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A Fast Method for High-Resolution
Voiced/Unvoiced Detection and Glottal

Closure/Opening Instant Estimation of Speech
Andreas I. Koutrouvelis, George P. Kafentzis, Nikolay D. Gaubitch, and Richard Heusdens

Abstract—We propose a fast speech analysis method which
simultaneously performs high-resolution voiced/unvoiced detec-
tion (VUD) and accurate estimation of glottal closure and glottal
opening instants (GCIs and GOIs, respectively). The proposed
algorithm exploits the structure of the glottal flow derivative
in order to estimate GCIs and GOIs only in voiced speech
using simple time-domain criteria. We compare our method with
well-known GCI/GOI methods, namely, the dynamic program-
ming projected phase-slope algorithm (DYPSA), the yet another
GCI/GOI algorithm (YAGA) and the speech event detection using
the residual excitation and a mean-based signal (SEDREAMS).
Furthermore, we examine the performance of the aforementioned
methods when combined with state-of-the-art VUD algorithms,
namely, the robust algorithm for pitch tracking (RAPT) and the
summation of residual harmonics (SRH). Experiments conducted
on the APLAWD and SAM databases show that the proposed
algorithm outperforms the state-of-the-art combinations of VUD
and GCI/GOI algorithms with respect to almost all evaluation
criteria for clean speech. Experiments on speech contaminated
with several noise types (white Gaussian, babble, and car-interior)
are also presented and discussed. The proposed algorithm out-
performs the state-of-the-art combinations in most evaluation
criteria for signal-to-noise ratio greater than 10 dB.

Index Terms—Glottal closure instants (GCIs), glottal open-
ing instants (GOIs), pitch estimation, speech analysis,
voiced/unvoiced detection (VUD).

I. INTRODUCTION

THE accurate estimation of the timing of vocal fold
closure (and less often, that of vocal fold opening) during

voiced speech is an important module in many speech-related
technologies. In speech analysis nomenclature, these timing
instants are called glottal closure instants (GCIs) and glottal
opening instants (GOIs). Applications of GCI and GOI esti-
mation are numerous, including pitch tracking [1], [2], voice
source modeling [3]–[6], speech enhancement [7], closed-
phase analysis and glottal flow estimation [8]–[11], speaker
identification [9], [12], [13], speech dereverberation [14],
speech synthesis [15], [16], speech coding [17], speech mod-
ification [18], [19] and speech transformations [20].

Several methods have been proposed for GCI estimation [2],
[21]–[28], but only a few for both GCI and GOI [8], [9], [29]–
[32] or GOI only estimation [33]. To the authors’ knowledge,
the sliding linear prediction covariance analysis [8] was the
first method proposed for GCI/GOI estimation. It uses a
sliding covariance analysis window that moves forward one
sample at a time, and a function of the linear prediction (LP)
residual to detect the closed-phase interval. In the Hilbert
envelope method [29], the GCIs and GOIs are estimated

using the peaks of the Hilbert envelope of the LP residual.
The dynamic programming projected phase-slope algorithm
(DYPSA) [25], [30] is a GCI estimation method that uses the
phase slope function of the residual to extract candidate GCIs
and then performs N -best dynamic programming to obtain
an optimal GCI set. DYPSA also estimates GOIs by using a
fixed closed-quotient interval of 0.3 s [34]. The speech event
detection using the residual excitation and a mean-based signal
(SEDREAMS) algorithm [31], [35] estimates GCIs and GOIs
from the sharp epochs of the LP residual in fixed intervals
around the zero-crossings of a mean-based signal. The latter
is a smoothed, windowed version of the speech signal and the
window length is a function of the mean pitch of the speech
signal. The yet another GCI/GOI algorithm (YAGA) [32]
follows a similar strategy to DYPSA based on the phase slope
function and on N -best dynamic programming, but differs in
two main ways. YAGA applies the phase slope function on the
wavelet transform of the source signal in order to emphasize
the discontinuities in GCIs and GOIs. Then, it finds the best
candidate set of GCIs through N -best dynamic programming
and, subsequently, estimates the most consistent corresponding
GOIs according to their closed-quotient.

GCIs/GOIs are meaningful only in voiced speech regions
and, thus, voiced/unvoiced detection (VUD) must be applied
in conjunction with GCI/GOI algorithms. Several VUD algo-
rithms have been proposed in the literature [36]–[42]. The
robust algorithm for pitch tracking (RAPT) [39] and the
summation of residual harmonics (SRH) [41] appear to be
the state-of-the-art methods in clean and noise-contaminated
speech, respectively [41]. Both algorithms are frame-based
and, therefore, do not have good resolution at voiced segment
boundaries. All the previously discussed GCI/GOI algorithms
estimate GCIs/GOIs in the entire speech signal (in both voiced
and unvoiced segments). It is worth noting that YAGA also
has a “voiced-only” version which eliminates the estimated
GCIs/GOIs of unvoiced regions in an additional step [32]. To
the best of our knowledge, there are no previous experimental
evaluations of combined VUD and GCI/GOI algorithms which
can reveal possible bottlenecks that deteriorate performance in
real-world applications. This kind of evaluation is performed
in the current work.

We propose the glottal closure/opening instant estimation
forward-backward algorithm (GEFBA), which performs si-
multaneous high-resolution VUD and GCI/GOI estimation.
Compared to the majority of the state-of-the-art approaches
that are based on the LP residual, GEFBA operates on the
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source signal itself, obtained by simple LP-based inverse
filtering, using simple time-domain criteria.

In Figure 1 we depict, from top to bottom, a) a voiced
speech segment, b) the derivative of the electroglottograph
signal (dEGG), c) the LP residual, and d) the source signal,
i.e. the glottal flow derivative (GFD). The reason for using
the source signal instead of the LP residual in our work is
two-fold. Firstly, the GFD has a convenient structure which
can be exploited to identify the voiced segments. Secondly,
in voiced segments with low vocal intensity (see the time
interval [20, 60] ms in Figure 1) the residual does not have
sharp epochs and, therefore, the identification of GCIs and
GOIs is difficult. This problem becomes harder when noise
is added to the speech signal. On the contrary, as Figure 1(d)
demonstrates, the GFD waveform suffers less from such prob-
lems due to its clearer structure. Even in SEDREAMS, which
combines a smooth signal with the LP residual, the problem
remains, even though the error is bounded by the length of the
interval around the zero-crossings [35]. GEFBA does not need
such a refinement because it uses a smooth signal which, by
definition, can give the locations of GCIs/GOIs. It is worth
noting that YAGA also estimates the source signal, but it
does not use the source signal itself for GCI/GOI estimation.
Instead, it finds discontinuities of the source signal which may
not exist in some voiced segments as shown in Figure 1. It can
be observed that the dEGG has large epochs even in regions
where the LP residual does not. There are cases of voiced
segments at which the dEGG might not have distinguishable
epochs. Specifically, in voicing offsets the vocal folds may still
oscillate without getting close enough to register an epoch
in the dEGG [43]. However, the GFD structure does not
explicitly depend on the contact of the vocal folds. Therefore,
it remains quasi-periodic enabling the correct identification of
GCIs/GOIs in these cases.

