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I

7ij co de initiele bouwkosten, F'(¢) de cumulatieve kansverdeling van het continue ver-
nieuwingstijdstip T en c(¢) de kosten die zijn verbonden aan een vernieuwing op tijd-
stip ¢, waarbij ¢g > 0, T > 0 en ¢(t) > 0. Met behulp van de vernieuwingstheorie zijn
de verwachte gedisconteerde kosten over een oneindige tijdshorizon dan te schrijven als

Jo7 ale(t) dF (1)
1- ot dF(l)

co + lim Co(7) = co +

met a de discontofactor en Cy(7) de verwachte gedisconteerde onderhoudskosten in de
eindige tijdsperiode (0, 7], waarbij 0 < o < 1 en 7 > 0.

Daar deze stelling uitermate geschikt is voor het vinden van een optimale balans tussen
initiéle bouwkosten enerzijds en toekomstige onderhoudskosten anderzijds (‘life cycle
costing’), zou zij in geen enkel leerboek op het gebied van de operationele analyse
mogen ontbreken.

Deze stelling is analoog aan de discrete vernieuwingsstelling met gedisconteerde kosten in Hoofdstuk 4
van het proefschrift.

II

Stel de oneindige rij van niet-negatieve reéle stochastische grootheden {X7 :4 &€ IN}
is [,-isotropisch voor zekere A >0 en g >0, d.w.z. de kansdichtheidsfunctie van
(Yi,...,Y,) = (X},...,X}) kan - met betrekking tot de Lebesgue-maat - worden
geschreven als ’

P(Y1,- s 4n) = Fr (Cia )

voor elke n € IN. Het is bekend dat de kansdichtheidsfunctie van (X3,...,X,,) in dit
geval een zogenaamd ‘schaalmengsel’ van gegeneraliseerde gamma-verdelingen is:

1

oo B pk )\ _

p(T1,- ..y Ty) :/0 II FG? z} 1exp{~yz;\“} Jjo,00)(z:) dP(v).
i=1 I

De gegeneraliseerde gamma-verdeling met onzekere parameters A, p en v kan worden
gebruikt voor het schatten van de kans van optreden van extreme rivierafvoeren.

Zie: Hoofdstuk 3 van het proefschrift;
HKYV ‘Lijn in Water’, Rijkswaterstaat RIZA en Waterloopkundig Laboratorium. Integrale Verkenning
inrichting Rijntakken; Rapportnummer 12: Veiligheid, 1996.




II
Zij0<a<1l,s>0enz >0, dan geldt
limapy 52, (1 — @)ai[z + j(1 — )]~ = €T(1 — 5, z),
waarbij [(a,z) = [Z, t* 'e~" dt de incomplete gamma-functie is voor z > 0 en a € R.

Volgt uit een combinatie van Stelling 7 en Vergelijking (4.8), (4.11) en (4.14) in het proefschrift.

v

Stel de stochastische vector (X, ..., X,) heeft reéle coordinaten, zodanig dat zijn kans-
dichtheidsfunctie - met betrekking tot de Lebesgue-maat - kan worden geschreven als

plzy,. . 20) = [ (X 97i)H?=1I[0,y](xi)-

Voor elke n > 2 en k < n geldt dan dat

P12k | iz =nb) =

() g(”lk )1 [1*—2?:1;;”3/]? _ E e
BRI TR

voor & > 0, waarbij [z], = max{0,2}, alsmede I (z) = 1 voor z € A en I4(z) =0
voor = ¢ A.

Zij @ > 0 en 8 > 0, dan volgt

éB(%, %) S [2B(aﬁ + a, a)] 28
aB(e, @) — B(a, a) ’

waarbij B(a,b) = [ #*~1(1 —#)*"1 dt de beta-functie is. Gelijkheid geldt alleen als
af=1.



VI

De benaming ‘normale verdeling’ suggereert ten onrechte, dat deze kansverdeling nor-
maal gesproken zou moeten worden gebruikt. Om dit te voorkomen kan deze benaming
beter worden vervangen door ‘de Moivre-verdeling’, zo genoemd naar haar ontdekker.

Abraham de Moivre. Approzimatio ad Summan Terminorum Binomii o +b in Serium Ezpansi,
1733.

VII
Hoe meer onzekerheid in een beslissingsprobleem, des te eenvoudiger het beslissings-
model.

VIII

Ook bestuurlijke fouten en politieke nalatigheden - zoals die bijvoorbeeld veelvuldig
hebben plaatsgevonden voor en tijdens de overstromingsramp van 1933 - dienen in
aanmerking te worden genomen bij het maken van een risico-analyse.

Zie: Kees Slager. De Ramp: Eer Reconstructie. De Koperen Tuin, Goes, 1992.

IX

De schatting van de kans op extreme Noordzee-waterstanden zou niet alleen moeten
worden gebaseerd op waarnemingen van de afgelopen honderd jaar, maar ook op die
van ouder datum zoals de Allerheiligenvloed (1570), de Sint-Felix-vloed (1530) en de
Sint-Elisabethsvloed (1421).

X

Nieuwbouw in het winterbed van de Maas moet worden verboden, tenzij men overgaat
tot het bouwen van paalwoningen.

X1

Aangezien ‘Die Haghe' de oudstbekende naam is van Den Haag, verdient de bena-
ming ‘Den Haag’ de voorkeur boven het voor buitenlanders zo moeilijk uitspreekbare
“’s-Gravenhage’.

Zie: Jacob de Riemer. Beschryving van ’s Graven-Hage; Eerste Deels Eerste Stuk, 1730.
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Chapter 1

Introduction

The subject of this Ph.D. thesis is the determination of optimal maintenance decisions
for hydraulic structures subject to deterioration. This introduction briefly describes
the maintenance of hydraulic structures in The Netherlands, presents three cost-based
criteria for comparing maintenance decisions under uncertain deterioration, and gives
an overview of the thesis.

1.1 Maintenance of hydraulic structures

With storm-induced tides of some four metres above average sea level, the flood of
February 1, 1953, caused a severe catastrophe in the south-west of The Netherlands.
Almost 200,000 hectares of polderland flooded, 1,835 people and tens of thousands
of animals were drowned, about 100,000 people had to be evacuated, and more than
46,000 buildings were destroyed or damaged. At the price-level of 1953, the flood
damage totaled up to 1.5 x 10° Dutch guilders. Behind these huge figures there is a
sorry story: on the basis of 200 eye-witness accounts, an impressive and a harrowing
reconstruction of the 1953 flood has been made by Slager [110].

To protect the Dutch lowlands against flooding, a flood defence system has been
constructed in which The Netherlands is subdivided into fifty-three dyke-ring areas (see
Fig. 1.1). These areas are surrounded by dyke rings consisting of dykes (more than
2,500 km), dunes (254 km), water-retaining works (e.g. the Eastern-Scheldt storm-
surge barrier), and higher ground. Acceptable inter-occurrence times of the exceedence
of the water level that a dyke-ring component should withstand are laid down in the
Dutch Flood Protection Act [117] and vary from 10,000 years (for dyke-ring areas
subject to sea floods) to 1,250 years (for dyke-ring areas subject to river floods).

Each component of a dyke ring has to fulfill certain requirements in the areas of
flood protection, environment, recreation, shipping access, road connection, transport,
agriculture, fishery, and landscape. As soon as a component fails to meet its main
requirements it should be repaired, preferably against minimal costs. For example,

1
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primary dyke ring :I dyke-ring area 34 number dyke ring

Figure 1.1: Dyke rings in The Netherlands.
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when focussing on flood protection only, a distinction can often be made between
a structure’s resistance (e.g. dyke height) and its design stress (e.g. the maximal
water level to be withstood). A failure may then be defined as the event in which the
resistance drops below the stress.

Usually, maintenance is defined as a combination of actions carried out to restore
a hydraulic structure to, or “renew” it to, its desired condition. Inspections, repairs,
and replacements are possible maintenance actions. Kelly [72, Ch. 2] distinguishes two
types of maintenance: corrective maintenance (after failure) and preventive mainte-
nance (before failure). Failure-based corrective maintenance can best be chosen if the
costs arising from failure are low; preventive maintenance if these costs are high (see
Fig. 1.2). We can choose between two preventive maintenance strategies: (i) time-
based maintenance carried out at regular intervals of time, operation, or use, and (ii)
condition-based maintenance carried out at times determined by inspecting or moni-
toring a structure’s condition. Time-based maintenance can be applied if the times to
failure are almost known. Condition-based maintenance can be relied on if the dete-
rioration is inspectable or monitorable. By contrast, a structure should not simply be
maintained but redesigned or seriously improved when the cost of its failure is high,
the rate of its deterioration is very uncertain, and its condition cannot be inspected or
monitored.

deterioration
can be
inspected

i yes

improvement
or redesign
of structure

costs of failure times to failure

failure-based time-based condition-based
corrective preventive preventive
maintenance maintenance maintenance

Figure 1.2: Decision diagram for corrective and preventive maintenance.

In hydraulic engineering, expensive condition-based preventive maintenance is
mainly applied. Every year 7 million cubic metres sand must be supplied at beach
locations subject to ongoing erosion against costs of about 70 million Dutch guilders.
The costs of back maintenance of the Dutch water ways is estimated to be about
650 million Dutch guilders. An annual budget of over 500 million Dutch guilders
is dedicated to the Dutch flood defence system. Since the Delta Plan will soon be
completed, the attention is shifting from building structures to maintaining structures:
for example, the annual costs of maintaining the water-retaining works is expected to
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increase from about 50 million Dutch guilders today to about 175 million Dutch guilders
in 2040 (see Rijkswaterstaat [104]). The use of maintenance optimisation models will
therefore be of considerable interest.

During the life cycle of a hydraulic structure we can roughly identify four phases:
the design, the building, the use, and the demolition. There are mainly two phases
in which it is worth applying maintenance optimisation techniques: the design phase
and the use phase. In the design phase, one might obtain an optimum balance be-
tween building costs and maintenance costs. In the use phase, one might minimise the
costs of inspection, repair, replacement, and failure. Problems of finding an optimum
balance between initial and future costs belong to the area of life cycle costing (see
Blanchard [10], Fabrycky & Blanchard [46], and Flanagan et al. [51]).

The area of optimising maintenance through mathematical models has been foun-
ded in the early sixties by researchers like Barlow, Proschan, Jorgenson, McCall, Rad-
ner, and Hunter. Their pioneering work is summarised in McCall [85] and Barlow &
Proschan [5, 6]. Their interest in maintenance optimisation has been provoked by the
high cost of military-industrial equipment like jet airliners, electronic computers, bal-
listic missiles, etc. Well-known models of this period are the age replacement model
(replacement upon failure or upon reaching age T') and the block replacement model
(replacement upon failure or periodically at the times 7', 2T, 3T, .. .). More recently, a
large number of papers on maintenance optimisation, mainly focussing on the mathe-
matical aspects, have been published. For an, inherently incomplete, overview see Pier-
skalla & Volker [96], Sherif & Smith [108], Sherif [109], Valdez-Flores & Feldman [118],
and Cho & Parlar [12].

Most maintenance optimisation models are based on lifetime distributions or Mar-
kovian deterioration models. Unfortunately, only a few of them have been applied
(see Dekker [28] and Pintelon & Gelders [97]). According to De Jonge, Kok & Van
Noortwijk [25], there are two possible reasons for this poor applicability. First, from
the theoretical point of view, there is often no interest in “details” that are of practical
importance: a problem description is often lacking or even purely hypothetical. Sec-
ond, from the practical point of view, there is little experience in using maintenance
optimisation models and it is often hard to gather data for estimating either the pa-
rameters of a lifetime distribution or the transition probabilities of a Markov chain.
Moreover, in case of well-planned preventive maintenance, complete lifetimes will be
observed rarely.

In mechanical and electrical engineering, one often considers equipment which can
assume at most two states: the failed state and the non-failed state. In hydraulic
engineering, however, a structure can be in a range of states depending on its degrading
resistance. Examples of stochastic deterioration processes are: ongoing coastal erosion
of a beach section, crest-level decline of a dyke section, longshore rock transport of a
berm breakwater, and current-induced scour erosion of a sea-bed protection.

For the most part, the maintenance optimisation literature deals with mechanical
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and electrical engineering. A few papers on optimum maintenance policies in struc-
tural reliability and hydraulic engineering were found. Tang & Yen [113, 114] have
studied optimal inspection scheduling for dams on the basis of lifetime distributions
(the gamma distribution). Deodatis et al. [39] and Ito et al. [66] have evaluated non-
periodic inspection intervals for fatigue-sensitive structures by considering the time to
crack initiation, the probability of crack detection, and the exponential rate of crack
propagation to be random quantities. In several maintenance models, the deterioration
process has been regarded as the celebrated Brownian motion with drift (a stochastic
process with stationary independent decrements and increments having a normal dis-
tribution): see, e.g., Gijsbers [54], Hontelez, Burger & Wijnmalen [62], Kok [74], and
Kuijper & Vrijling [80].

1.2 Optimal maintenance decisions

As mentioned before, a hydraulic structure is said to fail when it does not satisfy a
pre-determined failure or design level (like the basal coastline of a beach section and
the acceptable crest-level of a dyke section). Therefore, and because the maintenance
action to be taken typically depends on the observed amount of deterioration (we
deal with condition-based maintenance), we restrict ourselves to stochastic resistance
and deterministic stress. This means that a structure fails when its resistance R is
below a constant failure level s. Furthermore, we focus on failure of one hydraulic
structure (e.g. a dyke section) with respect to one requirement (e.g. safety) due to one
failure mode (e.g. crest-level decline). In a fault tree analysis, this failure mode can
be combined with other failure modes, other structures, other dyke-ring components,
and other requirements, which might be interdependent. It should be noted that there
is a fundamental difference between failure and collapse: a failed dyke section only
collapses when the applied water level exceeds its crest-level height. For an overview
of maintenance aspects of the Dutch flood defence system, see De Quelerij & Van
Hijum [26], Reij & Van der Toorn [99], Van der Toorn [122], and Van Noortwijk [123].

In this thesis, a methodology has been developed that might bridge the gap between
theory and practice by modelling maintenance of hydraulic structures on the basis of
the main uncertainty involved: the value of the limiting, non-negative, average rate of
deterioration denoted by the random quantity ©. To achieve this, and to account for
most deterioration processes to proceed in one direction and in random jumps, these
processes have been regarded as so-called generalised gamma processes.

A gamma process is a stochastic process with independent non-negative increments
having a gamma distribution with known limiting average rate. A generalised gamma
process is then defined as a mixture of gamma processes, where the mixture represents
the uncertainty in the unknown limiting average rate of deterioration. Note that the
Brownian motion with drift is often not applicable in a maintenance context, since we
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must require that increments of deterioration are non-negative. Moran [91] used gamma,
processes in his theory of the storage of water by dams. Reliability models based on
the gamma process have been developed by Dykstra & Laud [45] and Wenocur [143].

A useful property of the generalised gamma process is that we can always find a
unique uniform time-partition, in time-intervals of length A, for which the joint prob-
ability density function of the increments of deterioration is a mixture of exponentials,
which are conditionally independent when the limiting average rate of deterioration is
given. Let D; be the increment of deterioration in unit time ((i —1)A,:A],i = 1,...,n,

then 5
PDy,...Dn (b1, 6, f H —exp { ——0—} dP(6)

for (81,---,6,) € R% and zero otherwise, Where Ry =[0,00). The random quan-
tity © represents the uncertainty about the limiting average rate of deterioration
limy—oo[(SN, D;)/N]. The infinite sequence of random quantities {D; : ¢ € IN} is
said to be l;-isotropic (or l;-norm symmetric), because its distribution can be written
as a function of the /;-norm. Note that the variance of the generalised gamma process
determines the unit-time length for which the increments are [;-isotropic: in fact, the
smaller the variance, the smaller the corresponding unit-time length. Since we are
equipped with the exponential likelihood function, we can express various probabilistic
properties, such as the probability of exceedence of a failure level per unit time, in
explicit form conditional on the limiting average rate of deterioration. Due to the ex-
changeability of the (/;-isotropic) increments of deterioration, the expected cumulative
amount of deterioration is linear in time. Relevant references for the notion of isotropy
include Diaconis & Freedman [42], Misiewicz & Cooke [90], Mendel [89], Barlow &
Mendel [3], and Hayakawa [60].

To make optimal maintenance decisions while taking account of the uncertainty in
the limiting average rate of deterioration, we can use statistical decision theory (see
DeGroot [27, Ch. 8] and Savage [106]). In a typical maintenance decision problem, a
decision-maker must choose a maintenance decision d from all possible decisions D, with
the consequences of decision d depending on the unknown value of the limiting average
rate of deterioration @. Let us assume that there exists a probability distribution P on
©, where P may represent a priori beliefs about ©, which can be updated with actual
observations using Bayes’ theorem. Let L(8,d) be the loss when the decision-maker
chooses decision d and when the limiting average rate of deterioration is given by 4,
where the loss represents the monetary losses due to maintenance. The decision-maker
can best choose, if possible, a maintenance decision d* whose expected loss is minimal.
A decision d* is called an optimal decision or a Bayes optimal decision when

E(L(0,d")) = min B(L(®, d)).

These optimal maintenance decision are also known as Bayes adaptive maintenance
policies: they can be revised in the light of new observations (see McCall [85]). Bayes
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adaptive age and block replacement policies have been studied by Bassin [7], Fox [52,
53], and Mazzuchi & Soyer (83, 84]. Bayes adaptive maintenance policies for structures
subject to deterioration that can be regarded as generalised gamma processes are new.

The maintenance of hydraulic structures can best be modelled as a renewal process,
where the renewals are the maintenance actions restoring a structure to its desired
condition. After each renewal we start, in a statistical sense, all over again. Since
the planned lifetime of the Dutch dyke-rings is unbounded, maintenance decisions can
best be compared over an unbounded time-horizon. According to Wagner (138, Ch. 11|
there are basically three cost-based criteria that can serve as loss functions:

1. the expected average costs per unit time, which are determined by averaging the
costs over an unbounded horizon;

2. the ezpected discounted costs over an unbounded horizon, which are determined by
summing the (present) discounted values of the costs over an unbounded horizon
under the assumption that the utility of money decreases in time; and

3. the expected equivalent average costs per unit time, which are determined by
averaging the discounted costs.

These cost-based criteria can be computed using the discrete renewal theorem (see e.g.
Feller [47, Ch. 13] and Karlin & Taylor [71, Ch. 3]) and are derived in Chapter 4. The
notion of equivalent average costs relates the notions of average costs and discounted
costs in the sense that the equivalent average costs per unit time approach the average
costs per unit time, as the discount rate tends to zero, from above. Although in the
literature most attention has been focussed on the criterion of average costs, the cost-
based criteria of discounted costs and equivalent average costs are most suitable for
optimally balancing the initial building costs against the future maintenance costs (life
cycle costing). The criterion of average costs can be used in situations in which no large
investments are made (like inspections) and in which the time value of money is of no
consequence to us. Often, however, it is preferable to spread the costs of maintenance
and failure over time and to use discounting.

In this thesis, generalised gamma processes have been used to model decision prob-
lems for optimising maintenance of various characteristic components of a dyke ring: a
beach section, a dyke section, a berm breakwater, and a retaining work (the Eastern-
Scheldt barrier). Furthermore, decisions that reduce flood damage along the river
Meuse have been evaluated and compared by assuming, amongst others, [;-isotropy in
the flood damage (using the so-called principle of indifference of Mendel [89]).

1.3 Overview of the thesis

The thesis is organised as follows. The mathematical foundations for modelling deterio-
ration processes as generalised gamma processes are laid in Chapters 2 and 3. Four case
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studies on optimal maintenance decisions are discussed in Chapter 4 (a beach section),
Chapter 5 (a dyke section), Chapter 6 (a berm breakwater), and Chapter 7 (a sea-bed
protection). They all represent tailor-made models for the maintenance problems at
hand with cost of repair proportional to the degraded volume of sand, clay, or rock. A
decision-theoretic application on river flooding, by using isotropy and discounting, is
presented in Chapter 8. Finally, Chapter 9 describes a maintenance model for failure
probabilities having a Dirichlet distribution, which is useful when both resistance and
stress are stochastic. The chapters are self-contained and can be read separately.

Chapter 2: A Bayesian failure model based on isotropic deterioration.

A failure model is developed on the basis of the amount of deterioration averaged
over a bounded or an unbounded time-horizon leading to, respectively, a finite or an
infinite sequence of l;-isotropic increments of deterioration. Bayes estimates of the
probabilities of failure and preventive repair are expressed explicitly conditional on
the average deterioration. The failure model is applied to the rock dumping of the
Eastern-Scheldt barrier which is subject to current-induced rock displacement (the
barrier connects dyke rings 26 and 28; see Figs. 1.1 and 7.1).

Chapter 3: A characterisation of generalised gamma processes.

In addition to the classical characterisation of gamma processes in terms of compound
Poisson processes (see e.g. Gnedenko & Kolmogorov [55, Ch. 3 & 5], Lévy [81, pp. 173-
180], 1t5 [65, Ch. 1], Ferguson & Klass [49], and de Finetti {23, Ch. 8]), this chapter
presents two new mathematical characterisations of generalised gamma processes: (i)
in terms of conditioning on sums of increments, serving as sufficient statistics for the
unknown limiting average rate, and (ii) in terms of isotropy. The characterisation
in terms of sufficiency extends results of Diaconis & Freedman [41] and Kiichler &
Lauritzen [78]. The characterisation in terms of isotropy originates from the work of

Barlow & Mendel [3} and Misiewicz & Cooke [90].

Chapter 4: Optimal sand nourishment decisions.

This chapter studies optimal sand nourishment sizes for which the expected discounted
costs over an unbounded horizon are minimal with respect to the probability distri-
bution of the limiting average rate of ongoing coastal erosion. The decision model is
applied to sand nourishment at Zwanenwater (a beach section that is part of dyke ring
13; see Figs. 1.1 and 4.5).

Chapter 5: Optimal maintenance decisions for dykes.

This chapter discusses optimal dyke heightenings for which the expected discounted
costs over an unbounded horizon are minimal with respect to the probability distri-
bution of the limiting average rate of crest-level decline (being a combination of set-
tlement, subsoil consolidation, and relative sea-level rise). On the basis of a physical
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law, crest-level decline has also been regarded as a stochastic process with expected
decline being approximately logarithmic in time (using engineering probability: see
Mendel & Chick [88] and Chick [11]). Both decision models are applied to the Dutch
‘Oostmolendijk’ (a dyke section that is part of dyke ring 17; see Fig. 1.1). The pro-
posed models extend results of Van Dantzig [119], Vrijling & Van Beurden [134], and
Kuijper [79].

Chapter 6: Optimal maintenance decisions for berm breakwaters.

This chapter examines optimal inspection intervals for berm breakwaters whose ex-
pected (equivalent) average costs per unit time are minimal with respect to the proba-
bility distribution of the limiting average rate of longshore rock transport. The model
that is proposed is a two-phase inspection model in which the first phase represents
the event of no breach of the armour layer and the second phase represents the event
of longshore rock transport initiated by an armour breach. It is a special case of the
delay-time model as studied by Christer & Waller [14, 15]: the time lapse from the oc-
currence of an armour breach until the time of failure, due to longshore rock transport,
can be interpreted as the discrete delay time of a failure. These discrete delay times are
assumed to be distributed according to a mixture of geometrics. The inspection model
has been applied to a hypothetical berm breakwater; it extends results of Vrijling &
Van Gelder [135].

Chapter 7: Optimal maintenance decisions for a sea-bed protection.

In this chapter, cost-optimal inspection intervals for two components of the sea-bed
protection of the Eastern-Scheldt barrier are obtained: (i) the block mats and (ii)
the rock dumping. The decision model for the block mats is a two-phase inspection
model: the inter-occurrence times of scour holes are distributed according to a mixture
of Poisson processes and the scour holes develop according to a generalised gamma
process. The decision model for the rock dumping is based on the failure model of

Chapter 2.

Chapter 8: Optimal decisions that reduce flood damage along the Meuse.

Optimal decisions that might reduce future losses due to flooding of the river Meuse
are investigated. When the loss is defined as the expected discounted costs of decisions
minus the yields of decisions plus the remaining mean flood damage over an unbounded
horizon, optimal decisions can be obtained with respect to the following three decision
criteria: the criterion of minimal expected loss, the criterion of minimal uncertainty
in the loss, and the criterion of maximal safety. By using dependent Monte Carlo
simulation, the present situation and five strategies (combinations of decisions) are
analysed. It should be noted that, strictly speaking, this chapter is beyond the scope
of this thesis: although it does not deal with maintenance optimisation, it is included
because it nicely illustrates the usefulness of isotropy and discounting. The research
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is performed within in the framework of the project Investigation of the 1993 Meuse

Flood (see [29, 37]).

Chapter 9: Optimal maintenance decisions on the basis of expert judgment.

A maintenance model is studied in which the failure probabilities are Dirichlet dis-
tributed. This model is useful when failure probabilities cannot be expressed in explicit
form: for example, when both the structure’s resistance and the applied stress must
be regarded as stochastic. Another application is when, due to a lack of data, mainte-
nance optimisation models have to be initialised on the basis of subjective, discretised,
lifetime distributions (see Van Noortwijk et al. [128]).

For all the deterioraton processes that have been considered, the unit time establishing
l;-isotropy is assumed to be smaller than, or equal to, the possible inspection intervals
(in Chapter 4, this unit time is equal to the inspection interval). In case of a unit time
larger than an inspection interval, one might argue whether the structure’s resistance
is too uncertain to be left unimproved (see also Fig. 1.2). The applications described in
Chapters 5 and 7 show that the optimality of a maintenance decision hardly depends
on the l;-isotropic grid that is chosen. In determining the expected deterioration at
the end of unit time 7, while exceedence of the failure level occurs in unit time n, the
following mathematical interrelations between the theorems of Chapters 4, 5, and 6 can
be identified: Theorems 5, 8, and 14 treat the cases “j =n”, “j > n”, and “j < n”,
respectively, for j,n € IN.



Chapter 2

A Bayesian Failure Model based
on Isotropic Deterioration

Jan M. van Noortwijk, Roger M. Cooke, and Matthijs Kok

Abstract. For the purpose of modelling the maintenance of hydraulic structures, a failure
model has been developed that is based on the only information that is commonly available:
the amount of deterioration averaged over a bounded or an unbounded time-horizon. By in-
troducing a prior density on the average deterioration per unit time, we can properly account
for the uncertainty in a maintenance decision problem. The advantages of our Bayesian ap-
proach are that the failure model is based on a physical observable quantity, the deterioration,
and that the probabilities of preventive repair and failure can be expressed explicitly condi-
tional on the average deterioration. One illustration from the field of hydraulic engineering
is studied. (This chapter has previously been published as [126].)

Keywords. Bayesian inference, isotropy, maintenance, stochastic processes, structural reli-
ability. '
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2.1 Introduction

The aim of this chapter is to develop a failure model for hydraulic structures based on
observable deterioration characteristics. This model can be further used for mainte-
nance optimisation purposes. Although the model has been developed to solve main-
tenance decision problems in hydraulic engineering, it can be applied in the fields of
mechanical and electrical engineering as well.

In hydraulic engineering, a failure is often defined as the event in which a structure’s
resistance drops below the applied stress. We focus on a stochastic resistance and a
deterministic stress. Roughly, preventive maintenance consists of inspection and repair.
A repair can either be a preventive repair (before failure) or a corrective repair (after
failure), where both return the system to the “as good as new state”. A preventive
repair is executed when the resistance falls below a stipulated preventive repair level.
Exceedence of the preventive repair level can only be noted through inspection. If
inspection is scheduled too late, the structure passes into the failed state. By inspecting
more frequently, we can reduce the probability of failure and increase the likelihood of
a preventive repair.

Most existing failure models are based on lifetime distributions or Markovian de-
terioration models. In practice, however, it is often hard to gather data for estimating
either the parameters of a lifetime distribution or the transition probabilities of a
Markov chain. Moreover, in case of well planned preventive maintenance, lifetimes will
be observed very rarely. A recent literature review of Dekker [28] illustrates the diffi-
culties in quantifying such models; inspite of voluminous theoretical researches, very
few applications of maintenance optimisation were found.

In the field of hydraulic engineering, the deterioration process is often assumed
to be the Brownian motion with drift, i.e. the amounts of deterioration in a given
time-interval are assumed to be independent and to have a normal distribution with
both the mean and the variance linear in the time-interval length (see for example
Gijsbers [54]). This stochastic process, however, entails a significant probability that
the structure will spontanuously improve. This is especially so if the uncertainty in the
deterioration process is large, as is often the case in hydraulic engineering. Moreover,
for the Brownian motion with drift, simple explicit expressions for the probabilities of
preventive repair and failure are not available (see Kok [74] for a discussion).

Our model is based on non-negative increments of deterioration having a joint
probability density function that is a mixture of exponentials, which are conditionally
independent given the unknown average rate of deterioration. The uncertainty in the
deterioration process is thus represented by a probability distribution on the average
deterioration per unit time; a random quantity about which engineers are able to
have a subjective opinion. Abstract quantities, like shape and scale parameters of a
lifetime distribution are avoided; instead, our degree of belief about (more frequently)
observable magnitudes is quantified and possibly updated with field data. Conditional
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on the average deterioration, the amounts of deterioration are said to be isotropic.
The notion of isotropy will be discussed in Sec. 2.3 and was first applied to decision
problems by Mendel [87, 89].

Explicit expressions for the probabilities of preventive repair and failure are given
in Sec. 2.4. The failure model has been applied to the rock-fill top-layer of the sea-
bed protection of the Storm-Surge barrier in the Dutch Eastern-Scheldt. All technical
proofs can be found in an appendix or, in more detail, in Van Noortwijk [124].

2.2 Notation

Dy, 65 Amount of deterioration in the Ath unit time.
A Unit-time length.

NA Time-horizon.

Prorm Safety probability norm.

R Resistance or strength.

To Resistance at time zero.

R, Resistance in unit time n.

s Deterministic stress or failure level.

S Stress, load or action effect.

R-5<0 Failure.

X, Cumulative amount of deterioration in (0,nA]: Y5_; Ds.
Oy,0,0 Average amount of deterioration per unit time.
P Preventive repair level.

2.3 Assumptions and definitions

In the fields of mechanical and electrical engineering, one often considers lifetime dis-
tributions to model the occurrence of failure in a system, e.g. a motor or switch is
working or not. In the area of hydraulic engineering, failure is often defined as com-
paring a structure’s resistance or strength R with its stress, load or action effect S (see
e.g. Ang & Tang [1]). A structure is said to fail if its resistance is below the stress, i.e.
if the so-called performance function R— S is negative. In general, both resistance and
stress are unknown functions of time and, moreover, are not necessarily independent.
We restrict ourselves to stochastic resistance and deterministic stress. This means that
a structure will fail if its resistance R is below a constant failure level s.

The strength of a structure will degrade in time due to deterioration. Let us
subdivide the time-axis (0,00) into units of time of length A: ((n — 1)A,nA], with
n € IN. Often a structure is planned to function for a bounded time-horizon, say
(0, NA], where N is some fixed integer, N = 2,3,... When the structure has completed
its mission it will be replaced at NA. Suppose that in unit time n the structure’s
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resistance suffers a stochastic deterioration D,, D, € [0,00), and assume the resistance
at time zero equals rq, where ro > s (see Fig. 2.1). Consequently, the resistance in unit
time n can be written as

Rn:TD—Ezleh:ro—Xn, TLIL...,N. (21)

In practice, especially in the field of hydraulic engineering, a lack of deterioration
data is common at the outset. As a consequence, most maintenance decisions are
only based on subjective ideas about the average rate of deterioration. Although de-
terioration can accelerate in time, the acceleration is often difficult, sometimes even
impossible, to determine. Moreover, the probability of failure only depends on the ac-
cumulated deterioration that results in failure. Therefore, we assume that the available
prior information concerns the beliefs about the average decrease in the resistance until
failure occurs.

R
7o~
r3
— preventive repair level
pd e e L T T e e e e ST
76
— failure level
g —_— e - - - - = - - o=
g
T T 1 I 1T T T T T T t
0 A 24 3A 4A 5A 6A 7A 8A 9A 10A - NA
Inspection Inspection Inspection

Figure 2.1: A sample path of the resistances Ry = (Ry, - -, Rn) with inspection interval length 3A.
At the first inspection (t=3A): rs > p, no preventive repair takes place. At the second inspection:
s < rg < p, no failure has occurred, but a preventive repair is needed and will be carried out. If the
inspection interval length were 9A, a failure would occur before inspection.
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Our probabilistic modelling of the deterioration process, given the average dete-
rioration, is now straightforward and is based on two assumptions (where the second
implies the first):

o The order in which the amounts of deterioration Dy, ..., Dy appear is irrelevant.
Hence, their joint probability measure is invariant to their order: the amounts of
deterioration are exchangeable.

e Given the average amount of deterioration per unit time, the decision-maker is
indifferent to the way this average is obtained or, in other words, all combinations
leading to the same average have the same degree of belief for our decision-maker:
the amounts of deterioration are I-isotropic.

Note that we do not assume independence, but we use the more general notion of
exchangeability; independence is a special case. Furthermore, the choice of the unit-
time length A has influence on the isotropy. In Chapter 3, a general class of isotropic
monotone continuous-time processes is defined. For each process in this class, it is
possible to choose A such that the corresponding amounts of deterioration per unit
time are l;-isotropic. For now, we restrict ourselves to the assumption of /;-isotropy.

Examples of isotropic deterioration processes (at least in approximation) in the field
of hydraulic engineering are coastal erosion (under the continuous action of waves and
wind), settlement of a dyke, corrosion of underwater pipelines, and rock displacement
and scour erosion near underwater footings of a hydraulic structure.

Recall that the random vector Dy = (Dy,--+,Dy) of N uncertain amounts of
deterioration is assumed to be exchangeable. This can be interpreted as that the joint
probability density function is invariant under all N! permutations of the coordinates,
ie.

(Dy,---,Dy) & (Dm)» .- ',Dﬂ(N)> , (2.2)

where 7 is any permutation of 1,...,N. An infinite sequence of random quantities
{D; : i € IN} is exchangeable if D,, is exchangeable for each n € IN.

Suppose the decision-maker has subjective information about the average amount of
deterioration determined with regard to the time-horizon (0, NA] and this information
can be expressed as a probability density function over (CN_, Dy)/N = 6. Since the
decision-maker has no other information, we adopt a uniform distribution over all
deterioration vectors (8, -, 6x) having the same average. That is, the distribution of
the finite sequence of random quantities D1, ..., Dy is uniform on the simplices

{(51,---,5N) e]Rf:i&z-:NH}, (2.3)

=1



16 Ch. 2. A Bayesian failure model based on isotropic deterioration

# € R, where Ry = [0,00). The random vector Dy is now said to be I;-isotropic'
(see Mendel [89] for details). An infinite sequence of random quantities {D; : 1 € IN}
is ly-isotropic if D,, is l;-isotropic for each n € IN.

The likelihood function of 84,...,6,, 1 < n < N, given that Dy is [;-isotropic, can
be obtained by integrating the uniform distribution out on the simplex "6, D, = N8
over the (n + 1)th through the Nth amount of deterioration. This can be achieved by
applying the Dirichlet integral and results in the Dirichlet likelihood function:

(V) S ] T A L
ZN(617 “56n 10) F([V ) |:1 No . H [Nﬂ] I[U 00](6h) (2'4)
where [¢]; = max{0,z}, and I4(z) =1 for z € A and I4(z) = 0 for z ¢ A. For a
proof of Eq. (2.4), see Mendel {89].
As N approaches infinity, we obtain a product of n exponentials:

" &
Ig(81, 5 8,18) — 1(61,- -+, 6,0) = 1‘[5 {——}I[Um) (6) = Hlahw (2.5)

as N — oo. The convergence is uniform for (6;/0,---,6,/#) in compact sets. This
result coincides with the classical Bayesian exponential model, where the coordinates
of D,, are identically distributed exponential random quantities that are conditionally
independent when the mean @ is given.

Let On 4 (N, Di)/N have the prior distribution Py and © the prior distribution
P. ¥ E(D,) < oo, then Py converges weakly to P as N — oo or, in other words,
Oy converges in distribution to © as N — oo (see Mendel [89]). As an immediate
consequence, the joint probability density function of D, ..., D, satisfies

pa(6s80) = [ (- 6,18) dPu(6) —

- /0°° (1, ,56,]0) dP(B) = /wa[z(&hw)dp(o), (2.6)

as N — oo, which can be recognised as de Finetti’s representation theorem (see de
Finetti [22] and Barlow & Mendel [3]). The available information about the average
amount of deterioration can be represented by the prior distribution P.

1}, -isotropic random quantities Dy, ..., Dy bhave a uniform distribution on Eh , Db = N6 (see
Mendel [89]) l,-isotropy implies exchangeablhty, on the other hand, an exchangeable measure that is
lp-isotropic in two coordinates is l,-isotropic.
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2.4 Deterioration, failure and inspection

A hydraulic structure has to fullfill safety requirements. As soon as a structure’s
resistance exceeds its failure level, it is unsafe and failed. Based on the assumption of
l;-isotropic deterioration, we shall determine the probability of failure per unit time.
Moreover, if a preventive repair is possible when the inspected resistance is in between
its preventive repair level and its failure level, a reduction factor can be identified in
the mathematical expression for the probability of failure. Recall that, for notational
convenience, X, = Y h_, Dy forn=1,...,N.

