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20In-situ fatigue damage analysis

and prognostics of composite
structures based on health

monitoring data
Dimitrios Zarouchas, Nick Eleftheroglou
Structural Integrity & Composites Group, Delft University of Technology, Delft,
The Netherlands
20.1 Introduction

There is a high demand of reliable predictions of the remaining useful life (RUL) of

in-service composite structures. The predictions could be used as the leading indicator

for an efficient maintenance planning, as well as they could prevent catastrophic fail-

ures due to unexpected phenomena, which may occur during service and dramatically

degrade the mechanical properties of the structure. In order to achieve both, a deep

understanding of the in-service damage accumulation process and a robust method-

ology to convert this information to RUL predictions are needed. Fatigue is the com-

mon term to describe the in-service damage accumulation process and it occurs when

loads are applied to the structure over time.

Fatigue of composite structures has been in the center of the research activities the

last four decades, where the research community has tried to model the phenomenon

of damage accumulation and develop predictive tools. Extensive experimental cam-

paigns for different material types and lay-up configurations and a considerable num-

ber of models emerged from those activities and revealed that the fatigue damage

process is a multistate degradation procedure where several damage mechanisms

occur, interact, act synergistically, and lead the structure to final failure.

The idea of the multistate process goes back to the 1980s, where Reifsneider et al.

described the damage accumulation as a three-stage process [1]. According to Ref. [1]

the prediction of strength and life of a composite structure should be based on the

actual damage mechanisms. Ever since, the researchers have focused on developing

prediction models implementing phenomenological and progressive damage approa-

ches [2–10]. However, only the progressive damage approaches consider to some

extent the damage mechanisms. Despite the efforts and the progress made in the field,

it was clear, rather early, that a universal model, which can cover all types of compos-

ite materials, lay-up configurations and loading scenarios is very difficult to be

established.
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The last decade, several researchers revisited the original idea proposed by

Reifsneider and focused on understanding and unfolding the fatigue damage process.

A common understanding has been established regarding the three states of damage

development during fatigue of unidirectional, cross-ply, and angle-ply composites

[11–14];

l state I—damage initiation by formation of matrix cracking with numerous micro-cracks

developed within the ply-level until saturation,
l state II—delamination onset, growth and mitigation to adjacent plies,
l state III—damage progression in the matrix-fiber interface resulting in fiber debonding, fiber

breakage, and pull-out, which eventually leads to the final failure.

The precise damage accumulation sequence depends on the material properties of the

composite’s constituents, the exact layup, the defects induced during manufacturing,

the loading profile, and the environmental conditions in which the structure operates.

Additionally, the inhomogeneous nature of the composite material and the stochastic

activation of different damage mechanisms should also be taken into account making

the damage process a very complex phenomenon to study. When it comes to analyze

their effect on the damage process and consequently on the RUL, all these parameters

should be considered as uncertainties.

Uncertainty quantification and analysis of its impact on the RUL, via modeling the

stochastic process of damage accumulation, is nowadays possible by using available

probabilistic mathematical algorithms and the increase of computational power.

A potential solution to predict the RUL of composite structures, taking into account

uncertainties, comes from the field of prognostics where machine learning algorithms,

health monitoring data, and mechanics blend together to create a structural prognos-

tics framework. The prognostic framework originates from the condition monitoring

of rotating machinery. The need to estimate the wear degradation rates and to reduce

the down time (or increase the availability) was the main driven force behind the

development of this framework [15]. The main advantage over the current methodol-

ogies is that it can provide predictions in real time.

A large amount of health monitoring data, using different sensing technologies, can

be acquired and further analyzed in order to assess the degradation level and predict

the RUL of composite structures in-service. So, a more suitable approach for predic-

tion of the RUL is to adapt and update in real-time a probabilistic model that can relate

the health monitoring data with the degradation process. In this direction, it is possible

to make more accurate predictions since these models take into account the uncer-

tainties. The core of a prognostic framework is the involved algorithms and can be

categorized as follows [16, 17]:

l Physics-based algorithms
l Data-driven algorithms
l Hybrid algorithms

The physics-based prognostic algorithms assume that a physical model, able to

describe the degradation process, is available. To this direction, Chiachio et al. and

Corbetta et al. utilized a Bayesian filtering framework that incorporates information
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from empirical damage models and health monitoring data in order to predict the RUL

of composite [18–20]. They used state-of-the-art empirical models for matrix crack-

ing, delaminations and crack growth to predict through the use of particle filtering the

future damage states and thus estimate the RUL. However, the parameters of those

empirical models, that is, the fitting parameters of Paris power law relation, depend

on the type of failure, loading case, geometry, and stacking sequence, limiting the

applicability of these models to coupons rather than to complex composite structures

[21, 22].

In contrast, the main idea behind prognostic data-driven algorithms is to use health

monitoring training data from the studied component (independent on its complexity

in terms of loading conditions, geometry, etc.), in order to estimate the parameters of a

model, which provides the mathematical framework to describe the phenomenon of

interest, that is, the fatigue damage accumulation process in composite structures.

Then, based on the trained model a probability density function of the RUL can be

determined. A crucial factor on the successful development of a structural prognostic

framework is the utilization of a stochastic model that fits on the degradation process

of the structure. An appropriate model should demonstrate the capability to relate the

fatigue damage process with its mathematical concept.

