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Abstract. This note discusses a combination of the Chimera fixed grid approach and
Arbitrary Lagrangean Eulerian (’ALE’) based methods for large deformation fluid struc-
ture interaction (’FSI’). The governing equations for incompressible flows in an Eulerian
framework, a rotating frame of reference and an ALE-setting are discussed in order to
point out the relatedness of these approaches. An algorithm to solve the Navier-Stokes-
equations on domains with large deformations in an ALE-Chimera framework is derived
from these equations. Some remarks on the implementation of the method are made, and
in the end the theory is illustrated by small numerical examples.

1 INTRODUCTION

A robust handling of the deformation of the computational fluid domain is the basis
of every approach to deal with fluid structure interaction problems. These problems may
show very large deformations of the fluid domain, including rotations or rigid body move-
ments. Hence some extra effort is necessary if the accuracy of the surface representation
should be maintained throughout the calculation.

First we want to draw the readers attention to two classical ways of treating defor-
mations of the fluid domain which are directly related to the algorithm we present. For
a more general overview see1. The example we use to explain the fundamental idea of
these methods is the well known problem of a rigid cylinder immersed in a fluid. Figure
1 illustrates how the different approaches handle the problem when the cylinder is moved
around in the computational domain. We summarize:

• the Chimera approach

This is a fixed grid approach. It is capable of describing rigid body movements
by coupling of several fixed and moving meshes. See for example the classical
approach2, the multiple body extension3 or the fully automated version4.
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ALEChimera

Figure 1: Two ways of moving the cylinder out of the center of the computational domain: The ALE
approach fits the mesh to the new geometry, the Chimera-approach uses an overlapping mesh transported
with the body.

• the ALE approach

The ALE approach is a deforming grid approach. In contrast to the classical
Chimera method it allows to deal with deformable objects. For this purpose, an ad-
ditional reference configuration is introduced which is related to the actual spatial
domain via the deformation of the mesh (’computational mesh dynamics’). This
additional reference configuration leads to the well known ALE-formulation of the
Navier-Stokes equation. The first papers to introduce this method into the finite
element context are Donea et al.5, Belytschko et al.6, 7 and Hughes et al.8. The
method is widely used in the context of fluid structure interaction but shows up
some shortcomings when the mesh gets highly distorted due to the large deforma-
tions.

We discuss a combination of these two methods in moving a deformable ALE mesh with
the solid.

The rest of the paper is structured as follows: The next section contains the governing
equations used for the ALE and Chimera approaches. Some information on Chimera
methods follows in the next section. The fourth section bridges the gap between ALE
and Chimera methods which leads to the ALE-Chimera framework for fluid structure
interaction. In the end, the algorithm is illustrated by numerical examples.

2 FORMULATIONS OF THE NAVIER-STOKES EQUATIONS

The two methods mentioned in the last paragraph are based on different formulations
of the governing equations. The classical Chimera method uses an Eulerian formulation
with a fixed frame of reference for motionless subdomains and an Eulerian formulation
with a rotating frame of reference for moving subdomains. For the ALE approach, the
momentum equation is restated with the time derivative evaluated with respect to the
coordinates of the reference domain.

In this section we want to summarise all these equations and discuss the relationship
between the ALE-formulation for special grid movements and the Euler equations on a
rotating frame of reference.
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2.1 Eulerian formulation for a fixed frame of reference

The Navier-Stokes-equations (1) on a fixed frame of reference are a system of partial
differential equations for the velocity u(x, t) and the pressure p(x, t). The physical vector-
quantity belongs to a fixed frame of reference, x denotes the spatial coordinate relative
to this fixed frame of reference.

∂u

∂t

∣

∣

∣

∣

x

+ (u ◦ ∇x)u+ ∇xp − 2ν∇x ◦ ε(u) = b (1)

∇x ◦ u = 0

The problem is completed by boundary conditions on the boundary of the computational
domain.

2.2 The extension to rotating frames of reference

We now present equation (2) with an underlying moving frame of reference. For the
sake of clarity we restrict ourselves throughout the following paper to rotations (with con-
stant angular velocity ω) around the origin of the global coordinate system. Accelerated
rotations and linear motions are a straightforward generalisation. For this formulation,
the physical quantities û and p̂ depend on the spatial coordinate χ in the rotating frame
of reference. The velocity as a vector is given in the same rotating coordinates as the
position vector χ.

