
 
 

Delft University of Technology

Modelling and optimization of an innovative facility for automated sorting of aluminium
scraps

Wu, Yongli; Oudshoorn, Tijmen; Rem, Peter

DOI
10.1016/j.wasman.2024.08.018
Publication date
2024
Document Version
Final published version
Published in
Waste Management

Citation (APA)
Wu, Y., Oudshoorn, T., & Rem, P. (2024). Modelling and optimization of an innovative facility for automated
sorting of aluminium scraps. Waste Management, 189, 103-113.
https://doi.org/10.1016/j.wasman.2024.08.018

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.wasman.2024.08.018
https://doi.org/10.1016/j.wasman.2024.08.018


Research Paper

Modelling and optimization of an innovative facility for automated sorting 
of aluminium scraps

Yongli Wu a,*, Tijmen Oudshoorn b, Peter Rem a

a Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2628 CN, the Netherlands
b Myne Circular Metals, Harderwijk 3846 BP, the Netherlands

A R T I C L E  I N F O

Keywords:
Aluminium recycling
Aluminium scraps
Scrap sorting technology
DEM
Virtual experiment model
Circularity

A B S T R A C T

The growing demand for aluminium worldwide makes aluminium recycling critical to realising a circular 
economy and increasing the sustainability of our world. One effective way to improve the impact of aluminium 
recycling is to develop cost-efficient automated sorting technologies for obtaining pre-defined high-quality 
aluminium scrap products, thus reducing undesirable downcycling and increasing environmental/economic 
benefits. In this work, an innovative facility, which includes singulation, sensor scanning, and ejection, is 
optimised for the automated sorting of aluminium scraps. The sorting facility is computationally studied by a 
virtual experiment model based on the discrete element method. The model considers particle-scale dynamics of 
complex-shaped scraps and mimics the automated operation of the facility. Based on virtual experiment 
modelling, the flow of scrap is optimized by computation, with the feasible operation of the sorting facility being 
proposed. Accordingly, the sorting facility has been built and model predictions are confirmed in actual 
operation.

1. Introduction

Aluminium is the most widely used non-ferrous metal worldwide, 
and its global demand is expected to continually grow over the 21st 
century (Watari et al., 2021). To meet its increasing demand and reduce 
the corresponding impacts of resource consumption and pollutant 
emissions, the secondary production of aluminium from waste recycling 
is expected to play an increasingly important role (Soo et al., 2018; Van 
der Voet et al., 2018; Aluminium, 2019). In the aluminium recycling 
process, end-of-life products are shredded to scraps within a well- 
defined size range and these are sorted into groups before subsequent 
processing. Depending on the processing capability of the recycling 
plants and/or the economic benefits, aluminium scraps can be sorted 
into different classifications, such as groups with and without contam
inants/impurities (e.g., ferrous impurities, non-ferrous impurities like 
copper and magnesium, and non-metals like plastics and glasses), 
groups of wrought and cast alloys, and groups of specific alloy series 
such as 1xxx series to 7xxx series for wrought aluminium. The quality (e. 
g., purity and specification) of sorted aluminium scraps directly affects 
their potential for the secondary production of high-quality products 
(Raabe et al., 2022). Therefore, those high-quality scraps at an alloy 

level (e.g., groups of wrought and cast alloys, specific alloy series such as 
1xxx series to 7xxx series for wrought aluminium) are desired for real
ising a high-level recycling process. To achieve such alloy-level scrap 
sorting for enabling high-level recycling towards circular aluminium, an 
essential step is to develop advanced scrap sorting technologies 
(Aluminium, 2019), which is the target of this work to be presented in 
later sections.

