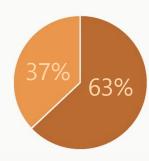
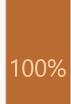
Bio-based Binders for Rammed Earth Construction

Experimental research exploring the use of historic binders for future material implementation.


Fieke Konijnenberg

25-06-2024

First mentor: Second mentor: Advisors: Olga Ioannou Wido Quist **abt**


P5 - Building Technology MSc Architecture, Urbanism and Building Sciences

INTRODUCTION

Built environment produces 37% of total global emissions. Can be split up in:

- → Operational carbon (building use)
- → Embodied carbon (building construction)

55%

Bio-based materials produce 45% LESS emissions, compared to inorganic materials.

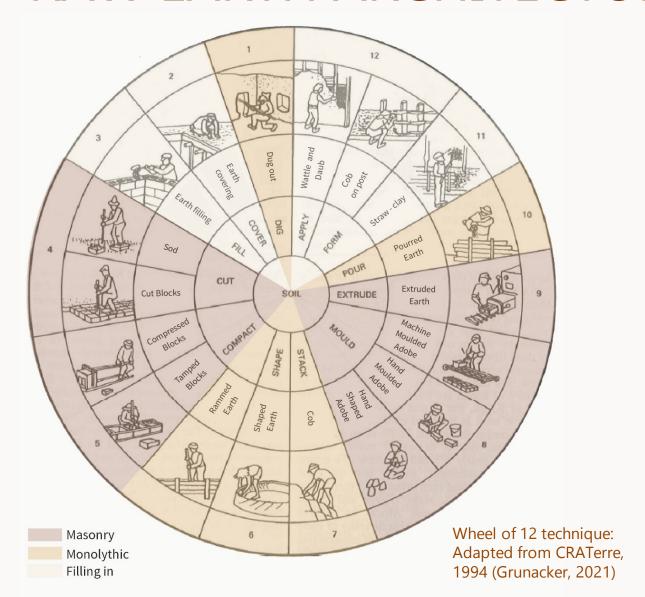
Reduce overall emissions + Use bio-based materials =

→ Rediscovery heritage architecture (Birznieks, 2013)

Oldest (bio-based) construction material =

→ Raw earth

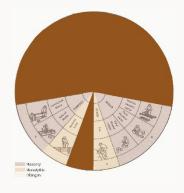
(Dethier, 2020)

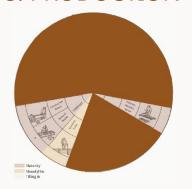

RAW EARTH ARCHITECTURE

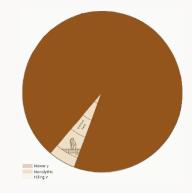
- → Oldest building material. (Birznieks, 2013)
- → 50% to 25% Modern dwellings. (Gantopoulou, 2014) (Van Gorp, 2018)
- → Every continent, climate, environment. (Dethier, 2020)
- → Local know-how & skills. (Norton, 1997)

BENEFITS

- Availability worldwide. (Norton, 1997)
- Indoor climate; temperature, humidity. (Birznieks, 2013)
- Air quality; no VOC, smell absorption. (Van Gorp, 2018) (Dethier, 2020)
- Environmental costs; lowest NIBE score. (Birznieks, 2013)
- Social environment; cultural identities, local education. (Dethier, 2020)

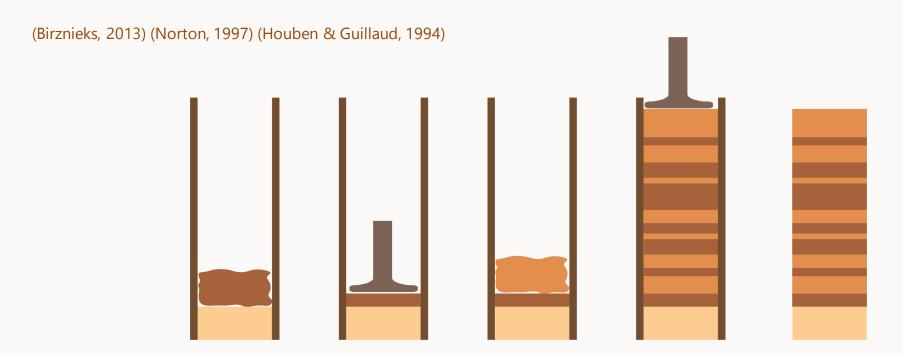

RAW EARTH ARCHITECTURE – SCOPE


1. LOCATION


2. FUNCTION

3. PRODUCTION

4. CONSTRUCTION



RAMMED EARTH

Material: Moist mixture of sand, clay, silt, aggregates, and potential binders.

Construction technique: Layers compacted in formwork using rammers, left to harden.

Product: In-situ, monolithic, self-supporting, load-bearing, construction.

RAMMED EARTH – DRAWBACKS

Sensitive to frost damage *
 (Houben & Guillaud, 1994)

Sensitive to water damage *
 (Houben & Guillaud, 1994)

Poor thermal insulation (Norton, 1997)

- Lack of building norm required compressive strength * (Van Gorp, 2018)
- In-situ construction: weather conditions
 (Ganotopoulou, 2014)
- In-situ construction: soil workability *, manpower, time consuming
 (Dethier, 2020)
- Prefab construction: increased embodied energy of structure (Ganotopoulou, 2014)

PROBLEM STATEMENT

Industrial revolution → Population surge → Increase housing demand → Rapid housing construction

Industrial revolution → Mechanically produced materials (Bricks, concrete, steel, etc)

(Sqouropoulou, 2013)

Rapid housing construction + Industrialised materials

- → Dwindling use of heritage materials
- → Building norms → Excluded: Heritage materials.

(Ganotopoulou, 2014)

Exclusion building norms + Minimal use heritage materials

- → Knowledge loss heritage materials
- → Inorganically reinforced rammed earth

(Cockram, 2018)

RESEARCH OBJECTIVES

HERITAGE

- → Heritage knowledge rammed earth → Historic relevance & Possible material enhancements
- → Heritage knowledge binders → Matrix overview intended use of binders
- → Possible bio-based binders for desired material enhancement

Possible material enhancements + Possible binders →

EXPERIMENTAL RESEARCH

- → Effect of binder on rammed earth performance
- → Comparison rammed earth with & without binders: (bio-based binders & cement binder)
- → SEARCH FOR SUSTAINABLE BUILDING MATERIAL

RESEARCH QUESTIONS

MAIN QUESTION

How can the use of bio-based binders improve the material performance of rammed earth in Northwestern European building construction?

SUB QUESTIONS

- 1. What material property enhancements are possible for modern-day rammed earth construction?
- 2a. What bio-based binders have been used in historic raw earth construction?
- 2b. What were their intended adjustments on raw earth material properties?
- 3. What information from rammed earth history can be applied to the use of modern-day rammed earth?
- 4. How can the performance of bio-based binders in rammed earth constructions be tested?
- 5. Which bio-based binders can be implemented for possible material enhancement of modern-day rammed earth construction in Northwestern Europe?
- 6. How does the implementation of these bio-based binders in rammed earth mixtures affect rammed earth performance?
- 7. How do rammed earth constructions using bio-based binders perform compared to those made with the commonly used cement binder?

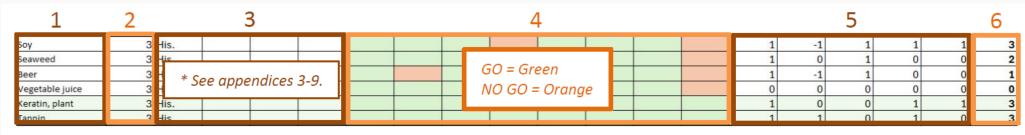
BIO-BASED BINDERS – HISTORIC

- 1. Animal derivatives
- 2. Animal produced
- 3. Plant based
- 4. Ashes
- 5. Oils
- 6. Resins
- 7. Gums

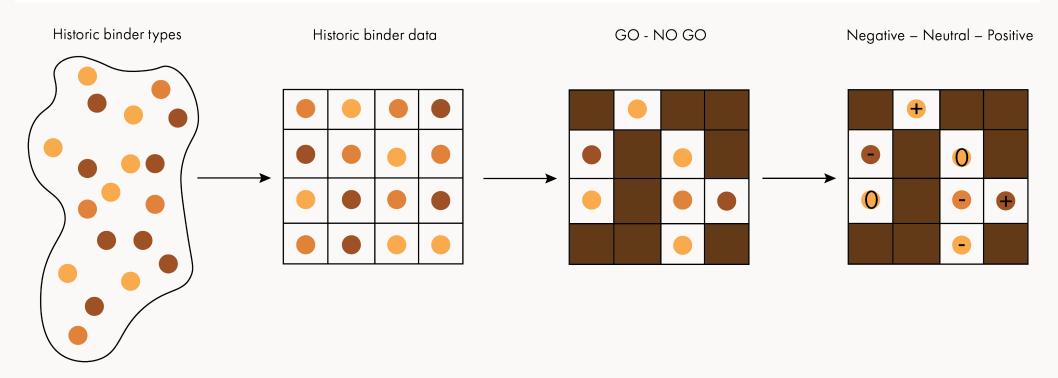
Name – Historic use – Function – Location – Score – Source

Animal derivatives	Type of use	Function	Location	Score	Source
Fish oil	- Raw earth	Waterproofing	- Americas	0	- Houben &
	construction		- Arctics		Guillaud, 1994
Fat	- Mortar	Toughen, Setting	- Roman Empire	1	- Maravelaki-
(ex. Hogs' lard,	- Lime putty	performance, Water-			Kalaitzaki et al,
through Sodium		repellent agent			2023
Oleate)					- Houben &
					Guillaud, 1994
Blood	- Rammed	Toughen and setting	- Mediterranean	1	- Van Gorp, 2018
(ex. Bull,	Earth	performance, delay	- Germany		- Ganotopoulou,
hippopotamus,)	- Adobe	setting time. Chemical	- Roman Empire		2014
	- Mortar	reaction with lime.			- Maravelaki-
	- Adhesive	Only fresh.			Kalaitzaki et al,
	- Binder				2023
	- Raw earth				- Lehm people
	construction				- Houben &
					Guillaud, 1994
				_	- Zeng et al, 2008
Glue	- Adhesive	Mechanical	- Rhodes	0	- Maravelaki-
(ex. horn, bone,	- Binder	properties	- Roman Empire		Kalaitzaki et al,
hooves, hides)	- Mortar	enhancement.	- China		2023
	- Renderings	Stabilisation.			- Zeng et al, 2008
					- Houben &
					Guillaud, 1994
					- Langejans et al,
					2022