Characteristic examples of data-driven prognostic approaches for composite mate-

rials/structures are presented hereafter. Liu et al. [23] utilized Gaussian processes, as a

mathematical model, to perform nonlinear regression. Gaussian process was trained

with acoustic emission (AE) data and Lamb wave signals in order to estimate the RUL

of composite beams. By comparing the RUL estimations of Lamb wave signals and a

data, it can be seen that Lamb’s RUL estimations were better than AE’s RUL estima-

tions. The same research team proposed a prognostic methodology, which consisted of

real-time sensor signals from strain gages, direct cross-correlation analysis, and a

Gaussian process trained with off-line data to perform the nonlinear regression prog-

nostic task [24]. Notched carbon/epoxy composite specimens under fatigue loading

were used. Eleftheroglou and Loutas [25] and Eleftheroglou et al. [26] proposed

the use of a multistate degradation model, the nonhomogenous hidden semi-Markov

model (NHHSMM), for the in-situ prognostics of open hole carbon/epoxy specimens

under fatigue loading. They used AE and strain measurements to estimate the param-

eters of the NHHSMMand successfully used it to obtain RUL estimates in unseen data

with uncertainty quantification. In Loutas et al. [27] two data-driven prognostic

models, NHHSMM and Bayesian neural networks (BNNs), utilizing AE measure-

ments, were compared via several prognostic performance metrics. Fatigue tests were

performed in open-hole carbon/epoxy specimens. The NHHSMM clearly exceled the

performance metrics at this study. The aforementioned case studies represent some

prognostic models that are encountered in the literature on application to composite

structures. Finally, to the best knowledge of the authors there is no hybrid approach

available in the literature for the structural prognostics of composites.

Based on the available stochastic models, one of the most promising stochastic

model is the NHHSMM because it supports multistate degradation modeling and it

can be related to the fatigue damage accumulation process. The model is presented

in Section 20.3.
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20.2 Structural health monitoring

Structural health monitoring (SHM) can be described as the process of implementing a

damage detection strategy for load-bearing structures [28, 29]. This process involves

the observation of the mechanical response and the integrity assessment of the struc-

ture by using permanently installed sensors. The sensors record data periodically or

continuously over the in-service life of the structure, damage-sensitive features are

extracted from these data and statistical analysis is performed to determine the health

state of the structure (diagnostics). Extensive research has been performed the last two

decades in the field of SHM resulting in a large amount of sensing technologies, which

can be used for SHM, exist nowadays.

AE, guided ultrasonic waves, electromechanical impedance, fiber Bragg grating

techniques are among the most popular sensing technologies which can serve the pur-

pose of the SHM [30–35]. These techniques have been employed in most cases solely,

while, when a second technique was used, it was mainly for cross-correlation of the

observations. In that case, the techniques for the cross-correlation process were mainly

nondestructive testing (NDT) techniques, such as C-Scan and CT-tomography. A

common practice is to scan the specimen before the test, during the test by interrupting

the loading, and after the final specimen failure. CT-tomography is proved to be the

most powerful equipment that maps in 2D and 3D the failure zones and can provide

quantitative information about the damage modes involved (see chapter Lars

Mikkelsen). However, in case that scan needs to take place periodically during the

life time of the specimen, the specimen should be removed from the test bench at every

given number of fatigue cycles, compromising the validity of the test. Besides the

technical challenges related to the precise repetition of the specimen’s installment

in the test bench, it is expected that the fatigue damage process will also be interrupted

(see Chapter Vassilopoulos—interrupted fatigue).

Thus, it is crucial for the validity of the experimental data to select techniques that

serve the goals of the study. For example, if the main goal of an experimental cam-

paign is to study the damage accumulation process from the beginning until the end of

life of the structure without stopping the loading sequence, then techniques, which can

continuously measure and collect data such as AE and/or fiber Bragg grating, should

be selected. However, it is worth to mention that each technique has different sensi-

tivity to different failure mechanisms and a technique, which is able to monitor each

single damage mechanism, does not exist. Farrar and Worden addressed this state-

ment and concluded that a successful implementation of SHM process requires a

synergistic and multidisciplinary approach [29]. Toward that several studies have

been performed and the researchers explored the benefit of sensing and data fusion

for diagnostic purposes [36, 37].

During the case study that is presented in the following sections two sensing

technologies were used; AE and digital image correlation (DIC). The main reason

for selection of these techniques, besides the fact that they can collect data without

interrupting the fatigue tests, is that the measurements are related to different struc-

tural scales. The AE data relates to damage mechanisms occurred in the microscale,

since the AE sensors are capturing and recording in the data acquisition system elastic



Fig. 20.1 A representative AE signal.
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transient waves propagating into the structure after the release of energy, due to for-

mation of new or propagation of existing damage. Commercial systems exist and they

can perform parametric analysis by quantifying AE features such as amplitude, dura-

tion of the wave, rise time, and energy or record the entire waveform. A typical AE

waveform and its features are presented in Fig. 20.1.

