
DELFT UNIVERSITY OF TECHNOLOGY

MASTERS THESIS

Automated Writing Feedback

Author:
Paul VAN DER LAAN

Supervisors:
Prof. dr. Marcus SPECHT and

Manuel VALLE TORRE

A thesis submitted in fulfillment of the requirements
for the degree of Master of Science

in the

Web Information Systems Group
Software Technology

September 24, 2021

http://www.tudelft.nl
http://www.wis.ewi.tudelft.nl/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

iii

DELFT UNIVERSITY OF TECHNOLOGY

Abstract
Electrical Engineering, Mathematics and Computer Science

Software Technology

Master of Science

Automated Writing Feedback

by Paul VAN DER LAAN

The rising number of students challenges the teacher’s time-consuming task to
provide consistent and high-quality feedback for all students. To address the tradi-
tional education’s challenges, researchers refer to online educational tools to assist
teachers. Although large writing tools (for instance, Grammarly and Microsoft Edi-
tor) assist students to write effectively, their primary objective is not to educate stu-
dents. Therefore, we propose RevisionCoach – an automated writing feedback system
that iteratively constructs educational, localized feedback to assist students to learn
how to write. Clear and effective writing is important for students to succeed in
academic endeavors and allows teachers to focus on feedback for the assignment’s
primary task. RevisionCoach’s objective is to educate, and for that reason, the design
considers learning by deliberate practice, differentiated learning, and self-regulated
learning. In addition, RevisionCoach’s feedback has four layers: a sentence-level mis-
take highlight, an assessment category (coherence, cohesion, readability, and formal-
ity), a correction category (rewrite, reword, and rephrase), and a correction sugges-
tion.

RevisionCoach’s categorized feedback allows for convenient evaluation that ad-
dresses RevisionCoach’s capability to predict the writing mistake’s importance. In
the evaluation, we ask writing experts, students, Grammarly, and Microsoft Editor
to find writing mistakes in text and to rate the mistake’s importance. Compared
to the experts’ importance predictions, RevisionCoach predicts the mistake impor-
tances more accurately (1.89 mean square error (MSE)) than a random baseline (2.70
MSE), student baseline (2.50 MSE), Grammarly (2.52 MSE), and Microsoft Editor
(2.02 MSE). Furthermore, the study illustrates the experts’ challenge to provide lo-
calized feedback for writing skills because the experts have merely 71.2% agreement
about the top 2 most severe mistakes. At the same time, RevisionCoach achieves an
average agreement of 72.9% with the experts’ mistake predictions.

HTTP://WWW.TUDELFT.NL
https://www.tudelft.nl/en/ewi/
https://www.tudelft.nl/en/eemcs/the-faculty/departments/software-technology/

v

Acknowledgements
This thesis project depended on several people who supported me with ideas,

feedback and who made the entire thesis process more enjoyable. First, I like to
thank my supervisors at TU Delft, prof. dr. Marcus Specht and Manuel Valle Torre
for the interesting discussions about education, automated systems, and the the-
sis project in general. Furthermore, the educational technology company Feed-
backFruits for the resources and support, particularly Joost Verdoorn and Francisco
Morales from the research and development team for introducing me to large-scale
educational systems, ideas, resources, and interesting discussions. Last, I would like
to thank everyone who participated in the user studies to evaluate the automated
writing feedback systems.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Questions . 3
1.3 Proposed Solution . 3
1.4 Contributions . 4
1.5 Report Organization . 5

2 Related Work 7
2.1 Automated Essay Scoring . 7
2.2 Automated Writing Evaluation . 9
2.3 Feedback Systems . 10

3 Requirement Analysis 15
3.1 Discussions with Experts . 16

3.1.1 FeedbackFruits . 16
3.1.2 Professor with Education System Experience 17
3.1.3 Professor with NLP Experience 17
3.1.4 Writing Expert . 18
3.1.5 Educational Systems Expert . 18

3.2 Feedback Data Exploration . 18
3.3 Final Requirements . 19

4 Conceptual Design 21
4.1 Explored Automated Feedback Systems 21

4.1.1 Feedback Linking . 21
4.1.2 Feedback Generation . 23

Data Preprocessing . 23
Feedback Generation . 24
Feedback Generation Evaluation 25

4.2 RevisionCoach . 26
4.2.1 Revision Models . 28

Rephrase Revision . 28
Rewrite Revision . 29
Reword Revision . 29

4.2.2 Scoring Models . 29
Readability . 30
Coherence . 30
Cohesion . 30
Formality . 30

viii

4.2.3 Feedback Model . 31
4.2.4 User Interface Design Prototype 31

5 Implementation 33
5.1 Revision Models . 33

5.1.1 Background of Transformer Models 34
BERT and GPT-2 . 35
T5 . 36

5.1.2 Rephrase Revision . 37
5.1.3 Rewrite Revision . 38

Text Generation Architecture . 38
Fine-Tuning T5 . 39

5.1.4 Reword Revision . 41
5.2 Scoring Models . 42

5.2.1 Readability . 42
5.2.2 Coherence . 43

LSA and Word2Vec . 43
ELMo and BERT . 44

5.2.3 Cohesion . 45
5.2.4 Formality . 45

5.3 Feedback Controller . 45
5.4 User Interface Design . 46

6 Evaluation 47
6.1 Method . 47
6.2 Study . 48

6.2.1 Study Biases . 48
6.2.2 Study Setup . 49

6.3 Limitations . 50

7 Results 51

8 Discussion 57
8.1 Interpretation of RevisionCoach’s Evaluation Results 57
8.2 Answers to the Research Questions . 60

9 Conclusion 63

10 Future Work 65

A Data Exploration 67
A.1 Dataset Preprocessing . 68
A.2 Exploration . 69

B T5 Text Generation Fine-Tuning Predictions 73

Bibliography 75

1

Chapter 1

Introduction

The rising number of students confronts teachers with the time-consuming chal-
lenge of providing consistent and high-quality feedback. During the learning pro-
cess, feedback is an essential step for students to learn how to write well (Bernius,
Krusche, and Bruegge, 2021). Students that know how to write are more likely to
persuade others and are more likely to succeed in academic endeavors (McNamara
et al., 2015). Unfortunately, writing assessment is labour intensive (Woods et al.,
2017); and therefore, there is an opportunity for automated feedback systems. Feed-
back systems need to comprehend text quality and construct educational feedback
for recognized text patterns in order to support teachers with writing assessment.
Consequently, teachers and students gain significant benefits in terms of time con-
sumption, feedback availability, and feedback consistency.

Online peer reviews are a common technology to address the teacher’s time-
consuming challenge to provide high-quality and consistent feedback. In the best
scenario, students receive high-quality feedback on their work right away. Litera-
ture supports the usefulness of peer reviews and recognizes that the ability to learn
with peers is a key skill for lifelong learning (Thomas, Martin, and Pleasants, 2011;
Nicol, Thomson, and Breslin, 2014; Ibarra-Sáiz, Rodríguez-Gómez, and Boud, 2020).
However, peer reviews do not replace the teacher’s valuable expert-level feedback
to enhance the student’s learning process. To analyse the student’s learning process,
we consider Bloom’s Taxonomy (Kennedy, Hyland, and Ryan, 2006), that indicates
that teaching and assessing students should support the student’s learning process
to move the student’s abilities to a higher stage, from knowledge, comprehension,
application, analysis, synthesis, to evaluation. Although a byproduct of peer re-
viewing is that students receive feedback (from other students that are learning the
material), the primary purpose is to assist students to master mainly the top level of
Bloom’s taxonomy - the ability to evaluate. To this end, feedback is essential to assist
students to acquire skills required to learn how to evaluate, because targeted high-
quality feedback enhances learning in three significant ways (Boud and Falchikov,
2007): (1) accelerates the learning process, (2) optimizes the quality, and (3) raises
the achievement standards.

To address the peer reviews’ issues, automated essay scoring (AES) and auto-
mated writing evaluation (AWE) construct automated feedback for students. Auto-
mated feedback systems that address time, cost, reliability, and generalizability is-
sues in writing assessment introduce new concerns related to vulnerability to cheat-
ing and the requirement of a large dataset (Dikli, 2016). Although AES systems
achieve promising results (Rudner and Liang, 2002; Lonsdale and Strong-Krause,
2003; Dikli, 2016; Taghipour and Ng, 2016; Ke and Ng, 2019), the systems output
general and holistic scores that are less useful in a classroom setting, where detailed
feedback help students more to improve their essays (Ke and Ng, 2019). In addition,

2 Chapter 1. Introduction

part of the AES methods requires significant feature engineering work and data an-
notation (Li et al., 2018) that challenges the model’s generalizability. AES methods
that circumvent feature engineering rely on neural-network-based or transformer-
based methods that analyze text directly, where a significant trade-off is the explain-
ability of the system’s reasoning.

On the other hand, AWE research addresses the challenge to transform a holis-
tic essay-level score into localized feedback. In order to provide localized feedback,
the essay-level score is transformed into a sentence-level score, which is a procedure
that received relatively little attention (Andersen et al., 2013). The obvious challenge
concerns the dataset restrictions because a dataset that requires significant manual
effort to annotate is impractical to generalize to unexplored assignments. In addition
to the dataset restrictions, AWE methods need to address the challenge of present-
ing feedback in an educative manner and taking the student’s interaction with the
system into account to stimulate positive learning effects for novice to advanced
learners. The role of feedback is essential for learning, and in this thesis, we explore
automated feedback systems and we propose a new automated feedback system
that assists students with learning how to write high-quality text.

1.1 Problem Statement

This thesis focuses on accurate feedback automation for essay assignments that en-
courages long-term learning effects for students. Ideally, an automated writing feed-
back system uses educational principles to encourage long-term learning effects. In
addition, the automated feedback system needs to address generalizability to other
assignments because feedback data, even holistic essay scores, is expensive and dif-
ficult to annotate (Hellman et al., 2020).

To start, the assignment choice. A perfect feedback system that works for the
rarest assignment type is not the goal of this thesis, but instead a feedback system
that works for a common assignment type to drastically reduce the teacher’s feed-
back time consumption. Essay assignments are common and appear in most pro-
grams, where an essay is any text between 100 to 800 words, excluding figures and
tables. On the contrary to text, figures and tables are outside this thesis’ scope since
automatically understanding figures and tables is a challenging problem that falls
beyond the scope of this thesis.

Students are more likely to increase learning efforts with clear goals and clear
beliefs of eventual success (Hattie and Timperley, 2007). Furthermore, (automated)
feedback helps students to clarify goals and to enhance commitment to reach the
goals (Hattie and Timperley, 2007). Although the teacher defines the essay’s goal,
we define the clear goal to learn how to write high-quality text, and students can
recognize effective writing as a tool for eventual success. When the feedback system
focuses on common writing mistakes, teachers can focus on feedback that requires a
deeper understanding of the essay.

Moreover, feedback accuracy is important because an inaccurate system will be
challenging and frustrating for students, counteracting the potential learning effects.
In addition to accurate feedback, effective feedback is targeted at students at an ap-
propriate level (Hattie and Timperley, 2007) to reduce the gap between current and
desired understanding effectively.

The last challenge is to evaluate the proposed automated feedback system. Nat-
ural text is challenging to evaluate because of its open-ended nature (Celikyilmaz,
Clark, and Gao, 2020). Therefore, the proposed system needs to be structured in a

1.2. Research Questions 3

way that is possible to evaluate effectively. In the following chapter, we define the
research questions.

1.2 Research Questions

Given the problem statement, we define the following research questions:

1. How to support learners with feedback on essays?

2. How can feedback be presented to improve the student’s learning process?

The first research question is the most important given the current state-of-the-
art systems, what is effective, and how to build a better system that assists students
to write better essays. On the other hand, the second research question raises an
important question: how to visualize feedback effectively to encourage long-term
learning effects for students. We propose the following solution for these research
questions.

1.3 Proposed Solution

FIGURE 1.1: RevisionCoach system flow

In this thesis, we propose RevisionCoach, a feedback system for essays that fo-
cuses on writing issues between lower-order concerns (for instance, the grammar
and spelling) and higher-order concerns (the ‘big picture’, for example, the struc-
ture, development, and reasoning). RevisionCoach has two main design goals: (1)
assist students how to improve their essays by providing feedback, to help teachers
with time-consuming feedback iterations, and (2) the ability to differentiate and to
provide helpful feedback for novice to advanced learners.

To achieve this, RevisionCoach focuses on cohesion, coherence, formality, and
readability. In contrast to Grammarly1 and Microsoft Word2, RevisionCoach disre-
gards spelling and grammar feedback and offers a learning-oriented environment to

1https://www.grammarly.com/
2https://www.microsoft.com/en-us/microsoft-365/word

https://www.grammarly.com/
https://www.microsoft.com/en-us/microsoft-365/word

4 Chapter 1. Introduction

encourage students to develop long-term essay writing skills. Moreover, instead of
correcting mistakes immediately, learning is enhanced when students process infor-
mation on a deeper level (Kirschner and Hendrick, 2020).

RevisionCoach aims to provide structure and tips for students to think about pos-
sible textual improvements, to encourage students to process information on a deeper
level. Intuitively, whenever an advanced writer writes text, the writer revises the text
until the text reaches an acceptable quality level. RevisionCoach follows this concept
by generating revisions for individual sentences and by predicting scores that reflect
the essay’s quality. For each revision, RevisionCoach calculates formality, readability,
cohesion, and coherence scores. Revisions that score significantly higher in one of
the scoring categories are used as feedback for the student. The process to iteratively
focus on one writing quality element at a time and to encourage students to make
gradual improvements relates to deliberate practice (Anders Ericsson, 2008), that
improves the student’s learning performance. In addition, RevisionCoach encour-
ages self-regulated learning (Pintrich, 1995) because students set their own learning
goals (when is the quality acceptable), and the students are in control of their learn-
ing process.

In addition to learn by deliberate practice and to encourage self-regulated learn-
ing, RevisionCoach supports differentiated learning by providing layers of feedback.
The feedback layers that RevisionCoach presents rely on the revisions and scoring
strategies. First, RevisionCoach highlights sentences that can be improved. Second,
the score category indicates what aspect of the sentence can be improved. Pre-
defined tips and suggestions per scoring category are helpful to aid the student in
improving the sentence. Third, RevisionCoach can provide an improvement sugges-
tion that relates to the revision model – for example, to reword, rephrase, or rewrite.
And finally, the complete revision can be shown to the student as the sentence’s pos-
sible correction to inspire the student. These four layers of feedback options support
differentiated learning because advanced learners can consider feedback highlights
as useful feedback, while more novice learners potentially need more feedback lay-
ers.

Finally, the system is evaluated in a study that compares RevisionCoach’s feed-
back to expert feedback in order to investigate RevisionCoach’s feedback accuracy. In
the comparison the inter-rater agreement between RevisionCoach and the expert is
used as evaluation metric.

1.4 Contributions

RevisionCoach embodies the main contribution of this research project. The following
list summarizes all contributions of this project:

1. RevisionCoach: a feedback system on essay writing style. The system uses
a combination of existing methods and models to expand the methodology
of Woods et al., 2017 to find sentences that need more work (‘highlights’). On
top of that, RevisionCoach informs the user of the highlight’s mistake category
and proposes potential highlight corrections and considers educational theo-
ries (learning by deliberate practice, self-regulated learning, and differentiated
learning). While other feedback systems require expensive, time-consuming
manual annotation that reduces scalability and generalizability to other as-
signments, RevisionCoach merely needs a dataset of domain-dependent essays
without additional manual annotations.

1.5. Report Organization 5

2. Exploration of possible feedback systems: we explored three versions of feed-
back systems in total, and RevisionCoach uses components of the first two ver-
sions. Instead of covering only the final system, we discuss the advantages
and disadvantages of other intuitive automated feedback systems.

3. Google Colabs Notebook User Interface Prototype: the benefit of a notebook
UI is that the revision and scoring models are loaded once in the notebook and
are stored in the notebook’s memory. The colab notebook allows for fast de-
velopment cycles and removes the need to deploy code to an external server
in order to hold the revision and scoring models in memory. Any code revi-
sion is automatically deployed and the UI can be updated immediately. Revi-
sionCoach’s UI prototype showcases the potential of RevisionCoach as effective
writing assistant and provides the opportunity for long-term learning effects
studies.

4. Expert evaluation: a formative first study that assesses RevisionCoach’s feed-
back accuracy and compares RevisionCoach’s feedback predictions to Gram-
marly, Microsoft Editor, computer science students (MSc), and the random
baseline.

1.5 Report Organization

In this thesis, we discuss the related work in chapter 2 and use that to define the
initial system requirements in chapter 3. After the requirements, we discuss the con-
ceptual design in chapter 4, which shows the design ideas to construct an education
automated writing feedback system. Furthermore, in chapter 5 we elaborate upon
the conceptual design and we provide the implementation details. The last part of
this thesis covers the evaluation (chapter 6), results (chapter 7), discussion (chap-
ter 8), conclusion (chapter 9), and future work (chapter 10).

7

Chapter 2

Related Work

Automated feedback research on essay writing relies on automated essay scoring
(AES) and automated writing evaluation (AWE) literature. In this chapter, we dis-
cuss how AES methods are used in AWE to construct formative feedback. In addi-
tion to the AES and AWE background, we discuss several deployed feedback sys-
tems in this chapter’s last section.

2.1 Automated Essay Scoring

FIGURE 2.1: Taxonomy of the automated essay scoring methods.