In the past decades, various scrap sorting technologies have been 
developed, such as magnetic separation (e.g., Oberteuffer, 1974), eddy 
current separation (e.g., Lungu and Rem, 2003), and dense media sep
aration (e.g., Nijhof and Rem, 1999; Coates and Rahimifard, 2009). To 
meet more complex sorting goals, the current trend of scrap sorting 
relies on sensors (e.g., visual sensors (Huang et al., 2010), X-ray trans
mission (XRT) (Mesina et al., 2007), X-ray fluorescence (XRF) (Kölking 
et al., 2024), and laser-induced breakdown spectroscopy (LIBS) (Hahn 
and Omenetto, 2012; Park et al., 2021)), artificial intelligence (AI) 
(Díaz-Romero et al., 2022; Lu and Chen, 2022; Díaz-Romero et al., 2023; 
Van den Eynde et al., 2023; Xu et al., 2023), and automation (Satav 
et al., 2023; Kiyokawa et al., 2024). These technologies are being 
investigated for the high-precision classification of scraps. For example, 
advanced sensor systems like LIBS (e.g., Hahn and Omenetto, 2012; Park 
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et al., 2021; Van den Eynde et al., 2023) can identify the specific element 
composition of individual scraps, thus allowing the classification into 
well-defined alloy types. However, the current running cost of LIBS in 
real-time sorting processes can be high. A cost-effective alternative, 
artificial intelligence (AI) in combination with vision systems (e.g., RGB- 
3D cameras), has attracted the attention of many researchers (Koyanaka 
and Kobayashi, 2010; Díaz-Romero et al., 2021; Lu and Chen, 2022). 
Such AI/vision systems were demonstrated to be effective (sorting ac
curacy from 90 % to 98 %) in sorting aluminium scraps based on scrap 
shape properties (e.g., particle width, height, and projected area) 
(Koyanaka and Kobayashi, 2010; Díaz-Romero et al., 2021).

Nevertheless, to achieve a fully operational sorting facility in in
dustrial applications, multiple technologies need to be integrated 
together, e.g., from scrap feeding, sensor/vision scanning, AI/computer 
vision, to the robotic picking/ejection of scraps. For feasible and optimal 
application, it is important to consider the interactions between 
different technologies/sub-processes in the early design stage. Usually, 
if the scraps can be fed as a uniform and regular flow on the conveyor 
belt, the efficiency of subsequent sensor scanning and robotic picking is 
significantly improved (Pfaff et al., 2016; Rem, 2020; Wen et al., 2021). 
However, because of the complex shapes of aluminium scraps, many 
aspects of the scrap flow behaviour are random. For example, scrap 
pieces can severely overlap on the belt or hook into each other, which 
impacts the uniform and regular flow, and creates a problem both for 
effective sensor scanning/computer vision (Lu and Chen, 2022) and for 
robotic picking of individual scraps. Some devices like vibratory feeders 
can potentially help to regularize particle flow behaviours including 
reducing the overlapping of scraps, thus it is critical to have a funda
mental understanding of scrap flow dynamics in the processing line 
which may integrate multiple components (e.g., feeding units like 
vibratory feeders, conveyor belts, and ejection or picking system) under 
different operation conditions.

Since scraps are composed of discrete particles, the discrete element 
method (DEM) (Cundall and Strack, 1979), which has been extensively 
used for the modelling of particulate systems (Zhu et al., 2008), is 
promising for understanding scrap flow behaviours and aiding the 
process design and optimisation. Recently, some researchers have used 
DEM-based approaches to study recycling processes (e.g., Tsunazawa 
et al., 2018; Li et al., 2021; Wang and Shen, 2022). Regarding sorting 
processes, Pieper et al. (2016) studied an automated optical belt sorter 
for the sorting of bulk solids, in which the particle ejection with air 
valves was described with the help of a MATLAB script utilizing particle 
movement information obtained with DEM; the effects of operating 
parameters like particle shape or conveyor belt length on the sorting 
quality were systematically investigated. Liu et al. (2022) studied the 
conveyor belt sorting of coated fuel particles by DEM modelling, where 
the authors systematically explored the effects of various parameters (e. 
g., particle sphericity, friction coefficient, belt velocity, and feeding rate) 
on the efficiency of the system.

Compared with earlier work, the current study focuses on large sizes 
and complex shapes of the considered scrap particles. First, because the 
shredding of metals into small sizes can be very energy-intensive and 
costly, it is beneficial if large-sized scraps can be sorted. In this work in 
collaboration with an industrial partner, the considered aluminium 
scraps have a maximum dimension of up to 500 mm. Such scrap size is 
several times larger than those processed in normal practices where the 
size of aluminium particles might be about 50 mm (Schloemann, 1982; 
Zhang et al., 1998) and is orders of magnitude larger than the considered 
particle sizes in the studies of Pieper et al. (2016) and Liu et al. (2022). 
Second, the shapes of aluminium scraps are much more complex than 
previously considered spherical, cubical, and/or cylindrical shapes 
(Pieper et al., 2016; Liu et al., 2022); and the interaction between 
complex-shaped particles presents phenomena of clustering and entan
glement which are unknown for simpler shapes. Such differences in 
particle properties are reflected in the design and operation of the 
sorting system. Hence, to achieve efficient sorting of large and complex- 

shaped aluminium scraps, some new and innovative technologies are 
essential, and they are studied and optimised in this paper.