The DIC technique was employed in order to measure full field surface displace-

ments at the macroscale. However, it should be noted that it is very difficult to use DIC

as sensing technique in a SHM approach, especially for not stationary infrastructure,

due to high sensitivity in vibration, which would compromise the quality of the images

taken by the cameras. The main reason of utilizing this technique was to collect strain

data and use it as health monitoring data for the data fusion approach as it is presented

in the following sections.
20.3 Non homogeneous hidden semi-Markov model

The fatigue damage accumulation process of a composite structure is a multistate pro-

cess where the exact interaction and synergy of different damage mechanisms are not

known, and thus we can assume that this process is hidden. Moreover, as health mon-

itoring data is the result of this process, it is acceptable to conclude that the data can be

used to unfold the fatigue damage accumulation process. Driven by this rational, the

hidden Markov model, as data-driven algorithm, is an excellent candidate, offering

the mathematical background to build a prognostic framework. However, this early

version of the Markov model assumes an exponential distribution of each state’s dura-

tion, which is not always the case, especially for composite structures where the dura-

tion of damage state, that is, the formation of matrix cracks, may be different from

the duration of the next damage state, that is, the formation and the development
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of delaminations. On the other hand, the hidden semi-Markov model removes this

restriction and allows the unconstrained modeling of each state duration. Neverthe-

less, both models have limitations about the transition process from one state to

another. They are considered to be independent of the aging process of the system,

which is not the case for composite structures.

Moghaddass et al. extended the hidden semi-Markov model to the NHHSMM

where the state transition process depend on the current state, the time spent on this

state and the total aging process of the structure [38, 39]. This model fits very good to

the fatigue damage accumulation process because as the damage always increases

over time it can be implied that the probability of state transition to higher damage

states increases as well.

The definition of a series of elements is required in order to describe the

NHHSMM;

l The number of possible discrete degradation health states (Ν ),
l the transition diagram which defines the connectivity between the states and the allowed

transitions,
l the transition rate’s statistical function (λ),
l the observations, that is, the health monitoring data feature(s) y1:t(y1:t), and
l the number of discrete feature values (m) after the observations quantization.

The number of hidden states refers to the number of discrete levels of degradation. In

a maximum likelihood estimation (MLE) approach, Moghaddass et al. [38] demon-

strated a procedure to maximize Pr(y(k)jθ), that is, define the model parameters θ
which maximize the probability of the K available for training observation

sequences y(k).
L θ, y 1:Kð Þ� �¼YK
k¼1

Pr y kð Þj θ
� �

¼¼¼¼¼)L0¼log Lð Þ
L0 θ, y 1:Kð Þ
� �

¼
XK
k¼1

log Pr y kð Þj θ
� �� �

)

θ∗ ¼ arg max
θ

XK
k¼1

log Pr y kð Þj θ
� �� � ! (20.1)

zing Baum’s auxiliary function, the above optimization task is reduced to a set of
Utili

independent equations for the reestimation of the elements of Γ , Β. The mathematical

treatment leads to two reestimation equations:
ωr
1,1 θold;θð Þ¼

XK
k¼1

Pr y kð Þj θold
� ��1

�
XN
j¼1

Xdk
a¼0

Xdk�a

d¼1

log ε kð Þ
a r, j,dj θð Þ� κ kð Þ

a r, j,d,y kð Þj θold
� �� �

(20.2)
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e 1�r�N�1 giving thus N�1 equations and
wher
bi wð Þ¼

XK
k¼1

Pr y kð Þj θold
� ��1�

Xdk
t¼1

γt i,y
kð Þj θold

� �
δ
Ο kð Þ

t ,w

 !
XK
k¼1

Pr y kð Þj θoldð Þ�1�
Xdk
t¼1

γt i,y kð Þj θoldð Þ
 ! (20.3)

e 1<w<m and the terms ε(k)(i, j, d jθ), κ(k)(r, j, d, y(k)jθ ), and γ (i, y(k)jθ ) are
wher a a old t old

introduced in order to simplify the MLE process and are defined as follows:
ε
kð Þ
a i, j,dj θð Þ¼Pr Xn¼ j, t

kð Þ
a+ d�1

< Tn � t
kð Þ
a+ d j Xn�1¼ i, t

kð Þ
a�1

< Tn�1� t
kð Þ
a ,θ

� �
,

Þ
r, j,d,y kð Þj θold
� �

¼Pr Xn¼ j, t
kð Þ
a+ d�1

< Tn � t
kð Þ
a+ d ,Xn�1¼ i, t

kð Þ
a�1

< Tn�1 � t
kð Þ
a ,y kð Þj θold

� �
,

γt i,y kð Þj θold
� �

¼Pr Qt¼ i,y kð Þj θold
� �

,

X being the state of the component after the nth transition, T the time of the nth
with n n

transition, Qt the current hidden state, and ti
(k) the ith observation time point of the kth

observation/SHM data sequence y(k).
The MLE approach begins with a random initialization of Γ , Β, and via the use

of the reestimation Eqs. (20.2) and (20.3) and it aims to the iterative maximization

of the
PK

k¼1 log Pr y kð Þj θ� �� �
value. This procedure concludes to a parameter vector

θ which describes the most probable model for a given training data set.