∂û

∂t

∣

∣

∣

∣

χ

+ (û ◦ ∇χ) û+ 2ω × û+ ∇χp̂ − 2ν∇χ ◦ ε(û) = b̂− ω × (ω × χ) (2)

∇χ ◦ û = 0

2.3 The ALE variant of the Navier-Stokes equation

For the ALE-formulation of the momentum equation we introduce the mappings from
figure 2. The displayed mappings give rise to the following expressions for the particle
velocity u(x, t) and the grid velocity uG(x, t):

u(x, t) =

(

∂ϕ

∂t

∣

∣

∣

∣

X

)

(

ϕ−1(x, t), t
)

, uG(x, t) =

(

∂Φ

∂t

∣

∣

∣

∣

χ

)

(

Φ−1(x, t), t
)

They are used to state the ALE momentum equation in spatial representation for the
particle velocity u and the pressure p as follows:

∂ (u ◦ Φ)

∂t

∣

∣

∣

∣

χ

◦ Φ−1 + ((u− uG) ◦ ∇x)u+ ∇xp − 2ν∇x · ε(u) = b (3)

3



Peter Gamnitzer, Wolfgang A. Wall

���������	��

������������������������� x �

� �"!#�$�%�&�����'�������������%�����	����� χ �

( �����$���	��
)�������������������	���*� X �

ΩX Ωx

Ωχ

ϕ−1(x, t)

ϕ(X, t)

ψ−1(X, t) Φ
−1(x, t)

Φ(χ, t)ψ(χ, t)

Figure 2: The material (initial) configuration is mapped by the mapping ϕ (particle motion) to the spatial
(current) domain at time t. The ALE formulation uses an independently moved reference configuration,
which is mapped to the spatial configuration by the mapping Φ.

2.4 The ALE momentum equation for special mesh movements

For the special case of a rotating mesh with a constant angular velocity (again rotation
around 0) , the mesh motion Φ is of the shape

Φ (χ, t) = A(t)χ

with a time dependent orthogonal rotation matrix A(t). Introducing this identity in
the momentum equation above leads to an equation which could be directly related to
the Navier-Stokes-equation on a rotating frame of reference (2). For example the time
derivative could be rewritten for a point χ = Φ−1 (x, t) as

∂ (u ◦Φ)

∂t

∣

∣

∣

∣

χ

(χ) = Ä(t)χ+ Ȧ(t)û +A(t)
∂û

∂t

∣

∣

∣

∣

χ

Here,

û =

(

∂ψ−1

∂t

∣

∣

∣

∣

X

)

(ψ(χ, t), t)

is again the velocity relative to the rotating frame of reference. If this expression for the
time derivative is transformed from the spatial domain to the reference domain (i. e. mul-
tiplied with the inverse Jacobian AT (t) of Φ) this leads to

AT (t) ·
∂ (u ◦ Φ)

∂t

∣

∣

∣

∣

χ

(χ) = AT (t)Ä(t)χ+AT (t)Ȧ(t)û+
∂û

∂t

∣

∣

∣

∣

χ

For an orthogonal matrixA(t) withAT (t)A(t) = E we could easily see by time derivation
that the matrix productAT (t)Ȧ(t) is skew symmetric. Hence, the expressionAT (t)Ȧ(t)û
could be rewritten with the angular velocity ω as the first half of the Coriolis term:

AT (t)Ȧ(t)û = ω × û
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Since

AT Ä =
d

dt

(

AT Ȧ
)

− Ȧ
T
Ȧ =

d

dt

(

AT Ȧ
)

− Ȧ
T (

AAT
)

Ȧ =

=
d

dt

(

AT Ȧ
)

−
(

AT Ȧ
)T (

AT Ȧ
)

=
d

dt

(

AT Ȧ
)

+
(

AT Ȧ
) (

AT Ȧ
)

we rewrite for a constant angular velocity the expression AT (t)Ä(t)χ as follows:

AT (t)Ä(t)χ = ω × (ω × χ)

All other parts in the ALE-momentum equation could be treated in the same way. The
ALE-convective term may be rewritten for our special mesh motion as follows:

3
∑

j=1

∂u

∂xj

· (uj − uG,j) = Ȧû+
3
∑

i=1

A
∂û

∂χi

· ûi

Transformation from the spatial domain to the reference domain yields

AT

3
∑

j=1

∂u

∂xj

· (uj − uG,j) = ω × û+
3
∑

i=1

∂û

∂χi

· ûi

The same transformation allows to compute the pressure gradient on the reference domain.