BIO-BASED BINDERS – MATRIX


RESEARCH AIM

- 1. Bio-based (GO NO GO)
- 2. Low cost (GO NO GO)
- 3. Availability (GO NO GO)
- 4. Locally available (GO NO GO)
- 5. Sustainable acquisition (GO NO GO)
- 6. Sustainable production (GO NO GO)
- 7. Recyclability (GO NO GO)
- 8. Waste-stream (-, 0, +)
- 9. Material acceptance (-, 0, +)


MATERIAL ENHANCEMENTS

- 10. Compressive strength (GO NO GO)
- 11. Plasticity and workability (-, 0, +)
- 12. Water repellence (-, 0, +)
- 13. Resistance to freeze-thaw cycles (-, 0, +)

BIO-BASED BINDERS – MATRIX

1. Binder type – 2. Binder category – 3. Binder information* – 4. 'GO – NO GO' criteria – 5. 'Negative – Neutral – Positive' criteria – 6. Material score

BIO-BASED BINDERS – OPTIONS

Name	Category	Score	Source
Plant mucilage	3. Plant based	5	- Maravelaki-Kalaitzaki et al, 2023
			- Zeng et al, 2008
			- Houben & Guillaud, 1994
Egg, white	2. Animal produced	3	- Ramesh Babu, Neeraja, 2017
			 Maravelaki-Kalaitzaki et al, 2023
			- Zeng et al, 2008
Egg, yolk	2. Animal produced	3	- Maravelaki-Kalaitzaki et al, 2023
			- Zeng et al, 2008
Molasses	3. Plant based	3	- Ganotopoulou, 2014
			- Houben & Guillaud, 1994
Sugar, refined	3. Plant based	3	- Ramesh Babu, Neeraja, 2017
			 Maravelaki-Kalaitzaki et al, 2023
			- Langejans et al, 2022
Keratin, plant	3. Plant based	3	- Maravelaki-Kalaitzaki et al, 2023
Tannin	3. Plant based	3	- Zeng et al, 2008
			- Houben & Guillaud, 1994
Vegetable ash	4. Ash	3	- Ganotopoulou, 2014
			- Langejans et al, 2022
Animal urine	2. Animal produced	2 +1 =	- Ganotopoulou, 2014
		3	- Zeng et al, 2008
			- Houben & Guillaud, 1994
Linseed oil	5. Oils	2	- Ganotopoulou, 2014
			- Maravelaki-Kalaitzaki et al, 2023
December 1	5 01	2	- Houben & Guillaud, 1994
Rapeseed oil	5. Oils	2	- Lubelli, 2018
Sunflower oil	5. Oils	2	- Lubelli, 2018
Animal fat	 Animal derivatives 	1+1=	- Maravelaki-Kalaitzaki et al, 2023
		2	- Houben & Guillaud, 1994
Animal blood	1. Animal derivatives	1+1=	- Van Gorp, 2018
		2	- Ganotopoulou, 2014
			- Maravelaki-Kalaitzaki et al, 2023
			- Lehm people - Houben & Guillaud, 1994
			,
Animal bone ash	4. Ash	1.1	2011/2000
Animai bone ash	4. ASN	1+1=	- Langejans et al, 2022

Name	Category	Score	Source
Dung, cow	2. Animal produced	1	- Van Gorp, 2018
2 6, 2	2.74mmar produced	_	- Ganotopoulou, 2014
			- Lehm people
			- Houben & Guillaud, 1994
			- Dethier, 2020
Dung, horse	2. Animal produced	1	- Ganotopoulou, 2014
Dulig, Horse	2. Animai produced	1	- Houben & Guillaud, 1994
Casein	2. Animal mandoned	1	·
Casein	2. Animal produced	1	- Ganotopoulou, 2014 - Maravelaki-Kalaitzaki et al, 2023
			,
			- Zeng et al, 2008
			- Houben & Guillaud, 1994
			- Langejans et al, 2022
Milk products	2. Animal produced	1	- Langejans et al, 2022
Animal glue	1. Animal derivatives	0 +1 = - Maravelaki-Kalaitzaki et al, 2023	
		1	- Zeng et al, 2008
			- Houben & Guillaud, 1994
			- Langejans et al, 2022
Fish glue	1. Animal derivatives	0+1=	- Langejans et al, 2022
~		1	
Animal hair/fur	1. Animal derivatives	0+1=	- Maravelaki-Kalaitzaki et al, 2023
		1	- Houben & Guillaud, 1994

HIGHEST SCORING

- Plant mucilage
- Egg variations
- Jaggery = cane sugar
- Tannins
- Vegetable ash

BIO-BASED BINDERS – SAMPLING

EGG VARIANTS

- Yolk + Albumen
- Yolk
- Albumen, liquid
- Albumen, dehydrated

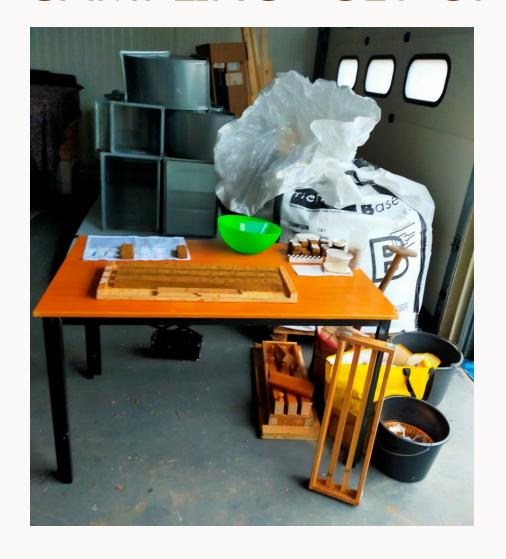
SUGAR VARIANTS

- Granulated beet sugar
- Beet sugar syrup
- Granulated beet sugar (80) + beet sugar syrup (20)
- Granulated beet sugar (50) + beet sugar syrup (50)

SAMPLING - RAMMED EARTH MIXTURE

TIERRAFINO RAMMED EARTH MIXTURE

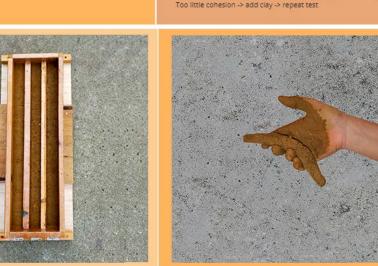
- Münster, Germany
- Mixture type brown
- Aggregate size 0-16mm



BIG BAG

- $-1m^{3}$
- 1000-1200kg
- ≈ 0.5m³ rammed
- 2300 kg/m³ rammed

SAMPLING - SET-UP


THE GREEN VILLAGE

- Garage box (Indoors, heated to +/- 20 °C)
- Big Bag stampleem
- Bio-based binders
- Cement
- Worktable
- Formworks
- Buckets
- Mixing bowls
- Measuring bowls
- Scale 2x (accuracy 1g & 0.1g)
- Knife, scissor, blender
- Shovel, scoops, spoons
- Measuring tape, sticks
- Double boiled linseed oil
- Paint-tray, brushes

composition Mixture

TESTING 1 – MIXTURE COMPOSITION

1. Water content - Workability test 3. Water content - Bar test 4. Shrinkage - Shrink box/Alcock test 5. Plasticity - Sausage or cigar test 2. Water content - Drop test Aquire truncated conical mould (60mm height, bottom diameter · Aquire metal bar (500mm height, 10mm diameter). · Construct simple wooden mould, with bottom but no top (Height Form clay roll, sized with diameter aproximately that of a thumb, Prepare Rammed Earth mixture (ex. test 1). 100mm, top diameter 70mm, minimum 2mm wall thickness). Squeeze Rammed Earth mixture with hands into fist sized ball. · Prepare Rammed Earth mixture (ex. test 1). 20mm, width 20mm, length 300mm). and length of 2-3x a thumb. Wipe mould and flow table with damp cloth until clean. . Squeeze Rammed Earth mixture with hands into 2x fist sized ball. · Prepare Rammed Earth mixture (ex. test 1). Wet clay roll until damp but firm. Put one arm straight out at shoulder level, with ball in hand. Let mould and flow table dry. · Place Rammed Earth sample on the ground. · Lightly lubricate mould with low viscosity non-resin mineral oil. Flatten roll between thumb and forefinger to a ribbon, sized about Drop soil ball onto smooth clean surface at ground level. (+/- 1,5m) Lightly lubricate surfaces with low viscosity non-resin mineral oil. Observe potential outcomes: . Place bar on top of sample, hold in place with one hand. · Pour the mixture in mould. 2-2.5cm thick, and length of 20cm if possible. Place mould on center of flow table. · Let the bar sink due to own weight, do not push! · Hit with flat faced and right angled tamper (10 times). Place roll across palm of hand. Mix solid components (30s). · Repeat until mould is full. Gently ease the end of the roll over the edge of hand. · Observe potential outcomes: Add liquid components and mix at low speed (90s). · Skim off excess mixture with palette knife and smooth surface. Continue until first breakage. Feels dry -> Too dry -> add water -> repeat test Remove from container walls and let mixture rest (90s). - Sinking of bar < 2cm . Cure mixture, in mould, in climate chamber (28 days). Measure length of fallen clay: Feels wet -> Too high clay content -> add sand -> repeat test Mix at low speed (60s) Feels dry -> Too dry -> add water -> repeat test · Compress any seperated material to one end of mould. Pour half of the mixture in mould on the flow table. Hold mould Feels wet -> Too high clay content -> add sand -> repeat test · Measure length of shrinkage gap inside mould. - Long ribbon = > 15cm (Unsuitable for load-bearing construction) - Highly fragmented sample firmly onto flow table with one hand. Too much cohesion -> add sand -> repeat test Too wet -> leave to dry -> repeat test Linear shrinkage should stay below 3%, advisory to minimize linear Hit with flat faced and right angled tamper (10 times). Sinking of bar > 2cm Repeat until mould is full. Too wet -> leave to dry -> repeat test · If shrinkage is higher than 3%, composition mixture should be Medium ribbon = 8-12cm (Suitable for building) - Minimally fragmented sample Skim off excess mixture with palette knife. Short end of range -> compacted use; ex. Rammed Earth. altered by using more clay or binder. Optimum water content -> suitable for use Wipe flow table around mould clean and dry. · Repeat testing until required results are obtained. Long end of range -> uncompacted use; ex. mud bricks. Sinking of bar = 2cm Wait and remove mould (15s). Optimum water content -> suitable for use Continue to perform drop test during construction process, to Drop flow table repeatedly (15 times). short ribbon = < 8cm (Unsuitable for load-bearing construction) prevent drying of Rammed Earth mixture whilst in use. Measure diameter resulting sample, note down. · Continue to perform drop test during construction process, to If sample 15,2 cm to 17,8 cm, mixture composition has passed test. prevent drying of Rammed Earth mixture whilst in use.