In this work, an innovative facility for the efficient sorting of 
aluminium scraps is presented. The facility integrates newly patented 
technologies/subprocesses including scrap feeding (Rem et al., 2023c, 
d), sensor scanning (Staal et al., 2020), and automated ejection (Rem 
et al., 2023b). The analysis and tests of scrap sorting behaviours in the 
facility are facilitated by a computational model based on DEM. Spe
cifically, this DEM-based model and its simulation conditions are 
described in Section 2. After that, Section 3 will present parametric 
studies by the model and the confirmation of the modelled results 
through their implementation in actual process lines. Finally, a summary 
of obtained findings is given in Section 4.

2. Material and methods

2.1. Scrap sorting facility

In the past few years, Delft University of Technology and the Dutch 
company Myne Circular Metals (https://www.myne.eco/) collaborated 
to develop an innovative facility (Staal et al., 2020; Rem et al., 2023a, d, 
c, b) for high-speed automated sorting of metal scraps. The facility can 
sort large-sized scraps, of which the maximum scrap dimension may be 
as large as 500 mm, into multiple products by their types (e.g., specific 
metal alloys). As shown in Fig. 1, this sorting facility integrates three key 
technologies/sub-processes:

(1) Singulation, in which the vibratory feeder and chute regularize 
the initially random scrap flow into an individually spaced very 
narrow and nearly 1-dimensional (1D) file of scraps on the 
conveyor belt. By definition, successful singulation means that 
overlapping of scrap particles is avoided and pieces of scraps can 
be analysed and picked from the conveyor belt one by one; it can 
thus readily improve the efficiency of the following sensor 
scanning and ejection processes.

(2) Sensor scanning, which uses multiple sensors and/or cameras for 
the scanning of scraps. The obtained signal information will be 
processed by AI to distinguish the specific alloy or contaminant 
group of the scanned scrap. Because many previous studies (e.g., 
Díaz-Romero et al., 2021; Lu and Chen, 2022) discussed similar 
technologies in previous work, this part will not be the focus of 
this paper.

(3) Ejection, which is realized by a series of cross-like ejectors that 
are controlled by an automatic system with input information 
given from prior sensor scanning and the product quality control 
system. Each of the cross-ejectors corresponds to a well-defined 
product definition, and the number of ejectors can be set 
explicitly to match the number of defined scrap types, to meet 
diverse sorting demands. Such an ejection system owns the po
tential merit of achieving fast and accurate ejection, while being 
cost-effective compared with robotic pickers.

2.2. Discrete element method

To aid the understanding and optimization of the scrap flow and the 
sorting process in the facility as conceptualized in Fig. 1, a virtual 
experiment-model is developed by DEM, based on the open-source 
program LIGGGHTS (CFDEM®project; Kloss et al., 2012). In principle, 
DEM traces both the translational and rotational movement of individ
ual particles according to Newton’s second law of motion (Cundall and 
Strack, 1979). The corresponding governing equations are expressed as: 

mi
dvi

dt
=

∑

j

(
Fn,ij + Ft,ij

)
+
∑

w

(
Fn,iw +Ft,iw

)
+mig (1) 

and 
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Ii
dωi

dt
=

∑

j

(
Tt,ij +Tr,ij

)
+
∑

w

(
Tt,iw +Tr,iw

)
(2) 

where mi, vi, ωi and Ii are the mass, translational and rotational veloc
ities, and the moment of inertia of particle i. The contact forces between 
particles are calculated based on the Hertz model that considers the 
normal force Fn,ij and tangential force Ft,ij, each of which incorporates 
both an elastic force term and a damping force term. The torques acting 
on particle i due to particle j include two components: Tt,ij which is 
generated by the tangential force and Tr,ij which is known as the rolling 
friction torque that is calculated by the constant directional torque 
(CDT) model in this study. Besides particle–particle interactions, a 
particle i can also interact with the surfaces or walls of various equip
ment in the sorting line. In the DEM model, a wall (mesh) element w is 
considered as a sphere with an infinite radius, thus the particle–wall 
forces (Fn,iw, Ft,iw) and torques (Tt,iw, Tr,iw) are computed in a similar 
manner as particle–particle forces and torques. The detailed equations 
for computing the force and torque terms can be found in the LIGGGHTS 
(R)-PUBLIC Documentation (CFDEM®project).

