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Abstract
Treatment plan optimization is a multi-criteria process. Optimizing solely on
one objective or on a sum of a priori weighted objectives may result in inferior
treatment plans. Manually adjusting weights or constraints in a trial and error
procedure is time consuming. In this paper we introduce a novel multi-criteria
optimization approach to automatically optimize treatment constraints (dose–
volume and maximum-dose). The algorithm tries to meet these constraints as
well as possible, but in the case of conflicts it relaxes lower priority constraints
so that higher priority constraints can be met. Afterwards, all constraints
are tightened, starting with the highest priority constraints. Applied constraint
priority lists can be used as class solutions for patients with similar tumour types.
The presented algorithm does iteratively apply an underlying algorithm for
beam profile optimization, based on a quadratic objective function with voxel-
dependent importance factors. These voxel-dependent importance factors are
automatically adjusted to reduce dose–volume and maximum-dose constraint
violations.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Traditionally, irradiating the tumour with the prescribed dose has been the primary goal in
radiotherapy, as long as no critical damage is done to the OARs. Nowadays, with better
planning and treatment tools available, optimal sparing of OARs has also become a major
goal. One of the difficulties in plan optimization is that feasible solutions may heavily, and
rather unpredictably, depend on the selected objectives and constraints, and their relative
weights. In clinical practice, dosimetrists do usually optimize constraints, objectives, and/or
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weights in a time-consuming interactive trial-and-error process, to find some acceptable
compromise. Often constraints are implemented as objectives and optimized in a weighted
sum function, making it impossible to make a sharp trade-off between objectives without
violating constraints. Multi-criteria optimization (or multi-objective optimization) aims at
providing tools to steer this process. One approach includes the generation of sets of Pareto
efficient solutions (Cotrutz et al 2001, Lahanas et al 2003, Küfer et al 2005, Craft et al 2005,
2006, Halabi et al 2006, Hoffmann et al 2006).

In this paper, a novel approach to multi-criteria optimization is presented. This algorithm
maximizes or minimizes objectives subjected to constraints. An objective is implemented as a
soft constraint, a constraint which is allowed to be violated and adapted by the algorithm. (To
distinguish normal constraints from soft constraints, constraints which are not allowed to be
violated are called hard constraints.) The objectives are selected and prioritized a priori by the
radiation oncologist and grouped together with the (hard) constraints to a constraint priority
list. Soft constraints with a low priority may be automatically relaxed to meet higher priority
or hard constraints (e.g. the volume allowed to receive more than the critical dose is increased
for a dose–volume constraint). Soft constraints may also be tightened where possible. Finally,
for each patient a single plan is generated with a set of constraints that just avoids constraint
violations; tightening any of the final constraints will result in at least one violation for the
other constraints. The final plan meets all hard constraints and the soft constraints are met as
well as possible.

The proposed algorithm for multi-criteria optimization iteratively applies an in-house
developed algorithm for beam profile optimization. With the latter algorithm, profiles are
optimized using voxel-dependent importance factors in a quadratic dose objective function.
Optimization includes automatic adjustment of these factors in order to reduce dose–volume
and maximum-dose constraint violations. An algorithm for fast minimization of quadratic
functions has recently been published (Breedveld et al 2006), and is applied here. Despite that
the multi-criteria optimization algorithm is only applied to our in-house developed beam profile
optimization, we believe that the algorithm can be applied to a broader range of algorithms
for constrained optimization, including, for example, aperture based optimization.

To weigh the relative importance of OARs and the tumour in inverse planning for IMRT,
a volume-wide importance factor can be used for each volume (Bortfeld et al 1990, Brahme
1995, Spirou and Chui 1998, Wu and Mohan 2000). Because the desired dose is more easily
delivered to some voxels than to others, the volume-wide importance factor can be refined to
voxel-dependent importance factors. This provides more local control over the dose (Cotrutz
and Xing 2002, Wu et al 2003). The weights of the voxels can be chosen in advance by
looking at the depth and position of the organs (Shou et al 2005) or adapted in an iterative
procedure (Cotrutz and Xing 2003, Yang and Xing 2004).