TESTING 1 – MIXTURE COMPOSITION

. Water content - Workability test 2. Water content - Drop test Water content - Bar test 4. Shrinkage - Shrink box/Alcock test . Plasticity - Sausage or cigar test re truncated conical mould (60mm height, bottom diamete m clay roll, sized with diameter aproximately that of a the Prepare Rammed Earth mixture (ex. test 1). ire metal bar (500mm height, 10mm diameter). · Construct simple wooden mould, with bottom but no top (Height m, top diameter 70mm, minimum 2mm wall thickness). Squeeze Rammed Earth mixture with hands into fist sized ball. are Rammed Earth mixture (ex. test 1). 20mm, width 20mm, length 300mm). ould and flow table with damp cloth until clean. gze Rammed Earth mixture with hands into 2x fist size Prepare Rammed Earth mixture (ex. test 1). Put one arm straight out at shoulder level, with ball in hand. Drop soil ball onto smooth clean surface at ground level. (+/- 1,5m) · Lightly lubricate mould with low viscosity non-resin mineral oil. I between thumb and forefinger to a ribbon, siz bricate surfaces with low viscosity non-resin min Observe potential outcomes: on top of sample, hold in place with one han · Pour the mixture in mould. ick, and length of 20cm if possible. ld on center of flow table. sink due to own weight, do not push! · Hit with flat faced and right angled tamper (10 times). Mix solid · Observe · Repeat until mould is full. the end of the roll over the edge of hand ponents and mix at low speed (90s). · Skim off excess mixture with palette knife and smooth surface. Feels dry -> Too dry -> add water -> repeat test intainer walls and let mixture rest (. Cure mixture, in mould, in climate chamber (28 days). Measure length of fallen clay: Feels wet -> Too high clay content -> add sand -> repeat test Mix at low so Feels dry -> dry -> add water -> repeat test · Compress any seperated material to one end of mould. cture in mould on the flow talke. Hold mould Pour half of the high clay content -> add san · Measure length of shrinkage gap inside mould. Long ribbon = > \Scm (Unsuitable for load-beating construction) - Highly fragmented sample · Linear shrinkage should stay below 3%, advisory to minimize linear Too much cohesia -> add sand -> repeat tes Too wet -> leave to dry -> repeat test Hit with flat faced Sinking of bar > 20 Too wet -> leave to ky -> repeat test . If shrinkage is higher than 3%, composition mixture should be Medium ribbon = 8-10cm (Suitable for bu - Minimally fragmented sample Skim off excess mixto altered by using more clay or binder. Short end of range -> ompacted use; ey Optimum water content -> suitable for use Wipe flow table around - Sinking of bar = 2cm · Repeat testing until required results are obtained. compacted us ex. mud bricks. Long end of range -> u Optimum water content > suitable f Continue to perform drop test during construction process, to Drop flow table repeated! short ribbon = < 8cm (Uns ad-bearing construction) prevent drying of Rammed Earth mixture whilst in use. Measure diameter resulting Continue to perform drop Too little cohesion -> add (If sample 15.2 cm to 17.8 cr composition has passed test. prevent drying of Rammed E ture whilst in use.

composition

Mixture

RATIO - DETERMINATION

Mixture type	Binder variation	
Regular	n/a	
Cement	Portland	
Beet sugar	Granulated & household syrup	
	Granulated	
	Household syrup*	
Chicken egg	ken egg Yolk & albumen & shell	
	Yolk & albumen	
	Yolk	
	Albumen, liquid	
	Albumen, solid (= dehydrated)	

SAMPLE WEIGHT

Total: 100 grams

RECOMMENDED PERCENTAGES

- 0.25% binder optimum (Ramesh et al., 2017)
- 10% binder maximum (HiveEarth, n.d.)

Predetermined	Weight	Weight
Percentage	Rammed earth	Binder
0,25%	99,75 grams	0,25 grams
1,00%	99 grams	1 gram
2,00%	98 grams	2 grams
3,00%	97 grams	3 grams
4,00%	96 grams	4 grams
5,00%	95 grams	5 grams
6,00%	94 grams	6 grams
7,00%	93 grams	7 grams
8,00%	92 grams	8 grams
9,00%	91 grams	9 grams
10,00%	90 grams	10 grams
15,00%	85 grams	15 grams

RATIO – SUGAR – OBSERVATIONS

RATIO – EGG – OBSERVATIONS

* SOLID = DEHYDRATED

RATIO – CEMENT

RATIO – SUGAR – GRANULATED

RATIO – EGG – ALBUMEN: LIQUID

EGG – ALBUMEN: SOLID

SAMPLES

FORMWORK DRYING SAMPLES

TESTING 2 – MECHANICAL CHARACTERISTICS

Houben & Guillaud Houben & Guillaud 6. Wetting and drying test 7. Abrasion test 8. Penetration & impact test 9. Simple strength test Form compressed earth brick sample group (CEB). Form compressed earth brick sample group (CEB). · Form compressed earth brick sample group (CEB). Form compressed earth brick sample group (CEB). Weigh and note each sample, making sure to number samples. Weigh and note each sample, making sure to number samples. · Weigh and note each sample, making sure to number samples. Dry samples further. · Dry samples further Dry samples further.

- · Repeat weighing samples until no further reduction is noted.
- Brush samples using a weighted metal brush (6kg). · Aquire sharp probe. Brush surface that in construction use would be exposed to · Push probe in samples from a distance of 5 to 10cm at a force of
- One back and forth motion of the brush can be considered one Compare to predetermined acceptability norms.
- Repeat for 50 cycles of abrasion on weathering exposed side.

Repeat weighing samples until no further reduction is noted.

- Make sure to collect all debris that detaches from each sample.
- Weigh total collected debris for each sample.
- Calculate dry weight of debris per square cm of brushed surface, to relate test results independently to the sample size.
- Compare to standardised guidelines for abrasion tests, regarding CEB as well as fired bricks.
- Form compressed earth brick sample group (CEB).
- · Weigh and note each sample, making sure to number samples. Repeat weighing samples until no further reduction is noted.
- Hold two samples perpendicular to each other.
- Hit both samples against each other, increasing force with each hit.
- The hardness of material can be estimated in relation to the sound produced by the hits.

- Aquire two supports, place them on surface and space them
- Place CEB over both supports, making sure the CEB does not touch
- Apply pressure to CEB by standing on the block with one foot.
- Use an average weighted male (80-90kg in Netherlands).
- If brick breaks in half, alter soil mixture composition, repeat test.

10. Modulus of rupture test

- · Form compressed earth brick sample group (CEB).
- · Aquire three steel bars, place two of them parallel on a surface and
- · Apply pressure evenly on CEB surface, using third steel bar, spaced evenly between surface level bars.
- · Record weight or pressure at which CEB breaks.
- · Repeat test with 5 samples for correct average.
- · Calculate modulus of rupture using:

(1.5 x 250mm x kg pressure)

(CEB width x CEB height^2)

Repeat weighing samples until no further reduction is noted.

Immerse samples in water equal to the room temperature (5h).

Brush each sample using a metallic fibre brush on all surfaces. Remove parts of material affected from wetting and drying from

Remove from water and dry samples in oven at 70 degrees (42h).

Store samples in extremely moist environment (7 days).

brush fibres to have a consistent brushing surface.

Brush from top to bottom as well as from bottom to top.

Once brushing is completed, one 48h cycle has finished.