It should be noted that Equations (1) and (2) are only the basic 
equations of motion and are strictly valid only for spheres; to consider 
the scrap particles with irregular shapes, two more important 

computational models/descriptions are needed. First, the irregular 
shape of the particle needs to be described properly, using methods like 
the superellipsoids, discrete function representation, and multisphere 
method, as described in previous reviews (e.g., Lu et al., 2015; Zhong 
et al., 2016). In this study, the multisphere model (Kruggel-Emden et al., 
2008) is adopted to represent the complex shapes of scrap particles. The 
forces and torques in the above equations (1–2) are thus the sums of the 
forces and torques resulting from the element-spheres of scrap particle i 
and particle j; for the normal force of the element-sphere that does not 
pass through the centre of the particle, additional torque is added to 
Equation (2), which is the cross product of this normal force and the 
position vector between the element-sphere and the centroid of the 
particle, of which the expression can be found in previous papers, e.g., 
Wu et al. (2017). Second, in addition to the overall space-fixed coordi
nate system, another body-fixed coordinate system (of which the three 
axes are aligned with the three principal axes of the particle) needs to be 
used to represent the orientation of each irregular particle. More details 
regarding the motion and force calculation for non-spherical particles in 
DEM can be found in previous papers (e.g., Dong et al., 2015; Lu et al., 
2015; Zhong et al., 2016).

Fig. 1. Conceptual design of the innovative scrap sorting facility.

Fig. 2. Shape representation by 3D scanning and multi-sphere method.
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2.3. Scrap shape representation

The complex shapes of scraps are described through a procedure as 
shown in Fig. 2. The realistic 3D geometry of a scrap is scanned and 
converted to an STL file, based on which the multisphere method 
(Kruggel-Emden et al., 2008) is used to represent the scrap shape by a 
series of element (or glued) spheres. Considering the complexity of the 
scrap shapes, the scraps in the current study are constructed by placing 
the spheres on the vertices of the STL meshes. This is different from some 
previous algorithms (Lu and McDowell, 2006), in which the spheres are 
normally inserted inside the 3D hull of the STL boundary. The reason is 
that the shapes of considered scraps may contain sharp and thin edges 
which are more suitable to be represented by a slice of spheres, as shown 
in Fig. 2(d) The fine meshes of STL are adopted for reaching a better 
shape accuracy, thus allowing the mass distribution of the constructed/ 
simulated particle to resemble that of the real particle. Due to the fine 
meshes, the size of the used element-spheres is selected to be relatively 
small (e.g., 10 to 20 mm) compared with the dimensions of scrap par
ticles, and a large number of spheres (ranging from 249 to 1699, see 
Table A.1) is used to describe the scrap shape. Because those element- 
spheres are overlapped in a scrap particle, the mass density of 
element-spheres is set to a proper value to guarantee that the overall 
mass of the constructed scrap particle always matches the actual mass of 
the real particle, as introduced in a previous study (Lu and McDowell, 
2006).

2.4. Automated operation in DEM

The flow chart for computing the automated operation is given in 
Fig. 3. At every timestep of DEM computation, each scrap particle which 
has not passed the scanner yet is checked if its position reaches the 
sensor scanning point and whether it is overlapping with other scraps. If 
the scrap in the scanning region is overlapping with others, the 
following sorting steps will not be conducted and it will go to the rest of 

the line. If the scrap does not overlap with other scraps, the type of scrap 
is determined, and the triggering time of ejection is computed and stored 
into the ejection time of the specific ejector. Then, if the current timestep 
is within the ejection timesteps (starting from the time step at triggering 
to the time step at which an ejection ends) of the ejector, the mesh of the 
ejector will be rotated; this will lead to the particle ejection by 
computing the mesh-particle (or particle–wall) force that is available in 
LIGGGHTS.

2.5. Simulation conditions

For each simulation case, 50 scraps are fed to the system according to 
a specified feeding rate. Because the current sorting process is a stable 
process (namely the number of particles in and out of the line is 
balanced) when the feeding rate of scraps is fixed as a constant, a further 
increase of the scrap number does not bring an obvious difference in 
results. The scraps used for simulations are described in Appendix A. In 
general, five scraps of different shapes and masses are selected from the 
real scraps, and they are repeatedly and randomly fed into the sorting 
line according to a specified feed composition and at a specified overall 
particle feeding rate.

The material parameters of scraps and setups used in the simulations 
are identified through calibration using experimental data, which is 
described in Appendix B. Besides, some default values of operation pa
rameters are used in the simulations: the default feeding rate of scraps is 
3 per second; the default frequency and amplitude of the vibratory 
feeder are 40 Hz and 1.4 mm, which are kept constant in this work; and 
the default speed of the conveyor belt is 3 m/s.

