
Pre-Estimated Spectral
Rendering
Mark van de Ruit

Pre-Estimated Spectral
Rendering

by

Mark van de Ruit
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Tuesday October 22, 2019 at 10:00 AM.

Student number: 4228723
Project duration: November 13, 2018 – October 22, 2019
Thesis committee: Prof. dr. E. Eisemann, TU Delft, supervisor

Dr. R. Marroquim, TU Delft
Dr. W. Ruszel, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Spectral Monte Carlo renderers are capable of reproducing several advanced phenomena of light, such
as chromatic dispersion and fluorescence. As spectral renderers must sample the spectral domain,
they are typically hampered by a multitude of sampling issues leading to notably poor convergence
rates, which are reinforced when realistic emission or reflectance spectra are involved in otherwise
simple scenes. We propose pre­estimated spectral rendering, which is a simple method that iteratively
builds estimates of spectral radiance distributions before rendering, and subsequently uses these to
efficiently guide importance sampling of the spectral domain. Our method significantly lowers variance
and reduces chromatic noise with little overhead in multiple difficult scenarios, which we demonstrate
with an implementation in a conventional renderer.

iii

Preface
How many cups of coffee does a student drink while working on their masters thesis? It is a shame
that I did not keep track of this truly wonderful statistic, though I imagine the number is approximately
equal to the time I spent waiting on renders. Fortunately, the coffee was not wasted, and I can honestly
say I am more than satisfied with my thesis and the work assembled within.

Of course, this work would not exist without the enthousiastic support and supply of ideas provided
by my supervisor: prof. dr. Elmar Eisemann, to whom I extend my sincerest thanks. I would also
like to thank Jerry Guo and Victor Petitjean for their brief insights; Ricardo Marroquim and Wioletta
Ruszel for their willingness to form my thesis committee; and Bart de Jonge for his rigorous late­night
proofreading.

In addition, I must acknowledge Matt Pharr, Wenzel Jakob, and Greg Humphreys, whose collective
work on PBRT [22] and the Mitsuba renderer [35] has likely spared hundreds of researchers thousands
of hours debugging broken Halton samplers, and Pablo Bauszat, who together with Victor Petitjean
extended Mitsuba for spectral rendering.

Finally, I would like to thank my family and friends from the bottom of my heart, as they were there
to make sure I got some sunlight, did too much bouldering, played long tabletop games, and saw a
movie from time to time.

Mark van de Ruit
Delft, October 2019

v

Contents

Abstract iii

Preface v

List of Symbols ix

List of Abbreviations xi

1 Introduction 1
1.1 Spectral Rendering . 2
1.2 Wavelength Sampling Problems . 5
1.3 Overview of Contributions . 5
1.4 Thesis Structure . 5

2 Background 7
2.1 Probability Theory . 7

2.1.1 Expected Value and Variance . 7
2.1.2 Monte Carlo Integration . 8
2.1.3 Mean Squared Error . 10
2.1.4 Random Variable Sampling . 10
2.1.5 Variance Reduction Techniques . 11

2.2 Spectral Light Transport . 12
2.2.1 The Spectral Light Transport Equation . 13
2.2.2 Monte Carlo Estimation . 16
2.2.3 Hero Wavelength Sampling . 16
2.2.4 Spectral Gradient Sampling . 17

3 Problem Analysis 19

4 Methodology 21
4.1 A Low­Cost Pre­Estimate . 22
4.2 The Reconstruction Function . 23

4.2.1 Filtering and Resampling. 24
4.2.2 Defensive Sampling . 25

4.3 Layered Pre­Estimates . 25

5 Results 27
5.1 Parameter Evaluation . 28
5.2 Comparative Results . 33

6 Discussion 37
6.1 Advantages . 37
6.2 Limitations . 38

7 Conclusion 41
7.1 Future work . 41

A Decomposed Rendering 43
A.1 Composition of Estimators . 43
A.2 Decomposition of Emitters . 44
A.3 Potential Error Increases . 44

Bibliography 47

vii

List of Symbols

𝜆 Wavelength (nm)
Λ Spectral domain of wavelengths
𝑆(𝜆), 𝑅(𝜆) Spectral power distribution, spectral reflectance distribution
𝑋 Random variable
𝑥 Realization of random variable, alternatively point in 3D space
𝑃(𝑋) Cumulative distribution function
𝑝(𝑥) Probability density function
𝐸[𝑋] Expected value
𝜎[𝑋] Standard deviation
𝑉[𝑋] Variance
Ω Arbitrary integration domain, alternatively path space, alternatively im­

age filter neighborhood
𝐼 (Monte Carlo) Estimator of a value 𝐼
𝑁 Number of samples
𝛽[𝐼] Bias of an estimator 𝐼
𝑀𝑆𝐸[𝐼] Mean squared error of an estimator 𝐼
𝑈𝑛𝑖𝑓[0, 1] Uniform distribution over a domain [0, 1]
𝐼𝑗 Measured radiance for a pixel 𝑗
𝑥̄ Light path
𝑓𝑗(𝑥̄, 𝜆) Measurement contribution function for a pixel 𝑗
𝐿𝑜(𝑥, 𝜆), 𝐿𝑖(𝑥, 𝜆), 𝐿𝑒(𝑥, 𝜆) Exitant, incident and emitted radiance
𝜔,𝜔𝑜 , 𝜔𝑖 Arbitrary, exitant and incident direction vectors
𝑓𝑠(𝜔𝑜 , 𝜔𝑖 , 𝜆) Bidirectional scattering distribution function
𝑆 Unit (hemi)sphere of directions
𝜃 Solid angle
𝑡(𝑥, 𝜔) Raycasting operation
𝐺(𝑥 → 𝑥′) Geometric coupling term
𝑉(𝑥 → 𝑥′) Visibility term
𝜇(𝐷) Area product measure
𝑝(𝑥̄, 𝜆) Path­wavelength probability density function
Δ𝑖𝑗 , Δ𝜆𝜆′ Gradient, spectral gradient
𝑇𝑖→𝑗(𝑥̄), 𝑆𝜆→𝜆′(𝑥̄) Shift mapping, spectral shift mapping
𝑟(𝐼)𝑗 Reconstruction filter applied to pixel 𝑗 of image 𝐼
𝐺𝜎 Centered gaussian kernel with standard deviation 𝜎
𝑝𝑗(𝑥̄, 𝜆) Path­wavelength probability density function for a pixel 𝑗
𝐼𝑗 Pre­estimate of 𝐼𝑗
𝑁̃ Number of samples in pre­estimate
𝐼↓𝑗 Downscaled pixel 𝑗 in an image 𝐼
𝑟𝑟𝑒𝑠 , 𝑟𝑑𝑒𝑓 , 𝑟𝑓𝑖𝑙𝑡 Resampling, defensive and filtering reconstruction functions
𝛼 Defensive sampling factor
𝐾 Number of layers in pre­estimate

ix

List of Abbreviations

RGB Red­green­blue, trichromacy
CIE International commission on illumination
SPD Spectral power distribution
LTE Light transport equation
BSDF Bidirectional scattering distribution function
MIS Multiple importance sampling
CDF Cumulative distribution function
PDF Probability density function
MSE Mean squared error
SSIM Structural similarity index
Path Standard path tracing
Eis Emitter importance sampling
Hero Hero wavelength sampling
Sgpt Spectral gradient sampling
Pre Pre­estimated spectral rendering
px. Pixel(s)
spp. Samples per pixel

xi

1
Introduction

Physically based rendering is an area of computer graphics that focuses on mathematically model­
ing the physical processes of light in order to create photorealistic renders and simulations. As these
renders can be immensely costly to compute, models are often approximated and simplified where
feasible. Currently, Monte Carlo light transport algorithms are the most advanced techniques available
for producing photorealistic renders such as the one demonstrated in Figure 1.1, and have in recent
years seen mainstream adoption in industry rendering systems such as Autodesk Arnold [2], Disney’s
Hyperion [29], and Pixar’s Renderman [23]. Most modern rendering systems are trichromatic, as they
represent all light and other types of spectra as a simple combination of three values, e.g. RGB. This
is unfortunate, as trichromatic rendering has long been known to be incapable of accurately reproduc­
ing all the colors the human visual system perceives, partly due to effects such as metamerism [4].
In addition, trichromatic rendering makes it profoundly difficult to correctly simulate several physical
phenomena such as chromatic light dispersion, diffraction and fluorescence.

To overcome these limitations, extended spectral light transport algorithms have been devisedwhich
instead incorporate full light spectra in their underlying computations. Spectral renderers can accurately
reproduce colors, while also incorporating many advanced light phenomena. Unfortunately, in a classic
example of the no free lunch theorem, spectral renderers tend to greatly increase the complexity of what
is already an expensive computational process. In recent years, significant efforts have been made to
reduce this added overhead, most notably through techniques stemming from research contributions
such as hero wavelength spectral sampling [38] and spectral gradient sampling [20]. However, while
the capabilities of spectral renderers have certainly advanced, their performance is still not on par with
traditional renderers. This can be partially attributed to a single flaw, as their effectiveness is severely
reduced when rendering scenes containing one or more realistic or non­uniform spectral distributions,
which can be used to represent different levels of reflectance, transmittance or emission. The kinds
of emission spectra attributed to modern LEDs and fluorescenct bulbs, for example, tend to be highly
non­uniform and spiky, but are clearly required components for highly realistic visualizations, such as
architectural renderings and light simulations.

Counteracting this reduction in performance is themain focus of this masters thesis, as we develop a

Figure 1.1: Light Transport. A demonstration of some of the widespread capabilities of modern light transport algorithms,
produced with an unbiased path tracer in the open source Mitsuba Renderer [35].

1

2 1. Introduction

simple and robust method to sufficiently negate the increased costs associated with using non­uniform
spectra, therebymaking their use in spectral rendering viable. Before we provide details on our method,
we step back in the rest of this introductory chapter. First, we provide a brief, abstract overview of
relevant topics in Section 1.1. In Section 1.2 we briefly describe a basic form of the problems and
challenges we face. We then summarize our contributions in Section 1.3. Finally, in Section 1.4, we
provide details on the structural organization of the remainder of this thesis.

1.1. Spectral Rendering
Although we will briefly introduce topics central to spectral rendering, we revisit and derive many of the
involved equations and principles later on in Chapter 2.

Light transport algorithms, simply put, accurately estimate the color composition of light entering a
certain sensor, when given a detailed description of the surrounding environment. A sensor can be a
pixel on a camera, part of a piece of film, or even the human eye. We commonly describe the radiance
𝐼 as entering one of a sensor’s pixels 𝑗 through the light transport equation (LTE) [10, 11, 30], which we
give in simplified form as

𝐼𝑗 = ∫
Ω
𝑓𝑗(𝑥̄) 𝑑𝜇(𝑥̄). (1.1)

Here the path space Ω is defined as the collection of all possible light paths 𝑥̄ = 𝑥0, 𝑥1, … , 𝑥𝑛 of finite
length 𝑛 entering our sensor, and 𝜇 is a measure on this path space. A light path can be seen as a
set of surface points along which light travels, starting from an emitter or light source at 𝑥𝑛, passing
through a scene, and finally terminating at 𝑥0 which is located directly on the sensor. Along a path,
light is scattered by interactions with the environment and the different objects, materials and media
contained within. The amount of light that reaches the sensor through a specific light path is then
measured by the measurement contribution function 𝑓𝑗. Although this formulation of light transport,
illustrated in Figure 1.2, is highly abstract, it is incredibly useful and allows us to generate realistic
renders.

𝑥0

𝑥1

𝑥2
𝑥3

𝑥′1 𝑥′2

Refractive material

Diffuse material

Sensor

Emitter

Light paths

Figure 1.2: Light Transport. Light transport algorithms evaluate the contribution of different possible light paths passing through
a scene, starting at a sensor and ending at an emitter. Along the way, paths interact differently with varying types of objects and
materials. Two possible paths of finite length are shown as 𝑥̄ = 𝑥0 , 𝑥1 , 𝑥2 , 𝑥3 and 𝑥̄′ = 𝑥0 , 𝑥′1 , 𝑥′2 , 𝑥3.

Ω is a complicated space that likely contains infinitely many light paths, so we generally do not
evaluate 𝐼𝑗 analytically, nor can we simply measure all light paths. Instead, we apply an estimation
technique known as Monte Carlo integration, estimating 𝐼𝑗 by sampling 𝑁 light paths randomly from
some probability distribution, represented by its probability density function (PDF) 𝑝, and averaging the
measured summation:

𝐼𝑗 =
1
𝑁

𝑁

∑
𝑖=1

𝑓𝑗(𝑥̄𝑖)
𝑝(𝑥̄𝑖)

. (1.2)

As 𝐼𝑗 is an estimator, it suffers from a certain degree of error, but converges to a correct solution as
𝑁 → ∞. This error is present in renders with an insufficient number of samples, typically appearing as
luminance noise which can, at times, severely impact image quality. Although this formulation of light
transport describes how the composition of light can be measured, it does not account for its underlying
representation. Most (trichromatic) representations are based on an important relation between the
composition of light, and what we perceive as color. This relation stems from the human eye, which
we briefly cover. For an in­depth overview, refer to the comprehensive textbook by Levine [16].

The human eye is sensitive to electromagnetic radiation in wavelengths ranging from approximately
380 nm to 740 nm, which is the range we consider the visible light spectrum. In order to distinguish

1.1. Spectral Rendering 3

between different wavelengths, the eye uses a large collection of four main types (although there are
many more) of photoreceptor cells: rod cells and three types of cone cells. The rod cells are primarily
used for peripheral and scotopic (low­light condition) vision, and are highly sensitive to light centered at
𝜆 ≈ 500𝑛𝑚. The three types of cone cells are used for photopic (well­lit condition) vision, and are each
sensitive to different but overlapping areas of the visible light spectrum: the short or blue wavelengths
S (centered at 𝜆 ≈ 420𝑛𝑚), the medium or green wavelengths M (𝜆 ≈ 530𝑛𝑚), and the long or red
wavelengths L (𝜆 ≈ 560𝑛𝑚). In 1931, the International Commision on Illumination (CIE) experimentally
quantified the different sensitivity curves for these three cone cells, which led directly to the interesting
property that we can describe any perceivable color with just three parameters, each corresponding
to a certain amount of stimulation for one of the cone cells. This tristimulus representation of color
was formalized in the CIE 1931 XYZ and RGB color spaces [28]. The CIE XYZ color space is par­
ticularly useful because it is device­invariant, and many different trichromatic color spaces have been
derived from it since. Any spectral distribution 𝑆(𝜆) can be transformed to the CIE XYZ color space by
integrating it over three color matching functions 𝑥̄(𝜆), 𝑦̄(𝜆) and 𝑧̄(𝜆), illustrated in Figure 1.3, as

𝑋 = ∫
740

380
𝑆(𝜆) 𝑥̄(𝜆) 𝑑𝜆, 𝑌 = ∫

740

380
𝑆(𝜆) 𝑦̄(𝜆) 𝑑𝜆, 𝑍 = ∫

740

380
𝑆(𝜆) 𝑧̄(𝜆) 𝑑𝜆. (1.3)

As we previously mentioned, there are unfortunate issues associated with rendering in the CIE XYZ
color space, or any trichromatic color space such as RGB. Although a spectral distribution can be easily
converted into a format usable in a trichromatic color space, inverting this process poses a difficult
problem. As the response curves of human cone cells overlap, there are vastly different spectra that
can appear as identical colors under certain lighting conditions. Such spectra are called metamers,
and they imply that upsampling a trichromatic color value to a spectral distribution has infinitely many
different results. If wavelength­specific information is required during rendering, it may be difficult to
recover from a trichromatic representation.

400 450 500 550 600 650 700
0

0.5

1

1.5

Wavelength (𝜆)

R
el
at
iv
e
re
sp

on
se

𝑥̄(𝜆) 𝑦̄(𝜆) 𝑧̄(𝜆)

Figure 1.3: Relative response curves of the threeCIE XYZ color
matching functions [28].

400 450 500 550 600 650 700
0

10

20

Wavelength (𝜆)
R
el
at
iv
e
po

w
er

2450𝐾 2700𝐾 5900𝐾

Figure 1.4: Relative emissive power of three measured SPDs
of different color temperature LEDs 1, showcasing how irregular
spectra can be.

To circumvent this, we can instead represent spectra explicitly during rendering, whether these are
spectral power distributions (SPD) for emitters, reflectance spectra, or radiance measurements. This
is not as straightforward as it may sound, given that spectra must contain data in a large (380−740𝑛𝑚)
range, and can appear in highly irregular forms, ranging from smooth curves to complicated, almost
spiky functions. The SPDs illustrated in Figure 1.4 exemplify the different kinds of spectra we must
consider. While representing such spectra directly by storing values for 1𝑛𝑚 intervals gives correct
results, the profound impact on both memory and rendering time makes such a method impractical
at best. Instead, spectra are often discretized into fixed sets of bins spanning multiple 𝑛𝑚𝑠. This
approach introduces undersampling issues, i.e. aliasing, and may have trouble accurately representing
peaks. A clear advantage over a simple trichromatic representation, however, is that wavelength­
specific information is now available during rendering.

This is convenient, as we require this information to reproduce physical phenomena such as chro­
matic light dispersion. Light dispersion occurs when a beam of polychromatic light (exhibiting mul­
tiple wavelengths) passes through a refractive material such as glass, as it is then split into beams
1Measured SPD data, which is obtained from the Light Spectral Power Distribution Database [26], is licensed under a Creative
Commons ”Attribution­NonCommercial­NoDerivs 2.5” license.

