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The growing demand for aluminium worldwide makes aluminium recycling critical to realising a circular
economy and increasing the sustainability of our world. One effective way to improve the impact of aluminium
recycling is to develop cost-efficient automated sorting technologies for obtaining pre-defined high-quality
aluminium scrap products, thus reducing undesirable downcycling and increasing environmental/economic

Virtual experiment model benefits. In this work, an innovative facility, which includes singulation, sensor scanning, and ejection, is
Circularity optimised for the automated sorting of aluminium scraps. The sorting facility is computationally studied by a

virtual experiment model based on the discrete element method. The model considers particle-scale dynamics of
complex-shaped scraps and mimics the automated operation of the facility. Based on virtual experiment
modelling, the flow of scrap is optimized by computation, with the feasible operation of the sorting facility being
proposed. Accordingly, the sorting facility has been built and model predictions are confirmed in actual

operation.

1. Introduction

Aluminium is the most widely used non-ferrous metal worldwide,
and its global demand is expected to continually grow over the 21st
century (Watari et al., 2021). To meet its increasing demand and reduce
the corresponding impacts of resource consumption and pollutant
emissions, the secondary production of aluminium from waste recycling
is expected to play an increasingly important role (Soo et al., 2018; Van
der Voet et al., 2018; Aluminium, 2019). In the aluminium recycling
process, end-of-life products are shredded to scraps within a well-
defined size range and these are sorted into groups before subsequent
processing. Depending on the processing capability of the recycling
plants and/or the economic benefits, aluminium scraps can be sorted
into different classifications, such as groups with and without contam-
inants/impurities (e.g., ferrous impurities, non-ferrous impurities like
copper and magnesium, and non-metals like plastics and glasses),
groups of wrought and cast alloys, and groups of specific alloy series
such as 1xxx series to 7xxx series for wrought aluminium. The quality (e.
g., purity and specification) of sorted aluminium scraps directly affects
their potential for the secondary production of high-quality products
(Raabe et al., 2022). Therefore, those high-quality scraps at an alloy
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level (e.g., groups of wrought and cast alloys, specific alloy series such as
1xxx series to 7xxx series for wrought aluminium) are desired for real-
ising a high-level recycling process. To achieve such alloy-level scrap
sorting for enabling high-level recycling towards circular aluminium, an
essential step is to develop advanced scrap sorting technologies
(Aluminium, 2019), which is the target of this work to be presented in
later sections.

In the past decades, various scrap sorting technologies have been
developed, such as magnetic separation (e.g., Oberteuffer, 1974), eddy
current separation (e.g., Lungu and Rem, 2003), and dense media sep-
aration (e.g., Nijhof and Rem, 1999; Coates and Rahimifard, 2009). To
meet more complex sorting goals, the current trend of scrap sorting
relies on sensors (e.g., visual sensors (Huang et al., 2010), X-ray trans-
mission (XRT) (Mesina et al., 2007), X-ray fluorescence (XRF) (Kolking
et al., 2024), and laser-induced breakdown spectroscopy (LIBS) (Hahn
and Omenetto, 2012; Park et al., 2021)), artificial intelligence (AI)
(Diaz-Romero et al., 2022; Lu and Chen, 2022; Diaz-Romero et al., 2023;
Van den Eynde et al., 2023; Xu et al., 2023), and automation (Satav
et al., 2023; Kiyokawa et al., 2024). These technologies are being
investigated for the high-precision classification of scraps. For example,
advanced sensor systems like LIBS (e.g., Hahn and Omenetto, 2012; Park
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etal., 2021; Van den Eynde et al., 2023) can identify the specific element
composition of individual scraps, thus allowing the classification into
well-defined alloy types. However, the current running cost of LIBS in
real-time sorting processes can be high. A cost-effective alternative,
artificial intelligence (AI) in combination with vision systems (e.g., RGB-
3D cameras), has attracted the attention of many researchers (Koyanaka
and Kobayashi, 2010; Diaz-Romero et al., 2021; Lu and Chen, 2022).
Such Al/vision systems were demonstrated to be effective (sorting ac-
curacy from 90 % to 98 %) in sorting aluminium scraps based on scrap
shape properties (e.g., particle width, height, and projected area)
(Koyanaka and Kobayashi, 2010; Diaz-Romero et al., 2021).