AES research investigates essay scoring models, for instance, related to the gen-
eral quality or coherence. Although AES research predicts numerical (holistic) feed-
back, that is considered a drawback in the automated feedback setting because novice
learners need more structure to learn quick and to avoid getting stuck. Intuitively, a
score is less structured and informative than localized and formative feedback. On

8 Chapter 2. Related Work

the other hand, AES research is relevant because it requires text quality understand-
ing to score a text - and all automated feedback systems share the challenge to eval-
uate text. To distinguish between AES methods, we separate supervised methods
(regression, preference ranking, neural nets) from unsupervised (clustering) meth-
ods. Figure 2.1 shows the AES methods’ taxonomy that are discussed in this section
and that are grouped by similar methodology. In the following paragraphs, we anal-
yse several AES methods and we explain the AES methods in abstracted terms.

Supervised methods guide the training process with annotated essay scores, and
a part of the methods depend upon feature engineering. In Table 2.1 we show ex-
amples of AES features that are grouped into task-independent and task-dependent
features, where task-dependent features depend upon the assignment. In literature,
regression models use AES features to predict essay scores, for example using logis-
tic or Bayesian ridge regression (Farra, Somasundaran, and Burstein, 2015; Phandi,
Chai, and Ng, 2015). One of the main advantages is that regression is explainable in
terms of the most important features that determine the predicted essay score.

Other supervised methods rely upon preference ranking (Yannakoudakis, Briscoe,
and Medlock, 2011; Chen and He, 2013; Cummins, Zhang, and Briscoe, 2016). Pref-
erence ranking uses two data items to train the model, whereas regression uses one
data item. Frequently, preference ranking uses two data items to calculate difference
vectors, where each difference vector represents the difference between two texts’
feature vectors. The goal is to maximize the number of correctly ordered pairs of the
difference vectors, and therefore, to model the quality relationships between essays.

In general, feature engineering requires experts with experience and knowledge
to construct informative features, while neural networks can take the text as input
directly removing the need for feature engineering. Common architectures are a con-
volutional neural network (Dong and Zhang, 2016), a combination of convolutional
neural network and recurrent neural networks (Dong, Zhang, and Yang, 2017), a
deep neural network (Jin et al., 2018), and a transformer (Ormerod, Malhotra, and
Jafari, 2021). Although these methods achieve high accuracy, the methods have a
downside: the model’s decision process becomes hard to explain and requires a sig-
nificant amount of data to train.

Task-independent Task-dependent
Variation of text structure Relevance of the essay’s text
Presence of formal words Similarity to source(s) or plagiarism
Transitional moves or rhetorical moves
Grammar and spelling mistakes
Essay length, if there is a time limit

TABLE 2.1: Examples of task-dependent and task-independent automated es-
say scoring feature descriptions Farra, Somasundaran, and Burstein, 2015;

Zesch, Wojatzki, and Scholten-Akoun, 2015

In contrast to supervised methods, unsupervised methods rely on classification
models and require less or no data annotation. Rudner and Liang, 2002 use a Bayesian
model to classify with two scoring classes. On the contrary, Chen et al., 2010 uses six
scoring classes and a voting algorithm combined with k-means clustering to classify
essays. The intuition behind that approach is that voting enforces similar essays to
be clustered together, where the number of shared terms is used as similarity metric.
The final score is assigned to all essays per cluster using historical data about scoring
distributions. Similarly, McNamara et al., 2015 uses hierarchical clustering to cluster
assignments to a 6-score scale based on a wide range of textual features.

2.2. Automated Writing Evaluation 9

2.2 Automated Writing Evaluation

FIGURE 2.2: Taxonomy of the automated writing evaluation methods.

Although AES effectively provides numerical feedback, textual feedback adds
more context and detailed feedback on the student’s writing skills. For instance, a
score of 4 out of 6 for structure is less informative than feedback that informs the
student that the introduction is missing. Formative feedback is a more complex
problem to solve because the search space increases significantly. In AES literature
it is common to predict a rating on a 6-point scale, and therefore, AES has a smaller
search space than predicting a single word of formative feedback. The system needs
to understand the work itself to provide valuable formative feedback, for instance,
related to the text’s readability or content. Automated Writing Evaluation (AWE)
tries to formulate formative feedback and is commonly used as a backbone to con-
struct formative feedback. Figure 2.2 shows a taxonomy of the AES methods that
are analysed and explained in this section.

FIGURE 2.3: Visualization of how automated essay scoring can be used to fetch
relevant and formative feedback.

A common way to transform AES models’ essay scores to formative feedback is
to score models in several assessment categories (for instance, general or readabil-
ity scores), and subsequently, to use the predicted scores to fetch relevant feedback
from a predefined feedback rubric (Villalón et al., 2008; Liu et al., 2016; Woods et al.,
2017). Figure 2.3 illustrates the process to transform AES models’ predicted scores
into formative feedback. Although it is intuitive to combine AES with a predefined
feedback rubric to extract relevant feedback, the feedback variety is small. An an-
notation database prevents this problem by allowing for more annotations in a large
database (Roscoe et al., 2012). Unfortunately, a large expert-level feedback database

10 Chapter 2. Related Work

is time-consuming and expensive to construct and leads to generalizability chal-
lenges to propose feedback for unexplored assignments. Apart from fetching prede-
fined feedback based upon scores, another option is to detect common error patterns
based on a large corpus of text and to use that to fetch appropriate annotations from
the database (Andersen et al., 2013). Moreover, AWE can consider example essays
as feedback sources. For these methods, the essay dataset requires manual feedback
annotations to gather similar feedback for semanticly similar essays. Hellman et al.,
2020 use essays as feedback source in a system that clusters essay sentences and that
subsequently applies available feedback to sentences of a new essay.

AES and AWE research is the backbone for deployed automated feedback sys-
tems. In the next section, we discuss several deployed automated feedback systems.

2.3 Feedback Systems

This section discusses how online educational feedback systems address automat-
ing writing feedback, and we elaborate upon the advantages and disadvantages.
Table 2.2 shows an overview of the covered systems and the system’s related edu-
cational properties. As Dikli, 2016 mentions, there have been substantial outcomes
from the use of educational technology, and the educational tools’ designs influence
the initial requirement for this thesis project.

Technique Main Focus Dataset Restrictions
AcaWriter Rules Rhetorical moves predefined rules
Criterion Rules & ML Grammar, word usage, mechanics Expert annotations
Revision Assistant Revision-based Rubric specific feedback Expert feedback & annotations
CoFee Text Similarity General feedback Detailed expert feedback
Grammarly ? Spelling, grammar, tone, fluency ?

TABLE 2.2: Overview of feedback system properties. Rules refers to predefined
rules and ML refers to machine learning methods in the technique column.

To start, AcaWriter1 is an open-source tool that targets the proper usage of rhetor-
ical moves in text. The following quote from Knight et al., 2020 explains their percep-
tion of effective writing: “Effective writing incorporates instantiations of particular
text structures – rhetorical moves – that communicate intent to the reader." To sum-
marize, AcaWriter uses predefined rules to analyse the correct usage of rhetorical
moves. AcaWriter analyses text with syntactic parsing and dependency trees to as-
sign rhetorical move labels to sentences (such as context, challenge, or own opinion),
based on a predefined lexicon - a list of expressions that may instantiate a rhetorical
move. The usage of predefined rules has advantages and disadvantages. An advan-
tage is that the rules are transparent and interpretable, while on the other hand, it
requires significant manual effort to find and define effective rules. A text has many
forms, and defining rules that capture all variants is challenging. One of the main
contributions of AcaWriter is the thorough evaluation in classroom environments,
including some evidence of impact that students who use AcaWriter are more likely
to improve their text (Knight et al., 2020). The experiments are performed in several
domains, for instance, in law and accounting.

The following system we discuss is Criterion, an educational system that assesses
the essay’s text quality. Criterion predicts scores using 12 features, for instance, the
number of grammar errors and the average length of words. In addition, Criterion

1acawriter.uts.edu.au

acawriter.uts.edu.au

2.3. Feedback Systems 11

detects errors concerning grammar, word usage, and mechanics. Most of the er-
ror detection is done similarly to AcaWriter with predefined rules and text analysis.
Contrary to AcaWriter, Criterion uses machine learning to detect and highlight text
repetition (Burstein, 2004) using a dataset that contains 300 manually annotated es-
says. The annotation process involves two judges to label words that interfere with
smooth reading. A decision-based algorithm predicts the repetitive words using the
manually annotated corpus. The drawback of this approach is the strict dataset con-
straints because when 300 annotated essays are needed for each domain, it restricts
the system’s scalability. A second drawback is that most of the corrective feedback
concerns words, disregarding an overall assessment of individual sentences. Stu-
dents learn more from understanding writing mistakes in a context than to correct
word-level mistakes directly.

Woods et al., 2017 scores essays similarly to Criterion - although different fea-
tures and models are used to predict the scores - and extends the system with sentence-
level scores and feedback using a revision-based system called Revision Assistant.
One of the challenges is to convert essay scores into sentence-level scores to achieve
localized sentence-level feedback. The obvious solution is to use sentence-level score
annotations and to train a simple scoring model to predict sentence-level scores, but
unfortunately, sentence-level annotations are time-consuming and expensive (Hell-
man et al., 2020). Revision Assistant scores the essay, removes a single sentence,
scores the essay again, and calculates the score difference to transform the essay-
level scores into sentence-level scores. This technique allows the model to calcu-
late the impact of a single sentence that conveniently does not require additional
sentence-level score annotations. The last step is to link feedback to the sentence-
level scores based on a predefined rubric containing feedback. The revision-based
method effectively predicts localized sentence scores because it prevents the require-
ment of sentence-level annotations. Last, Revision Assistant uses text quality scores
to retrieve relevant predefined feedback texts. Although this method effectively con-
trols the system’s feedback output (to prevent feedback that does not make sense),
it takes significant manual effort to provide a wide range of educational feedback.

In contrast to Revision Assistant’s limited predefined feedback, the Intelligent
Essay Assistor (IEA) uses an approach based on essay similarity (Foltz, Laham, and
Landauer, 1999) to incorporate a wide range of possible feedback. Foltz, Laham,
and Landauer, 1999 assign the essay’s semantic similarity to the cosine similarity
between the essays’ latent semantic analysis text embeddings (Landauer, Foltz, and
Laham, 1998). IEA uses a dataset of essays with overall grades. Given a new essay
X, the weighted average of the scores of the 10 most similar essays is used to predict
an overall score, where the weights are the semantic similarities between essay X
and the essay from the dataset.

Most feedback systems’ challenge is to determine text quality and useful feed-
back, while the text similarity approach’s challenge is to determine similar mistakes
properly. New essays are matched with the most similar essay in the essay dataset
for a specific domain. IEA provides numerical feedback using the most similar es-
say’s feedback. Although this approach is useful for assignments that result in sim-
ilar essays, the main challenge is that the predicted feedback becomes inaccurate
when the essays’ content vary too much.

Contrary to IEA’s numerical feedback, Bernius, Krusche, and Bruegge, 2021 pro-
pose CoFee that uses a similar approach to construct textual feedback. CoFee uses
more advanced text embeddings than IEA (ELMo, Peters et al., 2018), while at the
same time, the similarity computation remains the same. The text pre-processing
step of CoFee includes a simple keyword matching approach to identify 10 topics.

12 Chapter 2. Related Work

First, stopwords are removed and words are lemmatized, then the topics are identi-
fied. The second pre-processing step is to break the text into clauses and to merge all
clauses that share the same topic into segments. Clauses with an unidentified topic
start a new segment. After pre-processing, ELMo transforms the text segments into
text embeddings. While IEA computes the cosine similarities directly, CoFee clusters
the embeddings with the HDBSSCAN clustering algorithm using the cosine similar-
ity as distance metric (McInnes, Healy, and Astels, 2017). An important note is that
CoFee uses a pre-trained ELMo model trained on complete sentences of Wikipedia
and news articles, while CoFee uses that ELMo model with pre-processed inputs,
resulting in a mismatch with the training input. This can cause a decrease in perfor-
mance of embedding prediction. For each new text, CoFee searches for the closest
cluster, and suggests the feedback that is linked to the cluster. Specifically, feedback
that was given on other embeddings in the cluster is suggested as feedback for the
new text. Intuitively, when only the most similar text is used, the items in the clusters
do not provide additional benefits.

CoFee’s data collection setup is different from other feedback systems because it
collects the dataset during a course. For each student answer, either a teacher pro-
vides feedback or CoFee suggests feedback for the teacher to approve. Feedback that
is given to other items in the cluster is suggested as feedback. One of the advantages
of this approach is that it does not rely on a strict dataset, and therefore, the system is
easily deployable, scalable and usable in any domain, given the required assignment
setup. At the same time, starting with an empty dataset is a disadvantage since it
has a cold start problem (when no answers are processed yet) and it suggests rel-
atively few feedback (26% on average during the experiment of Bernius, Krusche,
and Bruegge, 2021). Although collecting data during a course takes time, the result-
ing feedback that CoFee suggests is expert feedback about the text’s content and is
not limited to a predefined feedback rubric. Furthermore, CoFee suggests feedback
based on the similarity of text answers, while the feedback text is disregarded. This is
a problem because the feedback addresses a specific mistake. Therefore, CoFee sug-
gests predefined feedback to new texts, while the model cannot determine whether
the text contains the mistake that the feedback targets, because CoFee has no infor-
mation about what mistake the feedback addresses. On the other hand, CoFee does
know that the text is similar (in some way) to the original sentence that the feedback
targets. As a result, CoFee potentially has issues dealing with sentences that are
similar in content that contain different mistakes. The main benefit of CoFee’s use
case is the accuracy. Even if the feedback accuracy is not perfect (85% on average in
Bernius, Krusche, and Bruegge, 2021), the teacher will disregard erroneous feedback
since the system acts as a computer assistant for human teachers.

Finally, systems such as Grammarly and Microsoft Editor focus less on educating
users and more on correcting mistakes directly. To the best of our knowledge, these
systems do not share their algorithms and models. Grammarly2 is a popular online
writing tool that helps people write text. The tool focuses on corrective feedback by
showing the suggested corrections immediately. In particular, Grammarly targets
context-specific mistakes concerning grammar, spelling, wordiness, style, punctu-
ation, and plagiarism. These categories address lower-order concerns of writing.
Grammarly and Microsoft Editor do not focus on educating people how to write but
instead on improving texts directly to help people communicate more effectively.
Grammarly and Microsoft Editor are effective in helping people to quickly update
their texts with an intuitive user interface. On top of that, corrective feedback can be

2www.grammarly.com

www.grammarly.com

2.3. Feedback Systems 13

educational in the correct setting (Guénette, 2007), and Ghufron and Rosyida, 2018
show that Grammarly contributes positively in reducing writing errors while stim-
ulating self-regulated learning. However, contrary to Ghufron and Rosyida, 2018, a
meta-analysis of writing interventions (Graham and Perin, 2007) shows that gram-
mar and spelling are least effective to improve the essay’s quality.

15

Chapter 3

Requirement Analysis

This chapter covers the requirements. As discussed in the related work section, pro-
viding reliable, high-quality, educational and formative feedback is challenging. To
address that challenge, a range of feedback systems focuses on essay-level numer-
ical feedback that can be paired with pre-defined feedback rubrics to provide stu-
dents with formative feedback. Although essay scoring models combined with pre-
defined methods is an interesting method to construct formative feedback, the main
drawback is that experts need to define feedback for each assignment.

This thesis goes one step further and focuses on educational, formative, and lo-
calized feedback for essays to encourage students’ long-term learning effects, and
at the same time, to minimalize the need for manual annotations. Following other
research we consider sentence-level feedback as localized feedback (Higgins et al.,
2004; Andersen et al., 2013; Woods et al., 2017; Hellman et al., 2020). The main re-
quirement is to develop a reliable educational system that educates students to write
high-quality essays, and more importantly, to assist students to learn from common
writing mistakes. It is important to note that the feedback system’s intent is not to be
used in a stand-alone fashion but instead to be used alongside existing educational
practices. Experts or students can focus on more advanced feedback that requires
a deeper understanding of the text, while automated feedback focuses on common
writing mistakes. In doing so, the feedback system supports teachers (and students)
with the time-consuming feedback task.

The main goal is to assist students how to write better texts; and therefore, we
start with defining effective learning (Anders Ericsson, 2008):

1. Provide a clear task with clear goals

2. Motivate improvement

3. Provide feedback

4. Provide iterative and repeated opportunities for gradual refinement and im-
provement

These four conditions fall under Deliberate Practice that is identified by Anders
Ericsson, 2008 to achieve high levels of learning performance.

A closely related education practice is self-regulated learning that requires a stu-
dent to have learning goals and motivation, to have the ability to monitor their per-
formance, and to be in control (Pintrich, 1995). In the context of assisting students to
learn how to write, it is essential to encourage self-regulated learning because self-
regulated learning prepares students for learning outside the university in formal
and informal settings (Ibarra-Sáiz, Rodríguez-Gómez, and Boud, 2020).

16 Chapter 3. Requirement Analysis

Another key factor of automated feedback systems is differentiated learning to
tailor educational methods to the needs of differently skilled learners. Differenti-
ation in learning is important because novice learners require more guidance than
advanced learners (Kirschner and Hendrick, 2020). Kirschner and Hendrick, 2020
suggest to utilize differentiated learning at an early stage in the learning process. Al-
though differentiated learning is time-consuming and infeasible in large classroom
settings (to identify each learner’s skills and to tailor the educational methods for
their needs), an automated feedback system can show tailored feedback visualiza-
tions. The following sections refine the requirements based on literature, discussions
with experts, and feedback dataset exploration.

3.1 Discussions with Experts

To refine the initial requirements further, we interview several experts. Each dis-
cussion focuses on a different part of automated feedback systems: data, models,
academic writing mistake categories, and user interface. The topics to discuss are
based on the related work research about deployed automated feedback systems.