4 1. Introduction

of mostly monochromatic light (primarily exhibiting a single wavelength), each traversing the material
at slightly different angles. The occuring refraction depends on a specified index of refraction (IOR),
which describes how fast light propagates through a material, and which is defined as a function over
the wavelength of light. A simple way to model light dispersion is through Sellmeier’s Equation [27]:

𝑛2(𝜆) = 1 +
𝑘

∑
𝑖=1

𝐵𝑖𝜆2
𝜆2 − 𝐶𝑖

, (1.4)

where 𝑛 is the resultant refractive index for a given wavelength 𝜆, and 𝐵1, … , 𝑏𝑘, 𝐶1, … , 𝐶𝑘 are sets of
empirically determined coefficients for specific materials. These coefficients are often recorded and
published by manufacturers of technical glass, and as such are generally available for public use [24].

Unfortunately, although light dispersion is simple to integrate into refractive materials, it cannot
efficiently be integrated into a light transport algorithm based on Equation 1.1, as this form of the LTE
evaluates light paths without knowledge about their specific wavelengths. In order to accomodate
wavelength­dependent phenomena, we add a second integral over a spectral domain Λ ≈ [380, 740],
then evaluating paths that are restricted to a single wavelength by sampling these from a restricted
path space Ω𝜆. Formally, the LTE becomes

𝐼𝑗 = ∫
Λ
∫
Ω𝜆
𝑓𝑗(𝑥̄, 𝜆) 𝑑𝜇(𝑥̄) 𝑑𝜆, (1.5)

which allows us to evaluate spectral light transport problems. We illustrate one such problem in Fig­
ure 1.5. We form a Monte Carlo integrator in similar form to Equation 1.2, but explicitly sample wave­
lengths, as

𝐼𝑗 =
1
𝑁

𝑁

∑
𝑖=1

𝑓𝑗(𝑥̄𝑖 , 𝜆𝑖)
𝑝(𝑥̄𝑖 , 𝜆𝑖)

, (1.6)

in which 𝑓𝑗(𝑥̄, 𝜆) denotes the measurement contribution function for a path­wavelength pair (𝑥̄, 𝜆), and
𝑝 describes the probability of sampling such a path­wavelength pair. As our estimator now additional
samples the spectral domain, significant additional error is introduced, which typically becomes visible
in resultant renders as chromatic (colored) noise.

𝜆𝑖

𝜆𝑗

𝜆𝑘

Dispersive material

Diffuse material

Sensor

Emitter

Full path

Dispersive paths

Figure 1.5: Spectral Light Transport. Spectral light transport algorithms allow us to evaluate the contribution of light paths
that initially differ in only their sampled wavelengths 𝜆, but eventually traverse the environment in different manners due to this
wavelength.

As we mentioned, major developments have in recent years managed to improve the convergence
rate of spectral renderers significantly. As the increase in error in spectral rendering stems from a
number of sources, these techniques tend to focus on solving slightly different problems. Evans and
McCool [8] first noted that the estimator of Equation 1.6 is inherently inefficient, as it propagates a light
path for but a single wavelength, and can be easily modified to evaluate a cluster of wavelengths as
long as no wavelength dependency is introduced into a path. They additionally briefly covered the
impact of rendering with non­uniform emittance spectra, which is a topic we revisit in Section 1.2. An
extension of their technique was developed by Radzisewski et al. [25], who developed a method for
propagating multiple wavelengths through wavelength­dependent non­specular BSDFs such as rough
glass or human skin. This was later refined by Wilkie et al. [38] with hero wavelength spectral sampling,
generalizing the technique through a clever application of multiple importance sampling (MIS) [32].
More recently, Petitjean et al. [20] demonstrated gains in rendering performance through a spectral
extension of gradient domain rendering techniques [12, 15], by simultaneously estimating a so­called

1.2. Wavelength Sampling Problems 5

spectral gradient next to normal image values, and afterwards combining these in a screened poisson
reconstruction [3]. We further explore these techniques, as well as basic spectral light transport, in
Chapter 2.

1.2. Wavelength Sampling Problems
Implementations of Equation 1.6 require a suitable distribution for sampling wavelengths. A uniform
distribution seems a simple and logical choice, as we do not know the distribution of power over in­
coming radiance beforehand. Indeed, notable spectral renderers, such as LuxCoreRender [1], Mental
Ray [18], and Mitsuba [35], all sample wavelengths uniformly. Unfortunately, we can easily create sce­
narios where uniform sampling of wavelengths is at best sub­optimal. Unless the distribution of power
over incoming radiance is uniform (i.e., varying shades of gray or white), some wavelengths contribute
more energy than others, and should not be evaluated with equal probability.

𝑆

𝜆𝑖
𝜆𝑖

𝑆(𝜆)
Dispersive material

Diffuse material

Sensor

Emitter

Full path

Dispersive paths

Figure 1.6: Simple wavelength sampling problem. A path is evaluated for a sampled wavelength 𝜆𝑖, but will hardly contribute
energy as it falls off major contributing parts of the encountered emitter’s SPD 𝑆(𝜆).

This was briefly touched on by Evans and McCool [8], who noted that if we render a scene with
non­uniform SPDs such as those in Figure 1.4, wavelengths centered on an emitter’s peaks tend to
contribute greatly to an image, while others hardly contribute at all. In this case, uniform sampling
can lead to a scenario such as Figure 1.6, where we evaluate a wavelength that, at the end of a
path, turns out to contribute little energy. Although Evans and McCool showed that using a distribution
similar to the emitter’s SPD for wavelength sampling is highly beneficial, they could only do so for a
single emitter. In fact, as we will show in Chapter 3, this technique becomes detrimental in scenarios
where multiple emitters are present. We can further complicate the issue by introducing other non­
uniform distributions, such as reflectance and transmittance spectra, into a scene. To our knowledge,
no technique currently exists that generates a wavelength sampling distribution that can efficiently
handle this issue, and performs sufficiently better than uniform sampling.

1.3. Overview of Contributions
Following on the issue we noted in Section 1.2, we focus our contributions in this thesis entirely on
designing a robust and simple method to alleviate this wavelength sampling problem. The main part of
these contributions consists of a method we call pre­estimated spectral rendering, which enables us to
generate a suitable wavelength sampling distribution, and which dynamically accomodates the pres­
ence of multiple non­uniform spectral distributions throughout a scene, with little overhead compared
to a simple path tracer. Our contribution allows us to improve the efficiency of spectral rendering in
a number of difficult scenarios, and subsequently enables the use of complicated, realistic spectra in
rendering. We provide more details on the different components of this method in Chapter 4.

1.4. Thesis Structure
We first cover notable background theory and relevant related work in Chapter 2. In Chapter 3, we
explore the wavelength sampling problem we introduced in Section 1.2 with a number of examples.
Then, in Chapter 4, we develop the main components of our method, which we afterwards thoroughly
benchmark for a number of difficult scenarios in Chapter 5. We analyze obtained the results in Chap­
ter 6, before concluding the thesis in Chapter 7. Finally, we detail an additional and related technique
which we only partially developed in Appendix A.

2
Background

in Chapter 1, we provided a rather abstract introduction to spectral rendering and Monte Carlo light
transport. In order to properly analyze our problem in Chapter 3, we must first obtain a formal under­
standing of the relevant material. As such, we revisit some previously discussed topics, and provide
formal derivations for most of them. We first review basic probability concepts in Section 2.1, and af­
terwards use these to derive a spectral version of the LTE in Section 2.2. Here, we also extensively
describe related techniques such as hero wavelength sampling [38] and spectral gradient sampling [20].

Throughout this chapter and the rest of this thesis, we loosely follow mathematical notation used by
Pharr et al. in their book on physically based rendering [22], which they themselves base heavily on
the groundwork done by Veach in his dissertation [30].

2.1. Probability Theory
We briefly review basic concepts stemming from probability theory, as we will use these extensively
for topics such as Monte Carlo integration and importance sampling. For a more thorough introduction
to probability theory, refer to the previously mentioned writings of Pharr et al. [22], who provide an
extensive overview within the context of computer graphics. Note that, for consistency throughout the
thesis, we denote random variables as upper case letters, i.e., 𝑋, 𝑌, and their sampled realizations as
corresponding lower case letters, i.e., 𝑥, 𝑦.

Recall that a random variable 𝑋 is a value obtained or generated through some random process
or event, and is drawn from a domain that is either discrete or continuous. In this context, we are
primarily concerned with the continuous case, which can be drawn from the real numbers, among
others. Applying a function 𝑓 to a random variable 𝑋 logically results in a new random variable 𝑌 = 𝑓(𝑋).
There are two important functions that we use to describe properties of random variables. The first of
these is the cumulative distribution function (CDF) 𝑃𝑋(𝑋), which describes the probability that 𝑋 takes
a value less to or equal to some 𝑥, i.e.

𝑃𝑋(𝑥) = 𝑃𝑟(𝑋 ≤ 𝑥). (2.1)

The second of these is the probability density function (PDF) 𝑝𝑋(𝑥), which can be interpreted as de­
scribing the relative probability of 𝑋 realizing a specific value 𝑥, and is formally defined as

𝑝𝑋(𝑥) =
𝑑
𝑑𝑥𝑃𝑋(𝑥). (2.2)

All values in a PDF are essentially nonnegative, and integrating a PDF over its domain always results
in 1. For a domain bounded to [0, 1], this is essentially the same as asking 𝑃𝑟(𝑋 ≤ 1.0).

2.1.1. Expected Value and Variance
Given some function 𝑓 defined over a domain Ω, we often wish to attain a notion of its expected value,
which is defined as its average over a collection of values distributed by some 𝑝, or formally

𝐸𝑝[𝑓(𝑥)] = ∫
Ω
𝑓(𝑥) 𝑝(𝑥) 𝑑𝜇(𝑥). (2.3)

7

8 2. Background

The variance of a function then gives us a notion of how far individual samples of 𝑓 are spread around
its expected value. It is defined as the expected squared deviation of a function from its expected value,
or

𝑉[𝑓(𝑥)] = 𝐸[(𝑓(𝑥) − 𝐸[𝑓(𝑥)])2] (2.4)

Given this definition, we display a number of properties of both the expected value and variance:

𝐸[𝑎𝑓(𝑥)] = 𝑎 𝐸[𝑓(𝑥)], (2.5)

𝐸 [∑
𝑖
𝑓(𝑋𝑖)] =∑

𝑖
𝐸[𝑓(𝑋𝑖)], (2.6)

𝑉[𝑎𝑓(𝑥)] = 𝑎2 𝑉[𝑓(𝑥)], (2.7)

and, given that all used random variables 𝑋𝑖 are independent:

𝑉 [∑
𝑖
𝑓(𝑋𝑖)] =∑

𝑖
𝑉[𝑓(𝑋𝑖)]. (2.8)

We use these properties to expand expression of the variance into a more concise form as

𝑉[𝑓(𝑥)] = 𝐸[(𝑓(𝑥) − 𝐸[𝑓(𝑥)])2]
= 𝐸[𝑓2(𝑥) − 2𝑓(𝑥) 𝐸[𝑓(𝑥)] + 𝐸[𝑓(𝑥)]2]
= 𝐸[𝑓2(𝑥)] − 2𝐸[𝑓(𝑥)]𝐸[𝑓(𝑥)] + 𝐸[𝑓(𝑥)]2
= 𝐸[𝑓2(𝑥)] − 𝐸[𝑓(𝑥)]2, (2.9)

which implies variance may be defined as the expected value of the square, minus the square of
the expected value. Finally, we also define the standard deviation 𝜎[𝑓(𝑥)] as the square root of the
variance, i.e.

𝜎[𝑓(𝑥)] = √𝑉[𝑓(𝑥)]. (2.10)

2.1.2. Monte Carlo Integration
We now use these concepts to provide a definition for Monte Carlo integration. This is a technique that
allows us to, given a function 𝑓 defined over a domain Ω, to evaluate an integral of the form

𝐼 = ∫
Ω
𝑓(𝑥) 𝑑𝜇(𝑥), (2.11)

which occurs surprisingly often in computer graphics. Intuitively, Monte Carlo integration functions by
obtaining a set of 𝑁 realized random samples 𝑥𝑖 ∈ Ω from some probability distribution 𝑝, and then
averaging the results of evaluating 𝑓 for each sample. We define a Monte Carlo estimator for 𝐼 as

𝐼 = 1
𝑁

𝑁

∑
𝑖=1

𝑓(𝑥𝑖)
𝑝(𝑥𝑖)

. (2.12)

This estimator converges to a correct result as more samples are used, i.e.

lim
𝑁→∞

𝐸[𝐼] = 𝐼, (2.13)

2.1. Probability Theory 9

which follows from

𝐸[𝐼] = 𝐸 [1𝑁

𝑁

∑
𝑖=1

𝑓(𝑥𝑖)
𝑝(𝑥𝑖)

]

= 1
𝑁

𝑁

∑
𝑖=1
𝐸 [𝑓(𝑥𝑖)𝑝(𝑥𝑖)

]

= 𝐸 [𝑓(𝑥)𝑝(𝑥)]

= ∫
Ω

𝑓(𝑥)
𝑝(𝑥) 𝑝(𝑥) 𝑑𝜇(𝑥)

= ∫
Ω
𝑓(𝑥) 𝑑𝜇(𝑥). (2.14)

Monte Carlo integration carries several advantages over other integration techniques. It is particularly
useful for evaluating multidimensional integrals, as we have until now made no assumptions about
the dimensionality or shape of the covered domain Ω. This is especially relevant for light transport
problems, which tend to be (extremely) multidimensional. In addition, Monte Carlo integration is a
surprisingly simple technique as it only requires us to satisfy two principles: we must be able to draw
random samples from some distribution 𝑝 that is (preferably) similar in shape to Ω, and we must be
able to subsequently query 𝑓 using these samples.

Finally, we can show that Monte Carlo integration has a predictable rate of convergence bound by
𝒪(𝑁−1/2) in the number of samples. Assuming all random samples 𝑥𝑖 we take are independent, we
apply Equation 2.9 to derive the variance of our estimator as

𝑉[𝐼] = 𝑉 [1𝑁

𝑁

∑
𝑖=1

𝑓(𝑥𝑖)
𝑝(𝑥𝑖)

]

= 1
𝑁2

𝑁

∑
𝑖=1

𝑉 [𝑓(𝑥𝑖)𝑝(𝑥𝑖)
]

= 1
𝑁 𝑉 [𝑓(𝑥)𝑝(𝑥)] , (2.15)

Assuming that 𝑉 [𝑓(𝑥)𝑝(𝑥)] is finite, variance decreases linearly as 𝑁 increases. The standard deviation is
then derived as

𝜎[𝐼] = √𝑉[𝐼]

= √ 1𝑁 𝑉 [𝑓(𝑥)𝑝(𝑥)]

= 1
√𝑁

𝜎 [𝑓(𝑥)𝑝(𝑥)] , (2.16)

which shows the convergence rate of 𝐼 as bounded in 𝒪(𝑁−1/2), in terms of direct deviation from the
expected value 𝐼. In practical terms, this implies that if we wish to halve the relative error of a Monte
Carlo estimator, we must roughly quadruple the number of samples used.

One final property of a Monte Carlo estimator we must cover, is its bias, which is the difference
between its expected value and the actual value it is defined for as an estimator, or

𝛽[𝐼] = 𝐸[𝐼] − 𝐼. (2.17)

Not all estimators necessarily converge to a correct result. An estimator is said to be unbiased when
𝛽(𝐼) ≡ 0. Both bias and lack thereof may be desirable properties depending on the circumstances, as
biased estimators sometimes converge considerably faster than their unbiased counterparts.

10 2. Background

2.1.3. Mean Squared Error
A useful metric we apply in Chapter 5 to compare both the convergence rates and eventual bias of
different Monte Carlo estimators, is the mean squared error (MSE)

𝑀𝑆𝐸[𝐼] = 𝐸[(𝐼 − 𝐼)2]. (2.18)

We can expand this definition as

𝑀𝑆𝐸[𝐼] = 𝐸[(𝐼 − 𝐼)2]
= 𝐸[(𝐼 − 𝐸[𝐼] + 𝐸[𝐼] − 𝐼)2]
= 𝐸[(𝐼 − 𝐸[𝐼])2 + 2 (𝐼 − 𝐸[𝐼]) (𝐸[𝐼] − 𝐼) + (𝐸[𝐼] − 𝐼)2]
= 𝐸[(𝐼 − 𝐸[𝐼])2] + 2 𝐸[(𝐼 − 𝐸[𝐼])] 𝐸[(𝐸[𝐼] − 𝐼)] + 𝐸[(𝐸[𝐼] − 𝐼)2]
= 𝐸[(𝐼 − 𝐸[𝐼])2] + 2 (𝐸[𝐼] − 𝐸[𝐼]) 𝐸[(𝐸[𝐼] − 𝐼)] + 𝐸[(𝐸[𝐼] − 𝐼)2]
= 𝐸[(𝐼 − 𝐸[𝐼])2] + 𝐸[(𝐸[𝐼] − 𝐼)2]
= 𝑉[𝐼] + 𝛽[𝐼]2, (2.19)

which, informally, implies the MSE is the sum of an estimator’s variance and its squared bias.

2.1.4. Random Variable Sampling
We mentioned in Subsection 2.1.2 that, in order to perform Monte Carlo integration, we must be able
to draw random samples from a specific probability distribution, preferably in an efficient manner. We
will cover two generic methods for this.

Inversion Method The first of these is the commonly known inverse transform or inversion method,
which leverages a uniform distribution 𝑈𝑛𝑖𝑓[0, 1], and maps samples drawn from this distribution to the
actual distribution we wish to sample. In the event we have some probability distribution represented
by its PDF 𝑝(𝑥), we can create a random variable 𝑋 to sample from 𝑝 in four steps:

1. Obtain a random variable 𝑈 ∈ 𝑈𝑛𝑖𝑓[0, 1].

2. Compute the CDF of 𝑝(𝑥): 𝑃(𝑥) = ∫𝑥0 𝑝(𝑥′) 𝑑𝑥′𝑥.

3. Compute the inverse of the CDF: 𝑃−1(𝑥).
4. Compute 𝑋 = 𝑃−1(𝑈).

Any realization of the random variable 𝑋 is essentially sampled from 𝑝. This technique generally has
low associated cost for drawing samples. Unfortunately, it explicitly requires the ability for us to both
integrate over 𝑝(𝑥), and to subsequently invert 𝑃(𝑥). Depending on underlying implementations or
representations of the distributions used, this may not always be possible.

