
Edge preserving orientation adaptive filtering

P. Bakker, L.J. van Vliet, P.W. Verbeek

Pattern Recognition Group,
Department of Applied Physics,
Delft University of Technology,

Lorentzweg 1, 2628 CJ, Delft, The Netherlands,
fpeterb,lucas,pietg@ph.tn.tudelft.nl

Abstract

In this paper we describe a new strategy for combining
orientation adaptive filtering and edge preserving filtering.
The filter adapts to the local orientation and avoids filter-
ing across borders. The local orientation for steering the
filter will be estimated in a fixed sized window which never
contains two orientation fields. This can be achieved us-
ing generalized Kuwahara filtering. This filter selects from
a set of fixed sized windows that contain the current pixel,
the orientation of the window with the highest anisotropy.
We compare our filter strategy with a multi-scale approach.
We found that our filter strategy has a lower complexity and
yields a constant improvement of the SNR.

1 Introduction

Noise, which is present in every real world image, ham-
pers manual interpretation by human experts as well as au-
tomatic segmentation and analysis by computers. Therefore
many image processing techniques are developed to reduce
noise. The Wiener filter [8] is the best linear filter but re-
quires a priori knowledge of the spectrum of the noise-free
image as well as the spectrum of the noise. Noise in do-
mains without texture can simple be reduced by isotropic
smoothing, where the spatial size of the smoothing operator
determines the amount of noise reduction. So the size or
scale of the domain constitutes the limit to this amount. To
optimize the global noise reduction, scale adaptive smooth-
ing can be used. In an oriented texture domain or along
individual lines and edges, the noise level can be reduced
by applying elongated smoothing operators that adapt to the
local orientation. This requires a robust and continuous rep-
resentation of orientation [1]. Since many natural images
can be described as a collection of grey value and oriented

texture domains, a scale and orientation adaptive smoothing
scheme provides a powerful noise reduction method. Such a
scheme can be realized in different ways, i.e. by anisotropic
diffusion [10] or steerable filters [2].

Edges between domains are important features for the in-
terpretation of images. However, smoothing operators tend
to blur the edges or borders between the different domains.
Therefore a filter should be used that reduces the noise but
does not degrade the edges, i.e. an edge preserving filter. In
a mosaic of domains characterized by grey value, the bor-
ders between the domains are characterized by the differ-
ence in grey value. This difference can directly be mea-
sured in the image. In a mosaic of domains characterized
by oriented texture, the borders between the domains are
characterized the the difference in local orientation. At an
orientation border there are two factors that make filtering
more difficult. First, there are locally two dominant orienta-
tions, which make it more difficult to estimate the orienta-
tion. Secondly, the adaptive filter should not blur across the
border.

Examples of edge preserving smoothing can be found in
Stereo Matching [4] and anisotropic diffusion [3]. In this
paper we will describe a new method for combining edge
preserving filtering with orientation adaptive filtering. We
present a generalization of the Kuwahara filter for edge pre-
serving smoothing [5, 6]. The method is tested on both syn-
thetic and natural images. The natural images are seismic
images, which are narrow banded and contain layered struc-
tures. We will compare our method with a scale adaptive
approach [2].

2 Generalized Kuwahara filtering

A traditional filter for edge preserving smoothing for im-
ages containing grey value domains, is the Kuwahara filter
[5]. Kuwahara divided a square symmetric neighborhood
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in four (slightly overlapping) windows, each containing the
central pixel, see fig.1a. The central pixel is replaced by the
average of the most homogeneous window, i.e. the window
with the lowest variance. The combination of filtering (av-
erage) and selection (homogeneity) avoids filtering across
edges in the image. This filter has been further develop by

(a) (b)

Figure 1. a) traditional Kuwahara filter, b) gen-
eralized Kuwahara filter. The dashed lines
bound the neighborhood and the solid lines
the windows.

increasing the number of windows to eight and changing the
shape of the windows to pentagons and hexagons [6].