2.4.1 Distribution of cumulative deterioration

Using Theorem 2 from the appendix (with z = y) and the Jaw of total probability, the
probability distribution of the cumulative deterioration in time-interval (0, nA], condi-
tional on the average deterioration (Y2, D),)/N = Xn /N = 0, is the beta distribution
in y/NO with parameters n and N — n:

n N-—1 y N-h y h—1
. < —NOy=1- [1- 2] [—] . @
peix <ol =0 =1-3 (3 -] [ @)
for y > 0 and zero otherwise, n = 1,..., N — 1. Note that the beta distribution (2.7)
coincides with the probability distribution of the nth order statistic of N — 1 inde-
pendent and identically distributed random quantities with uniform distribution on
[0, Ng).

The beta distribution (2.7) converges to the gamma distribution with parameters

n and 4 (for y > 0):

Pr{XngylXN:NG}Hl—Zn:ﬁ[%]h_lexp{—%}, (2.8)

h=1
as N — oo, uniformly, for y/8 in bounded intervals, n € IN. As was to be expected,
the gamma distribution (2.8) is the distribution of the sum of n identically distributed
exponential random quantities that are conditionally independent when the mean 0 is
given.

For the conditional expectation of the cumulative amount of deterioration in time-
interval (0,nA], given the average deterioration, we have

E(X,|Xy =N8)=nb for 0<n<N and N=2,3,...
Hence, the expected deterioration increases linearly in time. For a bounded horizon,
the conditional variance given the average deterioration can be written as
N-—n
N+1

For an unbounded horizon, the conditional variance Var(X,|Xy = N6) approaches
nb?, as N — oco.

Var(X,| Xy = NO) = ng* for 0<n< N and N=2,3,...
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2.4.2 Probability of failure without inspection

Often, the probability of failure in any unit time n should not exceed a given safety
probability norm pyorm, or using Eq. (2.1)

Pr{R,.1 > $,Rn < 8} < Prorm, YR € N (2.9)

Hence, a preventive repair {or an inspection) should be carried out just before that
unit time » in which the probability of failure exceeds the safety probability norm first.

For finite N, using Eqgs. (2.1) and (2.9), and Theorem 2 from the appendix (with
z = y), the conditional probability of failure in unit time n given the average deterio-
ration has a binomial distribution with parameters (ro — s)}/N8 and N:

Pr{X,., <ro—s5X,>ro—s| Xy=N0} =
_(N-1 ro—s]N'"[ro—s]""l
_<n_1)[1 ). W (2.10)
fors<rg,n=1,...,N—1.

This discrete lifetime probability function converges to a Poisson distribution with
parameter (ro — s)/6 (for s < ro):

Pr{X,.1<ro—8X,>ro—s| Xn=N0} —

- (nil)! [Togs]n_lexp{—"’;s}, (2.11)

as N — oo, uniformly, for (ro — s)/8 in bounded intervals, n € IN. The mean life is
14 [(N —1)/N](ro — 3)/8 for a bounded horizon and 1 4 (ro — 5)/0 for an unbounded

horizon.

2.4.3 Choice of a prior density for the average deterioration

The uncertainty in the average amount of deterioration per unit time can be expressed

in the prior density 7x(8). In the presence of data, we can derive the posterior density

of the average amount of deterioration per unit time when D; = &;, ¢ = 1,...,m, by
applying Bayes’ theorem:

mn(0l81, -, 6m) = w’N(‘Sl""’(s""a)”N(”) . (2.12)

2 IN(B1, -+, 6 |0) T (6) dO

A proper choice for the prior density, however, is not easy. On the one hand, the

prior density should be taken as a quantification of what is known about the deteriora-

tion process, on the other hand, it would be convenient if the posterior density (2.12)

can be evaluated easily. To choose a prior density, we follow the treatments of Raiffa &
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Schlaifer [98] and DeGroot [27]. The statistic 37, D; is a sufficient statistic of fixed di-
mension for every sample size m for the exponential likelihood function (81, - -, 6m|6).
Therefore, there exists a simple so-called conjugate family of probability density func-
tions of © such that (i) for any sample size m and any observations 6;,...,6m the
likelihood function {(6y,- - -, 6m|8), regarded as a function of 4, is proportional to one
of the probability density functions in the family, and (ii) the family is closed under
sampling (or closed under multiplication). Note that for the Dirichlet likelihood func-
tion the statistic Y72, D; is only sufficient for 1 < m < N — 1. Furthermore, the
smallest family of probability density functions to which the Dirichlet likelihood func-
tion In(éy,--,8m|f) is proportional, is not closed under sampling. Therefore, it is not
possible to find a useful conjugate family of distributions for the Dirichlet likelihood
function.

For observations from an exponential distribution with unknown mean 0, the fam-
ily of inverted gamma distributions is a conjugate family:

v
() = ﬁo—@m exp {-%} Tooe)(8), (2.13)
for p > 0, v > 2. The parameters g, v are based on subjective opinions of experts,
and the prior mean and variance are E(®) = p/(v — 1) and Var(0) = E*(0)/(v — 2),
respectively. The posterior density when D; = §;, ¢ = 1,...,m, is also an inverted
gamma distribution with parameters p+3.7-; 8, and v+m. Furthermore, the posterior
mean is a convex combination of the sample mean and the prior mean. For detailed
calculations, see Cooke, Misiewicz & Mendel [16] who also deal with censored data.
We get this kind of data in the case of imperfect inspection, i.e. the deterioration is
observed with uncertainty.

In brief, the family of inverted gamma distributions is: (i) analytically tractable, (i)
rich (the decision-maker’s prior information and beliefs can be expressed conveniently),
and (iii) interpretable (it represents the uncertainty in the average rate of deterioration).

For an unbounded horizon, the predictive probability of failure in unit time n,
Eq. (2.9), can now be obtained explicitly (for s < rp):

/ooPr{Xn_l <ro— 8, Xn > 10— 5| Xn/N =0} n(8)dd —
0

n—1 v
(e el e
n—1 ro—s+u ro— s+ p

as N — oo, n € IN. This probability function is the negative binomial distribution
with parameters (ro — s)/(ro — s + ) and v, and mean life time 1 + (rq — s)v/p and
variance (ro — 8)(ro — s + p)v/p?.

Of course, beliefs about the average deterioration may not be properly described
with the family of inverted gamma distributions. Fortunately, as Diaconis & Ylvisaker
[44] have pointed out, any prior density can be arbitrarily well approximated by a
mixture of conjugate prior densities.




20 Ch. 2. A Bayesian failure model based on isotropic deterioration

2.4.4 Probability of failure with inspection

In hydraulic engineering, corrective repairs (after failure) and the collateral losses are
prohibitively high and should be avoided by well planned inspections and preventive
repairs. If an inspection reveals that the structure’s resistance fell below a given pre-
ventive repair level, while no failure occurred, a preventive repair must be performed.
With the aid of an appropriate inspection schedule, we may reduce the probability
of failure. In this section, we derive expressions for the probabilities of failure and
preventive repair under inspection.

Let us assume that we deal with perfect inspection, i.e. that the actual resistance
R can be determined without uncertainty. Furthermore, there is an inspection at time
jA that takes negligible time and does not degrade the structure. A preventive repair
takes place if the structure’s resistance is below a preventive repair level, denoted by p
and given by the decision-maker, where s < p < ro. Hence, a preventive repair will be
executed at time jA if s < R; < p. No action will be taken if B; > p (see Fig. 2.1).

Using Theorem 2 (see the appendix), the probability of failure in unit time » and
no preventive repair in unit time j, conditional on the average deterioration, can be
written as .

Pr{R; > p,Rny > s,Rn <3| Xn =N} =
= Pr{X;<ro—p,Xn1<r0—8,Xs>ro—35| Xy = N6} (2.15)
= Pr{Ujn1 <ro—p} xPr{Xny <ro—s5,X, >ro~s| Xy = N0}

forj <n, jn=1..,N-1, N=23,...,and 0 <ry—p<ro—s, where Ujin1
denotes the jth order statistic of n — 1 independent and identically distributed random
quantities with uniform distribution on [0, — s]. The cumulative distribution function
of U;.no1, at ro — p, represents the reduction in the probability of failure in unit time
n due to inspection in unit time j. This reduction factor has the form

n n—1 ro — p]n—i [TO _ p:li—l
P o1 <o — p} = . 1- . 2.16
r{Ujin-1 < 70— p} z-i;rl("l)[ To— 8 ro— s (2.16)
By the law of total probability and Eqs. (2.10) and (2.15), the probability of pre-
ventive repair at time mA when the structure has not been preventively repaired due

to the previous inspection at time jA, conditional on the average deterioration, can be
written as

Pr{R; > p,s< R, <p|Xny=Nb}=

= Y (Pr{Ru1>p,R.<p| Xn=Nb}— (2.17)

n=j+1
—Pr{R; > p,Rur > s,Rn < s| Xy = N6} ),
where j <m, j,n=1,...,N—1,and 0<ro—p<rg—s,for N=2,3,...
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2.4.5 TIllustration: the Eastern-Scheldt barrier

A major protection against flooding by storm surges in The Netherlands is the Eastern-
Scheldt storm-surge barrier. To preserve the natural salt-water environment, the bar-
rier remains open during normal weather and hydraulic conditions. The barrier will
be closed in case of a severe storm-surge. The hydraulic structure has been erected in
three closure gaps and it has 62 steel gates each with a span of nearly 42 metres. To
provide for the long-term stability, the piers are embedded with several layers of rock
and an adjoining sea-bed protection has been constructed on both sides of the barrier.
Millions of tons of rock rubble were placed at the sea-bed protection to prevent sand
to be washed out. However, the sea-bed protection is subject to rock displacement
in extreme conditions. Furthermore, the sea-bed protection can deteriorate due to a
variety of factors, like anchoring and extreme tidal current. The deterioration has to
be monitored and, if necessary, has to be repaired. If too many stones were removed,
scour holes would develop, which might cause progressive scour and might endanger the
stability of the piers. In this situation, inspection intervals and cost of repair have to
be optimised. For a detailed description of the technical aspects of the Eastern-Scheldt
storm-surge barrier, see the summary of Watson & Finkl [140].

The resistance of the upper rock layer, R, is defined to be a function of the number
of stones removed. At time zero, the resistance equals zero {ro = 0). Scale model
experiments have shown that the preventive repair level and corresponding failure
level for one particular steelgate section are p = —50 and s = —70, respectively (in
other words, 50 and 70 removed stones, respectively). It has been determined that the
average deterioration over an approximately unbounded horizon (N — 00) is about
3.5 stones per unit time, with unit time length A = 5 years. However, extrapolating
from a scale model to the real rock layer is rather difficult. Although one may have
an indication how the average deterioration will develop, still many uncertainties are
involved. Based on physical models, properly qualified with expert opinion, the prior
mean and variance can be taken as E(©) = 3.5 and Var(®) = 1.2 (see Kok [74]).

The (discrete) lifetime probability function is now given by the negative binomial
distribution (2.14) with g =~ 39.2 and v = 12.2, and mean life 22.8 units of time (see
Fig. 2.2). Suppose we introduce an inspection at time 20A, with a possible preventive
repair, then the probability of failure just after this inspection drops down considerably
(see Eqs. (2.14) and (2.15) that are displayed in Fig. 2.2). By increasing the rate of
inspection, the probability of failure can be decreased further. Suppose we have an
inspection at the end of each unit time, i.e. at nA, n € IN, then the probabilities of
failure and the probabilities of preventive repair are given by Egs. (2.15) and (2.17),
respectively (see Fig. 2.3).
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Figure 2.2: The (discrete) lifetime probability function in case of no inspection (+) and inspection at
time 20A (o) for the rock-fill top-layer of the sea-bed protection of the Eastern-Scheldt barrier.
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Figure 2.3: The probability of failure per unit time in case of no inspections (+) and inspections at
the end of every unit time (at times nA, n € IN) (o), and the probability of preventive repair per unit
time (%) for the rock-fill top-layer of the sea-bed protection of the Eastern-Scheldt barrier.
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2.5 Conclusions

For the purpose of maintenance optimisation, isotropic properties of the deterioration
process were used to build a Bayesian failure model. The model is based on the only
(subjective) information that is commonly available: the average amount of deterio-
ration per unit time with regard to a bounded or an unbounded time-horizon. If this
information is all the decision-maker has, it is not relevant to analyse how the cumu-
lative sum is realised, and the decision-maker is indifferent in what way this total sum
is gathered. Based on this knowledge, it follows that the amounts of deterioration per
unit time are ly-isotropic. A consequence of the /;-isotropy is that the expected accu-
mulated deterioration is linear in time. Prior beliefs about the average deterioration
per unit time are encoded in a prior density and can be updated using (censored or
uncensored) inspection data.

Conditional on the average deterioration, the probabilities of preventive repair
and failure can be expressed in closed-form results. The failure modelling approach is
illustrated with the lifetime probability function of the rock-fill top-layer of the sea-bed
protection of the Eastern-Scheldt storm-surge barrier.
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2.6 Appendix: Proofs of theorems

Theorem 1 Suppose §; € Ry, i =1,...,n, and 21;:1 b <z, Thoy O <y then

J(,n,z,y) = /; /5J_Zhl /:_Zi“'sh‘../:—zz;;sh1d5n...d51

j+1=0 n=0

S S O 219)

I

i=1
forj<n,j,neN, andz <y, z,y € Ry,
Proof:

The integral can be determined by successively integrating out the variables bny bn—1,

.oy 01,

J(J7n $7y) =
_ j /x—ZZ 16n y—ZLl&h_”/y-ZE% 1d8, - dé,
51=0 8;=0 6;41=0 6n=0
s~ vk oo Thlion 1 =2
= . ) bpg - db
A,—o §;=0 5,41=0 /6,,_2—0 Y™ Z h d " !
x z— le Sh 1 J =i
h=1
= = —  |y-S"s dé - dé
/;1=0 \/57‘:0 n — ])' l:y hgl hjl I 1
=3 1 n—j+1
= - — dé;_q---db
./61_0 /_, n—]+1) [y x] -1 1t

n—j+1
+/a: /z—zh=l 1 - Z 5 I+ . y

61=0 §j-1=0 (n -7+ 1 y h -1 1.
By using the classical multi-dimensional Dirichlet-integral, the first integral can be

solved and becomes .
(y _ w)n-—]+1$g—1

- 2.19
(n—j+DIG -1 (219)
By successively solving the second integral, we get
(y —2)" 922 (y —z)"tal /” et

- - - s = -6 dé 2.20

(n—3+2)!(G—2) DI Jamo (=101 )l ly = &7 déy, - (2:20)
where we used the Dirichlet-integral (j — 2) times. The last integral leads to

z 1 n—1 (y — I)n yn
- [y— = 4T 2.2
/51=0 o el Al Tl (2.21)

Summing (2.19), (2.20) and (2.21) completes the proof. 0
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Theorem 2 Suppose the non-negative random quantities Dy, ..., Dy are ly-isotropic
then

n—1

J n
Pr{ZDhSzaZDhSyszh>y
h=1 A=1 h=1

1 N

- S (- ) bl e

forg<mn, jyn=1,...,N—1,andz <y, z,y € R4.

Proof:

In evaluating Eq. (2.22), we use the likelihood Iy (81, -+, 8,]0) derived in (2.4). The
integral can be determined by first integrating out the variable §,. In the last step but
one, we use J(j,n — 1,2,y), following Theorem 1. For §; ¢ R4, i =1,...,n:

J n—1 n
Pr{zDh <z, Dy<y,Y D>y
h=1 h=1 h=1

1 N
N‘,;thg}:

_ /w 2=Y s o /y—ELl & /N"-ZZS  T(N) [, Xia 6;1}]\’"”_1 y
T Js=o Js=0 8;41=0 sn=y=Y r_r 6, [(N —n) NO |,
1 n
X [N_ﬂ—] d5n e d61
B /w /I— s o /y-ZLl L /y—ZZZf b L(N) [1 3 L]N—” y
-~ Ja=0  Js=0 8;41=0 n_1=0 (N -n+1) NOly
1 n-1
X [‘IV—G:I dén_l s d(Sl

- v el )
X(n—iﬁ{yn_l _g( 727::11 > (y_$)n—i$i—1}

e | e T (| S

forj<n,j,n=1,...,N—1,and z <y, z,y € Ry. [m]



26

Ch. 2. A Bayesian failure model based on isotropic deterioration



Chapter 3

A Characterisation of Generalised
Gamma Processes in Terms of
Sufficiency and Isotropy

Jan M. van Noortwijk, Roger M. Cooke, and Jolanta K. Misiewicz

Abstract. To optimise maintenance of deteriorating structures, we need to model the event
of failure and the process of deterioration. Due to the common lack of data, there is often
only (subjective) information on the limiting average rate of deterioration. Furthermore,
most deterioration processes proceed in one direction and in random jumps. In order that
stochastic processes with non-negative exchangeable increments be based on the unknown
limiting average rate of deterioration, they can best be regarded as generalised gamma pro-
cesses. In this chapter, two new characterisations of generalised gamma processes are given:
(i) in terms of conditioning on sums of increments being sufficient statistics and (ii) in terms
of isotropy. (This chapter has previously been published as [127].)

Keywords. gamma processes, deterioration processes, sufficient statistics, isotropy, Brown-
ian motion.
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3.1 Introduction

In designing hydraulic structures such as dykes, bridges, dams, and other water barri-
ers, a good design ensures that a structure’s resistance exceeds the applied stress, at
least with a high probability during its service life. Due to uncertain deterioration, the
resistance decreases in time creating the need for regular, possibly expensive, mainte-
nance actions. In order to optimise maintenance, we need to model the event of failure
and the process of deterioration. Most maintenance models are based on lifetime dis-
tributions or Markovian deterioration models. Unfortunately, it is often hard to gather
data for estimating either the parameters of a lifetime distribution or the transition
probabilities of a Markov chain. Moreover, in case of well-planned preventive mainte-
nance, complete lifetimes will be observed rarely.

In practice, there is often only information in terms of probability distributions
on uncertain limiting average rates of deterioration. To give five examples: (i) the
limiting average rates of rock displacement for optimising maintenance of the rock
dumping of the Eastern-Scheldt barrier (Chapters 2 and 7); (ii) the limiting average
rates of current-induced scour erosion for optimising maintenance of the block mats
of the Eastern-Scheldt barrier (Chapter 7); (iii) the limiting average rates of ongoing
coastal erosion for optimising sand nourishment (Chapter 4); (iv) the limiting average
rates of rock displacement for optimising maintenance of berm breakwaters (Chapter 6);
and (v) the limiting average rates of settlement for optimising maintenance of dykes
(Chapter 5).

Furthermore, most deterioration processes proceed in one direction and in random
jumps. Common practice nowadays is modelling deterioration as a Brownian motion
with drift (see e.g. Karlin & Taylor {71, Ch. 7], Hontelez, Burger & Wijnmalen [62],
and Pettit [95]). Unfortunately, this process irnplies the existence of periods in which
a structure’s resistance actually improves, which does not fit unless the structure un-
dergoes maintenance. Since the Brownian motion has continuous sample paths, it also
does not properly model the jumps that occur when the structure is subject to random
shocks.

Instead, an adequate deterioration model should have non-negative increments and,
due to the lack of data, should have increments that are judged to be exchangeable for
every uniform time-partition. In order that stochastic processes with non-negative ex-
changeable increments be based on the unknown limiting average rate of deterioration,
they can best be regarded as generalised gamma processes.

In this chapter, two new characterisations of generalised gamma processes are given:
(1) in terms of conditioning on sums of increments being sufficient statistics (Sec. 3.3)
and (ii) in terms of isotropy (Sec. 3.4). The classical characterisation of gamma pro-
cesses in terms of Poisson processes is briefly reviewed in Sec. 3.2. The characterisation
in terms of sufficiency extends results of Diaconis & Freedman [40, 41] and Kiichler &
Lauritzen [78]. The characterisation in terms of isotropy originates from the work of
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Barlow & Mendel [3] and Misiewicz & Cooke [90]. The proofs of these characterisations
can be found in an appendix. The aim of this chapter is to present the mathematical
framework for modelling deterioration via generalised gamma processes - other chapters
report on its hydraulic engineering applications (see Chapters 2, 4, 5, 6, and 7).

3.2 Generalised gamma processes

Before we characterise scale mixtures of gamma processes, called generalised gamma
processes, in terms of sufficiency and isotropy, we briefly review the classical characteri-
sation of gamma processes in terms of compound Poisson processes (for an explanation
of notation see Appendix A).

Definition 1 (Gamma process.) The gamma process with shape parameter a >0
and scale parameter b > 0 is a continuous-time stochastic process {Y (t) : t > 0} with
the following properties:

1. Y(0) = 0 with probability one;

2.Y(r) = Y(t) has a gamma distribution Ga{a(r —t),b) for all T >t > 0;

3. Y(t) has independent increments.

Since the finite-dimensional joint probability density function of the increments is con-
sistent and uniquely defined, Kolmogorov’s Extension Theorem assures us that the
gamma process exists. By the infinitely divisibility of the the gamma distribution, the
gamma process is a Lévy process. Every Lévy process may be written as a sum of a
Brownian motion, a deterministic part (linear in time), and an integral of compound
Poisson processes, where all the contributing processes are mutually independent. The
sample paths of a Lévy process are discontinuous with probability one if the process
is monotone, because such a process can be decomposed into a linear part plus an
integral of compound Poisson processes. The sample paths of a Brownian motion are
continuous with probability one. For details, see Gnedenko & Kolmogorov [55, Ch. 3
& 5], Lévy [81, pp. 173-180], Itd [65, Ch. 1], Ferguson & Klass [49], and de Finetti [23,
Ch. 8]. In particular, the characteristic function of the gamma distribution Ga(a,b),
which is given by

é(u) = [b/(b— iw)]* = exp { /D " (e - 1) dM(:r,)}

where M(z) = —a [°(e7®/y) dy for ¢ > 0, shows us that the gamma process is an
integral of compound Poisson processes with jump intensity M(z) (see Gnedenko &
Kolmogorov [55, pp. 86-87]). Thus, the gamma process is a pure jump process.
Moran [91] used gamma processes in his theory of the storage of water by dams.
Reliability models based on the gamma process have been developed, amongst others,
by Dykstra & Laud [45] and Wenocur [143]. Since the Dirichlet distribution can be
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defined as the probability distribution of a random vector with independent gamma
distributed coordinates (with equal scale parameters) divided by their total sum, Fer-
guson [48] defined the Dirichlet process in terms of the gamma process in a similar way.
He used the Dirichlet process for solving Bayesian nonparametric estimation problems.

In structural reliability, it is useful to obtain the cumulative distribution function
of the time to failure 7', i.e. the time at which a structure’s resistance ro — Y'(¢) crosses
a fixed stress or failure level s (with rq the resistance at time zero):

['(at, blre — s])
[(at) ’

where ['(a,z) = [Z,t* 'e " dt is the incomplete gamma function for z > 0 and a > 0.

Pr{T <t} = Pr{Y(t) > ro — s} = /“_’ Ga(z| at, b) dz =

3.3 Characterisation in terms of sufficiency

The purpose of this section is characterising generalised gamma processes in terms
of the only (subjective) information that is commonly available: the limiting average
rate of deterioration. Let us denote the deterioration process by {X(¢) : ¢t > 0}, where
X (t) represents the cumulative deterioration at time ¢ and X (0) = 0 with probability
one. For every uniform time-partition in time-intervals of length 7 > 0, we assume
D;(r) = X(ir) — X([t — 1]7) > 0 for : € IN. We derive the generalised gamma pro-
cess via assumptions on exchangeability and sufficiency by using results of Diaconis &
Freedman [41] and Kiichler & Lauritzen [78].

The exchangeability assumption means that the order in which the infinite sequence
of increments {D;(7) : ¢ € IN} occur is judged to be irrelevant. In mathematical terms,
this can be interpreted as that the probability density function of the random vector

(D1(7), ..., Du(7)) is invariant under all »! permutations of the coordinates, i.e.
DD (7)o Da(r) (015 + - - 68) = PDy(7),... D7) (57r(1), .. -,57r(n)) ) (3.1)
where 7 is any permutation of 1,...,n for all n € IN and 7 > 0. The notion of ex-

changeability is weaker than the notion of independence; it can best be utilised in
situations with a lack of data.

The sufficiency assumption means that, for every 7 > 0, and all n > 2 and k < n,
the conditional probability density function of k increments of deterioration, when the
sum of n increments is given, can be expressed as

H?:lh(6i’ T) h(n_k) T = E?:] 5i7 T
PDy(r),e D)X () (81, - -5 6| ) = [ ]h(n)(x,S) ) , (3.2)

where h(z,7) is differentiable and non-negative, A(®(z,7) is the n-fold convolution in
z of h(z,) with itself, and ¢(8) is defined by
~i

/0°° h(z, 7)c(0) exp{— 2/6} de = /0 (2]0) dz = 1 (3.3)
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for § € (0, co0). In addition, the probability model should be independent of the scale of
measurement (e.g. being either inches or centimetres). In other words, the likelihood
function {(z|#) should be a scale density:

I(z]0) = f(z/6)/6 for z,6 € (0,00). (3.4)

If Egs. (3.2-3.4) are satisfied for all 7 > 0, it follows from Theorem 3 (see the appendix)
that

h(z,7) = z*"~YT(aT) (3.5)
for some constant ¢ > 0. As a consequence, the joint probability density function of the
increments D1(7),..., D,(7) can be written as a mixture of conditionally independent
gamma densities:

oo n 551.7' 1 ar 7'6
PD; (r),.. ,Dn[r) 617 .- 7 / [ ] expy — 9 dP@(T (0) (36)

for some constant a > 0 with

E(X(n7)) = E(n0(1)),
Var(X(n)) = [1+——| B(nO()F) - [E(0(r))P (3.7)

for all T > 0, provided the first and the second moment of the probability distribution of
O(7) exist. A stochastic process for which the increments are distributed according to
Eq. (3.6) is called a generalised gamma process. By substituting Eq. (3.5) in Eq. (3.2),
conditioning on sums of increments leads to a transformed Dirichlet distribution:

k
& ar,...,at,(n— k)ar) [l] .

é
DDy (r) D)X (nr) (015 -+ -, 6| T) = le( Dy —

T Zz

The generalised gamma process has three useful properties.

First, the probability distribution Pg(;) on the random quantity ©(r), with possible
values # € (0, 00), represents the uncertainty in the unknown limiting average amount
of deterioration per time-interval of length 7: lim, ..[(%, D:(7))/n]. By the strong
law of large numbers for exchangeable random quantities, the average converges with
probability one if E(D(7)) < oo (see Chow & Teicher [13, p. 227]). In applications of
decision theory, the probability distribution of the limiting average rate of deterioration
can be the prior distribution, which can be updated in the light of actual data by Bayes’
theorem.

Second, the summarisation of the n random quantities Dy(7),..., D,(7) in terms
of the statistic [n,>-"_; D;{7)] is sufficient for the unknown limiting average rate of
deterioration ©(7). In fact, the characterisation in terms of conditioning on sums of
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random quantities is motivated by sufficiency ideas, since, by sufficiency, the resulting
conditional probability density function does not depend on 4:

PD; (7)o Dr(r)X (), 0() (015 + + -5 k] 2,8) = DDy (r),...Du (11X (nr) (615 - - -, k] )
for k < n. Moreover, since a sum of increments is a single sufficient statistic for the
scale parameter, classical results establish, under various regularity conditions, that
the scale density in Eq. (3.4) belongs to the exponential family (see e.g. Koopman [76]
and Huzurbazar [63]).

Third, the mixture of gamma’s in Eq. (3.6) transforms into a mixture of exponen-
tials if 7 =a~'.  The infinite sequence of random quantities {D;(a™*) : 7 € IN} is
said to be l;-isotropic (or l;-norm symmetric), since its distribution can be written as
a function of the /y-norm.

The unit time for which the increments of deterioration are /j-isotropic can be
obtained using the conditional probability density function of the first increment, when
the sum of the first and the second increment is given, being a transformed beta
distribution with both parameters equal to a7, i.e.

aT—1 ar—1
PDy (71X (2r)(81] 7) = Drﬂ((ii;])z i [;le] Iou(61) = Be ( ‘1—1

1
ar, aT) " (3.8)

for some constant a > 0 with
E(Dy(7)|X(27)=1)

z/2,
Var(Dy(7)| X (27)=2) [z/2)%/(2a7 + 1).

Hence, for fixed 7 > 0, the smaller the unit-time length for which the increments are
l;-isotropic, i.e. the smaller A = o™, the more deterministic the deterioration process.
An alternative way to obtain the unit time for which /;-isotropy holds is by assessing
Var(X(n7))in Eq. (3.7). This variance approaches Var(n@(7)), from above, as A = a™l
tends to 0, from above.

For the unit-time length A = a~', many probabilistic properties of the stochas-
tic deterioration process, like the probability of exceedence of a failure level, can be
expressed in explicit form conditional on the limiting average deterioration (see e.g.
Chapter 2). Note that specifying the l;-isotropic grid of the generalised gamma pro-
cess is similar to specifying the precision of the Brownian motion with drift.

In conclusion, we advocate regarding stochastic deterioration processes as gener-
alised gamma processes with probability distribution on the limiting average rate of
deterioration.

3.4 Characterisation in terms of isotropy

Even though it is quite reasonable to derive stochastic deterioration processes based on
sums of increments that are sufficient statistics for the unknown limiting average rate,
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a weaker characterisation might be of interest. Weaker conditions can be established
by allowing sums of increments to the power, rather than only sums of increments, to
serve as suflicient statistics for the scale parameter. To achieve this, we assume the
infinite sequence of increments to be isotropic for every uniform time-partition.

The random vector D,, = (D1,...,D,) is said to be {z-isotropic (or lg-norm sym-
metric) if its distribution can be written as a function of the statistic Y7, D? where
B > 0; i.e. its distribution is uniform on the /z-spheres in R}, where Ry = [0, 00). The
infinite sequence of random quantities {D; : ¢ € IN} is lg-isotropic if D,, is {g-isotropic
for each n € IN. Mendel [89] and Misiewicz & Cooke [90], amongst others, proved that
if the infinite sequence of random quantities {D; :¢ € IN} is Ig-isotropic then there
exists a probability distribution Py of O such that the probability density function of
(Dl,... ,_Dn) is

vl 8 = [T [ oo {- 5} v =1 (o) 69)

for (6y,...,6,) € R’ and zero otherwise. If 8 = 1, we have a mixture of n conditionally
independent exponentials. If 8 = 2, we have a mixture of n conditionally independent
normals truncated at zero. Note that isotropy preserves exchangeability and that the
statistic [r, Y7, D?] is sufficient for ©.

The characterisation of generalised gamma processes in terms of isotropy is the
following. For every uniform time-partition in time-intervals of length 7 > 0, let there
be positive continuous functions a(r) and 8(7) such that the infinite sequence of powers
of increments, {D;(7)*(7) : i € IN}, is lg(r)-isotropic; that is, such that

n 0! 7)B(r o7
DDy ()oeaDn(r) (61, -1 6) = Fou (Tg 67O T ()67

for all n € IN. If, in addition, the mixing distribution (in Eq. (3.9)) has finite moments
then Theorem 4 from the appendix entails: a(r) = a7 and «a(7)8(r) = 1 for some con-
stant a > 0; Eq. (3.6) follows accordingly. The theorem has been proved by achieving
consistency in the sense that probability distributions of increments and those of sums
of increments belong to the same family of distribution.

3.5 Conclhsions

As Barlow & Mendel [3] have argued that appropriate lifetime distributions conditional
on the limiting average lifetime are the generalised gamma distributions, we have ar-
gued that appropriate deterioration processes conditional on the limiting average rate
of deterioration are the generalised gamma processes.

In addition to the classical characterisation of gamma processes in terms of com-
pound Poisson processes, we have presented two new characterisations of generalised
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gamma processes: (i) in terms of conditioning on sums of increments, serving as suffi-
cient statistics for the unknown limiting average rate, and (ii) in terms of isotropy. A
useful property of generalised gamma processes is that we can always find a uniform
time-partition for which the joint probability density function of the increments can
be written as a mixture of exponentials.

In The Netherlands, generalised gamma processes have been used to model decision
problems for optimising maintenance of the sea-bed protection of the Eastern-Scheldt
barrier, beaches, berm breakwaters, and dykes (see Chapters 2 and 7, 4, 6, and 5,
respectively).
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3.6 Appendix: Proofs of theorems

Theorem 3 Let {X(¢):t > 0} be a non-decreasing continuous-time stochastic process
with X(0) = 0, with probability one, such that for every T > 0 the infinite sequence
of non-negative real-valued increments Di(t) = X(it) — X([¢ —1]7), 1 € N, is ez-
changeable. Moreover, for every T >0, and all n > 2 and k < n, the joint conditional
probability density function of the increments Dy(7),...,Di(7), when X(nt) =1z is
given, can be represented by Egs. (3.2-3.4). Then there ecists a constant a > 0 such
that the joint probability density function of the increments D1(7),..., Dn(7) is given
by Eq. (3.6).

Proof:
By Diaconis & Freedman [41] and Kiichler & Lauritzen [78], there exists a probability
distribution Pg,) such that

PDy (1), D) (815 - - / Hh 8;,7)c(0) exp{— &;/0} dPe(r)(9)

for every 7 > 0 and all n € IN. Since the likelihood function {(z|f) is a scale density,
the function h(z,7) satisfies the functional equation

U(al6) = h(z,7)e(0) exp{—2/0} = F(2/0)/8
or, with g(z/8) = exp{z/0} f(z/0), ¢1(z) = h(z,7), and $(8) = Oc(8):
9(z/0) = ¢1(z)2(0).

This functional equation can be recognised as an extension of one of the four well-known
Cauchy equations in which g(z) = ¢1(z) = ¢2(1/z) (see Huzurbazar [63, p. 204]). Its
general solution is g(z) = ¢;z%, where ¢; and c; are arbitrary constants. Hence, using
Eq. (3.3), the functions h(z,7) and ¢(#) have the form

h(z,7) = 2*YT(a(r) +1), ¢(f) =077,

respectively, where o) > —1 is a differentiable function. In turn, o(7) satisfies an-
other Cauchy functional equation: «(n7) = ne(r) for all 7 > 0 and n € IN. This
functional equation is generated by Eq. (3.2), i.e

Py (nr)1X (2n7)(8] ) = Py (1) 4. ADn(r)X @) (8] Z), (3.10)

when dividing both sides of Eq. (3.10) by §7(7) and letting é approach zero from the
right. The general solution is a(7) = a7 + b for some constants a >0 and b > —1.
Since X (0) = 0, with probability one, we have b= —L1.

Eq. (3.6) follows by replacing # with 8/(ar), which proves the theorem. O
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Theorem 4 Let {X(t): t > 0} be a non-decreasing continuous-time stochastic process
with X (0) = 0, with probability one, such that for every v > 0 there are positive con-
tinuous functions ar) and B(7) for which the infinite sequence of random quantities
{Di(7)*) ;i € N} is lg(r)-isotropic with respect to a mizing distribution with finite mo-
ments, where D;(1) = X(it) — X([ — 1]7), ¢ € IN. Then there exists a constant a > 0
such that (1) = a-7 and B(7) = (a- 7)™, and the joint probability density function
of the increments Dy(7),...,Dy(7) is given by Eq. (3.6).

Proof:

Fix 7 > 0. On the one hand, there are functions A = «(27) and g = B(27) such
that the infinite sequence of random quantities {X? :¢ € IN} is I,-isotropic, where
X; = X(2it) — X(2[¢ — 1]7), : € IN. By applying Eq. (3.9) to the probability density
function of the random vector (X7,.. ,~X,’,\) and transforming back to (Xi,...,X,),
there exists a probability distribution P(y) such that the joint probability density
function of Xi,..., X, can be written as

oo R % JI,'?\“ ~
ﬁ(:cl,...,xn)=/ ol [l] Az}t exp{— ; }dP(Lp). (3.11)

v=0;_1 I‘(%) 12

On the other hand, there are functions a = a(7) and 8 = §(7) such that the infi-
nite sequence of random quantities {D? : i € IN} is [s-isotropic, where D; = X (ir) —
X([i = 1]7), i € N. Then, there exists a probability distribution P(#) for which the
probability density function of the random vector (D, ..., Ds,) can be obtained from
Eq. (3.11) by replacing (A, g, n,27) with (o, 3,2n,7). In turn, we get the joint proba-
bility density function of the subsums X; = Dg;_; + Dy, 2 = 1,...,n, by applying the
one-to-one transformation 851 = t;z;, 62 = (1 — t;)z;, ¢ = 1,...,n, with Jacobian
M2, z;. Without loss of generality, we shall focus on the case n = 1. The probability
density function of X = X; follows by integrating out the variable ¢t = #;:

o 2B2p2e-1 r1 288 AT 7¢
p(x)=/9=0f%/—ﬁ/t=o[t(1_t)]a-l exp{— i +0(1 ) ]}dth(G).

By applying the mean value theorem of the integral calculus and using the beta
integral, there exists a constant ¢ such that

o 2 fige=1 oBg
p(z) = /020 %(%%EB(% o) exp{— ace } dP(9),

where min{2!=°% 1} < ¢ < max{2'7%,1}.