Recently, Wilkens et al (2007) and Jee et al (2007) have also studied the use of constraint
priority lists, using different optimization schemes and different underlying optimization
algorithms. These papers also describe the advantage of goal programming/lexicographic
ordering in treatment planning. Wilkens et al formulate a four-step approach which is used as
a class solution for treating head and neck patients. The fourth step incorporates a non-clinical
goal: smoothing of the fluence. In our approach, profile smoothing is an integral part of
the optimization procedure, accounted for by a dedicated term in the objective function. Jee
et al describe the application of lexicographic ordering with four levels of priority, applied
to a prostate and a head and neck case. For the prostate case they also show the impact of
changing the priorities of PTV irradiation and maximum dose to the rectum wall.

One of the main differences between the approaches of Wilkens et al and Jee et al and
our approach is that their objectives are handled one by one, and in a pre-defined order. Our
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approach first tries to find a solution, fulfilling all constraints. If that is not possible, limiting
(lower-priority) constraints are relaxed. However, after relaxation, the primary goal of the
algorithm becomes meeting all initial constraints (as prescribed by the radiation oncologist).
This process starts with the highest priority constraints that have been relaxed. If, for example,
the dose in the parotids is within the constraints, it may be more important to first lower the
dose in the oral cavity. If all the initial constraints are met (or as well as possible), an attempt is
made to tighten constraints below the initially prescribed levels, again starting with the highest
priority constraints.

2. Methods and materials

2.1. Global description of optimization routines

The proposed multi-criteria approach is based on algorithms for optimization of (1) beam
profiles, (2) voxel weights and (3) imposed treatment constraints. To define the problem,
tumour dose prescriptions, dose–volume and maximum-dose constraints, a constraint priority
list, and volume-wide importance factors have to be set. This defines the planning protocol.
Ideally, a single protocol can be applied to patients with similar tumour types.

For the beam profile optimization a quadratic objective function is used to minimize the
difference between the desired or prescribed doses in voxels and the attained doses. Each
voxel has a coefficient η. The higher the coefficient, the more likely it becomes for that voxel
to meet its ideal dose objective, either 0 Gy dose for organs at risk, or the prescribed dose for
the tumour.

The quadratic objective function used has been discussed thoroughly in Breedveld et al
(2006):

s(f) =
∑

v∈V
ξv

(
Hf − dp

v

)T
η̃v

(
Hf − dp

v

)
+ κ(Mf)T (Mf).

The first term is the quadratic dose objective, modified for use with voxel-dependent importance
factors. Hf is the dose resulting from the fluence f , and d

p
v is the dose objective for voxels in

volume v (from the set of all volumes V). The volume-wide importance factors ξv are still used
as a priori weighting between volumes. The vector of voxel-dependent importance factors
ηv (which will be abbreviated as the voxel-coefficient vector η for readability) is written as
a diagonal matrix η̃v . In this approach, the dimension of the coefficient vector equals the
number of patient voxels. Only the subset of the coefficients corresponding to the volume
v can be unequal to zero. Because each volume has its own voxel-coefficient vector, one
voxel (in the patient space) can belong to more than one volume (i.e. volumes can overlap).
The second term κ(Mf)T (Mf) represents the squared second derivative of the fluence and
ensures a smooth fluence.

Two types of constraints are used in this paper: dose–volume and maximum-dose
constraints. Each constraint is put into a set Cn according to the priority for meeting the
constraint level. Constraints in set C0 are hard constraints and no relaxation is allowed. The
other constraints are soft constraints. Constraints in set C1 are the first ones considered for
tightening and the last ones to be relaxed, etc. The sets Cn represent the constraint priority
list. Typical examples are given in tables 1 and 2.

In the case of constraint violations, involved voxel-coefficients are adapted (sections 2.2.1
and 2.2.2) and a new fluence is calculated by the beam profile optimization. This procedure,
designated as coefficients optimization, is repeated until no constraint is violated, or for a
maximum number of iterations (section 2.2).
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Figure 1. 2D example of voxel selection for iterative voxel-coefficient adaption. Dc is the critical
dose for the OAR. To reduce the amount of voxels exceeding the critical dose, the value of the
voxel-coefficients of the voxels in the shaded area is increased. The result is that the Dc isodose
line moves closer to the PTV, because dose delivery in the shaded area is penalized.

The four-stage constraint optimization is an iterative multi-criteria optimization mastering
the coefficients optimization, based on the constraint priority list. If constraints are too tight
and the coefficients optimization cannot find a feasible solution within a fixed number of
iterations, constraints are first relaxed. When a feasible solution has been found with relaxed
constraints, a process is started to tighten constraints without exceeding any of the other
constraints. If none of the constraints can be tightened further, the optimization is terminated
(section 2.3).