3. Results and discussion

3.1. Simulated sorting process

Based on the model developed in Section 2, the virtual experiment- 
modelling of the whole scrap sorting process is realized, as shown in 
Fig. 4. At first, different types of scraps are randomly generated and 
dropped on the vibratory feeder. With the frequency-controlled drives, 
the vibratory feeder can gently move particles forward, which creates 
some interparticle space among particles and transports them to the 
chute at a relatively uniform speed, namely, most particles have a 
similar speed of around 0.3 m/s before entering the chute. Then, because 
the chute creates a high acceleration of scrap velocity and makes the 
flow transition from a wide and nearly 2D flow in the vibratory feeder to 
a narrow and nearly 1D flow on the conveyor belt, the interparticle 
distance among particles is realised before the scraps arrive on the 
conveyor belt. Subsequently, each scrap passes through a sensor region 
on the conveyor belt, where the type of material is distinguished with 
the signal information (including type and ejection time) sent to the 
specific ejector (according to the algorithm described in Section 2.4). 
Finally, the particles are automatically ejected into the receiving con
tainers by their types, once they reach the ejection points; a video is 
given in the supplementary material to show this dynamic process.

Even though most scraps are sorted in one go, there can still be scraps 
that are in clustering with each other (not singulated) and they will go to 
the end of the line (e.g., the end container in Fig. 4). For treating such 
unsorted scraps, there can be multiple options, such as sorting in another 
iteration of the processing line, or sorting in another subsequent pro
cessing line that applies different facilities, or directly selling them as 
products. The selection of such options may depend on the added value 
after processing the unsorted materials and the operational cost of the 
iterative/subsequent processing line. For this study, the primary focus is 
on optimising the proposed sorting facility so that the most scraps can be 
sorted in one go. The iterative processing of unsorted materials or the 
processing of the rest with some subsequent facilities may be studied in 
future.

Fig. 3. Flow chart for sensor scanning and automated ejection of scraps at each 
time step in DEM modelling.
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3.2. Effect of feeding rate

The scrap flow and sorting behaviour are affected by various pa
rameters. Among them, the feeding rate (defined as the number of scrap 
particles fed per second) is the most influential parameter. In practice, if 
a larger amount of materials is fed into the processing line at a certain 
time, then a higher feeding rate (i.e., a higher number of particles per 
second) will be created. On the one hand, the feeding rate can influence 
the throughput of the production, i.e., a higher feeding rate corresponds 
to a larger amount of processed materials. On the other hand, the 
feeding rate can also influence the sorting rate that is defined as the 
percentage of sorted particles among all the particles fed into the line. 
The successful sorting of a particle requires the singulation of the par
ticle with a certain interparticle distance (e.g., larger than 0.05 m for this 
work) between the considered particle and its neighbouring particles (e. 
g., the one before or after it), as a condition for the subsequent suc
cessful/accurate sensor scanning and ejection. Hence, a higher feeding 
rate can lead to a very dense flow of particles (with possibly reduced 
interparticle distance) and corresponding more clusters as failed sorting 
particles. Therefore, it is important to understand the influence of 
feeding rate, for identifying a suitable parameter for optimal production.

In Fig. 5(a-c), the simulated scrap flows at different feeding rates are 
visualized (while the belt speed is kept at 3 m/s). At a low feeding rate (e. 
g., Ns = 1 /s), the arrived scrap flow on the conveyor belt is diluted with 
large interparticle space. With the increase of feeding rate (e.g., Ns = 3 
/s), the flow becomes denser with a decreased average interparticle 
space. At a high feeding rate (e.g., Ns = 5 /s), scraps are likely to be very 
close or even overlapping with their neighbours, resulting in clusters 
that cannot be separated by the ejectors. Hence, the sorting rate 
generally decreases with the increase of feeding rate, which is also 
quantitatively shown in Fig. 5(d). From the view of optimization, the 
target is to reach both a high sorting rate for avoiding too many particles 
unsorted and a high throughput (corresponding to many particles sorted 
per second) for economic reasons. In Fig. 5(d), it is noted that there is a 
relatively slower decrease of sorting rate when Ns is increased from 2 /s 
to 4 /s, which indicates Ns = 3 or 4 /s should be the suitable feeding rate 
to allow a relatively high throughput while maintaining a high sorting 
rate.