The probability density functions p(z) and p(z) must be equal for all z > 0. With
the existence of both E(®~") and E(©7") for all r > 0, we can prove in two stages that
A =2« and Ay = af.
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First, multiply both sides of the equation §(z) = p(z) by z'7%*, where z > 0. As
z approaches zero, from the right, we have

1-2a 20

ap = lzlﬁ)l p(z)z = 1;%1 pla)z'™** = by 1;%1 e,
where ag, by > 0. The left-hand side is a constant greater than zero, whereas the limit
on the right-hand side equals zero for A > 2a and tends to infinity for A < 2a: both
leading to a contradiction. Thus A = 2¢.

Second, we show Ay = af8 by subsequently dividing both sides of p(z) = p(z) by
22*71_ taking the derivative with respect to z, multiplying by z!~**, and letting = tend
to zero from above. Then, we have

—0 = —bl lim iE/\“_aﬁ,
z|0
where ay, by > 0. The left-hand side is a constant smaller than zero, whereas the limit
on the right-hand side equals zero for Ay > o and tends to minus infinity for Ap < o8:
both leading to a contradiction. Hence Ap = af.

As a consequence, we may rewrite the equation p(z) = p(z) in the form of two

Laplace transforms:

e {-ats) abo = [P en (s} ar SEEHe

where we have applied the transformations § = 1/¢ and s = £/6. Hence, we have

dP(s) = dP(s) T5 715

585 5)
using the uniqueness of the Laplace transform. By integrating with respect to s on
both sides, we can solve for ¢ and substitute its value into the equation that was derived

from the mean value theorem. Then,

1

B(a, o) -/;o[t(l — )" exp {— ylt? + (1 — )]} dt = exp{ y [aB(a a)}

(ﬁ 7 ﬁ)
where, for notational convenience, y = z*?/f. By expanding the exponential function

with a Taylor series, we are now able to prove that aff = 1.
The right-hand side results in

i%[aB(a a)} (-v),

(p’,@)
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while the left-hand side can be expanded in a similar way. With the Weierstrass
M test, using the upper bound ¢*# + (1 — ¢)*¥ < max{2!~# 1} for all ¢ € [0,1], we
may interchange the order of summation and integration through which the left-hand
side can be rewritten as

hiy) = i%E ([Taﬁ +(1- T)aa]f) (=y),

where T' ~ Be(a, «). Since the power series 7L(y) and h(y) must be equal for all y > 0,
all their coefficients must coincide. Equating the j = 1 and j = 2 terms of both series
yields the following relation in af:

B([r+ -1 = [B (1 + 0 -1,

Applying Jensen’s inequality, we see that o = 1.
In conclusion, we have for all 7 > 0:

a(2r) = 2a(1),
a(27)B(21) = o(r)B(r)=1.

The solutions of these functional equations are o(7) = a -7 and B(7) = (a - 7)7" for
some constant a > 0.

Note that the above arguments also hold for subdividing (0, k7] into k equal time-
intervals instead of subdividing (0, 27] into 2 equal time-intervals, except that, roughly,
k-dimensional Dirichlet integrals replace the 2-dimensional beta integrals.

Eq. (3.6) follows by replacing 6 with #/(a - ), which proves the theorem. O



Chapter 4

Optimal Sand Nourishment
Decisions

Jan M. van Noortwijk and E. Bart Peerbolte

Abstract. To maintain the Dutch coastline, every year millions of cubic metres of sand must
be supplied at locations subject to ongoing erosion. A decision model has been developed to
obtain optimal sand nourishment decisions whose expected costs are minimal with respect to
the only information that is available: the probability distribution of the limiting average rate
of ongoing erosion. In order that the stochastic erosion process be based on this uncertain
limiting average, we consider it as a generalised gamma process.

There are three cost-based criteria for comparing sand nourishment decisions over an
unbounded time-horizon: the average costs, the discounted costs, and the equivalent aver-
age costs. From these three criteria, only the last two are appropriate to obtain optimal
sand nourishment decisions. In a case study, the decision model has been applied to sand
nourishment at Zwanenwater, The Netherlands.

Although the decision model has been developed for the purpose of sand nourishment, it
can be applied to other fields of engineering to solve many problems in the area of life cycle
costing. (This chapter has previously been published as [131].)

Keywords. coastal management, sand nourishment, maintenance, gamma processes, deci-
sion theory, life cycle costing, renewal theory.
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4.1 Introduction

To prevent the Dutch coastline from receding, the government has decided to carry
out sand nourishments at those beach locations at which a certain reference line is
crossed (see Rijkswaterstaat [100, 101]). In this chapter, we present a probabilistic
model that enables us to make nourishment decisions for which the expected costs over
an unbounded horizon are minimal. The model generalises results from Wind & Peer-
bolte [144]. Since the sand nourishment programme is based on the uncertain average
rates of ongoing erosion, we have based our probabilistic model on these averages as
well. To achieve this, the process of ongoing erosion has been regarded as a generalised
gamma process. In The Netherlands, generalised gamma processes have also been used
to model decision problems for optimising maintenance of the sea-bed protection of the
Eastern-Scheldt barrier, berm breakwaters, and dykes (see Chapters 2 and 7, 6, and 5,
respectively).

Using the discrete renewal theorem, three cost-based criteria for comparing deci-
sions over unbounded horizons can be determined: the average costs, the discounted
costs, and the equivalent average costs. Although the criterion of the average costs is
often used for maintenance optimisation in mechanical and electrical engineering (see
e.g. Barlow & Proschan [5]), it is not useful for nourishment optimisation. Instead,
the criteria of the discounted costs and the equivalent average costs should be used to
find an optimum balance between initial costs and future costs, which is the area of life
cycle costing (see e.g. Flanagan et al. [51]). Even though the discrete renewal theorem
is well-known, it has not been often applied to solve problems in life cycle costing.

The chapter is composed as follows. We describe the problem of sand nourishment
in Sec. 4.2. Next, in Sec. 4.3, optimal sand nourishment decisions are defined in terms
of the minimal expected monetary loss. The costs of (fa,rrying out one sand nourishment
are obtained in Sec. 4.4. In Sec. 4.5, these costs are then used to obtain the expected
loss of an infinite sequence of sand nourishments using the above cost-based crite-
ria. The sand nourishment decision model is applied to nourishment at Zwanenwater,
The Netherlands, in Sec. 4.6. Finally, Sec. 4.7 presents some conclusions. Necessary
definitions and theorems can be found in an appendix.

4.2 Sand nourishment in The Netherlands

The Dutch North-Sea coast is made up of dunes, dykes, and barriers (like the Eastern-
Scheldt barrier). Together they protect the areas that are below sea level (over one
third of The Netherlands) against flooding. The main part of the Dutch coastal de-
fence line consists of dunes (254 km out of 353 km), varying in width from less than
one hundred metres to several kilometres. Under the influence of nature, the dunes
are continuously moving: advancing at one location, receding at another. As stated
in Rijkswaterstaat [101], the patterns of coastal accretion (sand sedimentation) and
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coastal erosion are well known.

If we gave nature a free hand, hundreds of hectares of dune would disappear into
the sea due to erosion. The safety of the polders and other interests, like recreation and
the supply of drinking water, would then be endangered. For this reason, the Dutch
Parliament adopted the policy of preserving the coastline at its position on January 1,
1990 (see Rijkswaterstaat [100]). As soon as this reference coastline, the so-called basal
coastline, is crossed due to ongoing coastal erosion, preventive maintenance has to be
carried out by adding sand to the coastal system (sand nourishment).

Every year, the position of the transient coastline is measured through inspection
and is compared with the basal coastline. The shoreface (shallow sea floor) is inspected
by means of depth measurements using a sounding system. The beach and the foredune
(first line of the dunes) are inspected by means of height measurements using stereo
photogrammetry. The coastal measurements are stored in the so-called JARKUS file.
In Fig. 4.1, the transient coastline is defined in terms of the position of the dune foot,
the average low waterline, and the vertical distance b in between. This volumetric
approach is based on the area of sand that is enclosed by the vertical line through the
dune foot, the horizontal line at a distance of 2b under the dune foot, and the measured
beach profile.

dune foot

transient \
coastline \

1
|
P
}
1
]

average l.w.

a= area for volumetric integration (in m?®)
b= height difference dune foot—average low waterline (in m)

e= (in m)

a_
2b

Figure 4.1: The definition of the transient coastline in terms of the position of the dune foot and the
average low waterline.

Measurements over a period of years may serve to obtain average rates of sedi-
mentation and erosion. These rates are used to plan the annual sand nourishment
programme: per year about 7 million cubic metres of sand has to be supplied against
costs of about 70 million Dutch guilders.

There are two kinds of coastal erosion: the ongoing long-term erosion and the
incidental short-term erosion. The ongoing erosion is the most serious one and has
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to be compensated with sand nourishments. Although the incidental erosion caused
by incidental severe storms can result in cut dunefaces, the sand that was extracted
from the dunes during these storms has been temporarily transported to the beach
and the shoreface. During calm weather, the waves return this sand partly back to
the dunes. Therefore, the policy of coastline management is to accept the incidental
erosion, but to combat the ongoing erosion. Verhagen [133] recommends using coastal
measurements (properly qualified with expert judgment) for dealing with the irregular
coastal morphology when determining sand nourishments.

At those beach locations where the coast is receding, sand is added by removing it
from the bottom of the sea by trailing suction hopper dredgers. The most important
advantages of sand nourishments are that they

s improve the safety while maintaining wide recreational beaches;
¢ are relatively cheap in comparison with dykes;
e fit in with the natural character of the Dutch coast;

e are flexible in the sense that they can be utilised almost everywhere and that
they allow spreading of costs.

The above problem description of sand nourishment in The Netherlands is taken
from Rijkswaterstaat [100, 101] and Verhagen [133].

4.3 Optimal sand nourishment decisions

The planning of sand nourishments in The Netherlands is mainly based on the average
rates of ongoing erosion. Although yearly coastal measurements are available, the
natural process of erosion is uncertain. This uncertainty has the following sources:

o The coastal measurements are confounded. Since the only erosion that matters
for the decision problem is the ongoing erosion, one has to determine what part
of the erosion is ongoing and what part is incidental.

o The transient coastline is a schematisation of the “real” coastline.

¢ The coastal monitoring is subject to measurement errors.

¢ New coastal structures, changes in tidal prisms of estuaries and changes in up-

river sediment supply to the coastal system may influence the rate of erosion in
a systematic way.
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coastline after
sand nourishment

sand nourishment

distance to basal coastline (m)

basal coastline

basal coastline

0 unit time (year)

Figure 4.2: View from above of sand nourishment up to a distance of y metres to the basal coastline
(left) and the process of ongoing erosion regarded as a renewal process (right).

Since the sand nourishment programme depends on the uncertain average rates of
ongoing erosion, our probabilistic model should be based on these rates as well. In
addition, we adopt the assumption of Verhagen [133] that the rate of erosion before
nourishment equals the rate of erosion after nourishment. From now on, when we
use the word “erosion”, we shall mean ongoing erosion. Because sand nourishment
optimisation is only useful for locations at which the coastline is receding quickly,
we focus on non-negative rates of erosion. Let us denote the non-decreasing erosion
process by {X(t) : t > 0}, where X(t) represents the cumulative erosion at time ¢ and
Pr{X(0) = 0} = 1. For every uniform time-partition in time-intervals of length 7 > 0,
we write D;(t) = X(ir) — X([{ — 1]7), i € IN. Furthermore, we judge the infinite
sequence of increments {D;(7) : 7 € IN} to be exchangeable, i.e. the order in which the
increments occur is irrelevant. In mathematical terms, this can be interpreted as that
the probability density function of the random vector (Di(7),..., Dy(7)) is invariant
under all n! permutations of the coordinates, i.e.

PDy(7),-c0Dn(7) (51, R ,57;) = PD; (7),s D7) (6,..(1), ey 6,,.(,,0) , (41)

where 7 is any permutation of 1,...,n, for all n € N and 7 > 0. We remark that the
notion of exchangeability is weaker than the notion of independence.

In order that a stochastic erosion process with non-negative exchangeable incre-
ments be based on the unknown limiting average rate, we have shown in Chapter 3
that we can best regard it as a generalised gamma process. For this process, the joint
probability density function of the increments of erosion D1(7),..., D,(7) is given by
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a mixture of conditionally independent gamma densities:

oo n §aT=1 rgryer atd;
PD;(r),...Dn(r) (615 -, 6p) = II @) [7] exp{ 5 }dP@(T)(G) (4.2)

el

with mean E(X(n7)) = nE(0(r)) for some constant a > 0 and all 7 > 0. The proba-
bility distribution Pe(,) on the random quantity ©(r), with possible values § € (0, 00),
represents the uncertainty in the unknown limiting average amount of erosion per
time-interval of length 7: lim,_.[(3%, Di(7))/n]. By the strong law of large num-
bers for exchangeable random quantities, the average converges with probability one if
E(D1(7)) < oo (see e.g. Chow & Teicher [13, p. 227)).

A useful property of the generalised gamma process is that the mixture of gamma’s
in Eq. (4.2) transforms into a mixture of exponentials if 7 = a~1:

Poueaonsy (o) = [T Gow] = 5} aPo0) = fuzis) (09

for (61,...,6,) € R} and zero otherwise, Ry = [0, 00). The infinite sequence of random
quantities {D;(a™!) : ¢ € IN} is said to be /y-isotropic (or l;-norm symmetric), since
its distribution can be written as a function of the l;-norm (for details, see Barlow
& Mendel [3] and Misiewicz & Cooke [90]). As we have shown in Chapter 3, the
smaller the unit-time length A for which the increments are l;-isotropic, i.e. the smaller
A = a™!, the more deterministic the erosion process.

Owing to the annual monitoring of the transient coastline, a reasonable unit time
for which the increments of erosion are assumed to be /;-isotropic is one year. If A were
smaller than one year, the fluctuations due to seasonal influences should be taken into
account. If A were larger than one year, our model would differ from results obtained
by Wind & Peerbolte [144]: in their opinion, the annual increments of erosion are
independent, identically distributed, exponential random quantities with known mean.
From now on, we consider increments of erosion that are lj-isotropic with respect to
the units of time {([ — 1]A,¢A]: 7 € IN}, where A = 1. For notational convenience,
let D; = Di(A), X; = ¥i_y D; for alli € IN, and let © represent the uncertainty in the
limiting average rate of erosion lim,_..[(S%, D;)/n].

To make optimal sand nourishment de(:151ons In uncertainty, we can use statistical
decision theory (see DeGroot [27, Ch. 8]). At beach locations subject to erosion, the
decision problem is to choose a sand nourishment decision y, from (0, 00), such that
the nourished coastline is located y metres seaward of the basal coastline, where the
consequences of the decision depend on the unknown value of the limiting average
erosion per year ©. Let L(6,y) be the loss when the decision-maker chooses decision
y and when the limiting average erosion © has the value #, where the loss represents
the monetary losses due to sand nourishment. The decision-maker can best choose, if
possible, a nourishment decision y* whose expected loss is minimal. A decision y* is
called an optimal decision when E(L(©,y*)) = minge(o,.0) E(L(O,y)).
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4.4 The costs of one sand nourishment

For each sand nourishment, the associated costs can be subdivided into the fixed cost ¢¢
(cost of mobilisation) and the variable cost ¢, (cost per cubic metre sand). Furthermore,
we assume that the volume of sand to be supplied is a function of the sand nourishment
width w (in metres) in the following way:

Isin(%) . sin(e) 2
2

— | =y w? 4.4
o p— w =vwt vy w (4.4)

in cubic metres [m?], where [ is the sand nourishment length, % is the sand nourishment
height, ¢ is the angle of the beach-profile slope, and 4 is the angle of the sea floor (see
Fig. 4.3). Although we restrict ourselves to a polynomial of degree 2, the decision model
can deal with polynomials of any other degree (see Theorem 5 from the appendix).

v(w)=1th -w+ os(¥) +

dunes

1 ™ dune foot
average low waterline

sand nourishment

Figure 4.3: The compressed cross-section of a sand nourishment (1: area vjw; 2: area vow?).

Due to the mixture of exponentials in Eq. (4.3), we can express various probabilis-
tic properties in explicit form when the limiting average erosion @ is given (for other
illustrations, see Chapter 2). For the purpose of optimal sand nourishment, two prob-
abilistic properties are useful: (i) the probability of exceedence of the basal coastline
in unit time ¢ and (ii) the expected costs of sand nourisment due to exceedence of the
basal coastline in unit time i. These two properties are derived in Theorem 5 (see the
appendix).

First, the conditional probability of exceedence of the basal coastline in unit time ¢,
when the limiting average erosion is § and when the decision-maker chooses the coast-
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line after nourishment to be located y metres away from the basal coastline, can be
written as:

1 Y i-1 y
p(0) =Pr{Xu <y X >910) = ooy [A] ew {5} @)
fori =1,2,..., and 6,y > 0. This discrete probability function is the Poisson distri-
bution with mean lifetime 1 + (y/6) and variance y/6.

Second, the expected costs of sand nourisment due to exceedence of the basal
coastline in unit time 7, when the limiting average erosion is § and when the decision-
maker chooses the coastline after nourishment to be located y metres away from the
basal coastline, can be written as (using Eq. (4.4)):

9) =

E ( [Cf +e {'UlXi + v2Xi2H To, ) (Xim1)(y,00) (X)
: 1)l [%]M P {‘ %}

(i -
= cl(0,y)pi(0,y) (4.6)

fort=1,2,...,and 6,y > 0.

Using Eqgs. (4.5) and (4.6), the costs ¢;(f,y) are the expected costs of a sand
nourishment resulting in a nourished coastline at a distance of y metres to the basal
coastline given that the basal coastline is exceeded in unit time 7. The costs of nour-
ishment do not depend on the unit time at which the basal coastline is exceeded: i.e.

ci(8,y) = c(f,y) for all s € IN.

= [es+e{ny+0) +v|y+0)+6}] x

4.5 The costs of sequences of sand nourishments

Until now, we have studied the probability of occurrence and the expected costs of
just one sand nourishment. A sand nourishment programme, however, consists of a
series of consecutive nourishments. In this section, we derive three cost-based criteria
to compare infinite sequences of sand nourishments over unbounded horizons.

4.5.1 Types of cost-based criteria

Wagner [138, Ch. 11] gave two reasons for comparing decisions over unbounded instead
of bounded time-horizons. First, in making repeated investment decisions it is better
to employ an unbounded horizon model than to simply ignore the future. Second, as
we will see later, the mathematical models are less complex, while they still provide
reasonable answers in practice. However, since maintenance costs over an unbounded
horizon are infinite in most cases, we need models that can handle an infinite accumu-
lation of costs. For this purpose, Wagner [138, Ch. 11] distinguishes three cost-based
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criteria for comparing decisions over unbounded horizons: the average costs per unit
time, the discounted costs over an unbounded horizon, and the equivalent average costs
per unit time.

These costs can be determined by formulating the process of sand nourishments as a
discrete renewal process. A discrete renewal process {N(n) : n € IN} is a non-negative
integer-valued stochastic process that registers the successive renewals in the time-
interval (0,n]. In coastal management, the renewals are the sand nourishment actions
carried out to move the transient coastline y metres seaward from the basal coastline
(see Fig. 4.2). Conditional on f, the renewal times Ty, 75,..., are non-negative, in-
dependent, identically dlstmbuted Poisson random quantities having the probability
function (4.5), i.e. Pr{T} = |0} = pi(#,y), ¢ € IN, when the limiting average erosion is
# and when the decision-maker chooses decision y. The above cost-based criteria will
be discussed in more detail in the following subsections.

4.5.2 The average costs per unit time

The expected average costs per unit time are determined by simply averaging the costs
over an unbounded horizon. They follow from the expected costs C(n,8,y), over the
bounded horizon (0,7], that solve the equation

Cn,0,5) = 3 pi(,1)lc:(0,9) + Cln — ,0,9)] (A7)

=1

for n € N and C(0,6,y) = 0. To obtain this equation, we condition on the values of the
first renewal time 7} and apply the law of total probability. The costs associated with
occurrence of the event Ty = i are c;(8,y) (see Eq. (4.6)) plus the expected additional
costs during the interval (¢,n], i =1,...,n.
Using the discrete renewal theorem (see Feller [47, Ch. 12 & 13] and Karlin &
Taylor [71, Ch. 3]), the expected average costs per unit time are
lim C(n,eay) - ;’21 ci(e,y)p,»(e,y) _ C(e, y) _ C(g’y) (48)

Ao o Y ip(0y) 1+ (y/0)

(see Theorem 6 from the appendix). Let a renewal cycle be the time-period between
two renewals, then we recognise the numerator as the expected cycle costs and the
denominator as the expected cycle length. Eq. (4.8) is a well-known result from renewal
reward theory (see e.g. Ross [105]). If ¢(6,y) = 1 in Eq. (4.8), then the expected average
number of renewals per unit time is:

L M(n,6,y) 1 1 [
1m . B = = y
n—oo TZpf,y)  L+(y/0) y+0

being the reciprocal of the mean lifetime.

(4.9)
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4.5.3 The discounted costs over an unbounded horizon

Discounting expected costs over an unbounded horizon is based on the assumption
that the utility of a certain amount of money decreases in time from the standpoint
of the present. Using the criterion of the discounted costs, it is possible to compare
the value of money at different dates while taking into account the idea that “a dollar
today is worth more than a dollar a year from today”. In fact, the more money we have
available now, the better off we are, for the sooner we can earn more money with it.
Formally, the (present) discounted value of the costs ¢, in unit time n is defined to be
a"c, with @ = [1 4 (r/100)]~" the discount factor per unit time and r% the discount
rate per unit time, where r > 0. The decision-maker is indifferent between the costs ¢,
at time n and the costs a”c, at time 0. Therefore, the higher the discount rate, the
better it is to postpone expensive sand nourishment actions. What discount rate is to
be taken depends on the decision problem.

The expected discounted costs over a bounded time-horizon can be obtained with
a recursive formula similar to that for the expected number of renewals in Eq. (4.7).
Again, we condition on the values of the first renewal time 77 and apply the law of
total probability. In this case, however, we want to account for the discounted value of
the renewal costs ¢;(8,y) plus the additional expected discounted costs in time-interval
(z,n], 1=1,...,n. Hence, the expected discounted costs over the bounded horizon
(0,n] can be written as

CalnsB,y) = 3" a'pi(68,9) [c(6,4) + Calr — 5,0, (4.10)

i=1

for n € IN, and C,(0,6,y) = 0.
By using Feller [47, Ch. 13], the expected discounted costs over an unbounded
horizon Co(8,y) can be written as

_ . _ Zzl aici(av y)pZ(aay) _
Ca(o,y) = T}-l—{go Ca(n707y) - 1 — Z;.:l aipi(07y) -

__aep{-(l-ay/t}
= el ayd] 0,y). (4.11)

(see Theorem 6 from the appendix). We recognise the numerator of C,(f,y) as the
discounted cycle costs, while the denominator can be interpreted as the probability
that the renewal process terminates due to discounting. Such a renewal process is
called a terminating renewal process since infinite inter-occurrence times can cause
the renewals to cease. The inter-occurrence times Zi, Zy, ..., of our imaginary ter-
minating renewal process have the distribution Pr{Z; =i} = o'p;(8,y), : € IN, and
Pr{Z; = 0} =1 =52, &!p;(d,y). The expected number of imaginary “discounted
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renewals” over an unbounded time-horizon is

_ e a'pi(0,y) Pr{Z; < oo}
o 0 = i=1 2P ( ’ = N
nlLIgloM (n7 ay) 1— ;‘21 a’pi(B,y) Pr{Z;c = 00}

(4.12)

4.5.4 The equivalent average costs per unit time

The expected equivalent average costs per unit time relate the two notions of average
costs and discounted costs. To determine this relation, we construct a new infinite
stream of identical costs with the same present discounted value as the discounted
costs over an unbounded time-horizon C,(8,y). This can easily be achieved by defining

an infinite stream of costs appearing at times ¢ = 0,1,2,..., which are all equal to
(1 — a)C4(8,y). Using the geometric series, we can write
2,0 {1 —a)Cy(8,y) = Ca(b,y) (4.13)

for 8,y > 0, and 0 < o < 1. We call (1 — a)Ca(8,y) the equivalent average costs per
unit time. As o tends to 1, from below, the equivalent average costs approach the
average costs per unit time:

lim (1 - )Co(6,5) = C(6,1), (4.14)

for #,y > 0, using L'Hépital’s rule.

4.5.5 Choice of cost-based criteria

For a cost-optimal sand nourishment programme, we are interested in finding an opti-
mum balance between the initial costs and the future costs, being the area of life cycle
costing.

Let the transient coastline at time 0 be the basal coastline. Then, the first sand
nourishment has to be carried out at a costs of co(y) = ¢5 + ¢,v(y) Dutch guilders. The
monetary losses over an unbounded horizon are the sum of the initial costs and the
expected discounted future costs,

Lo(8,y) = coly) + Cal0, ), (4.15)

when the decision-maker chooses decision y, the limiting average erosion is #, and the
discount factor is .. For the purpose of sand nourishment, we cannot use the criterion
of the expected average costs per unit time,

L(0,y) = C(0,y), (4.16)

because the contribution of the initial costs to the average costs is completely ignored:
limp 0 co(¥)/m = 0. In conclusion, we recommend to choose an optimal sand nourish-
ment decision y* satisfying E(L.(©,y*)) = minye(o,c0) E(La(O,¥)).
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4.6 Case study: Zwanenwater, The Netherlands.

The developed sand nourishment decision model has been applied to Zwanenwater,
a beach section with a length of 4300 m in the north-west of The Netherlands (see
Fig. 4.5). In the opinion of the contractor, in 1987 a sand nourishment of 1.85 x 106 m?
was carried out, including a unique dune strengthening of 1.55 x 10° m®. However, as
pointed out in Rijkswaterstaat [102], probably less sand was supplied. Indeed, the
coastal measurements of 1986, 1987 and 1988 from the JARKUS file show an increase
of volume of about 1 million m® only. The sand nourishment of 1987 was intended
to assure that the basal coastline would not be crossed for a period of more than
20 years, with an initial distance to the basal coastline of about 21 metres. The
data on the beach profile and the costs of sand nourishment are given in Table 4.1
(using Rijkswaterstaat [102] and the 1986, 1987, and 1988 JARKUS measurements). To
illustrate, one beach profile at Zwanenwater is shown in Fig. 4.4.

Cross-section of the beach profile at Zwanenwater in 1986 (14.42 km)

Figure 4.4: A cross-section of the beach profile at Zwanenwater, The Netherlands, from the JARKUS
file before the sand nourishment was carried out. The average low waterline is located at -0.84 m.

For economic reasons, the decision-maker can best choose a sand nourishment
whose expected discounted costs over an unbounded horizon E{(L(0,y)) are minimal,
where y is the distance between the nourished coastline and the basal coastline. Since
the limiting average rate of ongoing erosion at Zwanenwater is about 1 m/year, we use
an inverted gamma distribution with a 5%-percentile of 0.5 m/year, a 95%-percentile
of 2 m/year, and a mean of 1 m/year (see Fig. 4.6): i.e. © ~ Ig(6]v,u). Although we
assume there is only coastal erosion (i.e. 8 > 0), we can include coastal accretion as well
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Figure 4.5: The location of the 1987 sand nourishment at Zwanenwater, The Netherlands.
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Probability density function of the limiting average erosion per unit time
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Figure 4.6: The probability density function of the limiting average rate of ongoing erosion [m/year]

at Zwanenwater, The Netherlands.
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Figure 4.7: The expected average costs of sand nourishment per unit time and the expected equivalent
average costs of sand nourishment per unit time at Zwanenwater, The Netherlands.
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Tigure 4.8: The expected discounted costs of sand nourishment over an unbounded time-horizon at
Zwanenwater, The Netherlands.
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Figure 4.9: The probability of exceedence of the basal coastline per unit time at Zwanenwater, The
Netherlands, when the distance between the nourished coastline and the basal coastline is optimal,
i.e. is 7.5 m. Both the probability function and the cumulative distribution function are shown.
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by choosing other probability distributions in combination with a zero (or negative)
loss function.

In Theorem 7 (see the appendix), two expressions for the expected loss are ob-
tained: E(L(0,y)), the expected average costs per unit time (4.8), and E(L,(0,y)),
the expected discounted costs over an unbounded horizon (4.11). From the latter, the
equivalent average costs per unit time can be easily obtained, being F((1 — &) L,(0,y)).
In Fig. 4.7, the expected average costs and the expected equivalent average costs are
shown as a function of the distance y between the nourished coastline and the basal
coastline. As a tends to 1, from below, the expected equivalent average costs approach
the expected average costs (by interchanging the order of the operations of expectation
and passing to the limit through Lebesgue’s Theorem of Dominated Convergence; see
e.g. Weir {141, Ch. 5]).

Recall that for the purpose of sand nourishment the criterion of average costs should
not be used, since the costs of the first sand nourishment are neglected. Indeed, the

Table 4.1: The parameters of the sand nourishment model for Zwanenwater, The Netherlands.

parameter description value dimension
A unit time 1 year
n time-horizon o0 year
r discount rate per year ) %
o discount factor per year 0.9524
© uncertain limiting average rate of erosion (0, o) m/year
fo.05 5%-percentile average rate of erosion 0.5 m/year
60.95 95%-percentile average rate of erosion 2.0 m/year
v shape parameter average rate of erosion 6.1
@ scale parameter average rate of erosion 5.3
E(0) mean of the average rate of erosion 1.0 m/year
¢y fixed cost 9.2x10° Df
Cy variable cost 9 Dfl/m?
l sand nourishment length 4300 m
h sand nourishment height 11 m
w sand nourishment width (0,00) m
- location dune foot 6 m +NAP
@ angle of the beach-profile slope 3.8 x 1072 radials
P angle of the sea floor 4.0 x 1073 radials
y distance to the basal coast line (0,00) m

* optimal distance to the basal coast line 7.5 m

v(y*) optimal sand nourishment volume 3.5x 10 md
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cost figures in Fig. 4.7 show that the expected average costs per unit time are minimal
for a sand nourishment that is unrealistically large. Actually, the average costs are
minimal for y = 102 m and v(y) = 4.9 x 10° m?, resulting in average costs of 4.6 x 10°
Dutch guilders per unit time, but equivalent average costs of 2.2 x 10° Dutch guilders
per unit time.

The expected discounted costs over an unbounded time-horizon are minimal when
the decision-maker chooses the distance between the nourished coastline and the basal
coastline to be y* = 7.5 m (see Figs. 4.7 and 4.8). The corresponding optimal sand
nourishment volume is v(y*) = 3.5 x 105 m3. For the optimal decision, the expected
discounted costs are 1.4 x 107 Dutch guilders, where the expected equivalent average
costs are 6.5 x 10° Dutch guilders per unit time. No less important than obtaining a
unique optimal decision, however, is obtaining a range of nearly optimal decisions.

If the distance between the nourished coastline and the basal coastline is the optimal
distance y* and if the sand nourishment is carried out at time 0, then we can derive the
expected probability that the basal coastline will be crossed in a particular unit time.
This (discrete) probability function is the negative binomial distribution. It follows by
integrating Eq. (4.5) over the limiting average erosion © and it is graphically shown
in Fig. 4.9. The mean time between two sand nourishments is 10 units of time, with
a standard deviation of 5 (for the mathematics, see Chapter 2). The average number
of sand nourishments per unit time is 0.12, which can be obtained with Eqs. (4.9)
and (4.21) (see Theorem 7 from the appendix).

4.7 Conclusions

In this chapter, we have presented a sand nourishment decision model which enables
the decision-maker to optimise nourishment programmes. As decision criterion, we
recommend to apply the expected discounted costs over an unbounded time-horizon
for finding an optimum balance between initial costs and future costs. An important
starting point is the probability distribution of the limiting average rate of ongoing
erosion, which is assumed to be unaffected by sand nourishment. The probability
distribution can be given @ priori and can later be refined on the basis of measurements.
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4.8 Appendix: Proofs of theorems

Theorem 5 Suppose the infinite sequence of random gquantities {D; : i € IN} is
l1-isotropic and X, = ¥, D; for all n € IN, then

E ([Xa]™ o) (Xn-1)I(y00)(X2) | 6) =

- {i (m—m—!z‘ﬁym_iai} % (nil)! [%]n—lexp{—%}, (4.17)

=0

forn=1,2,...,m=10,1,2,..., y € (0,00), where Ia(z) =1 ifz € A and 14(z) =0
ifz & A.

Proof:

Since X,, = Y%, D; for alln € IN, it follows that the integration bounds are determined
by 0 < X1 <...< X,; < X,. Moreover, X,,_; <y and X, > y, and the Jacobian
equals one. Hence, we may write

E (X" Tio (X1 oo (Xn) | 6) =

Yy y 0 1
— Y dendza—q - - dy.
/m:O /:vn-1=zn-2 /xn_yzn o exp{ 0} CpdTn—1 1

By applying the transformation ¢ = (z, —y)/#, and by using the binomial formula and
the gamma function, we can integrate out the variable z,:

m

/Oo z] exp { } dz, = : y™ 0 exp {— y—} . (4.18)
Tn=y = ( ! 0

The remaining integral is the Dirichlet integral:

n-1

/y /y 1d d Y (4.19)
e doy = '
2120 Jon_i=ra_s ! T (=1

Combining Egs. (4.18) and (4.19) leads to the desired result. O
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Theorem 6 (The discrete renewal theorem.) Let {q¢;}, {ui}, {b:} be sequences
indezed by i = 0,1,2,... with ¢; > 0 for all 1, end 12, |b:| < co. Suppose the re-
newal equation

Un = bn + Z?:o Giln—i (420)

is satisfied forn =0,1,2,... by a bounded sequence {u;} of real non-negative numbers.
Then, (a) if ¥20qi=1, g1 >0,

I . zg;obi.
m U, = ——

o g0
oo i=0 tqi

and (b) if ¥20q; <1, u, converges to 0, as n — oo, at such a rate that

. Zcio bi
lim 372 ju; = ——=——.
n—oo E’_O 11— Zfio qgi
Proof:
See Feller [47, Ch. 13] and Karlin & Taylor {71, Ch. 3]. a

Corollary 1 Let u; = C(3,0,y) — C(i — 1,8,y), ¢ = pi(0,y), b = ci(0,y)pi(6,y) for
alli=1,2,..., 0,y >0, and ugp = go = by = 0, then the recurrence relation (4.7)
can be written as the rencwal equation (4.20). With Cauchy’s first limit theorem, the
expression for the expected average costs per unit time, Eq. (4.8), follows from part (a)
of the discrete renewal theorem.

Corollary 2 Let u; = Co(i,0,y) — Ca(i - 1,8,9), ¢: = &'pi(8,), bi = ci(0,y)'pi(0,y)
foralli =1,2,...,0,y >0, 0<a<l, andug = g = bo = 0, then the recurrence
relation (4.10) can be written as the renewal equation (4.20). The expression for the
expected discounted costs over an unbounded horizon, Eq. (4.11), follows from part (b)
of the discrete renewal theorem.
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Theorem 7 Let O ~ Ig(v,pu). Then (a)
E(ly+0]70™) = E(O™) e/ [u/yl"T(1 — v +m,ufy),  (4.21)
and (b)

wexp(—(1—a)y/0) .
E (1 ~exp (—(1— 2)y/0) ° )

B m o0 J /j V=m
=E(® );a [7#“_(1 _a)y} (4.22)

for 0 < m < v, where E(®@™) = y™T(v —m)/I(v), and T(a,z) = [Z t*"Te~tdt is
} called the incomplete gamma function for x > 0 and a € R.

Proof:
(a) The proof follows by applying the transformation ¢t = y/f and using the following
formula from Nielsen [92, pages 210-211]:

0 ta—le—z't

eT(@)(l —a,2)= /

dt,
=0 1+t

where z > 0 and a > 0.

(b) The series in Eq. (4.22) can be obtained by using the geometric series and by
interchanging the order of the operations of expectation and summation through the
Monotone Convergence Theorem (see e.g. Weir [141, Ch. 5]). O



Chapter 5

Optimal Maintenance Decisions for

Dykes

Lennaert J.P. Speijker, Jan M. van Noortwijk, Matthijs Kok, and Roger
M. Cooke

Abstract. To protect the Dutch polders against flooding, more than 2,500 km of dykes
have been constructed. Due to settlement, subsoil consolidation, and relative sea-level rise,
these dykes slowly sink “away into the sea” and should therefore be heightened regularly
(at present every 50 years). In this respect, one is interested in safe and cost-optimal dyke
heights for which the sum of the initial costs of investment and the future (discounted) costs
of maintenance are minimal.

For optimisation purposes, 2 maintenance model has been developed for dykes subject
to uncertain crest-level decline. On the basis of data and engineering knowledge, crest-level
decline has been modelled as a monotone stochastic process with expected decline being
either linear or non-linear (i.e. linear after transformation) in time. For both models, and for
a particular unit time, the increments are distributed according to mixtures of exponentials.

In a case study, the maintenance decision model has been applied to the problem of height-
ening the Dutch ‘Qostmolendijk’. (This chapter has previously been published as [111].)