2.2. Coefficients optimization

The coefficients optimization adapts the voxel-coefficient η for volumes with violated
constraints by increasing the coefficient of one or more voxels. If the minimum dose constraint
(mimicked by a dose–volume constraint with 100% coverage objective) for one or more PTVs
is violated, only the voxel-coefficients for these constraints are adapted. Otherwise voxel-
coefficients for the other violated constraints are adapted. Note that the coefficient of a voxel
can be increased several times in multiple iterations (section 2.3, figure 3).

It is also possible to optimize the constraints in prioritized order in this part of the
optimization, as was done in Breedveld et al (2007). The drawback is that the constraints
will not be relaxed or tightened, which may lead to a suboptimal result or even present an
infeasible problem. With a multi-criteria optimization algorithm as presented in section 2.3,
also prioritizing the constraints in this part of the optimization is superfluous.

After each adaption of voxel-coefficients, the coefficients optimization performs a beam
profile optimization (Breedveld et al 2006) and re-evaluates the constraints. If no constraints
have been violated, or after a maximum number of iterations, the coefficients optimization is
terminated.

2.2.1. Adaptation of voxel-coefficients for dose–volume constraints. To reduce the high-
dose volume in the OAR, voxels exceeding the critical dose need to have their doses reduced.
Usually, voxels with a high dose are closer to the PTV. Furthermore, it is easier to decrease
the dose in voxels with doses close to the critical dose than voxels with a higher dose.
Therefore, voxel-coefficients are increased for OAR voxels that just exceed the critical dose Dc

(figure 1).
The selection of voxels to be adapted is illustrated in more detail in figure 2 for a one-

dimensional example. The voxels are first sorted in ascending order by dose. For the voxels
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Figure 2. One-dimensional examples of voxel selection for voxel-coefficients adaption. The dose
distribution (left) is first sorted in ascending order (right). The first voxel exceeding the critical
dose Dc of the dose–volume constraint is 16. For an OAR, the coefficients of voxels 16, 5, 6, . . .

are then adapted. For a PTV voxels 4, 17, 3, . . .. In the case of a dose-maximum constraint Dm,
voxels 10, 11, 9, . . . are adapted.

exceeding the critical dose Dc, some voxel-coefficients are increased. When applied to the
PTV, the voxels are adapted from the high-dose region just below Dc to the low-dose region.
Bortfeld et al (1997) used the same idea applied to a penalty function. In the approach of
Cotrutz and Xing (2002), dosimetrists have to manually select areas in the DVH that need
improvement.

2.2.2. Adaptation of voxel-coefficients for maximum-dose constraints. A similar technique
is applied to suppress high-dose regions: the coefficients for a subset of the voxels receiving a
dose larger than Dm are adapted, starting with the voxels receiving the highest doses (see also
figure 2).

2.3. Constraint optimization

The coefficients optimization may be used to generate a solution that meets a set of constraints,
but it fails to come up with an alternative if the constraints are too tight. On the other hand, if
the constraints are too loose, the solution found is sub-optimal, unless the constraints are set
just tight enough.

In our multi-criteria approach, constraint optimization based on the initial constraints and
the constraint priority list is used to generate a plan with the property that improving a single
constraint is only possible if at least one other constraint is violated.

The constraint optimization is a four-stage process (figure 3). Each stage calls the
coefficients optimization with a maximum number of iterations (N1, . . . , N4 for each stage).
The coefficients optimization is an evolutionary algorithm, i.e., the voxel-coefficient vector is
updated in each iteration. This property is also used in the constraint optimization because
the solution of a slightly different constraint set (i.e. one constraint is more tight) lies in the
proximity of the current solution. This allows a fast search through the constraint space
because it is not required to start from scratch in each iteration of the constraint optimization.

2.3.1. Stage 1. Before the first stage starts, a single optimization is done of the quadratic
objective function with voxel weights 1 for the PTV(s) and 0 for all OAR. This results in an
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Figure 3. Flow diagram of the four-stage constraint optimization. The first stage populates the
coefficient vector with problematic voxels. If soft constraints cannot be met, they are relaxed in
the second stage. The third stage tries to undo this relaxation, by tightening relaxed constraints
up to the initial constraint levels. Finally, the fourth stage tightens soft constraints until no further
tightening of any of them is possible.

initial dose distribution. Then the first stage is started and a maximum of N1 iterations are
done with the coefficients optimization, subjected to the initial constraints. This populates the
voxel-coefficient η with ‘problematic’ voxels.