3.3. Effect of belt speed

The belt speed is another critical factor in affecting the singulation 
and sorting rates. Because the successful sorting of a particle requires 
certain interparticle space between the particle and its neighbouring 
particles (the one prior or behind it) as a condition for the subsequent 
successful ejection. Here, the effect of the variation of the belt speed 
(Vbelt) from 2.0 m/s to 4.0 m/s on the sorting rate (while the feeding rate 

is kept at 3 /s) is investigated. As shown in Fig. 6, the sorting rate in
creases obviously with the increase of Vbelt. The underlying reasons can 
be understood from the scrap flow behaviour at the chute-to-belt tran
sition. The mean velocity of scrap particles exiting the chute (Vchute_exit) is 
about 2.96 m/s (Table C.3), thus the scraps will experience either 
deceleration or acceleration at the chute-to-belt transition, depending 
on whether Vbelt is lower or higher than Vchute_exit. Accordingly, the 
deceleration of scraps in the transition leads to a decrease of interpar
ticle distance between scraps (Fig. 6 (b) and (c)) and thus decreases the 
sorting rate. By comparison, the acceleration of scraps will increase the 
interparticle distance between scraps, thus some failed singulation cases 
with no interparticle distance that cannot be sorted (Fig. 6(d)) are 
transformed into successful singulation cases with desirable interpar
ticle distance for sorting operations (Fig. 6(e)). As a result, this increases 
the sorting rate of particles.

Regarding the overall relationship between Vbelt and sorting rate 
(Fig. 6(a)), a high gradient of change is witnessed for Vbelt decreasing 
from 3 m/s to 2 m/s (corresponding to the phase with Vbelt < Vchute_exit), 
implying that the decrease of Vbelt below Vchute_exit will result in a quick 
drop of the sorting rate. On the other hand, from the view of industrial 
implementation, although the increase of Vbelt can improve the singu
lation of particles, a high Vbelt will also require a faster speed of sensor 
scanning, AI computation, and automatic scrap ejection. In other words, 
the increase of Vbelt should be considered together with the processing 
capability of other equipment as well, which might be a relevant limi
tation in real applications. For the facility considered in this study, Vbelt 
≥ 3 m/s is used (with Vbelt = 3 m/s as the default value).

3.4. Effect of scrap shape

It is known that particle shape can have important effects on the flow 
behaviours of particulate systems (Dong et al., 2015; Lu et al., 2015; 
Zhong et al., 2016). As described in Section 2.3 and Appendix A, the 
simulations considered five scrap types; these types were fed to the 
simulation cases of previous sections according to a default composition 
ratio. Here, to consider the effect of scrap shape, the composition ratio 
was varied for the five scrap types that have aspect rations from 1.69 to 
5.56 and scrap length from 0.199 to 0.416 m (see Appendix A for de
tails), thus creating a series of simulation cases with varying mean aspect 
ratio (<AR>) and mean scrap length (<L>), at a constant feeding rate 
N = 3/s and a constant belt speed at 3 m/s.

Two typical cases of scrap flows with different shapes are compared 
in Appendix C. It is shown that scraps with larger aspect ratios and 
longer lengths will have preferential orientation along the flow direction 
when they flow down in the chute and are more difficult to rearrange 
their positions in the chute, which can result in more clustered or par
allel scrap pairs on the belt, thus deteriorating the sorting efficiency. 

Fig. 4. The equipment and sorting process in the DEM simulation.
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More quantitative results of the sorting rates with varying < AR>and <
L>are given in Fig. 7. The general trend is that the sorting rate tends to 
decrease continually with the increase of < AR>or < L>. At a large <
AR> (e.g., > 3.2) or a large < L> (e.g., > 0.32 m), the resulting sorting 
rates of individual simulations are also strongly fluctuating, with a large 
standard deviation of the value as indicated in the error bar (the last 
points of Fig. 7 (a) and (b)). This indicates that the scrap sorting process 
at those large < AR>or large < L>conditions may not be stable and 
controllable. Besides, on the other hand, from the scatter plot in Fig. 7
(c), a high sorting rate is normally obtained at both a small < AR>and a 
small < L>, and vice versa.

Overall, the results in this section indicate the important effects of 
scrap shape on the flow and the sorting behaviour. Because the sorting of 
scraps with a small < AR>and a small < L>can be more efficient, it 
should be very beneficial to achieve a higher sorting rate by feeding 
scraps with a small < AR>and a small < L>, which may be realized in 
suitable shredding and screening processes prior to the feeding into the 

sorting line.
It is noted that the results and discussion here are based on a constant 

feeding rate of NS=3 /s. In reality, the overall sorting efficiency or 
processing capability of a sorting line may be more often evaluated by 
the mass of scraps (instead of the number of scraps) being successfully 
sorted in a certain time. Then, for the shredding process to improve the 
shape (for a small < AR>and a small < L>), there can be two possible 
results: (1) improved particle shape while keeping similar average par
ticle mass, by ideally just making those particles of large AR and/or L 
more twisted and compacted (specific equipment/technology for 
achieving such results may be explored in future work); (2) improved 
scrap shape while increasing the number of resultant particles and 
reducing the average particle mass, by possibly breaking those particles 
with large AR and/or large L into more particles of smaller size. 
Generally, the first result is more desirable and may be realized by the 
well-designed shredder equipment and/or suitable shredding operation. 
For the second result, some of those smaller-sized particles should be 

Fig. 5. Effects of different feeding rates (Ns).
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screened into another particle fraction which will be fed at an increased 
feeding rate into the processing line, thus keeping a similar mass pro
cessing rate as well.

