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This paper describes a study which gives insight into the size of improvement that is possible with individual in-car routing advice
based on the actual traffic situation derived from floating car data (FCD). It also gives an idea about the required penetration rate
of floating car data needed to achieve a certain degree of improvement. The study uses real loop detector data from the region
of Amsterdam collected for over a year, a route generating algorithm for in-car routing advice, and emulated floating car data
to generate the routing advice. The case with in-car routing advice has been compared to the base case, where drivers base their
routing decisions on average knowledge of travel times in the network.The improvement in total delay using the in-vehicle system
is dependent on penetration rate and accuracy of the floating car data and varies from 2.0% to 3.4% for 10% penetration rate. This
leads to yearly savings of about 15 million euros if delay is monetarised using standard prices for value of time (VOT).

1. Introduction

By routing individual vehicles, it is clear that individual
travel times and possibly also total network travel time can
be improved. With recent technologies, a personal routing
advice can be determined and presented to individual car
drivers, by using an in-car device. This routing advice can
be based on real-time traffic data, for example, floating car
data generated by other drivers using the same service,
which comprises experienced travel times. Recently, several
pilots within the “Practical Trial Amsterdam” have been
performed to test such a service [1, 2] in the Netherlands.
However, relatively small implementation and compliance
rates gave little insight into the potential effects for large-scale
implementation, since route choice effects may positively
influence travel times due to better utilization of available
capacity, but only when a sufficient number of drivers will
change their route.

In order to be able to determine a good routing advice
based on the current traffic situation, adequate knowledge
of this situation is necessary. Especially in the case of

nonrecurrent, unexpected events, such as car accidents,
routing advice can be very useful to shorten travel times.
However, in order to detect such an unexpected event,
sufficient and real-time traffic measurements need to be
available. On Dutch motorways traffic measurements of loop
detectors are available and of good quality, but much less
traffic measurements are available for urban networks. For
those networks floating car data can be used as an additional
source. However, this raises certain questions. For example,
what should be the amount and quality of FCD in order to
be able to determine an adequate routing advice? And, what
may be the improvement of such routing advice, both for the
individual driver and for the network as a whole? This paper
tries to answer these questions. First the research approach
is presented; then the importance of determining the relation
between quality of traffic data and the performance of a traffic
management measure is explained. Next, the underlying data
and the smart routing algorithm are described, after which
the results are presented. Finally, the research questions are
answered, conclusions are drawn, and recommendations for
further research are given.
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2. Importance of Determining the Relation
between Quality of Traffic Data and the
Performance of Traffic Management

Traffic management measures are designed with the (under-
lying) assumption that one has perfect traffic data available,
which the traffic management system uses to operate. How-
ever, since in reality traffic data are never perfect, the traffic
management measure will not perform optimally. But what
effect can be achieved with these inaccurate or incomplete
data and howmuch it differs from the “optimal” situation are
usually not known. If these were known, it is, for example,
possible to do a cost-benefit analysis on the goals themeasure
will achieve in relation to the costs of the data collection. Is it
worth equippingmoremeasuring points ormore people with
ameasuring device? For rampmetering a start has beenmade
to estimate the impact of inaccurate data and the benefits if
cameras are used instead of loop detectors [3].

In our specific case, it is already interesting to find out
how a measure as smart routing will perform in an urban
network anyway, wheremost of the people already have some
knowledge of the (regular) congestion. Another question
could be how many data should be gathered (by floating
devices) in order to obtain at least a positive effect. Finally, the
effectiveness of route advice also depends for a large part on
the normal route choice behaviour, the degree of succession
of the advices, and access to other types of traffic information
that the users already have. For this study these aspects are
not taken into account, because this would require large-scale
research on driving behaviour. However, the results can be
interpreted for lower degrees of succession by looking at the
results for lower penetration rates of the system.

3. Research Approach

To answer the research questions about the relation between
the accuracy of data and the efficiency of the routing
advice, a combination ofmodelling and using real (historical)
data measurements has been chosen. The ground truth is
derived from real traffic datameasurements, while the quality
variations of the FCD are modelled as perturbations of the
real traffic data. Furthermore, since driven routes were not
available (as is often the case), route choices have been
modelled with commonly used mathematical models such
as the logit model, as will be explained later. For a selected
day, the historical speeds are used as input, while different
situations for different FCD qualities and penetration rates of
the smart routing system are modelled. To show the effect of
different route choice options, several performance indicators
are calculated on network level, in order to be able to quantify
the effect of the differences in FCD quality.

Several modelling and data processing steps have been
taken. The steps and the relation between them are shown
in Figure 1. The first step was to know the ground truth of
the traffic situation in the network. This means that the real
speeds in the network during the investigation period should
be available frommeasurements or estimations derived from
measurements. For this, a large database with traffic mea-
surements in the Netherlands was used. This traffic database

was collected by the Dutch National Data Warehouse for
Traffic Information (NDW, see [4]) and consists mainly of
loop detector data. From this database the information for
the region of Amsterdam was derived. A ground truth was
created by using all available traffic data and using gap filling
methods to complete missing data, as explained later.