2.3.2. Stage 2. If a plan satisfying all constraints is not found in the first stage, violated
soft constraints are relaxed in the second stage. The constraints in the set Cn with the lowest
priority are selected for relaxation first, if there are one or more constraints violated in that
set. A constraint is relaxed by setting it to the upper rounding of the current solution, so if the
initial objective is 40% and the current solution is 43.21%, the new objective for the constraint
is set to 44%. Then N2 iterations with the coefficients optimization are performed to search
for a solution. These iterations are also done if no constraints are suitable for relaxation (e.g.



A novel approach to multi-criteria inverse planning for IMRT 6345

only the hard constraints are not satisfied). The second stage is repeated until a plan is found
that fulfils all hard constraints and all (relaxed) soft constraints. Here it is assumed that there
are no conflicting hard constraints.

2.3.3. Stages 3 and 4. In these stages, the stage 2 plan is further optimized by tightening
soft constraints one by one, so a plan is generated such that further tightening of one
constraint will always lead to a violation of at least one other. In stage 3, attempts are
made to tighten constraints that were relaxed in stage 2 with the ultimate goal to reach the
initial values, i.e., to undo the relaxations. The first constraints to be considered are in
the highest priority constraint set (C1). If after a maximum of N3 iterations of the coefficients
optimization all constraints are met, including the tightened constraint, the tightened objective
for the latter is kept. Otherwise, the constraint is reset to its previous objective, the steps of
the coefficients optimization are undone, and the constraint no longer participates in the
constraint optimization, and becomes virtually a hard constraint for the rest of the constraint
optimization. In this procedure, a constraint is tightened by rounding off to the lower integer,
so if the current solution has a value of 43.21%, the new objective for this constraint will be
43%. For dose–volume constraints, this results in minimizing the number of voxels receiving
more than the critical dose (Halabi et al (2006) also uses this concept in a different problem
definition).

As mentioned, stage 3 aims at undoing the relaxations done in stage 2 as much as possible,
with the final goal to generate a plan that fulfils to all initial constraints. Stage 4 takes this
a step further. In a similar procedure as for stage 3, constraints are tightened further with
an attempt to make them more strict than the initial objectives. Important to note is that in
stages 3 and 4 tightening of important constraints may result in less favourable results for
less important constraints. However, the tightening will never result in exceeding any of the
(current) constraint levels.

2.4. Calculations

The algorithm used to calculate the dose deposition matrix H is from Storchi and Woudstra
(1996) and uses inhomogeneity corrections for air cavities and a scatter radius of 3 cm. The
Storchi and Woudstra algorithm for dose calculation is comparable to the one used in the
CadPlan treatment planning system. The pixel grid size is 5 × 10 mm2 and the voxel grid size
is 4 × 4 × 5 mm3 for all patients. The numbers of iterations performed with the coefficients
optimization are (N1, N2, N3, N4) = (50, 1, 30, 20). Computations were performed in
Matlab 7 on a 2.4 GHz Intel Core2 workstation running Gentoo Linux.

3. Results

The proposed method for multi-criteria inverse planning has been applied to patients suffering
from rectum cancer and oropharynx cancer, and to a complicated head and neck case. For
rectum and oropharynx cancer it has been demonstrated that the proposed approach can be
used to generate class solutions for patients with the same tumour type. To find a constraint
list which performs well as a class solution, different lists were tried and their results and
performance were compared for four patients. The final constraint list was used on four
other rectum patients to test the general performance. All generated plans are compared to
the corresponding clinically applied plans made in CadPlan (referred to as the clinical plan).
Here results are presented for the rectum cases and for the complex head and neck case.
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Figure 4. Volumes and dose distribution for the third rectum case.

Table 1. Constraints and priorities for treatment of rectal cancer. Dose–volume constraints are
indicated by DV.