3.5. Implementation in actual processing lines

The design and proposed results from DEM modelling were tested 
and implemented at Myne Circular Metals, as shown in Fig. 8. At similar 
settings as in the simulations (e.g., feeding rate of 3 /s and belt speed of 3 
m/s), the actual tests (e.g., Fig. 8(a)) reached a singulation rate (defined 
as the percentage of singulated particles with desired interparticle dis
tance (e.g., > 0.05 m for this case) among all the particles that are fed 
into the processing line) of about 83 % (from 78 % to 85 %). Such tested 
results thus confirmed the simulated results, e.g., a simulated sorting rate 
about 80 % in Fig. 5; note that the singulation rate is comparable to the 
sorting rate in this study, as every singulated scrap is also successfully 
sorted. The automated ejection of scraps has also been realized to 
quickly sort scraps into product bins (e.g., up to 5–7 scraps per second). 
On such a basis, a full plant named “Xorter” (Fig. 8 (c)) has been built 
with 8 processing lines and 8 robotic ejectors for each line (64 robotics 
running at the same time), enabling the sorting of scraps into diverse 
metal alloys according to the demands of customers (e.g., various 
smelters and manufacturers).

3.6. Discussion

The obtained results show that the proposed innovative scrap sorting 
facility is feasible for realizing a well-singulated flow of scraps and 
sorting scraps automatically and efficiently at a fast speed (e.g., 3–4 

scraps per second for a sorting rate of about 83 %). By means of a virtual 
experiment, DEM simulation has optimized the design and operation of 
the facility and demonstrated with experimental tests that this type of 
facility can bring:

(1) High efficiency: considering the scraps are relatively large in size 
(max. dimension up to 500 mm which is much larger than the 
normal scrap size around 50 mm (Schloemann, 1982)), the sorted 
efficiency of scraps in terms of weight/mass can be desirable. For 
instance, at a feeding rate of 3 scraps per second with a sorting 
rate of about 80 % and considering the mean scrap weight of 
around 0.25 kg, the output can reach around 2.2 t/h for one 
processing line, which is promising for commercialisation in in
dustrial applications.

(2) Flexibility: the facility is flexible in sorting a variable number of 
scrap types and a variable amount of the overall production 
target. First, for each sorting facility, the number of ejectors can 
be flexibly changed to sort a variable number of products defined 
by the users; the product number can be very large (e.g., > 10), as 
long as the sensor/AI system can sustain the processing load. 
Second, an industrial plant may parallelly combine several such 
sorting facilities/lines, thus achieving the high production target 
desired by users.

Compared with some existing technologies/facilities of sorting ob
jects/scraps on 2D conveyor belt (Brooks et al., 2019; Engelen et al., 
2022; Satav et al., 2023), the proposed sorting facility/technology is 
featured in its capability to realise nearly 1D flow of scraps (see Figs. 4, 5 
and 8). In the transition from the sorting of a 2D flow to the current 

Fig. 6. Effects of different belt speeds (Vbelt).
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sorting of several 1D flows, there are extra costs but also added benefits. 
The extra costs come from the multiplication of lines (e.g., feeding units, 
conveyors, sensors, and ejectors), while the added benefits come from 
the desired high number of products sorted by a series of ejectors. Be
sides, as scrap ejection is less sensitive to scrap properties (e.g., shape 
and weight) compared with robotic picking (Satav et al., 2023), the 
ejection system can be robust and accurate in sorting scraps that have 
diverse properties, e.g., various shapes, surfaces, and weight. As such, 
the current system is being implemented in the industry.

Other than the sorting facility, this work conducted virtual 
experiment-modelling by DEM to understand the details of the scrap 
sorting behaviours. Especially, it is found that the singulation process 
which regularizes the flow behaviour of scraps with proper interparticle 
distance is crucial for a successful sorting operation. Based on para
metric studies, solutions are proposed for the optimal operation of the 
singulation process. The concept and the obtained insights in this study 
should be very useful for transferring those AI techniques, which 
generally assume the waste scraps are put on the conveyor belt one by 
one (Lu and Chen, 2022), into real industrial applications.