3.1.1 FeedbackFruits

The first discussion is with FeedbackFruits1; a company that provides online edu-
cational tools to educational institutions, and we collaborate throughout this thesis
project. Similar to this thesis, FeedbackFruits researches feedback automation for
students. As an online educational company, FeedbackFruits has access to rich feed-
back datasets containing peer review feedback (of students) and expert feedback (of
teachers).

FeedbackFruits has two main layers of feedback: (1) peer feedback by students
and (2) feedback by teachers. To support students in their educational process, Feed-
backFruits searches for a layer in between, consistent automated feedback with rea-
sonable quality, preferably using the common peer review feedback data.

At the start of this project, FeedbackFruits depended mainly on rule-based sys-
tems to construct writing feedback, and as a consequence, FeedbackFruits’ feedback
datasets are not optimally used. FeedbackFruits’ main requirement is to use the com-
mon peer review feedback data to construct high-quality, generalizable, explainable,
and formative feedback for essay assignments to use the untouched peer review data
as a knowledge source. Any attempt at feedback automation is considered a contri-
bution - the solution is either functional and educational or the research discovers
the drawbacks of potential feedback systems.

On top of that, the feedback system’s generalizability - the ability to use the sys-
tems for other assignments - relies on each assignment’s required manual annota-
tions. It is essential to consider an automated feedback system’s generalizability
because a completely generalizable system requires no extra effort to deploy the
system to unexplored assignments. For example, a system that requires hundreds of
expert annotations per assignment is impractical to generalize to other assignments.
In the setting of FeedbackFruits, there are many assignments to consider.

3.1. Discussions with Experts 17

System Dataset Size
Revision Assistant 280 to 1000 essays
The Intelligent Essay Assessor 100 essays
Criterion 465 essays

TABLE 3.1: Dataset sizes for automated feedback systems

3.1.2 Professor with Education System Experience

The first expert has extensive experience in online learning and educational sys-
tems. For automating feedback on writing, the expert recognizes that text genera-
tion models are promising to generate feedback directly. According to the expert, the
main issue of peer review data is the feedback quality. Although students can pro-
vide high-quality feedback, the dataset contains noise, and the feedback will not be
expert-level quality. Expert feedback has a broader application and is more valuable
in terms of expertise. Unfortunately, the obvious solution to use expert data presents
new issues in data collection regarding scalability and generalizability of the feed-
back system because expert data for specific assignments is hard to construct. The
expert estimates that a dataset of around 100 essays with annotated feedback is suf-
ficient for a feedback system. Second, the expert indicates that including additional
information (for instance, from DBPedia or Wikipedia) potentially supports models
to construct better feedback.

From this conversation, we recognize that data exploration is essential, and to
consider to generate feedback text directly. The automated feedback model needs
a solid foundation in terms of data, and preferably, the automated feedback model
needs to have a wide application. Therefore, we focus on easy-to-construct datasets
to increase the feedback system’s generalizability. Based on the expert’s 100 essay
estimation and the sizes of other feedback systems (Table 3.1), we add the require-
ment to target datasets of more than 100 essays. The following discussion concerns
text generation and potential directions for automated feedback systems.

3.1.3 Professor with NLP Experience

The second expert has extensive NLP experience and knowledge about state-of-the-
art models, such as recent transformer models. During this discussion, we discussed
potential feedback systems in detail. Common and intuitive directions to automate
feedback are semantic similarity search, rule-based feedback mapping, and essay
scoring. Although all options are potentially viable, the expert mentioned that gen-
erative models (to generate text) are promising to generate educational feedback di-
rectly. In addition, the expert stresses the importance of the model’s ability to reason
about specific writing mistakes, and therefore, it is important to know what writ-
ing mistakes to address. When the system provides general feedback, it becomes
challenging to evaluate and to compare the results with other systems (Woods et al.,
2017, Bernius, Krusche, and Bruegge, 2021).

1feedbackfruits.com

feedbackfruits.com

18 Chapter 3. Requirement Analysis

3.1.4 Writing Expert

To have a more in-depth discussion about possible writing mistakes, we discuss
common writing mistakes with the third expert, who is active in research on learn-
ing how to write high-quality academic text. The expert shares what problems fre-
quently occur in essays - for example subject-verb agreement mistakes such as ‘peo-
ple is’, incorrect usage of connective words, and missing links in argumentation. A
surprising insight is that the expert indicates that researchers extensively tried to cat-
egorize academic writing feedback without success, and that we should not expect
to properly categorize all possible writing mistakes in detail in a couple of months.
On top of the discussion, the expert sent several documents with an example grad-
ing rubric, an academic writing checklist, and a scientific writing terms glossary.

Based on the discussion with the expert, we extend the requirements considering
writing mistake categorization. As the expert mentions, categorizing academic writ-
ing mistakes is challenging, and therefore, we intend to focus on common writing
mistakes. Moreover, based on the expert’s example rubrics and writing checklists
that all contain a writing style category, and because capable systems (Grammarly,
Microsoft Editor) address lower-order concerns (spelling, grammar) and Feedback-
Fruits addresses higher-order concerns (essay structure), we conclude that writing
style is a promising and achievable direction to take.

3.1.5 Educational Systems Expert

The last discussion is about possible effective user interface designs for educational
systems. We recognize that an effective user interface is important for the require-
ments because that determines how learners interact with the automated feedback
models. The expert has successfully developed and deployed a feedback system
for a faculty at TU Delft. In contrast to this thesis project, the expert’s feedback
system mainly focuses on peer reviews and not on automated feedback. One of
the focus points is to let students actively think about mistakes in assignments to
stimulate self-regulated learning and to encourage long-term learning effects. The
expert’s system achieves that by including students in the decision-making process
and providing iterative feedback on assignment revisions. The expert recognizes
that automated formative feedback systems can be effective in education, although
automated feedback models are hard to construct.

3.2 Feedback Data Exploration

Based on the conversations with experts, we recognize that data exploration (for at
least 100 essays for a single assignment) is an essential step in the requirement analy-
sis. To this end, this section discusses the data exploration to finalize the requirement
analysis.

Although we partnered with FeedbackFruits for their expertise and feedback
datasets, we considered other feedback sources. Following the requirement to con-
sider feedback datasets containing more than 100 essays per assignment, we search
for an essay dataset with feedback on sentence-level for a single assignment. First,
the peer review website Peer2 that is used throughout TU Delft for online peer re-
views. Although Peer’s database is considerable, the database is smaller than Feed-
backFruits’ database and the data is less structured than FeedbackFruits’ dataset.

2https://peer.tudelft.nl/

https://peer.tudelft.nl/

3.3. Final Requirements 19

The main difference is that all FeedbackFruits’ peer reviews contain text highlights
that specifically indicate writing mistakes in texts, which is intuitively useful in or-
der to provide localized feedback. The second consideration is the fourth expert’s
feedback system, but unfortunately, the assignments contain images (for instance di-
agrams or flow charts) that the feedback addresses, while FeedbackFruits has essay
assignments with feedback on writing. Last, we contacted professors at TU Delft,
but these datasets do not exceed 100 essays for a single assignment. After consider-
ing the alternatives, we decide to focus on FeedbackFruits’ peer review datasets.

Based on the peer feedback similarity clustering (for more details, we refer to Ap-
pendix A), we discover that the peer feedback data is challenging to clean. The main
challenge is to filter on educational feedback, and at the same time, to make sure
that enough feedback samples are left after cleaning. Although there are clearly
common feedback topics, a reliable and generalizable educational feedback system
that automatically detects topics and selects relevant (or generates) high-quality ed-
ucational feedback is challenging to construct. Consequently, feedback on essay con-
tent becomes challenging to address considering the manual effort to find feedback
categories for every assignment, which contradicts the earlier requirement to use
the least amount of manual annotations to improve the system’s generalizability to
other assignments. For these reasons, we decide not to focus on using peer review
feedback knowledge to construct content-related feedback, and instead, we decided
to focus on automated feedback approaches that target the text’s writing quality.

Another finding from the data exploration is that text embeddings and textual
semantic similarity is a promising direction to take. As a result, we add the re-
quirements to focus on pre-defined writing mistake categories and textual semantic
similarity.

3.3 Final Requirements

Requirement Significant Literature FbF E1 E2 E3 E4
1. Easy-to-collect dataset X
2. Consider text generation X X
3. Multiple levels of feedback Kirschner and Hendrick, 2020
4. Deliberate practice Anders Ericsson, 2008 X
5. Sentence-level feedback Andersen et al., 2013
6. Pre-defined assessment categories X X
7. Easily extendible and generalizable X X

TABLE 3.2: Overview of the most significant related work’s and discussions’
influence on the final requirements. FbF refers to FeedbackFruits and systems
refers to automated feedback systems discussed in the related work chapter.
Furthermore, ‘E’ stands for expert and an ‘X’ means that the requirement fol-

lows from literature or from a discussion.

Combining the data exploration conclusions with the expert discussions, we
present the following list that contains the final requirements. In addition to the fi-
nal requirements list, Table 3.2 shows a summary of the main consideration for each
requirement. Although we included more arguments for each requirement through-
out this chapter, Table 3.2 includes only the most significant arguments.

1. Use an easy-to-collect dataset that requires the least amount of additional man-
ual annotations

20 Chapter 3. Requirement Analysis

2. Consider text generation (or text comprehension) models, textual semantic
similarity, and automated essay scoring models

3. Provide different levels of feedback (highlight mistake, show tips, and sug-
gest corrections), to encourage differentiated learning and to offer guidance
for novice to advanced learners

4. An iterative feedback system that encourages students to think about writing
style mistakes and to stimulate gradual refinements and improvements of their
performance (self-regulated learning by deliberate practice)

5. Provide reliable, sentence-level, and textual feedback, for instance, on text co-
herence or text cohesion

6. Provide feedback for pre-defined writing assessment categories

7. Support extension (adding writing assessment categories)

In the next chapter, we address all requirements and propose a reliable, general-
izable, educational, iterative, localized, and formative feedback system for specific
writing style mistake categories that assists students in learning how to write high-
quality essays.

21

Chapter 4

Conceptual Design

In this chapter, we propose RevisionCoach, an automated feedback system for writ-
ing style. Before RevisionCoach, we explored automated feedback systems that use
feedback matching and feedback generation to construct formative feedback, and
because RevisionCoach’s design is inspired by these other feedback systems, we dis-
cuss the other feedback systems first.

4.1 Explored Automated Feedback Systems

First, we discuss the feedback system that searches for the best matching feedback
in a database and a feedback system that generates feedback directly. RevisionCoach
follows the requirements of the previous chapter, but the previously explored auto-
mated feedback systems do not. However, the explored system’s findings inspired
the current requirement definitions. For the explored systems, we elaborate upon
the advantages and disadvantages.

4.1.1 Feedback Linking

The first feedback system uses text similarity to match essay sentences to sentences
in the peer review database. For the sentence’s match in the database, we retrieve
the attached feedback. Therefore, this system relies on an additional dataset require-
ment that essays have sentence-level mistake annotations with attached feedback.
The data preprocessing process is described in Appendix A.

This similarity-based approach is used in research before (Louis and Higgins,
2010; Bernius and Bruegge, 2019; Bernius, Krusche, and Bruegge, 2021). While this
method seems deceptively simple, it addresses important challenges regarding the
feedback variety and quality; in contrast to other research where pre-defined feed-
back is used (for instance in Villalón et al., 2008; Andersen et al., 2013; Liu et al.,
2016; Woods et al., 2017). Similarity-based feedback linking has the potential to pro-
vide specific content-related feedback, given that a large dataset of feedback sam-
ples is available. Sources for content-related feedback can be peer reviews (student-
based) and expert feedback (expert-based). Unfortunately, finding an expert-level
feedback dataset is challenging, and each assignment type requires a pre-defined
highlight-feedback dataset. Apart from the ability to provide content-related feed-
back, a similarity-based approach has other advantages. A system that works with
peer reviews or expert feedback is practical in courses with previous editions. Given
that the course’s assignments are similar, previous year data can be used to sug-
gest feedback for the current year, making it a practical solution to reduce the time-
consumption of teachers for giving feedback. A second benefit is the explainability
potential because the ability to explain the predicted feedback helps to understand
the functionality and reliability of the feedback system.

22 Chapter 4. Conceptual Design

FIGURE 4.1: Model structure

Figure 4.1 visualizes the similarity-based feedback system. As depicted in the
figure, the system consists of three main parts. The first part constructs possible
highlights from an input essay using a moving window (a window with a fixed
length that moves one word at a time). After that, the second part finds the best
matching highlight in the dataset for each possible highlight. The best matching
highlight’s feedback is used as suggested feedback for each constructed highlight in
the system’s last part. This approach uses Augmented SentenceBERT (Thakur et al.,
2020) to calculate sentence embeddings, that we compare using the cosine distance
to measure the semantic similarity between sentences. In order to do this efficiently,
we precompute the peer review dataset’s sentence highlight embeddings and define
this as the embedding corpus. While the embedding corpus is calculated once, we
compute the embeddings for highlights in new essays (highlight embeddings) each
time. Finally, for each highlight embedding, we compute the semantic similarity
with all corpus embeddings.

The system performed worse than expected during manual evaluation, which is
hypothetically caused by the fact that the system does not consider the feedback’s
information because it only focuses on matching essay highlights. The second issue
is the data noise - students often take shortcuts and provide low-quality data. Deter-
mining which feedback is educational is a challenging problem to solve. Although
the preprocessing stage cleans the data, the feedback is not perfect, and we consider
to use expert feedback to solve that issue. To address the issues, we redesigned
the feedback linking model to include the feedback’s information. RevisionCoach ad-
dresses the missing feedback information issue by considering pre-defined assess-
ment categories that inform the feedback models about what writing problems to
look for. Secondly, RevisionCoach removes the need for a feedback dataset that re-
moves the noisy feedback data concerns. In the following section, we discuss a feed-
back model that generates feedback directly, and in contrast to feedback linking, the
generation model takes the feedback’s information into account.

4.1. Explored Automated Feedback Systems 23

FIGURE 4.2: Model structure

4.1.2 Feedback Generation

The second system generates feedback directly, which addresses the feedback link-
ing model’s issue of disregarding the feedback information. The feedback genera-
tion model’s design includes two main modules (Figure 4.2), both include a trans-
former architecture and are implemented with HuggingFace1. Although feedback
linking considers all essay sentences as potential feedback highlights, this option is
inconvenient for feedback generation considering the text generation time. There-
fore, the first module predicts potential sentence-level highlights in the input essay
to use as input for the feedback generation module.

To predict potential sentence-level highlights, we use a T5 transformer model in
a text classification setting. In the fine-tuning process, the training data considers
essay sentences as input and a boolean that is true when the sentence has feedback
attached as label. In practice, the training dataset contains sentences that received
feedback and sentences that did not receive feedback. In the end, the model takes a
highlight as input and predicts if the highlight needs feedback. Besides the predic-
tion, the model offers a prediction confidence score between zero and one.

The second part of the system concerns feedback generation using a second T5
transformer model. This time, the inputs are highlights, and the labels are corre-
sponding feedback texts. In the following paragraphs we describe the data prepro-
cessing process.

Data Preprocessing

In addition to the preprocessing stage described in Appendix A, this iteration ex-
tracts additional information (extra context) to provide the model with more infor-
mation, as shown in Figure 4.3. First, we use YAKE (Campos et al., 2020) to extract
important keyphrases from the highlight to perform a Wikipedia search for addi-
tional information. If the Wikipedia2 search has no results, we extract named entities
from the keyphrases with Spacy3, and filter on the location, event, work of art, prod-
uct, and organization entities. Furthermore, if none of the extracted named entities

1huggingface.co
2Python package: https://pypi.org/project/wikipedia/
3Python package: https://spacy.io/usage/linguistic-features#named-entities

huggingface.co
https://pypi.org/project/wikipedia/
https://spacy.io/usage/linguistic-features##named-entities

24 Chapter 4. Conceptual Design

FIGURE 4.3: Flow diagram that describes extra context extraction.

have a corresponding Wikipedia article - with at least 85% similarity to the article’s
title - we extract nouns from the keyphrase and perform a dictionary lookup using
WordNet4.

Secondly, we augment the original feedback dataset to construct a larger dataset
containing more variation in highlight text. All augmentation methods are similar to
the revision models of RevisionCoach (we refer to subsection 4.2.1 for more details).

On top of extracting extra context and data augmentation, we experimented with
adding custom tokens to reduce the transformer’s encoder vocabulary. This process
maps numbers to specific tokens, such as ([NUM], [YEAR], or [CURRENCY]), which
does not result in an information loss but does reduce the vocabulary size. Since
the resulting loss did not decrease significantly compared to a model without this
preprocessing step, we decided not to include this step. It complicates the system’s
design because the custom tokens are generated in the feedback, which need to be
mapped to their original form.

Feedback Generation

After the input is preprocessed and the models are trained (as depicted in Figure 4.2),
the model is capable of generating feedback for an input essay. There are several
options to generate text from the transformer model’s output. In itself, the output
consists of probabilities for each token in the vocabulary for each token in the gen-
erated output, meaning that an output sentence of 10 tokens with a vocabulary of
10.000 has a shape of [10, 10.000]. There are several options to decode the output
probabilities, including Greedy Search, Beam Search, Top-K sampling, and Top-p
sampling (supported by the transformer library called HuggingFace5). Each option
tries to generate the most natural-looking text and tries to prevent text repetition.
Although some options can generate multiple variations of the text, the feedback
system requires one output text only. We use beam search with five beams and
greedy decoding, one return sequence, and early stopping to produce a single feed-
back text. We hypothesize that the final feedback confidence is more reliable with
greedy decoding, where the highest probability is preferred. By considering more
beams - or paths in a search tree - we encourage the model to search beyond the next
best token.

The output is not only feedback text but also the model’s highlight and feedback
confidence. To calculate the confidences, we take the average of the individual token
probabilities that the transformer model outputs.

