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Abstract

Scratch is a block-based programming language. It
is designed to be simple and syntax error avoidant.
This makes Scratch an accessible platform for cul-
tivating coding skills. Many young learners are
taught about different programming skills using
various project types as examples. For instance,
games are used as an engagement tool, and vari-
ous games can motivate new learners to make their
own. This influx of new published projects are
manually classified into different types by using
tags in the project descriptions. However, this man-
ual classification only happens when the user adds
the appropriate tags. This calls for an extension of
that feature, which could help classify all projects
published on the Scratch website. This has the goal
of improving the browsing process, especially for
new projects. To address this gap, in this initial iter-
ation we leverage the fact that there are likely sim-
ilarities, or even various project type defining fea-
tures that would help improve the accuracy of clas-
sification through machine learning. Filling this
gap also opens the possibility of automatic classi-
fication, depending on the accuracy of the results.
Within this study, various machine learning mod-
els were tested with quantifiable project features as
input data. The accuracy scores were compared to
draw conclusions on how well various features ex-
tracted from Scratch projects performed for classi-
fication.

1 Introduction

The Scratch website has over 144 million projects published
as of now'. While navigating the “explore” tab, the user can
choose between different categories of projects, chosen by
the creators of the projects themselves. This is a handy fea-
ture for browsing. However, it is possible that a project could
be incorrectly categorised, or that the creator simply might
not know which category fits their project best. We would
also like to know about the preferences of different types of
creators. Therefore, it may be useful to research and analyse
how different projects among various categories differ on a
technical level. It may also provide insight and trends on the
types of projects that young learners create.

Several works have explored the types of projects that
scratch users make. One particular study made use of a com-
prehensive data set consisting of 127 programs created by
children, pre-classified into five distinct project types: [6]

¢ Animation

* Game

* Interactive Art

¢ Music and Dance

* Video Sensing

'Scratch statistics https://scratch.mit.edu/statistics/

In that study, there was a need for project classification into
these types, to draw conclusions for the types of projects
made based on gender.

The process of project classification could possibly be im-
proved, or potentially automated, with insights on what are
the key elements for different types of projects. Therefore, for
this study, various quantifiable features will be extracted from
different scratch projects. A labelled dataset will be used,
with categories similar to that of the above mentioned study.

Scratch projects differ in how they are constructed. The
quantifiable features will be extracted from the code of the
project. For example, these can be amount of variables,
amount of loops, or other coding elements. Such numeri-
cal values allow for the usage of different machine learning
models for project classification. Different machine learning
models will return performance percentage values, which al-
low for a convenient result comparison process.

Since we will be working with multiple features, the ma-
chine learning models can be trained using different combi-
nations of features. Some features are more relevant to a spe-
cific project type, therefore the performance of the machine
learning models will differ depending on which features are
chosen for training. It is therefore worthwhile to test out a
range of different features. In this study we will look at train-
ing the models using all possible pairs of features, and finally
training the models using all extracted features.

To summarise, the analytical focal point of this research
lies in discovering the correlation between various quan-
tifiable features, and the respective project types. With this
work, the aim is to answer the following research questions:

RQ: How do different types of features relate to the project
type?

Sub-question 1: Which pair of features is best to predict
projects for each project type?

Sub-question 2: Which type of project is is most accurately
identified with the extracted features?

These questions will guide the research, and the discussion
and other conclusions will be made referring back to the re-
search question.

2 Related Work

Several works have explored the types of projects that scratch
learners create. A three-day course was conducted by A.
Funke and K. Geldreich that analysed the learning outcomes
of an introductory programming course for primary school
children [6]. During the course, 127 different scratch projects
were created. The paper looks into the specific differences be-
tween the various projects created, and performs an analysis
about their relation to gender. It was found that the types of
projects created are indeed related to the gender of the project
author. The project types that the projects were classified into,
encapsulate a wide variety of project categories that are pos-
sible to create in scratch. Therefore, these project types were
taken as inspiration for the choice of project types in this re-
port.

