration over volume V, see (6.2). In general these expres-
sions can be, rewritten as integrais over the surfaces bounding volume V, on
application of Gauss's divergence theorem and by making use of some basic
relations and elementary calculations. .

The expression of the axial component of the Lorentz force now becomes
as , ‘ o ©(6.10)

where S = 81 + S2 + 53,

By separation into the contributions of the diverse surfaces, the expression

see figure 34a+b.

takes the form

1 2 1
I
poomoo (et o Do O 1n (22
L,z 47 2 am 2 4m r !
i-c l-c 1
c c
Ov —~ - “ .y J
51 52 53
which reduces to : . (6.11)
LII2 r
F =—1n K—— .
L,z 47 \r,

The contributions of S1 and 82 are the forces exerted on the surroundlng flUld
inside S1 and outside S2, which are caused by the 1sotrop1c magnetlc pressure
They are of equal and finite magnitude, but- opp031te in sign, so that the sum
cancels. The resultant axial component of the Lorentz force is equal to the
integral of the Maxwell's stress over the wall/fluid interface 53. As remarked
by Shercliff (1970), the expression represents the total reactlon of ‘the rest
of the electric circuit on the currents in the fluid.

In the same way the expression of the axial component of the total pressure.

force, satisfying




86

F = i? p n.i_ds ,. . , R (6.12)
P,z — 2
S . .
where § = S1 + 82 + S3, becomes
5 uIi 1 d2 2 5 2
F = - Tr, (1-c_p, + . J { g + —3—5} dc +
p.z : de l1-c
c
o
Sl,
21 .
. 2 (1-c 2) . Efg c 9393.4 292 dcb+‘
o) ¢ 'Pw i 2 2
dc l-c
c
o
- - J

I Y
2 2 .2 o 2\ 2
- mxy - r))(l-e %) p, + 70— In <r1}(1—2h ),

- : ~ S
S3
or ' . (6.13)
LI r
F = —2 1n /—3> (1-2n°)
P,z am \rl

Here the respective terms represent the pressure forces, caused by the reference
pressure p  and the purely normal stresses of the induced fluid motion, acting
on the éurrounding fluid and a part of the cone wall. Note that the total
contribption of the cohstant referénce pressure p,, over Sl’ S24and 83 cancels,

viz.

p,n.i_ds = fjf grad(p ) . i dv =0 ,
oy []] o

as to be expected, as well as the terms of S1 and 52 generated by the fluid

motion. The resultant pressure force, being positive in axial direction and




87

exerted on the cone wall at S is the result of the fluid flow towards the

3!
origin on the cone wall. The net contribution is equal to the integral of the
normal hydrodynamlc stress over the wall/fluld interface.

Due to singular behaviour at the axis of symmetry Gauss's theorem cannot simply
be applied to the volume integral representation of the inertia force. Therefore
the volume has been divided into a part near -the axis, viz. Vl; and a remaining

part V so that V = V, + V,. Now the procedure can be performed to the volume

27 1 2
integral of‘V2, giving-an additional surface S4, see figure 34a.

The expression of the axial component of the inertia force now takes the form

F, =p JIJ div(v v_)adv = F,(l) + F,(2) ’
i,z v -z i,z - i,z "

where
. =p . div(v v )dav , : (6.14)
i,z -z :
v
1. .
(2) _ . ' . ‘ ‘
F. =p | div(v v_)dv = p (v.n)v_das ,

i,z ‘ v — 2 g T e

2

whereby now S = S1 + S2 + S3 + S4 7
Upon substitution of expressions of the components of the velocity field the

distinct expressions of the inertia field yield

2 . .
s Mo [ 2 ag® 2 (52
i,z am: dc “g. “\y )
c=c, 1 .

= 121’1 +
C
2 1
. MI , 2 Co
2y _ _ "o dg)y _ g9
Fi,z2 =7 Zm J {C <dc> 9 3gcf dc
C
o]
P M S (6.15)
Sl
C
1
UI 2
_o dg) _ g9
* 2m J { <dc> 9 dc} dc +
C
o]
. Y J
[
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Consideration of'the obtained results;shows:that_an inertia force, being

positive for 0 < O ¢ 60, is imparted to the fluid inside volume V, and that-

1

the flux of momentum across surfaces §1 and 52 are of equal magnitude, but

opposite sign. Hence the influx and outflux across both surfaces are equal and
so the net transfer of momentum is identical to zero. The resultant flux of

momentum of V2 is across surface S4, being positive for sufficient small 61
2 .

(i.e. 0 <06, £6_ <28 where'gg =0 at ® = 0_). Since no suc¢tion or blowing
1 m o] dc m

has been supposed to attend here, there is no flux of momentum across S..