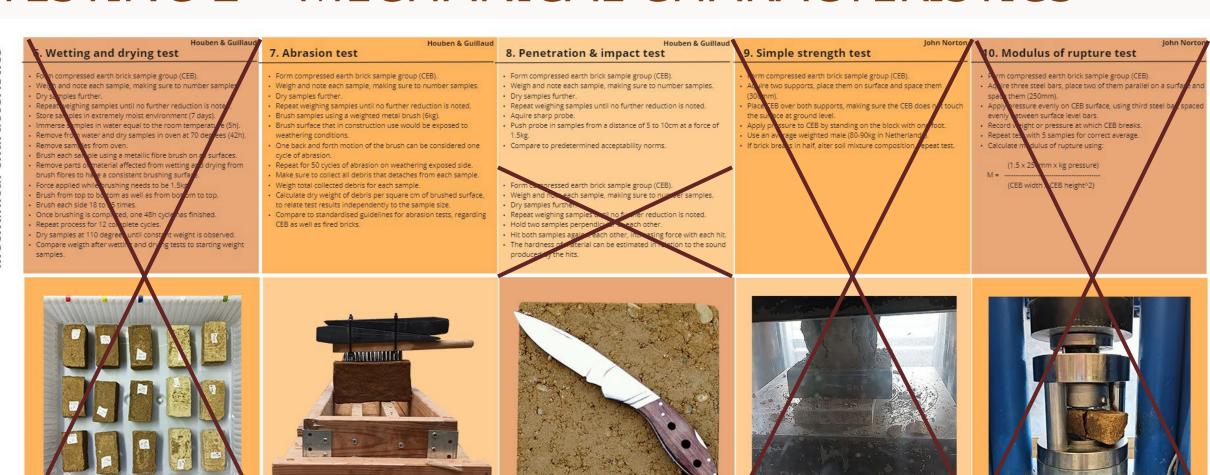
Dry samples at 110 degrees until constant weight is observed.

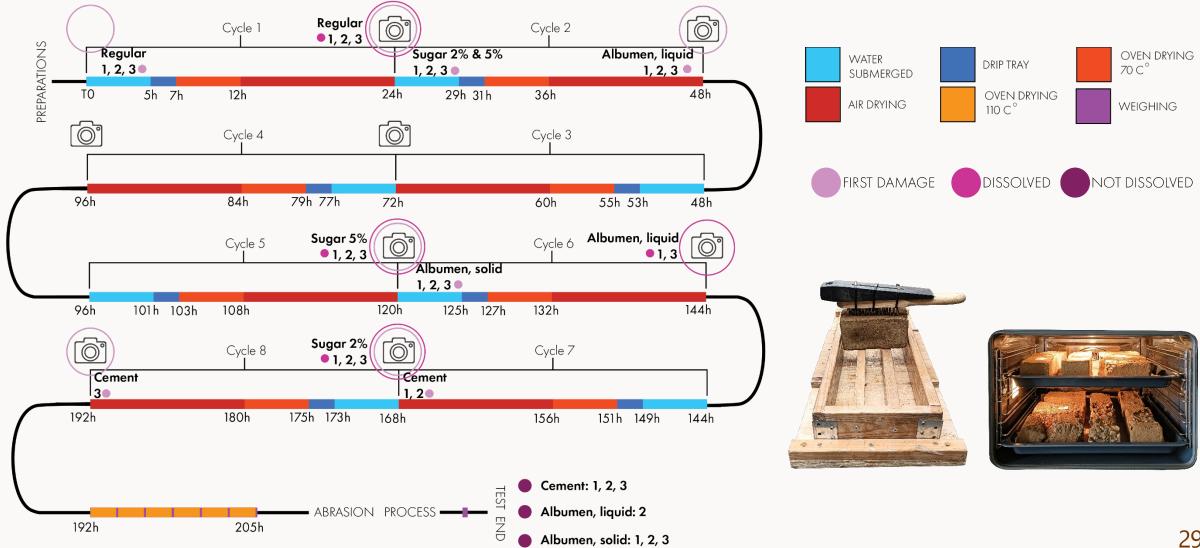
Compare weigth after wetting and drying tests to starting weight

Force applied while brushing needs to be 1.5kg.

Brush each side 18 to 25 times.

Repeat process for 12 complete cycles.