Nevertheless, to achieve a fully operational sorting facility in in-
dustrial applications, multiple technologies need to be integrated
together, e.g., from scrap feeding, sensor/vision scanning, Al/computer
vision, to the robotic picking/ejection of scraps. For feasible and optimal
application, it is important to consider the interactions between
different technologies/sub-processes in the early design stage. Usually,
if the scraps can be fed as a uniform and regular flow on the conveyor
belt, the efficiency of subsequent sensor scanning and robotic picking is
significantly improved (Pfaff et al., 2016; Rem, 2020; Wen et al., 2021).
However, because of the complex shapes of aluminium scraps, many
aspects of the scrap flow behaviour are random. For example, scrap
pieces can severely overlap on the belt or hook into each other, which
impacts the uniform and regular flow, and creates a problem both for
effective sensor scanning/computer vision (Lu and Chen, 2022) and for
robotic picking of individual scraps. Some devices like vibratory feeders
can potentially help to regularize particle flow behaviours including
reducing the overlapping of scraps, thus it is critical to have a funda-
mental understanding of scrap flow dynamics in the processing line
which may integrate multiple components (e.g., feeding units like
vibratory feeders, conveyor belts, and ejection or picking system) under
different operation conditions.

Since scraps are composed of discrete particles, the discrete element
method (DEM) (Cundall and Strack, 1979), which has been extensively
used for the modelling of particulate systems (Zhu et al., 2008), is
promising for understanding scrap flow behaviours and aiding the
process design and optimisation. Recently, some researchers have used
DEM-based approaches to study recycling processes (e.g., Tsunazawa
et al., 2018; Li et al., 2021; Wang and Shen, 2022). Regarding sorting
processes, Pieper et al. (2016) studied an automated optical belt sorter
for the sorting of bulk solids, in which the particle ejection with air
valves was described with the help of a MATLAB script utilizing particle
movement information obtained with DEM; the effects of operating
parameters like particle shape or conveyor belt length on the sorting
quality were systematically investigated. Liu et al. (2022) studied the
conveyor belt sorting of coated fuel particles by DEM modelling, where
the authors systematically explored the effects of various parameters (e.
g., particle sphericity, friction coefficient, belt velocity, and feeding rate)
on the efficiency of the system.

Compared with earlier work, the current study focuses on large sizes
and complex shapes of the considered scrap particles. First, because the
shredding of metals into small sizes can be very energy-intensive and
costly, it is beneficial if large-sized scraps can be sorted. In this work in
collaboration with an industrial partner, the considered aluminium
scraps have a maximum dimension of up to 500 mm. Such scrap size is
several times larger than those processed in normal practices where the
size of aluminium particles might be about 50 mm (Schloemann, 1982;
Zhang et al., 1998) and is orders of magnitude larger than the considered
particle sizes in the studies of Pieper et al. (2016) and Liu et al. (2022).
Second, the shapes of aluminium scraps are much more complex than
previously considered spherical, cubical, and/or cylindrical shapes
(Pieper et al., 2016; Liu et al., 2022); and the interaction between
complex-shaped particles presents phenomena of clustering and entan-
glement which are unknown for simpler shapes. Such differences in
particle properties are reflected in the design and operation of the
sorting system. Hence, to achieve efficient sorting of large and complex-
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shaped aluminium scraps, some new and innovative technologies are
essential, and they are studied and optimised in this paper.

In this work, an innovative facility for the efficient sorting of
aluminium scraps is presented. The facility integrates newly patented
technologies/subprocesses including scrap feeding (Rem et al., 2023c,
d), sensor scanning (Staal et al., 2020), and automated ejection (Rem
et al., 2023b). The analysis and tests of scrap sorting behaviours in the
facility are facilitated by a computational model based on DEM. Spe-
cifically, this DEM-based model and its simulation conditions are
described in Section 2. After that, Section 3 will present parametric
studies by the model and the confirmation of the modelled results
through their implementation in actual process lines. Finally, a summary
of obtained findings is given in Section 4.