Rejection Method The second method we cover, which is preferable in this difficult scenario, is the
acceptance­rejection or rejection method, that can be used to sample a PDF 𝑝(𝑥) which cannot be
easily integrated over, or for which the CDF cannot be inverted analytically. The idea is to instead take
a conveniently sampleable distribution 𝑞 that satisfies

𝑝(𝑥) ≤ 𝑐 ⋅ 𝑞(𝑥) (2.20)

for some constant 𝑐. We then draw samples from 𝑝 in the following steps:

1. Obtain a random variable 𝑋 ∈ 𝑞.
2. Obtain a random variable 𝑈 ∈ 𝑈𝑛𝑖𝑓[0, 1].
3. If 𝑈 ≤ 𝑝(𝑋) / 𝑐 ⋅ 𝑞(𝑋), return 𝑋.
4. Else, repeat from step 1.

Although the rejection method can be used for sampling difficult distributions, it is clearly an inefficient
method in more general cases where the inversion method is applicable.

2.1. Probability Theory 11

2.1.5. Variance Reduction Techniques
We discussed the convergence rate of the Monte Carlo estimator in Subsection 2.1.2. A number of
different techniques exist that modify the basic estimator of Equation 2.12 to improve its convergence
rate in certain scenarios. We will describe variations of one of these techniques ­ importance sampling
­ as it is applicable in many different situations.

Importance Sampling A straightforward technique to improve the Monte Carlo estimator is impor­
tance sampling. Simply put, as the estimator realizes samples from some distribution 𝑝, it will converge
more quickly if said distribution is similar in shape to the integral we are evaluating. To provide a basic
example, we show what happens if we choose the best possible distribution for our estimator, which
would be of the form 𝑝(𝑥) = 𝑐 𝑓(𝑥), with

𝑐 = 1
∫Ω 𝑓(𝑥′) 𝑑𝜇(𝑥′)

, (2.21)

which leads to an estimator with zero variance, as

𝐼 = 1
𝑁

𝑁

∑
𝑖=1

𝑓(𝑥𝑖)
𝑐𝑓(𝑥𝑖)

= 1
𝑐

= ∫
Ω
𝑓(𝑥′) 𝑑𝜇(𝑥′), (2.22)

which is the value of our integral. This is purely theoretical, as there is virtually no point to estimating an
integral whose value we know beforehand. However, it serves to show that, if we can find a distribution
for 𝑝 such that it is highly proportional to the integrand, i.e.

𝑝(𝑥) ∝∼ 𝐼, (2.23)

variance will generally be reduced. Unfortunately, there are caveats to importance sampling. A consid­
erable amount of care should be taken when selecting a distribution, as variance can increase when a
distribution does not remotely fit the integral. For example, consider what happens if we compute the
estimate of

𝐼 = ∫𝑓(𝑥) 𝑑𝑥 ∶ 𝑓(𝑥) = { 1.5 𝑥 ∈ [0, 0.5)
0.5 𝑥 ∈ [0.5, 1.0) (2.24)

with the following estimator

𝐼 = 1
𝑁

𝑁

∑
𝑖=1

𝑓(𝑥)
𝑝(𝑥) ∶ 𝑝(𝑥) = { 0.1 𝑥 ∈ [0, 0.5)

0.9 𝑥 ∈ [0.5, 1.0) (2.25)

which would give terrible results. The majority of samples falls into the [0.5, 1.0) range, which rapidly
leads to 𝑓(𝑥)/𝑝(𝑥) ≈ 0.55, even though 𝐼 = 1.0. This is bound to converge, but will do so at slower
rate than when we had used a uniform distribution for sampling. To make matters worse, consider what
happens if we use a distribution that does not cover the domain Ω entirely. This will lead to an estimator
which never queries certain parts of the integral, and which is therefore biased.

Defensive Importance Sampling Given that we may not be able to measure the quality of a sam­
pling distribution, we may inadvertedly increase variance or introduce bias. Defensive importance sam­
pling [19] leverages a mixture with a safe (likely uniform) distribution to reduce potential impacts. In
short, when we choose a distribution 𝑝 for importance sampling, we mix it with a secondary distribution
𝑞, of which we know that it at least covers the domain Ω, as

𝑟(𝑥) = 𝑎1𝑝(𝑥) + 𝑎2𝑞(𝑥) ∶ 𝑎1 + 𝑎2 = 1.0 (2.26)

and consequently use the resulting distribution 𝑟 for sampling instead. Depending on the choices of
constants 𝑎1, 𝑎2, the effectiveness of a good distribution may be reduced, and the ineffectiveness of a
bad distribution may be improved.

12 2. Background

Multiple Importance Sampling Although basic importance sampling can greatly reduce variance
when we are estimating singular integrals, it is of less use when working with difficult (and especially
multi­dimensional) integrals. Consider, for example, the following integral

𝐼 = ∫
Ω
𝑓(𝑥) 𝑔(𝑥) 𝑑𝑥. (2.27)

We would preferably use a convenient distribution that allows us to importance sample both 𝑓 and
𝑔, but this may be difficult to find. If we instead have two separate distributions 𝑝𝑓 and 𝑝𝑔 that are
suitable only for sampling their respective integrands, applying either of these likely increases variance
by incorrectly covering the other integrand. A clever technique to (mostly) circumvent this issue was
developed by Veach for his dissertation as Multiple Importance Sampling (MIS) [32], where, intuitively,
we draw a number of samples from both distributions, and then weight them accordingly in such a way
that most increases in variance from incorrect sampling are cancelled out. We can apply this idea to
form an estimator for Equation 2.27 as

𝐼 = 1
𝑁𝑓

𝑁𝑓

∑
𝑖=1

𝑓(𝑥𝑖) 𝑔(𝑥𝑖) 𝑤𝑓(𝑥𝑖)
𝑝𝑓(𝑥𝑖)

+ 1
𝑁𝑔

𝑁𝑔

∑
𝑗=1

𝑓(𝑦𝑗) 𝑔(𝑦𝑗) 𝑤𝑔(𝑦𝑗)
𝑝𝑔(𝑦𝑗)

, (2.28)

where 𝑁𝑓 samples are drawn from 𝑝𝑓 and 𝑁𝑔 samples are drawn from 𝑝𝑔. Here we combine both
integrands, but weight results by two weighting factors 𝑤𝑓 and 𝑤𝑔, which we will explain below. We
first show how MIS is usually applied in a more general case, where we evaluate an integral over
just one integrand, but have 𝑛 different importance sampling distributions 𝑝0, … , 𝑝𝑛 that together are
appropriately similar in shape to the integral, which can happen when the domain Ω is sufficiently
complicated. An estimator that samples each of these distributions is formed as

𝐼 =
𝑛

∑
𝑖=1

1
𝑁𝑖

𝑁𝑖
∑
𝑗=1
𝑤𝑖(𝑋𝑖,𝑗)

𝑓(𝑋𝑖,𝑗)
𝑝𝑖(𝑋𝑖,𝑗)

. (2.29)

Veach derives a number of different weighting functions that are suitable for most circumstances. The
most commonly used of these is the so­called balance heuristic

𝑤𝑖(𝑥) =
𝑛𝑖 𝑝𝑖(𝑥)

∑𝑘 𝑛𝑘 𝑝𝑘(𝑥)
, (2.30)

which is similar to the more generalized power heuristic

𝑤𝑖(𝑥) =
(𝑛𝑖 𝑝𝑖(𝑥))𝛽

∑𝑘(𝑛𝑘 𝑝𝑘(𝑥))𝛽
. (2.31)

which, as Veach shows, can in practice be more useful for low­variance problems. It should be noted
that there are many different variations on these weighting functions within existing literature, but we
will not cover these as this essentially poses a topic in itself.

2.2. Spectral Light Transport
In Chapter 1, we briefly touched on an integral formulation of the light transport equation (LTE) that is
suitable for spectral rendering, as light paths are evaluated (measured) for a specific wavelength:

𝐼𝑗 = ∫
Λ
∫
Ω𝜆
𝑓𝑗(𝑥̄, 𝜆) 𝑑𝜇(𝑥̄) 𝑑𝜆. (1.5)

Given that this equation is central to the topic of our thesis, we summarily show how it was derived from
its non­spectral counterpart of Equation 1.1, essentially providing an overview of its advantages over
other formulations. Afterwards, we will cover the related work that builds further on this formulation.

2.2. Spectral Light Transport 13

𝑥

𝑆𝜔𝑜 , 𝜆 𝜔𝑖 , 𝜆

𝑛

𝜃

Figure 2.1: Directional LTE. The directional formulation of the LTE accounts for scattered light from possible incident directions
𝜔𝑖, represented here by a hemisphere 𝑆. Scattered light is weighted by a cosine factor over 𝜃, which is the angle between 𝜔𝑖
and a surface normal 𝑛 at surface point 𝑥.

2.2.1. The Spectral Light Transport Equation
Instead of a path­integral formulation, physically based rendering algorithms have traditionally been oc­
cupied with evaluating a directional formulation of light transport, which was simultaneously developed
by both Immel et al. [10] and Kajiya [11]. This formulation describes an equilibrium between exitant
radiance 𝐿𝑜 leaving a certain surface point 𝑥 in direction 𝜔𝑜, the emitted radiance 𝐿𝑒, and the scattering
of incident radiance 𝐿𝑖, as

𝐿𝑜(𝑥, 𝜔𝑜) = 𝐿𝑒(𝑥, 𝜔𝑜) + ∫
𝑆
𝑓𝑠(𝑥, 𝜔𝑜 , 𝜔𝑖) 𝐿𝑖(𝑥, 𝜔𝑖) | cos𝜃𝑖| 𝑑𝜔𝑖 . (2.32)

The integration domain 𝑆 describes the set of possible incident directions 𝜔𝑖, which we generally rep­
resent as either a unit sphere or hemisphere of directions. The bidirectional scattering distribution
function (BSDF) 𝑓𝑠 defines the amount of light that is scattered instead of absorbed, given incident and
exitant directions on a surface point. The added cosine factor accounts for a weakening of incident
light, given that the relative surface area on which light is projected depends on the incident angle 𝜃.

In his dissertation [30], Veach provides a rather extensive derivation for the familiar path­integral
formulation of the LTE, which instead consists of a single integral over a path­space Ω, and which
carries several immediate advantages over the directional formulation, foremost of which is that we can
apply general­purpose integration techniques (such as Monte Carlo integration) to solve it. It has led
directly to the development of improved rendering techniques such as bidirectional path tracing [14, 31],
metropolis light transport [33] and gradient­domain path tracing [15]. In order to arrive at a spectral
variant of the path integral formulation, we will make several modifications to the surface point LTE in
a similar vein to Veach in his dissertation. We wil follow his derivations, albeit in a highly abbreviated
manner. To start, wemodify the LTE to incorporate most wavelength­dependent phenomena, by adding
a wavelength parameter 𝜆 as

𝐿𝑜(𝑥, 𝜔𝑜 , 𝜆) = 𝐿𝑒(𝑥, 𝜔𝑜 , 𝜆) + ∫
𝑆
𝑓(𝑥, 𝜔𝑜 , 𝜔𝑖 , 𝜆) 𝐿𝑖(𝑥, 𝜔𝑖 , 𝜆) | cos𝜃𝑖| 𝑑𝜔𝑖 , (2.33)

which we illustrate in a basic form in Figure 2.1. We now reformulate this notation further, as we can
directly relate incident and exitant radiances 𝐿𝑖 and 𝐿𝑜. If we assume that there are no participating
media in a scene (i.e., we operate in a perfect vacuum, which makes things easier), then any radiance
traveling along a ray must remain constant. In other words:

𝐿𝑖(𝑥, 𝜔, 𝜆) = 𝐿𝑜(𝑡(𝑥, 𝜔), −𝜔, 𝜆), (2.34)

where we substitute a surface point with the application of a simple raycasting operation 𝑡 given by

𝑡(𝑥, 𝜔) = 𝑥′, (2.35)

where 𝑥′ is the first other surface point encountered by a ray traveling along direction 𝜔 from 𝑥. When
performing this substitution, we drop incident and exitant subscripts, and reformulate the LTE as:

𝐿(𝑥, 𝜔𝑜 , 𝜆) = 𝐿𝑒(𝑥, 𝜔𝑜 , 𝜆) + ∫
𝑆
𝑓(𝑥, 𝜔𝑜 , 𝜔𝑖 , 𝜆) 𝐿(𝑡(𝑥, 𝜔𝑖), −𝜔𝑖 , 𝜆) | cos𝜃| 𝑑𝜔𝑖 . (2.36)

14 2. Background

𝑥′

𝑥 𝑥′′
𝑛′

𝑛′′

𝜃′

𝜃′′

Figure 2.2: Surface Area LTE. The surface area formulation of the LTE accounts for scattering of light between several surface
points 𝑥, 𝑥′𝑎𝑛𝑑𝑥′′, instead of directions on a sphere or hemisphere.

In this formulation, light transport is a recursive problem in addition to an integration problem, which
unfortunately makes it rather difficult to evaluate. The next step required is the removal of directional
variables 𝜔𝑖 and 𝜔𝑜 as we slowly shift towards a formulation that leverages sets of surface points (i.e.
paths). Instead of relying on a raycasting operation, we explicitly define the relation between two such
surface points 𝑥 and 𝑥′ as 𝑥′ → 𝑥. We reformulate exitant radiance as

𝐿(𝑥′ → 𝑥, 𝜆) = 𝐿(𝑥′, 𝜔, 𝜆) ∶ 𝜔 = 𝑥 − 𝑥′ (2.37)

and similarly rewrite the BSDF 𝑓𝑠 which describes a relationship between three different points, as

𝑓𝑠(𝑥′′ → 𝑥′ → 𝑥, 𝜆) = 𝑓(𝑥′, 𝜔𝑜 , 𝜔𝑖 , 𝜆) ∶ 𝜔𝑜 = 𝑥 − 𝑥′, 𝜔𝑖 = ̂𝑥′′ − 𝑥′. (2.38)

Building on this, we reformulate the LTE into what is commonly known as a three­point or surface area
form, which we additionally visualize in Figure 2.2:

𝐿(𝑥′ → 𝑥, 𝜆) = 𝐿𝑒(𝑥′ → 𝑥, 𝜆) + ∫
𝐴
𝑓𝑠(𝑥″ → 𝑥′ → 𝑥, 𝜆) 𝐿(𝑥″ → 𝑥′, 𝜆) 𝐺(𝑥″ → 𝑥′) 𝑑𝐴(𝑥″). (2.39)

An important distinction between these different formulations, is the change to an integration domain
𝐴, which represents the space of all surfaces (or points thereon). In order to transform the LTE from
one over a solid angle 𝜃 to one over surface areas, Veach describes the geometric coupling term 𝐺 as

𝐺(𝑥 → 𝑥′) = 𝑉(𝑥 → 𝑥′) | cos𝜃| | cos𝜃
′|

‖𝑥 − 𝑥′‖2 (2.40)

which accounts for a change­of­variables between integration domains, and, as we no longer rely on
a raycasting operation, adds a visibility term 𝑉 which is defined as

𝑉(𝑥 → 𝑥′) = { 1 if 𝑥 and 𝑥′ are mutually visible,
0 else.

(2.41)

The next step is for us to derive the familiar path integral formulation, for which we must expand the
recursive components. If we repeatedly substitute the right­hand 𝐿(𝑥′′ → 𝑥′) of Equation 2.39 into the
main integral, we form a continuously growing equation over an increasing number of surface points.
The first two expansions of this equation, which are shown in this manner by Pharr et al. [22] in their
own derivation of the path­integral formulation, are:

𝐿(𝑥1 → 𝑥0, 𝜆) = 𝐿𝑒(𝑥1 → 𝑥0, 𝜆)

+ ∫
𝐴
𝐿𝑒(𝑥2 → 𝑥1, 𝜆) 𝑓𝑠(𝑥2 → 𝑥1 → 𝑥0, 𝜆) 𝐺(𝑥2 → 𝑥1) 𝑑𝐴(𝑥2)

+ ∫
𝐴
∫
𝐴
𝐿𝑒(𝑥3 → 𝑥2, 𝜆) 𝑓𝑠(𝑥3 → 𝑥2 → 𝑥1, 𝜆) 𝐺(𝑥3 → 𝑥2)

× 𝑓𝑠(𝑥2 → 𝑥1 → 𝑥0, 𝜆) 𝐺(𝑥2 → 𝑥1) 𝑑𝐴(𝑥3) 𝑑𝐴(𝑥2)
+ … (2.42)

2.2. Spectral Light Transport 15

𝐺(𝑥2 → 𝑥1)
𝐺(𝑥3

→ 𝑥2)

𝑥0

𝑥1 𝑥2

𝑥3

𝐿𝑒(𝑥3 → 𝑥2, 𝜆)

𝑓(𝑥2 → 𝑥1 → 𝑥0, 𝜆) 𝑓(𝑥3 → 𝑥2 → 𝑥1, 𝜆)

Figure 2.3: Light path. The formulation of light transport along a single consecutive set of surface points, starting at a sensor
and ending at an emitter. The different components that form the final contribution of this path are marked in the image.

We now change our notation slightly, and instead of 𝑥′, 𝑥′′, start numbering the numerous surface points
­ vertices ­ in order of appearance from the first surface point queried at 𝐿(𝑥1 → 𝑥0, 𝜆). As Pharr et al.
formulate, each of the terms at the right side of this equation can be described as a path of increasing
length, towards some surface that contributes emitted radiance 𝐿𝑒. We visualize this expansion for a
single path in Figure 2.3.