Testing Round

TESTING 2 – MECHANICAL CHARACTERISTICS

Testing Round

MECHANICAL – WETTING AND DRYING

WETTING AND DRYING – RESULTS

1. 5 HOURS

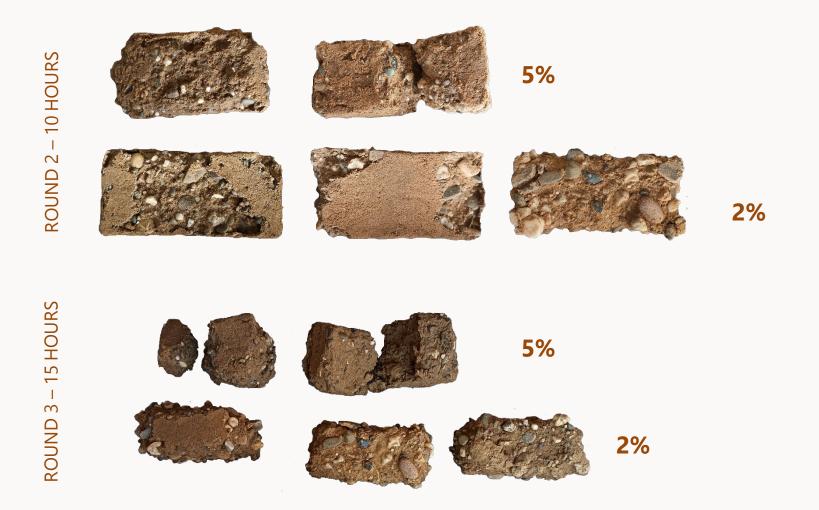
2. 10 HOURS

3. 15 HOURS

4. 20 HOURS

5. 25 HOURS

6. 30 HOURS


7. 35 HOURS

8. 40 HOURS

WETTING AND DRYING – RESULTS – SUGAR

WETTING AND DRYING – RESULTS – ALBUMEN

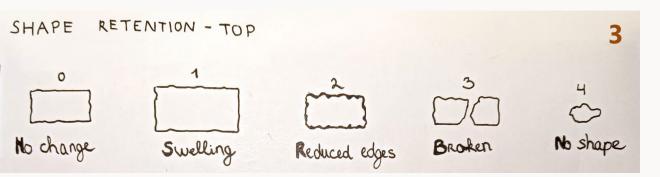
Round 3

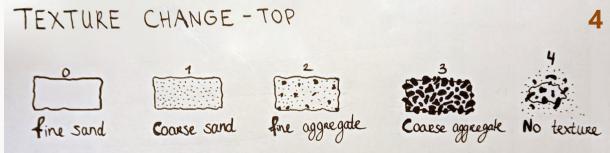
Round 8

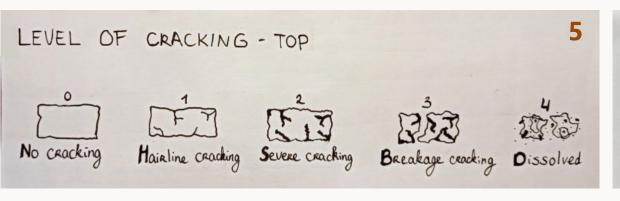
Round 6

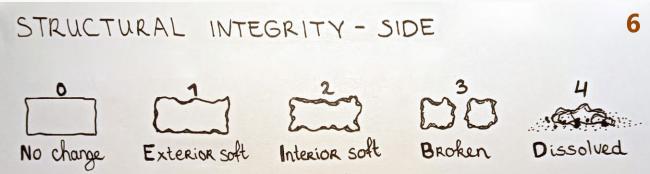
Round 7

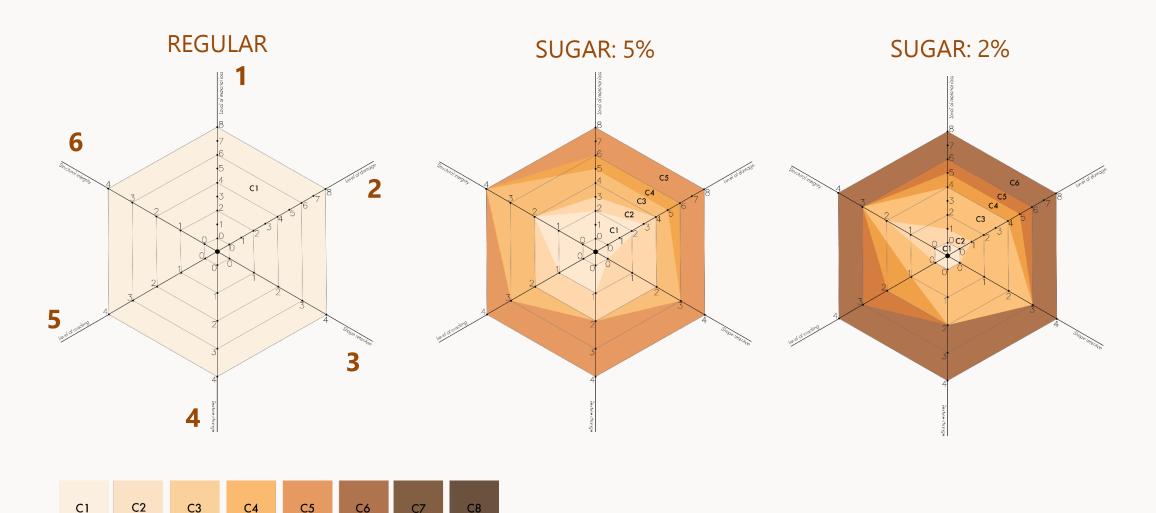


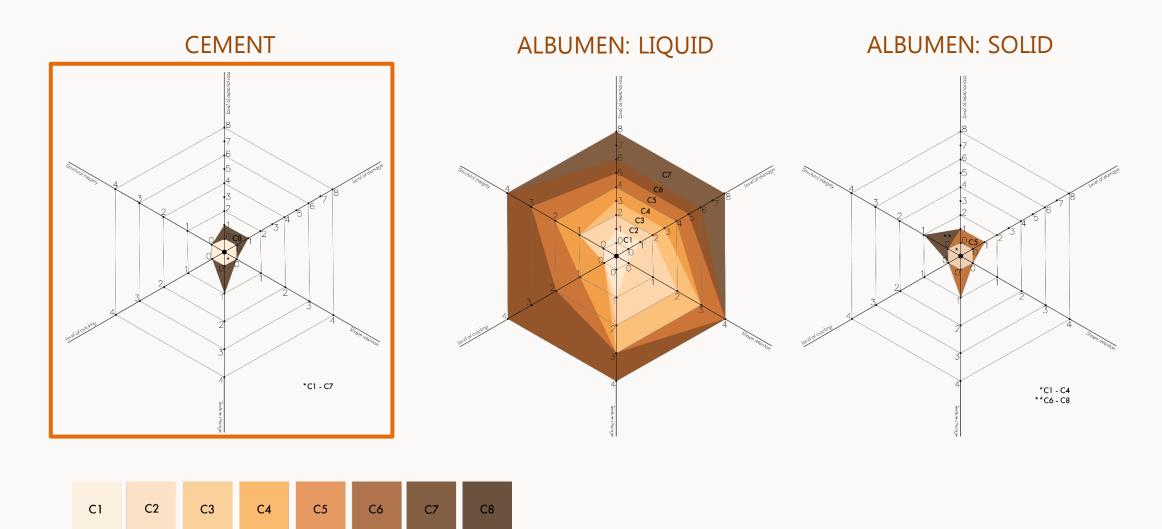

Round 8

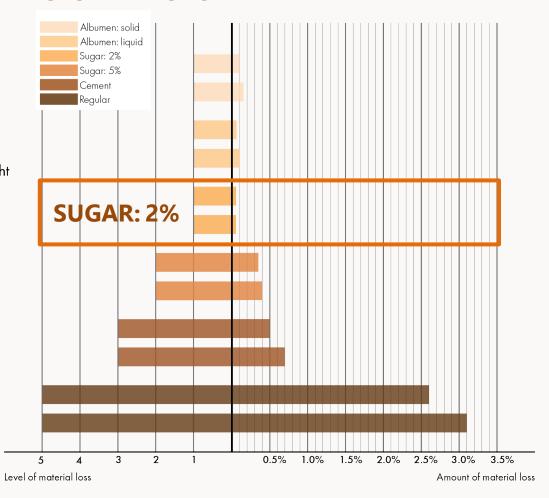




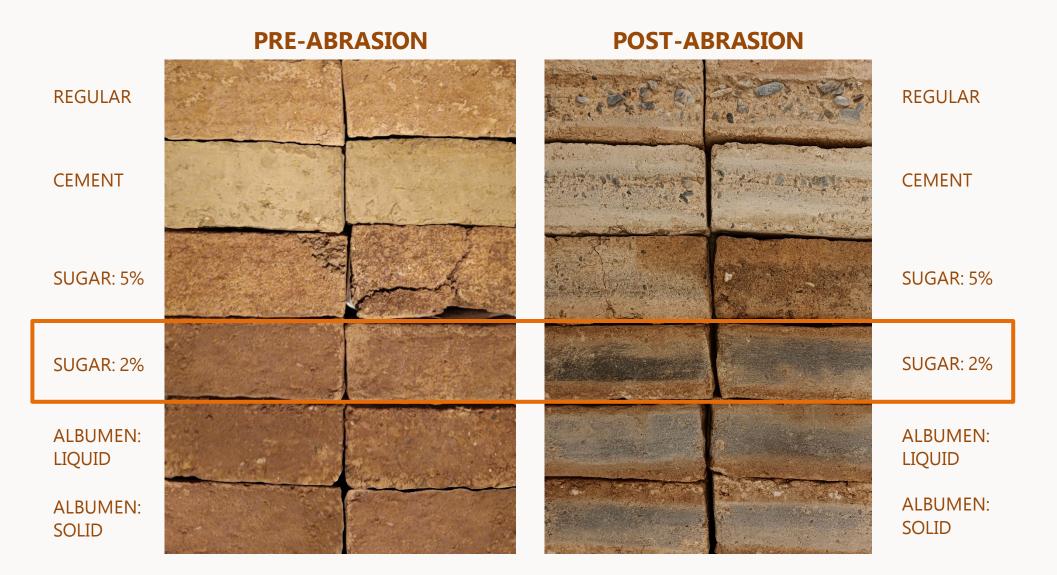

DEHYDRATED



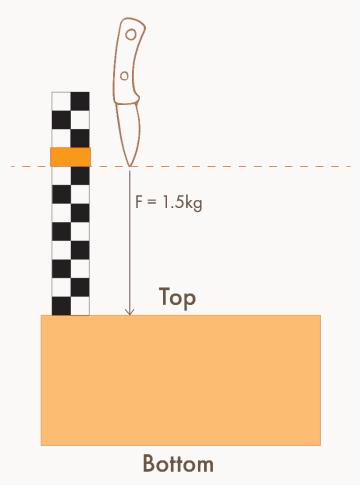


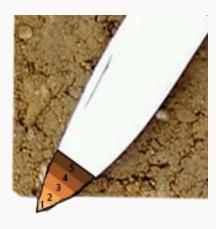

MECHANICAL - ABRASION

SET-UP Left

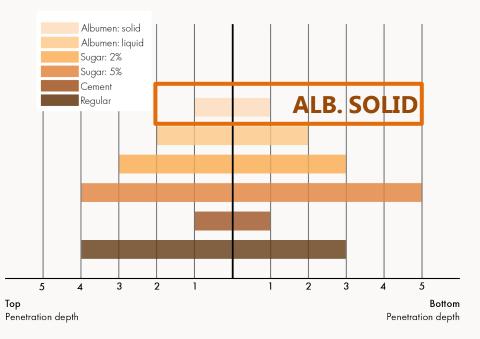

LEVEL OF MATERIAL LOSS

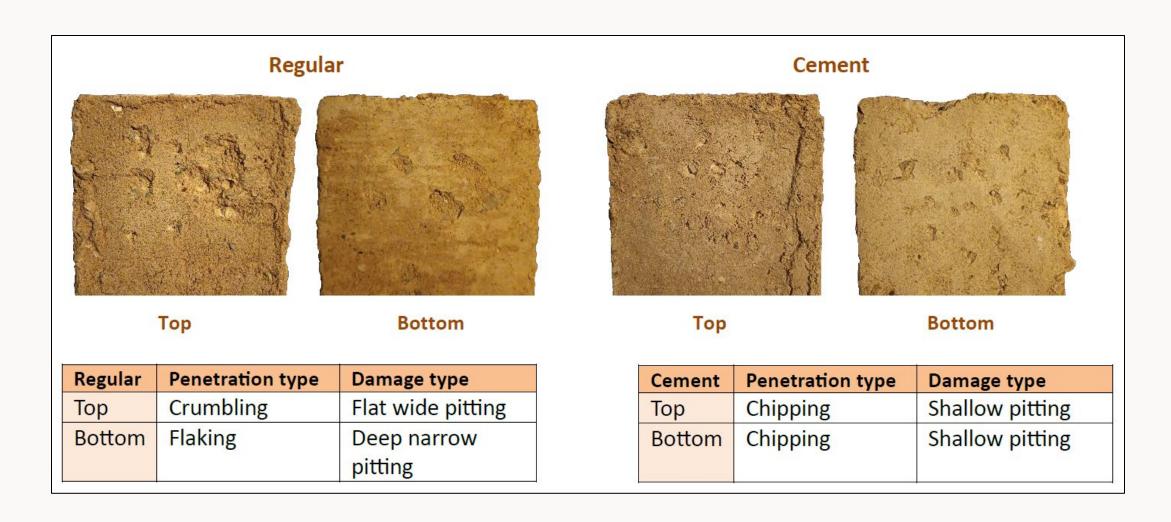
OBSERVATIONS

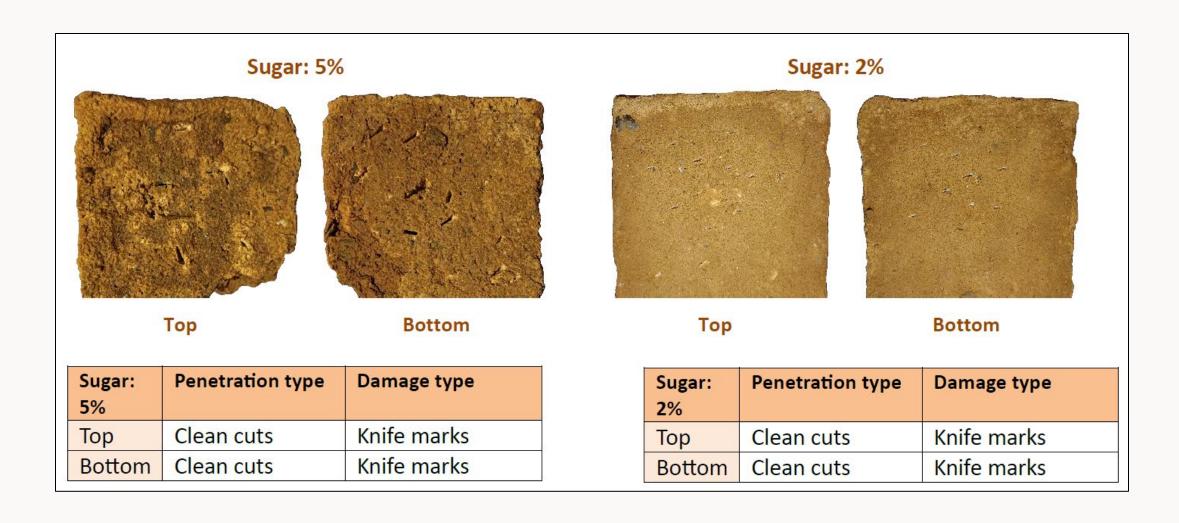

ABRASION - RESULTS

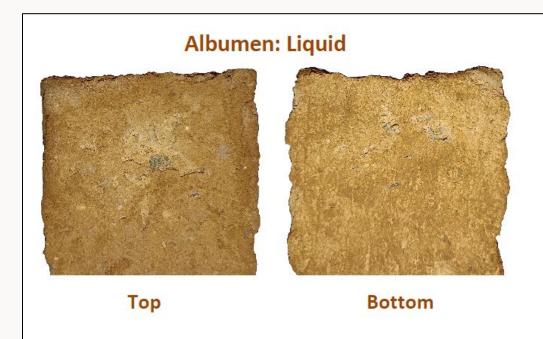

MECHANICAL – PENETRATION

IMPACT


PENETRATION

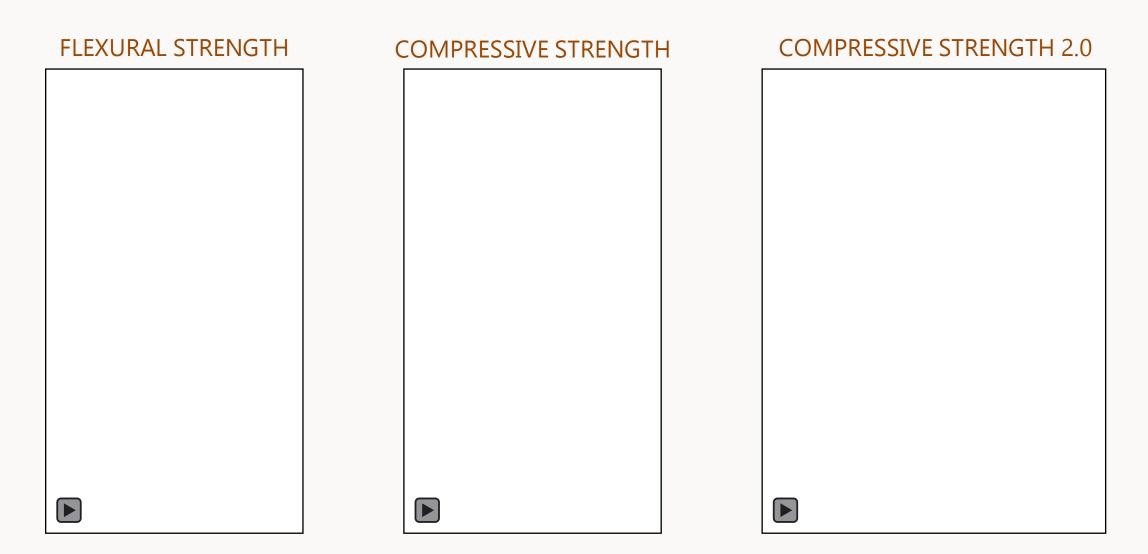

DEPTH


OBSERVATIONS


PENETRATION – RESULTS

PENETRATION – RESULTS

PENETRATION – RESULTS



Albumen: liquid	Penetration type	Damage type		
Тор	Flaking	Shallow pitting		
Bottom	Clean cuts	Knife marks		

Albumen: solid	Penetration type	Damage type		
Тор	Clean cuts	Knife marks		
Bottom	Clean cuts	Knife marks		

MECHANICAL – STRENGTH TESTING

CONCLUSION - MECHANICAL TESTING

Sample type	4.2.1. Wetting and drying test	4.2.2. Abrasion test	4.2.3. Penetration test	4.2 Mechanical Characteristics Total Score
Regular	6	6	5	17
Cement	1	5	4	10
Sugar: 5%	5	4	6	15
Sugar: 2%	4	1	2	7
Albumen: liquid	3	2	3	8
Albumen: solid	2	3	1	6

TESTING 3 – WEATHERING

11. Water erosion resistance - Drip test

- Form compressed earth brick sample group (CEB).
- Let CEB completely dry in mould.
- Place CEB on an engineerd support board at an angle (45 degree).
- Place large water container at an elevation above board (2.5m).
- Aquire cotton string with length 2.5xdepth of water container.
- Saturate cotton string with water.
- Place string in water container, one end hanging above sample.
- Make sure the string drops water on CEB sample.
- Stop timer when a hole has appeared in CEB sample:
- Measured time = 1 2 hours Material suitable for dry areas; short (potentially violent) storms.
- Measured time = 6 8 hours Material suitable for areas prolonged rain, over several hours.
- Measured time = > 24 hours Material suitable for areas persistent rainfall, one or more days.

12. Water erosion resistance - Spray test

- · Form compressed earth brick sample group (CEB).
- · Aquire shower head (100mm diameter).
- Make set up of shower head at a distance to sample (180mm).
- Spray whole sample with pressure of 1.4 kg/cm² (2 hours).
- · Observe results on CEB sample:
- Pitting = 6 12 mm

Material suitable for areas with short infrequent storms.

- Material suitable for areas with 500-1250 mm rainfall per annum.
- Pitting = 0 mm
- Material suitable for areas >1250 mm rainfall per annum.
- More rigorous tests results can be aquired by spraying for 6 hours, applying the same standards mentioned above.
- Repeat test 5 times to establish average results.
- Failing material composition will need mixture compostion alteration or will require regular maintenance.

13. Moisture absorption test

- · Form compressed earth brick sample group (CEB) of 5, minimizing sizing of blocks to speed up production processes.
- · Weigh and note each sample, making sure to number samples.
- · Dry samples further
- · Repeat weighing samples until no further reduction is noted.
- · Immerse samples in water, obtaining constant saturation (7 days).
- · Weigh and note each sample, making sure to number samples.
- · Calculate absorption in percentage wet to dry weight:
- Absorption percentage = maximum 2 3 % Material suitable for construction.
- Absorption percentage = maximum 4 % Material suitable for construction in wet regions.
- · Alternatively measure samples by dry dimensions.
- · Repeat moisture absorption test as described above.
- · Measure samples by wet dimensions.
- · Maximum expansion should be at most 0.2% for stabilized compressed blocks. 0.1% for in-situ Rammed Earth.

14. Freeze - thaw test

· Form compressed earth brick sample group (CEB), minimizing sizing of blocks to speed up production processes.

Houben & Guillaud