The second step was to define zones in the network and
to derive an origin-destination (OD)matrix with the number
of trips from each origin to each destination for a given time
period.

The third step was to determine reasonable alternative
routes in the network between each OD pair, in order to be
able to distribute the traffic over the network for the base sit-
uation and for the situation with smart routing. For each OD
pair, a number of alternative routes were determined, based
on aspects such as travel time, trip length, and road type.

These first three steps were preprocessing steps, indepen-
dent of the smart routing system. The following steps were
needed to test the smart routing measure for a selected day
and for all variations of the FCD quality, time of day, and
different penetration rates of the system.

Therefore the fourth step was the route selection, both
for the normal users and for the users using smart routing.
For the base situation of this study, without routing advice,
a multinomial logit model was used to distribute the drivers
over the route alternatives, based on the average network
speeds. Link travel times were updated using calibrated BPR
functions [5]. For the alternative situation using smart rout-
ing, the drivers were distributed either over only the shortest
route or over three route alternatives with the shortest travel
time (out of the predetermined set with route alternatives),
using actual travel times and link speeds, as will be explained
in more detail later. The network improvement was then
determined for various penetration rates of the system and
various times of the day and days of the year.

In order to determine the effect of the quality of the FCD,
the amount of available FCDwas varied by drawing a random
number of links for which an actual speed measurement is
assumed available. Links with a higher flow have a larger
probability to be selected, since the probability that an FCD
vehicle is found on these links is higher.This is accomplished
by drawing a weighted sample with weights equal to the flow.
For the links that are not covered by this data sample, the
average (historical) link speed is used. Furthermore, in order
to investigate the effect of inaccurate speed measurements,
the quality of the floating car data was varied by adapting the
link speeds with a random error. Both cases (variations in the
amount and quality of FCD) were tested separately.

Finally, for varying implementation rates of the system,
the improvement in travel times and delays (both individually
and network-wide) was determined with regard to the base
case and with regard to the optimal case based on perfect
information.

4. Underlying Data

For the case study, we used different types of traffic data,
such as loop detector data, travel times measured with
cameras, and FCD, originating from the NDW database and



Journal of Advanced Transportation 3

Database with 
measured 
tra�c data

Network with 
historical link 
speeds and �ows

Route set
generation

Dynamic OD 
matrix

FCD quality 
variations

Calculation of 
total network 
performance 
indicators and 
visualisation

Calculation of 
resulting �ows, 
speeds, and 
performance 
indicators

Route selection
Calculation of 
tra�c state 
from observed 
tra�c speeds

Amount of FCD
available

Accuracy of
FCD speeds

Normal users

Smart routing 
users

For each FCD quality variation

For each penetration rate of the smart routing system

For each time period of the day

Figure 1: Modelling approach for the smart routing case study.
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Figure 2: Modelled network of the region of Amsterdam, before (a) and after (b) gap filling. The colours indicate the average speed: green >
80 km/h, yellow 50–80 km/h, orange 30–50 km/h, and red 0–30 km/h. For the grey links, no speed data could be derived.

the Practical Trial Amsterdam [6], fused into a database
developed by TNO.

The network includes the city centre of Amsterdam
and the surrounding region with a diameter of about 30
kilometres, as shown in Figure 2. It consists of 12,425 links.
After gap filling and filtering, speeds and flows are available

for most of the links for every minute of the day. For links for
which no historical information was available, the gap filling
method determines a link speed based on the available speed
information of all links of the same road type within a range
of 2 kilometres, with weights inversely proportional to the
distance.
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Figure 3: Zone aggregation in the network, (a) 350 zones before aggregation and (b) 183 zones after aggregation.

An OD matrix was obtained from a modelling study
with the Regional Traffic Management Explorer [7]. This
matrix came from a calibrated strategic model and was
made dynamic by using departure time profiles, derived from
inquiries among travellers.Thematrix consisted of 350 zones
with a high zonal density in the city centre, which is rather
detailed for this small region. It turned out that this level of
detail was not practical for this case study in terms of long
calculation times and relevance for route choice. Therefore,
the originalmatrixwas aggregated into a smallermatrix of 183
zones.The (aggregated) zones also needed to be connected to
the network (partly manually). The original zones (centres)
and the aggregated zones are shown in Figure 3. A stronger
aggregation was done within the city centre, because these
zones are less relevant for route choice of cars, since most
routes in the city centre are done by active modes (walking,
cycling) and public transport. Most car trips in this network
are through traffic on the major roads and to workplaces in
the suburbs. Furthermore, much less information on real-
time travel times from FCD (by car travellers) was available
from the city centre.

The ODmatrix was available for every quarter of an hour
during the morning peak, between 05:30 and 11:00 hours,
and for the evening peak between 14:30 and 20:00 hours.
Because a continuous demand was needed for the daytime,
for the quarters in between, the demand was estimated with a
weighted average between each origin-destination pair. That
means close to the end of the morning peak the last demand
of the morning peak has a high weight and the first demand
for the evening peak a low weight. The total demand over
all origins and destinations for each period of the day is
visualized in Figure 4.

