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Static friction of sinusoidal surfaces: a discrete dislocation
plasticity analysis
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ABSTRACT
Discrete dislocation plasticity simulations are carried out to
investigate the static frictional response of sinusoidal asperities
with (sub)-microscale wavelength. The surfaces are first flattened
and then sheared by a perfectly adhesive platen. Both bodies
are explicitly modelled, and the external loading is applied on
the top surface of the platen. Plastic deformation by dislocation
glide is the only dissipation mechanism active. The tangential
force obtained at the contact when displacing the platen
horizontally first increases with applied displacement, then
reaches a constant value. This constant is here taken to be
the friction force. In agreement with several experiments and
continuum simulation studies, the friction coefficient is found
to decrease with the applied normal load. However, at odds
with continuum simulations, the friction force is also found to
decrease with the normal load. The decrease is caused by an
increased availability of dislocations to initiate and sustain plastic
flow during shearing. Again in contrast to continuum studies,
the friction coefficient is found to vary stochastically across the
contact surface, and to reach locally values up to several times
the average friction coefficient. Moreover, the friction force and
the friction coefficient are found to be size-dependent.
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1. Introduction

Friction, as encountered in our everyday lives, is the resistance to relative motion
between bodies in contact. Playing a major role in many applications, friction
affects strongly the reliability and integrity of machines. This is especially true
at the micron and smaller scale where the surface to volume ratio increases and
surface effects become increasingly significant [1–3].

Several experiments show that the friction coefficient decreases with applied
normal loading [4–7]. However, the results are controversial as other studies
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report a friction coefficient independent of applied loading [8–10]. It is not
clearly understood what causes the different observed behaviour since the results
are very sensitive to the various experimental conditions. What is clear is that
when interfacial cohesion is strong, friction is dependent on the material plastic
properties, since the contact pressure is usually large enough for the asperities
of the surface to deform plastically [11–13]. Several numerical models have been
developed to analyse the effect of plastic deformation on friction of metallic
surfaces [14–16]. These models consider a transition from elastic to full plastic
deformation of the bodies in contact.

However, these local continuum static friction contact models lack a charac-
teristic length scale and hence, they do not capture plasticity size effects [17],
which are shown to be pronounced at the (sub)-micron scales [18–21]. Plasticity
sets in at larger strains for smaller sized asperities. A larger tangential force is
thus required to shear the micro-scale asperities then what would be predicted
by a continuummodel. This means that the friction force, and hence the friction
coefficient could be underestimated by these local continuum friction models.

Although molecular dynamic simulations have been used to analyse contact
behaviour [22,23] this technique becomes computationally too expensive when
the dimensions of the bodies in contact are larger than a few nanometers. To
address the contact problem at themicron scale studies using discrete dislocation
plasticity [24] (DDP) have been carried out. Thismethod bridges the gap between
the atomic and the continuum scales since it accounts for the glide of individual
dislocations, but neglects atomic vibrations. By that the model contains the
intrinsic length scale of plasticity: the Burgers vector.

The influence of plasticity on indentation and the size-dependence of hardness
are well captured by discrete dislocation dynamics [25–28]. Polonsky and Keer
[29,30] were the first to apply a shear loading after indenting a crystal with a
sinusoidal rigid indenter. The indenter was interpreted, in the context of contact
mechanics, as an individual asperity in adhesive contact with a semi-infinite
deformable crystal. This work showed that in correspondence of subsurface
dislocations pile ups, tensile stress regions arise during contact which might
lead to crack opening. Also, the friction coefficient was found to decrease with
decreasing asperity slope. More recently, dislocation dynamics simulations have
investigated flattening of sinusoidal surfaces [31], as well as shearing of multi-
asperity contacts [32]. Komvopoulos et al. [28] have also studied indentation
of a semi-infinite single crystal by means of a rigid self affine surface, modelled
as a collection of Hertzian punches. The contact simulations involving more
than an individual asperity have shown differences with single asperity contact:
the mean contact pressure during flattening decreases with decreasing asperity
size and spacing [32–35]. Also, when three adjacent asperities are collectively
sheared the mean contact shear stress is smaller than when only a single isolated
asperity is sheared [36]. It is thus to be expected that the friction coefficient for
multi-asperity surfaces where asperities can interact elastically and plastically,
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PHILOSOPHICAL MAGAZINE 2599