GEFBA achieves high-resolution VUD for two main rea-
sons: a) the GFD waveform can reveal the voicing offsets,
as already discussed and b) it is a pitch-period-based rather
than a frame-based VUD. Moreover, GEFBA, using simple
time-domain criteria based on the estimated glottal parameters
(GCIs, GOIs etc.), can distinguish voiced from unvoiced seg-
ments by taking advantage of the similarity of the neighbour-
ing glottal pulses. Finally, GEFBA has low complexity due to
its simple LP-based inverse filtering scheme and the simple
time-domain criteria used in the joint VUD and GCI/GOI
estimation.

Experiments on clean speech from the SAM [44] and
APLAWD [45] databases show that GEFBA outperforms the
state-of-the-art combinations of VUD and GCI/GOI algo-
rithms with respect to most evaluation criteria. In particular,
it has the highest identification ratio, a remarkably better
GOI accuracy, and a much lower computational complexity.
GEFBA is evaluated for three different types of additive noise:
white Gaussian noise (WGN), babble noise and car-interior
noise. In the presence of WGN, GEFBA outperforms the state-
of-the-art combinations of VUD and GCI/GOI algorithms with
respect to most evaluation criteria. For the other two types
of noise, GEFBA provides robust results mostly for moderate
and high signal-to-noise ratios (SNRs) (i.e., above 10 dB). The
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Fig. 1. A justification for using the glottal flow derivative (GFD) for the
estimation of the glottal closure instants (GCIs) and the glottal opening
instants (GOIs): (a) speech segment, (b) derivative of the electroglottograph
(dEGG) signal, (c) linear prediction (LP) residual, (d) GFD. Stars and ’x’-
marks denote the reference GOIs and GCIs, respectively, obtained from the
dEGG peaks. It is clear that the LP residual is not suitable for estimating
GCIs/GOIs (after 20 ms) because it does not have distinguishable epochs.
On the contrary, the GFD has a smooth and clear structure, allowing a more
convenient estimation of glottal instants.

source code for GEFBA can be found online1.
The remainder of this paper is organized as follows: In

Section II, the problem formulation is presented. Section III
presents the GEFBA algorithm. In Section IV, the GEFBA
algorithm is compared to the state-of-the-art combinations of
VUD and GCI/GOI algorithms and in Section V, the results of
the comparisons are discussed. Finally, we draw conclusions
in Section VI.

II. PROBLEM FORMULATION

A popular model for speech production is the source-filter
model [46], [47]. According to this model, speech is generated
as the manifestation of a source signal coming out from
the vocal folds, passing through the vocal tract, and finally
modified by the lip radiation. A speech signal can be classified
as voiced or unvoiced depending on the state of the vocal
folds (oscillating or not). In voiced speech, the vocal folds
oscillate, thus producing a quasi-periodic source signal named
the glottal flow. In unvoiced speech the vocal folds remain
open and a constriction is formed in certain parts of the
vocal tract, producing a non-periodic, noise-like signal. The
vocal tract is usually modelled as an all-pole filter and the lip
radiation as an FIR first-order differentiator. Since the source-
filter model is a linear model, the lip radiation effect can be
combined with the glottal flow resulting in the GFD. For a
single pitch period, the glottal flow and the GFD are called
the glottal pulse and the glottal pulse derivative waveform,
respectively.

1http://cas.et.tudelft.nl/˜andreas/matlab code/GEFBA.rar



3

0

(a)

0

(b)

E
e

t
o

t
m

t
p

t
e

t
c

Em

Fig. 2. The glottal parameters are illustrated for (a) the glottal pulse and (b)
the glottal pulse derivative. to denotes the glottal opening instant (GOI), tm
is the time instant of the maximum value of the glottal pulse derivative, tp
is the fist zero-crossing instant (FZCI), te corresponds to the glottal closure
instant (GCI), and tc denotes the end of the return-phase.

The glottal pulse and its derivative can be separated into
three main time-domain regions, according to the state of the
vocal folds: the open-phase, the return-phase and the closed-
phase, which correspond to the situation where the vocal folds
are opening, closing, and remain closed, respectively. A well-
known model for the coarse structure of the glottal pulse
derivative is the Liljencrants-Fant (LF) model [5]. Figure 2 il-
lustrates the glottal pulse derivative according to the LF model
(lower pane) and the corresponding glottal pulse obtained by
integrating the LF waveform (upper pane). The time instant of
the open-phase initiation is called the glottal opening instant
(GOI) and is denoted by to, while the time instant te at which
the glottal pulse derivative reaches its minimum value, Ee, is
called the glottal closure instant (GCI). The time instant at
which the glottal pulse derivative takes its maximum value,
Em, is denoted by tm. The return-phase starts at the GCI
and ends at tc where the closed-phase starts. The effective
duration of the return-phase is denoted by ta and it is less
than tc− te. The first zero-crossing instant (FZCI) on the left
of the GCI is denoted by tp. Finally, the time interval between
two successive GCIs is one pitch period long and is denoted
by de. We will refer to the parameters to, Ee, te, ta, tp, tc,
Em, tm and de as the glottal parameters.

It should be noted that the GCI te is defined as the instant of
significant excitation of the vocal tract [48], i.e. the instant of
the negative peak of the GFD, while tc is the instant at which
the glottal flow reaches zero level. As can be seen in Figure 1,
the dEGG peaks can be used as a reference for GOI and GCI
extraction [49], denoting the instant of significant increase and
decrease of the glottal flow, respectively [50]. The large dEGG
peaks correspond to the te instants (see Figure 1).

GEFBA estimates all glottal parameters (in voiced segments
only), except for tc and ta. We refer to a voiced frame as a
fixed interval of voiced speech, while voiced segments refer to
speech regions of various lengths. When we refer to unvoiced
segments we do not necessarily mean unvoiced speech; it
can also be silence. A highly-voiced segment/frame consists
of very similar neighbouring glottal pulse derivatives. This
similarity is defined in Section III-C.

The reason that GEFBA does not estimate tc and ta is that
the VUD and GCI/GOI estimation do not depend on them but
on the remaining glottal parameters. There are several ways
of estimating tc. In [8] tc is obtained by tc = te + 1, a value
that is documented in the work of Rosenberg [3]. However,

step1start step2

”not highly-voiced”

”highly-voiced”

”voiced”

”unvoiced”

Fig. 3. Finite state machine of phase 2 of the GEFBA algorithm: step 1
searches for a highly-voiced frame and its corresponding glottal parameters.
When a highly-voiced frame is found, step 2 finds the remaining glottal
parameters of the voiced parts to the left and right of the highly-voiced frame
until it reaches the neighbouring unvoiced segments to the left and right of
the current voiced segment. Subsequently, step 1 again starts searching for a
highly-voiced frame to the right of the completed voiced segment. The whole
procedure is terminated when the end of the entire speech signal is reached.

the Rosenberg model does not model the return-phase and,
therefore, is less accurate than the LF model. Another more
elegant method [51] proposed tc to be the time instant at
which the glottal pulse derivative returns to zero after the
tp instant. Both methods can be easily implemented in the
GEFBA framework. The ta instant can be obtained by more
complex LF model fitting techniques [9].