However, it should also be noted that there are some limitations in 
this work which require further studies in future. First, only five types of 
scrap shapes have been considered; for a deeper understanding of the 
shape effect, more shape properties (e.g., area, volume, and curvature) 
may be considered together by some statistical or data-driven models. 
Second, while the current work is mainly focused on the scrap flow 
behaviours under various operational conditions, the effect and opti
mization of equipment geometry (e.g., vibratory feeder, chute, and 
ejector) are also worthy of further study. Third, a more quantitative 
understanding of the scrap flow dynamics, such as the mathematical 
description of the delay time series of scraps’ arrival on the belt and the 
more reasonable description of the rolling/sliding and damping/ 
rebounding dynamics (Beunder and Rem, 2003) of such non-round/ 

complex-shaped particles, may also be further explored in future. In 
addition, the DEM-based models as described in this study are mainly 
used for offline process design and optimisation nowadays, due to their 
high computational cost. It will be interesting for future studies to 
improve the computational speed of such DEM-based models (by 
potentially combining DEM with some data-driven or machine learning 
methods), thus realising the online process control and optimization.

4. Conclusions

An innovative sorting facility for the automated sorting of aluminium 
scraps has been presented in this study. The facility is aimed at sorting a 
mixed scrap flow at an individual particle level, thus classifying scraps 
into multiple products of specified alloy types (e.g., wrought and cast 
alloys, specific alloy series such as 1xxx series to 7xxx series for wrought 
aluminium). The sorting process is computationally studied by a virtual 
experiment model developed from DEM. Based on parametric studies of 
some key design and operational factors as well as particle properties, 
insights are obtained for better process design and optimization. The 
main findings are summarized as follows.

(1) It is feasible to integrate the automated singulation of scrap flow, 
sensor scanning, and ejection into a highly efficient sorting fa
cility. In particular, based on a proper design and operation of the 
feeding setup, the singulation of scraps is achieved and results in 
an individually spaced very narrow and nearly 1D file of scraps 
on the conveyor belt, being a great basis for the following effec
tive sensor scanning and scrap ejection. Besides, the accurate 
ejection of different types of scraps by a series of cross-like ejec
tors is also shown to be feasible, thus offering an accurate, fast, 
and cost-effective way for automated sorting of scraps.

Fig. 7. Sorting rate vs. scrap shape parameters: (a) Sorting rate vs. mean aspect ratio (<AR>); (b) Sorting rate vs. mean scrap length (<L>); (c) Sorting rate vs. the 
combined effect of mean aspect ratio (<AR>) and mean scrap length (<L>) at a constant feeding rate Ns = 3 /s.
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(2) Both operational parameters and scrap shapes have important 
influences on the scrap flow and sorting behaviours. In particular, 
the increase of feeding rate leads to an increasingly denser flow in 
the setup, thus deteriorating the sorting rate; the feasible range of 
feeding rate in this application (for particle size up to 500 mm) 
may be around 3–––4 particles per second which can realize a 
sorting rate of around 83 % (as a compromise to reach both a high 
sorting rate for avoiding too many particles unsorted and a high 
throughput for economic reasons), and the sorting rate will drop 
quickly for feeding rate beyond 5 particles per second. Besides, 
suitable scrap shapes are from equal-sided to relatively elongated 
shapes, with an aspect ratio from 1 to 3. Those infeed scrap 
batches with larger mean aspect ratios (e.g., > 3.2) and longer 
mean lengths (e.g., > 0.32 m) can result in more clustered or 
parallel scrap pairs on the belt, thus reducing the sorting 
efficiency.

(3) A computational model for modelling the scrap sorting process is 
developed in this work, based on the particle-scale DEM. Besides 
the consideration of realistic scrap shapes and the computation at 
a full scale of the pilot-scale processing line, the fascinating merit 
of the model is it has successfully integrated sensor scanning and 
automated ejection with the particle flow dynamics, thus allow
ing it to be a virtual experiment model. As in our current project 
with industrial partner Myne Circular Metals, such a model has 
been used for obtaining useful insights into complex scrap flow 
phenomena and aiding in a cost-effective process design and 
optimization.

At last, it should be noted that although this study is mainly focused 
on the sorting of aluminium scraps, the introduced facility and tech
nologies can also be potentially applied to the sorting of many other 
products, including various metal scraps (e.g., steel, copper), composite 

materials, and electronic wastes. It may also be able to sort several 
different materials at once as long as the flow behaviours of materials 
are well regularized in the processing line, while this is subjected to 
future study.
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