This research was further extended by I. Grafl et al. with


https://scratch.mit.edu/statistics/

an attempt to use an LDA model for project classification [7].
Such a model can be advantageous for this study, as it pro-
vides the probabilities for topic associations. Data labelling
would also be less time consuming. However, as stated in
their research, it is necessary to decide on the number of top-
ics, or themes, in advance. This proves to be too large of
a challenge with labelling from a very large data set choos-
ing projects at random. Therefore, for this project, manual
labelling will be done.

K. Amanullah and T. Bell address issues in programming
habits of scratch users [2]. Their work gives valuable insight
on specific features to analyse. A significant percentage of
scripts contain dead code, and it is possible that the amount
of dead code could relate to the project type. Various pat-
terns were also found, relating to the frequency of blocks and
structures used. It turns out that less than 3% of the projects
analysed used lists. However, loops such as “repeat”, or “for-
ever” had frequencies of around 20% and 33% respectively.
Features that appear more often should be prioritised in this
study, since they should appear more commonly in the vari-
ous projects chosen here for analysis.

T. McCabe’s cyclomatic complexity measures the num-
ber of linearly-independent paths through a program module
[31[5]. This could be a useful metric since there may be a
large enough logical distinction within the different project
types. Even though cyclomatic complexity has been critiqued
in the past as being outperformed by other metrics [9], or
measuring the same property as lines of code [8], it does give
an insight on the complexity of the program, for which differ-
ences are likely depending on the project type.

3 Methodology

For accessibility and reproducibility of the methodology pro-
cess, the dataset referred throughout the process, and machine
learning training code used is publicly accessible as a github
source”

3.1 Dataset

There is a lack of publicly available datasets that could be of
use for the purpose of this study. Consequently, 107 randomly
selected projects from a scratch dataset of scraped projects’
[1] were used to create the dataset used for this research. This
was an arbitrary number, chosen with the intention of having
at least 100 projects to improve the accuracy of the future re-
sults as much as possible. Manual labelling was performed
to classify the different projects into different categories. In
figure 1, the project distribution is displayed. Since a man-
ual labelling approach was decided on, it is important to have
clear definitions of the categories. These definitions were rig-
orously followed when labelling each project to minimise hu-
man error:

* Game - A game is a project that a user can interact with,
that has an end-goal. This end-goal can be something
that can be achieved or controlled with inputs.

?Labelled dataset and code used for this project https:/github.
com/Nnomii/scratch-project-classification

3Scraped Scratch project dataset by Felienne Hermans and Fenia
Aivaloglou https://github.com/TUDelftScratchLab/ScratchDataset
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Figure 1: The distribution of projects by category in the dataset

* Animation - An animation is a project that, unlike a
game, doesn’t have user interaction for reaching an
end goal. An animation showcases a series of user-
independent frames that, when played together, show-
case movement or other changes. Can also be defined as
a short movie.

* Interactive Art - Interactive art projects allows for user
interaction, while still being purposed to visually appeal.
The user interaction could change how the art behaves,
but unlike a game, there is no clear end purpose or pro-
gression. These projects are typically abstract.

3.2 Feature selection

All scratch projects within the dataset have already been
scraped. The data of all the scratch projects can be down-
loaded, and is stored as a CSV file with rows corresponding
to block information. From each row, it is possible to extract
information about the type of block used and its parameter, if
it exists. This allowed for the usage of SQL queries to extract
relevant data.

Following research about the programming habits of
scratch users [2], the high frequencies and variance in the
amount of “repeat” and “forever” loops hint that they may
be a useful metric to analyse. On the other hand, metrics that
returned consistently low frequencies such as lists, are proba-
bly redundant for analysis, since for most projects the scores
will be too similar, and thus not useful for the model’s classi-
fication.