2. Material and methods
2.1. Scrap sorting facility

In the past few years, Delft University of Technology and the Dutch
company Myne Circular Metals (https://www.myne.eco/) collaborated
to develop an innovative facility (Staal et al., 2020; Rem et al., 2023a, d,
¢, b) for high-speed automated sorting of metal scraps. The facility can
sort large-sized scraps, of which the maximum scrap dimension may be
as large as 500 mm, into multiple products by their types (e.g., specific
metal alloys). As shown in Fig. 1, this sorting facility integrates three key
technologies/sub-processes:

(1) Singulation, in which the vibratory feeder and chute regularize
the initially random scrap flow into an individually spaced very
narrow and nearly 1-dimensional (1D) file of scraps on the
conveyor belt. By definition, successful singulation means that
overlapping of scrap particles is avoided and pieces of scraps can
be analysed and picked from the conveyor belt one by one; it can
thus readily improve the efficiency of the following sensor
scanning and ejection processes.

(2) Sensor scanning, which uses multiple sensors and/or cameras for
the scanning of scraps. The obtained signal information will be
processed by Al to distinguish the specific alloy or contaminant
group of the scanned scrap. Because many previous studies (e.g.,
Diaz-Romero et al., 2021; Lu and Chen, 2022) discussed similar
technologies in previous work, this part will not be the focus of
this paper.
Ejection, which is realized by a series of cross-like ejectors that
are controlled by an automatic system with input information
given from prior sensor scanning and the product quality control
system. Each of the cross-ejectors corresponds to a well-defined
product definition, and the number of ejectors can be set
explicitly to match the number of defined scrap types, to meet
diverse sorting demands. Such an ejection system owns the po-
tential merit of achieving fast and accurate ejection, while being
cost-effective compared with robotic pickers.

@3

=

2.2. Discrete element method

To aid the understanding and optimization of the scrap flow and the
sorting process in the facility as conceptualized in Fig. 1, a virtual
experiment-model is developed by DEM, based on the open-source
program LIGGGHTS (CFDEM®project; Kloss et al., 2012). In principle,
DEM traces both the translational and rotational movement of individ-
ual particles according to Newton’s second law of motion (Cundall and
Strack, 1979). The corresponding governing equations are expressed as:

dVi

mi——=

dt M

Zj (Fn‘ij + Ft.ij) + Zw (Fn,iw + Ft,iw) +mg

and
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Fig. 1. Conceptual design of the innovative scrap sorting facility.
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dt
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where m;, v;, ®; and I; are the mass, translational and rotational veloc-
ities, and the moment of inertia of particle i. The contact forces between
particles are calculated based on the Hertz model that considers the
normal force F,j; and tangential force F,;, each of which incorporates
both an elastic force term and a damping force term. The torques acting
on particle i due to particle j include two components: Tg; which is
generated by the tangential force and T, ;; which is known as the rolling
friction torque that is calculated by the constant directional torque
(CDT) model in this study. Besides particle-particle interactions, a
particle i can also interact with the surfaces or walls of various equip-
ment in the sorting line. In the DEM model, a wall (mesh) element w is
considered as a sphere with an infinite radius, thus the particle-wall
forces (Fnw, Feiw) and torques (T¢z, Triw) are computed in a similar
manner as particle-particle forces and torques. The detailed equations
for computing the force and torque terms can be found in the LIGGGHTS
(R)-PUBLIC Documentation (CFDEM®project).

It should be noted that Equations (1) and (2) are only the basic
equations of motion and are strictly valid only for spheres; to consider
the scrap particles with irregular shapes, two more important

(a) Original scrap particle

(d) Shape representation by
multi-sphere method
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computational models/descriptions are needed. First, the irregular
shape of the particle needs to be described properly, using methods like
the superellipsoids, discrete function representation, and multisphere
method, as described in previous reviews (e.g., Lu et al., 2015; Zhong
etal., 2016). In this study, the multisphere model (Kruggel-Emden et al.,
2008) is adopted to represent the complex shapes of scrap particles. The
forces and torques in the above equations (1-2) are thus the sums of the
forces and torques resulting from the element-spheres of scrap particle i
and particle j; for the normal force of the element-sphere that does not
pass through the centre of the particle, additional torque is added to
Equation (2), which is the cross product of this normal force and the
position vector between the element-sphere and the centroid of the
particle, of which the expression can be found in previous papers, e.g.,
Wu et al. (2017). Second, in addition to the overall space-fixed coordi-
nate system, another body-fixed coordinate system (of which the three
axes are aligned with the three principal axes of the particle) needs to be
used to represent the orientation of each irregular particle. More details
regarding the motion and force calculation for non-spherical particles in
DEM can be found in previous papers (e.g., Dong et al., 2015; Lu et al.,
2015; Zhong et al., 2016).