be different from the calculation of the friction coefficient of a collection of
individual non-interacting asperities. This is why we here analyse, for the first
time using DDP, the static frictional response of a sinusoidal surface. Loading is
applied on the top surface of the contacting platen. The bodies are pre-loaded
with a constant normal force applied on the platen before shearing. The friction
coefficient can so be directly determined. This is not possible when a constant
normal displacement is applied since the normal force will decrease during
shearing [37], making it hard to define a unique friction coefficient. Notice also
that explicitely modelling both bodies in contact allows for a proper description
of dislocations exiting the crystal at the contact region and in its surroundings.

We here examine how the friction force and the friction coefficient vary
with the normal force applied, when plastic flow by discrete dislocations is the
unique dissipation process. The dependence of the friction force and the friction
coefficient on the wavelength of the sinusoidal is also explored.

2. Discrete dislocation plasticity for two bodies in contact

Each body i has domain�(i) bounded by a boundary�(i) where�(1) ∩�(2) = γc
and γc is the contact surface. Superscripts enclosed in brackets refer to the body
in consideration. The minimum of the total potential energy functional �P for
two elastic bodies in contact is given as

2∑
i=1

{ ∫
�(i)

[
δε

(
u
)T

σ
(
u
)](i)

d� −
∫

�
(i)
σ

δu(i)TT(i) d�

}
+ δ�C(u) = 0, (1)

where ε and σ are the strain and stress tensors, u is the displacement vector,
and T(i) are the tractions acting on the boundary �

(i)
σ . Following the penalty

method, the constraint energy term �C minimises penetration between the
contact surfaces. The linear elastic displacement fields u(i) in each body i are
expressed as the sum of two additive linear elastic fields: ũ(i) and û(i). Following
Van der Giessen and Needleman [24] ũ(i) are the analytical fields of the edge
dislocations in body i described as if they were in an infinite homogeneous
medium having the same material properties of body i. The displacement fields
û(i) = u(i) − ũ(i) are the corresponding image fields.

Since the ũ(i) fields are smooth, it is possible to use the finite element method
and follow standard procedures to express Equation (1) in discrete form, and
solve it iteratively to obtain û(i), while satisfying the contact constraints and the
boundary conditions:

T̂(i) = T(i) − T̃(i) on�(i)
σ ; û(i) = u(i) − ũ(i) on�(i)

u , (2)

where �
(i)
u is the boundary where external displacements are applied. At each

time increment, u, ε and σ in the crystals are given as the sum of the dislocations
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2600 K. NG WEI SIANG AND L. NICOLA

fields ( .̃ ) and the image fields ( .̂ ),

u = û + ũ, ε = ε̂ + ε̃, σ = σ̂ + σ̃ . (3)

Additional details of the formulation can be found in [34].

2.1. Dislocation dynamics

Dislocation dynamics are described by constitutive rules that govern dislocation
nucleation, glide, pinning at/depinning from obstacles and annihilation. These
rules are briefly described here, and the reader is referred to [24,38] for more
details.

Dislocation sources and obstacles are homogeneously distributed through-
out the initially dislocation and stress-free bodies, and they have a density of
ρnuc = 60µm−2 and ρobs = 30µm−2, respectively, unless otherwise stated.
A dislocation dipole nucleates when the resolved shear stress τ exerted on a
dislocation source exceeds its critical strength, τnuc, over a time interval, tnuc.
The source strength τnuc is distributed normally with a mean of 50MPa and a
standard deviation of 20%, and the nucleation time tnuc has a value of 10 ns.
Opposite signed dislocations of the newly nucleated dipole are spaced at length
Lnuc = μb/[2π(1 − ν)τnuc] apart, where μ and ν are the shear modulus and
Poisson’s ratio of the material, and b is the magnitude of the Burgers vector.
Here, we consider the deformable body to have elastic isotropic properties of Al,
μ = 70MPa and ν = 0.33. The Burgers vector has a value of b = 2.5Å.