Our filter evaluates each fixed size window that contains
the current pixel. Each of these windows yields an esti-
mate and a confidence value. The estimate from the win-
dow with the highest confidence value is taken as the result.
We call this filter thegeneralized Kuwahara filterand a re-
alization with round windows is depicted in fig.1b. Note
that the shape of the windows determines the shape of the
neighborhood. By applying the generalized Kuwahara filter
it is possible to smooth grey value domains and to preserve
sharp borders between these domains. A proper represen-
tation of the orientation reduces oriented texture domains
to grey value domains. Combining the orientation estima-
tion with the generalized Kuwahara filter yields a orienta-
tion representation with sharp borders.

3 Scale adaptive filtering

A well known general way for dealing with different
events at a different scale in a single neighborhood is scale-
space. This makes it possible to process each scale sep-
arately and thereby provides a way to do scale adaptive
filtering. A more computational efficient way is the build
an scale pyramid, e.g. octave based difference of low-pass
pyramid (DOLP) [9]. Since our images with oriented tex-
tures are narrow banded, the frequencies span only two oc-
taves, so the evaluation of three scales should be enough. A
filter can be made scale adaptive in a straight forward way
by building a DOLP. First apply the filter on each scale.
Secondly, the adaptive filtering result is obtained by sum-

mation of the filtering results on each scale, see [2]. How-
ever, we shall show applying our filtering method on a sin-
gle scale already yields a good result.

4 Estimation of steering parameters orienta-
tion and anisotropy

The fundamental proposition on which this work is
based, is local one-dimensionality. This means that in tex-
tured domainsD, that constitute the image, contain a single
dominant orientation. If we describe the grey values inD

with polar coordinatesI(r; �), we could write

�I(r; �0)� �I(r; �other) ; r 2 D (1)

where�I denotes the change in grey value and�0 the dom-
inant orientation. We make a distinction between orienta-
tion, defined modulo�, and direction, defined modulo2�.
Thus two opposite vectors differ in direction but have the
same orientation. A robust description of such neighbor-
hoodD is given by a tensor representation [1].

T =
1

x
xxT (2)

wherex is a vector along the dominant orientation andx =
kxk is the norm of the vector.

4.1 The Gradient Square Tensor

The tensorT from eq.2 can be implemented in several
ways. The general idea is to use a set of directionally se-
lective filters and combine the responses. Examples of di-
rectionally selective filters are derivative filters, i.e. first or
second order, and quadrature filters [1]. The latter have the
advantage to give a response on both edges and lines, but
are computationally more expensive. The Gradient Square
Tensor (GST) is based on Gaussian first order derivative fil-
ters and is given by eq.3.

TGS = rIrIT =

�
I2x IxIy
IxIy I2y

�
(3)

whereIx; Iy are the Gaussian derivatives in resp. x and y
direction, in which the Gaussian regularization function has
a size�g . Since this tensor is a quadratic form the tensor el-
ements may be averaged without having cancellation prob-
lems. This averaging is implemented as Gaussian smooth-
ing (�T ) over a window. Applying tensor averaging has
three advantages:

1. rapid changes in the orientation estimation due to
noise on the gradient vector are suppressed, yielding
a smooth result
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2. having only responses on edges no longer constitutes a
problem, since on a line the tensor averaging combines
the gradients from both slopes, without cancellation of
opposite vectors

3. The smoothed tensor allows information about the en-
ergy in the dominant and the perpendicular orientation

The local orientation estimation is given by the orientation
of the eigenvector corresponding the the largest eigenvalue.

4.2 Anisotropy estimation

The certainty of the orientation estimation is propor-
tional to the anisotropy, which describes to what extend
one orientation dominates. The anisotropy can be measured
from the ratio of the energy in the dominant and perpendic-
ular orientation. We define the anisotropyA as

A =
�1 � �2

�1 + �2
; (4)

with �1; �2 the eigenvalues of the GST. With this definition
the anisotropy takes values between 0 and 1, indicating the
range from completely isotrope to perfectly anisotrope.