4https://www.nltk.org/howto/wordnet.html
5https://huggingface.co/blog/how-to-generate

https://www.nltk.org/howto/wordnet.html
https://huggingface.co/blog/how-to-generate

4.1. Explored Automated Feedback Systems 25

Feedback Generation Evaluation

FIGURE 4.4: Example of generated feedback during the evaluation session.

In the feedback generation study, we asked ten PhD students and professors from
the Centre of Education and Learning (CEL)6 and TU Delft to write an essay and to
evaluate the feedback. Because the feedback generation model requires sentence-
level mistake highlights and textual feedback, we use a peer review database from
FeedbackFruits, and consequently, the study participants write an essay for the peer-
reviewed assignment about a Covid-19 news article. Finally, the study participants
rate the generated feedback in terms of naturalness, relevance, and informativeness.

In Figure 4.4 we show an example of feedback that was generated during the
evaluation session, where the highlight confidence shows the model’s confidence
that the highlight contains a mistake, and the feedback confidence shows the model’s
confidence of the generated feedback. Unfortunately, the evaluation shows that
the model’s feedback accuracy is low because most feedback is not educational.
Although some feedback is informative (such as the yellow feedback item in Fig-
ure 4.4), other feedback is irrelevant and distracting (such as the green feedback item
in Figure 4.4). The other opinion texts show similar results, where more distracting
than informative feedback is generated.

Text generation is challenging, and feedback generation is arguably more chal-
lenging, because of the educational aspect of feedback. In feedback generation it is
not sufficient to have natural text because of the educational aspect to assist students
in writing better essays. Moreover, it is challenging to assess the feedback genera-
tion model’s feedback accuracy automatically. For example, the model can generate
random feedback with high confidence for a random input that does not require
feedback, although it has little educational benefit. In practice, it is challenging to
filter out non-educational feedback.

Another issue with the feedback generation model’s direction is the explainabil-
ity and evaluation difficulty. It is challenging to reason about the model’s feedback
generation decision process. Although it is possible to analyse the model’s attention
scores and to discover the most important highlight words that the model considers,
it is challenging to explain and it is challenging to evaluate the model’s accuracy
and effectiveness. Furthermore, we recognize that using more feedback data will

6https://www.educationandlearning.nl/home

https://www.educationandlearning.nl/home

26 Chapter 4. Conceptual Design

eventually lead to an accurate feedback system, while it introduces a more signifi-
cant challenge to evaluate because the number of feedback possibilities increases. In
general, open-ended text generation systems are challenging to evaluate.

To address the challenge to evaluate open-ended feedback systems, Revision-
Coach considers a limited number of feedback categories to construct categorized
feedback. In chapter 10, we discuss a hybrid approach that combines RevisionCoach
and the feedback generation model to generate categorized feedback text. In the fol-
lowing section, we discuss RevisionCoach’s design, which reuses the discussed feed-
back system models’ components.

4.2 RevisionCoach

RevisionCoach is built following the requirements and the discovered disadvantages
of the previously discussed systems. Therefore, RevisionCoach has access to the feed-
back’s information and does not predict open-ended feedback. Before we explore
RevisionCoach’s implementation details, we discuss the system’s conceptual design
that is based on the requirement analysis of the previous chapter.

FIGURE 4.5: RevisionCoach system flow

The intuitive reasoning behind the design of RevisionCoach is based upon the
writing process of an author. Writing is an iterative process, and at the end of each
iteration the writer assesses the essay’s quality. After the initial quality assessment,
the writer revises the low-quality sentences and subsequently assesses the essay’s
quality again. This process is repeated until the essay’s quality reaches the author’s
writing quality standards. Following the requirements, RevisionCoach needs only es-
says data without additional annotations. As a result, RevisionCoach can be used for
any essay assignment as long as RevisionCoach has access to relevant texts (for in-
stance, an essay dataset or related Wikipedia pages). To the best of our knowledge,
other AES and AWE systems require manual annotation to automate feedback. Fur-
thermore, RevisionCoach predicts structured feedback that is not open-ended to make
the system easier to evaluate.

An overview of RevisionCoach is displayed in Figure 4.5 that follows the intu-
itive and iterative writing process: revise the essay, assess the essay’s quality, present
feedback, improve the essay, and repeat. Component (1) generates possible correc-
tions for individual essay sentences. In each revision exactly one sentence is revised
to support sentence-level feedback. Second (2 in Figure 4.5), the scoring component
assesses the essay’s and the revisions’ quality. In the second component, the scoring
models relate directly to RevisionCoach’s writing quality assessment categories. For
example, the readability scoring model represents the essay’s readability assessment
category. All scores are used in (3) where RevisionCoach uses the scores to find sig-
nificant changes in writing quality scores, and since all revisions contain exactly one

4.2. RevisionCoach 27

revised sentence, the significant change is a result of a single sentence-level change.
The significant changes represent the essay’s sentence that can be improved with re-
spect to a specific writing quality assessment category. Last (4), RevisionCoach visual-
izes four layers of feedback to support differentiated learning: a sentence highlight,
a writing assessment category (cohesion, coherence, readability, formality), a revi-
sion category (rephrase, rewrite, or reword), and a possible correction. At the end of
each cycle, the student uses the feedback to improve the essay on sentence-level.

RevisionCoach uses the iterative writing intuition to offer an iterative writing as-
sistant that encourages students to think about common writing style mistakes and
to learn by deliberate practice. Once the student considers the essay’s quality to
reach the requested quality standards, RevisionCoach supports the student to im-
prove the essay’s quality for pre-defined writing assessment categories. Students
can focus on one category at a time and iteratively improve their essay’s quality
with sentence-level improvements. The impact of sentence-level improvements is
directly visible alongside pre-defined tips and suggestions. This way, RevisionCoach
motivates the learner to make improvements, allows the learner to have clear goals,
and directs the learner’s attention to sentences that can be improved to improve the
overall essay quality.

Furthermore, RevisionCoach supports and enables self-regulated learning, since
students can set and monitor their own goal (when are the quality scores sufficient),
check their work, receive tips, and improve their work. The perfect answer is rarely
suggested to students, pressuring them to come up with their own ideas. To support
this process, RevisionCoach guides this improvement process and prevents students
from getting stuck. An advantage of RevisionCoach is that it can provide instant feed-
back on request, and as research indicates, providing regular and frequent feedback
enables effective self-regulation by students (Gibbs and Simpson, 2005). In addition,
RevisionCoach can show the improvement percentage for students’ sentence-level im-
provements to motivate students to improve their own work.

In addition to learning by deliberate practice and self-regulated learning, Revi-
sionCoach supports differentiated feedback because it constructs for levels of feed-
back. For advanced learners it can be sufficient to present feedback that highlights
low-quality sentences, while novice learners need more structure to prevent getting
stuck. Students can immediately view sentence highlights and the corresponding
writing assessment categories. In addition, students can request writing tips - pre-
defined tips that are linked to the assessment categories. When students are stuck
after the students received the sentence highlight, the writing tip, and the assess-
ment category, RevisionCoach offers a possible sentence correction as inspiration for
the student. Furthermore, the feedback levels can be combined to construct the fol-
lowing feedback template:

The [h i g h l i g h t] ’ s [assessment category] can be improved by [
c o r r e c t i o n category] the sentence .

For example : The [f i r s t sentence ’ s] [r e a d a b i l i t y] can be
improved by [rewording] the sentence .

In addition to the feedback template, RevisionCoach’s technique to find sentence-
level mistakes can be used to find word-level mistakes to provide word-level hints
for the student to improve the sentence. To not overcomplicate the design, and be-
cause of time considerations, we leave this for future work.

In the remainder of this chapter, we explain the four main components: the re-
vision component, the scoring component, the feedback component, and the user

28 Chapter 4. Conceptual Design

interface component (Figure 4.5). Before RevisionCoach is able to coach students on
writing style, RevisionCoach needs to learn how to assess writing quality (the scoring
models) and it needs to learn how to write high-quality text (the revision models),
while limiting the number of required manual annotations.

4.2.1 Revision Models

FIGURE 4.6: The flow of a revision model in RevisionCoach. N is the total num-
ber of sentences.

The purpose of the revision component is to generate a high-quality and context-
dependent essay sentence that ideally improves the original sentence. To achieve
that, RevisionCoach needs to learn how to write an appropriate essay sentence, us-
ing three revision strategies to revise individual sentences in an essay: rephrasing,
rewriting, rewording. Figure 4.6 visualizes an overview of the revision model’s de-
sign. To start, the essay is split into sentences. The revision model generates a re-
vision for every sentence. Subsequently, the original sentence is replaced with the
revised sentence to construct a revised essay. Since each essay revision contains
exactly one revised sentence, RevisionCoach can provide sentence-level feedback be-
cause when the revised essay is compared to the original essay, the score change is
caused by the single revised sentence. As a consequence, for every essay Revision-
Coach generates N ∗M revisions, where N is the number of sentences and M is the
number of revision models.

Revising sentences is similar to data augmentation in natural language process-
ing (NLP, a research field that focuses on natural language understanding, extrac-
tion, and analysis techniques), which expands the training data with additional text
samples to make models more robust. Examples are to consider text samples that
contain typing mistakes or alternative sentence representations in the training data.
Researchers found that appropriate data augmentation techniques are helpful for re-
ducing the generalization error for deep learning models (Zhang and LeCun, 2016).
The challenge of data augmentation in NLP is that text is not continuous; and there-
fore, text augmentation can not be done by adding a number to an embedded - or
tokenized - sentence. The semantics of a sentence matter, and the revision model’s
purpose is to revise sentences while keeping a valid English sentence. To this end,
we use data augmentation techniques as a backbone to RevisionCoach’s revision mod-
els. In the following paragraphs we discuss the conceptual design of RevisionCoach’s
revision models: rephrase, rewrite, and reword.

Rephrase Revision

The first revision allows RevisionCoach to construct a revision by restructuring and
rewording sentences while keeping the original sentence’s semantic meaning. To
achieve this, we rely on paraphrasing methods that are a common technique for NLP
data augmentation (Anaby-Tavor et al., 2019; Krishna, Wieting, and Iyyer, 2020; Gao
et al., 2020).

4.2. RevisionCoach 29

Rewrite Revision

The second revision model’s purpose is to write a sentence that is different in mean-
ing compared to the original sentence. Text generation is the most obvious option
to generate natural text, a solution that is used in question answering systems (Yu
et al., 2020) and summarization systems (Verma and Om, 2019). A similar task is
story generation, where a language model needs to complete a story based on some
context (Xu et al., 2020), that shows promising results. Furthermore, text generation
techniques are effective in text translation and reading comprehension (Raffel et al.,
2019; Radford et al., 2020).

The intuition behind this approach is that for sentence Xi, RevisionCoach uses the
sentences Xi−1 and Xi+1 as context in order to generate a context-dependent revision.
In practice, the model learns from similar essays to construct natural text. Although
the paraphrase’s semantics are similar to the original sentence, the generated para-
phrase’s semantic meaning can be entirely different - as long as the sentence fits in
the original sentence’s context.

Reword Revision

The last revision techniques uses the sentence’s part-of-speech (POS) elements to
replace specific words in the sentence with the most similar synonym. To replace
words with their related synonyms is a common data augmentation technique (Zhang
and LeCun, 2016). Using synonyms to change a sentence is a form of paraphrasing;
however, we separate the two methods because synonyms are replaced at word-
level while RevisionCoach’s paraphrases are done at sentence-level. Therefore, we
expect that the two revision methods result in different sentence revisions.

4.2.2 Scoring Models

FIGURE 4.7: The flow of a scoring model in RevisionCoach.

RevisionCoach’s second component scores the original essay and the revisions to
assess the essay’s writing quality (Figure 4.7), and because RevisionCoach considers
multiple scoring methods, each scoring method represents a pre-defined assessment
category. To this end, we use existing writing quality categories as scoring methods
with small alterations. Based on the related work (chapter 2), the requirements, and
the discussions with experts, RevisionCoach uses readability, coherence, cohesion,
and formality as writing style assessment categories. Other writing style categories
can be considered to extend RevisionCoach’s ability to assess text. First, we provide
the reasoning for the chosen pre-defined writing quality assessment categories, and
second, we explain the general approach to compute the writing quality scores for
each assessment category.

30 Chapter 4. Conceptual Design

Readability

The first assessment category of RevisionCoach relates to the readability, a common
feature for AES systems (for instance by Graesser et al., 2004; Dikli, 2016; Zesch, Wo-
jatzki, and Scholten-Akoun, 2015; McNamara et al., 2015; Ke and Ng, 2019; Uto, Xie,
and Ueno, 2020). Readability refers to the reading difficulty of a text and depends
on the word usage (Ke and Ng, 2019). In addition to AES systems that consider
readability as an important feature, the writing expert in section 3.1 provided exam-
ple rubrics for assessing text quality that indicate the importance of text readability
(with a grading weight of 15%).

Coherence

Readable text that does not make sense results in poor text quality, and for that rea-
son, we consider text coherence as the second assessment category. A coherent text is
logical and easier to understand (McNamara and Kintsch, 1996). Witte and Faigley,
1981 mentions the condition that a coherent text should provide only information
relevant to the text’s topic and a coherent text should be understandable in a real-
world setting. Furthermore, coherence relates to the logical structure and to the rea-
soning of text, and because of that, coherence is considered an important feature for
AES models (Zesch, Wojatzki, and Scholten-Akoun, 2015; Li et al., 2018). In addition,
the writing expert in section 3.1 noted that the flow and reasoning in text commonly
goes wrong; and therefore, coherence is an important indicator of text quality. For
these reasons, we decide to include text coherence as writing assessment criterion.

Cohesion

In contrast to coherence that requires the text to be understandable in a real-world
setting, cohesion is about the mechanisms used to connect sentences in the text. A
cohesive text is not always coherent, and the following example illustrates the dif-
ference:

1. The player kicked the ball out of the stadium.

2. However, the tree is green.

3. Company X uses primarily green containers.

While the sentences are cohesive, it is difficult to construct a real-world scene for
the sentences. The sentences have no clear purpose, and it is difficult to find a com-
mon topic that the sentences share. Although cohesive text does not imply coherent
text, cohesion is still an important quality indicator of text (Witte and Faigley, 1981).
In fact, cohesive tie analysis (the way in which pieces of text are linked together) is
the backbone of AcaWriter (Knight et al., 2020). Knight et al., 2020 that shows how a
system, that mostly focuses on cohesion to express writing quality, can be effective
in guiding students to write better texts. Therefore, RevisionCoach includes cohesion
as assessment category.

Formality

The last assessment category is formality that focuses on proper word usage. Simi-
lar to readability, formality is used in AES research (Zesch, Wojatzki, and Scholten-
Akoun, 2015). Also, the writing expert’s example rubric (that is discussed in sec-
tion 3.1) include formality as grading criteria.

4.2. RevisionCoach 31

4.2.3 Feedback Model

Since essay scoring results in an essay-level score and the requirements indicate to
focus on localized feedback, RevisionCoach transforms the essay-level score into a
sentence-level score. For this, we follow an approach similar to Woods et al., 2017
that removes individual sentences and measures the impact. A significant impact
on the essay score as a consequence of a single sentence removal indicates the im-
portance of that sentence. In the same way, a significant impact on the essay score
as a consequence of a single sentence revision indicates the importance of the revi-
sion. This technique can be used with multiple scoring models to assess the essay’s
quality for multiple writing assessment categories.

RevisionCoach considers an improvement as significant when the improvement is
larger than 5% compared to the original score. To not overload students with pos-
sible improvements, which is possible since all three revision models can suggest
an improvement for the same sentence and for the same assessment category, Re-
visionCoach only suggests the highest score improvement for each sentence for each
assessment category. There is no feedback left when the revisions do not improve the
essay’s quality in any of the assessment categories. In RevisionCoach’s user interface
prototype, we display the discovered feedback to the student.

4.2.4 User Interface Design Prototype

FIGURE 4.8: RevisionCoach’s user interface.

As mentioned in the requirements (chapter 3), the user interface follows the con-
ditions of deliberate practice (Anders Ericsson, 2008) to encourage effective learn-
ing. The main purpose of RevisionCoach’s user interface prototype is to visualize
the potential of RevisionCoach’s feedback. Because the user interface is not tested
or evaluated in the interest of time, we consider the user interface as a prototype.

32 Chapter 4. Conceptual Design

First, the learner has access to a clear user interface that displays clear tasks and
goals, namely to improve individual sentences based on a writing quality assess-
ment category. Students select individual sentences to improve and students gradu-
ally move through the text to implement improvements. This process stimulates it-
erative learning and provides repeated learning opportunities. Furthermore, to sup-
port differentiated learning, the user interface supports the four layers of feedback
(sentence highlight, mistake category, correction category, and suggested correc-
tion), and students can request the scoring rubric at any time. More structured feed-
back is available since the writing assessment categories are linked to pre-defined
tips and suggestions. All actions are conveniently logged for evaluation purposes in
local storage.

In Figure 4.8 (a screenshot of RevisionCoach’s user interface), the header allows
students to iterate between sentences, select an assessment category, and select a
sorting option (importance or sentence index). For a given selection, the UI shows
the sentence that is under consideration and related pre-defined tips. In the current
UI, the pre-defined tips are short and provide general explanations for the assess-
ment category, while it should be defined by a writing expert. Moreover, the bottom
part of Figure 4.8 allows the student to change the sentence and to examine the im-
provement, where the improvement shows the quality increase for the selected as-
sessment category (100% refers to RevisionCoach’s predicted best revision; therefore,
it is possible to improve more than 100% when the student’s improvement is better
than RevisionCoach’s). Other than checking the improvement, the student can save
the improvement (and the improved sentence will replace the original sentence in
the UI), ask for a suggestion (show RevisionCoach’s best revision), undo the previous
improvement (reverts the ’save improvement’ action), view all assessment quality
scores, and view the action history. The following chapter discusses RevisionCoach’s
implementation details.