Keywords. maintenance, dykes, engineering probability, gamma. processes, relative sea-level
rise, settlement, subsoil consolidation, renewal theory.
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5.1 Introduction

To protect the Dutch polders against flooding, a network of dykes, dams, and barriers
has been constructed. For the largest part, this network consists of dykes at a total
length of more than 2,500 km. In order to provide for the long-term safety, these dykes
have to be maintained on the basis of five-yearly inspections as laid down in the Dutch
Flood Protection Act [117]. Unfortunately, due to settlement, subsoil consolidation,
and relative sea-level rise, the dykes slowly sink “away into the sea” and should therefore
be heightened and strengthened regularly. In this chapter, we present a probabilistic
model that enables us to determine safe dyke heights for which the costs of maintenance
are minimal.

Up to the beginning of this century, the crest of a dyke was built about one metre
above the highest water level hitherto observed at that place. Since then, however,
statistical considerations about the frequency of occurrence of maximum water lev-
els have been introduced (see Wemelsfelder {142]). With storm-induced tides of some
four metres above average sea level, the flood of February 1, 1953, caused a severe
catastrophe in the south-west of The Netherlands. Almost 200,000 hectares of pold-
erland flooded, 1,835 people drowned, and the flood damage totaled 1.5 x 10° Dutch
guilders (in 1953). To avoid future losses due to floods like the one in 1953, the Dutch
parliament adopted the so-called Delta Plan. This plan called for raising the dykes
and for closing the main tidal estuaries and inlets by a network of dams and barriers.
An economic analysis was carried out to balance the investments in heightening the
dykes against the expected losses of flooding (see the Delta Commission [38] and Van
Dantzig [119]).

In The Netherlands fifty-three so-called dyke-ring areas can be identified, which
are areas surrounded by a ring of dykes, dunes, retaining works (e.g. the Eastern-
Scheldt barrier), and higher ground. The acceptable probability of flooding for the
dyke-ring area Central Holland was set by the Delta Commission at 8 x 107® per year.
Acceptable inter-occurrence times of the exceedence of the water level that dyke-ring
components should withstand are laid down in the Dutch Flood Protection Act [117]
and vary from 10,000 years (for dyke-ring areas subject to sea floods) to 1,250 years
(for dyke-ring areas subject to river floods).

We focus on failure of a dyke section due to settlement, subsoil consolidation, and
relative sea-level rise (denoted by crest-level decline), under a condition-based preven-
tive maintenance strategy. In a fault tree analysis, this failure mode can be combined
with other failure modes like overflowing, wave overtopping, instability, piping, sliding,
and erosion. Note that a dyke ring is a series system of dyke sections with probabilities
of failure that might be dependent.

Given the acceptable probability of failure of a dyke section, its crest height is
nowadays determined on the basis of the so-called “design water level” (the accept-
able maximum water level) plus a safety margin (needed to cope with possible wave
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runup, gust and squall oscillations, seiches, and crest-level decline during fifty years).
The present dyke design in The Netherlands prescribes dykes to be heightened every
fifty years, which, however, might not be economical. For details on the Dutch flood
protection programme, see, e.g., TAW [115, 116], CUR & TAW [21], Peerbolte [93],
Vrijling [136], and Vrouwenvelder & Struik [137].

In this chapter, we present a new probabilistic model for determining safe dyke
heights that optimally balance the initial costs of investment against the future costs
of maintenance. The basic idea behind our model comes from Van Dantzig [119] and
differs from the latter in the sense that we regard crest-level decline as a stochastic
process rather than as a deterministic number. Moreover, we consider condition-based
preventive maintenance (carried out at times determined by five-yearly dyke inspec-
tions) rather than time-based preventive maintenance (carried out at pre-determined
repair times). Van Dantzig’s economic model was extended by Vrijling & Van Beur-
den [134], who assumed the average rate of crest-level decline to be uncertain, and
Kuijper [79], who assumed the process of crest-level decline to be a stochastic process.

To account for possible crest-level decline in a period of fifty years, dyke heights
are often designed on the basis of uncertain average rates of crest-level decline. In or-
der that the stochastic process of crest-level decline be based on its uncertain limiting
average rate, we consider it as a generalised gamma process. A gamma process is a
stochastic process with independent non-negative increments having gamma distribu-
tions with given scale parameters and shape parameters proportional to the length of
the time-interval over which the increments are taken. A generalised gamma process is
then defined as a scale mixture of gamma processes, where the scale parameter can be
interpreted as the unknown limiting average rate of crest-level decline. Note that the
Brownian motion with drift (a stochastic process with stationary independent decre-
ments and increments having a normal distribution) is not applicable in this context,
since we must require that the increments are non-negative.

In solving the economic problem of dyke heightening, Kuijper {79] also employed
the gamma process. He applied approximations to determine, for example, the proba-
bility of exceeding a failure level in a particular unit time. Instead, we give analytical
expressions for many useful probabilistic properties of the gamma process. Generalised
gamma, processes have also been used to model decision problems for optimising main-
tenance of the sea-bed protection of the Eastern-Scheldt barrier, beaches, and berm
breakwaters (see Chapters 2 and 7, 4, and 6, respectively).

Although the uncertainty in the limiting average rate of crest-level decline is often
large, the question arises whether the above assumptions still hold when much data
is available. In addition to the generalised gamma process, with expected decline
being linear in time, we study a monotone stochastic process with expected decline
being non-linear in time. The latter process has been derived from a physical law
which is well accepted by engineers in soil mechanics: the law of settlement and subsoil
consolidation of Terzaghi & Koppejan [77). In doing so, we base our probabilistic model
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on well-known engineering knowledge, an approach which has recently been proposed
by Mendel & Chick [88] and Chick [11].

For the purpose of finding an optimum balance between the initial costs and the
future costs, which is the area of life cycle costing (see e.g. Flanagan et al. [51]), we can
best use the criterion of the expected discounted costs over an unbounded time-horizon.
These costs can be determined by applying the discrete renewal theorem, where the
renewals are the events at which a dyke is heightened.

The chapter is organised as follows. The costs of one dyke heightening, proportional
to the increase in dyke volume, are presented in Sec. 5.2. In Secs. 5.3 and 5.4, analytical
expressions are derived for the expected discounted costs over an unbounded horizon
under linear and non-linear crest-level decline, respectively. The maintenance model is
applied to the Dutch ‘Oostmolendijk’ in Sec. 5.5. Sec. 5.6 ends with some conclusions.
Necessary definitions and theorems can be found in an appendix.

5.2 The costs of one dyke heightening

In modelling the maintenance of dykes, we make a distinction between the initial dyke
heightening and the future dyke heightenings due to crest-level decline. The initial
dyke heightening entails heightening the crest level and broadening the base, whereas
the future dyke heightenings leave the base unchanged (see Fig. 5.1). Determining the
costs of heightening dykes is the subject of study in this section.

For each dyke heightening, the costs can be subdivided into the fixed cost ¢y (cost
of mobilisation and road reconstruction) and the variable cost ¢, (cost per cubic metre
dyke volume). By using the schematised cross-section in Fig. 5.1, the dyke volume is
a quadratic function of the dyke height A (in metres) in the following way:

l 1 1 5 9
v(h)_wl.h+2[tan(¢)+m].h =vi-h+vy-h (5.1)
in cubic metres [m?], where h is the crest level, w is the crest width, [ is the length of
the dyke section, and ¢ and w are the angles of the inner slope and the outer slope,
respectively.

The costs of initially heightening the dyke from hg up to h metres and changing
the base width accordingly, where hg < A, are simply

colk) = ¢ + ¢, [o(h) — v(ho)] (5.2)

(see Fig. 5.1). Van Dantzig [119] approximated Eq. (5.1) by a linear function of A,
though he acknowledged that his approximation is not valid for large h: indeed, the
higher a dyke, the broader a base that is required.

Similarly, the costs of future heightenings to annul a crest-level decline of z metres,
while keeping the base width unchanged, can be written as a linear function of z (see
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h
ho
w w
——— - -
b b

Figure 5.1: The cross-section of a dyke before and after heightening: the initial dyke heightening from
ho up to h metres (left) and a future dyke heightening of = metres (right).

Fig. 5.1):

Rl 1 1
es + ey0(h,z) =c5 + ¢, {wl + = [

2 ]}w —cr e ii(h) 2, (53)

tan(ep) + tan(w)

where h, w, I, ¢, and w are defined as in Eq. (5.1).

5.3 Linear crest-level decline

5.3.1 The stochastic process of crest-level decline

In this subsection, we present a probabilistic model for the process of crest-level de-
cline based on the unknown limiting average rate. Let us consider the non-decreasing
stochastic process {X(t):t > 0}, where X(¢) represents the cumulative amount of
crest-level decline at time ¢ and X(0) = 0 with probability one. For every uniform
time-partition in time-intervals of length = > 0, we write D;(7) = X (ir) — X ([i — 1]7),
i € IN. Furthermore, due to the lack of data, we judge the infinite sequence of incre-
ments {D;(7) : ¢ € IN} to be ezchangeable, i.e. the order in which the increments occur
is irrelevant. In mathematical terms, this means that the probability density function
of the random vector (Dy(7), ..., Dy(7)) is invariant under all n! permutations of the
coordinates, i.e.

D1 (r)yaDa() (61, -+, 6) = PDy () Dtr) (Brias- - 6#(71)) ; (54)

where 7 is any permutation of 1,...,n, for alln € IN and 7 > 0.

In order that a stochastic deterioration process with non-negative exchangeable
increments be based on its unknown limiting average rate, we have argued in Chapter 3
that we can best regard it as a generalised gamma process. For this process, the joint
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probability density function of the increments D1(7),. .., Dy(7) is given by a mixture
of conditionally independent gamma densities:
00 ” 6‘” ! o7 até;
PD; (7),...Dn(7) (617 ooy 6 / [ ] €xp {_ 0 } dP@(T)(G) (55)

for some constant a > 0 with
E(X(n1)) = E(n0(r)),
Var(X(n1)) = [1 + n}?] E([nO())) - [E(nO())]? (5.6)

for all 7 > 0, provided the first and the second moment of the probability distribution of
O(7) exist. By the strong law of large numbers for exchangeable random quantities, the
probability distribution Pey,) of the random quantity ©(7) represents the uncertainty in
the unknown limiting average amount of crest-level decline per time-interval of length 7:
limnoo (S Di(7))/r):

A useful property of the generalised gamma process is that the mixture of gamma’s
in Eq. (5.5) transforms into a mixture of exponentials if 7 = a™*:

Pttt ) = [T e {5} aPot0) = fmima) a7

where (é1,...,8,) € R} and zero otherwise, Ry = [0,00). The infinite sequence of
random quantities {D;(a~") : i € IN} is said to be l;-isotropic (or /;-norm symmetric),
since its distribution can be written as a function of the /;-norm (see Misiewicz &
Cooke [90]).

The unit time for which the increments of crest-level decline are /;-isotropic can
be obtained, for example, by specifying the conditional probability density function of
the first increment, when the sum of the first and the second increment is given. This
probability density function is a transformed beta distribution with both parameters
equal to a7 (the equality of these parameters is due to the exchangeability of the two
increments), i.e

6(21’ ~1 T — é‘ ]a‘r 1 é‘
poy(nixen(bi] ) = [FEM)])Z im-f Ijo4)(61) = Be (

1
ar, a'r) " (5.8)

for some constant a > 0 with
E(D:(1)|X(27)=1) z/2,

[z/2]*/(2aT + 1).

I

Var(D1(7)|X(27)=x2)
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Hence, for fixed 7 > 0, the smaller the unit-time length for which the increments are
l;-isotropic, i.e. the smaller A = a~1, the more deterministic the deterioration process.
An alternative way to obtain the unit time for which [i-isotropy holds is assessing
Var(X(n7)) in Eq. (5.6). This variance approaches Var(n©(7)), from above, as A = a7}
tends to 0, from above. As we shall see in Sec. 5.3.2, for this unit-time length, denoted
by A = a~!, many probabilistic properties of the stochastic process, like the probability
of exceedence of a failure level, can be expressed in explicit form conditional on the
limiting average.

In conclusion, we advocate regarding the stochastic process of crest-level decline
as a generalised gamma process with probability distribution on the limiting average
rate of crest-level decline. To keep the mathematics of the decision model tractable, we
impose the property of posterior linearity introduced by Diaconis & Ylvisaker [43], i.e.
E(X(27)| D1(7) = &) = c161 + ¢, for some constants ¢y, ¢, >0 and 7 > 0. Note that,
due to exchangeability, before observing D1, E(D;) = E(Dy). If posterior linearity
holds, then the mixing distribution in Eq. (5.5) is an inverted gamma distribution (see
Diaconis & Ylvisaker [43]).

From now on, we consider increments of crest-level decline that are [-isotropic
with respect to the units of time {([i — 1]A,A] : ¢ € IN}. For notational convenience,
let D; = D;(A), X, =%, D; for all n € IN, and let © represent the uncertainty in
the limiting average rate of crest-level decline, lim,—o[(> iy D;)/n], with probabil-
ity density function Ig(6|v, u) (see Definition 3 of Appendix A). The summarisation
of the n random quantities Dy, ..., D, in terms of the statistic [n, 37, D;] is suffi-
cient for ©®. The mean and the variance of X, are E(X,) = n£(0) and Var(X,) =
E(n®?) + Var(n@®), respectively. Note that the unit time for which the increments of
crest-level decline are Ij-isotropic can also be obtained by assessing Var(X,), where
X, ~ Gg(v, p,n) (see Definition 4 of Appendix A).

5.3.2 The expected discounted costs of dyke heightening

As stated in the introduction, the Dutch Flood Protection Act [117] prescribes the
dykes to be inspected every 5 years. For this reason, we assume the dyke section to be
periodically inspected at times {jkA : j € IN} for fixed k£ € IN, where kA =5 years.
Each heightening brings the dyke section back into its “as good as new state”. There-
fore, we may consider the maintenance process as a renewal process, where each renewal
cycle ends at an inspection time jkA when the inspection reveals that the dyke section
should be heightened (for some j € IN). We assume that inspection of the dyke takes
negligible time and does not degrade the dyke.

As proposed by Speijker [112], we define the failure level s as the “design water
level” plus a safety margin needed to cope with wave runup, oscillations, seiches, and
crest-level decline during an inspection interval of five years (not fifty years as in the
present dyke design). Failure is then defined as the event in which a dyke height drops
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below the failure level s; it can only be noted through inspection. When inspection
reveals that the crest level of a dyke section is lower than the failure level s, it should
be heightened. Note that a failure need not imply a collapse: a failed dyke section
only collapses when the actual water level exceeds the actual dyke height. We study
“design water levels” rather than actual water levels.

Let y = h — s and let the times at which the failure level is first crossed be condi-
tionally independent random quantities having a discrete probability function p;(4,y)
and associated repair cost ¢;(8,y), with respect to the units of time {([z — 1]A,iA] :
1 € IN}, when the limiting average rate of crest-level decline is § and the decision-maker
chooses the dyke to be y metres higher than its failure level s.

To obtain optimal maintenance decisions in uncertainty, we can use statistical
decision theory (see DeGroot {27, Ch. 8]). Let L,(6,k) be the (monetary) loss when
the decision-maker chooses dyke height A and the limiting average rate of crest-level
decline is given by f. The decision-maker can best choose a dyke height ~* whose
expected loss is minimal. A decision A* is called an optimal decision when

E(L.(0,h*)) = min E(L.(0,h)). (5.9)
h € (hoyo)

Since determining optimal dyke heights actually means balancing the initial cost
against the future cost, the criterion of discounted costs can best serve as a loss function
(for a discussion, see Chapter 4). The expected discounted costs over an unbounded
horizon can be determined by summing the expected discounted values of the costs
over an unbounded horizon, where the discounted value of the costs ¢, in unit time n
is defined to be a™c, with discount factor & = [1 + (r/100)]"! and discount rate r%
(r > 0): ‘

o1 o* Zfi(j_l)kﬂ ci(0,y)pi(8,y)
1- E;il ik Zfi(,-_l)kH pi(0,y)
where y = A — s and the initial cost ¢o(h) stems from Eq. (5.2). Eq. (5.10) follows from
the discrete renewal theorem (see Chapter 4).

The form of Eq. (5.7) enables us to express various probabilistic properties in
explicit form when 8 is given. For the purpose of optimal dyke heightening, two prob-
abilistic properties are useful: (i) the probability of exceedence of the failure level in
unit time ¢ and (ii) the expected costs of dyke heightening due to exceedence of the
failure level in unit time ;. These two properties are derived in Theorem 8 (see the
appendix), which generalises Theorem 5 (see Chapter 4).

First, the conditional probability of exceedence of the failure level in unit time ¢,
when the limiting average crest-level decline is § and when the decision-maker chooses
the dyke to be h metres high, can be written as:

La(g, h) = Co(h) +

, (5.10)

pi(6,y) = Pr{Xi.y <y, Xi > y|0} = (;_1—1), [%]H exp {— %} (5.11)
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fori=1,2,...,0 >0, and y = b — s > 0. This discrete probability function can be
recognised as the Poisson distribution’ with mean lifetime 1 + (y/#) and variance y /0.

Second, the expected costs of dyke heightening due to exceedence of the failure
level in unit time 7, when the limiting average crest-level decline is # and when the
decision-maker chooses the dyke to be h metres high, can be written (using Eq. (5.3))

as:
FE ([Cf + Cv’ﬁl(h) . Xjk] I[g7y](X,‘_1)I(yyoo)(X,‘) 0) =

= [ef +ebi(R)(y + [k — i+ 1]0)] - pi(B,9) = ci(0,y)pi(8,7) (5.12)

fori=(—1k+1,...,7k, where j,k=1,2,...;0 >0and y = h — s > 0.

It should be noted that, in contrast with the model of Van Dantzig [119], our model
only includes the costs of maintenance, not the costs of possible flooding. Since these
latter are very difficult to assess, we have introduced a safety margin instead: the
higher the costs of flooding, the larger we can choose the safety margin. In essence,
Van Dantzig optimises “design water levels”, whereas we optimise dyke heightenings
when the “design water levels” are given.

In conclusion, the expected discounted costs over an unbounded horizon can be
obtained by substituting Eqgs. (5.11) and (5.12) into Eq. (5.10) and by taking the
expectation with respect to the probability distribution of ©. The optimal dyke height
follows from Eq. (5.9) (for an example, see Sec. 5.5).

5.4 Non-linear crest-level decline

5.4.1 The stochastic process of crest-level decline

Although the assumption of expected crest-level decline being linear in time is quite
reasonable when data is lacking, the question arises how to proceed when data gives
evidence to an expected decline being non-linear in time. In order to investigate the
sensitivity of the optimal dyke height to different rates of crest-level decline, we also
consider stochastic processes with non-negative, but non-exchangeable, increments.

Engineering knowledge suggests the expected crest-level decline to be a logarithmic
function of time. Recall that the process of crest-level decline is a combination of
settlement, subsoil consolidation, and relative sea-level rise.

Settlement and subsoil consolidation has thoroughly been studied by Koppejan [77].
With emperical experiments he showed that, a large time ¢ after increasing the stress
from p} to p,, the thickness of a compressed layer of sand or clay behaves according to

!Kuijper [79] approximated Equation (5.11} by Pr{X;_; <y, X; > y|0} ~ Pr{X;_; <y|6}
Pr{X; > y|6}.
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the so-called formula of Terzaghi & Koppejan (see also TAW [115, Ch. 8)):

2(1) = 2o [ 01 cf 1:;( ))] In (i—:j) , (5.13)

where:
2o = the initial thickness of the layer [m]
2() = the thickness of the compressed layer at time ¢ [m]
C, = primary compression constant [-]
C, = secondary compression constant [-]
t = time [g]
p| = initial stress [N/m?]
p, = increased stress [N/m?.

Relative sea-level rise has probably the following causes: melting of glaciers, chan-
ges in the Greenland and the Antarctic icecaps, thermal expansion of the oceans, and,
for The Netherlands, readjustment of the earthcrust due to the melting away of the
Fennoscandian icecap about 10,000 years ago. The estimates of the relative sea-level
rise for the next century vary between 20 cm and 120 cm, with a best estimate of 60 cm
(see Van Dantzig [119], Vrijling & Van Beurden [134], Peerbolte [94], and Hesselmans
& Peerbolte [61]).

In order to preserve the mathematical tractability in determining the expected
discounted costs, when transforming linear decline into non-linear decline, we link up
with a stochastic process having /;-isotropic increments in the following way. Let us
consider an infinite sequence of random quantities {D; : 1 € IN} that is transformed
l;-isotropic in the sense that the probability density function of the random vector
(D, ...,D,) can be written as a function of the statistic 3-7_; D;/8; for all n € IN:

3:0

for (81,...,6,) € R} and zero otherwise, where 3; > 0 for i = 1,...,n and §; # B; un-
less ¢ = j. The conditional cumulative distribution function of the sum X, = 37, D;,
when 8 is given, is known as the general Erlang distribution and can be found in The-
orem 9 (see the appendix). It has been used in theories of radioactive decay, queuing,
reliability, and psychology (see e.g. Jensen [68] and McGill & Gibbon [86]).

The mixture of conditionally independent exponentials with different means, Eq.
(5.14), converges to the mixture of conditionally independent exponentials with equal
means, Eq. (5.7), as 8 — 1 for all ¢ = 1,...,n. Therefore, it is convenient that the
increments D;, i € IN, are defined with respect to the same units of time (of length
A) as for the /;-isotropic increments in Sec. 5.3.1. By Theorem 10 (see the appendix),
the probability distribution Pe on the random quantity ©, in Eq. (5.14), represents

pospn (81, / Hﬂz exp{ 5 }dP@(f)) F (SR 6/8)  (5.14)
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the uncertainty in the unknown limiting weighted average limu_.oo[(3X7=y Di/B:)/n)-

The summarisation of the n random quantities Dy,..., D, in terms of the statistic

[n, %, D;/Bi] is sufficient for ©. The mean and the variance of X,, are E(X,) =
*, B:E(O) and Var(X,) = E(Var(X,|0)) + Var(E(X,|0)), respectively.

Our next aim is finding patterns of ;s in Eq. (5.14) such that the expected de-
terioration is a logarithmic function of time (at least for large values of time). The
so-called digamma function or Euler’s psi function (see Nielsen [92, § 5]),

d I'(z i
¥(@) = - (InD(@)} = %:c)) = lim [ln(n) - ?ﬁ . (5.1%)
suggests setting B; = a/(b+i — 1) for all 7 € IN, where a,b> 0. Indeed, for large n,
i.e. for large time t in Eq. (5.13), the expected crest-level decline conditional on § can
then be written as

E(X,|60) = [Z ——a——} -0~ a[ln(n) — ¥(b)] - 4, (5.16)
Sb+i—-1
as n — oo. Note that ¥(b) can be negative®.

5.4.2 The expected discounted costs of dyke heightening

In a similar way as was done for linear expected crest-level decline (Sec. 5.3), we can
determine two important probabilistic properties for non-linear expected crest-level
decline: (i) the probability of exceedence of the failure level in unit time ¢ and (ii) the
expected costs of dyke heightening due to exceedence of the failure level in unit time i.
Conditional on the limiting weighted average ©, these two properties are derived in
Theorem 11 (see the appendix).

First, the conditional probability of exceedence of the failure level in unit time ¢,
when the limiting weighted average is @ and when the decision-maker chooses the dyke
to be h metres high, can be written as:

PRI 5:/Bn {_L}
n0) = 2 T BB PP Bl (5:17)

fori=1,2,...,8>0,and y =h—3s >0 When f=a/(b+i—1)forall i€,
this discrete probability function simplifies to the negative binomial distribution with
parameters 1 — exp{—1y/(a6)} and b (see Jensen [68]):

o= () o) (B

2For the digamma function holds: ¥(z) < 0 for 0 < z < zo and ¥(z) > 0 for & > o, where
2o & 1.462.
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for:=1,2,...,8 >0, and y = h — s > 0, with mean life time 1 + blexp{y/(a8)} — 1]
and variance bexp{y/(af)}[exp{y/(ad)} —1].

Second, the expected costs of dyke heightening due to exceedence of the failure
level in unit time 7, when the limiting weighted average is  and when the decision-
maker chooses the dyke to be k metres high, can be written as (by using Eq. (5.3), and
Theorems 11 and 12 in the appendix):

0) =

= [Cf + Cv’ﬁl(h) (y + Eﬂf—_,‘ ,Bha)] : pi(a, y) = ci(oa y)pe(ea y) (519)

fori=(G—1)k+1,...,5k where j,k=1,2,...,and § >0 and y = h — s > 0.

In conclusion, the expected discounted costs over an unbounded horizon can be
obtained by substituting Eqs. (5.18) and (5.19) into Eq. (5.10) and by taking the
expectation with respect to Ig(@|v, ). The optimal dyke height follows from Eq. (5.9).

E ([Cf + cuﬁl(h) . Xjk] I[O,y](Xi—l )I(y’oo)(X;)

5.5 Case study: The Dutch ‘Oostmolendijk’

The above decision model for optimal dyke heightening has been applied to the ‘Oost-
molendijk’, a dyke section with a length of 1000 m in the west of The Netherlands. The
‘Oostmolendijk’ is located between the towns Ridderkerk and Hendrik-Ido-Ambacht,
along the river Noord, and belongs to the dyke ring IJsselmonde. In the last decades,
the ‘Oostmolendijk’ has been subject to extreme settlement and subsoil consolidation:
about 0.60 m in the period 1969-1981 and about 0.15 m in the period 1981-1989. In
1969, its crest-level height was about 5.20 m +NAP {normal Amsterdam level), whereas
the last dyke heightening, in 1991, resulted in a crest-level of 4.90 m +NAP (the dif-
ference is due to reduction of the “design water level” by the storm-surge barrier in
the ‘Nieuwe Waterweg’). With respect to the ground level, being 1 m +NAP, the dyke
height i was 3.90 m (see Fig. 5.1). Speijker [112] proposed a failure level of s = 3.44 m,
allowing the probability of exceedence of this failure level during an inspection interval
to be at most 0.1,

For obtaining an optimal dyke height for the ‘Oostmolendijk’, we use the param-
eters in Table 5.1. The probability density function of @, the limiting average rate
of crest-level decline per unit time, is shown in Fig. 5.2. Since experts perform bet-
ter when assessing the 5%- and 95%-percentiles of a probability density function than
when assessing its mean and variance, the parameters of the inverted gamma distribu-
tion have been derived from 805 and 895 in Table 5.1 by using Theorem 13 (see the
appendix). The expected crest-level decline in a period of fifty years is 1.30 m: 1.00 m
is due to settlement and subsoil consolidation; 0.30 m is due to relative sea-level rise.

The unit time for which the increments of crest-level decline are distributed as mix-
tures of exponentials (A = 5/3 year) has been determined by specifying the conditional
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Table 5.1: The parameters of the dyke heightening model for the Dutch ‘Oostmolendijk’.

parameter description value dimension
A unit time 5/3 year

k inspection-interval length 3 unit time
kA inspection-interval length 5 year

r discount rate per year ) %

o discount factor per unit time 0.9219

cy fixed cost 1.8 x10° Dfl

C variable cost 30 Dfl/m?®

(C] limiting average crest-level decline (0, 00) m/unit time
90.05 5%-percentile average crest-level decline  0.033 m/unit time
B0.50 50%-percentile average crest-level decline 0.043 m/unit time
0995 95%-percentile average crest-level decline 0.057 m/unit time
v shape parameter of Ig(8|v, 1) 35.86

p scale parameter of Ig(8|v, i) 1.511

E(©) mean of average crest-level decline 0.043 m/unit time
E(B/A)  mean of average crest-level decline 0.026 m/year
Var(0) variance of average crest-level decline 5.5 x 10~%

a parameter non-linear crest-level decline  8.95

b parameter non-linear crest-level decline 3

ho crest-level height before heightening 3.44 m

h crest-level height of the dyke section (ho, 00) m

l length of the dyke section 1000 m

w crest width of the dyke section 7 m

$ failure level of the dyke section 3.44 m

y h—s (0,00) m

- ground level (or terrain level) 1 m +NAP

) the angle of the inner slope (1:3) 0.32 radials

w the angle of the outer slope (1:3) 0.32 radials

Table 5.2: Optimal dyke heightenings and the corresponding mean times between dyke heightenings
for different expected average rates of linear crest-level decline.

E(©/A)

0.50 1.00 1.50 2.00 2.60

%107 m/year

optimal dyke heightening y*
mean time to dyke heightening

031 0.49 0.63 0.74 0.86
84 71 49 42 38

m
year
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probability density function of the amount of crest-level decline in a period of 25 years
when the decline in a period of 50 years is given to be 1 metre (using Eq. (5.8) shown
in Fig. 5.3).

The expected crest-level decline with sums of increments being linear or non-linear
in time and under a condition-based maintenance strategy are displayed in Fig. 5.4:
when a five-yearly inspection reveals that the dyke section has failed, it is heightened
up to 4.30 m.

For economic reasons, the decision-maker can best choose a dyke height h whose
expected discounted costs over an unbounded horizon, E(L,(0, k)), are minimal. In
Fig. 5.5, the expected discounted costs over an unbounded horizon are shown as a
function of y, where y = h — s, for expected crest-level decline being linear and non-
linear in time. The optimal decision, satisfying Eq. (5.9) under linear crest-level
decline, is y* = 0.86 Iﬁ, or equivalently A* = 4.30 m, with expected discounted costs
over an unbounded horizon of 3.09 x 108 Dutch guilders. The optimal decision, sat-
isfying Eq. (5.9) under non-linear crest-level decline, is y* = 1.08 m, or equivalently
h* = 4.52 m, with expected discounted costs over an unbounded horizon of 3.05 x 10°
Dutch guilders. The main reason the optimal dyke height is larger for non-linear de-
cline than for linear decline is because the variable cost of dyke heightening depend on
the rate of crest-level decline (which is smaller in the event of non-linear decline after
exceeding the failure level: see Fig. 5.4).

For practical purposes, no less important than obtaining a unique optimal decision,
however, is obtaining a range of nearly cost-optimal decisions. In this respect, the values
of the loss function L, (8, k) at the 5%-, 50%-, and 95%-percentile of the limiting average
rate of crest-level decline are of interest: they are displayed in Figs. 5.6 and 5.7 (with
y = h — s), describing expected crest-level decline being linear and non-linear in time,
respectively.

The sensitivity of the optimal dyke height to the choice of the unit time A is in-
vestigated in Fig. 5.8: h* hardly depends on A. Furthermore, from Table 5.2, we see
that the smaller the expected average rate of linear crest-level decline, the smaller the
optimal dyke heightening y* and the larger the mean time between two dyke heighten-
ings. From these results, we can conlude that the present practice of heightening the
Dutch dykes every 50 years has sense. Note that the average rate of crest-level decline
in The Netherlands is about 0.5 to 0.7 cm per year in the lower river area and about
0.3 to 0.5 cm per year in the upper river area (see TAW [116, Ch. 6]).

When y = 0.86 m at time 0, the expected probabilities of failure per unit time can
be determined by integrating Egs. (5.11) and (5.18) over ©. These discrete probability
functions are shown in Fig. 5.9. The mean time between two dyke heightenings is
22.5 units of time (37.5 years) for linear decline and 30.4 units of time (50.6 years)
for non-linear decline (while taking into account that dyke heightenings can only take
place at times of inspection).



5.6. Conclusions 73

5.6 Conclusions

In this chapter, we have presented a decision model for determining safe dyke heights
that optimally balance the initial costs of investment against the future costs of main-
tenance. As decision criterion, we have used the expected discounted costs over an
unbounded time-horizon. An important starting point is the probability distribution
of the rate of crest-level decline (a combination of settlement, subsoil consolidation,
and relative sea-level rise). :

We have investigated two types of monotone crest-level decline: expected decline
being linear in time (when there is a lack of data) and expected decline being non-
linear in time (when there is abundant data and engineering knowledge can be used).
For linear decline, we have regarded the deterioration process as a generalised gamma
process for which we can always find a uniform time-partition such that the joint
probability density function of the increments is a mixture of conditionally independent
exponentials with equal means. For non-linear, strictly monotone, decline, we have
similary regarded the joint probability density function of the increments as a mixture
of conditionally independent exponentials with different means.

With respect to the case study on the Dutch ‘Oostmolendijk’, we can conclude
that the value of the optimal dyke height is sensitive to the rate of crest-level decline
(also whether being linear or non-linear in time), but insensitive to the unit time for
which the increments are distributed according to a mixture of exponentials. Although
a high ‘Oostmolendijk’ is economically optimal, to cope with a rather extreme crest-
level decline, there might be other reasons (e.g. of preserving the landscape or a road
connection) to choose the dyke to be lower.

The maintenance models that are presented in this chapter have the following
advantages: they enable optimal dyke heightening decisions to be determined under
uncertainty, they estimate how much money is needed for the future maintenance of
dykes, they do not assume that dykes may rise (as in the case of the Brownian motion
with drift model), they are based on random quantities that can be observed (viz.
increments of crest-level decline), and they can be expressed in explicit form when the
limiting average rate of crest-level decline is given.
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Probability density function of the average rate of crest-level decline per unit time
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Figure 5.2: The probability density function of the limiting average rate of crest-level decline per unit
time, Ig(#]35.86,1.511), with mean E(©) = 0.043.
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Figure 5.3: The conditional probability density function of the amount of crest-level decline in a period
of 25 years, X(25), when X(50) = 1 metre.
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Expected dyke height: linear (o) and non-linear (+) crest-level decline
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Figure 5.4: The expected dyke height in the event of expected crest-level decline being linear and
non-linear in time: each dyke heightening brings the crest level back to h = 4.30 metre.
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Figure 5.5: The expected discounted costs of dyke heightening over an unbounded time-horizon in the
event of expected crest-level decline being linear and non-linear in time for the Dutch ‘Oostmolendijk’.
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x10° Expected discounted costs over an unbounded horizon: linear decline
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Figure 5.6: The expected discounted costs of dyke heightening over an unbounded time-horizon at

the 5%-, 50%-, and 95%-percentile of the limiting average rate of crest-level decline in the event of
expected decline being linear in time for the Dutch ‘Oostmolendijk’.
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Figure 5.7: The expected discounted costs of dyke heightening over an unbounded time-horizon at
the 5%-, 50%-, and 95%-percentile of the limiting average rate of crest-level decline in the event of
expected decline being non-linear in time for the Dutch ‘Oostmolendijk’.
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different units of time A in the event of expected crest-level decline being linear in time.
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linear and non-linear in time when y = 0.86 m and h = 4.30 m at time 0.
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5.7 Appendix: Proofs of theorems

Theorem 8 Suppose the infinite sequence of random quantities {D; : i € IN} is
ly-isotropic and X, = Y7, D; for alln € IN, then

B (PG foa(Xam1 ey (X2) | 6) = (5.20)
- Eza () el )

forjn=12...,72n,m=0,1,2,...,y € (0,00), where I4(z) =1 ifz € A and
In(z)=0ifz & A.

Proof:

Since X, = 3%, D; for all n € IN, it follows that the integration bounds are determined
by X; > X;-1 > ... 2 X1 > 0. Moreover, X,y <y and X,, > y, where n < j, and
the Jacobian equals one. Hence, we may write

E (1X]™ Toa(Xn-1)Iiy0) (Xa)| 0) = (5.21)

L e e [ e - 5 dee da

This multiple integral can be solved in the following way. The Dirichlet integral gives

n—1

/a;n =0 /152—0 ~/a:;\—0 Lday - don-y = (ny— 1)! (5.22)

and

/’”" .../””"“Mzn.. dzjq = _ ey (5.23)

~1=Y n=y (7 —n)!
By applying the transformation ¢t = (z; — y)/0, and using the binomial formula and
the gamma function, we obtain

) i T

/yx;”[xj—y]] exp{—yj}dsz

Tj=
= m m—igiti—n+1p(, - 1 _y 5.2
> ) (+i—n+1expi—7- (5.24)
i=0

Finally, combining Eqs. (5.21-5.24) proves the theorem. (i
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Theorem 9 Suppose the random quantities {D; : i € IN} are exponentially distributed
with mean B3;0, where B; > 0 fori =1,...,n and B; # B; unless i = j, and conditionally
independent when 0 > 0 is given. Let X, = 17 D; for all n € IN, then

n 1

Pr{X,<z|0}=1- ; =B exp{-— m} . (5.25)

This probability distribution is called the general Erlang or general gamma distribution
(see e.g. Jensen [68] and McGill & Gibbon [86]).

Proof:

See McGill & Gibbon [86]. |
Theorem 10 Let the random vector (D1, ..., Dn) have a uniform distribution on the
hyperplane

{(51,---,5 yeRY Zﬂl —N(;‘} (5.26)

where > 0, and B; >0 fori = 1,...,n and B3; # B; unless i = j. Furthermore, for
convenience, let X, = Y.y D; for alln € N, then

1 X D; } n 1 [ x ]N—l
PriX, <z =1-% = 1- 5.27
{ Z ; 5=1, 52 (L — Bi/ Bi] NBO|, (5.27)
for = > 0 and zero otherwise, n =1,...,N — 1, where [z]; = max{0,z}. The proba-

bility distribution (5.27) converges uniformly to the probability distribution (5.25), as

N — co.