5. The Smart Routing Algorithm

The smart routing algorithm in this case study consists of two
parts, namely, an off-line route generation algorithm and an
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Figure 4: Total demand over the day.

on-line routing advice for individual road users. In practice,
the off-line route generation is done as preprocessing step,
while the routing advice is determined in real-time while a
user is on the road. In this case study, both are done off-line
in our data laboratory.

The off-line route generation algorithm generates route
alternatives between each origin-destination pair, with the
purpose of being able to distribute the traffic over these
alternatives and in this way improve individual and/or total
travel times in the network. The route alternatives should
be good alternatives for the trips of the road user. They are
calculated in advance, based on historic traffic data in the
network.The route generation is done based on shortest path
calculations with a generalized cost function. The attributes
of the link cost that are taken into account are

(i) the travel time (the lower the better),
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(ii) the total distance (the lower the better),
(iii) the safety/comfort, expressed as the distance on the

underlying roadnetwork (notmotorways) as percent-
age of the total route length (the lower the better),

(iv) the comfort, expressed as the average capacity per
kilometre (the higher the better: sufficient capacity,
more lanes).

Each of these attributes has a weight factor to determine
the overall score of the route. These weighting factors can
be varied per user or user type, as was done in the PPA
[8]. Here we used fixed weighting factors 𝑤1 = 1, 𝑤2 =0.25, 𝑤3 = 0.20, and 𝑤4 = 0.0025. In order to find route
alternatives, first the fastest route, the shortest route, and the
route with highest capacity are determined and added to the
route set. In order to create more route alternatives, a Monte
Carlo approach was used where the generalized costs per link
are varied stochastically. The maximum number of routes
that are generated per origin-destination pair is adjustable.
In this case study, a maximum of ten routes was chosen.
As will be explained later, all car drivers without the in-car
routing device are distributed over all of these routes, while
the users with the in-car routing device will be distributed
over a maximum of three routes with the shortest real-time
travel time.

The on-line routing advice will provide a real-time rout-
ing advice at departure time to individual road users. For each
user, a selection ismade from the ten route alternatives for his
origin and destination. The pregenerated route alternatives
are evaluated real-time with the measured travel times.
Several strategies are possible. The easiest approach is to
provide only the routewith the shortest travel time to the user.
Downside of this strategy is that if too many users receive
and follow this advice, the capacity of this route might be
exceeded such that this route is beginning to suffer from
congestion. Another strategy is to provide a number of route
alternatives to the user, from which he/she will make his
own route choice, based on his personal preferences. Both
strategies have been evaluated in this case study; for the
second strategy the user was given a choice between 3 routes.

6. Accuracy and Availability of FCD Data

Accuracy of single FCDmeasurements is dependent on both
the measurement accuracy of the device (e.g., GPS or WIFI
and quality of the GPS receiver), the environment (e.g., high
density of high buildings will deteriorate the accuracy of
GPS), and the software that is used for, for example, map-
matching, speed calculation, and corrections. The average
position error ranges from 2 meters on an open square to 15
meters in wide streets with buildings on both sides [9]. For
speed calculation a GPS usually takes a running average of
data points with some smoothing function. This means that
while accelerating or decelerating the GPS will have a larger
error than at constant speed. Besides locationmeasurements,
signal Doppler shift is also used to make it more accurate.
Speed measurements can furthermore be extracted in other
ways, for example, directly from the car; however, speed
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Figure 5: Estimation of percentual speed errors for the average
speed at a road section with speed limit 80 km/h, moderate traffic
flow, and a length of 400m, based on FCD samples with different
penetration rates. The solid curve represents the average absolute
percentage error.

extracted from GPS is usually more accurate than measured
by the car, since it is not affected by inaccuracies such as the
vehicle’s wheel size or drive ratios. It is dependent however on
GPS satellite signal quality but these errors can be minimized
with the use of moving average calculations. However, GPS
is more dependent on the environment than speedometers in
the car, think of tunnels, high buildings, and so forth. ForGPS
speed accuracy based on GPS-Doppler 10-second average
speed accuracy better than 5 cm/s with the confidence level
better than 99.9% has been observed [10].

One could conclude that single GPS speedmeasurements
are fairly accurate, though, for average speed calculations of
a road section the accuracy of the average speed depends
more on the availability of FCD than on the accuracy of single
FCD speed measurements. Let us do a simple calculation
exercise. For example, assume a road section of 400 meters
with a speed limit of 80 km/h and a flow of 1000 veh/h,
which corresponds to a density of 18 vehicles on this road
section. Assuming furthermore that the real speed of these
vehicles is normally distributed with mean 82 km/h and a
standard deviation of 5 km/h and that the measured FCD
speed has a normally distributed error with amean of 1 km/h,
the FCD speed error (difference between real average speed
on the road section and the average measured FCD speed)
for different FCD penetration rates is shown in Figure 5.
A similar calculation is done for the network of the region
of Amsterdam, separately for each link in the network,
considering the speed limit, link length, and estimation of
the flow, for a penetration rate of 1%, 10%, 50%, and 90%.The
result is given inTable 1. For 1% the density is inmost cases too
low to be able to estimate the error; therefore no estimation
could be made for this penetration rate.