33

Chapter 5

Implementation

This chapter covers the implementation details of the revision models, the scoring
models, the feedback model, and the user interface. Although we consider three re-
vision models and four scoring models, extending the system with additional mod-
els is possible.

Package Version
nltk 3.2.5
spacy 2.2.4
spacy-readability 1.4.1
transformers 4.5.1
sentencepiece 0.1.96
ipython 5.5.0
pandas 1.1.5
torch 1.9.0+cu102
sklearn 0.0
numpy 1.19.5

TABLE 5.1: The most important Python packages for RevisionCoach.

To reduce the RevisionCoach’s waiting time between development and deploy-
ment, we use a Colab Notebook1 provided by Google. All Python code - back-end
and front-end - resides in the same notebook, and therefore, the notebook code ex-
ecution loads all revision models, scoring models, feedback model, and the user
interface. The code is accessible here2. Table 5.1 contains the most important Python
packages and their version numbers. In the notebook, the components follow the
model-view-controller design pattern. Furthermore, code updates to one of the com-
ponents are directly available in the user interface (UI). Another advantage of the
colab notebook is that the notebook is shareable with test users for evaluation pur-
poses. First, we discuss the revision models’ implementation details.

5.1 Revision Models

RevisionCoach’s revision models are written in Python and rely on a range of tools
and resources, including transformer models, a linguistic corpus, a part-of-speech
(POS) tagger, a paraphrase dataset, and an essay dataset. For a new assignment, the
only required data is essay texts without additional annotations. Other sources can
be considered, such as relevant academic papers or Wikipedia articles, although the

1colab.research.google.com
2GitHub: https://github.com/PJvanderLaan/Automated-Writing-Feedback

colab.research.google.com
 https://github.com/PJvanderLaan/Automated-Writing-Feedback

34 Chapter 5. Implementation

original revision models rely on similar essay texts. This section starts with back-
ground information of transformer models to provide arguments for the used trans-
former architecture. Afterward, we discuss the revision models.

5.1.1 Background of Transformer Models

The revision models depend on text comprehension models that are capable of gen-
erating natural language. Currently, state-of-the-art natural language processing
(NLP) models use a transformer architecture (Vaswani et al., 2017) for text compre-
hension tasks, such as open-domain question-answering or summarization. Trans-
former architectures make use of the attention mechanism that existed already at the
time that Vaswani et al., 2017 was published. On the other hand, the breakthrough
of Vaswani et al., 2017 relies upon two crucial advancements: multiple attention
heads and positional encoding of tokens.

Before diving into a brief explanation of transformer models, it is important to
introduce the purpose of transformers. In particular, the core machine learning task
that transformers in NLP consider is called sequence transduction. Most tasks that
consider sequences as input and that require a transformation fall in the sequence
transduction category (Graves, 2012). Sequence transduction models commonly in-
clude an encoder that encodes the sequence into a vector representation, and a de-
coder that maps the numerical representation back to the original form. The two
parts work together to support memorization and pattern discovery, and as a result,
the model learns to model sequence transduction tasks.

In contrast to the common recurrent neural networks (RNN) and convolution
neural networks (CNN) architectures, transformers rely on the attention mechanism.
During the training phase, three independent matrices are learned to construct the
query, key, and value vector based on the input - a word sequence transformed into
word embeddings. An attention function maps a query vector to an output using
key-value vector pairs, and the query and key vectors calculate the attention score
using the dot-product. Instead of the dot-product, additive attention scores using
a feed-forward network are an alternative. As a result, additive attention scores
are significantly slower to compute because the dot-product calculation is based on
fast, optimized matrix multiplication code (Vaswani et al., 2017). After the attention
score calculations, the scores are multiplied with the value vector to compute the
final attention. In practice, multiple query, key, and value vectors are combined into
respective matrices to parallelize the computation. The intuition is that the query,
key, and value matrices learn to find patterns in sequences using the attention scores
and learn to determine the word patterns’ importances with the value vectors.

Instead of calculating the attention scores of a single sequence, the model learns
more when attention is calculated for multiple representations of the sequence. In Vaswani
et al., 2017, the query, key, and value vectors are linearly projected h times with dif-
ferent learned projections. The projections are used as input to the attention func-
tion and are computed in parallel. All final outputs are concatenated. This process,
where multiple attention functions are used on projected inputs, is called multi-head
attention. Transformer architectures commonly have multiple multi-head attention
(sub-)layers - Vaswani et al., 2017 uses 6 - to capture low- and high-level relation-
ships. According to Vaswani et al., 2017, the lower layers of multi-head attention
capture mostly linear word order, and the upper layers carry more syntactic infor-
mation of the sequence.

Using multiple multi-head attention functions, a transformer has four main ad-
vantages over the RNN and CNN architectures (Vaswani et al., 2017):

5.1. Revision Models 35

1. Long memory. The attention functions can attend to any position of the input
query with O(1) path length, whereas other model structures, such as RNN,
require O(n) as path length where n is the sequence length. For instance, this
is important when words at the start of the first sentence are important for the
words at the end of the last sentence. In contrast to recurrent neural networks,
the attention function do not suffer from a vanishing gradient.

2. Parallelization and interpretability. Attention can be computed in parallel,
in contrast to recurrent neural networks that are processed sequentially. In
addition, attention weights are transparent and can be visualized for improved
interpretability.

3. All input is considered. CNN use filters to find patterns that frequently do
not consider the entire input. The transformer consistently considers the entire
input and allows connections between all input pairs.

4. Partly explainable. In contrast to black-box neural networks, the attention
scores of multi-head attention layers can be visualized. As a result, the trans-
former models are better interpretable and explainable.

The original implementation of Vaswani et al., 2017 uses an encoder-decoder ar-
chitecture with a translation task as training data. Since then, authors have proposed
improved architectures and training to generalize the applicability and improve the
performance. We discuss three relevant architectures: BERT, GPT-2, and T5.

BERT and GPT-2

Devlin et al., 2019 focuses on transfer learning to generalize the applicability of the
model and introduces the pre-training task. Transfer learning depends on a pre-
training and fine-tuning step. The intuition is that the model is pre-trained on a task
and fine-tuned on a downstream task. As a result, the downstream task does not
train all parameters from scratch, which is time-consuming and expensive. Another
benefit is that the same BERT pre-training architecture is possible for numerous NLP
downstream tasks. An additional step between pre-training and fine-tuning is called
intermediate training. Pruksachatkun et al., 2020 show that the intermediate training
task can improve the transformer’s performance.

Although the original transformer architecture uses an encoder and decoder,
BERT works with only the encoder part. Unlike other transformer architectures, the
pre-training task of BERT is bidirectional. The original architecture is unidirectional,
which means that each token can attend only to the previous tokens in the attention
layers during training. Therefore, all tokens to the right are excluded from learning
the language relationships. BERT notes that both contexts are important, especially
when considering NLP tasks such as question answering and summarization (De-
vlin et al., 2019).

BERT introduces masked language modeling (MLM) as a pre-training task to
support bi-directional training. Tokens are randomly masked with a random or
unique mask token. Subsequently, the training goal is to predict the vocabulary
ids of the masked tokens. Furthermore, BERT trains on the next sentence prediction
(NSP) task to model the relationships between sentences. MLM does not directly
capture the relationships between entire sentences, whereas NSP is designed for that
purpose. However, according to Rogers, Kovaleva, and Rumshisky, 2020, removing
the NSP pre-training task does not decrease the performance.

36 Chapter 5. Implementation

Other transformer architectures are more suitable for text generation tasks due
to BERT’s bidirectional nature and the lack of a decoder. Text generation is auto-
regressive (unidirectional), meaning that each generated token uses all previous to-
kens as input. Although bidirectional learning is hypothetically better to model lan-
guage, text generation remains a unidirectional task, since only previous tokens are
known during text generation.

In contrast to BERT, GPT-2 (Radford et al., 2018) is a transformer-based lan-
guage generation model that trains unidirectionally, has an autoregressive nature,
and uses only a decoder. GPT-2 can generate human-like text and GPT-2 supports
the auto-regressive property, but intuitively, missing bidirectional contexts during
pre-training results in a less powerful understanding of language. On the contrary to
BERT and GPT-2, T5 (Raffel et al., 2019) is autoregressive and includes bi-directional
language modeling.

T5

The authors of T5 state that the original work is primarily a survey of the existing
techniques (Raffel et al., 2019). Nonetheless, the T5 model is trained on different
data and includes an adaptation to MLM as a pre-training task. The architecture is
similar to the original transformer architecture (Vaswani et al., 2017) and contains an
encoder and decoder stack.

T5 is designed to be a text-to-text transfer transformer that is usable for numer-
ous NLP tasks by transforming the task into a text-to-text format. To support re-
gression tasks, the authors use string representation of the numbers. In practice this
transformers the regression task in a multi-classification task.

Raffel et al., 2019 uses a new dataset that consists of clean text – the Collossal
Clean Crawled Corpus (C4). To summarize, C4 consists out of cleaned web extracted
text using several preprocessing steps. As a result, the C4 dataset is large (750GB)
compared to other datasets.

During pre-training, T5 uses unidirectional masking in the decoder and bidirec-
tional masking in the encoder in contrast to BERT (only an encoder and bidirectional)
and GPT-2 (only a decoder and unidirectional). Masked tokens are excluded from
the attention calculation in the attention heads. The unidirectional auto-regressive
property, which is important for text generation, is kept while holding on to bidirec-
tional language modeling in the encoding step. The transformer can reason about
bidirectional information in the input text as a result. This architecture achieved the
best performance in the study of Raffel et al., 2019.

Although T5 depends on existing techniques and architectures, it has important
differences with other architectures such as BERT. Whereas BERT includes byte-level
tokenization, T5 uses only SentencePiece to encode text as WordPiece tokens. The
benefit of byte-level tokenization is that it generalizes better to unknown words. As
a result, byte-level tokenization supports a larger vocabulary; however, the draw-
back is that the search space becomes larger. The second important difference is
related to pre-training. T5’s pre-training objective uses a small adaptation to BERT’s
MLM training task. Whereas BERT masks individual tokens, T5 masks spans of to-
kens as denoising objective, using the same dropout percentage for tokens - 15% is
masked. To conclude, the last difference is that BERT is an encoder-only model and
is trained to predict the masked tokens. On the contrary, T5 also includes a decoder
and is trained to reconstruct the entire input. Raffel et al., 2019 finds that MLM with
masking spans of 3 tokens performs the best as a pre-training objective.

5.1. Revision Models 37

To conclude, we use the background information to select the best transformer
architecture for each task. Apart from BERT, GPT-2, and T5, there are numerous
other transformer architectures. However, we consider BERT, GPT-2, and T5 as ex-
amples that illustrate the most important differences between transformer architec-
tures in the automated feedback setting – the pre-training procedure, the training
data, unidirectional or bidirectional (or both), and the autoregressive property. The
following sections about the revision models consider this transformer background
information to determine the most suitable transformer architecture for the task.

5.1.2 Rephrase Revision

FIGURE 5.1: The flow of constructing paraphrase revisions.

The rephrase revision model consists of two paraphrase techniques: round-trip
translation (RTT) and paraphrase generation (Figure 5.1). RTT is a technique that
translates a text into a different language and back to the original language, which
results in a paraphrase of the original text. Aroyehun and Gelbukh, 2018 show that
RTT is effective and robust for data augmentation in French, Spanish, Hindi, and
German. For the translation task, we use pre-trained transformer models (T5 for
German to English and Facebook’s transformer model for English to German3).

The second paraphrase model is a pre-trained T5 model4 fine-tuned on Google’s
PAWS paraphrase dataset5. T5 supports bidirectional language modeling that al-
lows T5 to reason about words based on the word’s context in both directions and
T5 supports the autoregressive unidirectional property to generate natural language.
In addition, T5 achieves state-of-the-art performance in summarization, text classi-
fication, question answering, and more (Raffel et al., 2019). Since a paraphrasing
model depends on natural language comprehension and language generation, we
select T5 for the paraphrase revision task. Pre-training transformer networks is ex-
pensive and takes a long time, and to address that, we use the pre-trained T5 model
available on HuggingFace6.

The RTT and paraphrase generation model are used to construct sentence-level
paraphrases, and the next step is to determine the best paraphrase. A good para-
phrase is similar in meaning but different in surface form, where a similar surface
form indicates a similar sentence structure with similar words. To measure this, we
assess semantic similarity with BERTscore (a bidirectional transformer-based seman-
tic similarity model, Zhang et al., 2020) and we assess surface form similarity with
BLEU (Papineni et al., 2001), the most common - n-gram based - machine translation
metric (Zhang et al., 2020). In the end, the model selects the paraphrase with the

3https://huggingface.co/facebook/wmt19-en-de
4https://huggingface.co/Vamsi/T5_Paraphrase_Paws
5https://github.com/google-research-datasets/paws
6https://huggingface.co/Vamsi/T5_Paraphrase_Paws

https://huggingface.co/facebook/wmt19-en-de
https://huggingface.co/Vamsi/T5_Paraphrase_Paws
https://github.com/google-research-datasets/paws
https://huggingface.co/Vamsi/T5_Paraphrase_Paws

38 Chapter 5. Implementation

highest semantic similarity and with the lowest surface form difference out of a pool
of RTT and generated paraphrases.

5.1.3 Rewrite Revision

In contrast to the rephrase revision’s paraphrase generation model, this revision
model’s goal is to generate an essay sentence unrelated to the original essay sen-
tence, while the generated sentence makes sense in the original sentence’s context.
In practice, essay sentence generation depends on the context of the original sen-
tence to allow the text comprehension model to generate context-aware sentences.
In the following section we provide an overview of RevisionCoach’s text generation
architecture and discuss the fine-tuning process to elaborate upon free parameter
decisions.

Text Generation Architecture

Similar to paraphrase generation, we use a T5 model for the bidirectional under-
standing and for the autoregressive property. The bidirectional understanding sup-
ports the model’s goal to generate a sentence based on a context before and after the
input sentence, and the autoregressive property enables the model to generate nat-
ural text. On the contrary, we fine-tune the pre-trained T5 transformer on the essay
dataset containing similar essays that contain relevant content with respect to the
assignment’s task. To start, we transform the essays in a (sentence before, original
sentence, sentence after) format to fine-tune the T5 transformer. T5 uses the masked
spans of tokens as a pre-training objective that is similar to our fine-tuning objec-
tive (where the original sentence is the masked span of tokens). Fine-tuning a large
transformer model is resource-demanding; and therefore, we use a Google Colab
premium cloud GPU.

For each essay’s input sentence we select two sentences as context: one before
and one after the input sentence. As a result, the first and last sentence of the essay
can learn only from a single sentence as context, but that is a trade-off we are willing
to make.

An important part of text generation is the decoding setup to generate natu-
ral, not-repeatable and reasonable text. There are several options to generate text
from the transformer model’s output. In itself, the output consists of probabilities
for each token in the vocabulary for each token in the generated output, meaning
that an output sentence of 10 tokens with a vocabulary of 10.000 has a shape of
[10, 10.000]. There are several options to decode the output probabilities, including
Greedy Search, Beam Search, Top-K sampling, and Top-p sampling (supported by
the transformer library called HuggingFace7). Each option tries to generate the most
natural-looking text and tries to prevent text repetition. Although some options can
generate multiple text variations, the essay text generation models only require one
output text. We use beam search with 4 beams and greedy decoding, 1 return se-
quence, and a length penalty of 0.6, to produce a single feedback text (similar to the
decoding strategy for all NLP tasks of Raffel et al., 2019). By considering more beams
- or paths in a search tree - we encourage the model to search beyond a single next
best token. In the following section, we discuss the fine-tuning process of the T5 text
generation model.

7https://huggingface.co/blog/how-to-generate

https://huggingface.co/blog/how-to-generate

5.1. Revision Models 39

Fine-Tuning T5

Parameter Value
Learning Rate 0.001
Steps 218

Optimizer AdaFactor
Decoding Strategy Greedy decoding
Loss Cross-entropy

TABLE 5.2: T5 fine-tuning parameters (Raffel et al., 2019)

Transformer architectures are time-consuming and resource-demanding to train;
and therefore, we use the pre-trained T5-base model8 for the fine-tuning process.
Although fine-tuning is less time-consuming than pre-training, it is infeasible to do
a complete grid search to find the perfect parameters for all parameters (for instance,
epochs, learning rate, warmup steps, optimizers, all optimizer parameters). To ad-
dress this, we re-use the fine-tuning parameters of T5’s original work (Table 5.2).

Although most parameters in Table 5.2 are determined to work best with the
pre-trained T5 architecture, Raffel et al., 2019 mentions that the ’steps’ parameter is
chosen as a trade-off between high-resource (large datasets) and low-resource tasks
(overfits quickly). RevisionCoach uses small datasets compared to T5’s datasets; and
therefore, we expect the fine-tuning to not require 218 = 262k steps. To monitor the
fine-tuning process we include the training loss, validation loss (for 100 randomly
sampled essays that we exclude from the training dataset), semantic similarity (be-
tween the model prediction and validation dataset labels), and sentence BLEU (n-
gram overlap). In the open-ended sentence generation revision case there is not a
single correct answer, and as a consequence, the training and validation loss do not
represent the actual loss between the predictions and correct answer. Therefore, we
include the sentence BLEU and semantic similarity to generalize the single correct
sentence from the validation dataset to multiple related answers because the loss
includes only the difference between the generated sentence and the expected sen-
tence.