Cyclomatic complexity may also vary, to a high enough
extent, depending on the type of project. For instance, it is
expected that games are logically more complex than projects
of different categories.

Therefore, with the help of the related work mentioned in
section 2, these are the features that were extracted for ma-
chine learning:

¢ Cyclomatic Complexity
e Loop count
¢ Variable count

* ”Say” block percentage


https://github.com/Nnomii/scratch-project-classification
https://github.com/Nnomii/scratch-project-classification
https://github.com/TUDelftScratchLab/ScratchDataset

The CSV file of the scraped data contains all block (code)
information for each project. To illustrate an example for fea-
ture extraction, this is the pseudocode process to calculate
cyclomatic complexity:

1. Construct an SQL query that counts all occurrences of
’doIf’ and *dolfElse’ blocks

2. Add 1 to the result
3. Group the counts by project ID

With this method, a new dataframe was created that was then
later merged with project labels for each project ID.

3.3 Project type identification

Since each feature returns a quantifiable value, applying the
data to machine learning algorithms becomes convenient. All
machine learning models were trained with a 75% training
data to 25% test data split. The following machine learning
models were used, since they are popular choices for classifi-
cation:

* Support Vector Machine (SVM)
¢ Decision Tree (DT)
¢ Random Forest (RF)

An analysis was made comparing the accuracy score of each
machine learning model with the data. Since this is a mul-
ticlass classification problem, a OneVsRest (OVR) classifier
approach was used [4]. For all projects of a certain type, ev-
ery pair of features was fed into the three machine learning
models, to see which pair performs best. The data from this
will help answer sub-question 1.

To answer sub-question 2, the same experiment was run,
but this time using all features as a four dimensional array.

4 Results

Some machine learning algorithms do a better job at classi-
fication than others, depending on many factors. However to
answer the research question and sub-questions, it is imper-
ative to compare how well the individual features predict the
type of project, and to analyse the scores for all pairs. This
will answer sub-question 1. The results from the machine
learning models when all features were used, should be on
average better performing. These results will be used to an-
swer sub-question 2.

4.1 Decision boundary visualisation

The scatter graph in Figure 2 shows all 107 projects plotted
for visualisation of the input data. Some projects have very
similar values, resulting in overlapping points. The blue data
points represent projects with the ”game” label, and the red
data points are all other projects. Points used as test data are
semi-opaque.
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Figure 2: Scatter graph of the “’say” block percentage values com-
pared with average cyclomatic complexity.

Figure 3: Machine learning model performances for the input data
from figure 2.

Figure 3 shows the data from Figure 2, run through the
three machine learning models. This visualisation is included
to help better understand the decision boundaries of the ma-
chine learning models. The scores in the bottom right repre-
sent the accuracy score for the test data, and are of interest to
this study.

4.2 Feature pair classification

The following tables represent the performance for every ma-
chine learning model for identifying projects using all pos-
sible feature pairs. Since an OVR classifier approach was
used, the tables include the values for every machine learn-
ing model.

GAME
Avg. CC Loops
SVM DT RF SVM DT RF

Variables Say %
SVM DT RF SVM DT RF

Avg. CC x 0,889 0,815 0,852 0,889 0,778 0,815 0889 0,889 0,889
Loops 0,889 0,815 0,852 % 0,667 0,704 0,741 0,556 0,481 0,519
Variables 0,889 0,778 0,815 0,667 0,704 0,741 X 0,667 0,741 0,741
Say % 0,889 0,889 0,889 0,556 0481 0,519 0,667 0,741 0,741 M

Figure 4: Performance for each machine learning model for identi-
fying games.



Loops Variables Say %
SYM DT RF SYM DT RE SVYM DT RF
Avg. CC x 0,815 0,778 0,741 0,815 0,741 0,741 0,926 0,852
Loops 0,815 0,778 0,741 x 0,704 0704 0,704 0741 0,63 0,667
Variables 0,815 0,741 0,741 0,704 0,704 0,704 x 0741 063 0,704

Say % [0926| 0,852 0,889 0,741 0,63 0667 0741 0,63 0704 X

Figure 5: Performance for each machine learning model for identi-
fying animation projects.