III. THE GEFBA ALGORITHM

The GEFBA algorithm consists of two main phases. In
phase 1, described in Section III-A, a rough approximation
of the source signal of the entire speech signal is obtained.
In phase 2, described in Section III-E, simultaneous VUD
and GCI/GOI estimation is performed in two steps. In step
1, GEFBA searches for a highly-voiced speech frame and
estimates its glottal parameters. In most cases, the selected
voiced frame is part of a longer continuous voiced segment
and, therefore, the remaining glottal parameters to the left and
right of the highly-voiced frame should be estimated. Step 2
successively “fills in the gaps” to the left and right of the
highly-voiced frame. The finite state machine illustrated in
Figure 3 summarizes phase 2.

The method for glottal parameter estimation of one pitch
period is outlined in Section III-B. Furthermore, in both
steps, the glottal parameters are successively estimated, one
pitch period at a time, until an unvoiced segment is reached.
Therefore, GEFBA is a pitch-period-based VUD with high
resolution at the boundaries of the voiced segments. The
proposed VUD algorithm consists of a set of conditions
described in Section III-C. Finally, in both steps two main
procedures take place: move forward (MF) and move backward
(MB) explained in Section III-D. The main purpose of both
functions is to find all glottal parameters left and right of an
already found GCI.

A. Phase 1: Estimation of the GFD

It is well-known that the GFD can be accurately modeled as
a mixed-phase signal [47], [52]. According to the frequency
domain point of view of the LF model [5], [53], the open-phase
corresponds to a maximum-phase component called the glottal
formant which is modelled as two complex poles outside
the unit circle and close to the real axis with a frequency
of fp = 1/(2(tp − to)) [5]. The maximum-phase compo-
nent has approximately a −12 dB/octave spectral-magnitude
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roll-off. The return-phase corresponds to a minimum-phase
component which can be approximated by a low-pass filter
having a −6 dB/octave spectral-magnitude roll-off after a cut-
off frequency fa = 1/(2πta) [5]. In total, the LF model has
approximately a −18 dB/octave spectral-magnitude roll-off af-
ter fa. It is worth noting that the Rosenberg model [3] does not
have this extra −6 dB/octave roll-off since it assumes that the
return-phase has zero length. Moreover, the lip radiation filter
can be approximated as a high-pass filter with a +6 dB/octave
spectral-magnitude increment. Therefore, the GFD contributes
to the speech spectrum a roll-off of −12 dB/octave after fa.

In [54] it was experimentally shown that for several types
of voiced speech (i.e., modal, breathy, falsetto, vocal fry) tp is
considerably larger than ta which means that fa is expected
to be greater than fp. According to this assumption, we can
summarize that the GFD between fp and fa has a −6 dB
spectral-magnitude roll-off, while for frequencies greater than
fa the spectral-magnitude roll-off is −12 dB.

As explained in Section I, a smooth approximation of the
coarse structure of the GFD is very convenient for estimating
the GCIs/GOIs even in segments with low vocal intensity.
Therefore, high frequency components should not be present
in this smooth GFD approximation. We used a simple source
estimation scheme based on LP inverse filtering. This provides
a smooth approximation of the GFD during voiced speech. Of
course there are much more accurate GFD estimation methods
in the literature [8]–[11]. However, our aim here is to obtain a
fast and convenient approximation of the GFD in the context
of GEFBA.

A pre-emphasis filter is often used for spectral equalization
before LP. In literature, a first-order pre-emphasis filter which
has a +6 dB/octave increment is commonly used [55]–[57].
This type of filter equalizes the low frequency content before
fa. However, after fa, a −6 dB/octave spectral-magnitude roll-
off remains. Thus, LP will better estimate the lower frequency
content than the higher frequency content because of the
spectral matching property [55]. Instead, here we use a second-
order pre-emphasis filter, D(z) =

(
1− αz−1

)2
, where α =

0.99. This filter has a +12 dB/octave spectral-magnitude
increment and, thus, better equalizes the −12 dB/octave slope
of GFD after fa than the more commonly used first-order
filter [58]. Moreover, it better de-emphasizes the lower fre-
quencies, in the neighbourhood of the glottal formant, than
the first-order pre-emphasis filter. This means that the higher
frequency content will be better estimated and removed during
inverse filtering.

Typically, the LP order used in the literature [11], [17],
[59], is equal to or slightly greater than fs/1000 (where fs is
the sampling frequency) when a first-order pre-emphasis filter
or no pre-emphasis is used. Two important reasons for this
order selection are: a) the glottal formant can be estimated
and cancelled during inverse filtering if a higher order is
used, and b) closed-phase analysis methods have very small
closed-phase intervals (especially for female voices) which
should be larger than the LP order [9]. The second-order pre-
emphasis filter can greatly reduce the energy of the glottal
formant compared to the first-order pre-emphasis filter. This
means that it is safe to use a higher LP order (here we

use p = fs/1000 + 16) without worrying about estimating
the glottal formant. Therefore, improved estimation of the
higher frequency content can be achieved compared to the
first-order pre-emphasis filter. Of course, the GFD estimate
using a second-order pre-emphasis filter sometimes contains
information from the lower frequency formants and that is
why an accurate GFD estimation is something that cannot be
claimed in this paper. However, the low frequency formants
do not have a considerable effect on the average performance
of GEFBA, as is evident from the results in Section IV.

Furthermore, when the speech signal is corrupted by ad-
ditive noise, and especially noise with energy in the high
frequencies, the increased LP order captures a portion of this
noise and, therefore, noise is cancelled out during inverse
filtering. This gives increased robustness to GEFBA because
it maintains the clear, smooth structure of the GFD. However,
if the noise is concentrated in the very low frequencies (i.e.,
in the region of the glottal formant), it cannot be cancelled
out. The algorithm for the GFD estimation is summarized in
the next five steps:
G1: Pre-emphasize the speech signal using D(z).
G2: Apply a 50% overlap frame-by-frame autocorrelation

LP analysis on pre-emphasized Hann-windowed speech
frames of 30 ms length, estimating the corresponding
vocal tract filters.

G3: Apply inverse filtering to every speech frame with the
corresponding vocal tract filter, thus obtaining a pre-
emphasized GFD segment.

G4: Estimate the GFD segment via filtering the pre-
emphasized GFD with 1/D(z).