It becomes clear at this point that, although the first vertices of the path (𝑥0 and 𝑥1) are predetermined
by the camera’s location and first ray intersection, the rest of the path varies over all surface points
throughout the scene. As there are likely infinitely many surface points in a scene, there are likewise
infinitely many paths similar to the one in Figure 2.3. We generalize this principle by defining the set
of all such paths of a specific length 𝑛 and carrying a wavelength 𝜆, as Ω𝑛,𝜆, where each path is of the
form 𝑥̄ = 𝑥0, 𝑥1, … , 𝑥𝑛. In order to integrate over Ω𝑛,𝜆, Veach describes three required components. The
first of these is the so­called path space, which represents the union of all these sets of paths of finite
lengths as

Ω𝜆 =
∞

⋃
𝑖=1

Ω𝜆,𝑖 , (2.43)

and will form the integration domain from here on. Veach then defines the area­product measure ­
which he shows is required to continue accounting for the change of variable and visibility terms ­ as

𝜇𝑛(𝐷) = ∫
𝐷
𝑑𝐴(𝑥0) ⋯ 𝑑𝐴(𝑥𝑛) ∶ 𝐷 ⊂ Ω𝑛,𝜆 , (2.44)

which can be extended to all paths as

𝜇(𝐷) =
∞

∑
𝑖=1
𝜇𝑖(𝐷 ∩ Ω𝑖,𝜆). (2.45)

The final component we require for a path­integral formulation is the integrand, which will become the
measurement contribution function 𝑓𝑗 we briefly mentioned in Chapter 1. The integrand is defined for
each specific path 𝑥̄ separately, in a non­recursive manner. Given a single example path 𝑥̄, we can
expand part of 𝑓𝑗 as

𝑓𝑗(𝑥̄, 𝜆) = 𝐿𝑒(𝑥1 → 𝑥0, 𝜆) 𝑓𝑠(𝑥2 → 𝑥1 → 𝑥0, 𝜆) 𝐺(𝑥2 → 𝑥1)
⋅ 𝐿𝑒(𝑥2 → 𝑥1, 𝜆) 𝑓𝑠(𝑥3 → 𝑥2 → 𝑥1, 𝜆) 𝐺(𝑥3 → 𝑥2)
⋅ … (2.46)

As we now have an integratable domain Ω𝜆, an integrand 𝑓𝑗, and all other required components, this
results in a path­integral formulation of light transport for a single wavelength:

𝐼𝑗,𝜆 = ∫
Ω𝜆
𝑓𝑗(𝑥̄, 𝜆) 𝑑𝜇(𝑥̄). (2.47)

As the spectral domain Λ of relevant wavelengths is comparatively simple (being one­dimensional) we
can simply apply a second integral over this domain to accumulate measured light over all wavelengths,
thereby forming the final formulation of the spectral LTE:

𝐼𝑗 = ∫
Λ
∫
Ω𝜆
𝑓𝑗(𝑥̄, 𝜆) 𝑑𝜇(𝑥̄) 𝑑𝜆. (1.5)

16 2. Background

2.2.2. Monte Carlo Estimation
As we now have a non­recursive integral formulation for light transport, we apply the Monte Carlo
integration technique we covered in Subsection 2.1.2 to form an estimator as

𝐼𝑗 =
1
𝑁

𝑁

∑
𝑖=1

𝑓𝑗(𝑥̄𝑖 , 𝜆𝑖)
𝑝(𝑥̄𝑖 , 𝜆𝑖)

, (1.6)

where 𝑝(𝑥̄, 𝜆) is a representative PDF for a distribution for the sampling of pairs of path and wavelength
samples. This is, once again, an unbiased estimator for 𝐼𝑗, as

𝐸[𝐼𝑗] = 𝐸 [1𝑁

𝑁

∑
𝑖=1

𝑓𝑗(𝑥̄𝑖 , 𝜆𝑖)
𝑝(𝑥̄𝑖 , 𝜆𝑖)

]

= 1
𝑁

𝑁

∑
𝑖=1
𝐸 [
𝑓𝑗(𝑥̄𝑖 , 𝜆𝑖)
𝑝(𝑥̄𝑖 , 𝜆𝑖)

]

= ∫
Λ
∫
Ω𝜆

𝑓𝑗(𝑥̄, 𝜆)
𝑝(𝑥̄, 𝜆) 𝑝(𝑥̄, 𝜆) 𝑑𝜇(𝑥̄) 𝑑𝜆

= ∫
Λ
∫
Ω𝜆
𝑓𝑗(𝑥̄, 𝜆) 𝑑𝜇(𝑥̄) 𝑑𝜆. (2.48)

The question that remains is how to sample path­wavelength pairs (𝑥̄, 𝜆). Sampling light paths in an
efficient manner is a topic in and of itself, which we do not cover further. Many different techniques and
strategies exist, some of which Veach discusses in his dissertation [30].

2.2.3. Hero Wavelength Sampling
Careful readers might note the inherent inefficiency of Equation 1.6, given that this always samples a
single path­wavelength pair. If no wavelength­dependency occurs along a path, different wavelengths
can be propagated in a similar manner. This was first noted by Evans and McCool [8], who propose
propagating a cluster of wavelengths along a single path until wavelength­dependency does occur. At
this point, they suggest either discarding all but one wavelength, or splitting into multiple paths. They
necessarily keep path and wavelength sampling separate, i.e.

𝑝(𝑥̄, 𝜆) = 𝑝(𝜆) ⋅ 𝑝(𝑥̄). (2.49)

Building on this idea, both Radziszewski et al. [25] and more recently Wilkie et al. [38] note that far
from all (sub)surface scattering at wavelength­dependent phenomena is perfectly specular. Example
scenarios include most forms of glass and other refractive media, which have roughened and scratched
surfaces, and even human skin, which curiously exhibits non­specular wavelength dependency. Both
groups of authors demonstrate methods to propagate multiple wavelengths along a single light path in
these scenarios. We cover the aptly named hero wavelength sampling developed by Wilkie et al. [38].
They propose to randomly select an initial wavelength ­ the hero wavelength 𝜆ℎ ­ for path propagation.
A stratified set of other wavelengths is then similarly measured through the same path, using a clever
combination of MIS [32], which results in the following estimator:

𝐼𝑗 =
1
𝑁
1
𝐶

𝑁

∑
𝑖=1

𝐶

∑
𝑗=1
𝑤𝜆ℎ(𝑥̄𝑖 , 𝜆𝑗)

𝑓𝑗(𝑥̄𝑖 , 𝜆𝑗)
𝑝(𝑥̄𝑖 , 𝜆𝑗)

, (2.50)

where 𝐶 denotes the number of wavelength samples used, and the weight 𝑤𝜆ℎ(𝑥̄𝑖 , 𝜆𝑗) is a MIS balance
heuristic (Subsection 2.1.5) defined as

𝑤𝜆ℎ(𝑥̄𝑖 , 𝜆ℎ) =
𝑝(𝑥̄𝑖 , 𝜆ℎ)

∑𝐶𝑘=1 𝑝(𝑥̄𝑖 , 𝜆𝑘)
. (2.51)

In contrast to the technique developed by Evans and McCool [8], a path’s probability density again
becomes dependent on the wavelength it is propagated for, i.e. the PDF becomes

𝑝(𝑥̄, 𝜆) = 𝑝(𝜆) ⋅ 𝑝(𝑥̄ ∣ 𝜆), (2.52)

2.2. Spectral Light Transport 17

As hero wavelength sampling allows multiple wavelengths to propagate past non­specular materials
without computing additional light paths, this technique can show significant gains above naive spec­
tral rendering. Even so, no improvement is made to the rendering of perfectly specular wavelength­
dependent materials.

2.2.4. Spectral Gradient Sampling
A more recent development, only partially related to the work we have discussed so far, is based on the
seminal work of gradient­domain rendering [12, 15], which was recently adapted for spectral rendering
by Petitjean et al. [20]. We briefly cover gradient­domain rendering before we show its application to
spectral rendering.

Gradient­domain rendering is a technique where, while rendering an image, we additionally build
an estimate of the image’s gradient. When tracing a light path 𝑥̄ in a pixel 𝑖, most variations of the
technique generate a second, correlated light path in a neighboring pixel 𝑗 through a shift mapping

𝑥̄′ = 𝑇𝑖→𝑗(𝑥̄). (2.53)

The shift mapping is a bijective function that aims to keep both light paths 𝑥̄ and 𝑥̄′ correlated, even given
their different origins. Many different shift mappings have been proposed with different advantages for
different scenarios [12, 17]. A simple shift mapping defined by Kettunnen et al. [12] lets both paths
make similar choices at specular materials by sharing reflection half vectors. When two consecutive
diffuse scatterings occur, the paths are quickly reconnected. An estimate is then constructed for the
image gradient Δ𝑖𝑗, using the difference between the two paths’ measured contributions:

Δ𝑖𝑗 = ∫
Ω𝑖
(𝑓𝑖(𝑥̄) − 𝑓𝑗(𝑇𝑖→𝑗(𝑥̄))) |𝑇′𝑖→𝑗| 𝑑𝜇(𝑥̄) (2.54)

where |𝑇′𝑖→𝑗| is a Jacobian determinant to account for the change­of­variables that occurs between Ω𝑖
and Ω𝑗. Afterwards, a screened poisson reconstruction [3] is performed over the combined rendered
image and gradient estimate, likely recovering an image with significantly reduced error.

An adapted version of gradient­domain rendering was developed by Petitjean et al. [20] which in­
stead of an image gradient, directly estimates the spectral gradient of incoming radiance 𝐼 on a per­pixel
basis. The spectral gradient is defined as the measured difference between radiances 𝐼𝜆 and 𝐼𝜆′ for two
wavelengths 𝜆 and 𝜆′ = 𝜆+𝛿 separated by a small offset 𝛿. Application of this principle to Equation 2.55
results in the following formulation for the spectral gradient:

Δ𝜆𝜆′ = ∫
Ω𝜆
(𝑓(𝑥̄, 𝜆) − 𝑓(𝑆𝜆→𝜆′(𝑥̄), 𝜆′)) |𝑆′𝜆→𝜆′ | 𝑑𝜇(𝑥̄) (2.55)

where 𝑆𝜆→𝜆′ denotes a spectral shift mapping which shifts a light path with associated wavelength 𝜆 to
the shifted wavelength 𝜆′. This shift mapping is highly similar to the one used by Kettunen et al. [12],
but has both light paths originate at the same point, and the shift is only performed when a wavelength­
dependent phenomenom is encountered. Paths are similarly reconnected as two consecutive diffuse
materials are encountered. We illustrate this shift mapping in Figure 2.4.

𝜆
𝜆′

𝑎

𝑏
Dispersive material

Diffuse material

Sensor

Emitter

Base path

Shifted path

Figure 2.4: Spectral shift mappingOn an encounter with a dispersive medium at 𝑎, the shifted path is generated for wavelength
𝜆′, which is reconnected with the base path with wavelength 𝜆 on a second consecutive diffuse scattering at 𝑏.

Although spectral gradient sampling shows significant gains for a variety of scenarios, it is explicitly
noted by Petitjean et al. [20] to be an inherently inefficient technique for handling of non­uniform emis­
sion spectra. Should a main path’s wavelength sample be located at an emitter’s peak, then the shifted
path likely falls off said peak, and will contribute significantly less.

3
Problem Analysis

Having covered the relevant background material in Chapter 2, we can now properly describe the
potential problems our method aims to solve. Recall how we first noted in Section 1.2 that an estimator
for spectral Monte Carlo light transport explicitly requires a suitable distribution for sampling the spectral
domain Λ. Indeed, this distribution 𝑝(𝜆) becomes visible in the standard Monte Carlo estimator if, once
again, we decompose its distribution for sampling path­wavelength pairs as

𝑝(𝑥̄, 𝜆) = 𝑝(𝜆) ⋅ 𝑝(𝑥̄ ∣ 𝜆) (2.52)

The choice of 𝑝(𝜆)matters only if wavelength dependency occurs along a path, as we can otherwise just
propagate multiple wavelengths as discussed in Subsection 2.2.3. Optimally, the chosen distribution’s
sampling density is proportional to the integral’s value, i.e.

𝑝(𝜆) ∝ 𝐼𝑗 , (3.1)

as is generally the case with importance sampling. By necessity, however, many implementations
of spectral light transport, provided in renderers such as LuxCoreRender [1], Mental Ray [18], and
Mitsuba [35], leverage a uniform distribution, in which case proportionality would hold only if all wave­
lengths contribute equally. Such a situation is circumstantial at best, given the likely presence of non­
uniform spectra in a scene. We mentioned in Section 1.2 that, in their work on wavelength clustering,
Evans and McCool [8] leveragea scene distribution to alleviate this wavelength sampling problem.
They select one of a scene’s emitters, to leverage it’s SPD 𝑆(𝜆) for wavelength sampling. This strategy
naturally works well for single­emitter scenes, as it is then likely that

𝑆(𝜆) ∝∼ 𝐼𝑗 . (3.2)

Unfortunately, as we illustrate in Figure 3.1, such a strategymay not be a robust solution for rendering a
scene with multiple different emitters. Evans and McCool state that, in a multiple­emitter scenario, they
randomly select an emitter for sampling, which leads to the problem we discussed in Subsection 2.1.5.

𝑆

𝑆′

𝑆′(𝜆)

𝜆𝑖
𝜆𝑖

𝑆(𝜆)

𝜆𝑖

𝑆′(𝜆)

Dispersive material

Diffuse material

Sensor

Emitter

Full path

Dispersive paths

Figure 3.1: Problematic sampling strategy. A path is evaluated for a wavelength 𝜆𝑖 which was sampled from distribution 𝑆′(𝜆),
but instead encounters emitter 𝑆, and therefore hardly contributes energy as it falls off major contributing parts of 𝑆(𝜆).

19

20 3. Problem Analysis

When importance sampling, a poorly chosen distribution can lead to increased variance. If a path­
wavelength is sampled from one emitter’s distribution, and the path encounters another emitter with an
entirely different distribution, results are at best suboptimal. We do not know beforehand which emitter
our path encounters, which makes selecting the right sampling distribution difficult.

This is mirrored by a secondary problem Evans and McCool did not consider, which is the presence
of absorption through non­uniform reflectance or transmission along a light path, which would modify
the constitution of 𝐼𝑗 in a similar manner to non­uniform emission spectra. In the simplest scenario,
where we have a uniform emitter SPD, and our wavelength­dependent light path encounters a single
non­uniform reflectance spectrum 𝑅(𝜆) during scattering, we can naturally apply importance sampling,
given that

𝑅(𝜆) ∝∼ 𝐼𝑗 . (3.3)

If we introducemultiple non­uniform spectra along a path, the situation becomes all too familiar. Whichever
spectrum we select for importance sampling in this case ­ we do not know for certain which is or are
encountered beforehand ­ can potentially lead to a variance increase. We again illustrate a simple
scenario in Figure 3.2. Here, even uniform sampling would be a poor choice, as only a small range of
wavelengths will not be largely absorbed.

𝑅′(𝜆)

𝑅 𝑅′
𝜆𝑖

𝜆𝑖

𝑅(𝜆)

𝜆𝑖

𝑅′(𝜆)

Dispersive material

Diffuse material

Sensor

Emitter

Full path

Dispersive paths

Figure 3.2: Problematic sampling strategy. A path is evaluated for a wavelength 𝜆𝑖 which was sampled from distribution 𝑅′(𝜆),
but encounters a surface reflectance 𝑅, and therefore hardly contributes energy as it is largely absorbed as per 𝑅(𝜆).

These importance sampling strategies are indicative of a larger underlying problem. In simple sit­
uations, we can viably leverage a scene distribution that is suitable for importance sampling, but this
becomes increasingly difficult as more spectra are potentially involved in a path’s contribution. Both the
scenarios we have described are problematic on their own, but a realistic and complicated scene likely
contains many different variations and combinations of these scenarios. Furthermore, we have only
considered a single pixel. If we were to base a suitable distribution 𝑝(𝜆) on the spectral distributions
present in a scene, this might be suited for one pixel, but not another. Formally:

𝑝(𝜆) ∝∼ 𝐼𝑗 ↛ 𝑝(𝜆) ∝∼ 𝐼𝑘 ∶ 𝑗 ≠ 𝑘. (3.4)

which means we have to either consider many different pixel­dependent distributions, or find a single
distribution such that

∀𝑗 𝑝(𝜆) ∝∼ 𝐼𝑗 , (3.5)

the existence of which is highly unlikely, as it is almost trivial to create a scenario where different pixels
observe different parts of a scene. Given this, and the other factors we discussed, finding a suitable
wavelength sampling distribution clearly poses a difficult problem. To our knowledge, no method yet
exists that selects or generates a suitable distribution or set of distributions which, in all of the afore­
mentioned scenarios, proves sufficiently better than uniform wavelength sampling, and at the very
least will not perform worse. We expect significant gains from such a method, given the improvements
importance sampling is known [30] to provide.

4
Methodology

We now describe the formal basis of our method, which, as we will show, provides an efficient and
unbiased solution to the wavelength sampling problem we described in Chapter 3. With pre­estimated
spectral rendering, we provide a simple extension to spectral Monte Carlo light transport that first gener­
ates a sampling distribution of sufficient quality, such that we can then importance sample the spectral
domain. We will focus on deriving the different components of our method by extending a basic path
tracer, although our method is likely orthogonal to state­of­the­art methods such as hero wavelength
sampling [38] and spectral gradient sampling [20], and may be extended to fit their respective estima­
tors.

First, recall that a suitable distribution 𝑝(𝜆) preferably has a sampling density of such a shape that

∀𝑗 𝑝(𝜆) ∝∼ 𝐼𝑗 . (3.5)

To obtain an ideal sampling distribution for even a single pixel, we would have to know the value of
𝐼𝑗 beforehand. Although this does not sound inherently practical for obvious reasons, the concept
is actually useful to us. Consider that a direct estimate may prove to be extremely convenient for
importance sampling, as it incorporates the effects of different emission spectra, reflectance spectra,
and wavelength­dependent phenomena, and thus perfectly accomodates the different scenarios we
described in Chapter 3.