(b) 3D scanned geometry

. 4

(c) Standard Triangle Language
(STL) Mesh

Fig. 2. Shape representation by 3D scanning and multi-sphere method.
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2.3. Scrap shape representation

The complex shapes of scraps are described through a procedure as
shown in Fig. 2. The realistic 3D geometry of a scrap is scanned and
converted to an STL file, based on which the multisphere method
(Kruggel-Emden et al., 2008) is used to represent the scrap shape by a
series of element (or glued) spheres. Considering the complexity of the
scrap shapes, the scraps in the current study are constructed by placing
the spheres on the vertices of the STL meshes. This is different from some
previous algorithms (Lu and McDowell, 2006), in which the spheres are
normally inserted inside the 3D hull of the STL boundary. The reason is
that the shapes of considered scraps may contain sharp and thin edges
which are more suitable to be represented by a slice of spheres, as shown
in Fig. 2(d) The fine meshes of STL are adopted for reaching a better
shape accuracy, thus allowing the mass distribution of the constructed/
simulated particle to resemble that of the real particle. Due to the fine
meshes, the size of the used element-spheres is selected to be relatively
small (e.g., 10 to 20 mm) compared with the dimensions of scrap par-
ticles, and a large number of spheres (ranging from 249 to 1699, see
Table A.1) is used to describe the scrap shape. Because those element-
spheres are overlapped in a scrap particle, the mass density of
element-spheres is set to a proper value to guarantee that the overall
mass of the constructed scrap particle always matches the actual mass of
the real particle, as introduced in a previous study (Lu and McDowell,
2006).

2.4. Automated operation in DEM

The flow chart for computing the automated operation is given in
Fig. 3. At every timestep of DEM computation, each scrap particle which
has not passed the scanner yet is checked if its position reaches the
sensor scanning point and whether it is overlapping with other scraps. If
the scrap in the scanning region is overlapping with others, the
following sorting steps will not be conducted and it will go to the rest of

In sensor
region?

Overlapped? >

Determine scrap type

Update ejection time

Fig. 3. Flow chart for sensor scanning and automated ejection of scraps at each
time step in DEM modelling.
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the line. If the scrap does not overlap with other scraps, the type of scrap
is determined, and the triggering time of ejection is computed and stored
into the ejection time of the specific ejector. Then, if the current timestep
is within the ejection timesteps (starting from the time step at triggering
to the time step at which an ejection ends) of the ejector, the mesh of the
ejector will be rotated; this will lead to the particle ejection by
computing the mesh-particle (or particle-wall) force that is available in
LIGGGHTS.

2.5. Simulation conditions

For each simulation case, 50 scraps are fed to the system according to
a specified feeding rate. Because the current sorting process is a stable
process (namely the number of particles in and out of the line is
balanced) when the feeding rate of scraps is fixed as a constant, a further
increase of the scrap number does not bring an obvious difference in
results. The scraps used for simulations are described in Appendix A. In
general, five scraps of different shapes and masses are selected from the
real scraps, and they are repeatedly and randomly fed into the sorting
line according to a specified feed composition and at a specified overall
particle feeding rate.

The material parameters of scraps and setups used in the simulations
are identified through calibration using experimental data, which is
described in Appendix B. Besides, some default values of operation pa-
rameters are used in the simulations: the default feeding rate of scraps is
3 per second; the default frequency and amplitude of the vibratory
feeder are 40 Hz and 1.4 mm, which are kept constant in this work; and
the default speed of the conveyor belt is 3 m/s.