G5: Synthesize the GFD of the entire speech signal using the
overlap-add method [47].

B. Glottal Parameters Estimation for a Single Pitch Period
Having estimated the GFD, u̇[n], let us assume that a

GCI is identified. The GEFBA algorithm moves forward or
backward in order to detect the next or the previous GCI
of the currently identified GCI. When a new GCI, t(i)e , is
detected, the corresponding E(i)

e , t(i)p , t(i)o , t(i)m , E(i)
m and d(i)e

are estimated using the following algorithm which is similar
to the algorithms proposed in [4], [51].
P1: Select E(i)

e as the GFD value at t(i)e (i.e., E(i)
e = u̇[t

(i)
e ]).

P2: Select t(i)p as the first zero-crossing that is found on the
left of t(i)e .

P3: Estimate d(i)e as d(i)e = |t(i)e − t(i±1)
e |, where t(i+1)

e indi-
cates forward movement, while t(i−1)

e indicates backward
movement.

P4: Estimate t(i)m as t(i)m = max{u̇[t(i)e − 0.8d
(i)
e , . . . , t

(i)
p ]}.

P5: Select E(i)
m as the GFD value at tm (i.e., E(i)

m = u̇[t
(i)
m ]).

P6: Estimate t(i)o , as follows:
a) Find the closest zero/zero-crossing, t(i)o1 on the left of
t
(i)
m .

b) Search if there is any other point, t(i)o2 , that is on the
right of t(i)o1 and left of t(i)m , whose amplitude value is
very close and less than κEm (where 0 ≤ κ < 1). If
there is, then select this point, otherwise select t(i)o1 as
the estimated GOI, t(i)o .
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The choice of a t
(i)
o with a small positive u̇[t

(i)
o ] in P6

is explained as follows. Figure 2 shows that t(i)o is the first
zero on the left of t(i)p that satisfies the inequality t(i)o < t

(i)
m .

However, using the method described in Section III-A for
the rough estimation of GFD, usually, a small non-zero value
appears at the onset of the open-phase (i.e., at the t(i)o instant).
This small non-zero value is a function of Em to guarantee
scale-invariance. Here, we use κ = 0.4, which is empirically
found to be a good choice for finding t(i)o .

C. Voicing Detection & Candidate Selection

In voiced speech, excluding pathological voices, the struc-
ture of neighbouring glottal pulse derivatives is similar and,
therefore, it can be expected that the distances between neigh-
bouring GCIs, FZCIs, and GOIs should also be similar. All
three distances should be close to the pitch period. Any differ-
ence of the three distances depends, mostly, on the estimation
accuracy of the GCIs, FZCIs, and GOIs. In general, GCI/GOI
algorithms [31], [32] provide more accurate estimates of the
GCIs than the GOIs. Therefore, in order to obtain an accurate
estimate of the true pitch period, it is better to compute the
distance of the neighbouring GCIs. We also observed that,
by using the methodology described earlier for the estimation
of the GFD, the distance of the neighbouring FZCIs is, on
average, much closer to the distance of the corresponding
GCIs than the one of GOIs. Furthermore, we observed that the
differences of the neighbouring distances tp − te are similar
and the amplitudes, Ee and Em, of the neighbouring te and tm
instants, respectively, have small variations except of those that
are at the boundaries between voiced and unvoiced segments.

These observations can be utilized for the efficient detection
of GCIs and GOIs in voiced segments only, since the afore-
mentioned distances will not be similar in unvoiced segments.
Thus, the boundaries of a voiced segment are defined by
the first and last GCI present in the segment. We assumed
that consecutive voiced segments should have distance greater
than 2PPmax (where PPmax = 1/80 seconds is the maximum
assumed pitch period), otherwise they are considered as one
voiced segment. An unvoiced segment lacks any GCI.

For the sake of convenience, let us now define four time
distances:

t(i)e − t(i−1)
e = d(i)e , (1)

t(i)p − t(i−1)
p = d(i)p , (2)

t(i)o − t(i−1)
o = d(i)o , (3)

t(i)e − t(i)p = d(i)c (4)

with,
E(i)

e = u̇[t(i)e ], (5)

and
E(i)

m = u̇[t(i)m ], (6)

where (i) denotes the glottal pulse index.
The following six conditions should be satisfied in voiced

segments:
C1: α1d

(i)
e < d

(i±1)
e < α2d

(i)
e

C2: β1d
(i)
e < d

(i±1)
p < β2d

(i)
e

C3: γ1d
(i)
c < d

(i±1)
c < γ2d

(i)
c

C4: δ1d
(i)
e < d

(i±1)
o < δ2d

(i)
e

C5: ε1E
(i)
e < E

(i±1)
e < ε2E

(i)
e

C6: ζ1E
(i)
m < E

(i±1)
m < ζ2E

(i)
m

where ρ = [α1, α2, β1, β2, γ1, γ2, δ1, δ2, ε1, ε2, ζ1, ζ2] is a set
of control parameters that define ranges of the time distances
defined in (2)-(7). The right-hand-side and left-hand-side
components of inequalities C1, C2, and C4 employ the de
distance because of its high accuracy in determining the pitch
period, as already mentioned. The ρ vector can take values
according to three different modes: “strict”, “moderate”, and
“relaxed”. These modes are set according to the similarity of
neighbouring glottal pulse derivatives. Note that in all modes,
0 < α1, β1, γ1, δ1, ε1, ζ1 < 1, while α2, β2, γ2, δ2, ε2, ζ2 > 1.
The closer to 1 the control parameters are, the tighter the
conditions become (i.e., the higher the similarity is between
neighbouring glottal pulse derivatives). Finally, these condi-
tions are also used as glottal parameters candidate selection
discussed in Section III-D. Thus, these conditions are the key
element of the simultaneous VUD and GCI/GOI estimation.

If at least one of the six conditions is not satisfied then
it means that the candidate set of glottal parameters is not
considered proper and is discarded. If all candidate sets of
glottal parameters fail the condition checking, it means that
a non-highly-voiced segment (if GEFBA is at step 1) or an
unvoiced segment (if GEFBA is at step 2) is reached. Inside
voiced segments, it is very rare not to find a candidate set
that satisfies all conditions, because the structure of the neigh-
bouring glottal pulse derivatives are similar (i.e., satisfy the
six conditions) with small variations. The control parameters
of these conditions have been selected in such a way that these
variations are taken into account.

D. Forward-Backward Procedure

Move forward (MF) and move backward (MB) procedures
lie in the core of GEFBA, since they provide the mechanism
of glottal parameter estimation. Specifically, MF and MB
move approximately one pitch period at a time, forward and
backward on the GFD signal, respectively, and estimate the
next set of glottal parameters as described in Section III-B.
MF operates in the search interval [t(i)e +α1d

(i)
e , t

(i)
e +α2d

(i)
e ]

and looks for a GCI (if any) such that itself and all the
accompanying glottal parameters satisfy C1-C6. The algorithm
of MF follows.
M1: Find all zero-crossings of the search interval.
M2: Find the minimum negative peak between each pair of

neighbouring zero-crossings, resulting in N GCI candi-
dates.