AT
∇xp = ∇χp̂

Since Φ is a rigid body motion, the contribution of the mesh velocity uG to the tensor
ε(u) vanishes and we get the identity

AT ·

(

∇x ◦ ε(u)

)

= ∇χ ◦ (ε(û))

After some calculation, as expected, we have recovered equation (2). Hence, formula-
tions (2) and (3) are equivalent for a rigid body mesh motion.

3 CLASSICAL CHIMERA METHODS

In this section we sketch the foundations and implementation of Chimera methods as
they are widely used in computational fluid dynamics today. Together with the ideas
from the previous section this will allow us to propose a more general algorithm for the
solution of the Navier-Stokes equations on a deforming domain in the next section.
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3.1 The fundamental idea

Chimera methods are based on a domain decomposition of the fluid domain Ωf . The
solution is therefore calculated by a sequential iteration over the overlapping subdomains
Ωi with Ωf =

⋃

i Ωi, Ωi ∩Ωj 6= ∅. For the sake of clarity we restrict ourselves without loss
of generality to two fluid subdomains, Ω0 (’background’) and Ω1 (’patch’). To understand
the Chimera method it is important to know, that the background mesh is automatically
generated out of a (favourably) structured mesh covering the whole domain Ωf by de-
activating special nodes under the moving structure (according to its current position).
For further explanations we again refer to the simple example of a rigid cylinder moved
around in the fluid domain. Figure 3 is intended to introduce the meaning of the artificial
inner boundaries Γ0, Γ1 on the basis of this example. Later on it will be reused to explain
the coupling process between the subdomains.
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Figure 3: The domain decomposition for the Chimera method. Ω1 is the moving subdomain connected
to the structure Ωs, Ω0 the fixed background subdomain. The arrows indicate the transfer of information
from the subdomains to the inner boundaries Γ0, Γ1 during the alternating solution process.

For the fixed background subdomain Ω0 the Navier-Stokes-equations are solved for
velocity u0(x, t) and pressure p0(x, t) on a fixed frame of reference. The index zero
indicates the connection of the physical quantities to the subdomain Ω0. The governing
equations are

∂u0

∂t

∣

∣

∣

∣

x

+ (u0 ◦ ∇x)u0 + ∇xp0 − 2ν∇x · ε(u0) = b in Ω0 × (0, T ) (4)

∇x ◦ u0 = 0 in Ω0 (5)

The boundary conditions for this problem are the standard boundary conditions on the
outer boundary ∂Ωf ∩ Ω0 plus the artificial boundary conditions on Γ0. For the classical
Chimera method, Γ0 is a Dirichlet boundary. The boundary values on Γ0 are derived
by interpolation (Interpolation operator I) from the solution of the previous Chimera
iteration step on Ω1:

u0(x) = I (ûprev
1 ) (6)

The hat on the solution on Ω1 indicates like in the previous section, that this velocity
û1(χ, t) is classically calculated on a rotating frame of reference. For this case, the
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governing equations are:

∂û1

∂t

∣

∣

∣

∣

χ

+ (û1 ◦ ∇) û1 + 2ω × û1 − 2ν∇ · ε(û1) + ∇p̂1 = b̂− ω × (ω × χ) (7)

∇χ ◦ û1 = 0 (8)

The problem on the patch is completed by the boundary conditions on Ω1 ∩ ∂Ωf and on
the inner boundary Γ1. For this inner boundary of the patch various boundary conditions
are common. A first possibility is to use a Dirichlet boundary to get a Dirichlet-Dirichlet
coupling (a Schwarz method). The problem of that choice is, that the patch subdomain
will be purely Dirichlet bounded. Because of the incompressibility constraint this problem
will be ill-posed without an additional control of the flux into the patch9. A second choice
is to make Γ1 a Neumann boundary and to transmit the force onto the patch subdomain.
In the context of finite elements this boundary condition is easily included by adding a
surface integral expression to the right-hand side of the weak form. This approach was
extended by Houzeaux and Codina10 to a Dirichlet-Robin coupling. For this coupling, a
certain percentage b of the convective term in the weak form of the momentum equation is
integrated by parts on Ω1. With the trial function v1 this leads to an enhanced boundary
integral on Γ1:

∫

Γ1

[

vT
1σ (u1)n− b (u1 ◦ v1) · u1 ◦ n

]

da

The whole procedure is summarised in table 1.

time-loop

determine the inactive nodes on Ωf\Ω0 and the interpolation nodes
on Γ0

repeat until STOP CHIMERA

loop all subdomains Ωi

update boundary conditions on Γi by interpolation from the
previous solution of the overlapping domain.

solve the fluid problem on Ωi.

STOP CHIMERA if the boundary values on
⋃

Γi do not change
anymore during one loop over all Ωi

Table 1: The solution procedure for the alternating Chimera approach.
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3.2 Implementation aspects

Now to some implementation details. The subdomain Ω0 and its inner boundary Γ0 is
formed in each iteration step as displayed in figure 4 for the well known cylinder example.
The node search required for this procedure (and later on required for the interpolation)
is done via a quadtree search algorithm.

fixed background

moving body

deactivated node

(inner) Dirichlet
boundary node on Γ0

mesh Ω0

Figure 4: The background mesh is generated automatically within the Chimera method.

The transmission process corresponding to the interpolation operator I interpolates
nodal data from one subdomain to the inner boundary of the other subdomain. In the
case of Dirichlet boundaries, the information is passed to the nodes, in case of a Neumann
boundary, the information is passed to the Gausspoints. For the interpolation of Neumann
data it is absolutely mandatory to calculate a least square smoothed superconvergent
approximation of the velocity gradients. Useful techniques like the superconvergent patch
recovery are described for example in11, 12.

u
m2

1

Ω1

u
n

0

u
m1

1

u
m3

1

u
m4

1

Γ0

Γ1

Ω0

Figure 5: The boundary node on Γ0 is interpolated from the recent solution on Ω1.

Figure 5 exemplifies the interpolation process for the interpolation of the Dirichlet
boundary value un

0 on a node n of Γ0 (coordinates xn) (The lower index refers to the
subdomain, the upper index to the node number). To determine the value of un

0 , a
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search is performed in domain Ω1 to determine a ’parent’ element containing the point
corresponding to the coordinates xn. The value un

0 is now determined by Lagrange
interpolation from the values um

1 of the nodes m of the parent element, see Figure 5. For
the displayed example, the values, which are calculated using the standard finite element
shape functions Nmi

evaluated at the local coordinates ξ of the point xn on the parent
element are:

un
0 =

∑

Nmi
(ξ)umi

1

A point to be considered here is, that the interpolation requires the real velocities um
1 on

the patch. Thus, a coordinate transformation has to be performed before interpolating
the values.

The last aspect of implementation here is the solution process of the subdomains. We
applied a stabilized Finite Element approach with a one step theta time integration. The
additional coriolis term in the equation (2) requires additional effort for stabilization13.

4 AN ALE-CHIMERA FRAMEWORK FOR FSI

As we saw in the last but one section, the classic governing equations on the moving
frame of reference (2) could be replaced by the ALE formulation (3). For the patch
problem, this leads to the equation

∂ (u1 ◦ Φ)

∂t

∣

∣

∣

∣

χ

◦ Φ−1 + ((u1 − uG,1) ◦ ∇x)u1 + ∇xp1 − 2ν∇x · ε(u1) = b (9)

We now propose to use this ALE formulation on the patch for a mixed ALE-Chimera
method.

For real rigid body problems this has already the advantage, that the ALE-equation
contains the real particle velocities. Hence, when interpolating between the meshes it is
not necessary anymore to transform the velocities between the different frames of refer-
ence. In addition to this, the alternative formulation does not require any extra stabili-
sation or other changes to the element subroutines in a standard ALE code. The further
advantage of the new formulation is, that the method is capable of simulating the flow
around deformable structures moved over large distances in the fluid.

In addition to the work that has to be done for the classical Chimera approach, the
mesh positions and velocities have to be updated in each time step. We propose to use
a pseudo-elasticity approach for the computational mesh dynamics. For fluid structure
interaction problems this leads to the algorithm described in table 2.