Regarding the prognostics, the mean RUL is the quantity of interest in a condition-

based monitoring framework. It can be estimated via Eq. (20.4) as the integral of the

conditional reliability function R(t jy1:tp, L> tp,M)¼ Pr (L> t jy1:tp, L> tp,M), that is,

the probability that the composite material/component continues its operation after a

time point t (less than life-time L) further than the present time tp. This is a definition,
which is conditional on SHM data, that is, the observation sequence y1:tp. Details on
the calculation of the conditional reliability function can be found in Ref. [25].
dRUL tj y1:tp ,L> tp,M
� �¼ Z ∞

0

R t+ τj y1:tp ,L> tp,M
� �

dτ (20.4)

ognostics, an estimate of the uncertainty that follows the mean RUL estimation is
In pr

of utmost importance, in order to give a confidence of the predicted mean value. The

calculation of confidence intervals is based on the calculation of the a% and (1�a)%
lower and upper percentiles, respectively. It can be easily proved that the cumulative

distribution function (CDF) for RUL can be defined at any time point utilizing the

conditional reliability according to the following:
Pr RULtp � tj y1:tp ,M
� �¼ 1�R t+ tp│y1:tp ,M

� �
(20.5)
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20.4 Prognostics framework

The main goal of a prognostics framework is to estimate the composite structure’s

RUL by providing a probability density function. The framework consists of the train-

ing and online process, as presented in Fig. 20.2.

The objective of the training process is to collect health monitoring data, extract

features that characterize the degradation process, and estimate the model’s parame-

ters. Based on the available training data features the parameters θ of the mathematical

model that is utilized to provide the RUL predictions are estimated. After training

the respective NHHSMMs, health monitoring data observations from an unseen case

(online process) may feed the model, after similar future extraction, and obtain the

mean RUL estimations (prognostics output) and the associated 90% confidence

intervals.
20.4.1 Data processing and feature extraction

In the framework of this study, AE and strain data are used. The available SHM data

can be divided to training and testing sets. However, the raw AE and DIC data include

noise so a feature extraction process is required in order to produce features with

strong prognostic suitability. A set of three metrics, monotonicity, prognosability,

and trendability, has been proposed in the relevant literature, which can be used as

feature design properties [40–43]. Monotonicity characterizes a parameter’s general
Fig. 20.2 The prognostics framework for prediction of the remaining useful life.
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increasing or decreasing trend, prognosability measures the spread of a parameter’s

failure value and finally, trendability indicates whether degradation histories of a

specific parameter have the same underlying trend.

In this study, the feature extraction process is based on monotonicity since a feature

that is sensitive to the degradation process is desirable to have a monotonic trend

[41, 42, 44]. Prognosability is excluded from the present feature extraction process

since NHHSMM dictates that the last observation of the monitoring data must be

unique and common for all the degradation histories. Finally, the feature extraction

process does not take into account the influence of trendability. The main reason is

that we wanted to benchmark the data fusion process against AE and DIC data keeping

the computational complexity as low as possible.

A second key element of the NHHSMM is that the monitoring data’s domain

should be discrete. Different methods, such as vector quantization and clustering

can be used to discretize the available monitoring data [45]. In this chapter, the

unsupervised k-means algorithm is used to cluster and discretize the features extracted

from the SHM data. The target of using k-means algorithm is to find the optimal

number of discrete levels, which delivers features with maximum monotonicity. To

quantify the monotonicity the modified Mann-Kendall (MMK) criterion is introduced

in the following equation.
MMK¼

XD
i¼1

XD
j¼1, j>i

tj� ti
� � � sgn y tj

� �� y tið Þ� �
XD
i¼1

XD
j¼1, j>i

tj� ti
� � �100% (20.6)

e y(t ) the feature value at time of measurement t ,D the number of measurements
wher i i

and sgn xð Þ¼
�1 if x< 0

0 if x¼ 0

1 if x> 0

8<:
9=;.

The advantages of the MMK criterion, over the classical Mann-Kendal criterion

[30], are explained in the following:

l Mann-Kendal (MK) values have not any informative meaning. For example, in the current

case study the MK values’ range is (105, 4�105). However, MMK value as defined in

Eq. (20.6) expresses a percentage of monotonicity in the range [�1.1]. If MMK¼1 the deg-

radation history is strictly increasing, if MMK¼�1 the degradation history is strictly

decreasing. In any other case the degradation history is not strictly monotonic.
l Based on theMMK criterion each degradation history has the samemonotonicity weight. On

the other hand, the classical MK criterion is biased since a longer degradation history gives a

higher MK value.

The objective of the feature extraction process as implemented in this study, is to

obtain descritized degradation histories with the as high monotonicity as possible

using features from AE data, DIC data, and fused ones.
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20.4.2 Data fusion process

The health monitoring data can be collected by using different sensing technologies.

The process of extracting information from different monitoring techniques and inte-

grate them into a consistent, accurate and reliable data set is known as data fusion and

it has been already successfully applied to damage diagnostics [46–48]. In principle,

data fusion can be implemented in three levels:

l raw multi-sensor data fusion,
l feature-level fusion,
l decision-level fusion.

Raw data fusion should be treated with caution as sensor recordings may have differ-

ent acquisition, prefiltering and amplification settings. Additionally, raw data fusion

needs to have as input commensurate data. As a result, the feature-level and decision-

level fusion are the more commonly used.