M3: Find the corresponding glottal parameters of the N
candidates using the algorithm of Section III-B.

M4: Remove the sets of glottal parameters that do not respect
at least one of the six conditions. The remaining sets are
M ≤ N . If M = 0, it means that either a non-highly-
voiced segment is reached (if GEFBA is at step 1) or an
unvoiced segment is reached (if GEFBA is at step 2).

M5: Select from the M remaining sets the set with the
minimum Ee as the next set of glottal parameters.
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The procedure is repeated for MB in the search interval
[t
(i)
e − α2d

(i)
e , t

(i)
e − α1d

(i)
e ]. Figure 4 provides an intuitive

example for MF. In Figure 4(a), M1 and M2 are represented.
Note that in M1 we find only two zero-crossings in the search
interval and, thus, we obtain only N = 1 possible GCI
candidate. Figure 4(b) depicts M3, while Figure 4(c) depicts
M4 and M5. Note that M4 finds that the only candidate glottal
parameter set satisfies all conditions and, therefore, M5 keeps
this candidate set.

E. Phase 2: Estimation of Glottal Parameters of the Entire
Speech Signal

Phase 2 (depicted in Figure 5) consists of two steps: step
1, where a highly-voiced frame (belonging to a longer voiced
segment) and its glottal parameters are identified, and step
2, where the voiced ”gaps” (left and right of the highly-
voiced frame) and their corresponding glottal parameters are
identified. These two steps are now described in detail.

1) Step 1: Finding a highly-voiced frame: In this step,
GEFBA searches for a highly-voiced frame. We assumed that
the minimum pitch period, PPmin, and maximum pitch period,
PPmax, are 1/500 and 1/80 seconds, respectively. GEFBA
takes frames with size four times PPmax, with overlap of 50%.
If GEFBA finds a voiced segment of at least four pitch periods
within a speech frame whose sets of glottal parameters respect
the set of conditions (set in “strict” and “moderate” modes),
then this speech frame is considered as highly-voiced and
step 2 starts, otherwise step 1 continues until a highly-voiced
frame is found. Moreover, a robust first pitch period estimate
is obtained in step 1 which is required for phase 2 of the
algorithm.

Let us assume that step 1 reaches a certain frame. The
description of step 1 follows in more detail. First, the minimum
negative peak of the frame is found as a starting reference
candidate GCI, denoted by te. Then the MB procedure starts
(using in M4 only Conditions C3, C5 and C6 set in the “strict”
mode) with a pre-defined long search interval since there is
no previous estimate of the pitch period. In this initial case,
the search interval for MB becomes [te−PPmax, te−PPmin]

2.
This initial search interval is long and it is likely to contain
multiple pitch periods of a voiced speech segment. Therefore,
in M5, we select the set of glottal parameters that have the
closest candidate GCI to the current GCI. After finding an
initial pitch period, MB continues (a) using now a search
interval computed with the new pitch period, (b) using all
six conditions (set in the “moderate” mode) on the left until it
reaches a non-highly-voiced segment or the beginning of the
frame. Note that by reaching a non-highly-voiced segment it
does not necessarily mean that it is unvoiced. In this case, the
final voiced/unvoiced decision will be taken from step 2.

When MB is terminated, MF starts from the same reference
GCI as MB but moving in the opposite direction. Note that MF
is not initialized with the pitch period estimate of MB. The
reason is that MF should be independent from pitch-period
mismatches that may happen in MB. Finally, when MF is

2Correspondingly, the search interval for MF becomes [te + PPmin, te +
PPmax]
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Fig. 4. Summary of move forward procedure and glottal parameter estimation
for one pitch period. ’+’ denote the estimated first zero-crossing instants
(FZCIs), ’x’ and ’square’ represent the true and the estimated glottal closure
instants (GCIs), respectively, while ’star’ and ’O’ denote the true and the
estimated glottal opening instants (GOIs), respectively. Finally, the ’diamond’
represents found zero-crossings inside the search interval. M1: Finding zero-
crossings in the search interval, and M2: Finding the minimum negative peak
between each pair of the estimated zero-crossings, are described in panel (a).
M3: Apply P1-P6 to find the sets of glottal parameters is shown in panel (b).
Finally, M4: Removing candidate sets according to C1-C6, and M5: Selecting
the appropriate set of glottal parameters, are depicted in panel (c).

terminated, all glottal parameters of MB and MF are gathered
together forming L total sets of glottal parameters.

Then, two final criteria are checked to verify if the frame is
highly-voiced. The first is if L ≥ 4, where L is the number of
pitch periods in the voiced frame. It should be noted that the
theoretical minimum number of consecutive pitch periods that
we need in order to define periodicity is L = 3. We choose to
use a slightly higher value in order to avoid estimating short
voiced spurts. The second criterion ensures that the following
inequality is satisfied

min
(
d
(1,2,··· ,L)
e

)
max

(
d
(1,2,··· ,L)
e

) > λ, (7)

where λ is a pre-defined threshold. As previously explained,
at the beginning of both MB and MF we obtain a first estimate
of the pitch period which may be erroneous due to the long
search interval. Therefore, the purpose of Inequality (7) is
to avoid pitch-period mismatches (e.g. pitch-period halving
or doubling). The pitch-period estimation mismatches occur
mainly in non-highly-voiced speech. For instance, assume that
MF currently analyzes the ith glottal pulse derivative which is
not very similar to the next, (i+1)th, glottal pulse derivative.
However it is very similar to the (i + 2)th glottal pulse
derivative. Therefore, a pitch doubling is highly probable in
this case. It is empirically found that a good choice for the
threshold of Inequality (7) is λ = 0.6. Theoretically, pitch
halving/doubling occurs when the ratio in Inequality (7) is
equal to 0.5. Thus, a slightly higher value is selected for λ in
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Fig. 5. Flow diagram of Phase 2: Estimation of glottal parameters of the entire speech signal by using the glottal flow derivative (GFD) of Phase 1. Phase 2
consists of two steps: a) step 1 finds a highly-voiced frame inside a larger voiced segment and estimates a robust pitch period, b) step 2 ”fills the voiced-gaps”
to the left and right of the highly-voiced frame. BOF is for beginning of frame and EOF is for end of frame. The pitch period estimate is denoted by de.

order to take into account the variations of pitch due to the
quasi-periodic nature of the GFD.

MB and MF use the previous pitch period to determine
the next search interval. Moreover, the two initial estimated
pitch periods are prone to errors in non-higly-voiced segments
as mentioned before. Therefore, if a pitch-period estimation
mismatch occurs and the control parameters α1, α2 are set
tight, then the error will continue until the procedures MB
and MF terminate. In order to avoid this undesirable case,
the control parameters α1, α2 of the “moderate” mode need
to be further relaxed (even more than the “relaxed” mode).
This is a necessary exception in the “strict-relaxed” paradigm,
explained in Section III-C, in order to help Inequality (7) to
find the pitch-period estimation mismatches.