Loops Wariables Say %
SVM DT RF SVM DT RF SVM DT RF

Avg. CC x 0,778 0,852 0,815 0,778 [0513] 0,741 0,778 0,704 0,741
Loops 0,778 0,852 0,815 x 0,778 0704 0852 0,778 0,815 0,741
Variables 0,778 0,741 0778 0,704 0,852 x 0,778 0,852 0,741
say % 0,778 0,704 0,741 0,778 0,815 0,741 0,778 0,852 0,741 x

Figure 6: Performance for each machine learning model for identi-
fying interactive art projects.

The following graphs represent the average performance
for identifying projects across the three machine learning
models.

Identifying game projects - Average performance
per pair of features
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Figure 7: Average performance for the machine learning models for
identifying games.
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Figure 8: Average performance for the machine learning models for
identifying animation projects.

Identifying interactive art projects - Average
performance per pair of features
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Figure 9: Average performance for the machine learning models for
identifying interactive art projects.

4.3 All-feature classification

Finally, the three machine learning models were tested with
all data from the extracted features. The results are repre-
sented in figure 10.

Identifying projects using all features - Comparing
ML model performance

Game Animation

0,95
09

0,85

Performance
o
oo

0,

Ny
a

o
N

0,65
Inter active Art

mSVM mDT WRF

Figure 10: Performance of different machine learning models using
all extracted features to classify projects.

5 Responsible Research

All research done in this project adheres to the five responsi-
ble research principles. Principle number one is honesty, and
this concerns refraining from data fabrication and avoiding
unfounded claims. The methodology in this report is repro-
ducible, as the dataset and all code used can be publicly ac-
cessed and the exploration process is clearly described in the
methodology section.

Principle number two is scrupulousness. This project fol-
lows this research principle. This is thanks to a combination
of research into papers with similar themes, along with fol-
lowing machine learning conventions. As a result, the meth-
ods used are scientific and scholarly.

Principle number three is transparency. The data collec-
tion process is explained step by step. As stated before, all
code and data can be accessed (reference again). Since man-
ual dataset labelling was performed, the grounds of how each
label was applied to each scratch project is described, with
clear label definitions. All steps in the research process are
verifiable.



Principle number four is independence. In particular, the
methodology, and all sections after are not influenced by non-
scholarly articles, nor do they contain non factual information
such as any commercial or political nature.

Principle number five is responsibility. The data collection
does not cross any ethical matters. All projects used are taken
from the scratch public database, to which users share pub-
licly. No other parts of the research and investigation process
impact people, animals or the environment and are therefore
considered responsible.

6 Discussion

6.1 Feature pair classification

For classifying game projects, cyclomatic complexity and the
percentage of “say” blocks was the feature pair that had the
best performance of 89%, see figure 4 and figure 7. Coinci-
dentally, this top score is visualised by the previous example
in figures 2 and 3. From both of these figures, the scatter
graph and the decision boundaries for the different machine
learning models, show why this pair of features performed
well. The vertical line of red points at where the average
cyclomatic complexity equals one, shows that there were no
games in that region from our dataset. There is also a large
group of blue points having a lower amount of ”say” blocks,
but a higher cyclomatic complexity than most other non-game
projects. All of this was recognised by each machine learn-
ing model. The trend of games having a larger cyclomatic
complexity than other projects is logically evident, as games
typically have many steps or paths to take during runtime.

For classifying animation projects, one pair of features
stood out and this is once again cyclomatic complexity and
the percentage of “say” blocks with a top performance of
89%, see figures 5 and 8. Cyclomatic complexity proved to be
a great feature at recognising games, therefore leading to eas-
ier recognition of other projects, such as animation projects in
this case. During manual labelling we noticed that many an-
imations consisted of the character sprites talking with each
other through “’say” blocks, and this was also part of the mo-
tivation for this feature choice.