Glide of the dislocations in the crystal is governed by a simple constitutive
equation vi = f ip/D, which relates the velocity vi of dislocation i to the resolved
Peach–Koehler force f ip through the drag coefficient D, which is assigned a value
of D = 10−10 MPa s. An obstacle present in the material pins approaching
dislocations at its location.However if the shear stress τ exerted by the dislocation
on that obstacle exceeds the obstacle strength, τobs, or if the dislocation moves in
the opposite direction, the dislocation regains its mobility. The obstacle strength
τobs has a value of 150MPa. Two dislocations of opposite sign are annihilated
when they approach each other too closely, less than 6 b, on the same slip plane. If
the path of a dislocation crosses the surface of the crystal, the dislocation escapes,
leaving behind a crystallographic step of magnitude |b| at the surface.

The average response of eight realisations are presented for each case con-
sidered here, given that each realisation differs from the other in its geometrical
distribution of sources and obstacles and in the distribution of source strengths.
This averages out the statistical variations in the response.

Note that the purpose of this study is to analyse the trends of how friction is
influenced by dislocation plasticity and source limited dislocation plasticity. The
trends are unaffected by the representative parameters used here, although the
exact response values depend on the parameters.
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PHILOSOPHICAL MAGAZINE 2601

Figure 1. Two-dimensional model of a metal single crystal with sinusoidal surface sheared by a
platen that is subjected to a uniform distributed normal load Fy . Dislocations (�,⊥) are nucleated
from sources ( ·) homogeneously distributed in the bottom crystal, which contains also randomly
distributed obstacles ( ◦ ).

3. Problem description

The contact problem is schematically represented in Figure 1. The bottom crystal
has a sinusoidal surface profile, with a wavelength λ and an amplitude ϕ0.
Each sinusoid represents a surface asperity. The top crystal has a flat surface
profile. The bottom and top crystals have heights h(1) −ϕ0 and h(2), respectively,
where ϕ0 ≪ h(1). Given the periodicity of the surface, a representative unit
cell with wavelength λ is here considered. The bottom crystal undergoes plastic
deformation by edge dislocations gliding along slip planes oriented at an angle
θi to the x direction. Based on the two-dimensional representation of the FCC
crystal structure [39], three sets of slip planes are considered, oriented at θ1 =
15◦, θ2 = 75◦ and θ3 = 135◦. These orientations are chosen to avoid alignment
of the slip planes with the loading directions, which might lead to unrealistic
softening of the crystal. The slip planes with the same orientation θ are spaced
200b apart.

3.1. Boundary conditions

An external normal force is first applied incrementally on the top surface of the
platen up to

Fy =
∫ tf

0
Ḟy dt = Ty(tf )λ, (4)

where Ḟy and Ty are the normal force rate and the uniformly distributed normal
traction, respectively. Next, a uniform horizontal displacement Ux is applied:

Ux =
∫ t

tf
U̇x dt, (5)
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Figure 2. (colour online) (a) Deformed mesh plot for a body with height h = 15µm at Ux =
0.07µm. Two identical unit cells are presented to show clearly the region where plasticity
occurs. Displacements in the x direction are magnified 30 times. (b) Corresponding plastic strain
distribution at the same Ux .

Periodic boundary conditions are imposed on the lateral sides of the unit cell,
u
(
0, y

) − u
(
λ, y

) = 0. At the base of the bottom crystal u
(
x, 0

) = 0. For these
two-dimensional plane strain simulations the quantities given are per unit depth
of the crystals, and here the unit of depth in our variables is omitted.