If one of the two criteria is not satisfied the correspond-
ing frame is considered as “non-highly-voiced” and GEFBA
moves to the next frame. Otherwise it is “highly-voiced” and
step 2 starts. When a highly-voiced frame and its sets of glottal
parameters are found, the average pitch period is computed
from the L estimated pitch periods of this frame, giving a
robust pitch-period estimate that is used in step 2. Note that
a new robust pitch period is estimated for each entire voiced
segment.

2) Step 2: “Filling the gaps”: In step 2, GEFBA moves
backwards starting from the leftmost estimated GCI from
step 1. At the beginning, MB uses the average pitch period
from step 1 and keeps going on by replacing it with the
previously estimated pitch period each time. It stops if it finds
unvoiced speech (one of the five conditions is not satisfied)
or if it reaches up to the first sample of the entire speech
signal. Then, it collects the glottal parameters and merges them
with the gathered glottal parameters of step 1. Then it starts
moving forward starting from the rightmost estimated GCI

obtained from step 1. Again, either it finds unvoiced speech
or it keeps moving forward until it reaches the end of the
entire speech signal. Then, all glottal parameters estimated in
MF are collected and concatenated at the end of the other
glottal parameters found so far. When we find all the glottal
parameters of the entire voiced speech segment, GEFBA goes
back to step 1, and the whole process starts again. This time
the next frame that will be searched in step 1 starts slightly
more than one minimum pitch period (i.e., 1/300 seconds)
after the rightmost previously estimated GCI of step 2. Note
that in step 2 the set of conditions are set in “relaxed” mode
in order to find the non-highly voiced segments as well.

IV. EVALUATION

In this section, we compare the GEFBA algorithm with the
“voiced-only” version (i.e. using elimination of instants that
belong to unvoiced speech) of YAGA [32] and the combination
of DYPSA [30] and SEDREAMS [31], [35] with two state-of-
the-art VUD algorithms, RAPT [39] and SRH [41]. “Voiced-
only” versions are denoted by the subscript V in the rest of
the work. Although the performance of GCI/GOI algorithms
without combining them with a VUD algorithm is not con-
clusive on which one is the best in the context of real-world
applications, we also evaluate the standard versions of YAGA,
DYPSA and SEDREAMS, to highlight what appears to be
the bottleneck due to the combination with a VUD algorithm.
These versions are named after the corresponding algorithm,
with no subscript letter. The experiments are undertaken in
clean and noise-contaminated speech using the parametriza-
tions published in the corresponding papers. Moreover, the
algorithms are tested using three different types of additive
noise (white Gaussian noise (WGN), babble noise and car-
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interior noise) taken from NOISEX92 [60] with SNR values
ranging from 0 to 30 dB with a step of 5 dB.

Two databases of speech and EGG recordings were used
for the evaluation. The APLAWD database [45] consists of
10 sentences repeated 5 times from 10 speakers (5 males,
5 females). The SAM database [44] consists of extended
two-minute passages by four speakers (two females and two
males). Reference GCIs and GOIs were extracted from the
peaks of the dEGG signal via the SIGMA algorithm [49]
which was experimentally shown to achieve very accurate
results in APLAWD and SAM databases [49]. In order to
remove any bias between estimated GCIs and reference GCIs
caused by the propagation time from the glottis to the record-
ing device, we used a constant propagation time of 0.87 ms and
0.95 ms for SAM and APLAWD, respectively. The MATLAB
implementations of DYPSA and SIGMA are published by
their corresponding authors in the VOICEBOX Toolbox [34],
while the MATLAB implementation of SEDREAMS for GCI
is published in [61]. In this implementation, we also added the
GOI estimation according to [31]. Moreover, the RAPT imple-
mentation of VOICEBOX is used, while the implementation
in [61] is used for SRH.

The basic component which is used in most of the evaluation
measures is the glottal cycle. The glottal cycle for the ith

reference GCI is considered to be the interval[ t(i−1)
e + t

(i)
e

2
,
t
(i)
e + t

(i+1)
e

2

]
(8)

inside a voiced segment, while for the left and right boundaries
we consider the intervals[

t(i)e −
t
(i+1)
e − t(i)e

2
,
t
(i)
e + t

(i+1)
e

2

]
(9)

and [ t(i−1)
e + t

(i)
e

2
, t(i)e +

t
(i)
e − t(i−1)

e

2

]
, (10)

respectively. The same intervals for the glottal cycle for the
ith GOI are chosen. It is reminded that the minimum distance
between consecutive voiced segments is 2PPmin, otherwise
they are considered as one. We assume that a voiced segment
starts with a GCI and ends in a GCI instead of labelling frames
as voiced or unvoiced, which is problematic in the boundaries.
Finally, eight different evaluation metrics are used.

• Identification ratio (IDR): the percentage of glottal cycles
that have exactly one GCI. IDR is a function of FAR and
MR. i.e., IDR = 100− FAR−MR (see below).

• False alarm ratio (FAR): the percentage of glottal cycles
that have more than one GCI.

• Miss ratio (MR): the percentage of glottal cycles that have
no GCI at all.

• Voiced/unvoiced detection error (VUDE): It is the pro-
portion of samples that are erroneously classified either
as voiced or unvoiced. In order to find these erroneously
classified samples we apply the operation XOR to two
sets A and B, where A is the set of all samples of all
estimated voiced segments and B is the set of all samples
of all reference voiced segments.

• Bias (in ms): the GCI bias of the error distribution after
alignment.

• Std (in ms): the standard deviation of the error distribu-
tion.

• MSE (in ms): The mean square error of the error distri-
bution which is a function of the bias and std and shows
the accuracy of the algorithms.

• Relative computation time (RCT): It gives an indication
of the speed of each algorithm and is computed as follows

RCT(%) = 100
CPUtime(s)

Durationsound(s)
(11)

These metrics are the same as those used in [30], [32],
[35] with the exception of Voiced/Unvoiced Detection Error
(VUDE) which we introduce here to measure the VUD
performance with high resolution. Six of the aforemen-
tioned measures (FAR, MR, IDR, Bias, Std, MSE) ap-
ply to GOI detection as well, with the only difference
being the definition of a glottal cycle; to substitutes te
in the intervals. The control parameter vector ρ takes
the following values in the three different modes: in the
“strict” mode, ρ = [−,−,−,−, 0.4, 2,−,−, 0.5, 1, 0.3, 3],
in the “moderate” mode, ρ = [0.4, 1.6, 0.85, 1.15, 0.4, 2.5,
0.6, 1.5, 0.3, 2.6, 0.35, 3.1], and in the “relaxed” mode,
ρ = [0.65, 1.4, 0.75, 1.3, 0.3, 3.5, 0.55, 1.6, 0.25, 2.7, 0.4, 3.5].
Note that in “strict” mode, some control parameters are not
used (i.e., they are denoted by −) as explained in Section III-C.
The selection of this parametrization is not optimal for one
certain evaluation criterion but a good trade-off between
them. Several sets of values are tested based on the “strict-
relaxed” paradigm, and the extra relaxation of α1 and α2 in
the “moderate” mode described in Sections III-C and III-E,
respectively. The “strict-relaxed” paradigm is indeed the case
for these values, except for ζ1 which is empirically found to
behave differently.