Combining features extracted from different sensors or monitoring techniques and

integrating them into a single feature is known to enhance the diagnostics performance

[49]. Data fusion for structural prognostics purposes has never been attempted

according to the author’s best knowledge. It is expected that the prognostic perfor-

mance should be improved when fusing SHM data from various monitoring

techniques.

The fusion scheme receives as inputs the quantized AE and DIC features, where the

following equation explains the rationale behind fusing process.
MM
ft DIC, AEð Þ¼
XM
j¼0

Xi+ j�M

i¼0

aij �DICj �AEi (20.7)

re f is the fused output feature, a are constant coefficients that control the
whe t ij

weight of the exponential DIC and AE features’ product and M the maximum poly-

nomial degree power that these features can use. The MMK criterion, Eq. (20.7), is

adopted to enable the data fusion process and is expressed in Eq. (20.8). MMK

is used as an objective function to be maximized and thus determine which poly-

nomial degree M and constant coefficients aij give the most monotonic fused

feature.
K aij,M
� �¼

XK
k¼1

Xdk
i¼1

Xdk
j¼1, j>i

t
kð Þ
j � t

kð Þ
i

� �
� sgn f

kð Þ
j a,Mð Þ� f

kð Þ
i a,Mð Þ

� �" #
XK
k¼1

Xdk
i¼1

Xdk
j¼1, j>i

t
kð Þ
j � t

kð Þ
i

� �" # �100%

(20.8)
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where K is the number of available training degradation histories (e.g., the number of

tested specimens), fi
(k) the fused feature value at time of measurement ti

(k) for the kth
specimen, dk the number of the kth specimen’s measurements and
sgn xð Þ¼
�1 if x< 0

0 if x¼ 0

1 if x> 0

8<:
9=;:

constant polynomial coefficients a , for each polynomial degreeM, are based on
The ij

the optimization problem described in Eq. (20.9) with the monotonicity obtained by

the MMK criterion as the objective function. For the aforementioned optimization

problem, different optimization techniques were used, that is, Nelder-Mead, neural

networks, particle swarm optimization (PSO), genetic algorithms, and OptQuest

nonlinear programs (OQNLP). For this exercise, it was found that OQNLP is the most

efficient optimization technique regarding the computational time of the parameters

α*ij and M. The unconstrained optimization problem is formulated as
α∗ij ¼ arg maxaij MMK aij, M
� �� �

(20.9)

nclusion, the outputs of the proposed data fusion methodology are the optimum
In co

polynomial degree M and the optimum constant coefficients aij based on the MMK

monotonicity, Eq. (20.9).
20.5 Case study

A laminate with [0/�45/90]2s, lay-up were manufactured from a Hexcel AS4/8552

carbon-epoxy UD prepreg using hand lay-up, with a debulking procedure performed

after every three plies. Afterwards, the laminate was cured using the autoclave process

with a curing cycle as recommended by the manufacturer of the prepreg. The laminate

was cut in rectangular specimens of 300�30mm using a Proth Industrial liquid-

cooled saw and a central hole of 6mm was drilled. Seven open-hole were used in

the experimental campaign. These specimens were subjected to fatigue loading with

maximum amplitude 90% of the static tensile strength (Fult¼42.66kN), R¼0 and

f¼10Hz. The tests were executed in a MTS 100kN universal testing machine and

they run up to failure. An AE system was used in order to perform AEmeasurements.

Fig. 20.3 presents the schematic representation of the experimental set-up and the

data acquisition process. Table 20.1 presents the cycles to failure for the tested

specimens.
20.5.1 Strain data feature extraction

The DIC technique enabled strain measurements in the entire surface of the specimen.

Two Grasshopper3 5.0 MP Mono with Apo-Xenoplan 1.4/23mm lenses and strain

resolution of 200με were used while the analysis of the data was performed using the
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Fig. 20.3 The schematic representation of the experimental set-up.

Table 20.1 Cycles to failure of the open-hole specimens

Coupon Fatigue test conditions Cycles to failure

Specimen 01 R¼0

F¼10 Hz

σmax¼90% UTS

[0/�45/90]2s

63122

Specimen 02 24239

Specimen 03 22400

Specimen 04 24015

Specimen 05 13658

Specimen 06 25101

Specimen 07 29258
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VIC-3D software supplied by the Correlated Solutions. Fig. 20.4 presents the axial

strain distribution, strain in the load direction, as calculated at the maximum loading

during the fatigue test of specimen02.

Based on the analytical model of Lekhnitskii [50], which calculates the effect of a

notch on the stress/strain distribution, the green rhomboid point (half a diameter dis-

tance for the hole center in the transverse direction), highlighted at the picture of

0cycles, was chosen as the critical point to extract the axial strains. Fig. 20.5 presents

the seven axial strain degradation histories, which were extracted for the aforemen-

tioned critical point.
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Fig. 20.4 Axial strain distribution of specimen02.
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As discussed earlier, the final data feature should be presented in a discrete form by

the clusters V that can be calculated using the MMK criterion. The MMK converges

for the number of clusters V equal to 25 for the data, as presented in Fig. 20.6. Fig. 20.7

presents the final clustered axial strain data after the thresholding process.
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Fig. 20.6 MMK monotonicity convergence of DIC data vs the number of clusters (V).
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20.5.2 AE feature extraction

An AMSY-6 Vallen, 8-channel AE system with four parametric input channels was

used in this study. Two wide-band piezoelectric sensors, VS-900M, with an external

34dB preamplifier and a band-pass filter of 20–1200kHz, were clamped on the spec-

imens using a mechanical holder. In order to increase the conductivity between the AE

sensors and the specimen, grease was applied on the surface of the sensors and pencil

break tests were conducted before each experiment so as to ensure the conductivity.