In the limit cy 41 or 81 + 0 the contribution of the inertia froce Fi(z)"l

exerted in volume V1 tends to zero. Moreover the flux of momentum across

surfaces §1 > S1 and §2 -> S2 become both infinitely at ¢ = 1.

Nevertheless, due to the careful mathematical procedure, it follows that the
net flux across S1 and 82 remains identical to zero. Likewise the resultant

flux of axial momentum outwards across surface S4 becomes

2
uI r , .
F, =-—>1n <—3> m? . (6.16)

This detailed examination clearly indicates the continual supply of momentum
to the fluid and in particular to the jet flow along the axis of symmetry.
To investigate the transfer of momentum in the jet flow, we consider the flux

of momentum in positive z-wise direction across surfaces Sa en S see figure 306,

bl
where the surfaces are sphere-sectors, centred on the origin, with radii

r and r
a

b viz. r = ra, r

b,osese2,oscp<’2n.
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~Figure 36.

From the preceding calculations it is clear that the flux ‘of ‘momentum across
both. surfaces, -although being infinite, ‘are identical and for that we have

2

o

.

uI 2 . .

(@ _ _ () _ dg\” _ _dg e

i,z = Fi,z = o J {c (dc/ 9 I dc =+ + o, | (6.17)
“2

For sufficient small 82 the approximation of g, given in (2.22), may be applied.

In that case the expression takes the form

2
(a) (b) “Iih t-c
Fi,z. =Fi,z =777 lim In (1_c2> ’ (6.18)

ctl

which shows that the flux of momentum diverges logarithmicallyvas c 1.

It is clear that this effect is caused by the local singularity in the velocity
field.

The influx of momentum in axial direction across the conical surface Sc’ viz.

<r < = << i i
r,Srsr, 0 82, 0 < @ < 2m, satisfying

2

UI 2. r

(c) _ _ o dg "~ 2 b ,

Fi,z = Z;“'{C G~ 9 }c . In (;—) ’ (6.19)

is identical to the contribution across S4, as given in (6.15). For 82 + 0 the

influx approaches
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2

uI r

(c) o b\ ., 2

i,z e In ( ) h-, B ‘ (6.20)
which is analogous to (6.16).

Shercliff (1970) refered to a family‘of'ordinary; non-linear, axisymmetric,
inviscid rotational flows, that satisfies Eﬁier's equation in case of absence

of magnetic forces. A special member of this family is
gl(c) = (c—co)(l—c) h, ; (6.21)

where.ﬁ is a positive constant. This solution represents an inviscid §teady jet
flow induced by a point source of momentum located at the origin..

It should be noted that in case of an inviscid -steady jét flow induced by an
electric current source as well in case of an inviscid steady jet flow induced
by a point source of momentum, the behaviour of the fluid motion and the.
behaviour of fheumass flow and flux of momentum across a surface centred on and
perpendicular to tﬁe axis of symmetry are similar in the neighbourhood of the

'

axis of symmetry.
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7. CONCLUDING REMARKS -

In this report we obtained a rather complete and gquantitative view of ‘the
behaviour of .the inviscid flow and other'fieldquantities, being induced*by
Lorentz forces at small values of the effective magnetic Rejnolas number kb;"
The applied regular perturbation for small Kb resulted'ih analytical‘ékpresSions
for the zero-order solutions and ih'higher;order perturbation sélutions, being
calculated by numerical computation. Within the region of validity of the
regular perturbation, va Kb < Kb;max’ the’ numerical calculation ihdicafed théfA
the solutions of the fieldquantities are mainly détermiﬁed‘by the: initial two
terms of the respective asymptotic expansioné; especially for Kblf'l. '

The calculations, carried out here, arée -a continuation of gehérél‘inVestigatfohs
on electrically-driven flows without imposed magnetic field;br'électrié'currents;
see report LR-228. In that report it has beéen shown that no real inviscid flow
can exist without containihg a relative weak singularity in the flow field at
the axis of symmetry; i.e. g(c) =¢ h v 1—c2 for ¢ 4 1. This‘dbndition,"obtéined
by consideration of the mathematical behaviour of the governing équatidhs, is in -
full agreement with the condition performed by Shercliff (1970) from a more
physical point of view, viz. that upstream the "flow has to approach” an ‘
irrotational potential flow at infinity. S '
In analogy to Shercliff it has been obsérved that the mutual interaction between
the electromagnetic- and%fléw fields (the Lorentz force in‘Eulér's'equation and
the electromagnetic induction in Ohm's law) ‘tends to shift the electric current
towards the wall and the axis of symmetry at larger values of the éffecti&é
magnetic Reynolds number: In-report LR-228, it has been found that this effect
increases for even larger values of K- For very large K_ thi's phénomenon is to
dominate the electric current distribution*éompletély. However, the mathematiéal"/
description for large K. is beyond the validity of the asymptotic expansicn,
applied here. _ o o ' o '