Furthermore, we excluded short voiced spurts from the
evaluation by removing the reference GCIs and GOIs that
are in segments with less than four pitch periods. Table I
shows the performance of all algorithms in clean speech for
the APLAWD and SAM databases. The entries of the table
are in pairs, except for the RCT and VUDE columns. The
first value of each pair is the performance for GCI estimation
while the second is the performance for the GOI estimation. In
RCT, we have a single value except for SEDREAMS which
has a slow and a fast implementation [35]. Here, the RCT
of SEDREAMS is computed by counting the time it takes
for pitch estimation using the RAPT algorithm (in contrast
to [35]). Figures 6, 7 and 8 show the performance of the
algorithms for the three different types of additive noise using
the data from both databases.

V. DISCUSSION

In this section we discuss the performance of the compared
algorithms.

A. High-Resolution VUD & Voicing Offsets

GEFBA performs high-resolution VUD because it is pitch-
period-based rather than frame-based, and it is able to cap-
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Database Method IDR FAR MR VUDE Bias std MSE RCT

APLAWD

DYPSA (96.01, 96.10) (1.91, 1.94) (2.08, 1.96) 37.20 (−0.07, 0.48) (0.75, 1.00) (0.57, 1.24) 18.5

DYPSAV (93.88, 94.23) (1.63, 1.64) (4.48, 4.12) 7.76 (−0.08, 0.48) (0.75, 1.00) (0.58, 1.24) 58.6

YAGA (98.71, 98.44) (1.10, 1.27) (0.19, 0.28) 37.80 (−0.01, 0.76) (0.35, 1.16) (0.12, 1.94) 32.9

YAGAV (86.73, 85.92) (0.22, 0.28) (13.05, 13.81) 9.80 (−0.02, 0.84) (0.30, 1.17)(0.09, 2.09) 34.3

SEDREAMS (97.46, 97.28) (1.57, 1.69) (0.97, 1.02) 39.63 (−0.06, 0.90) (0.39, 0.99) (0.15, 1.81) (87.5, 58.6)

SEDREAMSV (94.92, 94.98) (1.34, 1.43) (3.75, 3.59) 7.51 (−0.06, 0.90) (0.40, 1.00) (0.16, 1.83) (87.6, 58.7)

GEFBA (98.23,97.97)(0.21,0.25) (1.56,1.78) 7.90 (−0.01,−0.12)(0.37,0.64)(0.14,0.43) 15.03

SAM

DYPSA (94.92, 94.97) (2.40, 2.47) (2.67, 2.56) 51.31 (0.00, 0.69) (0.60, 0.96) (0.36, 1.40) 18.1

DYPSAV (91.52, 91.90) (1.92, 2.02) (6.56, 6.08) 6.55 (−0.01, 0.68) (0.58,0.95) (0.34, 1.38) 58.9

YAGA (97.79, 97.38) (1.97, 2.23) (0.24, 0.40) 51.75 (−0.01, 0.86) (0.36, 1.20) (0.13, 2.20) 33.4

YAGAV (80.06, 78.59) (0.30, 0.40) (19.65, 21.02) 10.29 (−0.03, 0.95) (0.27, 1.23)(0.07, 2.43) 92.2

SEDREAMS (97.14, 96.51) (1.50, 1.83) (1.36, 1.67) 51.82 (0.00, 1.30) (0.39, 1.06) (0.15, 2.83) (75.6, 56.8)

SEDREAMSV (93.28, 93.00) (1.06, 1.35) (5.65, 5.65) 6.12 (−0.01, 1.29) (0.38, 1.09) (0.15, 2.87) (76.3, 56.8)

GEFBA (96.72,96.47)(0.29,0.34) (2.99,3.19) 6.29 (0.05,0.47) (0.42, 0.98) (0.18,1.18) 15.6

TABLE I
PERFORMANCE OF ALL METHODS ON CLEAN SPEECH USING THE EVALUATION CRITERIA DESCRIBED IN SECTION IV. EACH ENTRY PAIR OF NUMBERS

DENOTES GCI AND GOI ESTIMATION PERFORMANCE. V DENOTES THE “VOICED-ONLY” VERSION OF THE CORRESPONDING ALGORITHM. BEST
PERFORMANCES OF “VOICED-ONLY” VERSIONS ARE HIGHLIGHTED WITH BOLD.
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Fig. 6. VUD and GCI/GOI detection performance, of all algorithms in both (SAM, APLAWD) databases contaminated with additive white Gaussian noise,
using the evaluation criteria described in Section IV.

ture the voicing offsets. Moreover, we believe that VUDE
gives a high-resolution criterion about the voiced/unvoiced
performance of a VUD algorithm when it is combined with a
GCI/GOI algorithm. This is justified as follows. First, frame-
based VUD algorithms have low resolution at voiced segment
boundaries. There are two types of resolution errors that may
occur. The first one is to include an unvoiced segment to a
voiced one, and the second is to miss the end part of a voiced
segment. The former can be resolved via the combination
of a VUD with a GCI/GOI algorithm. In this combination,
we can stop at the final estimated GCI and discard all the
remaining unvoiced part. The latter cannot be resolved by

the combination since the voiced detector labels all remaining
GCIs/GOIs outside of its voiced decision interval as unvoiced.
Therefore, we compare the VUDE of GEFBA with the other
“voiced-only” algorithms and not RAPT or SRH themselves.

As discussed in Section I, there is a category of voicing
offsets, where the speech signal remains clearly periodic for
a few cycles at the end of the voiced segment while the
dEGG signal is almost zero [43]. Therefore, the SIGMA
algorithm does not estimate any GCIs or GOIs during this
interval [49]. The main reason is that the vocal folds are
“flapping in the breeze” as is stated in [43] and, therefore, they
do not collide in order to produce distinguishable epochs at the
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Fig. 7. VUD and GCI/GOI detection performance, of all algorithms in both (SAM, APLAWD) databases contaminated with additive babble noise, using the
evaluation criteria described in Section IV.
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Fig. 8. VUD and GCI/GOI detection performance, of all algorithms in both (SAM, APLAWD) databases contaminated with additive car-interior noise, using
the evaluation criteria described in Section IV.

dEGG waveform. This phenomenon is also called abduction
of the vocal folds [4]. This means that the VUDE evaluation
methodology based on the reference GCIs/GOIs extracted
via the SIGMA algorithm is still not completely accurate.
Note, however, that the systematic error (which occurs at the
beginning and end of every entire voiced segment) of the
frame-based-labelled VUD evaluation methods is larger than
the proposed evaluation method.