Following this, we propose to append two brief preprocessing stages to conventional light trans­
port algorithms. In the first stage, which we describe in Section 4.1, we generate a fast and rough
approximation of the image called the pre­estimate 𝐼. In the second stage, we pass this pre­estimate
through a reconstruction function 𝑟 which essentially filters and restricts the generated distributions.
We discussed in Subsection 2.1.5 that importance sampling becomes detrimental if a distribution is
of insufficient quality. As we wish to avoid potential bias, the reconstruction function, which we cover
extensively in Section 4.2, will act as a safeguard.

Pre­Estimate Reconstruction

𝐼𝑗

Estimate

𝑟(𝐼)𝑗 𝐼𝑗

𝜆 𝜆 𝜆

Figure 4.1: Pre­Estimated Rendering. For every pixel 𝑗, we compute a fast and rough approximation 𝐼𝑗, which we pass through
a reconstruction function 𝑟 for filtering, and afterwards importance sample for wavelengths, ultimately rendering 𝐼𝑗 more efficiently.

21

22 4. Methodology

After preprocessing, we draw distributions from the reconstructed pre­estimate 𝑟(𝐼) for wavelength
sampling. We modify a basic estimator to leverage pixel­specific distributions as

𝐼𝑗 =
1
𝑁

𝑁

∑
𝑖=1

𝑓𝑗(𝑥̄𝑖 , 𝜆𝑖)
𝑝𝑗(𝑥̄𝑖 , 𝜆𝑖)

, (4.1)

where we decompose 𝑝𝑗(𝑥̄, 𝜆), in a manner similar to Equation 2.52, as

𝑝𝑗(𝑥̄, 𝜆) = 𝑟(𝐼)𝑗(𝜆) ⋅ 𝑝(𝑥̄ ∣ 𝜆). (4.2)

If we return to Equation 3.5, we note that, although it is unlikely that we could find a distribution that is
useful across all pixels, we are instead generating a large set of distributions such that

∀𝑗 ∃ 𝑝𝑗(𝜆) ∶ 𝑝𝑗(𝜆) ∝∼ 𝐼𝑗 . (4.3)

We illustrate the basic concept of our method in Figure 4.1. Finally, in addition to the two preprocessing
stages we have introduced, we describe an extension to this concept where we iteratively apply each
stage in layers in Section 4.3.

4.1. A Low­Cost Pre­Estimate
Given that 𝐼 should account for all scenarios 𝐼 would account for, we essentially recycle the basic
Monte Carlo estimator for the pre­estimate, but must consider that this may not be inherently useful. In
sufficently complicated scenes with dispersive effects, large sample rates may be required for the pre­
estimate to even be usable. Unfortunately, any time spent preprocessing is bound to introduce a sig­
nificant (but constant) runtime overhead into our method, which negatively impacts the improvements
we can bring, especially for low sample rates. To reduce this overhead, we introduce cost­lowering
optimizations, and rely heavily on the reconstruction function to recover usable distributions. To gen­
erate the pre­estimate, we query an arbitrary light transport estimator (a path tracer in our case) with
a separate number of samples 𝑁̃, and additionally allow this to be performed in a lower resolution.
Formally, we define the pre­estimate as

𝐼↓𝑗 =
1
𝑁̃

𝑁̃

∑
𝑖=1

𝑓↓𝑗 (𝑥̄𝑖 , 𝜆𝑖)
𝑝(𝑥̄𝑖 , 𝜆𝑖)

, (4.4)

where ↓
𝑗 indicates a pixel coordinate in a lower­resolution image, which will have to be resampled. We

take resampling into account later on in the reconstruction function, but briefly cover the potential impact
resolution has on error in the pre­estimate.

It stands to reason that considerable high­frequency detail is lost in lower resolution images, espe­
cially for scene boundaries and minute prismatic effects. We compare the different convergence rates
of possible high, medium and low resolution estimators in Figure 4.2, where we show that, in essence,
lower­resolution estimators are biased. As we briefly mentioned in Subsection 2.1.2, bias can at times
be advantageous. Although the low­resolution estimators in this comparison have limited potential in
high­frequency areas, the introduced bias leads to significantly (and temporarily) lower error especially
for low­frequency areas, which we leverage.

This error decrease can occur as, at the same time an image’s resolution is downscaled by a factor 𝑐,
we can increase the sample rate 𝑁̃ by the same factor, essentially keeping the total number of samples
(across the entire image), and therefore render times, equal. Following on the convergence rate for an
estimator we covered in Subsection 2.1.2, such a lower­resolution pre­estimate is bound by:

𝜎[𝐼↓𝑗] =
1
√𝑐𝑁̃

𝜎 [
𝑓↓𝑗 (𝑥̄, 𝜆)
𝑝(𝑥̄, 𝜆)] . (4.5)

If we assume a worst case scenario, there is some constant 𝑑 ≥ 1 such that

𝜎 [
𝑓↓𝑗 (𝑥̄, 𝜆)
𝑝(𝑥̄, 𝜆)] = 𝑑 ⋅ 𝜎 [

𝑓𝑗(𝑥̄, 𝜆)
𝑝(𝑥̄, 𝜆)] , (4.6)

4.2. The Reconstruction Function 23

Reference

A

B

A B

H
ig
h

MSE: 0.0289 MSE: 0.0048

M
ed

.

MSE: 0.0590 MSE: 0.0006

Lo
w

MSE: 0.0962 MSE: 0.0005

10−2

10−1

Er
ro
r(
M
SE

)

A

High Medium Low

100 101 102
10−3
10−2
10−1

Time (s)

Er
ro
r(
M
SE

)

B

Figure 4.2: Convergence rates. We compare convergence rates of high (256 × 256), medium (128 × 128) and low (64 × 64)
resolution estimators, paired with linear resampling, over two insets 𝐴 and 𝐵 of a high­resolution reference produced with an
unbiased path tracer (𝑁 ≈ 200𝐾). Both Error and Time axes are logarithmic. Inset 𝐴 demonstrates that the unbiased high
resolution estimator is the sole estimator to converge in high­frequency areas, while inset 𝐵 demonstrates that the biased low­
resolution estimators provide a temporary advantage in low­frequency areas.

i.e. a lower­resolution integrand never directly exhibits a lower standard deviation than a normal­
resolution integrand. Given this, a low­resolution pre­estimate that still manages to be advantageous
must then be bound by the inequality

1
√𝑁̃

𝜎 [
𝑓𝑗(𝑥̄, 𝜆)
𝑝(𝑥̄, 𝜆)] ≥

1
√𝑐𝑁̃

𝜎 [
𝑓↓𝑗 (𝑥̄, 𝜆)
𝑝(𝑥̄, 𝜆)] ,

≥ 𝑑
√𝑐𝑁̃

𝜎 [
𝑓𝑗(𝑥̄, 𝜆)
𝑝(𝑥̄, 𝜆)] , (4.7)

which we reformulate as

1
√𝑁̃

≥ 𝑑
√𝑐𝑁̃

,

√𝑐
√𝑁̃

≥ 𝑑
√𝑁̃

, (4.8)

to obtain
√𝑐 ≥ 𝑑. (4.9)

In other words, in order for a lower­resolution pre­estimate to be advantageous, this inequality must
hold. Given that 𝑐 and 𝑑 are not linearly related, this is only the case when 𝑑 is sufficiently small, as is
demonstrated in a low­frequency area like inset𝐵, in Figure 4.2. Wemay be able to use lower­resolution
estimators to our advantage in similar scenarios, and will evaluate this in Chapter 5.

4.2. The Reconstruction Function
The reconstruction function 𝑟 receives an unfiltered and erroneous pre­estimate 𝐼, which is likely too
approximate for sampling directly, and is potentially of a different resolution than the intended target
image. As such, we leverage 𝑟, which fulfills several purposes, for recovering suitable distributions, by
decomposing it as

𝑟(𝐼) = 𝑟𝑟𝑒𝑠(𝑟𝑑𝑒𝑓(𝑟𝑓𝑖𝑙𝑡(𝐼))). (4.10)

We can considerably reduce the estimation error through an application of image filtering techniques
with 𝑟𝑓𝑖𝑙𝑡, and afterwards apply edge­aware resampling using 𝑟𝑟𝑒𝑠. In addition, we apply a defensive
sampling technique, which ensures that the final distributions are at least adequate for importance
sampling, through 𝑟𝑑𝑒𝑓.

24 4. Methodology

4.2.1. Filtering and Resampling
Of the selection of image noise filtering algorithms available, the most adaptable is currently non­local
means filtering (NL­means) [5], which we thus use for the reconstruction function. This is an edge­
aware filter which is considered (relatively) computationally expensive, and may introduce significant
overhead, so we additionally consider the more efficient joint bilateral filter [7, 21]. This is an image
filter that leverages a secondary guidance image for edge detection. Fortunately, we are in a situation
where suitable guidance images, such as direct depth and normals, are readily available.

We first demonstrate the NL­means filter in the reconstruction function. NL­means filtering lever­
ages the concept of image patches, which are small collections of pixels throughout an image, and
compares these patches to extract information. We use 𝐴 to represent the total area of an image (i.e.
the area spanning all pixels), and define 𝑗 and 𝑘 as two separate pixels in 𝐴. The filter becomes

𝑟𝑓𝑖𝑙𝑡(𝐼↓)𝑗 =
1
𝑤𝑗
∑
𝑘∈𝐴

𝐺𝜎(‖𝑃𝑘 − 𝑃𝑗‖2) 𝐼↓𝑘

∶ 𝑤𝑗 =
1
𝑤𝑗
∑
𝑘∈𝐴

𝐺𝜎(‖𝑃𝑘 − 𝑃𝑗‖2),
(4.11)

where 𝐺𝜎 is a simple (discrete) gaussian filter with standard deviation 𝜎. The weight 𝑤𝑗 is a normaliza­
tion factor that serves to ensure the sum of all weights is equal to 1, even in a discrete filter. 𝑃𝑗 and 𝑃𝑘
are image patches, which are local neighborhoods of size 2𝑓 + 1 × 2𝑓 + 1 of the form

𝑃𝑗,𝑘 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐼↓𝑗−𝑓,𝑘−𝑓 … 𝐼↓𝑗+𝑓,𝑘−𝑓

⋮ ⋱ ⋮

𝐼↓𝑗−𝑓,𝑘+𝑓 … 𝐼↓𝑗+𝑓,𝑘+𝑓

⎤
⎥
⎥
⎥
⎥
⎦

. (4.12)

An important detail of NL­means filtering is that, formally, as it is applied to a full image, it considers
and compares patches across the entire image. Given that this may become extremely costly for even
moderately sized images, implementations typically restrict the area of 𝐴 around a pixel 𝑗. Buades et
al. [5] mention that typical area sizes range between 15 × 15 and 21 × 21 pixels, and consider 𝑓 = 5
and 𝑓 = 7 to be suitable matching neighborhood sizes.

We now consider joint bilateral filtering, which was simultaneously developed by Eisemann and
Durand [7] and Petschnigg et al. [21], and which may provide faster image filtering, as it only considers
a limited local neighborhood Ω around a specific pixel. We define the joint bilateral filter as

𝑟𝑓𝑖𝑙𝑡(𝐼↓)𝑗 =
1
𝑤𝑗
∑
𝑘∈Ω

𝐺𝜎𝑠(‖𝑘 − 𝑗‖) 𝐺𝜎𝑟(‖𝐼′𝑘 − 𝐼′𝑗‖) 𝐼↓𝑘

∶ 𝑤𝑗 = ∑
𝑘∈Ω

𝐺𝜎𝑠(‖𝑘 − 𝑗‖) 𝐺𝜎𝑟(‖𝐼′𝑘 − 𝐼′𝑗‖),
(4.13)

where 𝐺𝜎𝑠 and 𝐺𝜎𝑟 are range and spatial gaussian filters with respective standard deviations 𝜎𝑠 and
𝜎𝑟, and 𝑤𝑗 again serves as a normalization factor. As we previously mentioned, joint bilateral filtering
leverages a secondary guidance image, which we denote as 𝐼′, for which we query secondary scene
information. Fortunately, most renderer implementations provide access to a variety of guidance image
candidates, such as depth, normals, and reflectance values. As a single candidate may not provide an
optimal result, we combine 𝑛 different guidance images 𝐼′1, … , 𝐼′𝑛, such that

𝐼′𝑗 =
𝑛

∑
𝑖=1
𝑤𝑖 (𝐼′𝑖)𝑗 ∶

𝑛

∑
𝑖=1
𝑤𝑖 = 1 (4.14)

where 𝑤1, … , 𝑤𝑛 are specific chosen weights for the different guidance images, although an average
likely suffices. We illustrate an example combination of guidance images in Figure 4.3.

4.3. Layered Pre­Estimates 25

Depth Normals Albedo Roughness Combination Reference

Figure 4.3: Guidance images. We show guidance image candidates for the joint bilateral filter. Although no individual guidance
image correctly identifies all edges, these are all present in the combined guidance image.

We perform resampling in a similar manner, in cases where the pre­estimate is generated in a
lowered resolution, as we opt for a slightly modified version of a edge­preserving joint bilateral upsam­
pling [13] technique, instead of linear resampling. We define resampling as

𝑟𝑟𝑒𝑠(𝐼↓)𝑗 =
1
𝑤𝑗
∑
𝑘∈Ω

𝐺𝜎𝑠(‖𝑘↓ − 𝑗↓‖) 𝐺𝜎𝑟(‖𝐼′𝑘 − 𝐼′𝑗‖) 𝑟𝑑𝑒𝑓(𝐼↓)𝑘↓

∶ 𝑤𝑗 = ∑
𝑘∈Ω

𝐺𝜎𝑠(‖𝑘↓ − 𝑗↓‖) 𝐺𝜎𝑟(‖𝐼′𝑘 − 𝐼′𝑗‖),
(4.15)

where 𝑗↓ and 𝑘↓ again denote pixel­coordinates in the lower­resolution image. For direct queries to 𝐼↓,
we apply linear resampling.

4.2.2. Defensive Sampling
As previously mentioned, it is vital that the distribution 𝑝𝑗(𝜆) is sufficiently proportionate to the spec­
tral radiance we are estimating, as importance sampling may otherwise become detrimental. Unfor­
tunately, we have no guarantees of this, especially given that we generate said distribution using a
biased estimator. To address these concerns, we apply the defensive sampling technique we covered
in Subsection 2.1.5, mixing recovered spectral distributions with a base distribution we consider to be
safe. Although a uniform distribution might suffice, not necessarily all wavelengths are guaranteed to
partake in a scene, depending on the specific configuration of emitters. Assuming we can query all of
a scene’s emitter SPDs or other representative spectra during preprocessing, we instead generate a
base distribution 𝑏 as

∀𝜆 𝑏(𝜆) = {
1 if ∃ 𝑆 ∶ 𝑆(𝜆) ≠ 0,
0 else.

(4.16)

The mixture then consists of a simple interpolation

𝑟𝑑𝑒𝑓(𝐼↓)𝑗 = 𝛼 ⋅
𝑏
‖𝑏‖ + (1 − 𝛼) ⋅

𝑟𝑓𝑖𝑙𝑡(𝐼↓)𝑗
‖𝑟𝑓𝑖𝑙𝑡(𝐼↓)𝑗‖

. (4.17)

Depending on the choice of 𝛼, the effectiveness of our technique may be reduced in the case of a good
estimate, or improved in the case of a bad estimate. We evaluate a good choice of 𝛼 in Chapter 5. We
note that the safe distribution 𝑏 is potentially problematic if we simulate fluorescent effects, as we could
then not predict which wavelengths we should evaluate based on emitter SPDs alone. Fortunately, our
focus lies on dispersive effects, and fluorescence remains outside the scope of this thesis.

4.3. Layered Pre­Estimates
Following on the three­stage defintion of our method, we define a natural extension where we iter­
atively generate pre­estimates of an increasing resolution. Consider that, if use of a pre­estimated
considerably improves the convergence rate of our actual estimate, a second pre­estimate may logi­
cally improve the first beyond an increased sample rate 𝑁̃, while a third can again improve the second,
and so on. We illustrate the concept of a layered pre­estimate in Figure 4.4.

While we can constrain ourselves to a fixed number of layers, we instead provide a generalized
definition using a list of 𝐾 consecutive pre­estimates

𝐼 = 𝐼1, … , 𝐼𝐾 , (4.18)

26 4. Methodology

𝐼0𝑗 𝑟(𝐼0)𝑗 𝐼1𝑗 𝑟(𝐼1)𝑗 𝐼2𝑗 𝑟(𝐼2)𝑗 𝐼𝑗

Figure 4.4: Layered Pre­Estimate. For every pixel 𝑗, we consecutively compute a pre­estimate, pass it through the reconstruc­
tion function, and feed the resulting distribution into the next pre­estimate.

such that the 𝑘th pre­estimate uses an estimator of the form

𝐼𝑘𝑗 =
1
𝑁̃𝑘

𝑁̃𝑘

∑
𝑖=1

𝑓↓𝑗 (𝑥̄𝑖 , 𝜆𝑖)
𝑝𝑘𝑗 (𝑥̄𝑖 , 𝜆𝑖)

, (4.19)

where 𝑝𝑘𝑗 (𝑥̄, 𝜆) is another pixel­specific PDF, which in turn queries the 𝑘 − 1th pre­estimate as

𝑝𝑘𝑗 (𝑥̄, 𝜆) = {
𝑟(𝐼𝑘−1)𝑗(𝜆) ⋅ 𝑝(𝑥̄ ∣ 𝜆) 𝑘 > 1,
𝑝(𝜆) ⋅ 𝑝(𝑥̄ ∣ 𝜆) 𝑘 = 1. (4.20)

Unfortunately, there is one potential issue that restricts the effectiveness of layering. As consecutive
layers are used to estimate the layers above them, if any one layer were to result in a poor set of
distributions, then following layers may accumulate this error. Although we apply defensive sampling to
counteract poor distributions for a single layer, the problem will become significantly more pronounced
for extremely low­resolution layers, which are unable to correctly estimate scene discontinuities. As
such, we are forced to increase defensive sampling throughout lower layers, i.e.