Constraint Critical Constraint
No Volume type dose Objective set

1 PTV DV 42.42 Gy 100% 0
2 PTV Max 47.78 Gy 0
3 Body Max 47.78 Gy 0
4 Bowel DV 35 Gy 20% 1
5 Bladder DV 40 Gy 40% 2
6 Colon DV 40 Gy 20% 2
7 Bowel DV 20 Gy 50% 3
8 Bladder DV 20 Gy 75% 3
9 Colon DV 20 Gy 30% 3

10 Body DV 30 Gy 40% 4

3.1. Rectum

All patients were to be treated with a prescribed dose of 44.65 Gy (19 fractions of 2.35 Gy).
The constraint list (table 1) has been tuned to produce desired results on four patients by
defining the dose–volume points and the subdivision into constraint sets. The importance
factors for the PTV, bowel, bladder, colon and body have been chosen to be 100, 10, 5, 5
and 1, respectively. To make a fair comparison, the beam directions and energies are chosen
identical to the ones used in the clinical plan: five beams of 18 MV around 85, 155, 180, 205
and 275◦, where sometimes the beam for 180◦ was chosen 6 MV. The performance of this
protocol was verified for four other patients.

For patient 3, the resulting dose distribution is displayed in figure 4. It shows that the
algorithm is capable of generating highly conformal dose distributions. The dose–volume
histograms in figure 5 show that our algorithm for multi-criteria optimization does not only
improve OAR dose volume histograms, but also the PTV dose homogeneity (avoidance of hot
spots).

3.2. Complex head and neck case

An extensive nasopharynx carcinoma case was selected to investigate the value of the developed
algorithm when a large number of structures are involved. The PTV starts halfway down the
eyes, branches into two neck regions (right neck is positive) and ends in front of the lung tops
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Figure 5. Dose–volume histograms for the eight rectum patients. Histograms are presented for
the clinical IMRT plan (dashed lines) and for the plan generated with the developed method for
automated multi-criteria optimization.
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Table 2. Constraints, priorities and results for the complex head and neck case. PTV46 is the
collection of the primary tumour, positive neck and elective nodes. PTV70 is the primary tumour
and the positive neck.

Clinical
Constraint Critical Realized Mean realized Constraint

No Volume type dose Objective objective dose objective set

1 PTV46 DV 43.7 Gy 100% 100.0% 96.5% 0
2 Sella Max 55 Gy 55.0 Gy 52.6 Gy 0
3 Myelum Max 45 Gy 44.8 Gy 51.6 Gy 0
4 Optic chiasm Max 50 Gy 50.0 Gy 52.5 Gy 0
5 Optical nerve (L) Max 55 Gy 55.0 Gy 47.3 Gy 0
6 Optical nerve (R) Max 55 Gy 52.0 Gy 48.5 Gy 0
7 Eye (L) Max 35 Gy 35.0 Gy 42.9 Gy 0
8 Eye (R) Max 35 Gy 35.0 Gy 42.5 Gy 0
9 PTV70 Max 74.9 Gy 74.8 Gy 78.9 Gy 0

10 PTV70 DV 66.5 Gy 100% 93.2% 89.1% 1
11 Brainstem DV 55 Gy 0% 0.0% 1.2% 2
12 Pons DV 55 Gy 0% 0.0% 2.9% 2
13 Parotid (L) DV 26 Gy 50% 46.1% 27.0 Gy 39.2% 3
14 Oral cavity DV 26 Gy 50% 48.0% 30.2 Gy 100.0% 4
15 Pharynx/trachea DV 40 Gy 40% 24.2% 34.5 Gy 44.3% 4
16 Lung tops DV 18 Gy 20% 6.5% 6.5 Gy 20.0% 4
17 Body DV 40 Gy 90% 18.9% N/Aa 5

a Definition of (external) body contour differs between CadPlan and our algorithm.

(level IV). The PTV length is approximately 28 cm and the total volume is 800 cc. The optical
nerves and optic chiasm do partially overlap with the primary tumour/positive neck.

The constraint list used is shown in table 2, containing 17 constraints for the 16 volumes
involved. The whole PTV should receive at least 95% of the prescribed dose of 46 Gy
(43.7 Gy, hard constraint). The volume of the gross tumour (PTV70) should receive at least
66.5 Gy. However, because at the same time, the organs at risk have to be protected by hard
(maximum-dose) constraints, the criterion to deliver 66.5 Gy to the PTV70 has been relaxed
into a soft constraint with priority 1.