One parametric input channel was used to record the load and correlate it to the AE
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data. The AE acquisition threshold was set to 50dB and the AE data set for each

AE hit contained the duration (μs), rise time (μs), peak amplitude (dB), energy

(1 eu¼10�18 J), the number of threshold crossings, and ratio rise time to amplitude.

1/A (1/amplitude) was found to have the highest monotonic observation sequences

and it was selected as the AE feature to use. Similar to strain measurements, 1/A

was calculated cumulatively in periodic time windows of 500cycles. The respective

degradation histories for seven specimens are shown in Fig. 20.8.
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Although the MMK monotonicity converges for number of clusters �18, see

Fig. 20.9, V¼25 was selected for the AE data equal to the number of clusters for

strain data. This way, the data fusion process becomes more efficient as the normal-

ization of the AE and DIC features is avoided. Fig. 20.10 presents the final clustered

AE data.
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Fig. 20.9 MMK monotonicity convergence of AE data vs the number of clusters (V).
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20.5.3 Data fusion of AE and strain data

The results of the optimization study, Eq. (20.9), are presented for various polynomial

degreesM in Fig. 20.11. The MMK monotonicity converges for a polynomial degree

M�5. Therefore, the polynomial degree is selected as M¼5.

For the selected polynomial degreeM¼5, Table 20.2 summarizes the optimization

results regarding the constant coefficients aij.
The fused features for polynomial degree M¼5 and the aforementioned polyno-

mial coefficients aij are shown in Fig. 20.12.

Fig. 20.13 presents theMMKmonotonicity for each SHM feature, that is, AE, DIC,

and fused data and it is observed that the fused data have the highest monotonic rate.

The data fusion process is presented in Fig. 20.14.
20.5.4 RUL estimations

Seven degradation histories Y¼ [y(1),y(2),…,y(7)] were available for each SHM tech-

nique (AE, DIC, and fused data). The training dataset employs six degradation
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Fig. 20.11 Modified Mann-Kendal value vs the polynomial degree.

Table 20.2 Optimization results for M¼5

AE0 AE1 AE2 AE3 AE4 AE5

DIC0 �39,955 �953,757 �743,892 471,0798 882,5275 1,985,843

DIC1 �783,606 1,989,894 �746,044 381,3022 �344,348 0

DIC2 412,001 411,5522 271,9862 829,036 0 0

DIC3 �922,063 �183,044 �16,7071 0 0 0

DIC4 292,6789 906,5035 0 0 0 0

DIC5 336,2406 0 0 0 0 0
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histories in order to estimate the NHHSMM’s parameters θ and keeps the seventh deg-
radation history as the testing prognostic dataset.

The mean/median RUL and the 90% confidence intervals can be calculated using

Eq. (20.5). The level of confidence intervals depends on the application, that is, for

aerospace applications 90% and 95% are common values [37] and 90% will be

adopted for this study. Figs. 20.15–20.18 present the RUL estimations of the three

available SHM techniques for specimen02, specimen03, specimen04, and speci-

men06, respectively.



Fig. 20.14 The data fusion process.
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The RUL estimations converge quite satisfactorily with the real (experimental)

RUL values. Based on the results shown in Figs. 20.15–20.18 the strain data provide

the best RUL estimations, while fused data and AE provide fair results.
20.5.5 Performance metrics

In order to quantify which data provide better predictions and validate or not the obser-

vations made for Figs. 20.15–20.18, various prognostic performance metrics are
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employed for the comparison. Eight prognostic performance metrics are used to eval-

uate the predictive performance of the three NHHSMMs trained with the different

types of SHM features. Six of them are metrics widely used in the literature; precision,

mean squared error (MSE), mean absolute percentage error (MAPE), median absolute

percentage error (MdAPE), cumulative relative accuracy (CRA), and convergence

(CEm) [51, 52]. The last two metrics monotonicity and confidence intervals distance

convergence (CIDC) were very recently introduced by Eleftheroglou et al. [53].
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A brief description of these two new metrics is provided hereafter. The aforemen-

tioned prognostic performance metrics are defined in the following:

1. Precision

Precision¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD

i¼1
Em tið Þ�Em tið Þð Þ2
D�1

r
, where Em is the mean value of error Em and Em(ti)¼

RULactual(ti)�meanRUL(ti) and ti2[1,D] is the discrete time moment when the ith SHM

observation is recorded.

2. Mean Squared Error (MSE)

MSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPD

i¼1
Em tið Þð Þ2
D

r
.

3. Mean Absolute Percentage Error (MAPE)

MAPE¼ 1
D

PD
i¼1

100�Em tið Þ
RULactual tið Þ
��� ���.