In addition to the speed accuracy, low FCD penetra-
tion rates have an additional problem; namely, during the
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measurement period at (short) road sections not any FCD
vehicle might be present. The probability for this can also
be calculated statistically; assuming constant speeds one can
use the Poisson distribution for this. This probability is
furthermore dependent on the duration of the time interval,
the flow (𝑞), the link length, and the average speed. Vehicles
present on the link at the beginning of the interval are also
included by extending the time interval with the average
travel time. The results for a three-lane motorway section
(100m) and an urban road section are shown in Figure 6
(notice the difference in axes scale). Notice that, on the
motorway with moderate and high flow, already above 2%
penetration rate the probability that there is no FCD available
is negligible. On the urban road, this is around 20%.

However, often one wants to have more than one obser-
vation on a link in order to calculate an average speed which
is accurate enough (to average out speed dynamics on the
road section andmeasurement inaccuracies or to remove odd
cases such as vehicles resting at a parallel parking space).
The same calculation can be done for the probability of at
least 3 FCD vehicles to be present on a road section during
a given time interval. The results are shown in Figure 7. This
led to quite different results; on the motorway the probability
that there are less than 3 FCD available is negligible above
4% penetration rate and on the urban road above 40%
penetration rate.

Taking this exercise further to estimate the relationship
between the penetration rate of FCD vehicles and the avail-
ability of reliable average link speeds in a traffic network,
we used this calculation method together with the network
data of our case study aroundAmsterdamwithmeasured and
estimated speeds and flows for all links (12,425 links, average
link length 186m), on the January 28 at 8:00, assuming a
uniformly distributed FCD penetration rate throughout the
network. For each link, the probability that sufficient FCD is
available is estimated and summed up for the whole network.
From this, the expected number and percentage of available
links are calculated. The result is shown in Figure 8. Relating
the link availability percentages to FCD penetration rates,
a link availability of 10%, 50%, and 90% corresponds to,
respectively, 1.7%, 5.8%, and 15.6% FCD penetration rate
throughout the network. From this one can conclude that
already quite low FCD percentages lead to relatively high
availability of linkswhere a reasonably accurate average speed
can be calculated. The other way around, looking at the
FCD penetration rates as used later in this paper, we get the
percentages as given in Table 1.

7. Modelling Smart Routing

In this paragraph, we explain in more detail how the route
choice was modelled for both “normal” users (those who do
not have the smart routing system to their disposal) and smart
routing users, as well as which days were modelled and how
the quality variations in the traffic data are modelled.

7.1. Modelling Normal Users. We assume that the “normal
users” do not have real-time information about the actual

Table 1: Relation between penetration rate of FCD, speed error, and
link availability.

Penetration rate
of FCD Speed error (%) Link availability

(%)
1% NaN 5%
10% 5.6% 76%
50% 4.6% 99%
90% 1.1% 99.5%

speeds on the road network but that they have a notion of
what the speeds usually are on their routes, derived while
driving in the network during the recent past. In the model,
this is estimated by calculating the mean speeds on each link
in the network over the last two months. The route choice
of these users is based on the average travel times on their
routes from these average speeds (without the speed of the
current day).The route choice ismodelledwith amultinomial
logit model. The multinomial logit model (MNL) is the most
widely used choice model, due to its simple mathematical
structure and ease of estimation [11]. In this model, the
probability for using route 𝑟 is calculated as follows:

𝑃 (𝑟) = 𝑒−𝜃𝑇𝑟∑𝑟 𝑒−𝜃𝑇𝑟 (1)

in which 𝑇𝑟 are the generalized costs (in this case the
estimated travel time) of the route and 𝜃 is a scaling parameter
which represents the knowledge level of the user. In this case
study, we used the following settings: theta = 1, 𝑇𝑟 travel time
in minutes, which has been proven in earlier studies to be
realistic settings [12]. More sophisticated route choicemodels
existwhich, for example, correct for overlapping of routes (see
[11, 13, 14]).This case study focuses on the effect of inaccurate
input data rather than on route choice modelling. A route
choice model that takes overlapping of routes into account
could also represent the effects of inaccurate information on
route choice better; however, in the current study this is not
(yet) done, since this would lead to much longer calculation
times, while the calculation time is already a limiting factor in
this study due to the large number of variants in information
levels. Also, the route generation model already filters out
routes that greatly overlap. Therefore it was accepted that the
multinomial route choice model is sufficient for the purpose
of this study.

The route flows for every OD pair and every time period
are then calculated by multiplying the probabilities with the
number of trips per OD pair.