3. Results and discussion
3.1. Simulated sorting process

Based on the model developed in Section 2, the virtual experiment-
modelling of the whole scrap sorting process is realized, as shown in
Fig. 4. At first, different types of scraps are randomly generated and
dropped on the vibratory feeder. With the frequency-controlled drives,
the vibratory feeder can gently move particles forward, which creates
some interparticle space among particles and transports them to the
chute at a relatively uniform speed, namely, most particles have a
similar speed of around 0.3 m/s before entering the chute. Then, because
the chute creates a high acceleration of scrap velocity and makes the
flow transition from a wide and nearly 2D flow in the vibratory feeder to
a narrow and nearly 1D flow on the conveyor belt, the interparticle
distance among particles is realised before the scraps arrive on the
conveyor belt. Subsequently, each scrap passes through a sensor region
on the conveyor belt, where the type of material is distinguished with
the signal information (including type and ejection time) sent to the
specific ejector (according to the algorithm described in Section 2.4).
Finally, the particles are automatically ejected into the receiving con-
tainers by their types, once they reach the ejection points; a video is
given in the supplementary material to show this dynamic process.

Even though most scraps are sorted in one go, there can still be scraps
that are in clustering with each other (not singulated) and they will go to
the end of the line (e.g., the end container in Fig. 4). For treating such
unsorted scraps, there can be multiple options, such as sorting in another
iteration of the processing line, or sorting in another subsequent pro-
cessing line that applies different facilities, or directly selling them as
products. The selection of such options may depend on the added value
after processing the unsorted materials and the operational cost of the
iterative/subsequent processing line. For this study, the primary focus is
on optimising the proposed sorting facility so that the most scraps can be
sorted in one go. The iterative processing of unsorted materials or the
processing of the rest with some subsequent facilities may be studied in
future.
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Receivi ng container

" ...

End container

Fig. 4. The equipment and sorting process in the DEM simulation.

3.2. Effect of feeding rate

The scrap flow and sorting behaviour are affected by various pa-
rameters. Among them, the feeding rate (defined as the number of scrap
particles fed per second) is the most influential parameter. In practice, if
a larger amount of materials is fed into the processing line at a certain
time, then a higher feeding rate (i.e., a higher number of particles per
second) will be created. On the one hand, the feeding rate can influence
the throughput of the production, i.e., a higher feeding rate corresponds
to a larger amount of processed materials. On the other hand, the
feeding rate can also influence the sorting rate that is defined as the
percentage of sorted particles among all the particles fed into the line.
The successful sorting of a particle requires the singulation of the par-
ticle with a certain interparticle distance (e.g., larger than 0.05 m for this
work) between the considered particle and its neighbouring particles (e.
g., the one before or after it), as a condition for the subsequent suc-
cessful/accurate sensor scanning and ejection. Hence, a higher feeding
rate can lead to a very dense flow of particles (with possibly reduced
interparticle distance) and corresponding more clusters as failed sorting
particles. Therefore, it is important to understand the influence of
feeding rate, for identifying a suitable parameter for optimal production.

In Fig. 5(a-c), the simulated scrap flows at different feeding rates are
visualized (while the belt speed is kept at 3 m/s). At a low feeding rate (e.
g., Ny =1 /s), the arrived scrap flow on the conveyor belt is diluted with
large interparticle space. With the increase of feeding rate (e.g., Ny = 3
/s), the flow becomes denser with a decreased average interparticle
space. At a high feeding rate (e.g., Ny = 5 /s), scraps are likely to be very
close or even overlapping with their neighbours, resulting in clusters
that cannot be separated by the ejectors. Hence, the sorting rate
generally decreases with the increase of feeding rate, which is also
quantitatively shown in Fig. 5(d). From the view of optimization, the
target is to reach both a high sorting rate for avoiding too many particles
unsorted and a high throughput (corresponding to many particles sorted
per second) for economic reasons. In Fig. 5(d), it is noted that there is a
relatively slower decrease of sorting rate when N is increased from 2 /s
to 4 /s, which indicates Ny = 3 or 4 /s should be the suitable feeding rate
to allow a relatively high throughput while maintaining a high sorting
rate.