4. Preliminary results: choice of the simulation cell dimensions

These simulations aim at capturing plastic deformation in the subsurface region
of a large metal crystal. We performed a mesh convergence study and chose a
sufficiently small mesh size such that the results converge for a given realisation.
The smallest elements are required in the contact region, and have a size of about
0.003µm(seeFigure 2(a)). First,wemake sure that the periodic unit cell is chosen
with a sufficiently large width-to-height aspect ratio to not undergo unrealistic
plastic shearing from the top to the bottom. To this end, simulations are here
performed for a unit cell containing an asperity with wavelength λ = 2.5µm.
The responses for two different heights of the cell, h = 15µmand 30µmare then
compared. The asperity amplitude is ϕ0 = 0.1µm. The platen is rigid, and has a
Youngmodulus E = 106 E(Al); the platenmodulus is sufficiently small to prevent
ill-conditioning of the finite element stiffnessmatrix. Themean shear response is
independent of the number of (periodic) unit cells simulated (not shown here).
A normal force is applied incrementally on the top surface of the platen up to a
value of Fy/λ = 30N/µm before applying a tangential displacement.

Inspection of the deformed mesh (x displacements magnified 30 times) for
height h = 15µm in Figure 2(a) shows that only a region of about 4µm
underneath the contact is greatly deformed. To examine where slip occurs in
the material, the corresponding plastic shear strain distribution of the bodies
is presented in Figure 2(b). The plastic shear strain at each material point is
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Figure 3. (colour online) Tangential force Fx against displacementUx for bodieswith twodifferent
heights.

calculated as the sum of the shear strains along each slip direction. Only the
region 4µm underneath the contact of the bottom body is shown, where more
than 90% of the dislocations are found. Indeed, a large amount of slip occurs near
the contact, indicating that the tangential force applied only shears the asperities
and a small region (a couple of µm in depth) beneath the surface.

The tangential force Fx = ∫
�∈γc

T · nx d� is next shown in Figure 3 as a
function of tangential displacement Ux for two different crystal heights, h =
15µm and h = 30µm. The curves for both heights deviate from the elastic
curves at smallUx because dislocations have already nucleated during flattening,
and they are available to glide and assist in plastic shearing. This also results
in a very small, non zero, tangential force at Ux = 0µm. The curves for both
heights deviate from the elastic curves at smallUx because dislocations are already
nucleated during flattening, and they are available to glide and assist in plastic
shearing [36]. Initially, the tangential force Fx at each Ux is smaller for bodies
with larger height but at larger displacements (Ux > 0.04µm) the tangential
force Fx levels off at approximately the same value for both heights considered.

Here, the friction coefficient μ = Fx/Fy is approximately 1.5. Notice that this
value depends on the specific choice made for the source strength and density.
This value is slightly high relative to typical coefficient values for metals ranging
from0.3 to 1.4. Lower valueswill be expected if interfacial slip is considered inour
simulations, which now assumes fully adhesive contact. The friction coefficient
μ is further examined in Section 6.4.

Evidently, the plastic shear response at larger displacement is unaffected by
the height of the unit cell. Therefore, in subsequent sections only deformable
bodies with h = 15µm will be considered, to lower the computational cost.
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Figure 4. (colour online) Horizontal force Fx against plastic displacement Uxp for bodies with
different properties. The force obtained from crystal plasticity is also included.

5. Shearing with an elastic or a plastic platen

Next we investigate how the tangential force Fx depends on whether the platen
is rigid, or can deform elastically, or plastically. Sinusoidal asperities with a
wavelength λ = 5.0µm and an amplitude ϕ0 = 0.2µm are considered. When
the platen is elastically deformable it has Poisson ratio ν = 0.33 and elastic
modulus eitherE = 70GPa, orE = 35GPa.When it can deformplastically, both
the platen and the body with sinusoidal surface have the same source density,
ρnuc = 30µm−2, and an elastic modulus of E = 70 GPa.