7.2. Modelling Smart Routing Users. Between each OD pair,
we derived at most ten alternative routes, as mentioned in
Section 5. A certain fraction of all drivers uses the smart
routing application, which we call the penetration rate 𝑝
of the system. The follow-up rate of the system is already
contained in this fraction, but can be modelled separately
when desired. Users with the smart routing application will
get a routing advice representing one or more routes to their
destination. Here we investigated first the scenario that only
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Figure 6: Estimation of the probability that not any floating car is observed during a 5-minute time interval on a road section of 100m length
and different lane flows (𝑞), on a 3-lane motorway with speed limit 120 km/h (a), and on a one-lane urban road with speed limit 50 km/h (b).
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Figure 7: Estimation of the probability that less than 3 FCD vehicles are observed during a 5-minute time interval on a road section of
100m length and different lane flows (𝑞), on a 3-lane motorway with speed limit 120 km/h (a), and on a one-lane urban road with speed limit
50 km/h (b).

the route with the shortest actual travel time is advised to
the users, which they will accept. Secondly, we investigate
the scenario that the three best/fastest routes based on the
actual travel time are shown to the user.Theusers route choice
is assumed to be distributed over this top 3 conform the
multinomial logit model, similar to the users without smart

routing advice, but in this case based on the actual speeds
instead of average speeds. The routing advice does not take
into account the capacity and actual flows on the routes. This
is to conformmost current routing advice systemswork, since
it is a difficult task to estimate actual flows in the network and
to determine a routing advice based on, for example, a user
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Figure 8: Estimation of the link availability for different penetration
rates of FCD vehicles on the study network of the region of
Amsterdam.

equilibrium in order to prevent that too many drivers choose
the same route leading to congestion. But we do take into
account the fact that the resulting flows might lead to longer
travel timeswhen certain route parts approach or exceed their
capacity, using the so-called BPR function [15]:

ttcong = tt𝑓𝑓 ⋅ (1 + 𝛼 ( 𝑞𝐶)
𝛽) . (2)

The BPR function is calibrated on the speed data in
the network on link level (for each link separately) with a
polynomial fit, for the links for which measured speeds were
available. Capacity of the links was estimated based on the
speed limit and the number of lanes. For the other links,
default values for alpha and beta were used: alpha = 0.15 and
beta = 4.

7.3. Selection of Days. The smart routing advice is expected
to have a larger impact when the traffic situation is different
from the daily traffic pattern, that is, when there is more
congestion than normal, because then it has more added
value to know the actual traffic situation. Therefore, we want
to test the system for one ormore dayswhere the traffic speeds
have a large deviation from the speeds on an average day, and
for comparison also for a day which has speeds close to the
ones on an average day. In order to find such days, the average
network speed was calculated for each period of the day and
all days in the first three months of 2015 for which sufficient
data were available. Next, the average network speed was
calculated over all weekdays (Monday to Friday). Days with
a lot of outliers were excluded from the calculation of the
average network speed. For each day, the network speed was
compared with the average speed and a choice was made for
an average day and for two (different) abnormal days. One
of the chosen abnormal days is Tuesday, February 3, 2015.
On that day there was a lot more congestion than usual. This
was caused by slipperiness due to the snowy winter weather
during the whole day. The network speed of the “abnormal”

day together with the network speed of the average weekday
is shown in Figure 9(b), where it is shown that the actual
network speed ismuch lower than the average network speed.
The other abnormal day was the 5 February 2015. On that
day there was also a lot more congestion than usual, caused
by several incidents, especially during the morning peak, as
shown in Figure 9(c).The selected average day is Wednesday,
January 28, as is shown in Figure 9(a). A remark needs to
be made that in exceptional days like those investigated,
demand and capacities are different than normal days, and
also uninformed users’ behaviourmay be different, since they
will face different delays. However, we assume thatmost users
will still take the route that they are used to take and therefore
the estimated route choices are considered representative also
for these cases.

7.4. Variation inQuality of the FCD. Floating car data is never
100% correct. In this study we want to know what the effect is
of different levels of quality of the floating car data. There are
different types of errors or inaccuracies in floating car data,
but in this study we focus on two types of inaccuracies: lack
of data and inaccurate data.

For the first inaccuracy type (lack of data) the number of
links for which the actual traffic speed is known is varied. To
be able to generate a complete advice, for the links for which
no information is available, the free flow speed of the link
is used. The percentage of links for which no information
is available is varied from 0% to 100% with steps from 10%.
The links for which no actual traffic speeds are available
are drawn randomly with a higher weight for links with
a higher flow. The flows are used as weights in a drawing
without replacement. This is done in this way because in
practice there is also a higher probability that floating car
data are available on links where more vehicles have passed.
The smart routing application will base its routing advice
on the adapted, incomplete information of the speeds in the
network. Since part of the congestion is not observed, these
travel timeswill generally be shorter than the real travel times.
However, it may still be better than the average travel times
that are used for the route choices of the normal road users
without the smart routing application.

For the second type of inaccurate data, we assume that
the inaccuracy of the speeds found in the floating car data
is normally distributed with mean value of the real average
speed and a standard deviation that is varied from 0 to 0.9
with steps of 0.1, as shown in Figure 10. For each link, a
separate drawing is done and applied to the speed of that
link.The smart routing application will again base its routing
advice on the adapted (inaccurate) information of the speeds
in the network.The resulting travel timesmay be either larger
or shorter than the real travel times, but again may still be
better than the average travel times that are used for the route
choices of the normal road users without the smart routing
application.