Figure 5.2 shows the fine-tuning results using two essay datasets for 20 epochs,
where Figure 5.2a uses the essays from the ASAP Challenge’s second task (available
here9) and Figure 5.2b uses essays about genetically modified organisms (GMO). The
following listing shows the training input structure for three subsequent sentences
(sentence 0 to sentence 2).

input: [sentence 0] <extra_id_0> [sentence 2]
label: <extra_id_0> [sentence 1] <extra_id_1></s>

The extra id’s represent unique mask tokens that the pre-trained T5 model uses
during the masked language modeling pre-training stage10 and </s> indicates the
end of the sentence. Although the original fine-tuning process of Raffel et al., 2019
takes 262k steps, the models are trained for 20 epochs resulting in 20 ∗ 6597 = 132k
and 20 ∗ 745 = 15k steps for the ASAP and GMO essays respectively. In Figure 5.2
we observe that the models slightly overfit in both cases, because the validation loss
increases and the training loss decreases. On the contrary, we observe that the se-
mantic similarity and sentence BLEU do not decrease significantly (Figure 5.2c and

8https://huggingface.co/t5-base
9https://www.kaggle.com/c/asap-aes

10https://huggingface.co/transformers/model_doc/t5.html

https://huggingface.co/t5-base
https://www.kaggle.com/c/asap-aes
https://huggingface.co/transformers/model_doc/t5.html

40 Chapter 5. Implementation

(A) Fine-tuning analysis of a pre-trained T5-
base model for 20 epochs using 6597 train-

ing essays and 100 validation essays.

(B) Fine-tuning analysis of a pre-trained T5-
base model for 20 epochs using 745 training

essays and 83 validation essays.

(C) Fine-tuning analysis of a pre-trained T5-
base model for 20 epochs using 6597 train-

ing essays and 100 validation essays.

(D) Fine-tuning analysis of a pre-trained T5-
base model for 20 epochs using 745 training

essays and 83 validation essays.

FIGURE 5.2: Fine-tuning analysis using two essay datasets.

Figure 5.2d). Based on both observations, the models are slightly overfitting - al-
though it is challenging to assess whether the overfitting is an issue because the
predicted sentences are possibly not similar to the expected answer, while at the
same time, the predicted sentence can be valid in the essay context. Manual ex-
perimentation shows that the predicted sentences make sense in the essay’s context
(Appendix B).

Originally, T5 is pre-trained with masked random spans modeling, that masks
part of sentences contrary to the previous fine-tuning input where entire sentences
are masked. To investigate the effects on the transformer model when parts of the
sentences are masked we run the experiment with the following setup:

input: [sentence 0] [first half of sentence 1] <extra_id_0> [sentence 2]
label: <extra_id_0> [second half of sentence 1] <extra_id_1></s>

Figure 5.3 shows that the validation loss difference between fully masked and
partly masked sentences becomes larger during the fine-tuning process, and as a re-
sult, the partly masked sentences causes less overfitting. The partly masked model’s
initial validation loss is smaller because the target labels contain fewer words; how-
ever, that does not explain the increasing difference between the validation losses
(Figure 5.3b). At the same time, both models converge to a similar training loss
(Figure 5.3a). The difference is minimal, and the validation loss does not directly
relate to overfitting because multiple predictions can be correct while there is one
expected prediction. Second, the partly masked input results in faster convergence
of the training loss (Figure 5.3a). Moreover, we analyse the predictions of the partly

5.1. Revision Models 41

(A) Fine-tuning difference of a pre-trained
T5 model between fully masked and partly

masked sentences.

(B) Validation loss difference between fully
masked and partly masked input sentences.
The loss is calculated by subtracting the
partly masked validation loss from the fully

masked validation loss.

FIGURE 5.3: Difference in losses between two models. Partly masked refers to
training labels that mask the second half of the sentence, while fully masked

refers to training labels that mask the complete sentence.

masked and fully masked fine-tuned models (due to space considerations, we in-
cluded the predictions in Appendix B). As expected, the fully masked sentence
fine-tuning results in completely different sentence predictions because the model
has no knowledge of the original sentence. On the other hand, the partly masked
sentence fine-tuning results are more similar to the original sentence while it still
results in valid sentence predictions that are different from the original sentence.
Furthermore, two interesting observations are that the T5 base predictions (without
additional fine-tuning) do not make sense and that the T5 fully masked fine-tuned
model frequently predicts a sentence that repeats the sentence before.

To conclude, based on the fine-tuning analysis we observe that partly masked
sentences result in small advantages, and we observe that the original 218 steps are
not necessary for RevisionCoach’s small essay datasets because the training losses
converge relatively fast (Figure 5.3a). RevisionCoach uses partly masked sentences
as input as a result of the small advantages. Contrary to text generation that uses
a transformer model, the synonym revision model depends on part-of-speech tags
and WordNet to analyse the text structure.

5.1.4 Reword Revision

FIGURE 5.4: The flow of constructing synonym-based revisions.

42 Chapter 5. Implementation

Replacing content words in sentences with synonyms requires the model to un-
derstand the text structure. Not all words can directly be replaced with their syn-
onyms. For instance, replacing a verb with a synonym is tricky - it can lead to a dif-
ferent semantic meaning of the sentence, and the correct tense and form (verb conju-
gation) of the verb are required for a correct sentence. The synonym revision process
follows the synonym data augmentation technique of Zhang and LeCun, 2016 and
consists of three steps (visualized in Figure 5.4): (1) select replaceable words, (2)
select the best synonym, and (3) replace the words by their best synonym.

In first step RevisionCoach considers a word replaceable when it is not a stopword
or a verb. To detect the words’ part-of-speech (POS), we use the NLTK POS tagger11.
After manual experimentation with verb conjugation, we noticed that the accuracy
to construct natural sentences was tricky, and since not all words have to be replaced
to construct a revision, we decided to exclude verbs. Other than verbs, RevisionCoach
considers only alphabetical characters and excludes stopwords.

Second, we select the best synonym based on the synonym’s frequency in the
NLTK brown corpus, a million-word English corpus with a variety of text categories
such as news. We use WordNet12 to get the potential synonyms for each word.

The last step replaces the replaceable words with the most frequent synonym to
construct a revision. When no synonym is found the original word is not replaced
or removed.

5.2 Scoring Models

In this section, we discuss the implementation details of the scoring models. The
scoring models are based on existing research. To not complicate the score compari-
son process, we transform the scores such that a higher score correlates with a better
text quality.

5.2.1 Readability

206.835− 1.015(
total words

total sentences
)− 84.6(

total syllables
total words

) (5.1)

Readability tests are designed to identify the text’s reading difficulty. For that
purpose, the Flesch-Kincaid Readability Reading Ease is one of the widely used
readability metrics to estimate the required grade level to understand a text (Si and
Callan, 2001). Flesch-Kincaid Reading Ease disregards the difficulty of understand-
ing a concept. In addition, the best Flesch-Kincaid readability score depends on the
assignment task because different texts require different readability levels (newspa-
pers are more formal than opinion pieces, for example). In general, a higher Flesch-
Kincaid readability score indicates that the text is more difficult to read. An advan-
tage of the Flesch-Kincaid readability is that the score calculation is fast because it
requires only information about the total number of words, sentences, and syllables.

RevisionCoach uses the NLP python library spaCy13 to calculate the Flesch Kin-
caid Reading Ease score with Equation 5.1. Finally, we transform the readability
score (100− readability score), such that a higher readability score indicates an easier
to read text.

11https://www.nltk.org/book/ch05.html
12https://wordnet.princeton.edu/
13https://spacy.io/universe/project/spacy_readability

https://www.nltk.org/book/ch05.html
https://wordnet.princeton.edu/
https://spacy.io/universe/project/spacy_readability

5.2. Scoring Models 43

5.2.2 Coherence

In contrast to the readability formula, coherence is harder to calculate, and there-
fore, we designed a custom coherence score for RevisionCoach to illustrate that sim-
ple scores are effective to produce localized feedback using RevisionCoach’s archite-
cuture. In this section, we explore related methods and additional background in-
formation to construct an effective coherence scoring model. Automatic assessment
of text coherence is an important task in NLP, for example in text generation, in
human-produced text evaluation, and in finding the best sentence ordering in sum-
marization (Elsner, Austerweil, and Charniak, 2007). Li et al., 2018 propose a solu-
tion using the relationships between words as coherence score, that achieves state-
of-the art results on the common ASAP automated essay scoring challenge14. How-
ever, the model requires coherence scores (or overall essay scores) for each essay
that requires additional manual annotation. Therefore, we select an older technique
that focuses on semantic similarity between subsequent sentences to approximate
coherence scores (Lapata and Barzilay, 2005) that requires no additional manual an-
notations. The intuition is that subsequent sentences are assumed to be similar in
meaning for coherent texts. One of the main drawbacks of this approach is that it
has trouble to detect sudden shifts in topics, for example between paragraphs (El-
sner, Austerweil, and Charniak, 2007). For the purpose of RevisionCoach, that specif-
ically targets small essays, we hypothesize that this approach can approximate text
coherence properly without adding additional manual annotation requirements.

A key component of all text similarity methods is to transform text into numer-
ical representations, which are typically called word or text embeddings. Without
numerical representations, models are unable to reason about text and find relations
between words. The methods to construct text embeddings shifted over the years,
and to provide an overview of the methods, we discuss LSA, Word2Vec, ELMo, and
language models.

LSA and Word2Vec

Latent semantic analysis (LSA, Landauer, Foltz, and Laham, 1998) is one of the ear-
lier methods to construct word embeddings. A complete explanation of LSA is be-
yond the scope of this thesis project and we refer to Landauer, Foltz, and Laham,
1998 for additional reading. To summarize, LSA starts with a matrix of occurrence
values for unique words (also called a bag of words), where the columns represent
documents or sentence contexts and the rows represent unique content words. Next,
LSA applies singular value decomposition to the matrix to construct three matrices.
The product of the three matrices equals the original matrix. By reducing the di-
mensions of the three matrices, usually starting with the least significant and lowest
values, a least-square fit can be constructed of the original matrix. Unique words
in the least-square fit that do not occur in one of the documents, but do frequently
occur alongside unique words of that document, receive a higher occurrence value
for the document it does not appear in. Therefore, given the assumption that the
unique content words in the rows properly represent the document’s (or sentence’s)
content, the columns are considered contextualized text embeddings. On the other
hand, the rows represent contextualized word embeddings. Besides constructing
contextualized text and word embeddings, LSA can be used to find discussed topics
in text, also called topic modeling.

14https://www.kaggle.com/c/asap-aes

https://www.kaggle.com/c/asap-aes

44 Chapter 5. Implementation

A similar approach is used in Word2Vec to capture semantic similarity (Mikolov
et al., 2013). Word2Vec calculates the word embeddings using a deep neural net-
work. On large datasets, LSA becomes computationally expensive while Word2Vec’s
neural network approach performs better (Mikolov et al., 2013). As a consequence,
neural nets are more capable of considering a large corpus of words. A wide range
of neural network architectures is proposed to solve the task of computing word
embeddings.

ELMo and BERT

ELMo is a more recent embedding technique that captures contextual relations using
a language model (Peters et al., 2018). A language model task is a probability distri-
bution over a sequence of words, an important task for NLP and text comprehension
(Jozefowicz et al., 2016). In other words, a language model tries to understand which
words are most probable based on the preceding word probabilities, usually by pre-
training on a large text dataset. ELMo is bidirectional language model (the probabil-
ity of each word depends on words before and after) using a bi-LTSM (bi-directional
long short-term memory) recurrent neural net architecture.

In addition to the ELMo architecture, transformer-based architectures show more
potential in predicting contextualized word embeddings (Ethayarajh, 2019). Etha-
yarajh, 2019 shows that BERT suggests a more nuanced contextualization than ELMo,
while both include context in the word embeddings. The nuance in contextual-
ization is based on that two words in the same sentence do not necessarily share
the same meaning when they share the same context (Ethayarajh, 2019), which is
more the case in the BERT architecture than in ELMo. Another interesting point is
that the self-similarity of BERT’s words embeddings is less than ELMo’s, where the
self-similarity is the average cosine similarity of embeddings in different contexts,
making BERT’s embeddings more context-specific than ELMo’s embeddings (Etha-
yarajh, 2019).

Based on the research, we conclude that transformer-based embeddings are most
capable of capturing the text’s semantics. To take advantage of the newer trans-
former models to capture semantic similarity, we calculate the semantic similarity
with the bidirectional transformer architecture T5, where the input is:

stsb sentence 1: [sentence 1] sentence 2: [sentence 2]

T5 is pre-trained on the semantic textual similarity benchmark (STS-B) where
’stsb’ is used as prefix for all training data. In the global SuperGLUE benchmark,
T5 is one of the highest-scoring models for the STS-B15. Larger T5 models have
better performance (Raffel et al., 2019), but unfortunately, it also requires a signif-
icant amount of RAM and it takes longer to generate results. Because RevisionCoach
needs to calculate hundreds of semantic similarities, and because less RAM require-
ments are more convenient, we select T5-base - the baseline model - as pre-trained
T5 model16. According to the evaluation of Raffel et al., 2019, the baseline T5 model
performs relatively well with a STS-B Pearson Spearman Correlation of 88.02 com-
pared to the largest T5 architecture in the SuperGLUE leaderboard with 93.1.

15SuperGLUE (visited on 31 August): https://gluebenchmark.com/leaderboard
16https://huggingface.co/t5-base

https://gluebenchmark.com/leaderboard
https://huggingface.co/t5-base

5.3. Feedback Controller 45

1
2

(|S|−1

∑
i=0

sim(S[i], S[i + 1])

|S| − 1
+

|S|−2

∑
i=0

sim(S[i : i + 1], S[i + 1 : i + 2])

|S| − 2

)
(5.2)

where:

|S| = Number of sentences in the essay
S[x], S[x1:x2] = Essay sentence at index x, and essay sentences at indices x1 to x2
sim(x, y) = Semantic similarity between texts x and y

The coherence model in RevisionCoach measures the similarity between pairs of
sentences and averages the similarities to construct a final coherence score. To al-
low for both local and (more) global coherence, we select pairs of one sentence and
pairs of two subsequent sentences. Equation 5.2 shows the essay’s coherence score
calculation using the sentence similarity pairs’ average coherence scores.

5.2.3 Cohesion

Third, the cohesion scoring module focuses on connective words and represents the
number of connective words divided by the number of unique words in an essay.
Similar to the other scores, the cohesion score is not necessarily better when it is
higher or lower because it depends on the essay’s task. To gather a corpus of con-
nective words we combine connective words from GrammarBank17 with connective
words from the University of Pennsylvania18. RevisionCoach uses the constructed
connective word corpus to count the occurrences of connective words after tokeniza-
tion.

5.2.4 Formality

Finally, the formality scoring method uses the F-Score formula from Heylighen and
Dewaele, 1999. To construct all necessary inputs for the F-Score, RevisionCoach first
tokenizes the sentences and gathers the POS tags with the NLTK POS Tagger. Finally,
the following formula calculates the F-Score (Heylighen and Dewaele, 1999):
F = (noun frequency + adjective freq. + preposition freq. + article freq. – pronoun
freq. – verb freq. – adverb freq. – interjection freq. + 100)/2

5.3 Feedback Controller

Type Name Core Technique(s) Data
Revision Paraphrase RTT and T5 Google PAWS
Revision Text generation T5 Essays
Revision Synonym WordNet synonyms, NLTK POS tagger NLTK’s brown corpus
Score Readability Flesch-Kincaid Reading Ease (SpaCy) -
Score Coherence T5 Semantic Textual Similarity -
Score Cohesion NLTK tokenization -
Score Formality F-Score -

TABLE 5.3: Summary of the scoring models and revision models.

17https://www.grammarbank.com/connectives-list.html
18https://www.cis.upenn.edu/~nlp/software/discourse.html

https://www.grammarbank.com/connectives-list.html
https://www.cis.upenn.edu/~nlp/software/discourse.html

46 Chapter 5. Implementation

The feedback controller uses the scoring models and revision models (Table 5.3)
to construct a feedback collection for an input essay. To summarize, the feedback
controller filters on significant score improvements (where an improvement of more
than 5% is significant) and removes duplicate feedback. In addition, the feedback
controller handles requests to calculate the impact of the student’s improvement
suggestions.

5.4 User Interface Design

RevisionCoach’s UI is implemented in the Google Colab Notebook using iPython
widgets19. Three low-level UI controllers control the header, the essay view, and
the improvement view, all of which use the feedback controller to retrieve and pro-
cess relevant data. On top of the three UI controllers, a general UI controller allows
for communication between the low-level UI controllers.

19https://ipywidgets.readthedocs.io/en/latest/

https://ipywidgets.readthedocs.io/en/latest/

47

Chapter 6

Evaluation

In this evaluation we investigate RevisionCoach’s feedback accuracy with an expert-
based experiment. Writing experts formulate feedback on sentence-level, which we
compare to RevisionCoach’s feedback. Since it is challenging to accurately compare
feedback and to translate feedback similarity into an evaluation number, we sim-
plify the evaluation by considering a pre-defined feedback structure consisting of
a sentence-level highlight, an assessment category, and a mistake importance. Re-
visionCoach can construct feedback in a similar structure, and we ask experts to do
the same. This way, we can compare expert feedback to RevisionCoach feedback by
comparing the sentence-level highlights, assessment categories, and mistake impor-
tances. And finally, the feedback is compared in terms of inter-rater agreement (IRR)
and mean square error (MSE) to evaluate the system’s accuracy.

6.1 Method

There are several options to evaluate essay feedback systems. Burstein, 2004 evalu-
ates e-rater 2.0’s performance by comparing the predicted scores to human judged
scores. Woods et al., 2017 approaches it differently and shows experts the results
of different feedback algorithms. For each comparison, the experts choose whether
they strongly prefer or moderately prefer one of the algorithms. Both evaluation
strategies evaluate the feedback system’s capability to propose accurate feedback.