𝛼𝑘−1 = 𝑚 ⋅ 𝛼𝑘 ∶ 𝑚 > 1. (4.21)

Greater use of defensive sampling will limit both negative and positive impacts of lower layers, which
means errors are less likely to accumulate, but additionally means that using many layers may not be
more effective than simply taking more samples. Whether this is the case, and how many layers we
should viably use, is evaluated in Chapter 5.

5
Results

We are now at the point where we can evaluate our method and benchmark its effectiveness when
pitted against different versions of the problems we described in Chapter 3. First, we provide brief
details on our implementation. Then, in Section 5.1, we evaluate the influences of our method’s different
parameters. Finally, in Section 5.2, we apply our method against a variety of problem scenarios and
provide a comparative benchmark that includes state­of­the­art methods.

Throughout this chapter, we provide error metrics in the form of mean squared error (MSE), which
we described in Subsection 2.1.3, as this provides a good overview of both convergence rates and
eventual bias (which we hope to avoid). In addition, we may at times evaluate the structural similarity
index (SSIM) [34], which is a metric to establish the perceived noise of an image. Generally speaking,
lower MSE is better, and opposite thereof, higher SSIM is better.

We implement our method in Mitsuba [35]: a conventional C++­based renderer commonly used
within the computer graphics research community. Although Mitsuba is not in itself a true spectral
renderer, we have access to amodified version that supports full spectral rendering with light dispersion,
and includes state­of­the­art techniques such as hero wavelength sampling [38] and spectral gradient
sampling [20]. Mitsuba employs a discrete representation for spectra, which we configure in the same
manner as Petitjean et al. [20], who used 15 equally sized bins. For a comprehensive overview of
Mitsuba’s components, refer to the user reference manual [37] and accompanying API reference [36].

We extend Mitsuba’s standard path tracer, which itself extends the base MonteCarloIntegrator
class, as PreEstimatedIntegrator. As illustrated in a basic UML activity diagram in Figure 5.1,
we prepend our method’s components to the path tracer, by implementing the virtual preprocess()
function. The underlying integrator provides us with direct access to Mitsuba’s sophisticated multi­
threading and networking layers, which we do not cover further for sobriety. We reuse the path tracer’s
implementation of Li() for radiance queries. After generating and reconstructing the pre­estimate, we
deserialize and transfer the resulting image into Mitsuba’s networking layer for use during rendering.
We override the path tracer’s implementations of render() and renderBlock() so we can obtain

preprocess() render()

Li()Pre­estimate

preEstimate() reconstruct() renderBlock()

called for

32 × 32 px.

blocks.

returns rendered

32 × 32 px.

block.

takes 𝑁 spp.

called 𝐾
times

creates

takes 𝑁̃𝑘 spp.

provides

distribution

provides

distribution

Figure 5.1: Activity flow. The basic activity flow of PreEstimatedIntegrator. Components concerned with threading,
post­processing and networking are left out purposefully.

27

28 5. Results

and sample spectral distributions from the pre­estimate during rendering.

5.1. Parameter Evaluation
We now carefully and systematically evaluate the effects of the different parameters of our method.
In order to establish consistent results for a set of different problems, we compare convergence rates
over three select insets 𝐴, 𝐵 and 𝐶 of a single test scene detailed in Figure 5.2.

Reference Inset A Inset B Inset C

A B C

Figure 5.2: Parameter Evaluation Scene. This scene displays absorption inside dispersive objects, illuminated by a detailed
environment map. RGB­based wood textures are obtained from FreePBR [9] and the environment map is obtained from HDRI
Haven [39]. Reference produced in Mitsuba [35] using an unbiased path tracer (𝑁 ≈ 500𝐾). We evaluate the error over three
selected insets which focus on areas of interest in the scene. Inset 𝐴 and 𝐵 both demonstrate significant, non­local, and non­
uniform transmittance and absorption, and should be well suited to our method. Inset 𝐶 demonstrates subtle prismatic effects,
which may prove challenging when we use a low­resolution pre­estimate.

As the configuration of the different components of the reconstruction function likely depends on
the configuration of the pre­estimate, we first evaluate parameters of the former using three equal­time
configurations of the latter: H (scale = 1/2, 𝑁̃ = 64), M (scale = 1/4, 𝑁̃ = 256) and L (scale = 1/8, 𝑁̃ =
1024). We found in preliminary tests that greater scaling become too costly, and smaller scaling offers
reduced benefits in certain areas. For defensive sampling, we select 𝛼 = 0.1 as a suitable value
based on literature [19]. For bilateral filtering and resampling, we manually select the range parameter
𝜎𝑟 = 0.015 as a good fit for our particular guidance images.

Configuration 𝐻 𝑀 𝐿

Scale (𝑐) 1/2 1/4 1/8
Samples (𝑁̃) 64 256 1024

Filtering (𝜎𝑠) 2.5 1.5 0.75
Resampling (𝜎𝑠) 2.5 2.0 2.5

Table 5.1: Filtering and resampling parameters. Selected spatial filter parameters for filtering and resampling, for three equal­
time configurations of the pre­estimate.

We evaluate filtering and resampling function parameters for each configuration in Figure 5.3 and
Figure 5.4. At 𝑡 > 25𝑠, NL­means filtering adds significant overhead when compared to joint bilateral
filtering (𝑡 ≈ 14𝑠), while providing similar error reductions. We select the joint bilateral filter going
forward, and list the selected filtering and resampling 𝜎𝑠 parameter values in Table 5.1. We compare
convergence rates of the three configurations with these parameters in Figure 5.5. Although differences
are small, we select the medium­resolution configuration 𝑀, as this is the most consistent across all
three insets. Using this configuration, we then show the influence of the 𝛼 parameter for defensive
sampling in Figure 5.6. We select 𝛼 = 0.1 as, although 𝛼 = 0.05 performs best for two out of three
insets, it performs significantly worse than any higher 𝛼 value in the remaining inset. In Figure 5.7, we
determine that 𝑁̃ = 256 provides a good tradeoff between overhead and good convergence rates, as
any higher values show diminishing returns.

Finally, in Figure 5.8, we evaluate the layering approach we described in Section 4.3. As we noted
there, we increase defensive sampling 𝛼 for each layer above the starting layer with a factor𝑚 = 2, and
similarly double the resolution downscaling. We keep sample rates consistent across layers. Based
on results, we select 𝐾 = 3 as a suitable number of layers.

5.1. Parameter Evaluation 29

H : 𝑐 = 1/2, 𝑁 = 64 M : 𝑐 = 1/4, 𝑁 = 256 L : 𝑐 = 1/8, 𝑁 = 1024

13.5

14

14.5

Ti
m
e
(s
)

0.5 1 1.5 2 2.5

0.02

0.03

0.04

Spatial filter (𝜎)

Er
r(
M
SE

)

(a) Time and error of joint bilateral filtered full pre­estimate against a
varying spatial 𝜎.

50

100

Ti
m
e
(s
)

0.5 1 1.5 2 2.5

0.02

0.03

0.04

Spatial filter (𝜎)

Er
r(
M
SE

)

(b) Time and error of NL­means filtered full pre­estimate against a
varying spatial 𝜎.

0.5 1 1.5 2 2.5

0.01

0.02

Spatial filter (𝜎)

Er
r(
M
SE

)

(c) Error of joint bilateral filtered pre­estimate on inset A.

0.5 1 1.5 2 2.5

0.01

0.02

Spatial filter (𝜎)

Er
r(
M
SE

)

(d) Error of NL­means filtered pre­estimate on inset A.

0.5 1 1.5 2 2.5

0.05

0.1

0.15

Spatial filter (𝜎)

Er
r(
M
SE

)

(e) Error of joint bilateral filtered pre­estimate on inset B.

0.5 1 1.5 2 2.5

0.05

0.1

0.15

Spatial filter (𝜎)

Er
r(
M
SE

)

(f) Error of NL­means filtered pre­estimate on inset B.

0.5 1 1.5 2 2.5

0.04

0.06

0.08

Spatial filter (𝜎)

Er
r(
M
SE

)

(g) Error of joint bilateral filtered pre­estimate on inset C.

0.5 1 1.5 2 2.5

0.04

0.06

0.08

Spatial filter (𝜎)

Er
r(
M
SE

)

(h) Error of NL­means filtered pre­estimate on inset C.

Figure 5.3: Filtering function evaluation. We evaluate spatial filter parameters for both joint bilateral and NL­means filtering.
Wemanually select the bilateral filter’s range parameter 𝜎𝑟 = 0.015, as this suits our guidance image well. We compare runtimes
and errors for three different (high, medium and low­resolution) scalings of the pre­estimate. Based on results, we select joint
bilateral filtering as a suitable, low­cost filter, especially given the significant overhead NL­means filtering introduces. We list the
selected filtering parameters for each configuration in Table 5.1.

30 5. Results

H : 𝑐 = 1/2, 𝑁 = 64 M : 𝑐 = 1/4, 𝑁 = 256 L : 𝑐 = 1/8, 𝑁 = 1024

0.5 1 1.5 2 2.5
1.6

1.8

2

2.2

2.4
⋅10−2

(𝐻)
(𝑀)

(𝐿)

Spatial filter (𝜎)

Er
r(
M
SE

)

0.5 1 1.5 2 2.5

14

16

18

(𝐻)(𝑀)(𝐿)

Spatial filter (𝜎)

Ti
m
e
(s
)

(a) Time and error of joint bilateral resampled full pre­estimate for varying spatial 𝜎, compared to linear resampling.

0.5 1 1.5 2 2.5

0.6

0.8

1

⋅10−2
(𝐻)

(𝑀)

(𝐿)

Spatial filter (𝜎)

Er
r(
M
SE

)

(b) Error of joint bilateral resampled pre­estimate on inset A,
compared to linear resampling.

0.5 1 1.5 2 2.5
3.4

3.6

3.8

⋅10−2

(𝐻)

(𝑀)

(𝐿)

Spatial filter (𝜎)

Er
r(
M
SE

)

(c) Error of joint bilateral resampled pre­estimate on inset B,
compared to linear resampling.

0.5 1 1.5 2 2.5

3.6

3.8

4
⋅10−2

(𝐻)(𝑀)

(𝐿)

Spatial filter (𝜎)

Er
r(
M
SE

)

(d) Error of joint bilateral resampled pre­estimate on inset C,
compared to linear resampling.

Figure 5.4: Resampling function evaluation. We evaluate the spatial filter parameter for joint bilateral resampling, in compari­
son to linear resampling, which is dot­marked for a single 𝜎 in each figure. We manually select the range parameter 𝜎𝑟 = 0.015,
as this suits our guidance image well. We compare runtimes and errors for three different (high, medium and low­resolution)
scalings of the pre­estimate. We list the selected resampling parameters for each configuration in Table 5.1.

5.1. Parameter Evaluation 31

H : 𝑐 = 1/2, 𝑁 = 64 M : 𝑐 = 1/4, 𝑁 = 256 L : 𝑐 = 1/8, 𝑁 = 1024

102 103

10−2

10−1

Time (s)

Er
r(
M
SE

)

(a) Time against error over full image, for different scalings.

102 103

10−2

10−1

Time (s)

Er
r(
M
SE

)

(b) Time against error over inset A, for different scalings.

102 103
10−1

100

Time (s)

Er
r(
M
SE

)

(c) Time against error over inset B, for different scalings.

102 103
10−1

100

Time (s)

Er
r(
M
SE

)

(d) Time against error over inset C, for different scalings.

Figure 5.5: Scaling configuration evaluation. We compare use of the different pre­estimate scaling configurations on final
estimate convergence rate, given use of the reconstruction filter results listed in Table 5.1. Although differences are at best
minute (and at worst indistinguishable), we select the medium configuration𝑀 as this provides consistent results across all three
insets.

𝛼 = 0.05 𝛼 = 0.1 𝛼 = 0.2 𝛼 = 0.4

101.8 102 102.2 102.4 102.6

10−1

100

Time (s)

Er
r(
M
SE

)

(a) Time against error over full image, for different 𝛼.

101.8 102 102.2 102.4 102.6

10−1

100

Time (s)

Er
r(
M
SE

)

(b) Time against error over inset A, for different 𝛼.

101.8 102 102.2 102.4 102.6

10−0.5

100

100.5

Time (s)

Er
r(
M
SE

)

(c) Time against error over inset B, for different 𝛼.

101.8 102 102.2 102.4 102.6

10−0.5

100

100.5

Time (s)

Er
r(
M
SE

)

(d) Time against error over inset C, for different 𝛼.

Figure 5.6: Defensive sampling evaluation. We compare the influence of different levels of the defensive mixture 𝛼 parameter
through. We have previously used 𝛼 = 0.1, based on literature [19], and now establish this as a suitable value. Lower 𝛼
increases error in inset 𝐶, while higher 𝛼 increases error in insets 𝐴 and 𝐵.

32 5. Results

𝑁̃ = 64 𝑁̃ = 128 𝑁̃ = 256 𝑁̃ = 512

102 103
10−2

10−1

Time (s)

Er
r(
M
SE

)

(a) Time against error over full image, for different 𝑁.

102 103
10−2

10−1

Time (s)

Er
r(
M
SE

)

(b) Time against error over inset A, for different 𝑁.

102 103

10−1

100

Time (s)

Er
r(
M
SE

)

(c) Time against error over inset B, for different 𝑁.

102 103

10−1

100

Time (s)

Er
r(
M
SE

)

(d) Time against error over inset C, for different 𝑁.

Figure 5.7: Sample rate parameter evaluation. We compare the influence of different sample rates 𝑁̃ for the pre­estimate.
Based on results, we establish 𝑁̃ = 256 as a suitable value. Higher pre­estimate sample rates provide diminishing returns and
introduce significant overhead, which would make our method unsuited for rendering with low sample rates.

𝐾 = 1 𝐾 = 2 𝐾 = 3 𝐾 = 4

101.8 102 102.2 102.4 102.6

10−1

Time (s)

Er
r(
M
SE

)

(a) Time against error over full image, for different 𝐾.

101.8 102 102.2 102.4 102.6

10−1

Time (s)

Er
r(
M
SE

)

(b) Time against error over inset A, for different 𝐾.

101.8 102 102.2 102.4 102.6

10−0.5

100

100.5

Time (s)

Er
r(
M
SE

)

(c) Time against error over inset B, for different 𝐾.

101.8 102 102.2 102.4 102.6

10−0.5

100

100.5

Time (s)

Er
r(
M
SE

)

(d) Time against error over inset C, for different 𝐾.

Figure 5.8: Layering parameter evaluation. We compare the influence of different numbers of pre­estimate layers 𝐾. Based
on results, we select 𝐾 = 3 as a suitable number of layers. We note that, although layering has a diminished impact due to the
increased defensive sampling, it garners larger improvements for low sample rates than an increased 𝑁̃ would, as it impacts the
initial overhead of our method less.

5.2. Comparative Results 33

5.2. Comparative Results
We construct a set of test scenes to describe both the problems we covered in Chapter 3, as well as
problems comparable methods are equipped to handle. As our method emphasises the handling of
non­uniform spectra, we keep all scenes geometrically identical, but varymaterial and emitter properties
using sets of measured non­uniform emission and reflectance spectra. We display these spectra and
the accompanying constructed scenes in Figure 5.9.

We first compare our method against standard path tracing in Figure 5.10, for three simple scenes.
Afterwards, we separately compare our method against comparable methods in scenes tailored to
each. For example, in Figure 5.11, we show convergence rates of our method and the emitter impor­
tance sampling technique briefly mentioned by Evans et al. [8], for single andmultiple emitter scenarios,
reflecting the issues we discussed in Chapter 3. Then, we compare our method with state­of­the­art
techniques Hero Wavelength Sampling [38] and Spectral Gradient Sampling [20] in Figure 5.12 and
Figure 5.13, respectively. We additionally provide timings for standard path tracing, hero wavelength
sampling, and our method in Table 5.2. Finally, in Figure 5.14, we revisit the insets we used in Sec­
tion 5.1. We reserve any discussion of obtained results for Chapter 6.

400 450 500 550 600 650 700
0

10

20

Wavelength (𝜆)

R
el
at
iv
e
po

w
er

2450𝐾 2700𝐾 5900𝐾

(a) Emission spectra are obtained from the Light Spectral Power Distribution Database
(LSPDD) under a CC­Y­NC­ND 2.5 CA License [26].

400 450 500 550 600 650 700
0

0.2

0.4

0.6

0.8

Wavelength (𝜆)

R
el
at
iv
e
re
fle

ct
an

ce

Red Orange­yellow Green

(b) Reflectance spectra are obtained from MacBeth Color Checker data [6].

27
00

K

59
00

K

O
ra
ng

e­
ye

llo
w

M
ul
tip

le
em

itt
er
s

G
re
en

,s
m
oo

th
er

G
re
en

,r
ou

gh
er

U
ni
fo
rm

,f
ro
st
ed

R
ed

,f
ro
st
ed

(c) All references are produced in Mitsuba [35] with
an unbiased path tracer (𝑁 ≈ 200𝐾).

Figure 5.9: Test scenes. We use a set of test scenes that leverage different mixtures of the emitter and reflectance spectra
displayed in Figures 5.9a­5.9b, as well as different levels of surface roughness, but are otherwise identical.

spp. 128 256 512 1024 2048 4096 8192

Path, time (s) 27.53 54.69 107.31 214.02 427.32 857.34 1699.23
Ours, time (s) 33.91 61.25 114.94 223.53 441.34 872.404 1730.78
Hero, time (s) 42.50 82.54 163.02 322.93 644.25 1294.40 2566.38

Ours, overhead (%) +23.17 +12.00 +7.11 +4.44 +3.28 +1.76 +1.86
Hero, overhead (%) +54.38 +51.11 +51.92 +50.89 +50.77 +50.98 +51.03

Table 5.2: Timings. We compare the runtimes of standard path tracing, our method, and hero wavelength sampling [38], for the
Green, rougher scene, essentially showcasing the comparatively diminishing overhead of our method.