- Weigh and note each sample, making sure to number samples.
- · Dry samples further.
- · Repeat weighing samples until no further reduction is noted.
- · Store samples in extremely moist environment (7 days).
- · Place samples on aborbent material, saturated by water.
- · Place samples on wetted material in freezer (max. -20 degrees).
- · Remove from freezer (after 24h).
- · Thaw samples in moist environment at 21 degrees (23h).
- · Remove from moist environment.
- · Brush firmly on each surface of the sample with metallic fibres to remove all affected areas of the material.
- Repeat test for 12 free-thaw cycles, return to absorbant material
- · If test are to be interupted, samples must be kept in refrigerator.
- · When completed, dry samples in oven (110 degrees) until constant
- · Calculate weight loss in regards to starting weight of samples.

15. Outside observation

- Form compressed earth brick sample group (CEB) of 5. minimizing sizing of blocks to speed up production processes.
- · Weigh and note each sample, making sure to number samples.
- · Dry samples further.
- · Repeat weighing samples until no further reduction is noted.
- · Place samples outside in a dedicated location, making sure to code each sample correctly
- · Location must be unsheltered and unobstructed by obstacles.
- · Wind directions must be noted. Place identical samples in each wind directions.
- · Return to location every second day.
- · Note and document visual changes to the material.
- · Note and document tactile changes to the material.
- · Continue for a period of 30 days.
- Retrieve samples, making sure to code each sample correctly.
- · Conduct previously done test on the now weathered material.
- · Compared observations and test results to norms on weathering.

TESTING 3 – WEATHERING

11. Water erosion resistance - Drip test 12. Water erosion resistance - Spray test m compressed earth brick sample group (CEB). m compressed earth brick sample group (CEB). ire shower head (100mm diameter). CEB completely dry in mould. CEB on an engineerd support board at an angle (45 pegree). e set up of shower head at a distance to sample (180r) rge water container at an elevation above board whole sample with pressure of 1.4 kg/cm^2 (2 ho tton string with length 2.5xdepth of water co · Obser e results on CEB sample: tton string with water. n water container, one end hanging above sample. e string drops water on CEB sample Material table for areas with short infrequent s Start time Stop timer v n a hole has appeared in CEB sa Pitting = 0 - Absorption

- Material suita le for areas with 500-1250 mm
- Pitting = 0 mm Material suitable for areas >1250 mm rainfall per annum.
- More rigorous tests results can be aquired by spraying for 6 hours, applying the same stan
- Repeat test 5 times to est
- Failing material composit mixture compostion

13. Moisture absorption test

- m compressed earth brick sample group (CEB) of 5, mizing sizing of blocks to speed up production processe
- h and note each sample, making sure to number san
- veighing samples until no further reduction is n
- imples in water, obtaining constant satura
- ote each sample, making sure to numb
- orption in percentage wet to dry wei
- centage = maximum 2 3 % Material suitable for construction.
- tage = maximum 4 %
- · Alternatively measure simples by dry
- · Repeat moisture absorp n test as o scribed above.
- · Measure samples by wet
- ost 0.2% for stabilized · Maximum expansion shou compressed blocks, 0.1% for Rammed Earth.

14. Freeze - thaw test

- Form compressed earth brick sample group (CEB), minimizing sizing of blocks to speed up production processes.
- Weigh and note each sample, making sure to number samples.

Houben & Guillaud

- · Repeat weighing samples until no further reduction is noted.
- · Store samples in extremely moist environment (7 days).
- · Place samples on aborbent material, saturated by water.
- · Place samples on wetted material in freezer (max. -20 degrees).
- · Remove from freezer (after 24h).
- · Thaw samples in moist environment at 21 degrees (23h).
- · Remove from moist environment.
- · Brush firmly on each surface of the sample with metallic fibres to remove all affected areas of the material.
- Repeat test for 12 free-thaw cycles, return to absorbant material
- · If test are to be interupted, samples must be kept in refrigerator.
- · When completed, dry samples in oven (110 degrees) until constant
- · Calculate weight loss in regards to starting weight of samples.