3.3. Effect of belt speed

The belt speed is another critical factor in affecting the singulation
and sorting rates. Because the successful sorting of a particle requires
certain interparticle space between the particle and its neighbouring
particles (the one prior or behind it) as a condition for the subsequent
successful ejection. Here, the effect of the variation of the belt speed
(Vper) from 2.0 m/s to 4.0 m/s on the sorting rate (while the feeding rate
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is kept at 3 /s) is investigated. As shown in Fig. 6, the sorting rate in-
creases obviously with the increase of Vj. The underlying reasons can
be understood from the scrap flow behaviour at the chute-to-belt tran-
sition. The mean velocity of scrap particles exiting the chute (Venyte exit) is
about 2.96 m/s (Table C.3), thus the scraps will experience either
deceleration or acceleration at the chute-to-belt transition, depending
on whether Vg is lower or higher than Vinyee exit- Accordingly, the
deceleration of scraps in the transition leads to a decrease of interpar-
ticle distance between scraps (Fig. 6 (b) and (c)) and thus decreases the
sorting rate. By comparison, the acceleration of scraps will increase the
interparticle distance between scraps, thus some failed singulation cases
with no interparticle distance that cannot be sorted (Fig. 6(d)) are
transformed into successful singulation cases with desirable interpar-
ticle distance for sorting operations (Fig. 6(e)). As a result, this increases
the sorting rate of particles.

Regarding the overall relationship between Ve and sorting rate
(Fig. 6(a)), a high gradient of change is witnessed for Vj decreasing
from 3 m/s to 2 m/s (corresponding to the phase with Vper < Vehute exit)s
implying that the decrease of Vpeir below Vinyee exie Will result in a quick
drop of the sorting rate. On the other hand, from the view of industrial
implementation, although the increase of Vj can improve the singu-
lation of particles, a high Vjr will also require a faster speed of sensor
scanning, Al computation, and automatic scrap ejection. In other words,
the increase of Vjr should be considered together with the processing
capability of other equipment as well, which might be a relevant limi-
tation in real applications. For the facility considered in this study, Vpe
> 3 m/s is used (with V3¢ = 3 m/s as the default value).

3.4. Effect of scrap shape

It is known that particle shape can have important effects on the flow
behaviours of particulate systems (Dong et al., 2015; Lu et al., 2015;
Zhong et al., 2016). As described in Section 2.3 and Appendix A, the
simulations considered five scrap types; these types were fed to the
simulation cases of previous sections according to a default composition
ratio. Here, to consider the effect of scrap shape, the composition ratio
was varied for the five scrap types that have aspect rations from 1.69 to
5.56 and scrap length from 0.199 to 0.416 m (see Appendix A for de-
tails), thus creating a series of simulation cases with varying mean aspect
ratio (<AR>) and mean scrap length (<L>), at a constant feeding rate
N = 3/s and a constant belt speed at 3 m/s.

Two typical cases of scrap flows with different shapes are compared
in Appendix C. It is shown that scraps with larger aspect ratios and
longer lengths will have preferential orientation along the flow direction
when they flow down in the chute and are more difficult to rearrange
their positions in the chute, which can result in more clustered or par-
allel scrap pairs on the belt, thus deteriorating the sorting efficiency.
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Fig. 5. Effects of different feeding rates (Nj).

More quantitative results of the sorting rates with varying < AR>and <
L>are given in Fig. 7. The general trend is that the sorting rate tends to
decrease continually with the increase of < AR>or < L>. At a large <
AR> (e.g., > 3.2) or a large < L> (e.g., > 0.32 m), the resulting sorting
rates of individual simulations are also strongly fluctuating, with a large
standard deviation of the value as indicated in the error bar (the last
points of Fig. 7 (a) and (b)). This indicates that the scrap sorting process
at those large < AR>or large < L>conditions may not be stable and
controllable. Besides, on the other hand, from the scatter plot in Fig. 7
(c), a high sorting rate is normally obtained at both a small < AR>and a
small < L>, and vice versa.

Overall, the results in this section indicate the important effects of
scrap shape on the flow and the sorting behaviour. Because the sorting of
scraps with a small < AR>and a small < L>can be more efficient, it
should be very beneficial to achieve a higher sorting rate by feeding
scraps with a small < AR>and a small < L>, which may be realized in
suitable shredding and screening processes prior to the feeding into the
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sorting line.

It is noted that the results and discussion here are based on a constant
feeding rate of Ng=3 /s. In reality, the overall sorting efficiency or
processing capability of a sorting line may be more often evaluated by
the mass of scraps (instead of the number of scraps) being successfully
sorted in a certain time. Then, for the shredding process to improve the
shape (for a small < AR>and a small < L>), there can be two possible
results: (1) improved particle shape while keeping similar average par-
ticle mass, by ideally just making those particles of large AR and/or L
more twisted and compacted (specific equipment/technology for
achieving such results may be explored in future work); (2) improved
scrap shape while increasing the number of resultant particles and
reducing the average particle mass, by possibly breaking those particles
with large AR and/or large L into more particles of smaller size.
Generally, the first result is more desirable and may be realized by the
well-designed shredder equipment and/or suitable shredding operation.
For the second result, some of those smaller-sized particles should be
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screened into another particle fraction which will be fed at an increased
feeding rate into the processing line, thus keeping a similar mass pro-
cessing rate as well.