The concentration of electric current in the neighbourhood of the electrode

and, due to shifting, at the cone wall and the axis of symmetry creates

locally an increase of the resistance heating in the fluid, reéulting in a rise
in temperature there. In practical applications, such as: arc welding or

stirring of liquid metals in arc furnaces, usiﬁg electric currents of several
hundreds amps, the thermal Reynolds number, commonly known as the Peclet number,
is large compared to unity. Then the heat diffuses with difficulty 6ut into

the surrounding fluid, so that convection of heat is dominant and the thermal
disturbances are confined to small regions of higher temperature, so-called hot

spots.
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Since the conductivity of liquid metals decreases with temperature, the
effective magnétic Reynolds number Kb locally decreases in regions of higher
temperature, resulting in a change of the electric current distribution and .

the flow pattern. Since both effects counteract, in general the electric current
diétribution will be less anisotropically and at a certain value of Kb less
shifting of electric current will be found than one may eXpect on the  score of
the calculations given in this report. In experiments carried out by Woods &
Milner (1971), it has been observed that the hot spots are carried downstream

by the fluid motion, the electric current continually seeks out paths of lower
temperature and that the fluid motion associated with the concentration of
electric current is eiratic.

An_interestingAfeature, appearing}in(the inviscid flow problem, is the fact that
the space charge density becomes infinitely at the axis of symmetry. It implies
that the space charge density does not satisfy the usual M.H.D. approximation

in a very small region near the axis of symmetry. Therefore a more detailed
examination of'the effect of the space charge distribution upon- the fluid .
motion needs to be carried out. However fdr that purpose a more.elaborated model -
of configuratibn will have to be considered. .

If the medium is an ionized gas or.a plasma, the influence of the compressibility,
temperature distribuéion, Hall effect and ion slip come into account. In this-
case the magnitude.of the effective magnetic Reynolds number is usually much:
larger than in liquid metals, viz. K = (10“2 a 10) x‘[IO].

It'has been remarked that. the solutions_of_the point electrode model are
identical to the far field solutions of a more realistic moedel with an electrode
of finite size. By considefing now the order of the radial distance variable- .
of the conduction-, Hall- and icn slip current, it can be easily verified that
the Hall effect and ion slip are near field effects.

Sincé for this type of medium the value of Kb may be much larger than unity,

it will be useful to extend the present work to calculations for large values

of the effective magnetic Reynolds number.
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APPENDIX 1 -
The Lorentz force F = J x B, generated by the electric current density and
its associated magnetic field, being supplied by an eléctrode, is irrotational

in a two-dimensional configuration.

The two-dimensional analogue of the three-dimensional semi-infinite point
electrode configuration is the semi-infinite problem of a line electrode

located in'é surface. '

To describe the fieldquantities of this configuration a suitable three-
dimensional orthogonal curvilinear co-ordinate system (xl, Xé, x35 with metric
coefficients (h;, h,, hj) is applied.°The.driéntatibn of the co4ofdinaté'system o
is chosen in such a way that two axes are situated in the plane of the two-
dimensional configuration and the third one, being a rectangular co-ordinate,

is normal to that plane.

In order to demonstrate the proposition on Ampére's law ' ' '

is applied, which under the usual M.H.D. approximation also holds in the

unsteady state. Rewritten in vector components we obtain

1 3 3 1
ug, = ~———~{———~(h B,) - 5— (h,B)¢ ,
1 njhy 3%, 7373 oxy 22
1 3 3
uJ, = {——— (h,B,) - 5— (h,B )} ,
2 h1h3 8x3 171 Bxl 373
1 d : 3
I, = ————-{-——»(h B,) - =— (h, B )} .
37 hghy 3%, 272 ox, 11

The expressions of the vector components of the Lorentz force are
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Regarding the two-dimensional configuration, it is clear that the line electrode
does not sypply a current density component parallel to the line electrode.

It implies that £hé di;eéﬁion of the zero-component is parallel to. the
rectanéular co—ordinéte and that the derivative in that direction is identical
to zero. Note that the metric coefficient of the rectangular co-ordinate is
equal to unity. , »

As it appears from Ampére's law, the zerojcomanent of the electric current
distribution caﬁéés tﬁat twe associated vector components of the magnetic field

|
have to be identical to zero. , 1
Now we distinguish three cases, in which successively one of the vector 1

components of the current density is identical to zero.