We noticed that most of the VUDE of GEFBA appears in
these voicing offsets and in particular in two cases: 1) the
voiced-to-silence transitions and 2) the voiced-to-(unvoiced
speech) transitions. In both cases, there is still some periodicity
of vocal folds. In the binary VUD problem, in our opinion the
first case should be considered as voiced and the second case
as voiced or unvoiced. A justification of why the transition
from voiced to silence should be considered as voiced is
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Fig. 9. Example of voicing offsets detection using GEFBA: (a) speech
segment, (b) derivative of the electroglottograph (dEGG) signal, (c) linear
prediction (LP) residual, (d) GFD. Stars and ’x’-marks denote the corre-
sponding GCIs and GOIs, respectively, as extracted from the dEGG using the
SIGMA algorithm, while ’+’ and ’o’ denote the estimated GCIs and GOIs,
respectively, using the GEFBA algorithm. Clearly, the dEGG does not have
sharp epochs at the voicing offset and, thus, GCIs/GOIs cannot be entirely
estimated via the SIGMA algorithm.

that in speech synthesis it is desired to model not only the
main part of the voiced segment but also these voiced-to-
silence transitions [4]. Therefore, we expect that the real
(according to the ground-truth GCIs/GOIs extracted via a
better algorithm than SIGMA) VUDE is lower than the one
mentioned in Table I. A simple example that demonstrates the
ability of GEFBA to capture this particular type of voicing
offsets is demonstrated in 9. Clearly SIGMA cannot find this
voicing offset because the dEGG does not have sharp epochs.
Moreover, we observe that the last two estimated GCIs have a
distance of, approximately, two pitch periods. Therefore, pitch
estimation algorithms based on the dEGG [1] may miss or give
erroneous pitch information at this type of voicing offsets.
However, GEFBA appears not to be vulnerable in these cases.

B. Complexity

It is evident from Table I that GEFBA is much less complex
than all “voiced-only” algorithms and even than the standard
versions of the GCI/GOI estimation algorithms. There are
three reasons for this: 1) the simple LP scheme of Phase
1, 2) the simple forward-backward movement of GEFBA in
Phase 2 using simple time-domain criteria, 3) the one-step
joint GCI/GOI estimation and VUD of GEFBA. The same
three properties obviously hold for the noisy scenario as well.
On the contrary, the higher complexity of the “voiced-only” al-
gorithms is mainly because they perform GCI/GOI estimation
and VUD in two consecutive independent steps. Moreover,
DYPSA and YAGA perform N -best dynamic programming
which is much more complex than the simple time-domain
criteria used in GEFBA.

C. Clean Speech

Table I shows that in clean speech GEFBA outperforms the
state-of-the-art in most evaluation criteria among all “voiced-
only” algorithms in both databases. In the correctly identified
voiced segments, it is important to have high IDR. We observe
that in both databases GEFBA achieves the highest IDR among
all voiced combinations in clean speech. The highest IDR
occurs due to the simultaneous lowest FAR and MR. GEFBA
achieves the next lower VUDE after SEDREAMSV .

The simplicity of GEFBA comes with a slightly less accu-
rate estimation of GCIs than YAGAV which performs dynamic
programming. As we can see the MSE difference of GEFBA
and YAGAV for clean speech is no more than 0.11 ms. Note
also that YAGAV is more accurate in GCIs than YAGA. The
reason is that YAGAV discards estimated GCIs from voiced
segments with low vocal intensity which do not have sharp
epochs and are prone to low GCI estimation accuracy. The
GOI-MSE of GEFBA is remarkably better than all the other
methods. The accuracy is determined from two factors: the
bias and the standard deviation. The bias of the GCIs for
all methods is very low because of the alignment performed.
However, we can compare the bias of GOIs and GEFBA
appears to have the lowest GOI bias.

D. Noise-Contaminated Speech

As discussed in Section III-A, GEFBA is based on a smooth
estimated GFD removing from it any high frequency content.
This is convenient for WGN and babble noise which have a
portion of energy in the high frequencies. On the other hand,
for car-interior noise most of the noise energy is in the low
frequencies (i.e., close to fp) and GEFBA cannot remove it
from the GFD. Therefore, for this last type of noises we expect
the worse performance from GEFBA.

In WGN and babble noise scenarios GEFBA achieves a
much greater IDR compared to the other “voiced-only” algo-
rithms for both low and high SNRs. In the car-interior noise
scenario its performance deteriorates, as expected, for low
SNR values, however for SNR > 10 dB it still outperforms
the competing methods in most evaluation criteria.

In WGN, GEFBA achieves the best VUDE in all SNR
values. As for the car-interior noise, GEFBA outperforms the
other methods, in VUDE, only for SNR ≥ 15 dB. In babble
noise scenario, GEFBA’s VUDE is slightly worse than the
other algorithms. This is because GEFBA sometimes captures
GCIs/GOIs belonging to the noise source (babble speech)
during unvoiced segments of the desired speech source.

GEFBA has a remarkably better GOI accuracy over all
noise types. Furthermore, YAGAV appears to have the lowest
GCI-MSE. However, for all noise types, YAGAV has an IDR
that does not exceed 85% for all SNR values. The MSE
difference for GCI between GEFBA and SEDREAMSV in
noise-contaminated speech is less than 0.15 ms.

VI. CONCLUSIONS

In this paper we proposed the GEFBA algorithm for si-
multaneous voiced/unvoiced detection and estimation of the
glottal closure and opening instants. Unlike other GCI/GOI
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estimation algorithms, GEFBA estimates GCIs/GOIs only in
voiced speech by exploiting the structure of the glottal flow
derivative using simple time-domain criteria. GEFBA is also
a voiced/unvoiced detector with high resolution at the bound-
aries of the voiced segments, since a) GFD is capable of identi-
fying clearly the voicing offsets and b) it is pitch-period-based
rather than frame-based. Common evaluation methodologies of
GCI/GOI estimation algorithms do not account for possible
bottlenecks in performance if combined with a VUD algo-
rithm. Therefore, in the present paper we compared GEFBA
with well-known state-of-the-art combinations of VUD and
GCI/GOI algorithms. GEFBA is shown to outperform state-
of-the-art combinations especially in terms of speed, GOI
estimation accuracy, and identification ratio in clean speech. In
additive noise scenarios, GEFBA outperforms the state-of-the
art combinations in most of the evaluation criteria when the
SNR is above 10 dB. A potential short-coming of GEFBA is
the relative large number of control parameters, some of which
may require optimization on specific type of voices. To this
end, our future work includes the optimization of GEFBA’s
parameters, its increase in robustness for low SNRs, and its
applications in speech analysis problems.
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