8. Results

8.1. ResultsUsing Perfect Information. Supposewehave access
to perfect traffic information and we offer the smart routing
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Figure 9: Selected day with an average speed pattern (a), a day with an abnormal speed pattern February 3, 2015 (b), and a day with an
abnormal speed pattern on February 5, 2015 (c).

advice as explained above. Then we can calculate what the
potential effect is of the smart routing application. Since the
system knows the actual travel times, the total travel time
in the whole network is expected to decrease, as well as the
delays in the network. On individual level, smart routing
users will benefit as well. Only when too many road users
choose the same route, based on the advice, may (individual)
travel times increase.

We have calculated the effects for different penetration
rates of the system for the three different days. The total
delay was calculated as the difference between the total of
all free flow travel times in the network and the total of all
actual travel times in the network.Thedifference in total delay
without smart routing and with smart routing is compared

for several penetration rates of the system (1%, 10%, 50%,
and 90%). The result is shown in Figure 11. This figure clearly
shows that the improvement of the system is largest for high
penetration rates of the system and during the peak hours, as
can be expected.

In Figure 12, the total delay improvement over the whole
day is shown for the three different days and the two route
advice strategies (showing only the best route or the top 3
best routes). In Figure 12(a) it can be clearly seen that the
day with the most deviating congestion (February 5) has the
largest benefit in saving delay hours, as expected. It is striking
that the results show a clear linear relationship with the
penetration rate. It is difficult to understand this relationship;
it seems that, despite the complexity of the network and the
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Figure 10: Error factors for the inaccuracy of the measured speeds.

nonlinearities in the overall system, the impact of more FCD
in the system can be approached with this linear relationship,
though it could also be the case that the way of modelling
and the assumptions used oversimplify the outcomes. We
however still believe that this will not change the general
conclusions, order of magnitude of the effects, and other
general insights gained from this study.

For a penetration rate of 10% on the average day with the
best routing advice, the total improvement over thewhole day
is 4480 hours, or 0.8% of the total delay in the network as
shown in Figure 12(b). Giving a top 3-route advice gives a little
bit less good results of 3150 saved hours or 0.8%. Apparently
the possible prevention of congestion on the best route does
not compensate the longer travel times of the second and
third best routes. For 90%penetration rate, 4.7% to 7.0%of the
total delay in the network would be saved on the average day.
It is also striking that the results of the average day and the day
with the most congestion do not differ much percentagewise
for the best routing advice only (8.6%).

Using a value of time of EUR 12.28 (assuming an average
of 10% freight traffic and the key figures from [16]), thismeans
a saving of 55,000 euros for the average day.This can be scaled
up to a yearly level by calculating with the yearly number of
weekdays (261 in 2015). This gives an estimate of 14.5 million
euros saved on a yearly basis for 10% penetration rate of
the system, when perfect traffic data and traffic information
would be available. For 90% penetration rate 130 million
euros could be saved on a yearly basis, calculating only
with average days. However, since part of the days has more
congestion than average, the potential is larger.

8.2. Results with Variation inQuality of the FCD. In Figure 13,
the relative improvement in delay time compared with no
routing advice is shown for the average day (January 28, 2015).
(a) and (c) are the results where the system only gives the best
route option to all users. In (b) and (d), the results when the
3 best routes are given are shown. In (a) and (b), the accuracy
of the speed information is varied, while the graphs in (c) and
(d) show the results for the variation of available link speeds.

As can be seen from these results, it seems that inaccurate
speed information has a higher impact on the results than
incomplete information, though these are different quantities
and cannot be compared exactly. Furthermore, giving the
user only the best route option leads to better results than
giving the user a choice between the three best route options.
The same as in the case with perfect information, it appears
that the possible prevention of congestion on the best route
does not compensate the longer travel times of the second and
third best routes. However, if the errors on the link speeds are
higher than 40%, the total impact becomes negative.

For the best route option only, the highest impact is
around 7% with 90% penetration rate of the system. For the
three route options, the impact stays below 5%. With 10%
penetration rate, the impact is below 1% and around 0.5%
with three route options. For 1% penetration rate, the effects
on network level are negligible.

The completeness of the information has less (negative)
influence, the impact stays within 4%–7% for 90% penetra-
tion rate of the systemand 1 route option, evenwhenno actual
link speeds are available. Apparently the route advices based
on estimated link speeds (free flow speeds) are still better than
the route choice based on the average knowledge of drivers of
speeds in the network.

Figure 14 gives comparable results for February 3, 2015,
where more congestion was present in the network. Surpris-
ingly, the impacts are almost comparable as for the average
day. The cause of this can be that this day the congestion was
due to snow and ice during the whole day and on all roads.
Therefore not much can be gained with route advices for
alternative routes.Only the link availability ismore important
on this day, for low link penetration rates.