Proof:
With the Dirichlet integral, the variables 6,41 through &y can be integrated out and
we find (see Mendel [87]):

n 5 N-n-—-1
IN(515"'3671|9):[ ENﬂ: }

=1

li[ Nﬁ, i (5.28)

Eq. (5.27) can now be proved by conditioning on the values of D,, employing the law of
total probability, and using complete induction. Note that the likelihood function (5.28)
converges uniformly to the likelihood function in Eq. (5.14), as N — oo. o
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Theorem 11 Suppose the random quantities {D; : i € IN} are ezponentially distributed
with mean B0, where B; # B; unless i = j, and conditionally independent when 8 is
given. Let X, = Y%, D; for all n € IN, then

E ([X]™ T f(Xn-1)(y00) (X

= . ! 3 mk Pr{X X, 9
; izn‘h#l[l_ﬁh/ﬂz]kz_%( > (:81) X { n—lSya n>y| }’

where

9) = (5.29)

Pr{Xos <y, Xo > 9]0} = 3 o PoLP:

Y
— exps — —— ¢,
5 M=y, v (L — Br/Bi] { ﬁﬁ}
forjim=12,...,5>nm=0,12,...,y € (0,00), where I4(z) =1 if z € A and

Proof:

Since X,, = 31, D; for all n € IN, it follows that the integration bounds are determined
by X; > Xj-1 > ... 2 Xy > Xo = 0. Moreover, X, 1 <y and X, >y, where n < j,
and the Jacobian equals one. By using

0 A [ e o)

i=1 Z =1

(5.30)

we may write

E ([Xj}m I[0|y](Xn—1)I(yv°°)(Xn)‘ 0) =
00 T Tn41 z2 .’Em Zj
T By A A - L p{'ﬁo} .

v H [ 57 exp{ [; ﬂil] }da:l (5.32)

This multiple integral can be solved in four steps.
First, by applying the transformation & = z; — z;_;,7 =1,...,n — 1, and subsequently
using Eq. (5.31) and Theorem 9, we find

ol e [ ] 3)

Z:_ n-1 1 116
= [ T Dggew HE‘E] }“’5“ a
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<,_Hl - ﬂz/ﬂn]) (1 ‘ZH;é E%] o {‘ ["5‘ - ﬂi] %})
- St a5 5 o

Second, by applying the transformation z; = z; —y, ¢ =n,...,7 — 1, and using Eq.
(5.33), we obtain

x5 Tngl i-1 1 1 1 )
1 1 dz, -+ dziy = 5.34
/z:j_l:y /a;n—y }_—‘!; ﬂz p{ |:,Hz ﬂz+1:| } v Fit ( )

zn+1'7 1 1 { l:l 1 ]z,+y}
ex dzp -+ dz;_
~/z 1_0 2n=0 Hbﬂz P Bi ﬁi+1 0 -

1=

N D
;Hizn,h;ﬂ (1 —Bn/Bi] P Bi B P Bn Bl 0

- it sl et )
z;ﬂi:n,h# [1—ﬁh/ﬂi]e P Bi B P Bn Bi] 0

Third, by applying the transformation t; = (z; — y)/(8:4), i = n,...,J, and using the
binomial formula and the gamma function, the one-dimensional integral over z; can
be written as

o ol ulG) {5 g
2 vl /] b 2077 0| 45

=2j:eXP{ y/(Bn8)} i( )mkﬁz)‘ (5.35)

i=n Mh=n, h#i [1 - ﬂh/,ﬁa k=0

Finally, combining Egs. (5.32-5.35) proves the theorem. ]
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Theorem 12 Let 5; >0 fori=1,...,n and 3; # B; unlesst = j, n € N, then

7 ﬂi 7
. =S8 5.36
D R T R Y (5:36)

Proof:
Suppose that D,,...,D; are independent random quantities and that D; has an ex-
ponential distribution with mean 3;0, 2 = n,...,j. On the one hand, we have simply

Zf—;n E(D;|0) = J__ ;8. On the other hand, we can use Eq. (5.25) to write

i=n

) oo ; e Bif
E( i=nDi 0) = /z=OPr{z‘=nD" > z‘@} dr = V:Zn . ni (1= B/ Bi]

O
Theorem 13 Let 6; be such that [& Ig(8lv,1)d0 =€, i = 1,2, where 0 < 0, < 5.
Then, approzimations to v and p can be obtained by solving the following equations:

0 9(t — 1) v+ 3 (ueg —uut) Vv —(t—1),

p o= v[usi $+1—§1;]39,~,

where t = (02/6,)'/% and f* (27)"Y/?exp{—u?/2} du = €. The so-obtained approzi-
mate values for v and p are accurate unless v is small, or at least one ¢; is near to
zeTo or one.

Proof:
The approximations to v and p are based on a well-known approximation to the per-
centile points of the chi-square distribution (see Johnson & Kotz [69, page 176]). O



Chapter 6

Optimal Maintenance Decisions for
Berm Breakwaters

Jan M. van Noortwijk and Pieter H.A.J.M. van Gelder

Abstract. To prevent coastal lines of defence from being affected by severe hydraulic loadings
from the sea, berm breakwaters can be used. Although berm breakwaters are dynamically
stable in the sense that they allow for some rock displacement, they can fail due to severe
longshore rock transport. To avoid this type of failure, berm breakwaters have to be inspected
and, if necessary, have to be repaired. A decision model is presented enabling cost-optimal
maintenance decisions to be determined while taking account of the (possibly large) uncer-
tainties in: (i) the limiting average rate of occurrence of breaches in the armour layer and
(ii), given a breach has occurred, the limiting average rate of longshore rock transport. The
stochastic process of rock displacement is modelled by a modified generalised gamma process,
enabling us to explicitly take account of the uncertainty in these limiting averages. (This
chapter has previously been published as [132].)

Keywords. maintenance, gamma processes, berm breakwaters, decision theory, renewal
theory.
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6.1 Introduction

In order to protect coastal lines of defence from being damaged by severe hydraulic
loadings from the sea, berm breakwaters can be used (see e.g. Van der Meer [120],
Van der Meer & Veldman [121], and Vrijling & Van Gelder [135]). The characteristic
feature of berm breakwaters is that the original dynamically stable profile becomes
statically stable under certain wave conditions. However, oblique wave attack can
initiate longshore transport of stones along the center line of the berm breakwater.
To avoid failure due to severe longshore rock transport, berm breakwaters have to be
inspected and, if necessary, have to be repaired. The purpose of this chapter is to
develop a decision model for obtaining optimal inspection intervals whose expected
maintenance costs are minimal.

Although most maintenance optimisation models are based on lifetime distribu-
tions or Markovian deterioration models, it is often hard to gather data for estimating
their parameters. Moreover, in case of well-planned preventive maintenance, complete
lifetimes will be observed rarely. In practice, there is often only (subjective) infor-
mation available on limiting average rates of deterioration: for berm breakwaters, the
stochastic deterioration process can be characterised by (i) the limiting average rate
of occurrence of breaches in the armour layer and (ii), given a breach has occurred,
the limiting average rate of longshore rock transport. In order that the processes of
the occurrence of breaches and of longshore rock transport be based on their limiting
average rates, they have been regarded as a mixture of geometrics and a scale mixture
of gamma’s (a generalised gamma process), respectively.

According to Chapter 4, three cost-based criteria can be used to compare main-
tenance decisions over an unbounded time-horizon: (i) the expected average costs per
unit time, (ii) the expected discounted costs over an unbounded horizon, and (iii) the
expected equivalent average costs per unit time. These costs can be determined with
the aid of renewal theory, where the renewals are either preventive repairs (before
failure) or corrective repairs (after failure).

The maintenance decision model which is proposed extends the model of Vrijling &
Van Gelder [135] in the sense that the renewals not only take place at fixed preventive
repair intervals but also upon failure, the costs are determined with respect to an
unbounded horizon, and the dependence between the probability of preventive repair
and the expected repair costs is taken into account. The parameters of the uncertainty
distributions of the above two limiting averages are assessed using the simulation results
of Vrijling & Van Gelder [135].

In The Netherlands, generalised gamma processes have also been used to model
decision problems for optimising maintenance of the sea-bed protection of the Eastern-
Scheldt barrier, beaches, and dykes (see Chapters 2 and 7, 4, and 5, respectively). Note
that the developed decision model can be viewed as a delay-time model as studied by
Christer & Waller [14, 15]. In fact, the time lapse from an armour breach until the
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time of failure due to longshore rock transport can be interpreted as the discrete delay
time of a failure. Therefore, generalised gamma processes can be employed to assess
delay-time distributions based on the physics of deterioration.

The chapter is organised as follows. A brief description on berm breakwaters is
given in Sec. 6.2. In Sec. 6.3, we model the event of failure due to severe longshore
rock transport. We present the maintenance decision model for minimising the costs
of inspection, repair, and failure in Sec. 6.4. Some necessary definitions and theorems
are presented in two appendices.

6.2 Berm breakwaters

The main function of breakwaters is to prevent coastal lines of defence (e.g. sand
dunes or cliffs) from being affected by severe hydraulic loadings from the sea. Re-
cently, the attention has been shifted from statically stable rubble-mount breakwaters
to dynamically stable berm breakwaters (see e.g. Van der Meer [120], Van der Meer
& Veldman [121], and Vrijling & Van Gelder [135]). The profiles of statically stable
structures are not permitted to change under severe wave conditions, whereas the pro-
files of dynamically stable structures (such as berm breakwaters and beaches of sand,
gravel, shingle, and rock) may change according to the wave climate.

The main components of a berm breakwater are the core (with stones of diameter
0.5 m) and the armour layer (with stones of diameter 0.8 m) (see Fig. 6.1). A berm
breakwater is said to be dynamically stable when the net cross-shore transport of stones
is zero and its profile has reached an equilibrium under certain wave conditions. In
fact, the originally built profile becomes dynamically stable when wave attack moves
rock in the berm partly upward to the crest and partly downward to the toe and the
sand; thus reshaping the seaward slope into a (more) statically stable S-shape profile
(see Fig. 6.1).

scour hole

Figure 6.1: The cross-section of a berm breakwater: the originally built (dynamically stable) profile
and the S-shape (statically stable) profile. S.W.L. means still-water level: the surface of the water if
all wave and wind action were to cease. '

A berm breakwater can fail due to longshore transport of the armour elements,
which occurs when oblique wave attack results in wave forces parallel to the alignment
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of the structure. We define a failure as the event at which the stones of the armour
layer have been displaced to such a degree that the core is instable and needs to be
reconstructed. To reveal possible longshore transport of stones, berm breakwaters have
to be inspected and, if necessary, have to be repaired. In this chapter, we develop a
decision model that enables cost-optimal maintenance decisions to be determined while
taking account of the main uncertainties in the stochastic process of rock displacement.

6.3 The stochastic process of rock displacement

In modelling the maintenance of berm breakwaters on the basis of the stochastic process
of rock displacement, there are mainly two uncertainties involved (see also Fig. 6.2):
(i) the probability of an initial breach of the armour layer and (ii), given a breach has
occurred, the limiting average rate of longshore rock transport. In fact, an armour
breach initiates longshore rock transport. Next, we study these two deterioration
characteristics, which are judged to be independent, in more detail.

6.3.1 The stochastic process of longshore rock transport

In this subsection, we derive a probabilistic model for the process of longshore rock
transport based on the unknown limiting average rate. Let us denote the non-decreasing
stochastic process of longshore rock transport by {X(t) : ¢ > 0}, where X () represents
the cumulative amount of transported rock at time ¢ and X(0) =0 with probabil-
ity one. For every uniform time-partition in time-intervals of length 7 > 0, we write
Dy(r) = X(i7) — X ([t — 1)), : € IN. Furthermore, due to the lack of data, we judge
the infinite sequence of increments {D;(7) : i € IN} to be exchangeable, i.e. the order
in which the increments occur is irrelevant. In mathematical terms, this can be inter-
preted as that the probability density function of the random vector (D1(7), ..., Dn(7))
is invariant under all n! permutations of the coordinates, i.e.

DDy (7),0aDn(r) (815 -+« 60) = PDy (7). Dn(7) (67r(1)7 . -761r(n)) , (6.1)

where 7 is any permutation of 1,...,n, for alln € IN and 7 > 0.

In order that a stochastic deterioration process with non-negative exchangeable
increments be based on the unknown limiting average rate, we have argued in Chapter 3
that it can best be regarded as a generalised gamma process. For this process, the joint
probability density function of the increments Di(7), ..., D,{(7) is given by a mixture
of conditionally independent gamma densities:

oo " 6677 raryeT atd;
PD:(7),uDn(7) (61,...,6 / [——] exp{ 7 }dP@(T)(H) (6.2)

aT)
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for some constant a > 0 with
E(X(n7)) = E(nO(1)),

Var(X(n7))

L+ ;;i:] E([n®(r)) ~ [E(nO(7))] (6.3)

for all 7 > 0, provided the first and the second moment of the probability distribution of
O(r) exist. By the strong law of large numbers for exchangeable random quantities, the
probability distribution Pg(,) on the random quantity O(7) represents the uncertainty
in the unknown limiting average amount of longshore rock transport per time-interval
of length 7: lim,_o[(2%, Di(7))/n].

A useful property of the generalised gamma process is that the mixture of gamma’s
in Eq. (6.2) transforms into a mixture of exponentials if 7 = at:

o m ] 5
PDs(a=1),..aDn(a) (615 - - / H—exp{—g} dPo(0) = fu(Ti,6:)  (6.4)

for (61,...,6,) € R% and zero otherwise, where Ry = [0,00). The infinite sequence
of random quantities {D;(a™') : © € IN} is said to be [ -isotropic (or l;-norm sym-
metric), since its distribution can be written as a function of the ;-norm. The unit
time for which the increments of longshore rock transport are /j-isotropic can be ob-
tained, amongst others, by specifying the variance of the generalised gamma process in
Eq. (6.3). For fixed 7 > 0, the smaller the unit-time length for which the increments
are l;-isotropic, i.e. the smaller A = @™, the more deterministic the deterioration pro-
cess. As we shall see in Sec. 6.4, for this unit-time length, denoted by A = a™', many
probabilistic properties of the stochastic process, like the probability of exceedence of
a failure level, can be expressed in explicit form conditional on the limiting average.

In conclusion, we advocate regarding the stochastic process of longshore rock trans-
port as a generalised gamma process with probability distribution on the limiting
average rate of longshore rock transport. To keep the mathematics of the decision
model tractable, we impose the property of posterior linearity introduced by Diaconis
& Ylvisaker [43], i.e. E(X(27)] Di(7) = 61) = c161 + ¢, for some constants ¢y, ¢ > 0
and 7 > 0. If this property holds, then the mixing distribution in Eq. (6.2) is an
inverted gamma distribution.

From now on, we consider increments of longshore rock transport that are -
isotropic with respect to the units of time {([i —1]A,iA]:i € IN}. For notational
convenience, let D; = D;(A), X, = Y5, D; for all n € IN, and let © represent the un-
certainty in the limiting average rate of longshore rock transport, lim,_..[(Y7; Di)/n),
with probability density function Ig(6|v, p) (for the definition of the inverted gamma
distribution, see Appendix A).
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6.3.2 The stochastic process of armour breaches

Beside the uncertainty in the limiting average rate of longshore rock transport, the
process of the occurrence of breaches in the armour layer must be specified. Let us
denote the times at which armour breaches occur by the infinite sequence of non-
negative discrete random quantities Ty, T, ... (which are defined with respect to units
of time of length A). Since rocks start to move due to external causes (i.c. severe
waves), at a rate that does not change in time, we may judge the random quantities
11,7y, ... to be exchangeable and to exhibit the “lack of memory” property. The “lack
of memory” property means that the discrete probability function of the remaining
time until the occurrence of the first armour breach does not depend on the fact that
no breach has occurred yet.

Under the above two assumptions, we can write the joint probability function
of Tn,...,T, as a mixture of conditionally independent geometric distributions (see
Diaconis & Freedman [42]):

1 n
Pr{li=t,...,Tp = t,} = / TI #(1 - §)% dPr{® < ¢} (6.5)
0 =1
fort; =0,1,2,...,7 =1,...,n, and zero otherwise. The conditional mean can be written

as E(Ti|¢) = ¢™' — 1,7 = 1,...,n. By the strong law of large numbers for exchangeable
random quantities, the random quantity ® may be interpreted as the limiting relative
frequency of the times at which initial armour breaches occur per unit time of length A,
ie. lim,eoln/(n + 7%, T3)]. If, in addition, the property of posterior linearity holds
then the mixing distribution in Eq. (6.5) is a beta distribution, say Be(¢|a,b) (see
Diaconis & Ylvisaker [43]).

6.4 Optimal maintenance decisions

6.4.1 The maintenance model

To obtain optimal maintenance decisions under uncertainty, we can use statistical
decision theory (see DeGroot [27, Ch. 8]). Let a berm breakwater be inspected at
times {jkA:j € IN} for fixed k € IN. Let L(¢,0,k) be the (monetary) loss when
the decision-maker chooses inspection interval k, the limiting relative frequency of
armour breaches is ¢, and the limiting average rate of longshore rock transport is 4.
The decision-maker can best choose an inspection interval k* whose expected loss is
minimal. A decision k* is called an optimal decision when

E(L(®,0,k)) = min E(L(®,6,k)). (6.6)

The resistance of the berm breakwater, denoted by R, is defined as the number
of stones belonging to the armour layer, where rq is the resistance of the originally
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built profile. When an initial breach of the armour layer occurs at time (z — 1)A, i.e.
when 77 =1 — 1, the longshore rock transport at the inspection time kA, i <k, is
represented by the random quantity Xx-i11, where ¢,k =1,2,... and X, ~ Ga(n,1/8)
for all n € IN (for the definition of the gamma distribution, see Appendix A). The
expected longshore rock transport at time kA, given ¢ and @, can be obtained by
conditioning on the possible values of T} and using Egs. (6.4), (6.5), and (6.28):

Zé;l Pr{Ty =1 - 1|¢}E(Xp-ira| 1 =1 —1,8) =
= Thio(1—¢) k= (i —1)]0 = &p(4) 0 (6.7)

Since repairs bring the berm breakwater into the “as good as new state”, we may
regard the maintenance process as a renewal process (see Fig. 6.2). Fach renewal
cycle ends either upon a failure or at an inspection time jkA when the inspection
reveals that a preventive repair should be carried out (for some j € IN). A failure is
defined as the event in which the resistance R drops below the failure level s: R < s.
A preventive repair is defined as the event at which inspection reveals that longshore
rock transport has taken place but no failure has occurred: s < R < r. Inspection
takes a negligible amount of time, does not degrade the berm breakwater, and entails
fixed costs ¢;. The costs of failure are cp (costs of reconstructing the core and of
possible damage to the coastline), while the costs of repair consist of the fixed costs cp
(costs of mobilisation) and the variable costs ¢y (costs per rock). Let the renewal times
be conditionally independent random quantities having a discrete probability function
pi(8,0,%), ¢ € IN, when the limiting average rates are ¢ and ¢, and the decision-maker
chooses inspection decision k. The costs associated with a renewal at time :A are
denoted by ¢;(¢,8,%), ¢ € IN.

Since berm breakwaters are planned to function for a very long time, maintenance
decisions can best be compared over an unbounded time-horizon. According to Chap-
ter 4, there are basically three cost-based criteria that can serve as loss functions in
Eq. (6.6): (i) the expected average costs per unit time, (ii) the expected discounted
costs over an unbounded horizon, and (iii) the expected equivalent average costs per
unit time. These cost-based criteria can be obtained using the discrete renewal theorem
(see Feller [47, Ch. 13] and Karlin & Taylor (71, Ch. 3]).

First, the expected average costs per unit time are determined by averaging the
expected costs over an unbounded horizon:

L(4,6,k) = lim C(n,¢,6,k) _ L=t Ciqs,.a, k)pi(¢, 0, k)’ (6.8)
n—roe n Zizl 3Pi(¢a 0, k)
where C(n,0,k) are the expected costs in time-interval (0,nA]. Eq. (6.8) is a well-
known result from renewal reward theory (see e.g. Ross [105]).

Second, the expected discounted costs over an unbounded horizon are determined

by summing the expected discounted values of the costs over an unbounded horizon,
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resistance
[number of stones]

breaches of armour layer

<«— preventive repair

0 i X T T T unit time
F 1

Figure 6.2: The deterioration process of a berm breakwater regarded as a renewal process: each
renewal cycle ends either upon an inspection (I), revealing that a preventive repair should be carried
out, or upon a failure (F). The inspection interval is taken to be k& = 4.

where the discounted value of the costs ¢, in unit time n is defined to be a™c, with
discount factor @ = [1 + (r/100)]~! and discount rate r% (r > 0):

?il aic£(¢7 07 k)pz(an 05 k)
1- ;?-.:—.1 azpi(¢a 07 k) ’

where Cy(n, ¢,8, k) are the expected discounted costs in time-interval (0, nA].

Third, the expected equivalent average costs per unit time are determined by aver-
aging the discounted costs. The notion of equivalent average costs relates the notions
of average costs and discounted costs in the sense that the equivalent average costs per
unit time approach the average costs per unit time, as ¢ tends to 1, from below:

Lo($,6,k) = lim Ca(n,6,6,k) = (6.9)

10'11%1(1 - Q)La((ba avk) = L(¢70a k) (610)

Before deriving the above cost-based criteria, we need to express the failure prob-
ability of a berm breakwater in terms of the limiting averages ¢ and #. By summing
over the possible values of the first time at which an armour breach occurs, Ty, the
probability of failure due to longshore rock transport in unit time 7 becomes

Ui(¢a 0)

Pr {failure in ([z — 1]A,iA]| ¢, 60}

Il

i:Pr{lei—hI¢}Pr{Xh_1 <y, Xp>vyl| 6} (6.11)

h=1
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fore=1,2,... and y = rop — s, where

Pr{Xp1 <y Xp> |0}‘-;[gr—lex {—2}— 9) (6.12)
-1 XY, AR Y _(h—l)' 0 P 0 = 4qi ? .
h=1,2,...,is a Poisson distribution (see Chapter 2). Using Eq. (6.5), the probability

of failure in unit time ¢ can be rewritten as a recursive formula in the following way:

0) = hZ $(1— ¢ "qn(8) = (1 — $) vi-1(¢,0) + $ :(9), (6.13)
i=1,2,... and vo($,0) :o, with mean lifetime and variance given by
E(T|¢) + E(HI0) = (1-¢)/¢+1+(y/0),
Var(To|¢) + Var(H|6) = (1-¢)/¢*+(y/6), (6.14)

where T} has a geometric distribution with parameter 0 < ¢ < 1 and H has a Pois-
son distribution with parameter y/6 > 0 (see Eqgs. (6.5) and (6.12), respectively). By
Egs. (6.23-6.29) of Appendix 6.7, the expected average costs per unit time, Eq. (6.8),
are

cr +cp [1—(1— ]+Z_1 [er — (1 + cp)] vi(4,0)
k+ Tk [ — Klvi($,0)
ov [66(8) = ThEL Ginran (9)aa(0)] 0
k4 Th [ - kvi(4,0) ’
whereas the expected discounted costs over an unbounded horizon, Eq. (6.9), are

La($,0,k) =

L(¢,0,k) =

(6.15)

ot {ertepfl—(1- ’“]} + T, [afer — oF (er + cp)] vi($,0)
[1—a*] =% [of — a*]vi(9,0)

oFoy [6x(9) = ThEL & niap(8)an(0)] 0
[1 - o*— T [of — ¥ vi(9,6)

In conclusion, we recommend choosing an optimal inspection interval £* for which
the expected average costs per unit time, E(L(®,0,k*)), or the expected equivalent
average costs per unit time, E((1 — a)Lq(®, ©, k*)), are minimal. The choice for one or
the other depends on the application and no general recommendation can be given. The
expected costs are taken with respect to the probability distributions of the unknown
random quantities ® and © which are judged to be independent. As « tends to 1, from
below, the expected equivalent average costs approach the expected average costs (by
Lebesgue’s Theorem of Dominated Convergence, we may interchange the order of the
operations of expectation and passing to the limit).

(6.16)



92 Ch. 6. Optimal maintenance decisions for berm breakwaters

6.4.2 Numerical results

Next, we apply the above maintenance model to the data obtained by Vrijling & Van
Gelder [135] (see Table 6.1). We consider a hypothetical harbour (in India) which is
protected by a berm breakwater, and focus on one breakwater section with an armour
layer having a rock volume of about 2500 stones. The costs of failure not only consist
of the costs of reconstructing the berm breakwater, but also of possible damage due to
wave disturbance in the harbour basin and of resulting downtime in ship handling.

The unit time for which the increments of longshore rock transport are distributed
as mixtures of exponentials (A = 1 year) and the parameters of the probability distri-
butions on the limiting averages rates ® and © have been assessed such that they fit
the data of Vrijling & Van Gelder [135] (see Table 6.1). In doing so, the probabilities
of no armour breach per unit time, i.e. E([1 — ®]'),i =1,...,50, are given by Fig. 6.3
and the probability of failure in time-interval (0,50] has the value 0.22. When using
the parameters of Table 6.1 and applying Monte Carlo integration {number of samples:
10,000), the average costs per year and the equivalent average costs per year are repre-
sented by the curves in Fig. 6.4. The optimal decision with respect to the criterion of
average costs is £* = 4 with expected average costs per unit time of 6371 Dfl, whereas
the optimal decision with respect to the criterion of equivalent average costs is k% = 5
with expected equivalent average costs per unit time of 5676 DAl.

In Table 6.2, the optimal inspection intervals are presented for different costs of
failure (for a discussion on determining these costs of failure, see Hauer et al. [59]): the
higher the costs of failure, the smaller the optimal inspection interval. Also, we have
investigated the sensitivity of the optimum to the variances of the probability distri-
butions of the limiting averages rates ® and © (while keeping the means unchanged).
In Figs. 6.5 and 6.6, the expected (equivalent) average costs per unit time are shown
for, respectively, Var(®) and Var(®) having a value one thousand times smaller than
the ones in Table 6.1. It can be concluded that the set of (nearly) optimal decisions is
more sensitive to the uncertainty in the limiting average rate of longshore rock trans-
port than to the uncertainty in the limiting average rate of occurrence of breaches in
the armour layer. All in all, the larger the uncertainty in the stochastic process of rock
displacement, the smaller the optimal inspection interval.

6.5 Conclusions

In this chapter, we have presented a decision model which enables the decision-maker to
optimise maintenance of berm breakwaters. The model has been derived on the basis of
the probability distributions of (i) the limiting average rate of occurrence of breaches
in the armour layer and (ii), given a breach has occurred, the limiting average rate
of longshore rock transport. As decision criteria, we have used the expected average
costs per unit time (no discounting) and the expected equivalent average costs per unit
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Table 6.1: The parameters of the maintenance model for the berm breakwater.

parameter description value dimension

A unit time 1 year

C] average rate longshore rock transport (0,00) stones/unit time
v shape parameter of Ig(8|v, p) 2.13

7 scale parameter of Ig(d|v, 1) 55.36

E(0) mean 49 stones/unit time
Var(0) variance 18420

o rel. frequency of armour breaches (0,1) breaches/unit time
a parameter of Be(¢|a, b) 0.5

b parameter of Be(¢|a, b) 0.5

E(®) mean 0.5 breaches/unit time
Var(®) variance 0.125

r discount rate per unit time 5 %

a discount factor per unit time 0.9524

cr costs of inspection 10 DAl

cp fixed costs of preventive repair 10* DA

cv variable costs of preventive repair 102 Dfl/stone

cF costs of failure 2.5 x10° DA

To initial resistance 2500 stones

s failure level 0 stones

k inspection-interval length IN  unit time

Table 6.2: Optimal inspection intervals for different costs of failure.

cp | 0.75 1.00 2.50 5.00 7.50 10.0 25.0

x 10° Dfl

Bl 7 6 4 3 2
k]l 24 11 5 3 3

2 1
2 1

year
year
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time (discounting). The stochastic process of rock displacement has been regarded as
a modified generalised gamma process.

The maintenance models that are presented in this chapter have the following ad-
vantages: they enable optimal inspection intervals to be determined under uncertainty,
they estimate how much money is needed for the future maintenance of berm break-
waters, and they can be expressed in explicit form when the limiting average rates of
rock displacement are given.

Even though the decision model has been used for obtaining optimal inspection
intervals only, it can also be applied for determining the optimal resistance of a berm
breakwater (in terms of the number of stones). The decision model is a delay-time
model. It can be applied to many fields of engineering to solve problems in maintenance
optimisation and life cycle costing.
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Figure 6.3: The probability of no breach in the armour layer per unit time: i.e.
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6.6 Appendix: Proof of theorem

Theorem 14 Suppose the infinite sequence of random quantities {D; : i € W} is
ly-isotropic and X, = Y%y D; for all n € N, then

E ([X]™ Tog)(Xn-1)Tiy.o0)(X2) | 6) =

e I S

forjn=1,2,...,5<n,m>0,y € (0,00), where I4(z) =1 if z € A and I4(z) =0
ifx & A. The quantity (n)m = I'(n +m)/T(n) is known as Pochhammer’s symbol.
Proof:

Since X, = 3_%, D; for all n € IN, it follows that the integration bounds are determined
by 0 < Xj £... < X,1 < X,. Moreover, X, ; <y and X, > y, and the Jacobian
equals one. Hence, we may write

B([x;" ][o,y](Xn—l)I(y,oo)(Xn)‘ 6) =

y Y Y Y S Tn
e .o «en —exp _ — d$n...dx1_
= - 1 = =y 0" 4
z1=0 Zj=%j-1 JTj41=%; Tn—1=Tn—-2 JTn=Y

This multiple integral can be solved in four steps.
First, integrating out the variable z,, gives:

o0 117 Tn 1 n—1 y
- - n=|= -5, 1
/x,Fy [9 eXp{ 0 } @ [9] eXP{ 0} (6:18)
Second, using the Dirichlet integral entails:
v v [y — "
ldejyr -+ dzjynojor) = ———. 6.19
</:;’3‘.|.1=:L'] ~/‘a:]+(n_j_1)=wj+(n_j_2) s+ j+( ’ 1) (n -] 1)r ( )

Third, reversing the order of integration and applying the beta integral leads to:

Y Y Y .
—-7—1
/ / / el [y — 2] daje - daade, =
z1=0 Jzo=xz; T;=Tj-1

o R i doday - da;_yd
“ee x] [y — m]] T14Ly -« - wj—l .'.E]
;=0 Jrj_1=0 x2=0Jz1=0

1 Y i n—ie
- o L
. ZJ=
1 . )
= G——:—l—)—l y" T 1B(m + j,n — ). (6.20)

Finally, combining Eqgs. (6.18-6.20) proves the theorem. O
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6.7 Appendix: The expected maintenance costs

In order to compare maintenance decisions over unbounded horizons for berm break-
waters, we need to determine two cost-based criteria: (i) the expected average costs per
unit time, Eq. (6.8), and (ii) the expected discounted costs over an unbounded horizon,
Eq. (6.9). These costs can be computed using renewal theory, where the renewals are
the maintenance actions restoring a berm breakwater to its “originally built” profile.
Defining a renewal cycle as the time-period between two renewals, we can derive ex-
plicit expressions for the expected cycle costs, the expected cycle length, the expected
discounted cycle costs, and the expected “discounted cycle length”. Recall that inspec-
tions are scheduled at times {jkA : j € IN} with inspection interval k € IN. The costs
of inspection are ¢z, the costs of failure are cr, the fixed costs of preventive repair are
cp, and the variable costs of preventive repair are cy. For convenience, let A = 1 and
cy = 0; the case ¢y > 0 is considered in the last subsection.

The probabilities of failure and preventive repair per inspection interval.
By using Eqgs. (6.11-6.13) and reversing the order of summation, the conditional prob-
ability of failure in time-interval (0, k], given ¢ and 6, has the following forms

Pr {failure in (0, %] | ¢,0} = (6.21)
k k ) k—i+1
= 260 =2 [1-(1-9""]al6) = 601 - ) [ )y qh(G)} .

Similarly, the conditional probability of preventive repair in time-interval (0, k], given
¢ and 6, can be written as

Pr { preventive repair at k| ¢,8} = (6.22)

=1

. . k—i+1
= ;«5(1 - ¢y [1 - ;; qh(a)} =[1-(1-¢)"] - X uil4,0).

The expected cycle costs (cy = 0).
On the basis of Egs. (6.21-6.22), the expected cycle costs can be decomposed into the
expected cycle costs due to inspection, preventive repair (cy = 0), and failure:

ci(¢7 03 k)pt(¢7 07 k) =

gk

1

I
-

[jer + cp] Pr { preventive repair at jk| 4,8} +

Il
.Mg

J=1
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co 7k
3 Y l(§ —Ver + cp) Pr{failure in (n — 1,n] | ¢, 0}

J=1n=(j-1)k+1

[jer +ep] (1 — )(3 Uk pr { preventive repair at k| 4,6} +

D18

<.
it
-

[(G— Der + ) (1 ¢)<j-1>’°§kjpr{fanure in (1 —1,4]| 6,60}

i=1

{u—(lq—m” —0=9) }{[1‘“‘ ]‘iﬁ’”ﬁ’}

c(l—¢)F
{[1—(1—¢)k12+1 }Z (¢:6)

cr+cp [1— 1—¢ k] + 3% [er — (e1 + cp)] vi(¢, )
1—(1-¢)F ’

bﬁa

.
il
-

(6.23)

where the second step follows from the “lack of memory” property of the geometric

distribution (in Eq. {6.5)).

The expected cycle length.
Since each renewal cycle ends either upon a failure or at a preventive repair, the
expected cycle length can be written as

(o]

i=1

> ipi(¢,0,k) = ) jkPr{preventive repair at jk|¢,0} +

i=1

Z Z n Pr {failure in (n — 1,n}| ¢,0}

=1 n=(j-1)k+1

= Y jk(1- ¢)(j—1)k Pr { preventive repair at k| ¢, 8} +

i=1

oo k .
SS[G — DE+i] (1 — ¢)9 ™% Pr {failure in (i — 1,4]| 6,6}

j=14=1

- g]’k(l—@“‘”‘“{[ 0 -6] - L oo} +
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k k ) 1k k
Z(J — k(L= @)U 0i(4,0) + 30 (1= ) Y in(4,0)
i=1 j=1 =1

bt S [ — Kloi(8,6)
= (6.24)

The expected discounted cycle costs (cv = 0).
The expected discounted cycle costs consist of the expected discounted costs due to

inspection, preventive repair (cy = 0), and failure:

i oz"c,-(¢, 0, k)pt(¢’ 97 k) =

i=1

Z {(E o | ep + o Cp:l Pr { preventive repair at jk|¢,60} +

j=1

7=l n=(j-1)k+1

io: 3 l:(z ahk) a+a CF] Pr {failure in (n — 1,n] | ¢,8}

©0 J .
Z [ 3 o) e+ aJkCP] qS)(’_l)k Pr { preventive repair at k| $,0} +

h=1

oo k i-1 . . .
ZZ [( ahk) cr + a(’_l)k+’6p:| (1 — ¢)U=D% Pr {failure in (i — 1,4] | 4, 6}

i=1 h=1

.
Il
-
.

(i ahk) cr+ aich} (1- ¢)(1‘—1)k{[1 —(1- ¢)k} _ i:ui@, 0)} +

=1

5 ( a’““) (=90 er 3 u(6,0)+ Sl (1= 0 er Yo afoi(9,0)

5 (125 o] a a0 0= 9] -

.- 1)k cr Tioy @vi( 4,6
2 et or) (L= S (60 + %@:ﬁ%

e {1 Coti-a- 6)¥| } . oFep [1 - (1- ¢)¥
1-[a(l-9))" 1—[o(1 - ¢))"
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o (er+ep) TF vi(8,0) | cr i, a'vi($,6)

1-[a(1-¢) 1—[o(1—¢)f
oF {cI +ecp [1 -(1- ¢)kl} + 5k, [a"cF —aF (e + cp)] vi(4,0) 6.5
- T - 65

The expected “discounted cycle length”.
Similarly, the expected “discounted cycle length” becomes

Za‘@(q&, 0,k) = Z o’* Pr { preventive repair at jk|¢,0} +
i=1

i=1

00 gk
Z > o"Pr{failurein (n — 1,n]| ¢,0}

J=1ln=(j-1)k+1

= Z oF (1 - ¢)(j_1)k Pr { preventive repair at k| ¢, 8} +

i=1

© k .
Z Z oli—Dk+i (1- ¢)(’_1)k Pr{failure in (¢ — 1,7] | ¢,8}

i=1:=1

= Sara-gr - e - Suen)+

o . ko
Yo la (1= )Y afui(4,0)

a1 (- ¢+ Tk [0 — ot wi(4,0)
- T . (6.26)

The expected variable costs of a preventive repair per cycle (cy > 0).

The costs that remain to be determined are the expected variable costs of a preventive
repair at time jk, where j,k € IN. Let j = 1. HT; = ¢ —1,1 <7 <k, then the variable
repair costs are proportional to the amount of transported rock in the remaining time
up to k not inducing a failure: i.e. Xz_iy1 < y. By taking the expectation of X ;41
(subject to Xgz_iy1 < %), summing over all possible values for ¢, and using Theorem 14,

we obtain

E (amount of transported rock in (0, k] with preventive repair at k| ¢,8) =
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k . 0
= Y o1 - ¢ [ > B (X Toa(Xn-1) oo (Xn)| o)] =
=1 h=k—i+2
k . &, k—i+1 1 y1h ! y
- g £, () v gl
A PP -1y g 0
k . i—1 1yt ¥
= Ylk—i+1p(l—¢)10 | > 0 [5] exp {— 5}
=1 h=k—i4+2 '"*
k _ k—it2
= Sle- G-l - 70 [1- 3 0l
i=1 h=1
k k+1 k—h+2
=[Sl - Dl - 97 = 2 3 k= 1l - o)
1=1 h=1 i=1
B4l
= [ﬁk,k(sb) -2 fk—h+2,k(¢)<Zh(9)] 0, (6.27)
h=1
where we have used the finite sum
&) = Z[k (i = D]g(1 - ¢)**
= k——{l— [+ (n—k-1)g)(1 - ¢)" '} (6.28)
for k,n=1,2,.... Since the geometric distribution possesses the “lack of memory”
property, the expected (discounted) variable costs of a preventive repair per renewal

cycle are

E (variable preventive repair costs per renewal cycle| ¢,8) =

_ atey [Ek,k(¢)— Ziifhhﬂ,k@)gh(m]g (6.29)

1-[a(l-¢)

for0 <a<l.