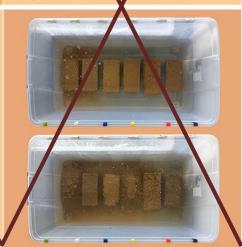
Outside observation

- n compressed earth brick sample group (CEB) of 5, mizing sizing of blocks to speed up production processes
- gh and note each sample, making sure to number samp
- weighing samples until no further reduction is n
- oles outside in a dedicated location, making s
- Location st be unsheltered and unobstructed by
- ns must be noted. Place identical san · Wind direct wind direct
- · Return to loca
- Note and docu
- Note and docum tactile changes to the m
- · Continue for a per
- ng sure to code each sample correctly. Retrieve samples, m
- · Conduct previously d test on the n
- · Compared observation nd test resu,

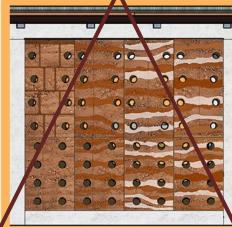
ain, over several hours.

ent rainfall, one or more days.

Material suitable it in dry areas; short (pote


Material suitable for a gas prolonged

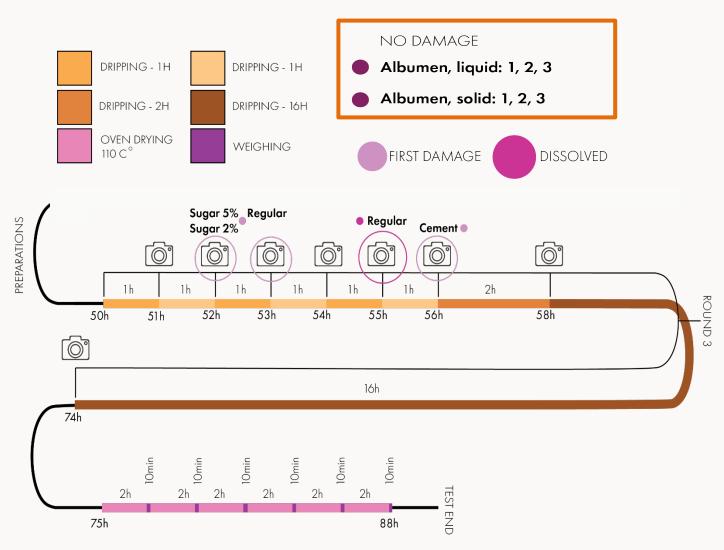
- Measured time = 6


- Measured time = > 241

Material suitable for area

WEATHERING – DRIP SET-UP

ATTEMPT 1



ATTEMPT 2

ATTEMPT 3

WEATHERING – DRIP

SET-UP

DRIP - RESULTS - REGULAR

ROUND 3

DRIP – RESULTS – SUGAR: 2%

ROUND 3

ROUND 1

DRIP - RESULTS - ALBUMEN: SOLID

ROUND 3

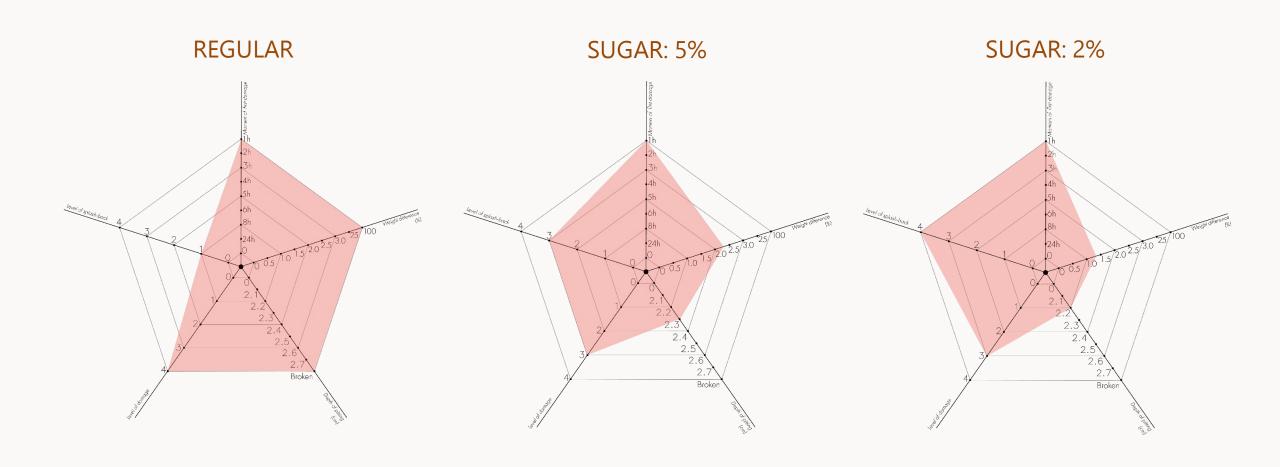
ROUND 1

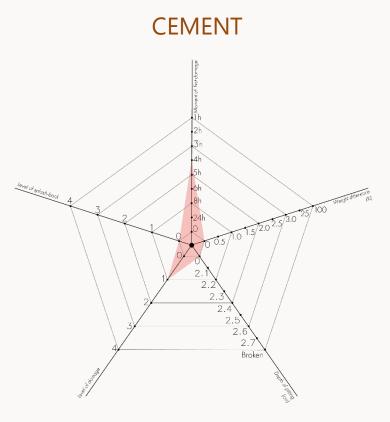
DRIP – RESULTS – POST-TESTING

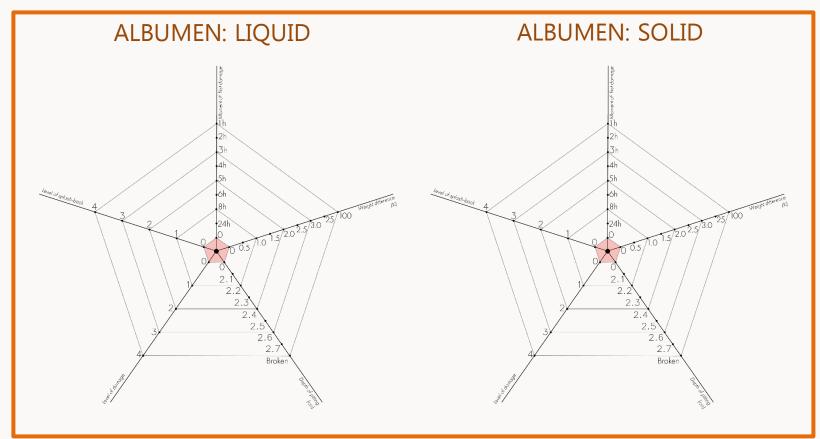
ROUND 1 SUGAR: 2%

ROUND 1 SUGAR: 5%

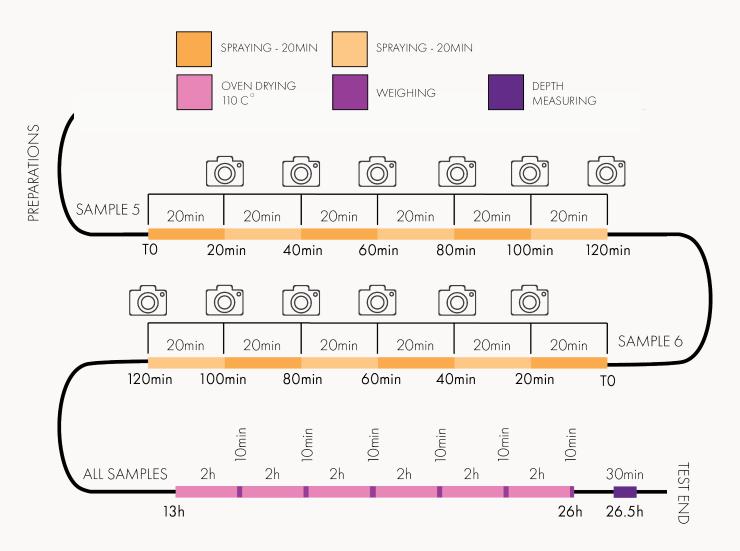
ROUND 3 SUGAR: 2%


ROUND 3 SUGAR: 5%

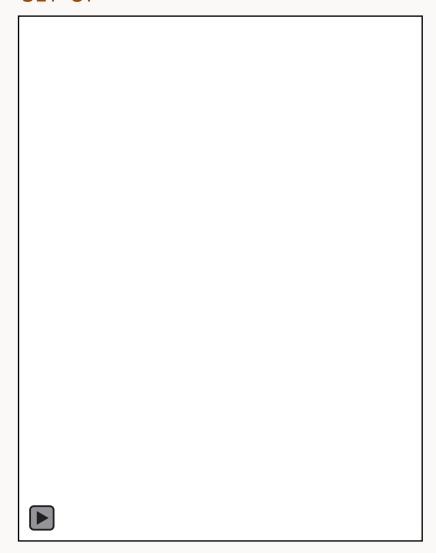



ROUND 2 SUGAR: 2%

DRIP – OBSERVATIONS



DRIP – OBSERVATIONS



WEATHERING – SPRAY

SET-UP

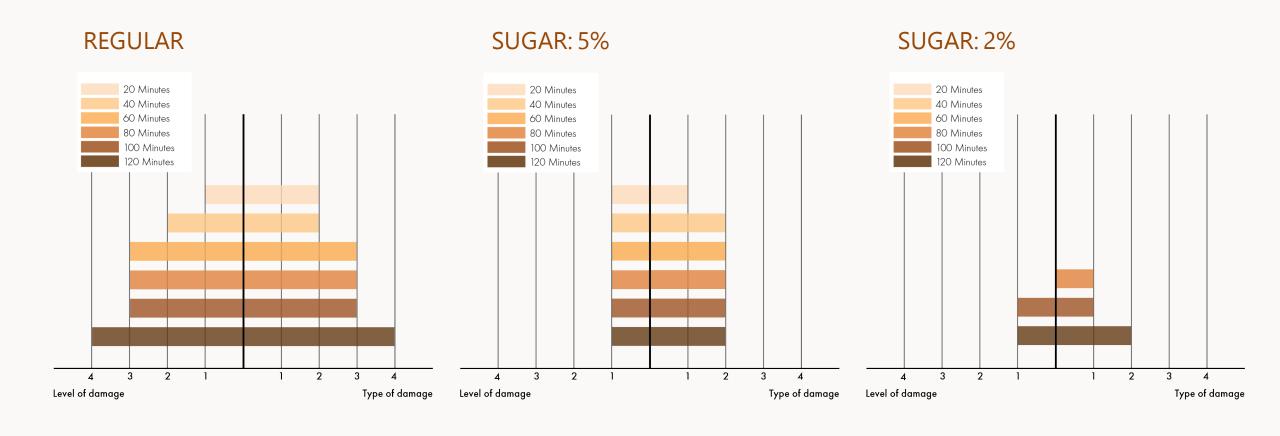
SPRAY - RESULTS