5 NUMERICAL EXAMPLES

5.1 Moving ’breathing’ subdomain

The setting of the following academic example is shown in figure 6. It consists of a
simple structure which is moved around in a channel. The movement is decomposed into

9
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time-loop

repeat until STOP FSI (iteration over fields)

solve for mesh dynamics on deforming sub-domains

solve fluid

via a Chimera-like procedure

. . .

solve structure

if converged, STOP FSI

Table 2: Iterative staggered coupling scheme using a Chimera approach for the fluid solution. Due to the
modularity, the changes are ‘local’.

three parts: The center of the structure is moving from left to right and vice versa in the
computational domain. The structure rotates around its center and in addition to that,
it changes its shape. Throughout the calculation the Reynoldsnumber remains very low.

rotation

’breathing’ structure

linear motion of structure

Figure 6: The setting of the numerical example. The total deformation is decomposed in three parts.

The boundary conditions imposed on the upper and lower boundaries and the immersed
structure are no-slip. On the outflow we have a do nothing boundary condition an on the
inflow we prescribed the traction in such a way that without the obstacle the resulting
flow would be a standard channel flow with a parabolic velocity profile and maximum
velocity of 1.

The problem was solved for 10 time units, which corresponded to 200 time steps. Each
time step required up to 16 iterations over the subdomains. As a result of our choice to
control the convergence behaviour of the subdomain iteration by monitoring the changes
of the inner boundary values, we had to apply a very small upper bound for this increment
to ensure the convergence on the whole domain. During the calculation time the structure
oscillates twice from left to right, performes two rotations about its center and changes
twice its shape as sketched in figure 6.

The two Dirichlet-Neumann coupled meshes can be seen in figure 7. The same figure
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contains the results for the horizontal velocities at two time steps. The pictures in the
upper row displays a time step when the structure is moving from right to left in the
opposite direction of the driving force, the channel flow is decelerated. The other time
step corresponds to a movement from left to right. The flux through the channel is
increased. As far as we could see from this example, the Dirichlet-Neumann coupled
method is capable of producing correct results.

Figure 7: Results (horizontal velocities) for two time steps. Each line contains the result of the overlapping
domain decomposition (left), the result on the background subdomain (center) and the two overlapping
meshes around the moving body (right).

Closer numerical investigation of the velocities along the inner Neumann boundary
shows up some deficiencies of the method, especially when the background mesh was
chosen too coarse. For these meshes the quality of the gradient approximation was not
high enough, so the Neumann coupling of the patch failed.

5.2 Moving ’snake-subdomain’

The geometry for this example is basically a 4.0 × 2.0 channel with a small cylinder-
beam object immersed in a viscous fluid (kinematic viscosity ν = 1) which is slowly
moved around in the channel. The motion of the object is completely prescribed. It may
be decomposed in a translatoric part (cos-shaped velocity) and a ’snake like’ deformation
of the beam. The boundary conditions on the left side of the channel is ’do nothing’, on
the right border we have a parabolic velocity profile with maximum horizontal velocity
umax,in = 1.0 in negative x-direction.

The problem was solved for 40 time units which corresponded to 800 time steps. During
this time the structure moved 8 times from left to right and back and kept continuously
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Figure 8: The setting of the numerical example. The prescribed total deformation is decomposed into
two parts. We place emphasis on the fact that this problem does not have any biological background but
was simply designed to illustrate the capabilities of our algorithm.

’waving’ the beam. In every time step of the fluid solution, the fluid problem was solved
iteratively on the two Dirichlet-Robin-coupled subdomains. The results for the horizontal
velocity of different time steps is displayed in figure 9. The velocity values on the inner
Robin boundary showed a better quality than the values from a pure Neumann-coupling,
even for coarser grids.

Figure 9: Results (horizontal velocities) for several time steps between 400 and 440.
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6 CONCLUSIONS

We presented an extended Chimera method with an alternative governing equation on
the patch subdomain using an ALE formulation. The new formulation was the basis for a
finite element implementation which is capable of treating moving deformable structures
immersed in fluids. This enables us to focus on the treatment of fluid structure interaction
problems with very large deformations within such a framework. By the time of the
conference we will present the basics of our implementation and we are looking forward
to show first results of fluid structure interaction problems solved in combination with an
ALE-Chimera method.
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