For classifying interactive art projects, the top performing
pair of features this time was cyclomatic complexity and the
number of loops with a performance of 82%, see figures 6 and
9. This is slightly worse than for classification of the other
two types of projects. Additionally, observing the bar chart in
figure 9, there is a lower variance in the classification perfor-
mance for the different machine learning models compared
to the classification of the other two types of projects. This
shows that the features selected are less significant metrics
for the interactive art category. Since the top performance is
also slightly worse, a reasonable conclusion is that there may
exist more significant metrics for this project type, or that in-
teractive art projects are just harder to classify due to their
broad definition of what is considered “art”. It is likely that
this time, the number of loops performed better as a part of
the feature pair, due to interactive art projects almost always
making use of multiple forever loops that repeat actions un-
til the user interacts, stopping the process or starting another
loop.

For all three project types, it is interesting to note that cy-
clomatic complexity was part of the top scoring pair of fea-
tures. This is most likely due to how certain project types
rely on certain conditions of this feature to be satisfied. For
instance, it is difficult to imagine a game with a cyclomatic
complexity of 1, meaning that there is only one independent
path to take through the programmed logic. Another inter-
esting takeaway is the visibly low classification performance
for game projects using the pair of number of loops and the
percentage of “say” blocks. This low score of 52% is ex-
ceptionally low and almost similar to random guessing for
classification, since 47% of projects in the input data were
games, see figure 1. This shows that the combination of say
blocks along with loops are probably poor choices of project
defining features for games.

6.2 All-feature classification

Figure 10 shows the classification performance while using
all four features. For games, random forest performed best.
For animation projects, all models performed equally. For in-
teractive art, support vector machine performed best. Since
the results vary for each project type, it is not possible to de-
cide on a best performing machine learning model for clas-
sification. They all perform similarly enough, and to analyse
why some models could be better for the classification of spe-
cific project types would be too specific and out of the scope
of this research.

6.3 Limitations

Considering a 25% test data to 75% training data split that
was used for this project, this resulted in just under 27 test
data points from the dataset of 107 projects. This is arguably
the minimal data sample size to return meaningful results.
The reliability of the results could be further improved by
using a much larger labelled dataset of Scratch projects.
Even though the best performance of certain machine
learning models scored an high accuracy of ~90%, one could
argue that this score is still not good enough, if this auto-
matic classification were to be used by Scratch on their main
website for new projects. While it is interesting to see fea-
ture similarities, incorrect classification of projects should be
avoided. Therefore, a model like this can instead be used to
suggest categories for to the user, for newly created projects.

7 Conclusion

7.1 Summary

The research question for this study concerned how differ-
ent types of features relate to the project type. It followed
from the results that the best pair of features for classification
slightly differed depending on what type of project the clas-
sification was done on. For games, the best pair of features
was cyclomatic complexity, and the “say” block percentage.
For animation projects, the best pair of featues was also cy-
clomatic complexity, and the “say” block percentage. For in-
teractive art, the best scoring pair of features was cyclomatic
complexity, and the number of loops. Cyclomatic complexity
was a part of every top scoring feature pair, making it a good
metric for classification.



There is no clear answer to what type of project is easiest
to classify from the features used in this study. As illustrated
in figure 10, the performance is too similar when classifying
projects using all extracted features.

7.2 Future work

Since there was no clear answer to the question of what
project is easiest to identify, it is possible that a better choice
of features could be chosen. More research can be done into
the similarities of programming projects that fall into these
categories, not only made in Scratch. This can give a better
idea into what features are most relevant to extract for clas-
sification. It is also likely that a larger combination of differ-
ent features can be used, expanding on the four used in this
study. These improvements can lead to better accuracy scores
for classification. Automated project classification could be
justified, if the accuracy scored for classification scores were
large enough.
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