The volume-wide importance factors are 100 for the 70 Gy PTV, 50 for the 46 Gy PTV,
10 for the sella, optic chiasm, optical nerves and parotid, 5 for the brainstem, pons, eyes, oral
cavity and pharynx/trachea and 1 for the myelum, lung tops and body. The optimized plan
is compared to the clinical plan, which took experienced planners two weeks to achieve with
16 IMRT and wedged beams. Our setup uses nine equi-angular 6 MV beams.

The results are presented in table 2 and figure 6. Table 2 shows that using the developed
multi-criteria approach all hard constraints could be met. In contrast to the clinical plan, with
the multi-criteria approach the full PTV46 could be irradiated with the critical dose. Because
of this improved tumour coverage, the mean dose in the parotid is slightly higher than in the
clinical plan (27.0 Gy mean dose instead of 25.6 Gy in the clinical plan). The dose in the oral
cavity is significantly lower than in the clinical plan: the mean dose reduces from 55.5 Gy to
30.2 Gy.

Figure 7 shows the convergence of some dose–volume constraints. The first stage ends
after 50 iterations without finding a plan meeting all hard constraints. This requires another
240 iterations (stage 2). Note the decrease in coverage of the 70 Gy PTV which grows
to 100% in the first iterations, but decreases to 93% afterwards. The third stage, trying
to undo the constraint relaxations of stage 2, starts after 290 iterations (indicated by (a)).
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Figure 7. Convergence of the dose–volume constraints. The letters (a)–(g) are explained in the
text.

Between (a) and (b), the algorithm minimizes the dose–volume constraints for the brainstem
and pons (not shown in figure). After their initial objective of 0% overdose is met, the
dose–volume constraint for the parotid is tightened (b) until its initial objective of 50% (c).
The oral cavity, pharynx/trachea and lung tops are all in constraint set 4. Since the dose–
volume constraint for the lung tops is not violated, only the constraints for the oral cavity and
pharynx/trachea are tightened (in turn) until the initial objectives are met, (d) and (e) for the
pharynx/trachea and the oral cavity, respectively. Now that all initial constraints have been
met (as far as the hard constraints allow), stage 4 is initiated. Firstly, the constraint for the
parotid is tightened which reaches its minimum value after a small reduction (f). Then the
oral cavity, pharynx/trachea, and also the lung tops are considered. When no tightening is
possible anymore, the algorithm tightens the constraints in the last set, containing only the
body/unspecified tissue (g).
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Figure 8. Dose–volume histograms for the parotid (left) and the oral cavity (right). The solid line
is the original solution. The dashed line is the solution when their priorities are interchanged and
the dash-dotted line when the imposed objective for the parotid is increased to 70% as well.

A direct comparison between the clinical plan and the automated plan is not possible
for this case. This case is too extreme to be handled efficiently by CadPlan. There are
16 volumes where CadPlan can only handle 10 at a time in an optimization, so it was not
possible to minimize all constraints simultaneously. Further, the 46 Gy plan and the boost
plan were planned separately and combined later. The beam setup differed as well (16 IMRT
and wedged beams in the clinical plan compared to 9 in our plan). CadPlan also uses a
weighted sum function for optimization. A weighted sum function is inefficient in making
sharp trade-offs (e.g. 100% tumour coverage and minimizing dose in a volume close to the
PTV) because it mixes objectives with constraints. These reasons explain why it was possible
to improve the mean dose in the oral cavity by 15 Gy.

3.3. Constraint list sensitivity

The final result depends on the initial objectives of the constraints and the constraint set they
are assigned to. In this section we describe how the outcome of the algorithm reacts to the
chosen criteria. Results are shown for the parotid and oral cavity of the complex head and
neck case in figure 8.

When only the priorities for the parotid and oral cavity (3 and 4, respectively) are
interchanged, the final dose–volume histograms are almost unchanged. When in the third
stage of the constraint optimization the imposed objective of 50% is reached for both the
parotid and oral cavity, the constraint on the parotid does not leave much space to improve the
dose to the oral cavity. If the imposed objective for the parotid is increased (relaxed) to 70%,
the oral cavity is much better spared.

When the realized objectives of the final solution were used as imposed objectives for
a new optimization, the resulting dose distributions were virtually identical to the previous
distributions. This is an indication that the algorithm is robust, because when different starting
positions (constraint lists) are used, the same result is obtained. None of the cases could be
significantly improved, which demonstrates the optimality of the constraints.