Chapter 7

Optimal Maintenance Decisions for
the Sea-Bed Protection of the
Eastern-Scheldt Barrier

Jan M. van Noortwijk, Matthijs Kok, and Roger M. Cooke

Abstract. To prevent The Netherlands from flooding, a flood defence system has been
constructed, which must be inspected and, when needed, repaired. Therefore, one might be
interested in obtaining cost-optimal rates of inspection, i.e. rates of inspection for which the
expected maintenance costs are minimal and for which the flood defence system is safe.

For optimisation purposes, maintenance models have been developed for two components
of the sea-bed protection of the Eastern-Scheldt barrier: (i) the block mats and (i) the rock
dumping. These models enable optimal maintenance decisions to be determined on the basis
of (possibly large) uncertainties in the limiting average rates of deterioration. The modelling
assumption that the stochastic processes of scour erosion and rock displacement depend just
on limiting averages, leads us to regard them as generalised gamma processes. (This chapter
has previously been published as [130}.)

Keywords. maintenance, gamma processes, renewal theory, decision theory, Eastern-Scheldt
barrier, rock displacement, scour erosion.
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7.1 Introduction

In this chapter, we consider the problem of inspecting the sea-bed protection of the
Eastern-Scheldt storm-surge barrier. Since the barrier is planned to function for a
period of 200 years, it is inspected to reveal possible deterioration that might endanger
the stability of the barrier. Therefore, one might be interested in obtaining cost-optimal
rates of inspection, i.e. rates of inspection for which the expected maintenance costs
are minimal and for which the barrier is safe.

A large number of papers have been published on the subject of optimising main-
tenance through mathematical models. For an, inherently incomplete, overview see
Barlow & Proschan [5], McCall [85], Pierskalla & Volker [96], Sherif & Smith [108],
Sherif {109], Valdez-Flores & Feldman [118], and Cho & Parlar [12]. Most maintenance
optimisation models are based on lifetime distributions or Markovian deterioration
models. Unfortunately, only a few of them have been applied (see Dekker [28]). Ac-
cording to De Jonge, Kok & Van Noortwijk [25], there are two possible reasons for this
poor applicability. First, from the theoretical point of view, there is often no interest
in “details” that are of practical importance: a problem description is often lacking or
even purely hypothetical. Second, from the practical point of view, there is little ex-
perience in using maintenance optimisation models and it is often hard to gather data
for estimating either the parameters of a lifetime distribution or the transition proba-
bilities of a Markov chain. Moreover, in case of well-planned preventive maintenance,
complete lifetimes will be observed rarely. The authors hope to develop a methodology
that might bridge the gap between theory and practice by modelling maintenance on
the basis of the main uncertainties involved: the values of the limiting average rates of
deterioration. To achieve this, deterioration processes can best be regarded as gener-
alised gamma processes. In The Netherlands, generalised gamma processes have also
been used to model decision problems for optimising maintenance of beaches, berm
breakwaters, and dykes (see Chapters 4, 6, and 5, respectively).

The chapter is organised as follows. A brief description on the Eastern-Scheldt
barrier is given in Sec. 7.2. In Secs. 7.3 and 7.4, we present maintenance models for
two components of the barrier: the block mats and the rock dumping, respectively.
Some necessary definitions and theorems are presented in two appendices.

7.2 The Eastern-Scheldt barrier

With storm-induced tides of some 4 metres above average sea level, the flood of Febru-
ary 1, 1953, caused a severe catastrophe in Zeeland, The Netherlands. Almost 200,000
hectares of polderland flooded, resulting in huge losses of life and property. In the
south-west of The Netherlands, 1,835 people and tens of thousands of animals were
drowned. To avoid future losses due to floods like the one in 1953, the Dutch parlia-
ment adopted the so-called Delta Plan. The greater part of this plan called for raising
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the dykes and for closing the main tidal estuaries and inlets by a network of dams
and barriers. Since the Delta Plan will soon be completed, the attention is shifting
from building structures to maintaining structures. Hence, the use of maintenance
optimisation models is of considerable interest.

This chapter is devoted to modelling preventive maintenance of the most expensive
and the most complicated structure of the Delta Works: the Eastern-Scheldt storm-
surge barrier. The design of this lift-gate barrier is complex for it has to satisfy require-
ments in the following areas: (i) safety (flood protection during severe storm-surges
when the gates are closed), (ii) environment (preservation of the natural salt-water en-
vironment during normal weather and hydraulic conditions when the gates are open),
and (iii) transport (shipping access to the North-Sea and a road-connection).

The Eastern-Scheldt barrier has been built in three closure gaps separated by two

Figure 7.1: The map of the Eastern-Scheldt estuary showing the two artificial dredge-improved is-
lands (‘Roggenplaat’ and ‘Neeltje Jans’) and the three tidal channels controlled by lift-gate barriers
(‘Hammen’, ‘Schaar’, and ‘Roompot’).
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artificial islands (see Fig. 7.1). It has 62 pier-supported steel gates each with a span
of nearly 42 metres and a height varying from 6 to 12 metres. To provide for the
long-term stability of the barrier, the supporting concrete piers are embedded with
several layers of rock and an adjoining sea-bed protection has been constructed with
a width of about 500 metres on either side of the center line of the barrier. This
sea-bed protection consists of asphalt mastic and block mats in the outer periphery,
and graded-filter mattresses under the piers (see Fig. 7.2). Since the protection can
be damaged, it is monitored for the appearence of scour holes. In this situation, the
rates of inspection and the costs of maintenance have to be optimised.  For brief
summaries on the technical aspects and the maintenance aspect of the Eastern-Scheldt
barrier, see Rijkswaterstaat [103] and Watson & Finkl [140], and De Jonge, Kok & Van
Noortwijk {25], respectively.

OGSTERSCHELDE
explanation

asphalt mastic ([T stone asphalt mats edge of the bed protection
rock dumping on the' norpole
I block mats m{hmmm e anchorpol

riprap on the banks rock dumping on the sill

Figure 7.2: View from above of the sea-bed protection of the Eastern-Scheldt barrier at the tidal
channel ‘Roompot’ (from Rijkswaterstaat (1994)).
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7.3 Maintenance of the block mats

The block mats consist of synthetic material to which small concrete-blocks (with a
height of 17 cm) are attached in a regular pattern. The purpose of this section is to
obtain safe and cost-optimal rates of inspection for these mats.

7.3.1 Inspection and repair of scour holes

Due to extreme tidal currents or ship anchorings, the block mats may be damaged in
such a way that sands wash away and scour holes appear. To detect possible scour, the
block mats are inspected by means of acoustic measurements. If acoustic inspection
reveals a scour hole, then a visual dive inspection will be carried out, followed by a
repair. Scour holes can only be detected when they are deeper than about 2 metres.
By approximation, we therefore assume the probability of detection to be equal to one
when the scour hole is deeper than z = 2 and zero otherwise, where z is the detectability
level. To confirm the statement that there is often a lack of data in practice: up to
now, no scour holes have been detected!

Since preventive maintenance is based on the condition of the block mats, we are
dealing with so-called condition-based preventive maintenance. Apart from condition-
based repairs, it might be economic to perform (aperiodic) condition-based inspections
as well. In practice, however, periodic inspections are often to be preferred since the
necessary manpower and budget can be anticipated and scheduled well beforehand.
Furthermore, we assume that inspection of the whole block mats takes negligible time,
does not degrade the block mats, and entails a cost c;.

A repair is defined as placing graded rip-rap on a scour-hole surface approximately
being a hemisphere of radius A, where k is the scour hole depth (in metres). The costs
of repairing one scour hole can be subdivided into the fixed cost ¢ (cost of mobilisation
like shipping transport) and the variable cost ¢, (cost per square metre rip-rap). Hence,
the costs of repairing one scour hole, which is A metres deep, are

e(h) = ¢; + 2nh’e,. (7.1)

Although we assume possible repairs to be carried out during inspections, the decision
model may be extended with delay-times between detecting holes and repairing holes.

In summary, the block mats must be inspected to avoid instability of the barrier
due to the following uncertain deterioration characteristics: (i) the average rate of
occurrence of scour holes at the whole block mats and (ii) the average rate of current-
induced scour erosion given there is a scour hole. Because there is no deterioration data
available, we have to rely on prior expert judgment. Moreover, since the decision prob-
lem of obtaining safe and cost-optimal inspection rates is characterised by the above
two uncertainties, the decision model should be based on them as well. These uncer-
tainties can best be represented by probability distributions, where Bayes’ theorem can
be used to update subjective prior opinion with actual observations.
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7.3.2 The rate of occurrence of scour holes

The lack of observations has prompted us to assume that the rate of occurrence of
scour holes does not depend on the location and the time. Although this assumption
may be criticised for being unrealistic, the probabilistic models representing location-
and timerdependent inter-occurrence times are inherently more complex and, not the
least important, require many observations to estimate their parameters. Recall that
no scour tholes have been observed yet and that, as a consequence, even subjective
opinion on average rates is hard to obtain.

Given the above problem description, we shall derive the probability model of
the scour-hole inter-occurrence times by making two reasonable judgments: the inter-
occurrence times (i) are exchangeable and (ii) exhibit the “lack of memory” property.
These are explained below. Let us denote the successive times between occurrences
of scour holes by the infinite sequence of non-negative real-valued random quantities
11,1, . ...

First, the inter-occurrence times are assumed to be exzchangeable: i.e. the order
in which the scour holes occur is judged to be irrelevant. In mathematical terms,
this can be interpreted as that the probability density function of the random vector

T, = (T1,...,T,) is invariant under all n! permutations of the coordinates, i.e.
Py, Ty (tla ey tn) =Pn,..Tn (t‘ll'(l)7 LR ,tr(n)) ) (72)
where 7 is any permutation of 1,...,n. The infinite sequence of random quantities

{T; : © € IN} is said to be exchangeable if T, is exchangeable for each n € IN. The
assumption of exchangeability is weaker than the assumption of independence.

Second, the inter-occurrence times are assumed to exhibit the “Jack of memory”
property: i.e. the probability distribution of the remaining time until the occurrence
of the first scour hole does not depend on the fact that no scour hole has appeared yet
since the completion of the barrier in 1986 (for a formal definition, see Theorem 16 of
the appendix). Another explanation of the “lack of memory” property is the following.
Suppose the second scour hole has occurred at time ¢, i.e. ¢; + ¢, = . If the occurrence
time of the first scour hole, t;, could be any time in the interval [0,¢], then the “lack
of memory” property holds. Actually, pry 41, (1] t) =t I[o,4(t1), being the uniform
distribution on [0,1].

Under the assumptions that the infinite sequence 13,75, .. is exchangeable and
satisfies the “lack of memory” property for all n € IN, we can write the joint probability
density function of Ti,...,T, as a mixture of conditionally independent exponentials
(using Theorem 16 or 17 from the appendix):

co ] t;
Pt = [ [Tyee{-5}d0a0) = (D) (13)
i=1
for (#1,...,tn) € R} and zero otherwise, where Ry = [0,00). The infinite sequence
of random quantities {7;:7 € IN} is said to be l;-isotropic (or l;-norm symmetric),
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since its distribution can be written as a function of the /;-norm. In general, an infinite
sequence of random quantities is said to be I -isotropic, if its distribution can be written
as a function of the /,-norm (see Misiewicz & Cooke [90]). The random quantity A, with
probability distribution @4, describes the uncertainty about the limiting average inter-
occurrence time of scour holes: limy,_..,[(X%, T:)/n] (see e.g. Barlow & Mendel [3] and
Chapter 2). Note that the information about the unknown parameter A, contained
in 7y, ...,T,, is summarised by the statistic [n, 17, Ti] which is sufficient for A. The
characterisation of Eq. (7.3) in terms of the “lack of memory” property is due to
Diaconis & Freedman [42] (see Theorem 16 in the appendix) and the characterisation
of Eq. (7.3) in terms of conditioning on the sufficient statistic [n,327_; T3] is due to
Diaconis & Freedman [41] (see Theorem 17 in the appendix). For an overview on
statistical modelling using exchangeability and sufficiency, see Bernardo & Smith 19,
Ch. 4].

For modelling the occurrences of scour holes, only the probability distribution of
the average inter-occurrence time remains to be determined. To keep the mathematics
of the decision model tractable, we impose the property of posterior linearity intro-
duced by Diaconis & Ylvisaker [43, 44], i.e. E(T3|T1 = t1) = aty + b for some constants
a,b> 0. Remark that, due to exchangeability, before observing T1, E(T3) = E(T).
If posterior linearity holds, then the mixing distribution @4 is the inverted gamma
distribution Ig(A|e, 8) (see also Theorem 16 from the appendix). The mathematical
tractability is especially useful if one wants to update the prior distribution Ig(A|e, B)
with actual observations #,...,t,. In fact, using Bayes’ theorem, the posterior distri-
bution is Ig(Ala +n,8 + X%, t;). Owing to the fact that the posterior mean can be
written as a linear combination of the prior mean and the sample mean, the property
of posterior linearity has been satisfied.

7.3.3 The rate of current-induced scour erosion

Beside the uncertainty in the average rate of occurrence of scour holes, we have to take
into account the uncertainty in the average rate of current-induced scour erosion. This
average is taken over all possible scour holes deeper than z metres and over all possible
locations at the block mats. For each scour hole, erosion is measured in terms of the
scour-hole depth A, where A > z and z = 2.

The purpose of this subsection is to characterise the stochastic process of scour
erosion in terms of the only (subjective) information that is available: the probability
distribution of the average rate of scour erosion. In doing so, we shall adopt the follow-
ing two assumptions: with respect to any uniform time-partition and any location at
the block mats, the increments of erosion (i) are non-negative and exchangeable; and (ii)
have a joint conditional probability distribution, given their sum, which can be repre-
sented by a multi-dimensional beta distribution (Dirichlet distribution). Let us denote
the erosion process by {X(t) : t > 0}: a non-decreasing continuous-time stochastic pro-
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cess with Pr{X(0) =0} =1 and X(¢) representing the cumulative erosion, per scour
hole, at time ¢.

The first assumption means: for every uniform time-partition in time-intervals of
length 7 > 0, the infinite sequence of random increments of erosion, D;(7) = X (ir) —
X([z = 1]7), i € IN, is assumed to be exchangeable, where D;(7) > 0 for all 3.

The second assumption means: for all 7 > 0, the conditional probability density
function of the first increment of erosion, when the sum of the first and the second
increment is given, can be expressed as a transformed beta distribution with both
parameters equal to a7, i.e.

I'(2ar) 6 Yz —&]*! )
pD1(T)|X(2T)(61I J}') = [F(aT)P 1 g v I[O,x](él) = Be ;1

ar, m') % (7.4)
for some constant a > 0 with
E(Di(7)|X(2r)=2) = =z/2,
Var(Di ()| X(2r)=2) = [o/27/(2ar +1).

We now indicate how Eq. (7.4) is derived. To begin with, if D; were not symmetri-
cally distributed about its mean, z/2, then the random quantities Dy and D; would
not be exchangeable. Hence, the parameters of the beta distribution should be equal.
Moreover, in Chapter 3 we actually have derived Eq. (7.4) in two ways: by condition-
ing on sums of increments and by invoking isotropy. The characterisation in terms of
conditioning on sums of increments extends the results of Diaconis & Freedman [41]
(Theorem 17 from the appendix) by achieving consistency in the sense that proba-
bility distributions of increments and sums of increments belong to the same fam-
ily of distributions and by assuming the probability model to be independent of the
scale of measurement (i.e. to be a scale mixture). The characterisation in terms of
isotropy is the following: if, for all 7 > 0, the infinite sequences of powers of increments,
{D;i(r)*0) 1 i € IN}, are l(,)-isotropic for some positive continuous functions a(7) and
B(7), then Eq. (7.4) follows.

By characterising exchangeable erosion processes in terms of conditional distribu-
tions given sums of increments, i.e. in terms of Eq. (7.4), for all 7 > 0, we so characterise
the generalised gamma process. Indeed, it follows from Theorem 17 (see the appendix)
with h(y) = y*"~!/T'(a7) that, for all 7 > 0, the joint probability density function of the
increments Dy(7),..., D,(7) can be written as a mixture of conditionally independent
gamma densities:

0o N 6;17—1 arler (175i
i t= [T ] 8 a9

=1

for some constant a > 0 with

E(X(nT)) = E(n6(7)),
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Var(X(ner) = [1+ =] B([n0(r)]) ~ [EnO(r)]

for all 7 > 0, provided the first and the second moment of the probability distribution
of O(7) exist.

The generalised gamma process has three useful properties.

First, the probability distribution Pg(, on the random quantity ©(r), with possible
values § € (0, cc), represents the uncertainty in the unknown limiting average amount
of erosion per time-interval of length 7: lim,—oo (30 D:(7))/n]. By the strong law of
large numbers for exchangeable random quantities, the average converges with proba-

bility one if E(D1(7)) < oo (see Chow & Teicher [13, p. 227]).

Second, the summarisation of the n random quantities Dy (7),. .., D,(7) in terms of
the statistic [n, -7, D;(7)] is sufficient for the unknown limiting average erosion ©(r).
In fact, the characterisation in terms of conditioning on sums of random quantities is
motivated by sufficiency ideas, since, by sufficiency, the conditional probability density
function pp, (r)(x (2r),0(-)(é1] Z, @) does not depend on 4.

Third, the mixture of gamma’s in Eq. (7.5) transforms into a mixture of exponen-
tials if 7 = a~1. As we shall see in Secs. 7.3 and 7.4, for this unit-time length, denoted
by A = @~ !, many probabilistic properties of the stochastic process, like the probabil-
ity of exceedence of a failure level, can be expressed in explicit form conditional on
the limiting average. The unit time for which the increments of erosion are distributed
according to a mixture of exponentials, i.e. are [;-isotropic, follows directly from the
characterisation in terms of conditioning on sums of increments in Eq. (7.4). From
this equation (for fixed 7 > 0), it can be seen that the smaller the unit-time length for
which the increments are {;-isotropic, i.e. the smaller A = ™!, the more deterministic
the erosion process.

Note that specifying the /i-isotropic grid of the generalised gamma process is sim-
ilar to specifying the precision of the Brownian motion with drift (see e.g. Karlin &
Taylor [71, Ch. 7]). This stochastic process is often used to model stochastic dete-
rioration. Unfortunately, the Brownian motion allows for a probability of “negative
deterioration”, especially when large uncertainties are involved.

In conclusion, we advocate regarding the stochastic erosion process as a generalised
gamma process with probability distribution on the limiting average rate of erosion.
This process does not entail extra difficulties, but has the advantage that it models
realistic non-negative deterioration rather than unrealistic real-valued deterioration.
As for the limiting average inter-occurrence time, we impose the property of posterior
linearity and assume the probability distribution of the limiting average erosion, per
unit time of length A, to be the inverted gamma distribution Ig(v, ).
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7.3.4 The maintenance decision model

Based on the two stochastic processes of the occurrences and the development of scour
holes, which are judged to be independent, we can formulate the maintenance optimi-
sation model. From now on, we choose our units of time so that the increments of scour
erosion per unit time are /;-isotropic (with respect to {([n — 1JA,nA]: n € IN}). For
notational convenience, let D, = D,(A), X, = ¥r_, Dy for alln € IN, and let © repre-
sent the uncertainty in the limiting average rate of scour erosion lim,_,[(Y%, D;)/n].
Subsequently, we determine the expected number of scour holes that occur per unit
time and the expected cumulative amount of detectable scour erosion.

When the limiting average inter-occurrence time has the value A, then the scour
holes arrive according to a Poisson process with arrival rate A~!. It is well-known (see
e.g. Karlin & Taylor [71, pp. 173-175]) that the number of scour holes occurring in
unit time ¢ follows a Poisson distribution with parameter A/A:

(A/AP e
1

Pr { number of holes in ith unit time = j| A} = (7.6)

for j =0,1,2,.... The expected number of scour holes that occur in unit time i can
simply be written as s;(A) = A/X and does not depend on i (due to the “lack of
memory” property).

When the limiting average rate of scour erosion per unit time has the value #, then
a scour hole that first could have been detected in unit time 7, but is inspected in unit
time k, entails the following expected costs of repair (using Eq. (7.1)):

ui(0,k) = ¢5 + 27c, F ([z + Xp_in]? 1 0) (7.1)

where 1 <: < k and X, having a gamma distribution Ga(rn,1/8) for all n € IN (for the
definition of the gamma distribution, see Appendix A).

Our main interest is to determine an inspection interval of length kA, k € IN,
for which the expected maintenance costs are minimal and the barrier is safe, where
inspections are carried out at times {jkA : € IN}. Let L(A, 8, k) be the monetary loss
when the decision-maker chooses inspection interval k, ¥ € IN, and when the limiting
averages A and f are given. Under the requirement that the barrier is safe, the decision-
maker can best choose the inspection interval k* whose expected loss, E(L{A, ©,%*)),
is minimal. The decision &* is called an optimal decision (see e.g. DeGroot [27, Ch. 8]).

The best choice for the loss is the expected average costs per year (see Sec. 7.4),
which can be determined by averaging the maintenance costs over an unbounded time-
horizon. Since we have renewal cycles of length kA, the average costs per year becomes:

cr+ Ele u; (6, k)s;(X)

A , (7.8)

L(\6,k) =




7.3. Maintenance of the block mats 113

where the numerator consists of the costs of inspection ¢; plus the costs of repairing k
possible scour holes, summed over all units of time in which they may occur, times the
expected number of occurrences. Note that since the expected discounted costs over an
unbounded horizon (see Sec. 7.4) approach zero, from above, for unbounded inspection-
intervals, the criterion of discounted costs is not useful for solving this decision problem.

The evaluation of the average costs in Eq. (7.8) is straightforward: by induction
and using the gamma integral, we get

k k .

m m m+k— +k

S B (X |0) = mlo Z( o Z)zmw"L(’;H) (7.9)
=1 =1

form =0,1,2,...and k= 1,2,.... Substitution of Eqs. (7.7) and (7.9) into Eq. (7.8)

yields

L)\, 6,k) = i— +{es+2mey [ + 20(k +1) + 62(k + 1)(k + 2)/3] } % (7.10)

Up to now, we did not incorparate the possibility of a severe failure of the block
mats such that the barrier is unsafe. Strictly speaking, costs of failure due to potential
unsafe situations should be incorporated as well. However, what is “unsafe” and what
are the costs of failure involved? The costs of failure not only consist of costs due to
damaged block mats, but also of possible costs due to instability of the barrier, and,
when there is a severe storm-surge, of possible costs due to flooding. Unfortunately,
these costs are very hard to determine or to assess. For this reason, we have chosen to
leave out the failure costs, but to introduce an upper bound for the inspection interval
with the following property: when this upperbound is crossed, the block mats are said
to be unsafe in the sense that there is at least one scour hole deeper than a certain
failure level, say y. The probability of this event should be smaller than a predefined
norm probability which itself is a function of the inspection-interval length kA. For
example: 1 — (1 — Pnom)kA, where pnorm 18 the annual norm probability.

In mathematical terms, the probability of failure of the block mats can be expressed
as follows. By assuming the scour holes being independent given § and by rewriting
the probability of the event “in (0,kA] at least one scour hole occurs that is deeper
than y metres” as one minus the probability of the event “in (0, kA] no scour holes
occur that are deeper than y metres”, we get

vr(X,0) = Pr{in (0,kA] at least one hole is deeper than y| A, 8}

- oy BT

i=135=0

A/A) e” [p {2+ Xpip <yl0}

Il

A k k—-i+1
1—exp{—72 S Pr{Xy 1 <y-22X; >y-—z|6}}, (7.11)

=1 h=1
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where the probability of failure of one scour hole follows the Poisson distribution:

Pr{Xs1 <z X,>z|0}= D _1 o [g]h_l exp{——g—} = gn(0,z) (7.12)

for h=1,2,...,0 >0, and z = y — z (see Chapter 2).

In summary, the decision-maker can best choose the inspection-interval &* whose
expected long-term average costs of maintenance are minimal and whose expected
probability of failure is safe:

E(L(A,0,F) = %éi{)lE(L(A,@,k)), where (7.13)

D = {k:keIN;Ewi(A,0)) <1— (1 - prorm)*®}.

Although explicit computation of E(vi(A, ©)) is not possible, reasonably sharp lower
and upper bounds have been found (see Theorem 15 of the appendix).

For obtaining optimal inspection and repair decisions for the block mats, we use
the parameters in Table 7.1. The unit time for which the increments of scour erosion
are distributed as mixtures of exponentials has been determined by specifying the
conditional probability density function of the amount of scour erosion in a period of
six months when the amount of erosion in a period of one year is given to be 10 metres
(using Eq. (7.4) shown in Fig. 7.3). The optimal decision k*, satisfying Eq. (7.13), is

Conditional probability density function of X(0.5) given X(1)=10 metres
0.4 T T T T T T T T T

0.3r

6 7 8
Amount of scour erosion in time-interval [0,0.5] = x(0.5) metres

Figure 7.3: The conditional probability density function of the amount of scour erosion in a period of
six months, X(0.5), when the amount of erosion in a period of one year is X (1) = 10 metres.
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Table 7.1: The parameters of the maintenance model for the block mats.

parameter description value dimension

A unit time 0.05 year

0 average rate of scour erosion per unit time  (0,00) m/unit time

Bo.05/ A [6%-percentile of Ig(f|v, 1)/ A 7 m/year

Oo9s/ A [95%-percentile of Ig(0ly, )]/A 13 m/year

v shape parameter of Ig(8]v, 1) 28.7

7 scale parameter of Ig(f|v, 1) 13.3

E(0) mean of the average rate of scour erosion 0.5 m/unit time

E(©/A)  mean of the average rate of scour erosion 10 m/year

A average scour-hole inter-occurrence time (0,00) year

Aoos 5%-percentile of Ig(\|a, 8) 1 year

Ao.95 95%-percentile of Ig(A|e, 8) 10 year

o shape parameter of Ig(A|e, ) 2.46

8 scale parameter of Ig(A]a, 3) 5.46

E(A) mean of the average inter-occurrence time 4 year

cr costs of inspection 125,000 DA

cy fixed costs of repairing one scour hole 100,000 DM

cy variable cost of rip-rap 159 DAl/m?

R scour hole depth (0,00) m

z scour-hole detectability level 2 m

Yy scour-hole failure level 15 m

Prorm annual norm probability of failure 0.01

k inspection-interval length N unit time

k> optimal inspection-interval length 20 unit time

k*A optimal inspection-interval length 1 year
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Figure 7.4: The expected average costs per year for the block mats.

Bounds for the probability of failure of the block mats
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Figure 7.5: The lower and upper bounds for the expected probability of failure of the block mats
crossed by the norm probability of failure.
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an inspection interval of one year whose expected average costs per year are 2 x 10°
Dutch guilders. Although the maintenance costs are minimal for an inspection interval
of 1.5 years (see Fig. 7.4), the barrier is unsafe for inspection intervals larger than
1 year (see Fig. 7.5). For practical purposes, no less important than obtaining a unique
optimal decision, however, is obtaining a range of nearly cost-optimal and safe decisions.
The decision-maker can find an optimum balance between cost and safety using the
curves in Figs. 7.4 and 7.5.

7.4 Maintenance of the rock dumping

Using a similar method to that used for the block mats, we can obtain cost-optimal rates
of inspection for the rock dumping of the barrier. Millions of tons of rock rubble were
placed at the sea-bed protection near the center line of the barrier (see Fig. 7.2). This
protection is subject to current-induced rock displacement, which has to be monitored
by means of acoustic measurements and, if necessary, has to be repaired. The inspection
problem is due to Kok [73, 74]; it also has been studied in Chapter 2. Because it was
not our purpose to determine optimal maintenance decisions in Chapter 2, we revisit
this inspection problem and use the failure model of Chapter 2 to determine optimal
rates of inspection.

By the same reasoning as for the process of scour erosion, we can best regard the
stochastic process of rock displacement as a generalised gamma process with an inverted
gamma distribution as mixing measure (see Sec. 7.3.3). The infinite sequence of ;-
isotropic increments of rock displacement is denoted by {D;:¢ € IN}. The resistance
of the upper rock layer of the rock dumping, R, is defined as the number of stones
removed (at time zero: ro = 0). Due to the stochastic process of rock displacement,
the resistance in unit time n can be written as

R,=ry—3F Dp=ro—Xn, neN. (7.14)

We consider one steel gate section and assume perfect inspection in the sense that the
actual resistance can be determined without uncertainty.

Let the rock dumping be inspected at times {7kA :j € IN} for k € IN. Further-
more, inspection takes negligible time, does not degrade the rock dumping, and entails
fixed costs ¢;. We may regard the maintenance process as a renewal process, where
renewals bring the rock dumping into the “as good as new state”. Each renewal cycle
ends either upon failure or at an inspection time jkA when the inspection reveals that
a preventive repair should be carried out (for some j € IN). A failure is defined as
the event in which the resistance R drops below the failure level s: R < 5. A preven-
tive repair is defined as the event at which inspection reveals that the resistance has
crossed the preventive repair level p while no failure has occurred: s < R < p, where
5 < p < ro. A failure costs ¢z Dutch guilders, while a preventive repair costs cp Dutch
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guilders. Let the renewal times be conditionally independent random quantities having
a discrete probability function p;(4, k), 1 € IN, when the limiting average rate of rock
displacement @ is given and the decision-maker chooses inspection decision k. The costs
associated with a renewal at time A are denoted by ¢;(0, k), ¢ € IN.

Since the planned lifetime of the barrier is very large, maintenance decisions can
best be compared over an unbounded time-horizon. As we have pointed out in Chap-
ter 4, there are basically three cost-based criteria that can serve as loss functions: (i)
the expected average costs per unit time, (ii) the expected discounted costs over an
unbounded time-horizon, and (iii) the expected equivalent average costs per unit time.
These cost-based criteria can be obtained using the discrete renewal theorem (see e.g.
Feller [47, Ch. 13] and Karlin & Taylor [71, Ch. 3]).

First, the expected average costs per unit time are determined by averaging the
expected costs over an unbounded horizon:

1 C(naoak)_Z?ilcﬂ'(e’k)pi(&k)
s = sy S - ERelbtnleh)

where C(n,0,k) are the expected costs in time-interval (0,nA]. Eq. (7.15) is a well-
known result from renewal reward theory (see e.g. Ross [105]).

Second, the expected discounted costs over an unbounded horizon are determined
by summing the expected discounted values of the costs over an unbounded horizon,
where the discounted value of the costs ¢, in unit time n is defined to be o™c, with
discount factor @ = [L + (r/100)]~! and discount rate r%, where r > 0:

Y2y a0, k)pi(9, k)
1- ?—3—1 aip;(a, k) ’

(7.15)

L,(6,k) = nh_{& Ca(n,8,k) = (7.16)
where C,(n, 8, k) are the expected discounted costs in time-interval (0, nA].

Third, the expected equivalent average costs per unit time are determined by
averaging the discounted costs over a “discounted” unbounded horizon (of length
1/(1 — @)). In fact, the notion of equivalent average costs relates the notions of average
costs and discounted costs in the sense that the equivalent average costs per unit time
approach the average costs per unit time, as « tends to 1, from below:

lim (1~ &)La(6,k) = L(0, ). (7.17)

The unit time for which the increments of rock displacement are distributed as
mixtures of exponentials has been determined by specifying the conditional probabil-
ity density function of the amount of rock displacement in a period of 50 years when
the amount of erosion in a period of 100 years is given to be 70 displaced stones (using
Eq. (7.4) shown in Fig. 7.6). When using the parameters of Table 7.2 (from Kok [74])
and applying numerical integration, the average costs per year and the equivalent av-
erage costs per year are represented by the curves in Fig. 7.7; the necessary expressions
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for deriving these costs can be found in Appendix 7.7. The optimal decision with re-
spect to the criterion of average costs is ¥*A = 10 years, whereas the optimal decision
with respect to the criterion of equivalent average costs is k*A = 30 years. Fortunately,
the optimal inspection interval does not depend so much on the choice of the unit time
(see Fig. 7.8). Recall that the maintenance costs are determined with respect to one
of the 124 steel gate sections.

7.5 Conclusions

In this chapter, we have presented two maintenance models that enable optimal inspec-
tion and repair decisions to be determined for two components of the Eastern-Scheldt
barrier: the block mats and the rock dumping. Since there are only (subjective)
probability distributions available on the average rates of scour erosion and rock dis-
placement, we have based our models on these averages. In fact, we have shown that
only with generalised gamma processes is one able to model stochastic deterioration
processes with non-negative, exchangeable, real-valued increments when their average
rates are uncertain. Two case studies have been carried out to show the usefulness of
the maintenance models.
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Table 7.2: The parameters of the maintenance model for the rock dumping.

parameter description value dimension
A unit time 5 year
o average rate of rock displacement  (0,00) stones/unit time
v shape parameter of Ig(f|v, ) 12.2
L scale parameter of Ig(8|v, u) 39.2
E(09) mean 3.5 stones/unit time
Var(0) variance 1.2
T discount rate per year 5 %
a discount factor per unit time 0.7835
¢y costs of inspection 1,000 DA
cp costs of preventive repair 10,000 DA
cF costs of failure 120,000 DA
To initial resistance 0 stones
P preventive repair level -50 stones
S failure level -70 stones
k inspection-interval length IN  unit time
Conditional probability density function of X{50) given X(100)=70

0.06 T T T T T T

0.05¢

0.04f

0.03}

0.02}

oo1f 1

o . ‘ . .
0 10 20 30 40 50 60 70

Amount of displaced rock in time-interval [0,50] = x(50)

Figure 7.6: The conditional probability density function of the amount of rock displacement in a period
of 50 years, X (50), when the amount of rock displacement in a period of 100 years is X(100) = 70

stones.
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7.6 Appendix: Proofs of theorems

Theorem 15 Let A and © be independent inverted gamma distributed random quanti-
ties suchithat A ~ Ig(a, B) and © ~ Ig(v, p) for a,v > 2 and B, u > 0. Furthermore, let
(Y1,Y2) ~ Nm(y/(p + 2y),y/(p + 2y),v) fory > 0 (implying the marginal distribution
of Y3 to have a negative binomial distribution: Y; ~ Nm(y/(u +y),v)). Then,

€ — b <1 (exp{ f:kfl [O]h_lexp {—%}}) <, (1.18)

1-—1h1

form=1,2, k€N and A > 0.

Proof:
The upper bound in Eq. (7.18), &1, can be derived by using the inequality 1 — e < z
for z > 0 and the gamma integral.

The lower bound in Eq. (7.18), éx1 — €2, can be derived by using the inequality
1—e™® >z — 122 for z > 0, Minkowski’s inequality for integrals, and the gamma in-
tegral. 0

Theorem 16 Let {Y; : 1 € IN} be an infinitely exchangeable sequence of positive real-
valued random gquantities such that

Pr{(¥,...,Y,) € A} =Pr{(¥1,...,Y,) € A+x}

for all n € IN and any Borel set A€ R} with x € R* satisfying Y1 @; =0 and
A+x€R}. Then, the joint probability density function of (Yi,...,Y,) is a scale
mizture of exponentials for alln € IN. If in addition, E(Yz|Y: = y1) = ay1 + b for some
constants a,b > 0, then the miring measure is a gamma distribution.

Proof:
See Diaconis & Freedman [42] and Diaconis & Ylvisaker [44]. o

Theorem 17 Let {Y;:: € IN} be an infinitely exchangeable sequence of real-valued
random quantities such that, for alln > 2 and k < n,

pln—k) (4 _ sk 5
st i i = ) = (b0 h(n)(t)(t Zav) g
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where h(™) is the n-fold convolution of the (positive and continuous) function h with
itself and

c(8) = /h(y) exp{fy}dy <oco forf € R.
Then, there exists a probability distribution P such that

plon0) = [ TL ) explondfe0)4P(0)

Proof:
See Diaconis & Freedman [41]. |
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7.7 Appendix: The expected maintenance costs

In order to compare maintenance decisions over an unbounded horizon for the rock
dumping of the Eastern-Scheldt barrier, we need to determine two cost-based criteria:
(1) the expected average costs per unit time, Eq. (7.15), and (ii) the expected discounted
costs over an unbounded horizon, Eq. (7.16). For this purpose, expressions have been
derived for the expected cycle costs, the expected cycle length, the expected discounted
cycle costs, and the expected “discounted cycle length”. They can be determined using
the failure model of Chapter 2. For notational convenience, let z = ro — p, ¥y = rg — s,

and . -
n n—1 z -t . f—-

= ‘ 1=-Z d

Vi i§1< i1 ) [ y] [y]

for j < n. Recall that inspections are scheduled at times {jkA : j € IN} with inspection
interval £ € IN. The costs of inspection are ¢y, the costs of failure are ¢r, and the costs

. of preventive repair are cp.