4. Median Absolute Percentage Error (MdAPE)

MdAPE¼ 1
D

PD
i¼1

100�Emd tið Þ
RULactual tið Þ
��� ���, where Emd(ti)¼RULactual(ti)�medianRUL(ti).

5. Cumulative Relative Accuracy (CRA)

CRA¼
PD

i¼1
RA tið Þ
D where RA(ti)¼1� Em tið Þ

RULactual tið Þ
��� ���.

6. Convergence (CEm)

CEm¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xc� t1ð Þ2 + yc2

q
.

where
xc ¼

XD�1

i¼1

ti+ 1
2� ti

2ð Þ � |Em ið Þ|

2 �
XD�1

i¼1

ti+ 1� tið Þ � |Em ið Þ|
and yc ¼

XD�1

i¼1

ti+ 1� tið Þ �Em ið Þ2

2 �
XD�1

i¼1

ti+ 1� tið Þ � |Em ið Þ|
:

onotonicity
7. M

The prognostic’s function monotonicity can be measured based on the proposed MMK

monotonicity criterion where y(ti) is replaced with meanRUL(ti). In case of the studied func-
tion, which is the RUL prediction function, the preferable value of MMK¼�1 since it is

expecting that the composite structure’s RUL is decreasing monotonically during its

lifetime.

8. Confidence Intervals Distance Convergence (CIDC)

Goebel et al. [54] stated that as the amount of data increases during the fatigue life, the

confidence intervals distance should converge. In order to quantify this statement, a new

metric is introduced; the CIDC. This metric is an extension of the metric of convergence

in Ref. [51] but in this case the centroid is under the confidence intervals distance curve.

In general, lower Euclidian distance means faster convergence. Let (xc, yc) be the center

of mass of the area under the confidence intervals distance curve, then the CIDC can be rep-

resented by the Euclidean distance between the (xc, yc) and the origin (t1,0), where

CIDC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xc� t1ð Þ2 + yc2

q
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where
Tab

SP1

SP2

SP3

SP4

SP5

SP6

SP7

Preci
MSE
xc ¼

XD�1

i¼1

ti+ 1
2� ti

2ð Þ � UCI ið Þ�LCI ið Þð Þ

2 �
XD�1

i¼1

ti + 1� tið Þ � UCI ið Þ�LCI ið Þð Þ
,yc

¼

XD�1

i¼1

ti+ 1� tið Þ � UCI ið Þ�LCI ið Þð Þ2

2 �
XD�1

i¼1

ti + 1� tið Þ � UCI ið Þ�LCI ið Þð Þ

UCI, LCI, the upper and lower selected confidence intervals, respectively.
and

The optimum values of the prognostic performance metrics are as follows and are

presented in Tables 20.3–20.6 for all the specimens:
le 20.3 P

AE

10,24

1839

1599

4696

1359

2265

4201

sion: strain
: strain and
Precision: minimum value

MSE: minimum value

MAPE: minimum value

MdAPE: minimum value
rognostic performance metrics (P

Precision

DIC Fusion A

2.2 10,321.1 12,158.0 3

.0 3178.1 3406.1 5

.5 1517.0 1803.2 4

.9 1517.0 4359.4 6

.8 2264.5 1118.1 1

.6 1916.9 3263.6 1

.6 5444.5 5976.0 2

and AE data score better for 3 RUL estima
AE data score better for 3 RUL estimations
CRA: maximum value

Monotonicity: minimum value

CEm: minimum value

CIDC: minimum value
The best scores are highlighted and underlined.

Based on the results, the model that uses strain data as health monitoring features

outperforms for most of the performance metrics. Data fusion also scores better for at

least one RUL estimation for all the metrics except the last one. Especially the results

of the monotonicity demonstrate the potential of the data fusion to provide features

with very strong monotonic behavior, which is a key factor for the success of the prog-

nostics output.
recision and MSE)

MSE

E DIC Fusion

13,929,177 398,746,894 400,438,288

,157,196 17,305,198 14,521,109

9,833,377 13,801,781 17,525,406

5,596,414 13,801,781 29,438,165

23,908,090 55,856,930 46,194,571

1,177,939 3,747,730 10,439,022

6,771,274 30,611,449 36,091,801

tions each and fusion data scores better for 1 RUL.
each and fusion data scores better for 1 RUL.



Table 20.4 Prognostic performance metrics (MAPE and MDAPE)

MAPE MDAPE

AE DIC Fusion AE DIC Fusion

sp1 19.34 46.40 15.09 40.47 60.69 38.59

sp2 68.14 94.09 92.79 29.46 64.03 50.66

sp3 19,737 75.61 128.70 159.12 41.35 75.82

sp4 172,01 75.61 119.41 141.58 41.35 79.56

sp5 312,69 231.87 203.34 261.58 183.01 134.87

sp6 82,82 35.36 71.01 46.50 8.37 28.19

sp7 33,05 111.26 94.46 2.45 87.19 59.67

MAPE: strain data scores better for 2 RUL estimations, AE and fusion data score better for 2 RUL estimations.
MDAPE: strain data scores better for 2 RUL estimations, AE and fusion data score better for 2 RUL estimations.