34 5. Results

Reference Inset
Pa

th

MSE: 0.413 MSE: 0.094 MSE: 0.019

Pr
e

MSE: 0.115 MSE: 0.026 MSE: 0.005

64 spp. 256 spp. 1024 spp.

10−3

10−2

10−1

Er
ro
r(
M
SE

)

Path Pre

101 102 103
10−0.4

10−0.2

100

Time (s)

Q
ua

lit
y
(S
SI
M
)

Reference Inset

Pa
th

MSE: 0.0284 MSE: 0.0054 MSE: 0.0011

Pr
e

MSE: 0.0101 MSE: 0.0024 MSE: 0.0005

64 spp. 256 spp. 1024 spp.

10−4

10−3

10−2

Er
ro
r(
M
SE

)

Path Pre

101 102 103

10−0.5

100

Time (s)

Q
ua

lit
y
(S
SI
M
)

Reference Inset

Pa
th

MSE: 0.250 MSE: 0.056 MSE: 0.011

Pr
e

MSE: 0.138 MSE: 0.032 MSE: 0.007

64 spp. 256 spp. 1024 spp.

10−3

10−2

10−1

Er
ro
r(
M
SE

)

Path Pre

101 102 103

10−0.4

10−0.2

100

Time (s)

Q
ua

lit
y
(S
SI
M
)

Figure 5.10: Comparison against standard path tracing. We compare the effectiveness of our method (Pre) against standard
path tracing (Path), for three non­uniform spectra (2700k, 5900k,Orange­yellow). We show visual comparisons of both methods,
as well as convergence plots (all axes logarithmic). Our method shows significant improvements in performance over standard
path tracing in all three comparisons, which involve non­uniform emission, reflectance, and transmittance.

5.2. Comparative Results 35

Reference Inset

Si
ng

le
M
ul
tip

le
Pa

th

MSE: 0.167 MSE: 0.039 MSE: 0.008

Pr
e

MSE: 0.094 MSE: 0.022 MSE: 0.004

Ei
s

MSE: 0.147 MSE: 0.039 MSE: 0.009

64 spp. 256 spp. 1024 spp.

Single Multiple

Path Pre Eis

10−4

10−3

10−2

10−1

Er
ro
r(
M
SE

)

101 102 103
Time (s)

101 102 103

10−0.1

100

Time (s)

Q
ua

lit
y
(S
SI
M
)

Figure 5.11: Comparison against emitter importance sampling. We compare the effectiveness of our method (Pre) against
emitter importance sampling (Eis) [8] for single and multiple emitter scenarios. All axes are logarithmic. In the single emitter
case, our method converges towards emitter importance sampling at 𝑁 ≈ 1024. Furthermore, as we predicted in Chapter 3,
emitter importance sampling is not robust in a multiple emitters case, whereas our method performs well here.

Reference Inset

Sm
oo

th
er

R
ou

gh
er

Pa
th

MSE: 0.046 MSE: 0.010 MSE: 0.002

Pr
e

MSE: 0.033 MSE: 0.007 MSE: 0.001

H
er
o

MSE: 0.019 MSE: 0.004 MSE: 0.001

64 spp. 256 spp. 1024 spp.

Smoother Rougher

Path Pre Hero

10−3

10−2

10−1

Er
ro
r(
M
SE

)

101 102 103
Time (s)

101 102 103

10−0.5

100

Time (s)

Q
ua

lit
y
(S
SI
M
)

Figure 5.12: Comparison against Hero Sampling. We compare the effectiveness of our method (Pre) against hero wavelength
sampling (Hero) [38], for smoother and rougher dielectric surfaces, the latter of which should prove optimal for Hero Sampling.
All axes are logarithmic. As shown, our method converges towards a similar effectiveness as Hero Sampling, but additionally
supports specular dielectrics.

36 5. Results

Reference Inset
U
ni
fo
rm

R
ed

Pa
th

MSE: 0.080 MSE: 0.017 MSE: 0.004

Pr
e

MSE: 0.055 MSE: 0.012 MSE: 0.002

Sg
pt

MSE: 0.042 MSE: 0.009 MSE: 0.002

64 spp. 256 spp. 1024 spp.

Uniform Red

Path Pre Sgpt

10−3

10−2

10−1

Er
ro
r(
M
SE

)

101 102 103
Time (s)

101 102 103
10−0.6

10−0.4

10−0.2

100

Time (s)

Q
ua

lit
y
(S
SI
M
)

Figure 5.13: Comparison against Spectral Gradient Sampling. We compare the effectiveness of our method (Pre) against
Spectral Gradient Sampling (Sgpt) [20] for uniform and non­uniform spectra. All axes are logarithmic. In the uniform case,
our method becomes outright detrimental. In the non­uniform case, Spectral Gradient Sampling appears to diverge around
𝑁 ≈ 2048, failing to provide any advantage.

64 spp. 256 spp. 1024 spp.

Pa
th

MSE: 0.219 MSE: 0.121 MSE: 0.031

Pr
e

MSE: 0.204 MSE: 0.081 MSE: 0.016

Pa
th

MSE: 5.304 MSE: 1.223 MSE: 0.332

Pr
e

MSE: 2.772 MSE: 0.668 MSE: 0.181

Pa
th

MSE: 4.835 MSE: 1.992 MSE: 0.332

Pr
e

MSE: 5.558 MSE: 1.350 MSE: 0.302

Reference

10−2

10−1

Er
ro
r(
M
SE

)

Path Pre

10−1

100

Er
ro
r(
M
SE

)

102 103
10−1

100

Time (s)

Er
ro
r(
M
SE

)

Figure 5.14: Comparison against standard path tracing. We compare the effectiveness of our method (Pre) against standard
path tracing (Path) for the different insets we previously used in Section 5.1. All axes are logarithmic. Although our method
shows significant improvements in inset A and inset B, it is (inconsistently) matched by standard path tracing in inset C, which is
unsurprising given the difficult prismatic effects that occur there.

6
Discussion

We now discuss the results previously obtained in Chapter 5, and use these to evaluate to what
extent our method handles the wavelength sampling problem, the basics of which we briefly repeat.
Using the obtained results, we highlight several key advantages of our method in Section 6.1. Results
also indicate, however, that our method has specific limitations, which we address in Section 6.2.

Recall how we noted that, if incoming radiance is non­uniform, we should preferably sample wave­
lengths from a distribution similar or highly proportional to said radiance. Finding a good distribution
for this is, to aptly summarize Chapter 3, hard. Non­uniformness can occur due to multiple events:
the presence of non­uniform emission, reflectance and transmittance spectra along a path as well as
especially strongly wavelength­dependent phenomena which, unfortunately, make this issue hard to
predict. We demonstrate different combinations of these events in Figure 5.14, where non­uniformly
emitted light is transmitted through colored dielectrics and partially absorbed by a floor before it even
reaches our camera. As shown, our method displays significant improvements over standard path
tracing especially in insets 𝐴 and 𝐵: for 𝑁 = 1024, we obtain decreases in MSE of 0.031 → 0.016
and 0.332 → 0.181 respectively, effectively halving our error while incurring a minor time overhead
of 252.50𝑠 → 271.45𝑠. In inset 𝐶, which is notably less affected by non­uniform spectra but instead
displays strong and highly local prismatic effects, our method provides only a minor improvement of
0.332 → 0.302. The largest gain for our method is obtained in the 2700K scene in Figure 5.10, where
we vary only a single emission or reflectance spectrum. Here, our method visibly reduces image noise
and, for 𝑁 = 1024, provides a massive error decrease of 0.019 → 0.005. The scenarios demonstrated
in Figure 5.10 are rather simple, which is why we discuss several more complicated scenarios in the
following sections.

6.1. Advantages
Multiple Emitters In Figure 5.11, we illustrate a scene illuminated by three (explicitly) different non­
uniform emission spectra, to reflect the problem we described in Figure 3.1. We compare our method
against the emitter importance sampling technique first used by Evans et al. [8], where the latter fails
entirely as importance sampling the wrong emitter evidently leads to an increase in variance. For­
tunately, our method is more robust against this scenario, and manages to approximately halve the
observed error. Of interest is the simple, single emitter scenario, where emitter importance sampling
initially outperforms our method due to the added overhead, but both eventually converge at a similar
rate from 𝑁 ≈ 256 onwards.

Reflectance Spectra To our knowledge, no technique currently exists that dynamically handles im­
portance sampling of reflectance or transmission spectra present in a scene, so as to counteract the
effects of non­uniform absorption. The effectiveness of our method for handling this is especially no­
table in the Orange­yellow scene in Figure 5.10, where light is partially absorbed by the colored floor,
and where our method provides a considerable 0.011 → 0.007 error decrease for 𝑁 = 1024.

37

38 6. Discussion

Predictable Runtime Costs In Table 5.2, we provide timings for our method, which exhibits a signif­
icant time overhead due to preprocessing. This overhead is constant, and sampling the pre­estimate
during rendering has a minor runtime impact comparable to performing a single extra texture sam­
pling per pixel. This is evident from timings, as these runtime costs gradually become neglibile as 𝑁
increases.

Unfortunately, as our method evidently exhibits a startup period for low sample rates, it is less
effective than standard path tracing for 𝑁 < 128 spp. Although we do not consider this to be a major
issue as dispersive effects require thousands of samples to converge, we nonetheless address an
optimization to reduce this ineffectiveness. Instead of using the established 𝑁̃ = 256 sample rate for
the pre­estimate, we can introduce a dependency on the actual sample rate 𝑁. In a simple example,
we apply some multiplicative factor 𝑝 ≤ 1, and define a new relative sample rate as

𝑁̃ =min(𝑝 ⋅ 𝑁, 𝑁̃𝑚𝑎𝑥) (6.1)

where 𝑁̃𝑚𝑎𝑥 is a limit beyond which we cut off this dependency, due to the diminishing returns from
increased sample rates observed in Figure 5.7. We append this concept to our implementation, and
provide comparative results for fixed and relative sample rates for a single scene in Figure 6.1.

101 102
10−3

10−2

10−1

100

Time (s)

Er
ro
r(
M
SE

)

Path Fixed Relative

101 102
0.2

0.4

0.6

0.8

1

Time (s)

Q
ua

lit
y
(S
SI
M
)

Figure 6.1: Relative sample rate. We demonstrate a relative pre­estimate sample rate (𝑝 = 1, 𝑁̃𝑚𝑎𝑥 = 256). We compare MSE
and SSIM metrics, in the 2700K scene, using a standard path tracer (Path) as well as our method using fixed (Fixed) and relative
(Relative) sample rates. MSE and Time axes are logarihmic. This small extension evidently allows our method to outperform
path tracing even for low sample rates.

Specular Dielectrics As we demonstrate in Figure 5.12, our method demonstrates similar gains
in both specular and non­specular (rough) scenarios, whereas hero wavelength sampling [38] only
handles non­specular wavelength­dependent BSDFs. Hero sampling retains its effectiveness under
the duress of non­uniform spectra, and as such outperforms our method for smaller sample rates (𝑁 <
1024), and performs equally well for higher sample rates. For clarification, we briefly revisit the timings
provided in Table 5.2. Although hero wavelength provides a greater error decrease than our method for
equal sample rates, its advantage diminishes gradually as our method incurs a comparatively constant
overhead. If we apply the relative sample rate extension of Equation 6.1, this likely improves to our
advantage.

6.2. Limitations
Near­Uniform Spectra We compare our method to spectral gradient sampling [20] in Figure 5.13. Al­
though this essentially matches and eventually outperforms spectral gradient sampling in a non­uniform
scenario, the uniform scenario serves to highlight a minor flaw: pre­estimated spectral rendering is in­
capable of efficiently handling uniform spectral distributions. If observed radiance is uniform, the best
distribution our method can provide is equal to random sampling. Unfortunately, as the pre­estimate
itself contains some error and is unlikely to provide a perfectly uniform distribution, our method cannot
be optimal in such a scenario. To counteract this limitation, we propose appending a minor optimization
to our method. We define some threshold factor 𝑡 ≥ 0, and modify Equation 4.2 such that we apply
this threshold to our pre­estimate as

𝑝𝑗(𝑥̄, 𝜆) = {
𝑟(𝐼)𝑗 ⋅ 𝑝(𝑥̄ ∣ 𝜆) if 𝜎[𝑟(𝐼)𝑗] > 𝑡,
𝑝(𝜆) ⋅ 𝑝(𝑥̄ ∣ 𝜆) else.

(6.2)

6.2. Limitations 39

which effectively makes our method fall back to standard path tracing when a generated distribution is
near­uniform. We did not implement this concept, and reserve it for future work.

Unpredictable Effectiveness There is a significant difference in performance gains between scenes,
which is clearly visible even in Figure 5.10. In the 2700k scene, our method converges significantly
faster than in the Orange­yellow scene, even though both scenes are geometrically identical. We
can attribute this difference to two factors. Either the pre­estimate is of insufficient quality in some
scenarios, or the effectiveness of importance sampling is reduced depending on the non­uniformness
of different spectral distributions. While the former is not likely in such a simple scene (it is almost
entirely one distribution, after all), the latter is certainly a factor as the Orange­yellow reflectance
spectrum is significantly less complicated than the 2700K emitter spectrum.

7
Conclusion

We have developed pre­estimated spectral rendering, which is a simple and robust method that
counteracts a multitude of wavelength sampling problems, which we identified as standing issues with
traditional spectral light transport algorithms. While most spectral renderers sample wavelengths uni­
formly, we demonstrated that first generating and then using suitable spectral distributions can, given
the presence of non­uniform spectra in a scene, improve convergence rates and decrease noise in
a multitude of difficult scenarios. Although our method has limited application outside these scenar­
ios, this happens to be an area in which current state­of­the­art methods, such as hero wavelength
sampling [38] and spectral gradient sampling [20] provide little benefits, while our method is especially
effective here.

In conclusion, our work provides a notable improvement to spectral rendering, that manages to
largely negate a number of problems, and may in the future enable the use of realistic spectra for
photorealistic renders. There are a number of directions we consider recommendable for further im­
provements, and we briefly cover these in Section 7.1.

7.1. Future work
Integration with orthogonal methods Although we developed our technique in the context of a stan­
dard spectral path tracer, the underlying concept of generating wavelength sampling distributions may
be applicable to advanced path sampling techniques, such as bidirectional path tracing [14, 31] and
metropolis light transport [33]. In addition, as our method is essentially orthogonal to both hero wave­
length sampling [38] and spectral gradient sampling [20], exploring an integration of the pre­estimate
with these methods can potentially improve convergence rates even further.

Improved reconstruction function Our method leverages a considerable number of samples in the
pre­estimate, in order for proper distributions to be recoverable by the reconstruction function. We
currently use a simple joint­bilateral filter [7, 21] for this task, but hope to see fast, alternative filtering
algorithms for chromatic noise become available in the future. If an algorithm is developed that can
recover a considerably higher quality image from undersampled wavelength­dependent phenomena,
perhaps our method merits a revisit.

Robustness against near­uniform spectra As our method inefficiently handles near­uniform spec­
tra, it does not provide a robust solution for every possible scenario. Although we mention falling back
to standard path tracing for such scenarios in Chapter 6, falling back to alternative methods such as
spectral gradient sampling [20] may provide additional benefits. We explore one potential option for
this in Appendix A.

41

A
Decomposed Rendering

As we can gather from Chapter 5, spectral gradient sampling [20] provides significant improvements
to convergence rates, albeit with a caveat: the gradient of encountered spectral distributions must be
relatively minor. This is in direct contrast to our method, which garners improvements especially in the
presence of highly non­uniform spectra. During development of this thesis, we briefly explored a flawed
coupling between these methods to leverage both intermittently against their preferred scenarios.

This coupling pits on the realization that we can decompose any non­uniform emitter SPDs in a
scene into a combination of a uniform distribution and a non­uniform, spiky remainder. Formally, we
simply decompose an SPD 𝑆(𝜆) as:

𝑆(𝜆) = 𝑆𝑢𝑛𝑖𝑓(𝜆) + 𝑆𝑛−𝑢𝑛𝑖𝑓(𝜆), (A.1)

while we then similarly form a viable estimator for 𝐼𝑗 as:

𝐼𝑗 = 𝐼𝑢𝑛𝑖𝑓,𝑗 + 𝐼𝑛−𝑢𝑛𝑖𝑓,𝑗 , (A.2)

where 𝐼𝑢𝑛𝑖𝑓 and 𝐼𝑛−𝑢𝑛𝑖𝑓 are then estimated in scenes where all emitters emit using only their uniform or
non­uniform decompositions, respectively. We illustrate the basic concept of what we call decomposed
rendering in Figure A.1. We will first show that this does form a valid estimator for 𝐼𝑗 in Appendix A.1,
assuming for now that we can successfully perform the decomposition of Equation A.1 to do so. We
then demonstrate a number of possible decompositions for emitter SPDs in Appendix A.2. Finally, in
Appendix A.3, we analyse why this concept is flawed and essentially impractical, as it unfortunately
fails to provide a solution to our problem.

𝜆
𝑆(𝜆)

𝜆
𝑆𝑢𝑛𝑖𝑓(𝜆)

𝜆

𝑆𝑛−𝑢𝑛𝑖𝑓(𝜆)
(a) Decomposition of emitters.

𝜆
⟨𝐼⟩𝑗

𝜆
⟨𝐼𝑢𝑛𝑖𝑓⟩𝑗

𝜆

⟨𝐼𝑛−𝑢𝑛𝑖𝑓⟩𝑗
(b) Re­composition of estimated radiances.

Figure A.1: Decomposed rendering. All representative SPDs 𝑆(𝜆) of scene emitters are decomposed into uniform and non­
uniform parts. Afterwards, two separate estimators are used that accomodate only their respective SPD decompositions, and
their resulting observed radiances are recomposited to form a valid estimator for 𝐼𝑗.