But interchanging priorities or relaxing imposed objectives does not guarantee that another
solution can be obtained, when the minimum-dose for the PTV is kept as a hard constraint. The
physiology of the patient must also allow the desired trade-offs. For example, for the rectum
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patients, interchanging the priorities for the bowel and the colon, or changing the imposed
objectives, does not permit much difference in the final solution: this is because the volumes
are physically correlated. The placement and the number of beams used play important roles
as well.

Another parameter of influence is the volume-wide importance factor for each volume.
Because the voxels belonging to a certain volume are multiplied by their volume-wide
importance factor, the choice of the volume-wide importance factor plays a minor role in
the voxel-dependent approach, and mainly influences the number of iterations required to
obtain the final solution, because it influences the impact of an adapted voxel-weight. If a
volume has a large volume-wide importance factor, the effect of an adapted voxel is large as
well, and the coefficients optimization needs more iterations to obtain a solution fulfilling all
constraints. A rule of thumb for the volume-wide importance factors is (relative) 100 for the
PTV, 50 for elective glands (PTV), 5–10 for important OARs and 1 for other OARs.

4. Discussion and conclusions

We have developed an algorithm for multi-criteria inverse planning for IMRT. Input is a
constraint priority list, to be provided by the radiation oncologist. In this list, constraints
are ranked in groups, according to the priority for meeting the constraint levels. Constraints
with the highest priority are considered hard constraints that necessarily have to be met, i.e.,
they cannot be relaxed in order to improve compliance with other constraints. In an iterative
procedure, using an algorithm for optimization of voxel-dependent importance factors for the
various dose–volume and maximum-dose constraints, soft constraints are optimized so that
the final list of constraints has the property that if one constraint is tightened further, it would
lead to a violation of at least one other constraint.

For the final constraints, this follows the definition of Pareto optimality. Our four-stage
constraint optimization can be seen as an implementation of the ε-constraint method (Haimes
et al 1971, Hoffmann et al 2006, Jee et al 2007). This method minimizes a set of objectives
by minimizing one objective at a time, while keeping the others constrained. The minimum
value for that objective is used as a constraint in the next iteration(s) where another objective
is minimized.

In clinical practice, the automated approach is able to reduce the workload because it is
able to come up with satisfactory plans for routine cases, where it is possible to determine the
trade-offs a priori. Of course, there will always remain cases where an automated approach is
not satisfactory. Different constraint lists have to be tried, as well as possibly different beam
setups, requiring a rerun of the optimization. For these special cases, presenting the radiation
oncologist with a set of (Pareto optimal) plans might be more efficient. Many authors have
looked into this (e.g. Küfer et al 2005, Craft et al 2005, 2006, Halabi et al 2006, Hoffmann
et al 2006). Our multi-criteria algorithm is not capable of producing multiple solutions because
it was designed to provide only one solution which is within, or closest to the initial constraints,
and may be even obeying tighter constraints than initially prescribed.

For rectal and oropharynx cancer patients, the developed multi-criteria approach was used
for fully automated generation of class solutions. For the rectum patients, the class solutions
were superior to the clinical plans, both regarding obtained tumour dose distributions, and
with respect to OAR sparing. For the oropharynx patients plans were similar (data not shown),
but the automated procedure was faster and required less workload.

For violated constraints, voxel-weights are automatically adapted. Cotrutz and Xing
(2002) use a semi-automatic approach where the dosimetrist manually has to select the part of
the DVH where improvement is desired. Based on the selected areas, relevant voxel-dependent
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Table 3. (Average) optimization statistics.

Case Time Iterations Beamlets Time per iteration

Rectum patients 47 (m) 345 2163 8.1 (s)
Complex head and neck case 38 (h) 1107 5293 125.2 (s)

importance factors are then adjusted, followed by a new optimization. In this paper we have
proposed a scheme for automatic adjustments of voxel-dependent importance factors, also
based on DVH. In a later work, Yang and Xing (2004) propose a different voxel weight update
scheme for automated adaption.

Some optimization statistics are given in table 3. The average optimization time of 47 min
for rectal cancer is acceptable considering that the final result is a Pareto optimal solution and
there is no human intervention. The optimization time is related to the number of beamlets and
number of soft constraints. The complex, extended head and neck case with 17 constraints for
the 16 involved organs required almost 40 h of calculation time. The obtained plan is superior
to the corresponding clinical plan. Generation of the latter took two weeks of work of a highly
experienced dosimetrist.
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