The ezxpected cycle costs.
The expected cycle costs can be written as the sum of the expected costs due to

inspection, preventive repair, and failure (using Eq. (7.12)):

Mg

ci(0, k)pi(0, k) =

.
il
-

= ZL]C]+CP]PT{R(] nk = 8 < Ry <p10}+

e 5L

[(] - 1)61 + CF] PI‘{R(] 0k = P R, <s )0}

.
il
-

00 7k
=X X {lier + cp] 4a(8,2) + [er — cp — el ¥-1phna(8,9) } -
=1 n=(j-1)k+1

The expected cycle length.
Similarly, the expected cycle length can be written as

o0

Z ipi(0,k) =

=1

i kPr { R 2 p5 < Ry < p|0} +
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i f: nPr{R(j—l)k >p,Ro1 28, Ry < 5‘9}

i=1 n=(j—1)k+1

) 7k
=Y Y {ikal0,0)+ (0 - jRpbG-ykaga(80)}

J=1n=(j-1)k+1

The expected discounted cycle costs.
The expected discounted cycle costs can be written as the discounted value of the
expected costs due to inspection, preventive repair, and failure:

> eéei(8, E)pi(0, ) =

=1

J
= Z[(Zahk cr + o*ep

=1 h=1

Pr{ R > p,5 < Ry <p |6} +

[

0 ik [ [i—1
Z Z (Z ahk) cr+ a”CF] Pr {R(j—l)k >p, Rt 25, R, < s ‘ 0}
h=1

=1 n=(i-1)k+1 |

) jk [ (1 — of* ) .
= Z Z <—1—-_%€-> akCI + a]kCP:‘ qn(o, ZE) +

j=1n=(;-1)k+1

ik .
Z (a”cF — a]k[cl + CP]) d"(j—l)k,nqn(e) y)

1 n:(j—l)k+1
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J

The expected “discounted cycle length”.
Similarly, the expected “discounted cycle length” can be written as:

S aipi(6,k) =

i=1

f:ajk PI{R(j_l)k >p,s < Rjx < p\e} +

=1

i f: a® Pr{R(j—-l)k >p, a1 2 8,Ra < sla}

J=1 n=(j—1}k+1

oo jk
=Y 3 {ajkqn(ﬂ,x) + (a" - ajk) T/)(j~1)k,nCIn(0ay)} .

j=ln=(j-1)k+1



126 Ch. 7. Optimal maintenance decisions for a sea-bed protection



Chapter 8

Optimal Decisions that Reduce
Flood Damage along the Meuse:
an Uncertainty Analysis

Jan M. van Noortwijk, Matthijs Kok, and Roger M. Cooke

Abstract. In December 1993, the river Meuse flooded and caused a damage of about 250
million Dutch guilders. This prompted the Dutch government to initiate a project to inves-
tigate and compare strategies that can reduce future losses due to flooding on the basis of
several criteria, including some concerning uncertainties.

To obtain decisions that reduce flood damage, one should account for the following un-
certainties: the river discharge, the flood damage given the discharge, the downstream water
level given the discharge, the costs and the yields of extracting sand and gravel, and the costs
of constructing embankments. These uncertainties can best be represented by probability
distributions, where Bayes’ theorem can be used to update subjective prior information with
observations.

When the loss is defined as the net present discounted value of the costs of decisions minus
the yields of decisions plus the remaining mean flood damage over an unbounded time-horizon,
decision theory can be used to obtain optimal decisions with respect to the following three
decision criteria: the criterion of minimal expected loss, the criterion of minimal uncertainty
in the loss, and the criterion of maximal safety. By using simulation, the present situation
and five strategies have been analysed. The strategy with minimal expected loss and maximal
safety is based on widening the summer bed in the south of Limburg, lowering the summer
bed in the middle and north of Limburg, and constructing 62 km of embankments around
the remaining bottlenecks along the Meuse. (This chapter has alse been published as [129].)

Keywords. Bayesian inference, flooding, uncertainty analysis, decision theory, river man-
agement.
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8.1 Introduction

Around Christmas 1993, the Dutch river Meuse flooded due to an extreme discharge
at Borgharen (near the Dutch-Belgian border) of 3120 m?¥s (see Fig. 8.1). Discharges
at Borgharen larger than 3120 m®s have a probability of occurrence of about once in
150 years. In Limburg, the flood caused a damage of about 250 million Dutch guilders,
a flooded area of about 18,000 hectares, an evacuation of about 8,000 people, and,
therefore; raised emotions.

To investigate and compare decisions that reduce future losses due to flooding,
the Dutch Minister of Transport, Public Works and Water Management initiated the
project Investigation of the Meuse Flood. The project was carried out in the period
march-november 1994 by about 90 researchers, mainly from Delft Hydraulics and the
Dutch Ministry of Transport, Public Works and Water Management (Rijkswaterstaat),
and had a budget of 6 million Dutch guilders. The study was supervised by a commit-
tee, named after its chairman Dr. B.C. Boertien, which had the following members:
two from the local waterboards, three from the province Limburg, two from the Rijks-
waterstaat, one mayor, and one representative from Belgium.

Roughly, the Dutch Meuse can be subdivided into two parts: (i) the upstream
area in Limburg without dykes, but with small embankments that were all overtopped
during the 1993 flood, and (ii) the downstream area with dykes that were high and
strong enough to prevent the protected polders from flooding. The subject of study is
the upstream area of the Meuse in Limburg. The results® of the project are reported
in one main report [29] and 14 subreports; this chapter summarises Subreport 14 on
the uncertainty analysis [37]. For a summary of the main report, see Kok [75].

Since decisions that reduce flood damage must be made under uncertainty, Sec. 8.2
presents three types of criteria to compare decisions in uncertainty: the criterion of
minimal expected loss, the criterion of minimal uncertainty in the loss, and the cri-
terion of maximal safety. For flooding of the river Meuse, the most important uncer-
tainties are the river discharge at Borgharen (Sec. 8.3.1), the flood damage given the
discharge (Sec. 8.3.2), the downstream water levels along the Meuse given the discharge
(Sec. 8.3.3), and the costs and yields of decisions (Sec. 8.3.4).

After representing the above uncertainties with probability distributions, the un-
certainty in the loss due to flooding remains to be determined. For flooding of the
Meuse, the loss is defined as the net present discounted value of the costs of decisions
minus the yields of decisions plus the mean flood damage over an unbounded time-
horizon (Sec. 8.3.5). Sec. 8.4 reports the results of an uncertainty analysis in which
the uncertainties are determined in the mean flood damage and in the loss, for the
present situation and for five strategies (combinations of decisions). In Sec. 8.5, we

!In the beginning of 1995, the high water levels on the Dutch rivers were world news. Also the
Meuse flooded due to a maximum discharge at Borgharen of 2870 m3/s. The 1995 data, however, are
not incorporated into the present uncertainty analysis.
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Figure 8.1: The Meuse river in Limburg, The Netherlands.
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discuss which strategy is optimal according to each decision criterion. Some definitions
of probability distributions can be found in Appendix A.

8.2 Decision making under uncertainty

8.2.1 Optimal decisions

Optimal decisions that reduce flood damage must be made under uncertainty and
can be obtained using decision theory. Following the treatments of DeGroot [27] and
Savage [106], a decision problem is a problem in which the decision-maker has to choose
a decision d (or a combination of decisions) from the set of all possible decisions D,
where the consequences of decision d depend on the unknown value w of the state of the
world W (for example, the discharge of the Meuse at Borgharen). Optimal decisions
can be defined with respect to the following three decision criteria: the criterion of
minimal expected loss, the criterion of minimal uncertainty in the loss, and the criterion
of maximal safety.

The set of possible decisions.

Five strategies that reduce future losses due to flooding have been selected for further
investigation in [29, 36]. These strategies were developed during a careful screening
process of all measures that might result in a reduction of flood damage and in new
natural development of the Meuse. Also, measures proposed by society were consid-
ered, but none of them were attainable. Finally, a limited number of measures were
selected and combined in strategies. Roughly, the strategies can be subdivided into
three categories (see Table 8.1) on the basis of: lowering the summer bed (Strategy 1),
natural development of the Meuse in the south of Limburg (Strategy 2abc), and the
construction of embankments and dykes only (Strategy 3). Note that all strategies
cover the construction of embankments and dykes around the remaining bottlenecks
along the Meuse.

Decisions with minimal expected loss.

Let L(w, d) be the loss when the decision-maker chooses decision d and when the value
of W is w. In flooding, the loss function equals the costs of decision d, say c(w,d),
minus the yields of decision d, say y(w, d), plus the remaining flood damage, say s(w, d).
Hereby, c(w, d) represents the costs of extracting sand and gravel from the river bed
(to lower or widen it) and of constructing embankments and dykes; y(w, d) represents
the yields of extracting sand and gravel. Hence, the loss can be written as

L(w,d) = ¢(w,d) — y(w,d) + s(w,d) (8.1)

with e(w,0) = y(w,B) = 0 (no decisions are made). For any decision d € D, the
expected loss is given by E(L(W, d)). The decision-maker can best choose, if possible,
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Table 8.1: The investigated strategies with the measures included (+).

Measure Strategy

1 2a 2b 2¢ 3

Lowering the summer bed:  north of Limburg | + + + - -
middle of Limburg | + + + — —

south of Limburg | + — - — —

Lowering the winter bed: north of Limburg | — + — — —
Widening the summer bed: south of Limburg | — + + + —
Constructing embankments and dykes [km]: 55 58 62 128 137

the decision d* whose expected loss is minimal. A decision d* is called an optimal

decision when E(L(W,d*)) = mingep E(L(W, d)).

Decisions with minimal uncertainty in the loss.

Uncertainty in the loss can be important when a decision-maker has to choose between
two decisions with equal expected loss. A possible decision rule could be to choose the
decision with minimal uncertainty in the loss.

Decisions with mazimal safety.

Instead of minimising the loss, one might prefer maximising the safety (or the utility).
Some people living along the Meuse are interviewed about their subjective feelings of
safety under different flooding conditions (see [30]). Since minimising loss and max-
imising safety cannot both be achieved, a possible decision rule is choosing the decision
for which an acceptable safety level will yet be attained.

8.2.2 The expected loss of a decision

In general, decision problems are based on the consequences of the uncertain state of
the world W. For flooding of the Meuse, the state of the world is characterised by the
following five random quantities: the river discharge at Borgharen, the downstream
water levels along the Meuse given the Borgharen discharge, the flood damage given
the water level, the costs of decisions, and the yields of decisions. Although more
uncertainties can be identified, these five are the most relevant, for small uncertainties
pale into insignificance beside large uncertainties.

The main aim of this chapter is to compute the probability distribution of the loss
function, Eq. (8.1), and its expected value. We determine the joint probability density
function of the above five random quantities by formulating the decision problem in
terms of an influence diagram. For a brief introduction to influence diagrams, we refer
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to Barlow & Pereira [4] and Jae & Apostolakis [67].

To obtain an influence diagram for flooding of the Meuse, we split the joint proba-
bility density function up into conditional probability distributions that can be easily
assessed (see Fig. 8.2). The main source of uncertainty in the event of a Meuse flood
is the maximal river discharge @ at Borgharen in m¥s (in Fig. 8.2, Q is displayed as
a chance node). To avoid calculational burden, we discretise the probability distribu-
tion of the discharge ) into the intervals (¢i—1, ¢, ¢ = 1,...,9 (see Table 8.2). Given

Table 8.2: List of discharges at Borgharen [m®/s] according to which the probability distribution of
the discharge has been discretised.

List of discharges [m?/s]
1 0 1 2 3 4 5 6 7 8
¢; | 2000 2120 2500 2750 2990 3120 3305 3545 3860

8o

a particular discharge at Borgharen, we can obtain the downstream water level with
the one-dimensional physical model ZWENDL developed by Rijkswaterstaat. The water
level at a given location mainly depends on the discharge and the river geometry. Since
we can measure the river geometry, we may regard it as a known quantity resulting in
the flood depth (a deterministic node). Given the water level and the geometry, the
damage assessment model (see [33] and De Jonge, Kok & Hogeweg [24]) determines
whether, and to what extent, immovables will be damaged due to flooding. For a
number of flood depths, this model estimates the number of flooded houses, industries,
farms, green houses [hectares), roads [km], and government agencies.

To reduce damage due to flooding, we can identify three types of decisions (decision
nodes in Fig. 8.2). First, structural decisions to be taken upstream in Germany, Bel-
gium, and France, which effect the Borgharen discharges. Second, structural decisions
to be taken downstream in The Netherlands which effect the water levels via changes
in the geometry and in the hydraulic roughness. Third, nonstructural decisions which
effect the flood damage via heightening of meter-cupboards, making the furniture wa-
ter resistant and improving the water-level predictions. Given the costs of decisions,
the yields of decisions, and the flood damage, we can now obtain the loss.

8.3 Modelling uncertainty

In modelling the main uncertainties in our decision problem, being the discharge, the
flood damage, the water level, the costs, the yields, and the loss, we use the arguments
of Barlow [2): (i) in the presence of a large amount of data, summarisation is useful; (ii)
a decision-theoretic tool should consist of a small number of parameters; (iii) possible
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Figure 8.2: Influence diagram of decisions that reduce flood damage along the Meuse river.
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prior information should be used for analysing data; and (iv) uncertainty can best be
represented by probability distributions.

8.3.1 Uncertainty in the discharge

To derive a probabilistic model for the Borgharen discharge, we extend the frequentist
approach of [31] with uncertainty distributions. In essence, the frequentist approach
has resulted in a probability of exceedence of a discharge ¢ of the form

Pr{Q > ¢|¢,0} = Pr{Q > q0|4} Pr{Q > ¢|Q > ¢0,0} = dexp{— (¢ — q0)/0} (8.2)

for ¢ > go and ¢,0 > 0. Rather than treating ¢ and 6 as known parameters, an
uncertainty analysis requires regarding them as unknown random quantities. The
choice for the threshold go has been motivated by the decision problem: ¢, is the
largest discharge for which the Meuse does not exceed the summer bed and for which
no flood damage occurs, i.e. go = 2000 m>/s (see [33]).

The probability that flood damage occurs

For determining the probability of flood damage, i.e. of the event @ > go, we need
to know the relative frequency of years in which flood damage occurs in a potentially
infinite sequence of hydrological years. Suppose that the order in which the floods
occur is irrelevant or, in other words, the years are exchangeable. Furthermore, we
define the random quantity V; as follows: V; =1, if flood damage occurs in year 2,
and V; = 0, if flood damage does not occur in year i, where ¢: € IN. By de Finetti’s
representation theorem [22], there exists a unique probability distribution P such that
the joint probability density function of Vi,...,V, can be written as a mixture of
conditionally independent Bernouilli trials:

ponseon) = [ T8°0 - 97 aP@) = [ [l dP@),  (53)

where [(v;|@) is the likelihood function of the observation »;. The random quantity
® may be interpreted as the limiting relative frequency of discharges larger than go,
ie. limy_oo[(X %, Vi}/n], and the probability distribution P as the representation of
beliefs about @ (for details, see Cooke [17, Ch. 7] and Bernardo & Smith [9, Ch. 4]).
As soon as data comes available, the prior distribution P on @ can be updated to
the posterior distribution by Bayes’ theorem. For an uncertainty analysis, it is conve-
nient when the prior distribution enables the posterior distribution to be expressed in
explicit form. It is well-known that the beta distribution Be(g|a, b) has this property.
With a Bernoulli likelihood function, both the prior distribution and the posterior dis-
tribution are a beta distribution: i.e. Be(¢|a,d) and Be(dla + iy vi, b+ n — Yk, vi),
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respectively. The beta distribution is said to be conjugate with respect to the Bernoulli
likelihood function (DeGroot [27, Ch. 9]). Note that the (prior) predictive limiting rel-
ative frequency of discharges larger than go is given by

Pr{Q > ¢} = Jy $Be(d|a,b)d¢ = a/[a + b]. (8.4)

The probability of exceedence of a discharge

The last step in determining the probability distribution of the discharge @ is to
obtain the conditional probability Pr{@ > q|@ > ¢o}. Define the random quantity
Q; to be the maximal Borgharen discharge in hydrological year j, where j € IN. If
the discharge causes flood damage, i.e. if Q; > qo, let X; = @Q; — g0 € Ry for j € N,
where Ry = [0,00). Furthermore, we assume that the joint probability density func-
tion of Xi,...,X,, can be written as a function of the statistic 3-7-; X;. Then, with
Mendel [89] and Misiewicz & Cooke [90], we have a mixture of exponentials:

p(z1,- / H exp{ } dP(9) = fm (Z?‘zl wj) , (8.5)

where the random quantity © may be interpreted as the limiting average discharge
larger than go, i.e. limm—oo[(X7; X;)/m] (provided E(X;) < co for j € IN). The prob-
ability distribution P represents the uncertainty in ©. If the joint probability density
function of X1, ..., X, satisfies Eq. (8.5), then Xj,..., Xy, are called /-isotropic.

The probability distribution that is conjugate with respect to the exponential like-
lihood function is the inverted gamma distribution Ig(f|v, #). By updating this prior
distribution with the observations 1, ..., Zn, the posterior distribution is the inverted
gamma distribution Ig(8|v + m, p + 7., «;). The (prior) predictive conditional prob-
ability that @ > ¢, given @ > qo, is called the gamma-gamma distribution (see e.g.
Bernardo & Smith [9, Ch. 3}):

Pe(Q> 410> a0} = ["ep i~ (- w0} O = |-—L ] (50)

for ¢ > ¢o.

Let us assume the random quantities ® and ©, representing the uncertainties in
the limiting relative frequency of discharges larger than ¢o and the limiting average
discharge larger than gq, respectively, to be independent. In conclusion, we can eas-
ily obtain the (prior) predictive probability of exceedence of a discharge g by using
Eqgs. (8.4) and (8.6):

Pr{Q>q) = [ [ doxp{- (¢~ w)/0} Be(dla,W)lglbln ) dsds  (87)
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for ¢ > go. As was to be required, Eq. (8.7) extends Eq. (8.2) with the uncertainty
distributions Be(¢|a,b) and Ig(f|v,p). Actually, we have approximated the tail of
the probability distribution of the discharge with a mixture of exponentials. In the
presence of m observations which are larger than go, i.e. forz; = ¢; —qo, 7 = 1,...,m,
the parameters a, b, 4 and v must be replaced by a +m, b+n —m, p+ 7L, 2; and
v + m, respectively, where m = Y7, v;.

Prior information and observed discharges

Next, we shall determine the parameters of the two uncertainty distributions that we
have chosen. For this purpose, we consider two types of distributions: a non-informative
and an informative prior distribution.

Non-informative prior distribution.

There is no prior information to be taken into account: i.e. the prior uncertainty is very
large. To express “very large uncertainty” in probabilistic terms, we can use several
non-informative prior distributions (see Berger [8, Ch. 3] and Bernardo & Smith [9,
Ch. 5]). In our opinion, we can best use a non-informative prior distribution whose
posterior mean equals the sample mean. Under this condition, the non-informative
prior densities for ¢ and 8 are ¢~1(1 — ¢)"Ijp.1(#) and 621 (g,0)(0), respectively.

Informative prior distribution.

There is prior information to be taken into account: the data on floods that occurred
between 1400 and 1910. This data has been interpreted from Gottschalk [56, 57] and
the KNMI (see [37]). Although the real historical discharges are unknown and the river
geometry is changed, these references do mention whether there was flood damage or a
catastrophe attended with drowned people, dyke-bursts, flooded polders, carried-away
houses, and collapsed bridges. Probably, the most serious flood of the river Meuse, up
to now, is the flood of 1643. On the basis of the amount of flood damage, we assume
for the Borgharen discharge ¢ that (using Table 8.2):

o g < qo, if the references do not mention any flood damage;
® go < q < gq, if the references mention flood damage, but no catastrophe;
® g > ¢y, if the references mention a catastrophe.

From the historical data of the period 1400-1910, we have derived the following
estimates: Pr{Q > g} = 0.1373 and Pr{@ > ¢»} = 0.0275. Hence, it follows that
Pr{Q > ¢|Q > q} = 0.2003. Since the historical data are probably less reliable for
determining Pr{Q > o} than for determining Pr{Q > ¢2|Q > ¢o} and since the weight
of the historical data in comparison with the data of the years 1911-1993 should not
be too large, we assume that the prior information of the years 1400-1910:
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s may not be used for determining the probability distribution of the probabiliy
that the discharge is larger than go (i.e. of ®). Hence, let the prior density of @
be non-informative: ¢=(1 — ¢)~ Ijo,1j(¢).

e may be used as 5 imaginary data for determining the prior distribution of the
average discharge larger than gq (i.e. of ©). Hence, let the prior density of © be
informative: Ig(6|5, 1) where p follows from Eq. (8.6) if ¢ = ¢a.
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Figure 8.3: Maximal discharge per hydrological year at Borgharen in 1911-1993.

In turn, Bayes’ theorem can be applied to update the historical prior information
with the observations of the years 1911-1993. These 83 observations are displayed in
Fig. 8.3 and can be found in [37]: 13 observations are larger than g and 3 are larger than
¢2. The posterior distribution of @, the limiting relative frequency of discharges larger
than ¢q, given the observations is the beta distribution Be(¢|13,70). The posterior
distribution of the limiting average discharge © is the inverted gamma distribution
Tg(6]18,5630.12). The (posterior) predictive probability of exceedence of a discharge g,
Eq. (8.7), is shown in Fig. 8.4. It slightly differs from the frequentist result [31] in the
sense that the probabilities of exceedence of very extreme discharges are larger, just
because the uncertainty is taken into account (see [37]).

8.3.2 Uncertainty in the flood damage

Beside the uncertainty in the occurrence frequency of the Borgharen discharges, the
uncertainty in the flood damage is also important. Since the Meuse flood in December
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Figure 8.4: Posterior predictive probability of exceedence of the Borgharen discharge g.
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situation.
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1993 caused much damage, there is much data available (at least on damage caused by
flood depths up to about 1 metre). For example, about 3600 houses were flooded. For
about 4600 houses, damage data is known with an average damage of about 15,600 Dfl
per house (see Table 8.3). The damage assessment was done by experts of the insurance
companies by order of the Dutch government, because the government partly covered
the flood damage. The methodology to determine the uncertainty in the flood damage,
will be explained in the light of the damage category “houses”.

Table 8.3: The average flood damage per house [Dutch guilders] and the number of flooded houses
against the flood depth [cm] due to the Meuse flood in December 1993.

Flood depth [cm)] 0-10 | 10-17.5 | 17.5-25 | 25-50 | 50-75 | > 75
Average flood damage [Df]] | 7,500 | 10,500 | 12,200 | 15,200 | 18,600 | 18,800
Number of flooded houses 249 578 374 1262 1052 1059

To deal with a large amount of observations (e.g. 4600 flooded houses), it is neces-
sary to summarise them. As we have argued in Sec. 8.2.2, the probability distributions
of the flood damage can best be assessed conditional on disjunct classes of flood depths
(see Table 8.3). The conditional probability distribution of the flood damage, given a
flood depth class, must satisfy the following three criteria:

o flood damage is non-negative (the assumption that the damage has a normal
distribution can cause inconsistencies, especially if we are interested in the tails);

o per flood depth, a proper summarising statistic is the number of flooded houses
and the corresponding sum of flood damages to these houses;

¢ the predictive flood damage equals the outcome of the damage assessment model
MAAS-GIS in which the Meuse has been subdivided into 200,000 “pieces” (see [33]
and De Jonge, Kok & Hogeweg [24]).

Let the random quantity Z; > 0 be the flood damage to house i for a particular
flood depth class, where i € IN. For the decision-maker only the number of flood
damages and the sum of flood damages are important. Therefore, we may assume that
the decision-maker is indifferent to the way this sum is composed. In other words, we
may assume that the joint probability density function of Z,. .., Z, can be written as
a function of the statistic Y7, Zi: i.e. p(z1,...,2n) = fn (Tre; zi) (see Mendel [89]).
Hence, per flood depth class, Z, ..., Z, are l;-isotropic and there exists a probability
distribution of the average flood damage per house, A, which can be updated with the
observations in Table 8.3 using Bayes’ theorem. Analogous to the discharges, we use
the inverted gamma distribution Ig(Alv, i) to represent the uncertainty in the average
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flood damage per house A. As a consequence, the sum of flood damages to n houses,
U, =Y, Z;, has a gamma-gamma distribution:

G (ual 1, 1) = 5= Ga{ual m, 1/0)Tg(\| , ) A (83)
with mean E(U,) = n - [p/(v — 1)] (see Bernardo & Smith [9, Ch. 3]). Because the

expected flood damage to n houses has to be equal to the outcome of the damage
assessment model, we choose the non-informative prior density A™*J(g,y(A). In the
presence of the observations zi,..., 2y, this results in the inverted gamma distribu-
tion Ig(Ajm + 1,72, z). Indeed, E(U,) =n - [(X%, z;)/m]. Note that the larger the
predictive number of houses, the larger the absolute uncertainty, but the smaller the
relative uncertainty.

Given the flood depth class, we can best summarise the observations by the number
of houses, industries, farms, green houses [hectares], roads [km], government agencies,
and the corresponding sum of flood damages to these objects. The unit of area for
green houses [hectare] and the unit of length for roads [km]| are chosen in such a way
that the uncertainties per damage category are of the same order of magnitude (for
the underlying mathematics, see Chapter 3).

Up to now, we have considered the ideal case, i.e. the case for which the proba-
bility distribution of the flood damage can be determined for every flood depth class
separately. Eventually, the number of flood depth classes for other categories than
houses appeared to be so large (e.g. for industries: 60) that it was rather impossible to
assess the number of flooded objects for every flood depth class separately. With the
damage assessment model, we can only determine the number of flooded objects and
the corresponding flood damage aggregated per damage category. On the basis of the
number of objects and the flood damage per category, and the detailed information on
houses, we may approximate the probability distributions of the flood damage to other
categories than houses. From [37], it appears that the flood damages summed over all
flood depth classes can be approximated by the gamma-gamma distibution Gg(v, g, n)
for which:

n

“number of flooded objects from damage assessment model”
v = 0.5 x “number of flooded objects in December 1993

[(v — 1)/n] x “total damage to flooded objects”.

"

The number of flooded objects in December 1993 determines the uncertainty in the
average damage per object. The larger the amount of data of 1993, the smaller the
uncertainty in the average damage. Finally, the probability distribution of the total
damage summed over all damage categories can be approximated by a gamma dis-
tribution with equal first and second moments (see [37]). In Fig. 8.5, we present the
expected flood damage summed over all categories for every discharge in Table 8.2,
calculated by the damage assessment model for the present situation (see [33]).
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8.3.3 Uncertainty in the water level

Given a discharge at Borgharen, we can obtain the water level at locations downstream
with the physical model ZWENDL (see [32]). Beside the uncertainty in the discharge, the
added uncertainty in the water level is also important. Conditional on the Borgharen
discharge, the uncertainty in the water level is twofold:

e the uncertainty in the shape of the waterwave at Borgharen (see [32]);

e the uncertainty in the physical model with which the water levels have been
determined.

The two types of uncertainty are complementary: the larger the discharge at Borgharen,
the smaller the variation in the shape of the waterwave, but the larger the uncertainty
in the physical model.

On the basis of the two types of uncertainty in the water levels, the uncertainty in
the frequency of occurrence of the water levels have to be determined. It is well-known
that there exists an approximate power law between the discharge (e.g. at Borgharen)
and the downstream water levels (see e.g. Shaw [107, Ch. 6]):

g—q=ah-ho), ¢>¢>0, h>ho>0 (8.9)

with ¢ the upstream discharge [m®%s] and & the downstream water level [m].

Since the power law between discharge and water level is just an approximation,
the quantities @ and b are unknown. Hence, we are interested in the joint probability
density function of the random quantities A and B, where A and B may be dependent.
For just this situation, Cooke [18] has developed a technique to obtain the marginal
distributions of A and B, and their correlation, on the basis of the uncertainties in the
(logarithm of the) water level given the (logarithm of the) discharge.

Although the transformation from discharges at Borgharen to downstream water
levels introduces extra uncertainties, they are not so large that they should be taken
into account (for details, see {37]).

8.3.4 TUncertainty in the costs and the yields of decisions

The probability distributions of the costs and the yields of decisions are based on [29,
34, 35]. They are all assumed to be gamma distributed with parameters that are
assessed using informal expert judgment (for details, see [37}).

Costs of extracting sand and gravel.

As the 5%- and the 95%-percentile of the probability distribution of the costs of ex-
tracting sand and gravel in the north and the middle of Limburg, we use the mean
in [37] plus or minus a deviation of 10%. Since there is more knowledge about the
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price of extracting sand and gravel in the south of Limburg, this deviation from the
mean is taken to be plus or minus 5%.

Yields of extracting sand and gravel.

Since the yields of extracting sand and gravel are just a matter of supply and demand,
the uncertainty in the yields is probably larger than the uncertainty in the costs. Hence,
we assume the 5%- and the 95%-percentile to be the mean plus or minus a deviation
of 17%.

Costs of constructing embankments and dykes.

For the construction of embankments and dykes, one usually expresses the uncertainty
in the costs by an uncertainty factor F', where F &~ 2.5. Instead, we regard F as a
random quantity that satisfies the following two requiremensts:

Pr{F <2} =01 N Pr{F > 25} =0.95. (8.10)

Next, we scale the gamma distribution satisfying these two equalities with the expected
costs in {37].

Dependencies between costs and yields of decisions.

Since the yields of sand and gravel do not depend so much on the locations of extraction,
we assume the yields per region (north, middle and south) to be dependent with a rank
correlation of 0.75. The costs of extracting sand and gravel are dependent, but less than
the yields, since the costs are partly determined by the location. Hence, we assume a
rank correlation between the costs per region of 0.5. Furthermore, the costs and yields
both depend on the same price-level: by assumption, a rank correlation of 0.2.

8.3.5 Uncertainty in the loss

On the basis of the probability distribution of the discharge, we can derive an approx-
imate expression for the loss function in Eq. (8.1): the costs of decisions minus the
yields of decisions plus the remaining flood damage. Since we have to find an optimum
balance between the initial investment costs and the future flood damage costs, we can
best compare decisions over an unbounded time-horizon by using the discounted cost
criterion (see Chapter 4). By discounting the future costs, yields, and flood damage,
the loss can be approximated by (see [33]):

L(w,d) = E&j [e;(d) — y;(d)] + (8.11)

[si-1(d) + si(d)]

9
o
+ —— Y Prig1<Q<ql¢08}x ?
oo 2
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where Pr {Q > q|¢, 0} = ¢exp {— (g — g0)/0} and the vector w = (c(d), y(d),s(d), ¢,9)
is uncertain. The loss function in Eq. (8.11) represents the net present discounted value
of the costs minus the yields plus the remaining mean flood damage over an unbounded
horizon, where

d = decision or strategy (Sec. 8.2.1)

k 15 years (time-horizon for carrying out decision d; see [37])
cj(d) costs of decision d in year j (Sec. 8.3.4)

yj(d) = yields of decision d in year j (Sec. 8.3.4)

I

¢ = discharge at Borgharen in m%s, ¢ =0,1,...,9 (Table 8.2)

¢ = limiting relative frequency of discharges larger than go (Sec. 8.3.1)

9 = limiting average discharge larger than ¢o (Sec. 8.3.1)

si(d) = total flood damage to houses, industries, farms, green houses, roads,
and government agencies per discharge ¢; when making decision d,
where so(d) = 0 and sg(d) = ss(d), 2 =0,1,...,9 (Sec. 8.3.2)

r = discount rate per year (5%)

g = growth rate of capital in the flood plain per year (1%)

& = [1+(r/100)"

o = [0+(0r-g/100"

As has been discussed in Sec. 8.2, an optimal decision d* with respect to the
probability distribution of the random vector W is the decision whose expected net
present discounted value of the costs minus the yields plus the remaining mean flood
damage, over an unbounded time-horizon, is minimal. Since the discount rate r and
the growth rate of captital g are essentially based on an agreement on comparing
decisions over a long time-horizon, we assume these to be constant. The expected
values E(Pr{Q > ¢|®,0}) and E(S;(0)),7=0,1,...,8, are shown in Figs. 8.4 and 8.5,
respectively. We have determined both the expected loss and the uncertainty in the
loss by using Monte Carlo simulation.

8.4 The results of the uncertainty analysis

When the uncertainties in the discharge, the flood damage, and the costs and the yields
of decisions are given, the uncertainty in the loss can be determined. We consider
the present situation and the five selected strategies of Sec. 8.2.1. The results of
the uncertainty analysis have been obtained by the Monte Carlo simulation program
UNICORN (see Cooke [19]). On the basis of the probability distributions of the random
quantities C;(d), Y;(d), ; = 1,...,k, Si(d),i =1,...,9, ® and O, and their correlations,
the UNICORN program approximates the probability distribution of an analytic function
of these random quantities, like the loss function, by performing dependent Monte
Carlo sampling as described in Cooke & Waij [20]. The sample size was 200,000 for the
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present situation and 100,000 for the five strategies; the number of random quantities
was 37 per strategy (for details, see [37]).

8.4.1 Uncertainty in the mean flood damage

In Figs. 8.6 and 8.7, some probabilistic characteristics of the damage due to flooding
of the Meuse are displayed.

In Fig. 8.6, the approximated probability density function is shown of s(w, §)), the
present discounted value of the mean flood damage over an unbounded horizon when
no decisions are taken.

In Fig. 8.7, the results of the uncertainty analysis are displayed in the form of
80%-probability bars (i.e. probability masses between the 10%-percentile and the 90%-
percentile). For the present situation and for the five strategies, these bars represent
the uncertainty in s(w, d): the present discounted value of the remaining mean flood
damage over an unbounded horizon. As should be expected, all strategies result in a
smaller expected mean flood damage, and a smaller uncertainty, than for the present
situation.

8.4.2 Uncertainty in the loss

In Figs. 8.8 and 8.9, the uncertainties are displayed in the costs of decisions plus the
remaining mean flood damage, the benefits of decisions, and the loss. The costs of
decisions, i.e. c¢(w,d), consist of the present discounted value of the costs of extracting
sand and gravel, the costs of constructing embankments and dykes, the future cost of
cleaning up the polluted summer bed in the north of Limburg, and the remaining costs,
over a bounded horizon of 15 years (see Secs. 8.3.4 and 8.3.5). The benefits of decisions,
ie. y(w,d) + s(w,0) — s(w,d), consist of the present discounted value of the yields of
extracting sand and gravel over a bounded horizon of 15 years and the reduction in the
mean flood damage over an unbounded horizon when choosing decision d.

8.5 Conclusions

In this chapter, we have compared five strategies (combinations of decisions) that
reduce damage due to flooding of the Dutch river Meuse. Because we seek an optimum
balance between initial investment costs and future flood damage costs, we have used
the cost-based criterion of the (discounted) loss, where the loss is defined as the net
present discounted value of the costs of decisions minus the yields of decisions plus
the mean flood damage over an unbounded time-horizon. The strategies have been
compared with respect to three types of decision criteria: the criterion of minimal
expected loss, the criterion of minimal uncertainty in the loss, and the criterion of
maximal safety. On the basis of the results in Sec. 8.4, we can conclude the following:
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Figure 8.6: The probability density function, and its 10%- and 90%-percentiles, of the present dis-
counted value of the mean flood damage over an unbounded horizon when no decisions are made.
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Figure 8.9: The net present discounted value of the loss: the costs minus the yields plus the remaining
mean flood damage over an unbounded horizon (in millions of Dutch guilders). For the present
situation and for five strategies, the 80%-probability bars and the expected values are displayed.
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In the present situation, there is a large uncertainty in the present discounted
value of the mean flood damage over an unbounded horizon.

The uncertainties in the losses are relatively large for all strategies.

The expected present discounted value of the mean flood damage over an un-
bounded horizon is “minimal” for the Strategies 1, 2a, and 2b. These strategies
are “optimal” with respect to the criterion of maximal safety and have a small
uncertainty in the flood damage.

The classification of the strategies on the basis of the expected loss, from a small
loss to a large loss, is: Strategy 2b - Strategy 1 - present situation - Strategy 2a -
Strategy 2c - Strategy 3.

The classification of the strategies on the basis of the uncertainty in the loss,
from a small uncertainty to a large uncertainty, is: Strategy 3 - Strategy 1 -
Strategy 2c - present situation - Strategy 2b - Strategy 2a.

The strategy with minimal uncertainty in the loss is the most expensive strategy:
Strategy 3 (the construction of embankments and dykes only).

The extraction of sand and gravel is very uncertain.

From the viewpoint of both the expected loss and the uncertainty in the loss,
even the present situation is to be preferred to Strategy 2a.

The uncertainties in the benefits are larger than the uncertainties in the costs of
decisions plus the remaining mean flood damage.