4.3 Improved orientation estimation at orienta-
tion borders

Since the GST is based on the assumption that there is
locally only one dominant orientation, the corresponding
orientation measurement will fail as soon as it crosses an
orientation border. The resulting orientation estimation is a
weighted average of the two dominant orientations at both
sides of the border, causing unsharp or blurred orientation
borders. A powerful solution for allowing multiple orienta-
tions in one neighborhood in the image, is to add orientation
as a new dimension [7]. This can be realized by applying
multiple directionally selective filters. The drawback of this
approach is the higher computational complexity and will
therefor be skipped in this paper.

However, it is possible to allow only one orientations
in one neighborhood in the image and also preserve sharp
edges. This can be achieved by applying the generalize
Kuwahara filter. Calculate the GST in each window and
use the anisotropy as the certainty measure. The idea of
this method is to prevent that the GST overlaps a border as
depicted in fig.2. With the anisotropy measure we can de-
tect an orientation border, since the anisotropy drops if the
region over which the GST is smoothed contains an orien-
tation border.

4.4 Limitations of anisotropy as border detector

The success of the method described above, depends
very much on the estimation of the anisotropy, since this

(a) (b)

Figure 2. a) standard GST, b) Improved orien-
tation estimation. The circles denote the re-
gions �t in which the orientation is estimated,
the black dots are the positions the result is
written to.

parameter is used to locate the borders. It can be derived
that:

A / cos(��) (5)

with A the anisotropy and�� the difference between the
orientation at both sides of the border. As a consequence,
for small values of��, the anisotropy will decrease only
a few percent, e.g. if�� = 30deg the anisotropy will
decrease 10 %. We experimentally verified this angular
dependency and the results are depicted in fig.5. In this
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Figure 5. The anisotropy obtained from the
GST as a function of the angular difference at
an orientation border.

experiment we measured the anisotropy at a border apply-
ing the GST with�g = 1:0 and�T = 5:0. The measured
anisotropy differs slightly from a cosine, as can be seen in
fig.5. This is due to the fact that the derivatives are regular-
ized. The reqularization causes the orientations of gradient
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(a) (b) (c) (d) (e)

Figure 3. a) test image, b) orientation estimation GST, c) anisotropy estimation GST, d) improved
orientation estimation, e) ground truth for orientation.

(a) (b) (c) (d)

Figure 4. a) test image, b) adaptive filter steered with orientation from fig.2b, c) same as b but with
improved orientation estimation fig.2d, d) same as c but with edge preserving property.

vectors to be distributed between the the two dominant ori-
entations and thereby decreasing the average deviation from
the the mean orientation. The anisotropy will increase since
it is proportional to the inverse of the average deviation, i.e.
the consistency of the orientation.

5 Adaptive filtering

Adaptive filtering means that the filter can be controlled
by parameters. For example, an orientation adaptive filter
given by

Fadap = F (�;A) (6)

with � the orientation andA the anisotropy, is used in [2].
The idea of this filter is to use the estimated shape and ori-
entation of the tensorT to adapt the filter behaving in the
same way as the signal. The filter can also be made scale
adaptive, which is discussed in sec.3. For now we assume

that the signal is narrow banded and can be described as sin-
gle scale signal. Noise reduction in oriented textures can be
achieved by steering an elongated filter with the orientation
estimation as steering parameter. The orientation of the fil-
ter should be perpendicular to to dominant orientation from
eq.1. However, sharp domain edges will be blurred by this
filter.