Table 20.5 Prognostic performance metrics (CRA and Monotonicity)

CRA Monotonicity

AE DIC Fusion AE DIC Fusion

sp1 0.238 0.281 0.135 �1 �0.987 �0.999

sp2 0.300 0.026 �0.001 �0.999 �1 �1

sp3 �0.973 0.244 �0.287 �0.999 �1 �0.999

sp4 �0.727 0.243 �0.254 �0.997 �1 �1

sp5 �2.127 �1.319 �1.033 �1 �1 �1

sp6 0.153 0.578 0.138 �0.999 �1 �1

sp7 0.245 �0.269 �0.130 �0.998 �1 �1

CRA: strain data scores better for 4 RUL estimations, AE data scores better for 2 RUL estimations and fusion data scores
better for 1 RUL estimation.
Monotonicity: strain data and fusion data performed equally for 5 RUL estimations and AE data scores better for 2 RUL
estimations.

Table 20.6 Prognostic performance metrics (CEm and CIDC)

CEm CIDC

AE DIC Fusion AE DIC Fusion

sp1 15,872 17,405 15,054 24,486 21,450 25,136

sp2 18,518 19,171 24,456 10,898 10,823 11,278

sp3 9766 8456 10,657 8661 7712 8529

sp4 15,746 8456 19,675 11,334 7712 11,094

sp5 6208 5599 5670 6041 5555 5820

sp6 17,548 43,742 63,208 11,343 10,274 11,349

sp7 4491 51,975 63,950 12,678 12,853 13,282

CEm: strain and AE data score better for 3 RUL estimations each and fusion data scores better for 1 RUL estimation.
CIDC: strain data scores better for 6 RUL estimations and AE data scores better for 1 RUL estimation.
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20.6 Conclusions

The structural prognostics research field is a new dynamically rising field and it

becomes more known, especially to the research and engineering community that

works on the operation and maintenance, as it is a core element for the successful

implementation of a condition-based maintenance framework. A great example is

the very recently, funded under the European Union’s Horizon 2020 research and

innovation program, real-time condition-based maintenance for adaptive aircraft

maintenance planning (ReMAP—https://h2020-remap.eu/) project, grant agreement

No 769288, where one of the main objectives is the development of health prognostics

of aircraft composite structures using innovative data-driven machine learning

algorithms.

The main objective of the structural prognostics is to provide real-time estimations

of the RUL of structures by blending machine learning algorithms, health monitoring

data, and mechanics in order to design a prognostics framework. For the prediction of

the RUL of composite structures subjected to fatigue loading, two types of prognostics

frameworks have been developed. The first one uses physics-based algorithms while

the second one uses data-driven algorithms.

In this chapter, a data-driven probabilistic framework for the in-situ prognostics of

composite structures subjected to fatigue loading was presented. The framework is

able to provide real-time estimation of the RUL of composite structures by combining

health monitoring data and the multistate degradation NHHSMM. Two different

sources of health monitoring data, AE, and strain data, on a feature-level, were pres-

ented. Open-hole carbon/epoxy specimens were subjected to constant amplitude

fatigue loading up to failure and DIC and AE techniques were employed, to monitor

the fatigue tests and provide the required data. In addition, eight prognostic perfor-

mance metrics were employed in order to compare the performance of the RUL

estimations.

A new data fusion approach was developed and the main objective was to produce

hyper-features with high monotonicity. Although the degradation histories of the

fused data had monotonicity higher than the monotonicity of the degradation histories

of DIC and AE features, the fuse data did not provide always better estimations, indi-

cating that the requirement of monotonicity is not enough and extra criteria should be

involved. Nevertheless, the results demonstrate the potential of the proposed data

fusion methodology and its evolvement by adding extra criteria, such as trendability,

will enhance the performance of the fused data.

In order to accommodate the phenomenon of the structural degradation over time

and the belief that as the amount of data increases the confidence intervals should con-

verge, two prognostic performance metrics, MMKmonotonicity, and CIDCwere very

recently proposed by the authors and materialized these statements. Their results were

similar to the results of the other metrics and their applicability was verified.

The feature extraction process for the strain data was straightforward, as after the

determination of the critical specimen’s point, the axial strain data were extracted via

the DIC technique. The well-established analytical model of Lekhnitskii enhanced the

feature performance indicating that mechanics can play an informative role on the

https://h2020-remap.eu/
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feature selection process. These results can be used in future toward the development

of a hybrid model where mechanics can play a key role for the feature extraction

process.

Considering the importance of delivering a RUL prediction methodology that is

generic enough and able to provide reliable real-time estimations, future research

should focus mainly on two topics:

l Data fusion processes
l Real time uncertainty quantification

As discussed in Section 20.4.2, data fusion can be performed in three levels. There is

not yet an established data fusion method that provides features, which enhance the

RUL predictions significantly. Toward that direction, research should be performed

on the selection and combination of appropriate SHM technologies, which will pro-

duce data that compliments each other and will enable the design of a super-feature

that should fulfill the criteria of monotonicity, trendability, and prognosability. The

prognostics framework should be flexible enough in order to accommodate any real

time uncertainty, that is, unexpected loading event such as impact, which may dramat-

ically change the operation life of the structure. This is important especially for the

data-driven algorithms where the training of the algorithm is usually based on fore-

casted loading conditions. The algorithm should be designed in such a way that

can recognize the change in the data histories and incorporate its effect on the analysis

of the RUL.
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