Figure 4 shows the tangential force Fx as a function of plastic displacement
Uxp after flattening the bodies to a normal force Fy = 150N. In the initial stages
of shearing, i.e. Uxp ≤ 0.025µm, the curves do not overlap because plasticity
already occurs during flattening. At largerUxp, the tangential force Fx is found to
be approximately the same when the platen is rigid, elastic or plastic. Evidently,
the shear response does not depend on whether plasticity is confined to one body
or occurs in both. The plastic shear and dislocation distributions for the elastic
platen and plastic platen are shown in Figure 5(a) and (b).

As to be expected, increasing the source density of the bodies to ρ
(1)
nuc =

ρ
(2)
nuc = 60µm−2 decreases the tangential force Fx . Further increasing the source

density should lead to the continuum limit, which is represented in Figure 4 by
the response obtained using the crystal plasticity model proposed by Peirce et
al. [40].

6. Effect of normal loading on the shear response

In the following section, we will investigate how the friction force is affected
by pre-loading the bodies with different normal force Fy. The friction force Ff
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Figure 5. (colour online) Plastic strain distribution for shearing using an elastic platen with (a)
E = 70GPa and (b) shearing both bodies, each having a source density of 30µm−2, at plastic
displacement Uxp = 0.06µm for a particular realisation.

is defined as the constant tangential force resisting relative sliding between the
surfaces in contact. In this work however, there is no sliding at the contact, but
only plastic flow in the material underneath the contact. Given that here after a
certain Ux the tangential force approaches a constant value, the tangential force
at displacement Ux = 0.08µm is taken as the friction force.

During normal loading, the contact area and the elastic stresses induced by
the normal force, as well as the plasticity generated during flattening affect the
tangential force required to shear the asperities. The effect of each of these factors
on the friction force is separately analysed in the following subsections.

6.1. Effect of contact area

Three different constant contact areas, A = 0.1µm, 0.5µm and 1.0µm are
obtained by truncating the sinusoidal asperities with λ = 5.0µm and ϕ0 =
0.2µm at various depth from the apex.

Figure 6(a) shows the tangential force Fx as a function of the tangential
displacement Ux. The elastic shear responses for the different areas are approxi-
mately the same. Apparently, the friction force Ff is unaffected by the size of the
contact area. This is because the contact areas considered are small and much
smaller than the plastic region underneath the contact. Inspection of the plastic
shear strain distribution in the crystals for both A = 0.1µm (Figure 6(b)) and
1.0µm (Figure 6(c)) at Ux = 0.08µm shows indeed on average, similar distinct
shear bands whose dimensions are much larger than (and non related to) the
contact area.
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Figure 6. (colour online) (a) Tangential force Fx of a truncated sinusoidal surface for different
contact areas A. Each vertical bar corresponds to the standard deviation of eight simulations.
Plastic shear strain and dislocation distributions for a particular realisation for A = (b) 0.1µm
and (c) 1.0µm at Ux = 0.08µm.
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Figure 7. (colour online) Tangential force Fx for different normal loads Fy applied on an area of
A = 1.0µm. Each vertical bar corresponds to the standard deviation of eight simulations.

6.2. Effect of elastic flattening

To investigate the effect of elastic normal loading on the friction force, three
normal forces Fy = 50N, 100N and 120N are first applied on the truncated
asperity surface with A = 1.0µm before the surface is tangentially displaced.
The chosen area is sufficiently large that no plasticity occurs during flattening.
Figure 7 shows that the tangential force is approximately the same for thedifferent
values of the applied normal force. Clearly, the elastic normal loading does not
affect the plastic shear response of the asperities.
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Figure 8. (colour online) (a) Normal displacement Uy with normal force Fy . The dots represent
the normal force the asperities are pre-loaded with, before they are sheared. (b) Tangential force
Fx as a function of Ux .