Andersen et al., 2013 uses a different setup where students use the system and
answer a questionnaire afterward. The questionnaire focuses on system usability
and the student’s perception of the system’s usefulness, usability, clarity, and accu-
racy. Although a student’s perception is important, it does not accurately represent
the feedback’s accuracy because students are not experts. On the contrary, experts
have a better understanding of appropriate and accurate feedback - enabling them
to evaluate a feedback system more accurately.

In this evaluation, we focus on the feedback system’s accuracy. Feedback accu-
racy is measurable and relevant since an educational system that makes fewer mis-
takes is intuitively more educational. We recognize the underlying implicit assump-
tion: accurate feedback systems built on top of educational research translate into
positive long-term learning effects. Although this assumption is not validated, there
are arguments favoring an accuracy-centered evaluation for feedback systems. First,
accuracy centered validation is commonly used to evaluate textual feedback systems
(Woods et al., 2017; Zhang and Litman, 2020; Bernius, Krusche, and Bruegge, 2021),
and in numerical feedback systems that evaluate with the ASAP dataset1 (Burstein,
2004; Yang et al., 2020; Uto, Xie, and Ueno, 2020; Mayfield and Black, 2020; Ormerod,

1The ASAP dataset is part of a Kaggle competition sponsored by The Hewlett Foundation: https:
//www.kaggle.com/c/asap-aes

https://www.kaggle.com/c/asap-aes
https://www.kaggle.com/c/asap-aes

48 Chapter 6. Evaluation

Malhotra, and Jafari, 2021). Second, feedback accuracy relates directly to the feed-
back system and disregards course design, repetitive usage of the system, and other
external factors that all influence long-term learning effects. Combining all factors
in a single experiment complicates the experiment design and complicates the eval-
uation of individual factors, and therefore, we narrow it down to feedback accuracy.
Most of the work of this thesis is focused on a single factor; the functionality of feed-
back systems. The educational aspect is important for any functional feedback sys-
tem, but in this thesis, we use existing educational practices and research to define
strict requirements, assumptions, and design goals. Therefore, we argue that this
thesis’s main contribution concerns the feedback system itself. Consequently, taking
the evaluating system’s accuracy is reasonable because it concretely evaluates the
system’s capability to find mistakes in text and propose (pre-defined and change-
able) related tips and suggestions. In the next section, we discuss the experiment
procedure that evaluates RevisionCoach’s feedback accuracy.

6.2 Study

FIGURE 6.1: Experiment setup flow

Since we refrain from classroom experiments and focus on feedback accuracy
evaluation, the experiment setup is compact. In Figure 6.1 the experiment flow is
visualized. Starting with (1), we select four essays that contain writing mistakes.
Subsequently in (2), two writing experts and RevisionCoach compose feedback items
consisting a sentence-level highlight (to indicate the mistake’s location), a mistake
category (cohesion, coherence, formality, or readability), and a mistake importance
(1-3, where 3 indicates the most important mistake). In the following section we
discuss the study biases and the study setup.

6.2.1 Study Biases

For the evaluation it is important to consider biases, and therefore, we start with ex-
plaining the three considered experiment biases. Unfortunately, feedback is biased
because it depends on the expert’s personal opinions and experience.

The first bias concerns the expert’s importance scoring procedure because ex-
perts can have individual opinions about a mistake’s importance. RevisionCoach
supports feedback differentiation and assigns the mistake importances relative to
each other for a single essay, and as a result a major mistake in a bad essay is not

6.2. Study 49

the same as the same mistake in a relatively well-written essay. Although mistake
importances relative to the entire essay dataset is fairer in terms of official grading,
RevisionCoach’s goal is not to grade essays but to assist in the learning process, and
we expect experts to rate mistake importances relative to the mistakes in the same es-
say that we encourage by letting the experts evaluate one essay at a time. Although
other studies show experts several essay snippets or a more extensive collection of
essays, both options introduce scoring biases in this evaluation because it becomes
less clear how to score the essay’s mistake importances. In addition, the evaluation
participants cannot provide scores relative to a large number of essays, because iden-
tifying sentence-level mistakes and feedback is time-consuming (the current evalu-
ation took experts between 20 and 60 minutes). In the end, we expect to minimize
the mistake scoring bias - that occurs because the mistakes depend upon the mis-
take’s context - by embracing context-dependent scores and by showing evaluation
participants a single essay text at a time.

Secondly, by considering more experts, the individual opinions of experts are
less impactful for the final evaluation decreasing the individual scoring bias. Using
more experts or annotators to improve the experiment’s validity is commonly used
in practice, for instance in the well-known ASAP AES challenge2 to construct essay
scores.

Last, evaluation participants receive the exact same evaluation instructions and
general information of the assessment category. To not introduce a new scoring bias,
we do not include information about RevisionCoach’s scoring approach. In the fol-
lowing paragraphs, we provide an outline of the study setup.

6.2.2 Study Setup

The experiment uses Google Docs that contains the instructions, relevant informa-
tion (information about the considered writing assessment categories), allows for the
expert’s input, and conveniently stores the results in Google Drive. In the evaluation
document, the evaluation participant needs to copy-and-paste individual sentences,
assign an assessment category, and assign a mistake importance. Because providing
sentence-level feedback for student essays is time-consuming, we ask evaluation
participants to select at most the top 2 most important mistakes per assessment cate-
gory. This way, it is possible to include four essays in the evaluation session. For the
evaluation we use the publicly available ASAP essays with indices 2085 and 3096
(randomly selected from the essay data, available here3) and two essays from a TU
Delft experiment that resulted in a dataset of genetically modified organism (GMO)
essays. Obviously, we excluded the evaluation essays from the training dataset to
train the revision models. And finally, the last step is to process the evaluation data.
To this end, we use an automatic feedback parser that automatically loads the google
document evaluation results into Python, including the sentence selection, the re-
lated assessment categories, and the related severities.

The last challenging step in the evaluation is to compare RevisionCoach’s feed-
back accuracy to other systems. First, we construct a random baseline that iterates
through all essay sentences and annotates sentences as ’contains a mistake’ with a
50% chance and attaches a random mistake importance. To illustrate the result for
4 assessment categories and 10 essay sentences, the random baseline is expected to
select 5 mistakes per assessment category and 20 mistakes in total. Although eval-
uation participants are tasked to find two sentences for each assessment category,

2For more details: https://www.kaggle.com/c/asap-aes/data
3https://www.kaggle.com/c/asap-aes/data

https://www.kaggle.com/c/asap-aes/data
https://www.kaggle.com/c/asap-aes/data

50 Chapter 6. Evaluation

RevisionCoach can find more mistakes. Ideally, the baseline is not restricted in the
mistake selection because the top-2 most important feedback can still be identified
by consdering the assigned mistake importances.

Furthermore, we asked two students (MSc Computer Science) to do the expert’s
task to collect a second baseline to compare RevisionCoach against. Last, we consid-
ered various feedback systems, but unfortunately, it is challenging to find feedback
systems that output sentence-level feedback for coherence, cohesion, readability, or
formality. In the end, we use Grammarly Premium (30$ per month) and Microsoft
Editor (6,99$ per month) in the evaluation - both systems predict formality and read-
ability on sentence-level. Because Grammarly and Microsoft Editor do not supply
sentence-level mistake importances, we assign an average fixed importance of 2 to
the discovered mistakes. In addition, Microsoft Editor’s clarity and conciseness cat-
egories are compared to RevisionCoach’s readability category and Microsoft Editor’s
formality to RevisionCoach’s formality. For Grammarly, we compare the clarity, tone
adjustment, and fluency to readability, and the formality to formality.

6.3 Limitations

To close this chapter, we discuss the limitation of this evaluation. The ideal experi-
ment evaluates the student’s learning progress over a longer period to measure the
feedback system’s long-term impact on a student’s learning progress. For instance,
Burstein, 2004 evaluates the impact of Criterion on student writing performance once
a week during the fall 2002 term. A similar experiment setup can evaluate the sys-
tem’s effect on the student’s long-term learning effects.

One of the original goals of RevisionCoach is to encourage long-term learning ef-
fects, and although the ideal experiment evaluates long-term learning effects, it is
not an option for this thesis as a result of time and cost restrictions. Long-term ef-
fects take time to measure, and it is challenging to continuously measure the effects
of the system on a large group of students (Burstein, 2004 is an example of a long-
term learning effect evaluation). An obvious solution that addresses the time and
cost issue is to consider a single session that targets short-term learning effects of
the feedback system. Although a single evaluation session is an option, this setup
disregards the original goal to focus on long-term learning effects. On top of that,
systems that correct essays directly can have a positive short-term effect on essay
quality, but on the contrary, it does not stimulate the student to process mistakes,
and it does not encourage self-regulated learning. Therefore, the benefit of a single
evaluation session concerning long-term learning effects is minimal. Considering
the disadvantages of short-term learning effect evaluation, we focus on the feed-
back system’s accuracy instead. In the following chapter we present RevisionCoach’s
evaluation results.

51

Chapter 7

Results

To start, Table 7.1 shows the evaluation essays’ statistics of the GMO and ASAP es-
say datasets. The readability is a number from 0 (extremely difficult to read) to 100+
(very easy to read), and formality varies between 0 and 100% where a higher per-
centage indicates a more formal text. Furthermore, coherence is a number between
1 and 5 where 5 indicates the most coherent text, and cohesion is a percentage that
increases when the text is more cohesive.

Readability Coherence Cohesion Formality

Metric ASAP GMO ASAP GMO ASAP GMO ASAP GMO

Mean 24.74 50.44 1.24 1.29 0.18 0.20 56.89 66.28
Standard Deviation 10.27 20.90 0.40 0.38 0.03 0.04 6.24 6.60
Minimum 4.30 -19.63 0.34 0.57 0.06 0.03 42.86 50.99
Maximum 51.75 184.45 2.95 2.96 0.26 0.35 97.01 96.52

TABLE 7.1: RevisionCoach’s score statistics of all GMO and ASAP task 2 essays.
For an equal comparison, we compare 114 GMO essays (all) to 114 ASAP task

2 essays (randomly sampled from 1800 in total).

Apart from the dataset statistics, in this chapter we report the evaluation results
in terms of Inter-Rater Reliability (IRR) and mean square error (MSE). The follow-
ing formulas show the IRR calculation for essays and assessment categories, that
represents the agreement of two predictors about the sentence’s mistake categories.

IRRcategory(essay, category) =

|Sessay|

∑
i=0

{
1 if Xi,c = Yi,c

0 if Xi,c 6= Yi,c

|Sessay|
(7.1)

IRRessay(essay) =

C

∑
c

IRRcategory(essay, c)

|C| (7.2)

IRR =

E

∑
e

IRRessay(e)

|E| (7.3)

where:

52 Chapter 7. Results

|Sessay| = Number of sentences in the essay

X, Y = Importances for category c, where Xi,c =

{
1 if importance ∈ {1, 2, 3}
0 if importance = 0

C = List of categories: coherence, cohesion, readability and formality
E = List of essays: GMO and ASAP

In contrast to the IRR calculation, the MSE takes the mistake importance into
account, and therefore, the following formulas use a different definition for X’s and
Y’s importance predictions:

MSEcategory(essay, category) =

|Sessay|

∑
i=0

(Xi,c −Yi,c)
2

|Sessay|
(7.4)

MSEessay(essay) =

C

∑
c

MSEcategory(essay, c)

|C| (7.5)

MSE =

E

∑
e

MSEessay(e)

|E| (7.6)

where:

X, Y = Importances for the category, where Xi =importance

To aggregate the IRR and MSE metrics, we compute the IRR and MSE for each
assessment category (Equation 7.1 and Equation 7.4) and take the average for each
essay (Equation 7.2 and Equation 7.5). Finally, the average over all essays reflects the
aggregated IRR and MSE (Equation 7.3 and Equation 7.6). Although the aggregates
provide a summary of RevisionCoach’s evaluation results, a single essay’s evaluation
results clarify the meaning of the importance scores.

FIGURE 7.1: Overview of a single essay’s (GMO 1) evaluation results. E stands
for expert, GR for Grammarly, MS for Microsoft, and RC for RevisionCoach. The
numbers indicate no mistake (0), minor mistake (1), average mistake (2), and

major mistake (3). And finally, the color intensity reflects the number.

In Figure 7.1 we provide an overview of a single essay’s evaluation results. The
columns in Figure 7.1 represent importance predictions - (referred to by X and Y in

Chapter 7. Results 53

the MSE and IRR formulas) - for a certain assessment category (formality, readability,
coherence, and cohesion) and predictor (experts, Grammarly, Microsoft Editor, and
RevisionCoach). For the evaluation, we compare the automated feedback systems to
the random and student baseline using the expert evaluation data, where the student
baseline’s data is from the students’ evaluation results. Given mistake predictions
A and B, we compare the predictions using the IRR and MSE, where A and B can
be a baseline, a system, or an expert. In the comparison, a higher IRR indicates a
higher agreement about the writing mistakes, and therefore, a higher IRR is better.
On the other hand, a lower MSE indicates a lower difference between the expected
and predicted feedback importances, and therefore, a lower MSE is better.

The expert columns in Figure 7.1 contain less importance scores above 0 com-
pared to the system columns because we ask experts to find the top 2 most severe
mistakes while the systems select all possible mistakes. To allow for a fair com-
parison, we consider the top 2 most important mistakes of the systems to com-
pare against the expert importances. As a consequence, the mistake annotations
are sparse and the minimum IRR is high - which is illustrated by Equation 7.1 and
Figure 7.1 - because the expert and systems select at most 2 out of 11 sentences per
assessment category, and as a result, the minimum IRRcategory is (11− 4)/11 = 63%
(when different mistakes are selected Xi,c 6= Yi,c for 4 out of 11 sentences). A large
portion of the IRR reflects the agreement of sentences that contain no mistake (the
rows containing 0’s in Figure 7.1), although the evaluation task is to find mistakes
and not to find sentences without mistakes. Regardless of a high minimum IRR of
63%, the IRR is comparable between systems to gain insight in which predictions
result in the highest agreement about the selected mistakes.

On the other hand, the MSE reflects the error between the expected and predicted
mistake importances. For the IRR the difference between 0 (no mistake) and 1 to 3
(any mistake) is the most important, while for MSE the difference between 1 and 3
is relatively more important than between 0 and 1. As a result, MSE focuses on the
accuracy of feedback importance predictions.

Experts (Prof. or PhD) MSc CS Students

Essay Baseline RevisionCoach Students Baseline RevisionCoach

all sentences 70% 73% 74% 69% 71%
expert selection 53% 83% 46% 48% 81%

TABLE 7.2: IRR between the random baseline and evaluation participants and
between RevisionCoach and the evaluation participants. The IRR is calculated
for all sentences in the essay and for the evaluation participant’s selected high-

lights.

In addition to considering all sentences in the metric calculation, we calculate
MSE and IRR based on the expert sentence selection (Table 7.2). The expert sentence
selection includes all sentences that contain a mistake according to the expert. In
Figure 7.1 the zeros do not necessarily indicate that the sentence contains no mis-
take according to the evaluation participants because the participant selects at most
two sentences per assessment category. Therefore, we consider the expert sentence
selection that directly reflects the participant’s assessment of the writing mistakes
disregarding the unrated sentences. For the expert sentence selection, we evalu-
ate the system’s capability to predict the expert importances, and consequently, we

54 Chapter 7. Results

consider all system’s predicted importances and not only the top 2 most important
mistakes.

Experts (Prof. or PhD) MSc CS Students

Essay Category BL GR MS RC S BL GR MS RC

ASAP Coherence 3.59 - - 2.82 3.28 2.67 - - 2.62
Cohesion 2.99 - - 2.33 3.83 4.01 - - 0.50
Formality 1.69 1.75 1.75 0.92 2.17 4.60 6.38 6.38 3.00
Readability 3.20 3.33 3.00 1.58 2.75 4.75 4.00 5.00 2.38

GMO Coherence 2.81 - - 3.17 0.75 3.34 - - 1.88
Cohesion 2.57 - - 1.58 2.83 3.24 - - 1.50
Formality 3.08 3.33 1.67 1.50 2.50 3.21 4.75 4.25 2.00
Readability 1.71 1.67 1.67 1.25 1.92 2.27 2.62 2.62 1.38

Average 2.70 2.52 2.02 1.89 2.50 3.51 4.44 4.56 1.91

TABLE 7.3: Experiment results of the system’s ability to predict expert and stu-
dent mistake importance assessments. All values are the mean square error
(MSE) compared to the expert’s or student’s importance score for expert or stu-
dent selected sentences. The MSE is reported for the random baseline (BL),
Grammarly (GR), Microsoft Editor (MS), RevisionCoach (RC), and student base-

line (S).

To provide more insights in the final aggregations of the evaluation results, we
include Table 7.3 that contains the MSE scores per category for the expert selection
and the final average MSE scores. Grammarly’s (GR) and Microsoft Editor’s (MS)
final scores are listed for readability and formality aggregates because GR and MS
predict readability and formality only.

Expert 1 Expert 2 Expert 3 RevisionCoach

Expert 1 100.0% 74.1% 71.1% 80.0%
Expert 2 74.1% 100.0% 68.3% 66.9%
Expert 3 71.1% 68.3% 100.0% 71.8%
RevisionCoach 80.0% 66.9% 71.8% 100.0%

TABLE 7.4: Inter-Rater Reliability (IRR) between experts measured for all essay
sentences.

Furthermore, Table 7.4 shows the agreement between experts for all sentences
to illustrate the disagreement between experts. Although RevisionCoach does not
perfectly agree with experts, we do not expect a perfect agreement because experts
disagree about sentence-level mistakes.