3 - - _
sothatE{T—O, hl-—l, B2—B3—O.
Now -

;. 9By
UJZ “h. ox. !
3 3
nJ. = 1 aBl
_—_—I
3 h2 3x2
and
F1 =0,
. B1 asl
= T T Ro
2 Hh, 8x2
I St
3 uh3 3x3

Since the gradient in orthogonal curvilinear co-ordinates is given by

grad T =

we obtain
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Now
UJ—_l_a_Bz
1 h3 8x3
oL
3 h1 Bxl
and
- __ B %y
1 uhl Bxl
F2 =0,
B )
poo -2 P2
3 uh3 8x3
so that
1 2
E——mgrad (B2)
Case c: J3 =0
sO that —é—- O, h, =1, B, =B. =0
8x3 T3 T ot B T By S
Now
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and
oo B3 3B3
e ’
1 uhl Bxl
o - B3 3B3
= T T e !
2 uhz 3x2
F3=Ol
so that
1 a )
F = - o gra (B3)-

Since the permeability is-assumed to be constant here, the Lorentz force can
be rewritten as a gradient for the three cases. It demonstrates thatcurlF = 0,
so that the Lorentz force is irrotational in the two-dimensional analogue of
the three-dimensional semi-infinite point electrode configuration.

It can easily be verified that the proposition is also valid if the permeability
is not a constant, but depends on the local variables. Moreover if the two-
dimensional electrode has finite dimensions (width and thickness) and it is
not necessary that the electrode is located on a surface; even a surface is
not needed. In addition if the two-dimensional configuration contains several
two-dimensional electrodes.

The essential conditions in order to make the proposition valid are: a two-

dimensional configuration and no external magnetic field.
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APPENDIX 2

Definition of the functions Pn' Qn’ Rn and Sn

The functions have been introduced in>section (3.2) in order to simplify the
expressions of the regular perturbation solutlons of £ and g. On applylng ‘the

asymptotic expansion serles in powers of Kb, as stated in (3. 1), we define

c 5 -
P (c) =J £ e - 3 K P_(o),
(1+t)°  n=0
c
o
where
n [ fmfn—m
Pn(c) = 2 J — dt forn =0,1,2,...
m=0 (1+t)
c
o
e >
0(c) f——zdt=z K Q (),
(1-t) n=0
o
where
n i fmfn—m
Q (c) =12 f dt , for n = 0,1,2,
m=0 (1-t)
o
i g das 2<1_cot)f oy n
R{c) = f {(t~ ) = + } dt = % R (c)
1-¢2 o dt 1-t2 n=0 >
o
where
c
n-1 g daf
R _,(c) =1 f 2 {(t-c)d’”“1
m=0 1-t ¢
o
2(1—cot)
+ dt for n = 1,2,3,
1—t2 n-m-1 ’

and
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where

n-1 [ gm dfn—m- 1 ‘ 2 fn—&r— 1 V | |
Sn—l(C) =X J—th {— 3c + 1—t2 } dt , . forn=1,2,3,...

il
14}

Note that P_(c ) =0 (c) =R (c) (1) =0, forn =20,1,2,...
n o n o n o n ’ T .
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APPENDIX 3
A survey of the conditions and the behaviour ofyfn, 9, and first derivatives'

at the boundary and axis of symmetry.

The boundary conditions of 9 yield for n = 0,1,2,..
gn(co) =0,
g (1) =0 ,

in such a way that

d

n
gn(co) o~ (c—co) {EE—} for ¢ ¥ C, o ‘

Jec=c

o
) .
g (1) o 1-¢” h for ¢ + 1
n n
dg !

The boundary conditions of EEE satisfy

2
fdgo . 1—2ho
ldc - 2 !
c=c 1-¢
o o
dgn . 1 I— n-1 dgm dgn—m . 2Pn(1)
de /| 7 g [ dc dc 2]
c=c o} m=1 = c=c (1-c )
o) 24— o
dc
c=c
for n = 1,2,3,
R
- ¥~ —=—=h >+ for ¢ 41, n=0,1,2,...
dc c=1 1—c2 n )

The boundary conditions of fn are

fo(co) =1

£f (c) =0 for n = 1,2,3,...
n' o

14




£.(1) = 0, forn=20,1,2,...

in such a way that
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dfn
f(c)ﬁ(c—c){-—} for c ¥ ¢ , n
n o o dc o
c=C
(@]
dfrl
fn(l) uv_ (1_c){az—} for ¢ 41, n
c=1
dfn
The boundary conditions of Sc take the form
daf
_o___1 for ¢ < ¢c <1
dc 1-c h h
o
af S 1(c ) .
S - - o for n = 1,2,3,...
dc 1-¢
c=C o
o)
af R 1(1)
_n - - - for n =1,2,3,...
dc 1—cO



835154




A

601410