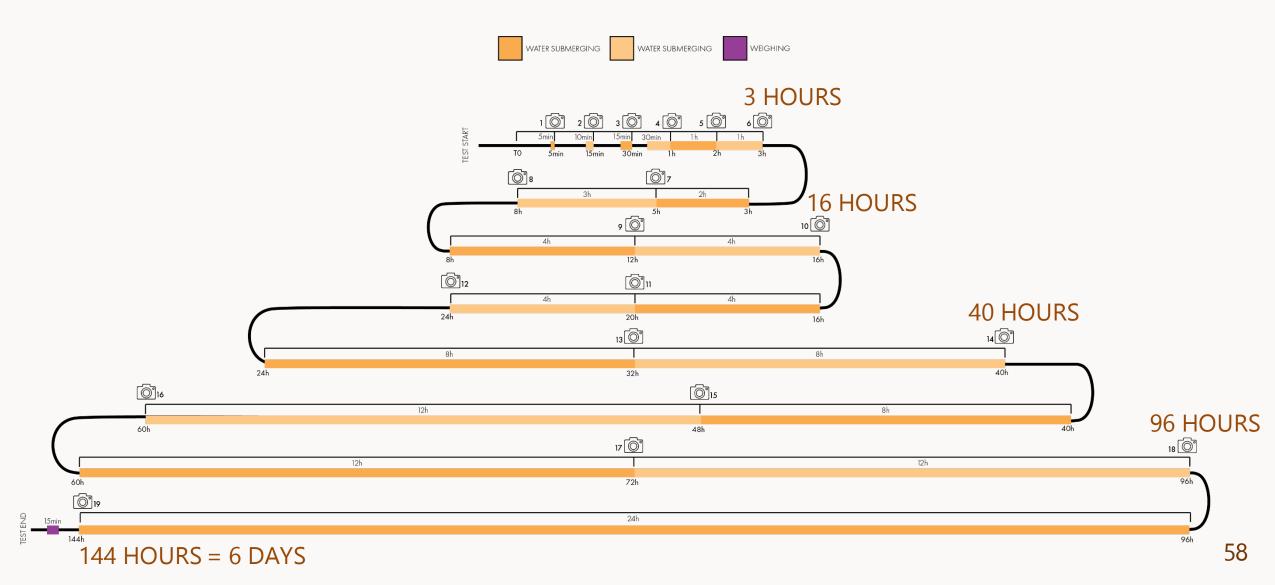
ROUND 2

REGULAR

SUGAR: 5%

SUGAR: 2%





SPRAY – OBSERVATIONS

ROUND 2

WEATHERING – MOISTURE ABSORPTION

1. 5 MINUTES

2. 15 MINUTES

FIRST DAMAGE

3. 30 MINUTES

4. 1 HOUR

5. 2 HOURS

6. 3 HOURS

7. 5 HOURS

8.8 HOURS

9. 12 HOURS

10. 16 HOURS

11. 20 HOURS

14. 40 HOURS

12. 24 HOURS

15. 48 HOURS

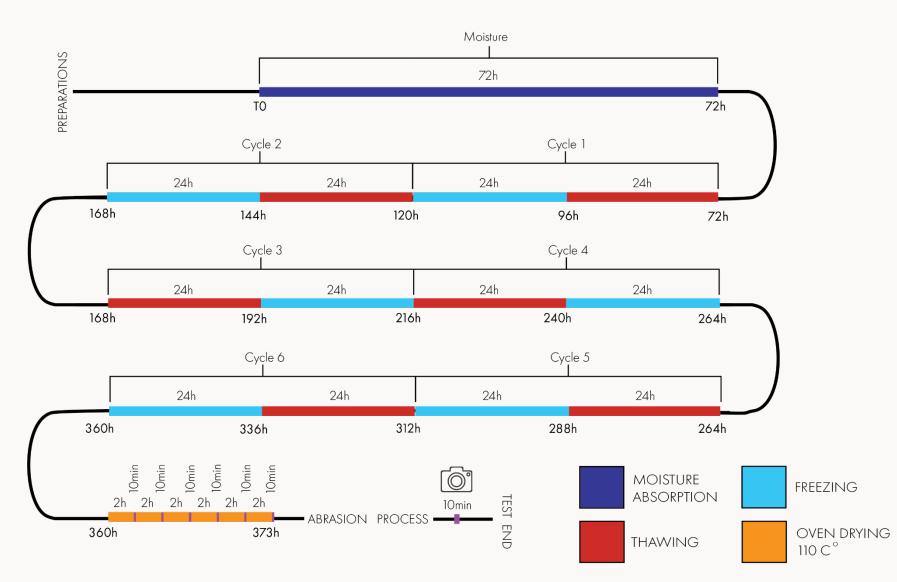
13. 32 HOURS

16. 60 HOURS

17. 72 HOURS

18. 96 HOURS

19. 144 HOURS


FIRST DAMAGE

Regular 5 minutes
Cement 12 hours
Sugar: 5% 2 hours
Sugar: 2% 5 hours
Albumen: Liquid 40 hours
Albumen: Solid 40 hours

TOTAL DAMAGE

Regular	1 hour			
Cement	-			
Sugar: 5%	96 hours			
Sugar: 2%	16 hours			
Albumen: Liquid	144 hours			
Albumen: Solid	-			

WEATHERING – FREEZE AND THAW

WEIGHING

FREEZE AND THAW – RESULTS

REGULAR – NO ABRASSION

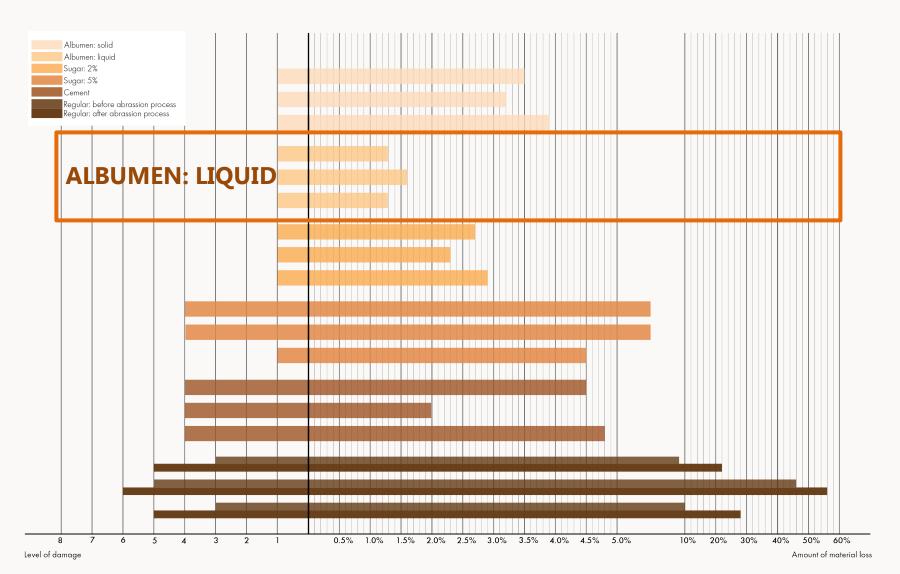
REGULAR – ABRASSION

FREEZE AND THAW – RESULTS

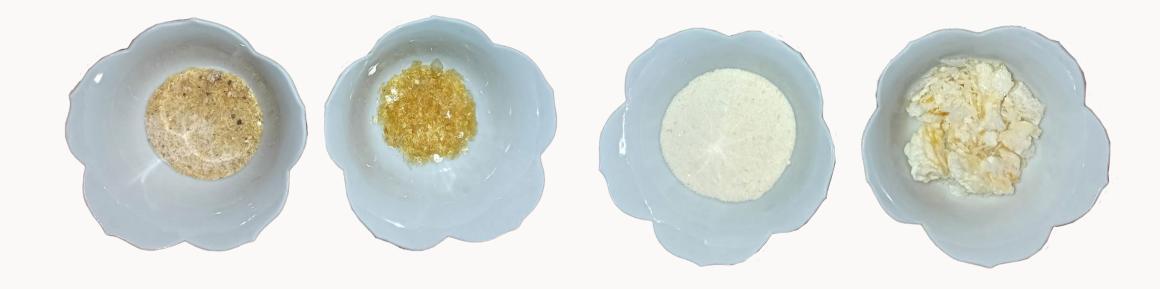
CEMENT

SUGAR: 5%

FREEZE AND THAW – RESULTS



ALBUMEN: SOLID


FREEZE AND THAW – OBSERVATIONS

CONCLUSION – TESTING TOTAL


Sample type	4.3.1. Drip test	4.3.2. Spray test	4.3.3. Moisture absorption test	4.3.4. Freeze and thaw test	4.3 Total Score	4. Total Score	Final Rank
Regular	5	4	5	6	20	37	5 th
Cement	2	1	1	4	8	18	3 rd
Sugar: 5%	4	3	4	5	16	31	4 th
Sugar: 2%	3	2	4	2	11	18	3 rd
Albumen: liquid	1	1	3	1	6	14	2 nd
Albumen: solid	1	1	2	3	7	13	1 st

DEHYDRATED ALBUMEN

FURTHER RESEARCH

MAIN QUESTION

How can the use of bio-based binders improve the material performance of rammed earth in Northwestern European building construction?

"The only difference between screwing around and science is writing it down"

Adam Savage, MythBusters