6.3. Effect of plastic flattening

We examine next the effect of plasticity induced during flattening on the tan-
gential force by first loading the sinusoidal asperities with λ = 5.0µm and
ϕ0 = 0.2µmwith a constant normal force before applying a tangential displace-
ment. Six values for the normal force, Fy = 25N, 50N, 100N, 150N, 200N and
250N, are considered, indicated by dots in Figure 8(a), which gives the normal
displacement Uy against the normal force. The increase in the tangential force
Fx during shearing is presented in Figure 8(b) for the various normal loads.
For normal loads Fy ≤ 50N, the curves overlap, since flattening is still elastic
(see Figure 8(a)). When the asperities are pre-loaded with a larger normal force,
dislocations are nucleated during flattening, and Fx deviates from the elastic
response at a smaller Ux: the tangential force also levels off at a smaller value.
However, the tangential force does not further decrease when the normal force
is increased from 200N to 250N .

For normal force Fy > 50N dislocations generated during flattening (see
Figure 9(a) and (b)) assist in plastic shearing. The tangential force required to
shear the asperities is therefore decreased with increasing normal force. This
is evident by the smaller plastic strain in the body observed at Ux = 0.08µm
when Fy = 100N (Figure 9(c)) compared with when Fy = 250N (Figure 9(d)).
However, when the normal force is further increased beyond Fy = 200N, plastic
flow in the region underneath the contact caused by flattening approaches an
upper limit, and therefore does not further facilitate plastic shearing of the
sinusoidal asperities. This leads to approximately the same plastic slip during
shear (not shown here) for Fy = 200N and 250N .
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Figure 9. (colour online) Plastic strain distribution at Ux = 0µm when (a) Fy = 100N and (b)
Fy = 250N, and atUx = 0.08µmwhen (c) Fy = 100N and (d) Fy = 250N.

6.4. Friction force and the friction coefficient

Results of the previous section are compiled in Figure 10 to show the variation of
the friction force Ff and the friction coefficientμ = Ff/Fy with the normal force.
Both the friction force and the friction coefficient decreasewhen the normal force
is increased.When the applied normal force is small, for Fy ≤ 100N, the friction
coefficient μ obtained from our simulations is larger than typical experimental
values, which range from 0.3 to 1.4 for various materials and conditions (see
e.g. [41]). Note that in our study perfectly adhesive conditions are assumed as
we want to isolate and investigate the effect of plasticity on friction. In reality,
competition exists between plastic slip in the material and slip at the asperity
surface. Quantifying the effect of finite adhesion cannot be an outcome of these
or any other continuum based-simulations, since the friction conditions at the
interface between the two bodies can only be imposed, not emerging. In the case
of finite interface adhesion, if the shear tractions here calculated are larger than
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Figure 10. (colour online) Friction force Ff and the corresponding friction coefficient μ = Ff /Fy
for the results shown in Figure 8(b).

the shear strength of the interface, the surfaces would slide with respect to each
other, and therefore the friction coefficient would be smaller. At larger applied
normal force however, the friction force becomes smaller as plastic shearing is
assisted by dislocations generated during flattening. This decreases the friction
coefficient to within the experimental range.

The decrease in the friction coefficient with increasing normal load is also
observed in local continuum plasticity studies of static friction (e.g. [14–16]).
However, the friction force there increases sub-linearly with the normal force,
which contrasts our results. The reason for this discrepancy is that in the contin-
uum study the contact area increases significantly with increasing normal load,
determining an increase in the friction force. In theDDP simulations, the contact
area increases only negligibly.

6.4.1. Local friction coefficient
Although a uniform distributed normal traction ty is applied on the top surface
of the platen, the tangential traction tcx and the normal traction tcy at the contact
are highly non-uniform, as seen in Figure 11(a), which shows the tractions tcx
and tcy along the contact for Fy = 200N at displacement Ux = 0.08µm. This is
because the contact is patchy (Figure 11(b)), a consequence of the discrete nature
of dislocations and slip planes [34]. The local tractions can be either positive or
negative, since the contact is full stick and dislocations have opposite orientation
on different slip planes.