3.5. Implementation in actual processing lines

The design and proposed results from DEM modelling were tested
and implemented at Myne Circular Metals, as shown in Fig. 8. At similar
settings as in the simulations (e.g., feeding rate of 3 /s and belt speed of 3
m/s), the actual tests (e.g., Fig. 8(a)) reached a singulation rate (defined
as the percentage of singulated particles with desired interparticle dis-
tance (e.g., > 0.05 m for this case) among all the particles that are fed
into the processing line) of about 83 % (from 78 % to 85 %). Such tested
results thus confirmed the simulated results, e.g., a simulated sorting rate
about 80 % in Fig. 5; note that the singulation rate is comparable to the
sorting rate in this study, as every singulated scrap is also successfully
sorted. The automated ejection of scraps has also been realized to
quickly sort scraps into product bins (e.g., up to 5-7 scraps per second).
On such a basis, a full plant named “Xorter” (Fig. 8 (c)) has been built
with 8 processing lines and 8 robotic ejectors for each line (64 robotics
running at the same time), enabling the sorting of scraps into diverse
metal alloys according to the demands of customers (e.g., various
smelters and manufacturers).

3.6. Discussion
The obtained results show that the proposed innovative scrap sorting

facility is feasible for realizing a well-singulated flow of scraps and
sorting scraps automatically and efficiently at a fast speed (e.g., 3-4
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scraps per second for a sorting rate of about 83 %). By means of a virtual
experiment, DEM simulation has optimized the design and operation of
the facility and demonstrated with experimental tests that this type of
facility can bring:

(1) High efficiency: considering the scraps are relatively large in size
(max. dimension up to 500 mm which is much larger than the
normal scrap size around 50 mm (Schloemann, 1982)), the sorted
efficiency of scraps in terms of weight/mass can be desirable. For
instance, at a feeding rate of 3 scraps per second with a sorting
rate of about 80 % and considering the mean scrap weight of
around 0.25 kg, the output can reach around 2.2 t/h for one
processing line, which is promising for commercialisation in in-
dustrial applications.

Flexibility: the facility is flexible in sorting a variable number of
scrap types and a variable amount of the overall production
target. First, for each sorting facility, the number of ejectors can
be flexibly changed to sort a variable number of products defined
by the users; the product number can be very large (e.g., > 10), as
long as the sensor/Al system can sustain the processing load.
Second, an industrial plant may parallelly combine several such
sorting facilities/lines, thus achieving the high production target
desired by users.

(2

—

Compared with some existing technologies/facilities of sorting ob-
jects/scraps on 2D conveyor belt (Brooks et al., 2019; Engelen et al.,
2022; Satav et al., 2023), the proposed sorting facility/technology is
featured in its capability to realise nearly 1D flow of scraps (see Figs. 4, 5
and 8). In the transition from the sorting of a 2D flow to the current
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sorting of several 1D flows, there are extra costs but also added benefits.
The extra costs come from the multiplication of lines (e.g., feeding units,
conveyors, sensors, and ejectors), while the added benefits come from
the desired high number of products sorted by a series of ejectors. Be-
sides, as scrap ejection is less sensitive to scrap properties (e.g., shape
and weight) compared with robotic picking (Satav et al., 2023), the
ejection system can be robust and accurate in sorting scraps that have
diverse properties, e.g., various shapes, surfaces, and weight. As such,
the current system is being implemented in the industry.

Other than the sorting facility, this work conducted virtual
experiment-modelling by DEM to understand the details of the scrap
sorting behaviours. Especially, it is found that the singulation process
which regularizes the flow behaviour of scraps with proper interparticle
distance is crucial for a successful sorting operation. Based on para-
metric studies, solutions are proposed for the optimal operation of the
singulation process. The concept and the obtained insights in this study
should be very useful for transferring those Al techniques, which
generally assume the waste scraps are put on the conveyor belt one by
one (Lu and Chen, 2022), into real industrial applications.