In comparison with the present situation, the strategy with minimal expected
loss (Strategy 2b) has a large uncertainty in the loss. For Strategy 2b, the
uncertainty, and therefore the risks, will be “shifted” from private persons and
industries dealing with flood damage to the government.
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Chapter 9

Optimal Maintenance Decisions
over Unbounded Horizons on the
Basis of Expert Judgment

Jan M. van Noortwijk

Abstract. Due to a lack of data, many maintenance optimisation models have to be ini-
tialised on the basis of expert jugdment. Rather than eliciting the parameters of a continuous
lifetime distribution, experts give more reliable answers when assessing a discrete lifetime dis-
tribution. If the prior uncertainty in the probabilities of failure per unit time is expressed in
terms of a Dirichlet distribution, Bayes estimates can be obtained of three cost-based criteria
to compare maintenance decisions over unbounded time-horizons: (i) the expected average
costs per unit time, (i) the expected discounted costs over an unbounded horizon, and (iii)
the expected equivalent average costs per unit time. The maintenance model presented here
can be easily implemented and is illustrated by determining optimal age replacement and life
cycle costing policies. (This chapter has previously been published as [125].)

Keywords. maintenance, expert judgment, Dirichlet distribution, age replacement, life cycle
costing, renewal theory.
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9.1 Introduction

Although many maintenance optimisation models can be found in the literature, only
a few of them have been applied (see Dekker [28]). Probably the main reason for this
is that these models often presume the availability of data which does not exist. In
many cases there is not enough data to determine, for example, the parameters of a
lifetime distribution (see Van Noortwijk et al. [128] and Pintelon & Gelders [97]). In
this situation, the parameters must be initialised on the basis of expert judgment.

Requiring experts to provide subjective estimates of abstract (scale and shape)
parameters of a lifetime distribution is a lot to ask even from statistically trained
experts: they give more reliable answers when assessing histograms (see Kabus [70]
and Jbrekk & Morgan [64]). For this reason, Van Noortwijk et al. [128] have proposed
to elicit discrete lifetime distributions, where the prior uncertainty in the probabilities
of failure per unit time is expressed in terms of a Dirichlet distribution. As data
becomes available, this prior distribution can be updated to the posterior distribution
using Bayes’ theorem. Wang [139] has used this approach to estimate discrete delay
time distributions.

Both Van Noortwijk et al. [128] and Wang [139] have suggested fitting continuous
parametric lifetime distributions to the Bayes estimates (posterior means) of the failure
probabilities per unit time. In turn, such continuous lifetime distributions can be used
to determine the expected costs of maintenance in, for example, an age replacement
model. However, rather than introducing errors due to loss of information through
statistical fitting, the elicited discrete lifetime distributions can better be preserved as
starting points for further maintenance modelling.

This chapter focusses on Bayes estimates of the costs of maintenance when the
probabilities of failure are Dirichlet distributed. In Sec. 9.2, Bayes estimates are ob-
tained of three cost-based criteria to compare maintenance decisions over unbounded
time-horizons: (i) the expected average costs per unit time, (ii) the expected discounted
costs over an unbounded horizon, and (iii) the expected equivalent average costs per
unit time. In Sec. 9.3, an illustrative example is given to determine optimal age re-
placement policies with respect to the above three criteria. In fact, a new model for the
purpose of life cycle costing is developed in order to find an optimum balance between
the initial costs of investment and the future costs of age replacement. Some definitions
of probability distributions can be found in Appendix A.

9.2 The expected costs of maintenance

Most maintenance processes can be regarded as renewal processes, where the renewals
are the repairs that bring a component back into its “as good as new state”. Since
the purpose of maintenance is reducing the number of failures, failure data is rarely
observed, and expert judgment of discrete probability functions can best be used in-
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stead. Let the domain of lifetimes (0, 00) be divided into n units of time, ([i — 1]7,i7],
i=1,...,n =1, and ([n —1]7,00) for 7 > 0. Furthermore, we assume the renewal
times to be non-negative independent random quantities having a discrete probability
function p;(d), ¢ = 1,...,n, with 3%, p;(d) = 1, where p;(d) represents the probability
of a renewal in unit time ¢ when the decision-maker chooses maintenance decision d.
We denote the costs associated with a renewal in unit time ¢ by ¢;(d), ¢ = 1,...,n. For
convenience, let 7 =1

In order to obtain optimal maintenance decisions against minimal costs, we define
L(p(d),d) to be the (monetary) loss when the decision-maker chooses maintenance
decision d, where d € D. The decision-maker can best choose a maintenance decision d*
whose expected loss with respect to the probability distribution of the random vector
P(d) = (Pi(d),..., P.-1(d)) is minimal. A decision d* is called an optimal or a Bayes
optimal decision when (see DeGroot [27, Ch. 8])

E(L(P(d"),d) = min E (L(P(d), d)) (9.1)

According to Chapter 4, there are basically three cost-based criteria that can serve
as loss functions: (i) the average costs per unit time, (ii) the discounted costs over an
unbounded horizon, and (iii) the equivalent average costs per unit time. These cost-
based criteria can be obtained using the discrete renewal theorem (see Feller {47, Ch. 13]
and Karlin & Taylor [71, Ch. 3]). For notational convenience, we write p;(d) = p; and
Gld)=¢,i=1,...,n.

First, the expected average costs per unit time are determined by averaging the
expected costs over an unbounded horizon:

. C(m,p) Yh,api e —YiG e —clpi
C(p) = lim === = = - ) 9.2
(p) mmeo m Yoie1 tpi n— Z?:ll [n - Z] pi ( )

where C(m, p) are the expected costs in time-interval (0,m]. Eq. (9.2) is a well-known
result from renewal reward theory (see e.g. Ross [105]).

Second, the expected discounted costs over an unbounded horizon are determined
by summing the expected discounted values of the costs over an unbounded horizon,
where the discounted value of the costs ¢, in unit time n is defined to be a™c, with
discount factor @ = [1 + (r/100)]! and discount rate r% (r > 0):

Z?:l aicipi
i (1= ef)pi

f

Ca(p)

lim Com,p) =

n—1 i
ae, — Y ate, — o] ps
- 2 . (9.3)
1-o) - [1-a) - (1-a)]p

where C,(m,p) are the expected discounted costs in time-interval (0,m] (see Chap-
ter 4).
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Third, the expected equivalent average costs per unit time are determined by aver-
aging the discounted costs over an unbounded horizon: i.e. by dividing the expected
discounted costs over an unbounded horizon by 1/(1 — ). In fact, the notion of equiv-
alent average costs relates the notions of average costs and discounted costs in the
sense that the equivalent average costs per unit time approach the average costs per
unit time, as « tends to 1, from below:

lim (1~ 0)C4(p) = C(p). (9.4)

As Van Noortwijk et al. [128] have proposed, let the random vector of probabilities

of failure per unit time,i.e. P = (Py,..., P,_1), have a Dirichlet distribution such that
P ~ Di,_1(a1,...,a,). According to Theorem 18 (see the appendix), we have

Up — E:‘lz_ll [vn - ’l),'] Pz
E n—1 =
bn - [bn - bz} Pi

= i%E((lﬂL[bj—l]X)‘l L (L[ =1 X)), (9.5)

where X ~ Be(1, %, @) for a;, b;,v; > 0,i=1,...,n,and 31, a; > 0. The expected
average costs per unit time F (C(P)), Eq. (9.2), follow immediately from Eq. (9.5)
when putting v; = ¢; and b; = for 1 = 1,...,n. Likewise, the expected discounted
costs over an unbounded horizon E (C,(P)), Eq. (9.3), follow when putting v; = o'c;
and by =1—-affori=1,...,n.

When the renewal costs do not depend on the renewal time, i.e. when ¢; = ¢ for
all i =1,...,n, then the expected average costs per unit time reduce (see Theorem 18
from the appendix) to

E(C(P)) = E<n_2g=—;c[n—z‘]1%) -

= B (T (L+fi—1Y)™), (9.6)

where Y ~ Be(1, 3% a; — 1) for 37, a; > 1. Similarly, the expected discounted costs
over an unbounded horizon can be written as

E(Ca(P))

e e
e[ (M (-’ y)™) —1], (9.7)

where Y ~ Be(1, 5% a; — 1) for 320, a; > 1.
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9.3 The expected costs of age replacement

In this section, we consider the problem of specifying an age replacement policy that
balances both the failure costs against the preventive repair costs and the initial costs
against the future costs.

Under an age replacement policy, a repair is carried out at age k (preventive repair)
or at failure (corrective repair), whichever occurs first, where 1 < k < n. A preventive
repair entails a cost ¢p, whereas a corrective repair entails a cost c¢g, where 0 < cp < cp.
By Eq. (9.2), the expected average costs per unit time under age replacement are

k . n .
C’(p, k) _ > =1 CF Di + Eg:k-}-l Cp P;

- 9.8
?:1 pi + Z?:IH-I kpl ( )

while, by Eq. (9.3), the expected discounted costs over an unbounded horizon are

k i k
i OCCE P+ Vg O CP P

Cu(p, k) = : = . 9.9
(P, k) E?:l(l —ai)pi+ Dl (1 — oF)ps (6-9)
Next, Eq. (9.5) can be used to obtain E{C(P,k)), when putting
v; = cph, k(1) + cp i, (i),
LT A 9.10
b= ihoal) 4 Elunonli), (9-10)
and E (Co(P, %)), when putting
v = aeph, 1(i) + aFep Irta,..a(i), (9.11)

b = (1—ai)11 ..... k(z) + (l_ak)Ik+1,.4.,n(i),

where Iy(z) =1if r € Aand I4(z) =0ifz & A.

Suppose a decision-maker has to choose between two components: Component 2
is twice as reliable, but twice as expensive, as Component 1, where the consequences
of failure are the same for both components (for the cost parameters, see Table 9.1).
The decision that selects component A is denoted by decision dy, h = 1,2. For both
components, the Bayes estimates of the probabilities of failure per unit time, i.e.
E(P;) =a;/(X%,ai), j=1,...,n, are shown in Fig. 9.1. In Figs. 9.2 and 9.3, the
expected average costs per unit time, E (C(P,k)), and the expected equivalent aver-
age costs per unit time, £ ((1 — «)Cy(P, k)), are represented for Component 1 and 2,
respectively, for age replacement interval k, k = 1,...,n. Recall that, as « tends to
1, from below, the expected equivalent average costs approach the expected average
costs (by Lebesgue’s Theorem of Dominated Convergence, the order of the operations
of expectation and passing to the limit may be interchanged).

For Component 1, the optimal age replacement interval &¥* is 4 units of time with
expected average costs per unit time of 176 Dff and expected equivalent average costs
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per unit time of 156 Dfl. For Component 2, the optimal age replacement interval &*
is 11 units of time with expected average costs per unit time of 106 Dfl and expected
equivalent average costs per unit time of 88 Dfl.

The component that optimally balances the initial investment costs, cp, against
the future maintenance costs, E (Cy(P, k)), can only be obtained by using a cost-based
criterion that takes account of the time value of money: viz., the discounted costs or
the equivalent average cost. The criterion of average costs is not useful since the initial
costs are neglected by averaging them out over an unbounded horizon. Including the
initial investment costs, the criterion of equivalent average costs has the form

E (La(p,k)) = (1 — a) [cp + E (Ca(p, £))]- (9.12)

This criterion can be used to solve many problems in the area of life cycle costing. As
an illustration, the optimal decision is choosing Component 2 under an age replacement
policy of £ = 11 units of time with minimal expected equivalent average costs per unit
time of 126 Dfl (see Fig. 9.4).

When failure and maintenance data comes available, the prior distribution on the
probabilities of failure per unit time, a Dirichlet distribution with parametric vector
(ai,...,a,), can be updated by using Bayes’ theorem. In the case of actual failure data,
say (21,...,%,), the likelihood function is given by [Ti.; pi* and the posterior distribu-
tion is also a Dirichlet distribution with parametric vector (ay + z1,...,an + ) (see
e.g. DeGroot [27, Ch. 9]). We can interpret the sum ao = ¥7; a; as the (subjective)
number of virtual observations as opposed to the (objective) number of actual observa-
tions Y7, ;. Note that, although the value of ag serves as a measure of the variability
in the elicited failure probabilities, numerical experiments have shown that the optimal
decisions obtained above remain unchanged for different values of ag. In the case of
right censored data (see Lochner [82] and Van Noortwijk et al. [128]), the expressions
for the expected costs cannot be reduced to one-dimensional integrals, like Eq. (9.5),
and cannot be easily solved numerically either.
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Table 9.1: The parameters of the age replacement model.

parameter  description value dimension
r discount rate per unit time 5 %
o discount factor per unit time 0.9524
cp(dy) costs of preventive repair Component 1 500 DAl
cp(da) costs of preventive repair Component 2 1000 DA
cp costs of failure 10000 Dfl
n maximurm lifetime of a component 40 unit time
Yoie1tpi(dy) mean lifetime Component 1 10 unit time
Yr_ipi(dy) mean lifetime Component 2 20 unit time
Yr,ai(dy) number of virtual observations Component 1 100
Yo ai(d2) number of virtual observations Component 2 100
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Probability of failure per unit time of Component 1 (+) and Component 2 (0}
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Figure 9.1: The probability of failure per unit time for Component 1 and Component 2.
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Figure 9.2: The expected average costs per unit time and the expected equivalent average costs per
unit time for Component 1.
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Expected average costs (+) and equivalent average costs (o) per unit time
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Figure 9.3: The expected average costs per unit time and the expected equivalent average costs per
unit time for Component 2.

Expected equivalent average costs per unit ime for Component 1 (+) and 2 (o)

1100 T T T 7 T —
1000[ © T
9001 4
g 800r +++++++++++++++++++++«H—+++-F
= +
§ 7001 + :
5 +
a
[ o B
g 600 .
=2
S s00f+° + ]
£
2
3 +
& 00 :
° + 0000000000000000
300 oo° 4
+ 0 4 o°
2001 + ? 0?
* ooo 0° 1
%0000°
100 N . L . " P .
[4] 5 10 15 20 25 30 35 40

Age replacement interval [unit ime)

Figure 9.4: The expected equivalent average costs per unit time for Component 1 and Component 2.
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9.4 Appendix: Proof of theorem

Theorem 18
Let (Py,..., Py 1) ~ Dig1(a1,...,a,) and Y ~ Be(q, Xiq[ai + ri] — q). Then,

=gl =g
(bn — 15[ — B )’

_ F( ?:1 ai) ?:1 F(ai_*-ri) n L —[ai+7'i]
= T ¢ ?zlaﬁre)E( © (146 —1]Y) ) (9.13)

fora;,b; >0, andr; >0, foralli =1,...,n, and =% [a; + 7] > ¢ > 0.

Proof:
Eq. (9.13) can be obtained by solving the n-dimensional integral
n aitri—1
o= 0l Umm e,
" 23002 (T b))
in two ways. On the one hand, making the transformation ¢ = 3" , z; and p; = z;/t,
i=1,...,n— 1, with Jacobian ¢"~!, results in
n— an+rn—1 - @it —
[ ! [t - tpi] 15 (tps) ot n—1
Hi = 30 iz | : ——— " Vdtdpy ... dp,_y
PL¥...+pp_g <1 Ji=0 (bnt — 2 bs — b tpg)
an+trn—1 s
e 1-Yi5p s g

n—1 20 —
: p"—i st (Z:‘;l{af + 7'i] - Q) (bn - ?:11 [bn - bi] Pi)q

On the other hand, due to a classical result of Fichtenholz [50, pp. 402-403] (see also

Gradshteyn & Ryzhik [568, p. 624]), we can write
PRSI | =0 (7SS R S —
D(Ciilai+ 7] — g+ 1) T (q) Juso Ty (1 + biu)oitr

- i T(as + 1) 1ogye-l(] - y)z?ﬂ[ﬂ-%]-q-l "
T(QT (Cihyfai+r]—g+1) Jy=o [T (1 + [b — 1y)estrs 7

where u = y/(1 — y). Combining of the above two results leads to Eq. (9.13). O




Summary

To protect the Dutch lowlands against flooding, a flood defence system has been con-
structed in which The Netherlands is subdivided into fifty-three dyke-ring areas. These
areas are surrounded by dyke rings consisting of dunes, dykes, special water-retaining
structures (e.g. the Eastern-Scheldt storm-surge barrier), and higher ground. Each
component of a dyke ring has to fulfill certain requirements in the areas of flood pro-
tection, environment, recreation, shipping access, road connection, transport, agricul-
ture, fishery, and landscape. As soon as a component deteriorates to such a degree
that it fails to meet its main requirements, it should be maintained; preferably against
minimal costs. The Ph.D. thesis is devoted to determining cost-optimal maintenance
decisions for hydraulic structures subject to deterioration.

Maintenance is defined as a combination of actions carried out to restore a hy-
draulic structure to, or “renew” it to, its desired condition. In hydraulic engineering,
expensive condition-based preventive maintenance, i.e. maintenance based on inspect-
ing or monitoring a structure’s condition, is mainly applied. In The Netherlands, the
attention is shifting from building structures to maintaining structures and the use of
maintenance optimisation models is therefore of considerable interest.

There are two phases of a structure’s life cycle in which it is economic to apply
maintenance optimisation techniques: the design phase and the use phase. In the design
phase, one might obtain an optimum balance between the initial costs of building and
the future costs of maintenance and failure (being the area of life cycle costing). In the
use phase, one might minimise the costs of inspection, repair, replacement, and failure.
A large number of papers on maintenance optimisation models, mainly focussing on
the mathematical aspects, have been published. Unfortunately, since the use of these
models is restricted to situations in which abundant data is available, only a few of
them have been applied.

In hydraulic engineering, a distinction can often be made between a structure’s
resistance (e.g. the crest-level of a dyke) and its design stress (e.g. the maximal water
level to be withstood). A failure may then be defined as the event in which - due to
deterioration - the resistance drops below the stress. Since deterioration is uncertain,
it can best be regarded as a stochastic process.

Even though it is common to model a deterioration process mathematically as a so-
called ‘Brownian motion with drift’ (a stochastic process with stationary independent
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decrements and increments having a normal distribution), the ‘Brownian motion’ is
inadequate in describing the deterioration of hydraulic structures. To illustrate, a dyke
whose height is subject to a Brownian deterioration can, according to the model, spon-
taneously rise up, which cannot occur in practice. Furthermore, in most applications
there is only information available in terms of a probability distribution (uncertainty
distribution) of the average rate of deterioration.

In order that a stochastic deterioration process has the desired properties, we con-
sider it as a so-called ‘generalised gamma process’. A gamima process is a stochastic
process with independent non-negative increments (e.g. the increments of crest-level
decline of a dyke) having a gamma distribution with known (certain) average rate. A
generalised gamma process is then defined as a so-called ‘mixture’ of gamma processes,
where the mixture represents the uncertainty in the unknown average rate. In addition
to the classical characterisation of gamma processes in terms of compound Poisson
processes, the thesis presents two new mathematical characterisations of generalised
gamma, processes: (i) in terms of conditional probability distributions (given a cumu-
lative amount of deterioration which serves as a summarising, sufficient, statistic for
the unknown average rate) and (ii) in terms of isotropic probability distributions (an
l,-istropic probability distribution can be written as a function of the l,-norm).

A useful property of the generalised gamma process is that various probabilistic
properties, such as the probability of exceedence of a failure level per unit time, can
be expressed in explicit form when the average rate of deterioration is given. In math-
ematical terms, this means that we can always find units of time of equal length for
which the joint probability density function of the increments of deterioration can be
written as a mixture of exponential probability densities. This mixture represents the
uncertainty in the unknown average rate of deterioration. Since the probability density
function of any finite sequence of increments can then be written as a function of the
sum of the increments (i.e. the /;-norm of the increments), the infinite sequence of
increments is said to be ly-isotropic or /;-norm symmetric. Due to the exchangeabil-
ity of the [ -isotropic increments of deterioration, the expected cumulative amount of
deterioration is linear in time.

To make optimal maintenance decisions while explicitly taking account of the un-
certainty in the average rate of deterioration, statistical decision theory can be used. A
decision-maker can then best choose a maintenance decision whose expected monetary
loss (in terms of the expected costs of maintenance and failure) is minimal; such a
decision is called an optimal decision. The expected loss is determined with respect to
the probability distribution of the average rate of deterioration, which can be updated
with (new) observations using Bayes’ theorem.

The maintenance of hydraulic structures can best be modelled as a so-called ‘re-
newal process’, where the renewals are the maintenance actions restoring a structure
to its desired condition. After each renewal we start, in a statistical sense, all over
again. Since the planned lifetime (including maintenance) of the Dutch dyke rings
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is essentially unbounded, maintenance decisions can best be compared over an un-
bounded time-horizon. There are basically three cost-based criteria that can serve as
loss functions:

1. the expected average costs per unit time (which are determined by averaging the
costs over an unbounded horizon);

2. the expected discounted costs over an unbounded horizon (which are determined
by summing the present discounted values of the costs over an unbounded hori-
zon); and

3. the expected equivalent average costs per unit time (which are determined by
averaging the discounted costs).

These cost-based criteria can be computed using renewal theory (the discrete renewal
theorem). The notion of equivalent average costs relates the notions of average costs
and discounted costs. Although in the literature most attention has been focussed on
the criterion of average costs, the cost-based criteria of discounted costs and equivalent
average costs are most suitable for optimally balancing the initial building costs against
the future maintenance costs.

On the basis of generalised gamma processes, tailor-made models have been built
and implemented to enable optimal maintenance decisions to be determined for four
characteristic components of a dyke ring:

Beach section: optimal sand nourishment sizes for which the expected discounted
costs over an unbounded horizon are minimal with respect to the probability
distribution of the average rate of ongoing coastal erosion.

Dyke section: optimal dyke heightenings for which the expected discounted costs
over an unbounded horizon are minimal with respect to the probability distribu-
tion of the average rate of crest-level decline (being a combination of settlement,
subsoil consolidation, and relative sea-level rise). On the basis of a physical law,
crest-level decline has been regarded as a stochastic process with expected decline
being linear or non-linear (approximately logarithmic) in time.

Berm breakwater: optimal inspection intervals for berm breakwaters whose expected
(equivalent) average costs per unit time are minimal with respect to the prob-
ability distribution of the average rate of rock displacement (due to so-called
‘longshore rock transport’). The model that is proposed is a two-phase inspec-
tion model in which the first phase represents the event of no rock displacement
and the second phase represents the event of rock displacement (initiated by an
armour breach). The occurrence times of armour breaches are assumed to be
distributed according to a mixture of geometric densities.
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Special water-retaining structure: optimal inspection intervals for two compo-
nents of the sea-bed protection of the Eastern-Scheldt barrier: (i) the block mats
and (ii) the rock dumping. The decision model for the block mats is a two-phase
inspection model: the inter-occurrence times of scour holes are distributed ac-
cording to a mixture of Poisson processes and the scour holes develop according
to a generalised gamma process. The decision model for the rock dumping is
based on the probability distribution of the average rate of current-induced rock
displacement.

The models for sand nourishment and dyke heightening are examples of maintenance
optimisation in the design phase, whereas the two inspection models are examples of
maintenance optimisation in the use phase.

In the last part of the thesis, two decision models have been presented which are
not directly based on deterioration processes: one model for evaluating and comparing
decisions that reduce flood damage along the Meuse river (by using /;-isotropy and
discounting) and one model for optimising maintenance when the uncertainty in failure
probabilities can be expressed in terms of a Dirichlet distribution (this model is useful
when both resistance and stress are stochastic).

Although the decision models in the thesis have primarily been developed for the
maintenance of beaches, dykes, berm breakwaters, and the Eastern-Scheldt barrier,
they can also be applied to other hydraulic structures and other engineering systems
for solving many decision problems in maintenance optimisation and life cycle costing.




Appendix A

Definitions of probability
distributions

Definition 2 (Gamma distribution.) A random quantity X has a gamma distribu-
tion with shape parameter a > 0 and scale parameter b > 0 if its probability density
function is given by:

Ga(z]a,b) = [b*/T(a)] 2" exp{—bz} I(g,c0)()-
Definition 3 (Inverted gamma distribution.) A random quantity Y has an in-
verted gamma distribution with shape parameter a > 0 and scale parameter b > 0 if
X =Y '~ Ga(a,b). Hence, the probability density function of Y is:
Ig(y| a,b) = [6*/T(a)]y~** exp {~b/y} I0,00)(1)-

Definition 4 (Gamma-gamma distribution.) A random quantity X has o gam-
ma-gamma distribution with parameters a,b> 0 and n = 1,2,... if its probability den-
sity function is given by:

Gg(z|a,b,n) = /OooGa(m[n,/\)Ga(/\[a,b) dX

- et i -] e lee®

Definition 5 (Beta distribution.) A random quantity X has a beta distribution
with parameters a,b > 0 if its probability density function is given by:

Be(z|a,b) = 113—((;—;(% 21 — )" I gy().
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Definition 6 (Dirichlet distribution.) A random vector Y = (Y1,...,Y,_1) has a
Dirichlet distribution with parameters ay,...,a, >0 if Y has a probability density
function given by:

. _ F(Z:z:l ai) n—1, . an—1 k= a;—1
Dln—l(Y[ agy ... >an) = ?:1 F(ai) [1 i=1 yl]+ g Yi I[O,l](yZ)v

where [z], = max{0,z}.

Definition 7 (Negative multinomial distribution.) An n-dimensional random
vector Y, where Y = (Y3,...,Y,), has a negative multinomial distribution with param-
eters p = (p1,...,Px) and v if Y has a probability function given by:

F(v+Yi,yi—n)
L(v)[Ti=r I (y:)

yi=1,2,.. . fori=1,...,n,v>0,p; >0 forallz, and 37, p; < 1.

Nm(y|p,v) = (1= ) Tt
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Samenvatting

Om Nederland te beschermen tegen overstromingen is een stelsel van waterkeringen
aangelegd. Er zijn drie-en-vijftig dijkringgebieden te onderscheiden die worden om-
sloten door een ring van duinen, dijken, bijzondere waterkerende constructies (b.v.
de stormvloedkering in de Oosterschelde) en hoge gronden. Elke component van een
dijkring moet bepaalde functies vervullen op het gebied van veiligheid, natuur, recre-
atie, scheepvaart, verkeer, transport, landbouw, visserij en landschap. Als een com-
ponent van een dijkring - tengevolge van functieverlies - zodanig veroudert dat het
niet meer voldoet aan zijn belangrijkste functies, dan moet onderhoud worden uitge-
voerd; en dit liefst tegen minimale kosten. Het proefschrift is gewijd aan het bepalen
van kosten-optimale onderhoudsbeslissingen voor waterbouwkundige constructies die
onderhevig zijn aan veroudering.

Onderhoud wordt gedefinieerd als een combinatie van activiteiten die worden uit-
gevoerd om een waterbouwkundige constructie terug te brengen in of te ‘vernieuwen’
naar de gewenste toestand. In de waterbouwkunde is er meestal sprake van kostbaar
toestandsathankelijk preventief onderhoud, d.w.z. van onderhoud dat is gebaseerd op
het inspecteren van de toestand van een constructie. In Nederland verschuift de aan-
dacht van het bouwen van constructies naar het onderhouden van constructies en het
gebruik van modellen voor onderhoudsoptimalisatie is daarom van groot belang.

Gedurende de levenscyclus van een constructie zijn er twee fasen, waarin het econo-
misch aantrekkelijk is om onderhoudsoptimalisatie toe te passen, namelijk de ontwerp-
fase en de gebruiksfase. In de ontwerpfase kan een optimale balans worden gevonden
tussen initiéle bouwkosten enerzijds en toekomstige onderhouds- en faalkosten ander-
zijds (‘life cycle costing’). In de gebruiksfase kan de som van inspectie-, reparatie-,
vervangings- en faalkosten worden geminimaliseerd. Van het grote aantal modellen voor
onderhoudsoptimalisatie dat in de literatuur is gepubliceerd, concentreren de meeste
zich op de wiskundige aspecten. Omdat deze modellen alleen kunnen worden gebruikt
als er een overvloed van gegevens beschikbaar is, wordt slechts een klein deel hiervan
toegepast.

In de waterbouwkunde wordt vaak een onderscheid gemaakt tussen de sterkte van
een constructie (b.v. de kruinhoogte van een dijk) en haar ontwerpbelasting (b.v. het
maximale waterniveau dat moet worden weerstaan). Falen kan dan worden gedefinieerd
als de gebeurtenis waarbij de sterkte - tengevolge van veroudering of functieverlies -
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beneden de belasting zakt. Aangezien veroudering (of functieverlies) onzeker is, kan
zi] het beste worden beschouwd als een stochastisch proces.

Hoewel het gebruikelijk is om een verouderingsproces wiskundig te modelleren als
een zogenaamde ‘Brownse beweging met drift’ (een stochastisch proces met stationai-
re onafhankelijke afnemende en toenemende verouderingen die een normale verdeling
hebben), is dit model niet geschikt om het verouderingsgedrag van waterbouwkun-
dige constructies te beschrijven. Zo kan bij een normaal verdeelde veroudering een
dijk spontaan omhoog komen, hetgeen in de praktijk niet gebeurt. Verder is er bij
de meeste toepassingen slechts informatie aanwezig in de vorm van een kansverdeling
(onzekerheidsverdeling) van de gemiddelde verouderingssnelheid.

Om te bewerkstelligen dat een stochastisch verouderingsproces de gewenste eigen-
schappen heeft, beschouwen we het als een zogenaamd ‘gegeneraliseerd gamma-proces’.
Een gamma-proces is een stochastisch proces met onafthankelijke, niet-negatieve aan-
groeiingen (b.v. toenemende verouderingen in de vorm van kruinhoogtedaling van een
dijk) die een gamma-verdeling hebben met een bekende (zekere) gemiddelde veroude-
ring. Een gegeneraliseerd gamma-proces wordt dan gedefinieerd als een zogenaamd
‘mengsel’ van gamma-processen, waarbij het mengsel de onzekerheid representeert in
de onbekende (onzekere), gemiddelde veroudering. Als aanvulling op de klassieke ka-
rakterisering van gamma-processen in de vorm van samengestelde Poisson-processen,
worden in het proefschrift twee nieuwe wiskundige karakteriseringen van gegenerali-
seerde gamma-processen gepresenteerd: (i) in de vorm van conditionele kansverdelin-
gen (gegeven een cumulatieve veroudering die dient als een samenvattende, uitputtende
steekproefgrootheid voor de gemiddelde verouderingssnelheid) en (ii) in de vorm van
isotropische kansverdelingen (een I -isotropische kansverdeling kan worden geschreven
als een functie van de {,-norm).

Een ‘handige’ eigenschap van gegeneraliseerde gamma-processen is dat verschillen-
de probabilistische karakteristieken, zoals de kans op overschrijden van een faalgrens
in een bepaalde tijdseenheid, expliciet kunnen worden uitgedrukt bij een gegeven ge-
middelde verouderingssnelheid. In wiskundige termen betekent dit, dat we altijd tijds-
eenheden van gelijke lengte kunnen vinden, waarvoor de gezamenlijke kansdichtheids-
functie van de aangroeiingen kan worden geschreven als een mengsel van exponentiéle
kansdichtheden. Dit mengsel representeert de onzekerheid in de onbekende gemiddel-
de verouderingssnelheid. Omdat de kansdichtheidsfunctie van iedere eindige rij van
aangroeiingen in dit geval kan worden geschreven als een functie van de som van de
aangroeiingen (d.w.z. de /;-norm van de aangroeiingen), wordt zo’n oneindige rij van
aangroeiingen [;-isotropisch of /;-norm-symmetrisch genoemd. Vanwege de verwissel-
baarheid van de /;-isotropische aangroeiingen is de verwachte cumulatieve veroudering
lineair in de tijd.

Om optimale onderhoudsbeslissingen te bepalen, waarbij expliciet rekening wordt
gehouden met de onzekerheid in de gemiddelde verouderingssnelheid, kan gebruik wor-
den gemaakt van statistische beslissingstheorie. Een beslisser kan in zo'n geval een
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onderhoudsbeslissing nemen waarvoor het verwachte financiéle verlies (in de vorm van
de verwachte onderhouds- en faalkosten) minimaal is; een dergelijke beslissing wordt
een optimale beslissing genoemd. Het verwachte verlies wordt berekend met betrekking
tot de kansverdeling van de gemiddelde verouderingssnelheid, welke kansverdeling ove-
rigens kan worden bijgewerkt met (nieuwe) waarnemingen met behulp van de stelling
van Bayes.

Onderhoud van waterbouwkundige constructies kan het beste worden gemodel-
leerd door middel van een zogenaamd ‘vernieuwingsproces’, waarbij de vernieuwingen
onderhoudsacties voorstellen, die een comstructie terugbrengen in de gewenste toe-
stand. Statistisch gezien beginnen we na iedere vernieuwing weer opnieuw. Omdat
de geplande levensduur (inclusief onderhoud) van de Nederlandse dijkringen in prin-
cipe oneindig is, kunnen onderhoudsbeslissingen het beste worden vergeleken over een
oneindige tijdshorizon. Er bestaan feitelijk drie kostencriteria, die kunnen dienen als
verliesfunctie:

1. de verwachte gemiddelde kosten per tijdseenheid (die worden bepaald door de
kosten te middelen over een oneindige tijdshorizon);

2. de verwachte gedisconteerde kosten over een oneindige tijdshorizon (die worden
bepaald door de gedisconteerde kosten, d.w.z. de contante waarden van de kosten,
te sommeren over een oneindige tijdshorizon); en

3. de verwachte equivalente gemiddelde kosten per tijdseenheid (die worden bepaald
door de gedisconteerde kosten te middelen).

Deze kostencriteria kunnen worden berekend met behulp van de vernieuwingstheorie
(de discrete vernieuwingsstelling). Door het begrip ‘equivalente gemiddelde kosten’ re-
lateren de begrippen ‘gemiddelde kosten’ en ‘gedisconteerde kosten’ aan elkaar. Hoewel
er in de literatuur tot nu toe de meeste aandacht wordt geschonken aan het begrip ‘ge-
middelde kosten’, zijn de criteria van gedisconteerde kosten en equivalente gemiddelde
kosten het meest geschikt om een optimale balans te vinden tussen initiéle bouwkosten
en toekomstige onderhoudskosten.

Op basis van gegeneraliseerde gamma-processen, zijn probabilistische modellen op
maat gemaakt om optimale onderhoudsbeslissingen te onderbouwen voor de volgende
kenmerkende componenten van een dijkring:

Strandsectie: optimale zandsuppletie-groottes, waarvoor de verwachte gedisconteer-
de kosten over een oneindige tijdshorizon minimaal zijn met betrekking tot de
kansverdeling van de gemiddelde structurele achteruitgang van de kustlijn.

Dijksectie: optimale dijkophogingen, waarvoor de gedisconteerde kosten over een on-
eindige tijdshorizon minimaal zijn met betrekking tot de kansverdeling van de
gemiddelde kruinhoogtedaling (een combinatie van zetting, samendrukking van
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de ondergrond en relatieve zeespiegelstijging). Op basis van een fysische wet,
wordt kruinhoogtedaling beschouwd als een stochastisch proces met een verwach-
te kruinhoogtedaling die lineair of niet-lineair (bij benadering logaritmisch) in de
tijd is.

Dynamisch-stabiele golfbreker: optimale inspectie-intervallen voor dynamisch-sta-
biele golfbrekers, waarvoor de verwachte (equivalente) gemiddelde kosten per
tijdseenheid minimaal zijn met betrekking tot de kansverdeling van de gemiddel-
de snelheid van het verdwijnen van stenen (het zogenaamde ‘langs-transport’ van
stenen). Het voorgestelde model is een twee-fasen inspectie-model, waarbij in de
eerste fase geen stenen verdwijnen en in de tweede fase wel. Er wordt aangeno-
men dat de tijdstippen, waarop voor het eerst stenen verdwijnen, verdeeld zijn
volgens een mengsel van geometrisch verdeelde stochastische grootheden.

Bijzondere waterkerende constructie: optimale inspectie-intervallen voor twee
componenten van de bodemverdediging van de Oosterscheldekering: (i) de blok-
kenmatten en (ii) de steenbestorting. Het beslissingsmodel voor de blokkenmat-
ten is een twee-fasen inspectie-model: de ‘tussen-aankomsttijden’ van ontgron-
dingskuilen zijn verdeeld volgens een mengsel van Poisson-processen en de ont-
grondingskuilen ontwikkelen zich volgens een gegeneraliseerd gamma-proces. Het
beslissingsmodel voor de steenbestorting is gebaseerd op de kansverdeling van de
gemiddelde snelheid van het verplaatsen van stenen als gevolg van stroming.

De modellen voor zandsuppletie en dijkophoging zijn voorbeelden van onderhoudsop-
timalisatie in de ontwerpfase, terwijl de twee inspectie-modellen voorbeelden zijn van
onderhoudsoptimalisatie in de gebruiksfase.

In het laatste gedeelte van het proefschrift worden twee beslissingsmodellen ge-
presenteerd die niet direct uitgaan van verouderingsprocessen: één model voor het
evalueren en vergelijken van beslissingen, die overstromingsschade langs de Maas kun-
nen reduceren (met behulp van /;-isotropie en gedisconteerde kosten) en één model
voor het optimaliseren van onderhoud, indien de onzekerheid in faalkansen kan wor-
den uitgedrukt als een Dirichlet-verdeling. Wanneer zowel de sterkte als de belasting
stochastisch zijn, zal met name het laatstgenoemde model in aanmerking komen om te
worden toegepast.

Hoewel de beslissingsmodellen in het proefschrift primair zijn ontwikkeld voor het
onderhoud van stranden, dijken, dynamisch-stabiele golfbrekers en de Qosterschelde-
kering, kunnen ze ook worden toegepast op andere waterbouwkundige constructies en
andere technische systemen voor het oplossen van vele beslissingsproblemen in onder-
houdsoptimalisatie en ‘life cycle costing’.
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