Although tcx is, on average, smaller than tcy , and the average friction coefficient
μ is about 0.23, the local friction coefficient |tcx/tcy | can be as large as 1.0 (Fig-
ure 11(c)). Other realisations show similar characteristics. The average friction
coefficient μ is not correlated to the local friction coefficient across the contact.
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Figure 11. (colour online) (a) Contact traction distribution tc in the x and y directions for Fy =
200N at Ux = 0.08µm for a particular realisation. (b) Corresponding contact profile: the y axis
is stretched independently of the x axis, and (c) the ratio tcx/t

c
y . The average value of the friction

coefficient is shown using a dashed line.

The discontinuous variation of the local friction coefficient across the contact
is not observed in local continuum static friction studies (see e.g. [15]), where
the contact area is continuous.

7. Friction force of scaled asperities

In this section, we investigate how the friction force is affected by the size of the
sinusoidal asperities. Two scaled asperities having λ = 2.5µm and 5.0µm,
both with an aspect ratio λ/ϕ0 = 25 are considered. The bodies are pre-
loaded with different values of the normal force. The elastic response of the
scaled asperities is identical, so that a direct comparison can be made when
presenting tangential force against normal force if they are both divided by the
wavelength λ as in Figure 12(a). The mean friction force per unit wavelength
of the smaller asperities is larger, especially at large Fy/λ. Also, the decrease
in friction force with normal force for the smaller asperities is less than for
the larger. The corresponding friction coefficient μ in Figure 12(b), is therefore
larger for the smaller asperities. For instance,μ for asperities with λ = 2.5µm at
Fy/λ = 40N/µm is approximately 1.6 times larger than that of asperities with
λ = 5.0µm.

The size effect of the friction force and the friction coefficient observed in the
simulations here is a result of a plasticity size effect in flattening. Deformation
becomes increasingly source limited when the asperity size decreases [32,34,35].
Plastic shear is less assisted given the smaller amount of plasticity generated in
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Figure 12. (colour online) (a) Friction force per unit wavelength Ff /λ, and (b) corresponding
friction coefficient as a function of normal force per unit wavelength Fy/λ for asperity
wavelengths λ = 2.5µm and 5.0µm. Each vertical bar corresponds to the standard deviation
of eight simulations.

the smaller asperity during flattening, resulting in a smaller decrease in Ff/λ
when Fy/λ is increased than for the larger asperity.

8. Conclusions

Two-dimensional discrete dislocation plasticity simulations are performed to
investigate the static friction response of sinusoidal surfaces in full stick contact
with a platen. A normal force is first applied on the top surface of the platen
before shearing starts. After an initial increase the tangential force at the contact
reaches a constant value, which is here taken to be the static friction force.

Results show that the value of the friction force does not depend on whether
the platen is rigid, elastic or even plastic, as long as the plastic properties of the
platen are the same as those of the sinusoidal body.

The friction force is also independent of the size of the contact area, which
is anyhow rather small in these simulations, below 1µm. An applied normal
load has an effect on the friction force only when it is sufficiently large to induce
plasticity. If this is the case the friction force decreases with the applied normal
force. This is because dislocations, generated during flattening, assist in plastic
shearing, which results in the decrease in the friction force when the applied
normal force is increased. When plastic flow caused by flattening reaches an
upper limit, increasing the normal load further no longer affects the friction
force.

Given the decrease in the friction force, the friction coefficient decreases
with increasing normal load. The decrease in the friction coefficient is similarly
observed in experiments and local continuum plasticity studies of static friction.
However, the decrease in friction coefficient in the continuum plasticity studies
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is caused by a sub-linear increase in the friction force with load. The increase is
due to a significant increase in contact area.

The discrete dislocation plasticity simulations presented here display two
other differences with the local continuum plasticity studies: (1) a discontinuous
variation of the local friction coefficient along the contact, which can be up to five
times larger than the average friction coefficient, and (2) the size dependence of
the friction force and coefficient displayedby sinusoidswithdifferentwavelength.
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