A.1. Composition of Estimators
As we showed in Equation A.2, our estimator combines estimates of radiance values 𝐼𝑢𝑛𝑖𝑓 and 𝐼𝑛−𝑢𝑛𝑖𝑓.
If we assume (or simplify) that, in our simplified model of light transport, the input of energy and effect

43

44 A. Decomposed Rendering

thereof are linearly related, we can indeed recompose radiance 𝐼𝑗 for a pixel 𝑗 as:

𝐼𝑗 = (𝐼𝑢𝑛𝑖𝑓)𝑗 + (𝐼𝑛−𝑢𝑛𝑖𝑓)𝑗 . (A.3)

We can then apply Equation 2.14 to show that the estimator of Equation A.2 indeed forms a valid
estimator for 𝐼𝑗:

𝐸[𝐼𝑢𝑛𝑖𝑓,𝑗] + 𝐸[𝐼𝑛−𝑢𝑛𝑖𝑓,𝑗] = (𝐼𝑢𝑛𝑖𝑓)𝑗 + (𝐼𝑛−𝑢𝑛𝑖𝑓)𝑗
= 𝐼𝑗
= 𝐸[𝐼𝑗]. (A.4)

Logically, we then leverage spectral gradient sampling for estimating 𝐼𝑢𝑛𝑖𝑓 and pre­estimated spectral
patch tracing for estimating 𝐼𝑛−𝑢𝑛𝑖𝑓, as these are both better suited to rendering in these respective
situations.

A.2. Decomposition of Emitters
This technique pivots on our capability of performing the decomposition in Equation A.1. Although we
can attempt to decompose peaks from spectra, this hardly result in a perfectly uniform distribution being
available for spectral gradient sampling. Instead, we propose to decompose a spectral distribution as:

𝑆𝑢𝑛𝑖𝑓(𝜆) = 𝑎, 𝑆𝑛−𝑢𝑛𝑖𝑓(𝜆) = 𝑆(𝜆) − 𝑆𝑢𝑛𝑖𝑓(𝜆) (A.5)

where 𝑆𝑢𝑛𝑖𝑓(𝜆) is clearly just a uniform distribution with some applied scaling factor 𝑎. This may result
in a partially negative distribution 𝑆𝑛−𝑢𝑛𝑖𝑓(𝜆), but should not have any impact on the correctness of
our renderer as all algorithms given so far can be well­defined for negative values by treating them
as positive values in all operations but multiplications. We consider a number of viable choices for
determining 𝑎. The simplest of these choices would be to place 𝑎 at either the mean or median power
value of 𝑆(𝜆), assuming 𝑆(𝜆) is only defined over Λ:

𝑎 = 1
|Λ| ∫Λ

𝑆(𝜆) 𝑑𝜆 (A.6)

or:
𝑎 = 𝑚𝑖𝑛 𝑆(𝜆) + 𝑚𝑎𝑥 𝑆(𝜆) − 𝑚𝑖𝑛 𝑆(𝜆)2 (A.7)

However, neither of these choices for 𝑎 are optimal in any way. Instead, we can choose to minimize
the difference in emitted energy between 𝑆𝑢𝑛𝑖𝑓(𝜆) and 𝑆𝑛−𝑢𝑛𝑖𝑓(𝜆), effectively equalizing the amount of
emitted energy dealt with by both estimators:

𝑎 =min
𝑥
| ∫
Λ
𝑥 𝑑𝜆 − ∫

Λ
(𝑆(𝜆) − 𝑥) 𝑑𝜆 |

=min | ∫
Λ
𝑆𝑢𝑛𝑖𝑓(𝜆) 𝑑𝜆 − ∫

Λ
𝑆𝑛−𝑢𝑛𝑖𝑓(𝜆) 𝑑𝜆 |

(A.8)

We demonstrate what these various decompositions would look like for two viable SPDs in Figure A.2.

A.3. Potential Error Increases
Unfortunately, although the composition of Equation A.2 forms a valid estimator, we show that it is
highly inefficient. Following our definition for cumulative variance in Chapter 2, we know that

𝑉[𝐼𝑐𝑜𝑚𝑝,𝑗] = 𝑉[𝐼𝑢𝑛𝑖𝑓,𝑗] + 𝑉[𝐼𝑛−𝑢𝑛𝑖𝑓,𝑗] + 𝐶𝑂𝑉[𝐼𝑢𝑛𝑖𝑓,𝐽 , 𝐼𝑛−𝑢𝑛𝑖𝑓,𝑗], (A.9)

which implies that error from both estimators will accumulate, unless either both estimators are corre­
lated such that negative covariance occurs, or both estimators significantly decrease the error in their
respective scenarios. However, even this definition is incorrect and too optimal, as we have yet not ac­
counted for the estimators’ changed sample rates. Recall that the variance of a Monte Carlo estimator
𝐼 is defined as

𝑉[𝐼] = 1
𝑁 𝑉 [𝑓(𝑥)𝑝(𝑥)] . (2.15)

A.3. Potential Error Increases 45

−10
0
10
20

R
el
at
iv
e
Po

w
er

Mean (Equation A.6) Median (Equation A.7) Equal (Equation A.8)

500 600 700−5

0

5

10

Wavelength (𝜆)

R
el
at
iv
e
Po

w
er

500 600 700
Wavelength (𝜆)

500 600 700
Wavelength (𝜆)

𝑆(𝜆) 𝑆𝑢𝑛𝑖𝑓(𝜆) 𝑆𝑛−𝑢𝑛𝑖𝑓(𝜆)

Figure A.2: Three decompositions of 𝑆(𝜆) are shown for two different SPDs. The total area covered by the possibly negative
𝑆𝑛−𝑢𝑛𝑖𝑓(𝜆) is marked in gray for clarity.

If we wish to compare the variance of our recomposed estimator to a standard Monte Carlo estimator,
we must assume that the total number of samples available to the decomposed estimators is still 𝑁,
and must be divided between them. If both estimators were to each share half of the available samples,
i.e. 𝑁′ = 0.5𝑁, variance per decomposed estimator becomes

𝑉[𝐼] = 2
𝑁 𝑉 [𝑓(𝑥)𝑝(𝑥)] . (A.10)

A potential alternative that may successfully leverage a partial decomposition of emitters to introduce
covariance, would be the application of control variates [19]. Unfortunately, exploring the concept fully
was outside the scope of this thesis.

Bibliography
[1] LuxCoreRender ­ Open Source Physically Based Renderer. https://luxcorerender.org/,

2019. Last accessed: 2019­04­26.

[2] Autodesk. Arnold Renderer. https://www.arnoldrenderer.com/, 2016. Last accessed:
2019­07­30.

[3] Pravin Bhat, Brian Curless, Michael Cohen, and C. Lawrence Zitnick. Fourier analysis of the
2d screened poisson equation for gradient domain problems. In David Forsyth, Philip Torr, and
Andrew Zisserman, editors, Computer Vision – ECCV 2008, pages 114–128, Berlin, Heidelberg,
2008. Springer Berlin Heidelberg. ISBN 978­3­540­88688­4.

[4] Carlos F. Borges. Trichromatic approximation for computer graphics illumination models. SIG­
GRAPH Comput. Graph., 25(4):101–104, July 1991. ISSN 0097­8930. doi: 10.1145/127719.
122729. URL http://doi.acm.org/10.1145/127719.122729.

[5] Antoni Buades, Bartomeu Coll, and Jean­Michel Morel. Non­Local Means Denoising. Image
Processing On Line, 1:208–212, 2011. doi: 10.5201/ipol.2011.bcm_nlm.

[6] The BabelColor Company. BabelColor ­ The Colorchecker Pages. http://www.babelcolor.
com/colorchecker.htm, 2019. Last accessed: 2019­08­29.

[7] Elmar Eisemann and Frédo Durand. Flash photography enhancement via intrinsic relighting.
ACM Trans. Graph., 23(3):673–678, August 2004. ISSN 0730­0301. doi: 10.1145/1015706.
1015778. URL http://doi.acm.org/10.1145/1015706.1015778.

[8] Glenn F. Evans and Micheal D. McCool. Stratified wavelength clusters for efficient spectral monte
carlo rendering. In Proceedings of the 1999 Conference on Graphics Interface ’99, pages 42–49,
San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc. ISBN 1­55860­632­7. URL
http://dl.acm.org/citation.cfm?id=351631.351648.

[9] Brian Huebert. FreePBR ­ Free PBRMaterials. https://freepbr.com/, 2019. Last accessed:
2019­07­31.

[10] David S. Immel, Michael F. Cohen, and Donald P. Greenberg. A radiosity method for non­diffuse
environments. SIGGRAPH Comput. Graph., 20(4):133–142, August 1986. ISSN 0097­8930. doi:
10.1145/15886.15901. URL http://doi.acm.org/10.1145/15886.15901.

[11] James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph., 20(4):143–150, August
1986. ISSN 0097­8930. doi: 10.1145/15886.15902. URL http://doi.acm.org/10.1145/
15886.15902.

[12] Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias
Zwicker. Gradient­domain path tracing. ACM Trans. Graph., 34(4), 2015.

[13] Johannes Kopf, Michael F. Cohen, Dani Lischinski, and Matt Uyttendaele. Joint bilateral up­
sampling. ACM Trans. Graph., 26(3), July 2007. ISSN 0730­0301. doi: 10.1145/1276377.
1276497. URL http://doi.acm.org/10.1145/1276377.1276497.

[14] Eric P. Lafortune and Yves D. Willems. Bi­directional path tracing. In Proceedings of Third Inter­
national Conference on Computational Graphics and Visualization Techniques (Compugraphics
’93), pages 145–153, Alvor, Portugal, December 1993.

[15] Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo Aila. Gradient­
domain metropolis light transport. ACM Trans. Graph., 32(4):95:1–95:12, July 2013. ISSN 0730­
0301. doi: 10.1145/2461912.2461943. URL http://doi.acm.org/10.1145/2461912.
2461943.

47

https://luxcorerender.org/
https://www.arnoldrenderer.com/
http://doi.acm.org/10.1145/127719.122729
http://www.babelcolor.com/colorchecker.htm
http://www.babelcolor.com/colorchecker.htm
http://doi.acm.org/10.1145/1015706.1015778
http://dl.acm.org/citation.cfm?id=351631.351648
https://freepbr.com/
http://doi.acm.org/10.1145/15886.15901
http://doi.acm.org/10.1145/15886.15902
http://doi.acm.org/10.1145/15886.15902
http://doi.acm.org/10.1145/1276377.1276497
http://doi.acm.org/10.1145/2461912.2461943
http://doi.acm.org/10.1145/2461912.2461943

48 Bibliography

[16] M.W. Levine. Fundamentals of Sensation and Perception. Oxford University Press, 01 2000.

[17] Marco Manzi, Markus Kettunen, Frédo Durand, Matthias Zwicker, and Jaakko Lehtinen. Tem­
poral gradient­domain path tracing. ACM Trans. Graph., 35(6):246:1–246:9, November 2016.
ISSN 0730­0301. doi: 10.1145/2980179.2980256. URL http://doi.acm.org/10.1145/
2980179.2980256.

[18] NVIDIA. Mental ray. http://www.nvidia­arc.com/products/nvidia­mental­ray.
html, 2017. Last accessed: 2019­04­26.

[19] Art Owen. Monte carlo theory, methods and examples. Last accessed 30­09­2019, 2013.

[20] Victor Petitjean, Pablo Bauszat, and Elmar Eisemann. Spectral gradient sampling for path trac­
ing. In Computer Graphics Forum (Proceedings of EGSR), 2018. URL http://graphics.
tudelft.nl/Publications­new/2018/PBE18.

[21] Georg Petschnigg, Richard Szeliski, Maneesh Agrawala, Michael Cohen, Hugues Hoppe, and
Kentaro Toyama. Digital photography with flash and no­flash image pairs. ACM Trans. Graph.,
23(3):664–672, August 2004. ISSN 0730­0301. doi: 10.1145/1015706.1015777. URL http:
//doi.acm.org/10.1145/1015706.1015777.

[22] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based Rendering: From Theory to
Implementation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2016.
ISBN 0128006455, 9780128006450.

[23] Pixar. Pixar’s RenderMan. https://renderman.pixar.com/, 2016. Last accessed: 2019­
07­30.

[24] Mikhail N. Polyanskiy. Refractive index database. https://refractiveindex.info, 2008.
Last accessed: 2019­05­13.

[25] Michal Radziszewski, Krzysztof Boryczko, andWitold Alda. An improved technique for full spectral
rendering. Journal of WSCG, 17, 01 2009.

[26] Johanne Roby and Martin Aubé. LSPDD | Light Spectral Power Distribution Database. http:
//galileo.graphycs.cegepsherbrooke.qc.ca/app/en/home, 2019. Last accessed:
2019­07­31.

[27] Sellmeier. Zur erklärung der abnormen farbenfolge im spectrum einiger substanzen. An­
nalen der Physik, 219(6):272–282, 1871. doi: 10.1002/andp.18712190612. URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/andp.18712190612.

[28] T Smith and J Guild. The c.i.e. colorimetric standards and their use. Transactions of the Optical
Society, 33(3):73–134, jan 1931. doi: 10.1088/1475­4878/33/3/301. URL https://doi.
org/10.1088%2F1475­4878%2F33%2F3%2F301.

[29] Walt Disney Animation Studios. Disney’s Hyperion Renderer. https://www.
disneyanimation.com/technology/innovations/hyperion, 2015. Last accessed:
2019­07­30.

[30] Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford,
CA, USA, 1998. AAI9837162.

[31] Eric Veach and Leonidas Guibas. Bidirectional estimators for light transport. In Georgios Sakas,
Stefan Muller, and Peter Shirley, editors, Photorealistic Rendering Techniques, pages 145–167,
Berlin, Heidelberg, 1995. Springer Berlin Heidelberg. ISBN 978­3­642­87825­1.

[32] Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques for monte carlo
rendering. In Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’95, pages 419–428, New York, NY, USA, 1995. ACM. ISBN 0­89791­
701­4. doi: 10.1145/218380.218498. URL http://doi.acm.org/10.1145/218380.
218498.

http://doi.acm.org/10.1145/2980179.2980256
http://doi.acm.org/10.1145/2980179.2980256
http://www.nvidia-arc.com/products/nvidia-mental-ray.html
http://www.nvidia-arc.com/products/nvidia-mental-ray.html
http://graphics.tudelft.nl/Publications-new/2018/PBE18
http://graphics.tudelft.nl/Publications-new/2018/PBE18
http://doi.acm.org/10.1145/1015706.1015777
http://doi.acm.org/10.1145/1015706.1015777
https://renderman.pixar.com/
https://refractiveindex.info
http://galileo.graphycs.cegepsherbrooke.qc.ca/app/en/home
http://galileo.graphycs.cegepsherbrooke.qc.ca/app/en/home
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18712190612
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18712190612
https://doi.org/10.1088%2F1475-4878%2F33%2F3%2F301
https://doi.org/10.1088%2F1475-4878%2F33%2F3%2F301
https://www.disneyanimation.com/technology/innovations/hyperion
https://www.disneyanimation.com/technology/innovations/hyperion
http://doi.acm.org/10.1145/218380.218498
http://doi.acm.org/10.1145/218380.218498

Bibliography 49

[33] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In Proceedings of the 24th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’97, pages 65–76,
New York, NY, USA, 1997. ACM Press/Addison­Wesley Publishing Co. ISBN 0­89791­896­7. doi:
10.1145/258734.258775. URL https://doi.org/10.1145/258734.258775.

[34] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image Quality Assessment: From Error
Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13:600–612, April 2004.
doi: 10.1109/TIP.2003.819861.

[35] Jakob Wenzel. Mitsuba ­ Physically Based Renderer. https://www.mitsuba­renderer.
org, 2010. Last accessed: 2019­04­26.

[36] Jakob Wenzel. Mitsuba ­ API Reference. https://www.mitsuba­renderer.org/api/,
2010. Last accessed: 2019­06­23.

[37] Jakob Wenzel. Mitsuba ­ Documentation. https://www.mitsuba­renderer.org/docs.
html, 2010. Last accessed: 2019­06­23.

[38] A. Wilkie, S. Nawaz, M. Droske, A. Weidlich, and J. Hanika. Hero wavelength spectral sampling. In
Proceedings of the 25th Eurographics Symposium onRendering, EGSR ’14, pages 123–131, Aire­
la­Ville, Switzerland, Switzerland, 2014. Eurographics Association. doi: 10.1111/cgf.12419.
URL http://dx.doi.org/10.1111/cgf.12419.

[39] Greg Zaal. HDRI Haven. https://hdrihaven.com/p/about­contact.php, 2019. Last
accessed: 2019­07­31.

https://doi.org/10.1145/258734.258775
https://www.mitsuba-renderer.org
https://www.mitsuba-renderer.org
https://www.mitsuba-renderer.org/api/
https://www.mitsuba-renderer.org/docs.html
https://www.mitsuba-renderer.org/docs.html
http://dx.doi.org/10.1111/cgf.12419
https://hdrihaven.com/p/about-contact.php

	Abstract
	Preface
	List of Symbols
	List of Abbreviations
	Introduction
	Spectral Rendering
	Wavelength Sampling Problems
	Overview of Contributions
	Thesis Structure

	Background
	Probability Theory
	Expected Value and Variance
	Monte Carlo Integration
	Mean Squared Error
	Random Variable Sampling
	Variance Reduction Techniques

	Spectral Light Transport
	The Spectral Light Transport Equation
	Monte Carlo Estimation
	Hero Wavelength Sampling
	Spectral Gradient Sampling

	Problem Analysis
	Methodology
	A Low-Cost Pre-Estimate
	The Reconstruction Function
	Filtering and Resampling
	Defensive Sampling

	Layered Pre-Estimates

	Results
	Parameter Evaluation
	Comparative Results

	Discussion
	Advantages
	Limitations

	Conclusion
	Future work

	Decomposed Rendering
	Composition of Estimators
	Decomposition of Emitters
	Potential Error Increases

	Bibliography