Finally, the results for February 5, the most “abnormal”
day, is shown in Figure 15. It is clear that the effects for this day
are the highest; for the speed accuracy this is 8.6% for 90%
penetration rate and 1% for 10% penetration rate and when
you calculate the effect during the morning peak hour the
effect is about 14% for 90% penetration rate and about 1.5%
for 10% penetration rate.

Assuming that the drivers that use the smart routing app
also provide the FCD data, the penetration rate of the users
is the same as the penetration rate of the FCD, such that the
percentages of Table 1 apply.These can be linked to the results
of this paragraph. For the link speed error, a translation is
needed from average absolute error to the standard deviation
of the error distribution. For the percentages of Table 1
(5.6%, 4.6%, and 1.1%), this is, respectively, 0.07, 0.06, and
0.01. Linking this to the results of this paragraph, the FCD
penetration rate hardly makes any difference for the results
based on speed error or for limited link availability, as shown
in Table 2. One should however take into account the fact that
the link speed error is caused by more than a small random
error for GPS inaccuracy, the data may also contain outliers
in the speed by other causes, or in a densely built up area the
error will be larger.

Link availability and speed inaccuracy are linked in the
sense that a certain minimum availability of FCD is needed
on a link in order to be able to actually calculate an average
speed. The higher the availability, the higher the speed
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Figure 11: Effect of smart routing using perfect information for different penetration rates on the average day (a) and for February 5, 2015.
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Figure 12: Saved delay hours as total over the whole day (a) and as a percentage with regard to the situation without routing advice (b).

Table 2: Relation between penetration rate of FCD, speed error, and link availability.

Penetration rate of FCD Delay improvement for speed inaccuracies Delay improvement for limited link availability
28 January 3 February 5 February 28 January 3 February 5 February

1% Unknown Unknown Unknown <0.03% <0.02% <0.02%
10% 0.8% 0.8% 1.0% 0.7% 0.7% 0.9%
50% 3.8% 4.0% 4.8% 3.8% 4.0% 4.8%
90% 6.9% 7.3% 8.6% 6.9% 7.3% 8.6%
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Figure 13: Delay improvement for 28 January 2016 (average day) as percentage with regard to the normal delay: variation in speed accuracy
with best route advice (a), variation in speed accuracy with top 3-route advice (b), variation in link speed availability with best route advice
(c), and variation in link speed availability with top 3-route advice (d).

accuracy. For 50% and 90% FCD, the results are almost equal,
because they are both very close to the maximum effect.
An FCD percentage somewhere between 1% and 10% would
show larger differences. Actually one should take into account
both quality aspects in order to estimate the total effect; the
combined effect is smaller than when taking into account
only one of the inaccuracies.

9. Relation with Data Quality and Cost Benefit

Based on the results this case study allows for a cost-benefit
analysis which relates the amount and quality of the input

(floating car) data to the improvement of the individual
and network performance. This may be used to support
investment decisions on such a system to answer questions
such as what can be the benefit of real-time in-car routing,
which implementation rate should be achieved in order to
reach a certain improvement, and which quality of input
data is needed (either from the participating vehicles or from
another source)?

The benefits of the system are calculated for different
penetration rates and qualities using a value of time in the
same manner as above for the case with perfect information.
This gives pictures of similar shape of Figures 13–15, up to
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Figure 14: Delay improvement for 3 February 2016 (day with a lot of congestion) as percentage with regard to the normal delay: variation
in link penetration with best route advice (a), variation in link penetration with top 3-route advice (b), variation in speed accuracy with best
route advice (c), and variation in speed accuracy with top 3-route advice (d).

one million euros a day for 90% penetration rate on February
5.

The benefits can now be weighed against the costs
of such a system and data gathering. These costs consist
mainly of the software development, maintenance, and data
communication costs.The data communication costs depend
on the penetration rate of the system and on the sample rate:
the higher the penetration rate and the higher the sample
rate are, the more the communication is needed. However,
in the case of a mobile phone service, nowadays most people
have a fixed cost subscription with a large amount of data

communication included. Though we can assume that some
quality aspects of the data are related to certain costs.

The total number of trips during one day in or crossing the
region around Amsterdam in this case study is 6.4 million,
based on the OD matrix (night not included, see Figure 4),
or 2 million during the morning peak. Since most people
make more than one trip a day, namely, 2.7 on average [16],
the total number of different people making one or more
trips in this area can be estimated at 2.4 million on a daily
basis. Hence a penetration rate of, for example, 10% relates to
approximately 240 thousand people (selected from the people
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Figure 15: Delay improvement for 5 February 2016 (day with a lot of congestion) as percentage with regard to the normal delay: variation
in link penetration with best route advice (a), variation in link penetration with top 3-route advice (b), variation in speed accuracy with best
route advice (c), and variation in speed accuracy with top 3-route advice (d).

that are known to travel in or through this area). For the
morning peak this is comparable, assuming that one usually
makes only one trip during the morning peak, one gets 200
thousand people for 10%penetration rate. Assuming that they
all need a mobile phone subscription with data for an average
cost of 20 euros per month, this gives a total cost of around
200 thousand euros per working day. This does not weigh
against the benefit in value of time per day that was calculated
earlier (55000 for a normalworking day); however, sincemost
people already have a mobile phone subscription with data
connection, the extra costs for this service are zero.