5.1 Edge preserving filtering

We have shown that it is possible to correctly estimate
the orientation near borders, so the filter can correctly be
steered along the oriented texture. However, we still have to
make sure that the adaptive filter does not overlap borders.
This is in fact the same problem we encountered during the
orientation estimation. The difference is that we only allow
displacement along the layers, as depicted in fig.6. We can
solve this problem by applying a one dimensional version of

1063-6919/99 $10.00 (c) 1999 IEEE



Figure 6. top filter:The orientation adaptive
filter is correctly oriented along the layers,
but overlaps a border. bottom filter:allowing
displacement along the layers

the generalized Kuwahara filter. Since the one dimensional
filter is not rotation invariant the orientation can be different
for each point in the image, an efficient implementation is
not possible. To keep the method computationally inexpen-
sive, we chose to allow only 5 windows evenly spread over
the neighborhood.

6 Experiments and Results

6.1 Synthetic images

To test our method, we created a test image with three
textured domains. Each domain consists of a one dimen-
sional sinusoidal signal with a different orientation, see
fig.3a. The period of the sinusoidal signal is approximately
6 pixels. Furthermore we added some Gaussian noise,
SNR = 10db.

SNR = 20 log10

�
A

�n

�
(7)

with A the amplitude of the sinusoidal signal and�n the
standard deviation of the Gaussian noise. First we applied
the GST with�g = 1:0 and �T = 5:0, and calculated
the orientation and anisotropy, which are depicted in fig.3b
and c. The result of the generalized Kuwahara filter com-
bined with the GST is shown in fig.3d, where the Kuwa-
hara neighborhood has a diameter of 11 pixels. The ground
truth of the orientation is given in fig.3e for comparison.
We applied an orientation adaptive filter that uses the ori-
entation estimation derived from the gradient square tensor
as a steering parameter, see fig.4b. We also applied the this
filter steered with the improved orientation estimation as de-
scribed in section 4.3 and finally we enhanced this filter with
the edge preserving property as described in section 5.1, see
fig.4c,d. The filter type we used is the Gaussian filter, with
� = 7:0 in a 29*1 pixel window. A comparison of fig.4b
and c, shows that the improvement in orientation estimation
yields a clear improvement in filtering near a border. From
fig.4d can be seen that the edge preserving method works
and yields sharp orientation borders.

To show that our method still gives good results when
there is more than one scale present, we repeated the mea-
surement described above on a second test image, see fig.7a.
This image has the same domains, only the period of the
signals are now 5, 10, 20 pixels. The SNR of this image is
13 db. The filter type we used on this image is a Gaussian
filter, with � = 6:0 in a 25*1 pixel window.

(a) (b)

(c) (d)

(e)

Figure 7. a) test image, b) Improved orienta-
tion estimation, c) adaptive filter steered with
orientation estimation from GST, d) same as
c but with improved orientation estimation, e)
same as d but with edge preserving property.

6.2 Natural images

To test our method on natural images we obtained a seis-
mic image that contains a lot of faults. Again we applied
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our edge-preserving orientation adaptive filter. The filter
type we used is the Gaussian filter, with� = 6:0 in a 25*1
pixel window.

(a)

(b)

Figure 8. a) seismic image containing faults,
b) edge preserving filtered version of a.

7 Discussion

We have shown that it is possible to correctly estimate
the orientation near borders by combining the GST with the
generalized Kuwahara filter. This makes it possible to cor-
rectly steer an orientation adaptive filter in the whole image.
Furthermore, this filter is made edge preserving by again ap-
plying a one dimensional version of the generalized Kuwa-
hara filter.

Our method yields good results when applied on a sin-
gle scale in narrow banded image such as seismic images,
where narrow banded means that the frequencies present in
the image do not span more than two octaves. Compared
with multi-scale [2] or orientation space [7] approaches,
our method has a low computational complexity. Further-
more, our method gives a constant improvement in the SNR,
where as a multi-scale approach would apply smaller filters
near the borders which gives less SNR improvement near
these borders. The generalized Kuwahara filter may intro-
duce a slight bias in the edge location due to the fact that it
uses decentralized orientation estimation.
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