However, it should also be noted that there are some limitations in
this work which require further studies in future. First, only five types of
scrap shapes have been considered; for a deeper understanding of the
shape effect, more shape properties (e.g., area, volume, and curvature)
may be considered together by some statistical or data-driven models.
Second, while the current work is mainly focused on the scrap flow
behaviours under various operational conditions, the effect and opti-
mization of equipment geometry (e.g., vibratory feeder, chute, and
ejector) are also worthy of further study. Third, a more quantitative
understanding of the scrap flow dynamics, such as the mathematical
description of the delay time series of scraps’ arrival on the belt and the
more reasonable description of the rolling/sliding and damping/
rebounding dynamics (Beunder and Rem, 2003) of such non-round/
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complex-shaped particles, may also be further explored in future. In
addition, the DEM-based models as described in this study are mainly
used for offline process design and optimisation nowadays, due to their
high computational cost. It will be interesting for future studies to
improve the computational speed of such DEM-based models (by
potentially combining DEM with some data-driven or machine learning
methods), thus realising the online process control and optimization.

4. Conclusions

An innovative sorting facility for the automated sorting of aluminium
scraps has been presented in this study. The facility is aimed at sorting a
mixed scrap flow at an individual particle level, thus classifying scraps
into multiple products of specified alloy types (e.g., wrought and cast
alloys, specific alloy series such as 1xxx series to 7xxx series for wrought
aluminium). The sorting process is computationally studied by a virtual
experiment model developed from DEM. Based on parametric studies of
some key design and operational factors as well as particle properties,
insights are obtained for better process design and optimization. The
main findings are summarized as follows.

(1) Itis feasible to integrate the automated singulation of scrap flow,
sensor scanning, and ejection into a highly efficient sorting fa-
cility. In particular, based on a proper design and operation of the
feeding setup, the singulation of scraps is achieved and results in
an individually spaced very narrow and nearly 1D file of scraps
on the conveyor belt, being a great basis for the following effec-
tive sensor scanning and scrap ejection. Besides, the accurate
ejection of different types of scraps by a series of cross-like ejec-
tors is also shown to be feasible, thus offering an accurate, fast,
and cost-effective way for automated sorting of scraps.
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Fig. 8. The implementation of the design and results at Myne Circular Metals: (a) singulation prototype; (b) pilot-scale test line; (c) full-scale plant.

(2) Both operational parameters and scrap shapes have important
influences on the scrap flow and sorting behaviours. In particular,
the increase of feeding rate leads to an increasingly denser flow in
the setup, thus deteriorating the sorting rate; the feasible range of
feeding rate in this application (for particle size up to 500 mm)
may be around 3——4 particles per second which can realize a
sorting rate of around 83 % (as a compromise to reach both a high
sorting rate for avoiding too many particles unsorted and a high
throughput for economic reasons), and the sorting rate will drop
quickly for feeding rate beyond 5 particles per second. Besides,
suitable scrap shapes are from equal-sided to relatively elongated
shapes, with an aspect ratio from 1 to 3. Those infeed scrap
batches with larger mean aspect ratios (e.g., > 3.2) and longer
mean lengths (e.g., > 0.32 m) can result in more clustered or
parallel scrap pairs on the belt, thus reducing the sorting
efficiency.

(3) A computational model for modelling the scrap sorting process is
developed in this work, based on the particle-scale DEM. Besides
the consideration of realistic scrap shapes and the computation at
a full scale of the pilot-scale processing line, the fascinating merit
of the model is it has successfully integrated sensor scanning and
automated ejection with the particle flow dynamics, thus allow-
ing it to be a virtual experiment model. As in our current project
with industrial partner Myne Circular Metals, such a model has
been used for obtaining useful insights into complex scrap flow
phenomena and aiding in a cost-effective process design and
optimization.

At last, it should be noted that although this study is mainly focused
on the sorting of aluminium scraps, the introduced facility and tech-
nologies can also be potentially applied to the sorting of many other
products, including various metal scraps (e.g., steel, copper), composite
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materials, and electronic wastes. It may also be able to sort several
different materials at once as long as the flow behaviours of materials
are well regularized in the processing line, while this is subjected to
future study.
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