Additional costs can be considered for the data collection,
analysis, and processing, which consist of a fixed part and
a part dependent on the amount of data. Twice as much
data usually needs more processing and analysis time, but
not twice as much time, since certain analysis steps are
as much work for a small dataset as for a large dataset,
and independent calculation steps can be parallelized. The
same scripts can often be used to handle a larger dataset.
So assume, for example, that every month a fixed amount
and a variable amount of man hours are used to handle the
collected data correctly, say 10 hours (fixed) plus one hour for
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the data of every 10 thousand users for a tariff of 100 euros
per hour, giving labor costs of 3000 euros per month. Then
some costs for hardware and software could be somewhere
around 1000 euros per month (considering, e.g., write-off
of advanced computing servers or subscription for cloud
computing and storage). Now the benefit falls greatly to the
advantage of the smart routing application. However, initial
costs for development of this service (to make it mature and
ready for large-scale use) are also substantial and can, for
example, be estimated around 100 thousand euros. A business
model could be used to ask a small amount from the users for
this service (let us say 2 euros for downloading the app and 2
euros per month for using it), in order to gain back the initial
development costs quickly.

10. Conclusions

The results of this study give insight into the size of
improvement that is possible with individual in-car routing
advice, for different traffic situations, and which quality of
the input traffic data is needed to achieve a certain degree
of improvement. This improvement is expressed with traffic
performance indicators as total travel time and total delay.

For a penetration rate of 10% on the average day, when
perfect traffic data and traffic information would be available,
the total improvement over the whole day is 0.8% of the
total delay in the network, which means a saving of about
15 million euros on a yearly basis. For 90% penetration rate,
7.0% of the total delay in the network would be saved, which
is approximately 130 million euros on a yearly basis.

Though the previous results are based on perfect infor-
mation, this study furthermore shows that even with low
data availability and low speed accuracies the delays in the
network are improved. For 90% penetration rate, on a regular
day the improvement in saving delay hours is about 7%; on a
day with incidents this increases to 8.6%. When only looking
to the morning peak, the difference in effect for a normal day
or a day with incidents is larger: from 4% on a regular day to
14% on a day with incidents.

When the link speed accuracy is less than 40%, the effect
of the smart routing advice becomes negative, because it is
based on the wrong information.

Also a relation has been made between the FCD pene-
tration rate and the quality aspects of the data for the smart
routing: with a penetration rate of at least 10%, the speed error
based on small individual location errors from GPS stays
below 6%.Therefore the FCD penetration rate has hardly any
influence on the delay improvement from the smart routing.
For a penetration rate of 1% this could not be estimated
because of very little data. For the link availability, an FCD
penetration rate of 1% leads to link availability of 5%. For
a penetration rate of 10% or higher, the link availability is
so high that again the FCD penetration rate has not much
influence.

A coarse cost-benefit estimation has been done based on
rough estimates of various costs (fixed and variable). This
shows that the necessary communication costs for a mobile
data connection (subscription with data for the users) do not
weigh against the benefit in value of time per day, however,

since most people already have a mobile phone subscription
with data connection, the extra costs for this service are zero.
Maintenance costs are very low compared to the benefits.
Initial development costs are estimated substantial but can be
gained back quickly by asking a very small amount from the
users for this service.

11. Recommendations for Further Research

Though in this case study a good attempt has been made for
the estimation of the potential effects of a large-scale smart
routing service, some issues could be studied in more detail
in order to improve the reliability and applicability of the
results. Additional questions and steps for further research
are as follows:

(i) In order to get more reliable results on a yearly level,
scale up the results by using more days with different
traffic patterns and investigate how many abnormal
days withmore congestion than average usually occur
throughout a year.

(ii) Use a route choice model that takes into account
overlap of routes, calibrate with real data.

(iii) Calculate personal benefits (in addition to network
effects)

(iv) Improve the routing advice taking into account capac-
ity constraints: when the route with the current
shortest travel time almost exceeds capacity, advise
the 2nd (or 3rd) best route. This can, for example, be
done by performing an equilibrium traffic assignment
based on actual traffic measurements.

(v) Improve the routing advice by updating the advice
while driving, using actual trafficmeasurements.This
was already implemented in practice in the Practical
Trial Amsterdam [2].

Since this study shows that the penetration rate and FCD
data accuracy are key elements in relation to the delay
improvement, strategies that could increase the penetration
rate of such in-car services and possibilities to improve data
quality from FCD are relevant topics for further research as
well. For example, additional research can be done on the
accuracy of the localization: does localization based on gsm
signal strength provide sufficient accuracy or is GPS accuracy
needed? In the first case penetration rates are expected to be
higher since not everybody has or uses GPS localization all
the time on his mobile phone.
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