And finally, we provide results in Table 7.5 related to the revision categories that
are used by RevisionCoach to construct feedback and to find potential improvements.
The rewrite, rephrase, remove, and reword models are the same for the GMO and
ASAP dataset, while the generation revision models are trained separately on the
GMO and ASAP dataset.

Chapter 7. Results 55

Rewrite Rephrase Remove Reword

Coherence 74% 19% 4% 4%
Cohesion 26% 18% 44% 12%
Readability 22% 24% 32% 22%
Formality 36% 18% 39% 7%

Average (GMO Essays) 30% 26% 26% 17%
Average (ASAP Essays) 42% 16% 34% 9%

Average 37% 20% 31% 12%

TABLE 7.5: RevisionCoach’s revision model usage to construct feedback for the
GMO and ASAP evaluation essays.

57

Chapter 8

Discussion

In this chapter, we provide an analysis of the evaluation results and answers to the
research questions. First, a reflection on the explored automated feedback systems.

During this thesis, we learned that direct feedback generation is promising but
complicates evaluation and requires a significant amount of data and manual anno-
tations. As a result, direct feedback generation systems are challenging to general-
ize and use because educational systems require proper evaluation. On the other
hand, innovative ways to explain the decision process behind feedback generation
increase the usability of feedback generation in an educational setting, because that
allows students to reason for themselves about the proposed feedback. Second, we
learned that feedback linking (for instance, using peer review data) is a promising
direction to take. Apart from the challenge to provide the model with information
about the feedback’s content, the more challenging issue is that this method heavily
relies on manually annotated feedback data. Considering the educational purpose
of automated feedback systems, the suggested feedback needs to be educational,
and student-level feedback – who are learning the material – is not comparable to
expert-level feedback. RevisionCoach addresses these issues by generating catego-
rized feedback and removing the need for manual data annotations. The following
sections discuss RevisionCoach’s evaluation results.

8.1 Interpretation of RevisionCoach’s Evaluation Results

In this section, we analyse the results that are presented in chapter 7 that relate to
the GMO and ASAP essay datasets. In Table 7.1, we observe that the GMO essays
have a better readability, coherence, cohesion, and formality compared to the ASAP
essays. Therefore, we expect that experts find it easier to indicate mistakes in the
ASAP essays because they contain more mistakes on average. Although the coher-
ence, cohesion, and formality statistics are relatively similar for ASAP and GMO,
the readability differs in terms of standard deviation (10.27 against 20.90 for ASAP
and GMO) and minimum and maximum values. For this reason, we expect that
RevisionCoach finds more potential improvements (and feedback) for the readability
assessment category. To start the discussion, we consider the evaluation overview
of a single essay (Figure 7.1).

Grammarly and Microsoft Editor find fewer formality and readability mistakes
than RevisionCoach (Figure 7.1), and at the same time, all mistakes that Grammarly
and Microsoft Editor find are identified by RevisionCoach. Moreover, the expert pre-
dictions are similar to the system predictions when we exclude unrated sentences
(the zeros in Figure 7.1), while the expert predictions are less similar when you con-
sider RevisionCoach’s top-2 most important mistakes and all essay sentences. Because
RevisionCoach’s top-2 mistakes are different from the expert’s annotations, a possible
conclusion is that RevisionCoach is unable to identify the most important mistakes -

58 Chapter 8. Discussion

but on the contrary, RevisionCoach importance predictions for the expert’s mistakes
are similar. In this section we investigate this contradiction further using the aggre-
gate evaluation results.

Furthermore, Figure 7.1 is merely an example of a single essay, but it provides
the opportunity to visualize the evaluation results and to extract sentences that Revi-
sionCoach rates as important mistake and the experts do not. In the following listing
we use formality as example (from Figure 7.1):

Sentence 7 : People do not know the e x t e n t of what they are
ea t ing and we may not know f o r many years to come . (E1−E3 :

f o r m a l i t y importance 0 , RevisionCoach : f o r m a l i t y
importance 3)

Objectively, sentence 7’s formality can be improved because it contains several
redundant words. Although experts 2 and 3 can consider the mistake less important
than other mistakes because they found the maximum of 2 mistakes, expert 1 anno-
tated only one mistake for the formality category, indicating that the expert did not
find a second mistake. A single example does not contribute to a final conclusion;
however, combined with the fact that all participants’ evaluations took between 20
and 60 minutes, the example illustrates the challenging task of providing sentence-
level feedback and importance scores for four assessment categories and four essays.

In contrast to the overview of a single essay, Table 7.2 shows aggregated results
to show the difference in agreement for all sentence selection and expert sentence
selection. As mentioned in chapter 7, the minimum IRR for all sentences is 63%, and
therefore, even the random baseline scores relatively well for all sentences (70%). Re-
visionCoach and the student baseline (73% and 74% respectively) have a higher IRR
than the random baseline by a small margin for all sentences, indicating that both
RevisionCoach (the top-2 most important feedback) and the student baseline have
learned to perform better than randomly guessing sentences that require feedback.
For all sentences the differences in IRR are small, while for the expert sentence se-
lection the differences are considerable (53%, 83%, and 46% for the random baseline,
RevisionCoach, and the student baseline), indicating that RevisionCoach has a high
agreement with the experts about sentences that contain certain mistakes. More-
over, RevisionCoach has a higher agreement with the experts than with the students
for both sentence selections. The expert selection and all sentence selection IRR re-
sults correlate with the previously mentioned contradiction that RevisionCoach accu-
rately identifies mistakes (83%) and accurately predicts mistake importances (1.89
MSE) but relatively inaccurately finds the top-2 most important mistakes (73%). To
address the contradiction we consider two possibilities: (1) RevisionCoach predicts
too many mistakes for high-quality sentences and (2) it is difficult for experts to
find the top-2 most important mistakes. Although we analyse the second possibil-
ity more by comparing the agreement between experts about writing mistakes, we
leave the contradiction for future work because possibility (1) requires a secondary
time-consuming evaluation session with experts and more data to address. In the
following paragraph we discuss Table 7.3 that includes the importance scores in the
evaluation results.

In Table 7.3 RevisionCoach outperforms the other systems and baselines in the
ability to predict a mistake’s importance. All systems have a lower MSE than the
random baseline indicating that all systems learned to provide more accurate than
random feedback. When we compare RevisionCoach to deployed writing feedback
systems, RevisionCoach’s formality and readability MSE is lower than Grammarly’s

8.1. Interpretation of RevisionCoach’s Evaluation Results 59

and Microsoft Editor’s for all categories and all essays, which indicating that Re-
visionCoach is better capable of predicting expert importance scores than popular
education systems for the evaluated essays. Moreover, RevisionCoach and Microsoft
Editor (1.89 and 2.02 MSE respectively) predict the expert’s mistake importances
more accurately than the master students’ baseline (2.50 MSE). In fact, RevisionCoach
has a lower MSE than the students’ baseline in all categories except for the GMO es-
says’ coherence assessment. The following essay snippet of GMO 2 illustrates why
RevisionCoach’s coherence predictions of GMO result in a high MSE:

5 When you i n s e r t a gene i n t o the plant ’ s DNA, new
p r o t e i n s w i l l be produced by t h a t plant and the e f f e c t s
are s t i l l unknown as there are a lack of long −term s t u d i e s

i n t o i t .
6 The r i s k s can be big .
7 People do not know the e x t e n t of what they are ea t ing

and we may not know f o r many years to come .
8 For economies i t may not be good news e i t h e r .
9 I f we can guarantee p e r f e c t crops every time , what i s

i t to say t h a t a few corpora t ions won’ t take c o n t r o l of
the a g r i c u l t u r e market − f o r c i n g a l l other farmers out of
business ?

10 Whether of not we should continue to progress GMO
research and i t s commercial use i s a p o i n t l e s s quest ion −
i t ’ s already happening whether we want i t to or not .

11 The quest ion is , are we ready to deal with the
consequences ?

From the above sentences, RevisionCoach indicates that sentences 7 to 9 contain
major coherence mistakes. Although experts 1 and 2 agree that sentences 8 and 9
contain a (minor) coherence mistake, there is a large error in terms of importance
prediction, and as a result, RevisionCoach’s coherence MSE for the GMO essays is
high. To elaborate upon this difference, we hypothesize that humans intuitively
include time in their decision-making process such that when three subsequent sen-
tences are wrong, fixing the sentence in the middle solves the problem automatically.
On the other hand, RevisionCoach does not consider the impact of potential sentence
improvements, and therefore, fixing one of the three sentences is independent of the
other sentences’ mistakes. In a way, this illustrates the iterative learning process that
RevisionCoach aims to achieve by allowing students to make gradual improvements
to individual sentences, and after the improvement, RevisionCoach will consider the
improvement in the feedback prediction process. Unfortunately, RevisionCoach’s iter-
ative feedback is not included in this evaluation session because it considers a single
time step. To solve RevisionCoach’s time limitation, the feedback model needs to con-
sider potential improvements of the most significant writing mistakes and to include
that information in the mistake importance scores. Predicting potential improve-
ments of sentences can be approximated by RevisionCoach’s revision models, but the
actual student’s writing improvements can be entirely different. At the same time,
experts face a similar challenge because experts implicitly assume that improving a
single sentence addresses the sentence’s context simultaneously, while that depends
upon the student’s sentence correction. After the correction, the expert’s writing as-
sessment (similar to RevisionCoach) can change as a result of the student’s writing
improvements of the previous timestep. Again, this illustrates the time-consuming
feedback process to support learning by deliberate practice.

60 Chapter 8. Discussion

Other than the comparisons of the baselines and systems, we look into the agree-
ment between experts in Table 7.4. Hypothetically, the sentence-level feedback an-
notation task is based on personal opinions and experience, and therefore, we ex-
pect the agreement to be low. However, the experts’ agreement is lower than ex-
pected (between 68.3% and 74.1%) and RevisionCoach has the highest agreement
with expert 1 and expert 3 (80.0% and 71.8% respectively) compared to the other
experts. Surprisingly, the average agreement between pairs of experts ((0.742 +
0.711 + 0.683)/3 = 71.2%) is lower than the average agreement of RevisionCoach
with each expert ((0.800 + 0.669 + 0.718)/3 = 72.9%), that supports the argument
that RevisionCoach’s feedback predictions approximate expert-level feedback predic-
tions. Furthermore, the low IRR between experts indicates that the time-consuming
sentence-level annotation task is difficult and inconsistent for experts.

Finally, we look into RevisionCoach’s suggested revisions to compare against the
related work of Woods et al., 2017 that transforms essay-level scores into sentence-
level scores using the remove revision strategy. In contrast to Woods et al., 2017 that
only uses remove revisions, RevisionCoach uses the rewrite (text generation) revision
the most, followed by remove, rephrase, and reword revisions (Table 7.5). Interest-
ingly, coherence mostly uses the rewrite revision (74%), while the other assessment
categories rely more on the remove revision (32% to 44%). Moreover, Table 7.5 shows
a difference in revision model usage for the GMO and ASAP essays, that shows that
the essay dataset’s quality influences the revision model usage.

Moreover, we notice that localized (sentence-level) feedback for readability, co-
herence, formality, and cohesion is a challenging and time-consuming task for ex-
perts, while at the same time, it is easier to assign the mistake’s severity. In fact, we
believe that this analysis benefits RevisionCoach and other automated feedback sys-
tems, since it illustrates the feedback consistency (RevisionCoach is deterministic and
the assessment categories follow pre-defined scoring algorithms) and accuracy (low
MSE) of automated feedback. Automated feedback systems can assist teachers to
localize feedback - apart from an essay-level rubric grade - to individual sentences
and to provide more structured feedback for students. In addition, automated feed-
back systems can point experts to potential writing mistakes that are otherwise un-
detected to increase the feedback’s effectiveness to assist in the student’s learning
process.

8.2 Answers to the Research Questions

To conclude the evaluation discussion, we refer back to the original research ques-
tions:

1. How to support learners with feedback on essays?

2. How can feedback be presented to improve the student’s learning process?

For the first question, we assist students to learn by deliberate practice and to en-
courage self-regulation. Although the evaluation does not address long-term learn-
ing effects, RevisionCoach considers these educational practices. To start, deliberate
practice requires clear learning tasks and goals, to motivate improvement, to provide
feedback, and to provide iterative and repeated opportunities for gradual refinement
and improvement. Because RevisionCoach targets writing skills, the tasks and goals
refer to the writing assessment categories: cohesion, coherence, readability and for-
mality. Students can pick any category to focus on, and additionally, RevisionCoach

8.2. Answers to the Research Questions 61

motivates students to directly improve individual sentences because it immediately
shows the score improvement for an assessment category (in RevisionCoach’s pro-
totype UI). Apart from the score improvement, RevisionCoach shows feedback in
the form of a mistake highlight, an assessment category, a correction category (re-
word, rephrase or rewrite), and a correction suggestion. In addition, RevisionCoach
can show pre-defined formative feedback that is linked to the assessment and cor-
rection category. And finally, RevisionCoach allows students to improve the essay
iteratively and to incorporate gradual refinements and improvements on sentence-
level. Second, self-regulated learning is encouraged because students set their own
learning goals that relate to the acceptable writing assessment category scores. Re-
visionCoach’s feedback assists students to learn and to motivate themselves to write
high-quality text.

Furthermore, the second research question relates to differentiated learning, to
support novice to advanced learners with appropriate feedback. RevisionCoach can
present four layers of feedback and can provide additional pre-defined tips and hints
that relate to the feedback. In addition, RevisionCoach has a notion of mistake impor-
tance, and therefore, RevisionCoach can direct students to the essay’s most concerning
writing mistakes. Although RevisionCoach’s prototype UI illustrates how Revision-
Coach’s feedback can be presented, the user study is left for future work.

63

Chapter 9

Conclusion

In this thesis, we propose the automated writing feedback system RevisionCoach that
follows the writing process intuition to iteratively assist students to improve the
essay’s readability, coherence, cohesion, and formality. RevisionCoach follows educa-
tional theory by assisting students with self-regulated learning by deliberate practice
(iterative learning, repeated opportunities for gradual improvement, clear tasks, and
localized feedback) and to provide differentiated learning (different levels of feed-
back to support novice to advanced learners). At the same time, RevisionCoach is
designed to follow the strict requirement to reduce the reliability of manual data
annotation, and as a result, RevisionCoach requires only relevant essays (or texts) as
a dataset. Furthermore, we present a RevisionCoach user interface prototype that
encourages students to think about writing mistakes. And finally, RevisionCoach is
designed to not construct open-ended feedback in order to prevent common nat-
ural text generation evaluation difficulties and to facilitate effective feedback eval-
uation. In the evaluation, experts and students are tasked to construct feedback
similar to RevisionCoach’s feedback by indicating a highlight, a writing assessment
category, and a mistake importance. In the end, the experts’ and students’ feedback
is compared to RevisionCoach’s predicted feedback to evaluate RevisionCoach’s ability
to construct accurate feedback.

To summarize RevisionCoach’s evaluation results, we observe that RevisionCoach’s
overall ability to identify writing mistake importances is more accurate (1.89 MSE)
than the random baseline (2.70 MSE), student baseline (2.50 MSE), Grammarly (2.52
MSE), and Microsoft Editor (2.02 MSE). Although the results are promising, the stu-
dent baseline has a lower MSE for the coherence assessment category for the GMO
essays and Grammarly and Microsoft Editor do not supply importance scores – a
fixed importance of 2 is used for all identified mistakes – and Grammarly and Mi-
crosoft Editor do not support coherence and cohesion feedback. Furthermore, we
discovered the contradicting result that RevisionCoach accurately identifies mistakes
(83% IRR) and accurately predicts mistake importances (1.89 MSE) but relatively in-
accurately finds the top-2 most serious mistakes (73% IRR against the random base-
line’s 63% IRR). The first explanation is that RevisionCoach mistakenly identifies mis-
takes in high-quality sentences, but unfortunately, this requires a secondary time-
consuming evaluation session with experts and more data to address, and there-
fore, we leave it for future work. An alternative explanation addresses the difficult
challenge for experts to identify the top-2 most important mistakes for four assess-
ment categories and four essays, that is supported by the relatively low agreement
between experts (71.2% IRR on average) compared to the agreement of Revision-
Coach and the experts (72.9% on average). To conclude, RevisionCoach’s feedback
importance predictions are more accurate than the random baseline, student base-
line, Grammarly, and Microsoft Editor, and RevisionCoach’s agreement with experts
about writing mistakes is higher than the agreement between the experts, indicating

64 Chapter 9. Conclusion

that RevisionCoach is capable of accurate feedback importance predictions and that
RevisionCoach approximates expert-level mistake identification.

To address the research questions (how to support learners with feedback on es-
says and how can feedback be presented to improve the student’s learning process?),
we use learning by deliberate practice, self-regulated learning, and differentiated
learning to encourage effective learning, to prepare students for learning outside the
university, and to assist novice to advanced learners to learn how to write. Revi-
sionCoach follows the differentiated learning by offering several layers of feedback
(a mistake highlight, an assessment category, a correction category, and a correc-
tion suggestion). Furthermore, RevisionCoach follows learning by deliberate practice
and self-regulated learning because RevisionCoach provides feedback for pre-defined
writing assessment categories – coherence, cohesion, readability, and formality – to
allow students to determine clear learning tasks and goals, to motivate improve-
ment, and to allow students to incorporate iterative and gradual improvements.

Throughout this thesis project, we learned that open-ended feedback evaluation
is challenging to evaluate and that feedback assessment categories are important.
Although open-ended feedback is promising in terms of content-related feedback, it
lacks feedback structure, and therefore, it is challenging to evaluate. Furthermore,
we learned that formative and localized feedback is difficult to construct for experts
and that automated systems show promising results to support the expert by provid-
ing consistent and high-quality feedback. Although educational systems’ feedback
accuracy is relatively achievable to evaluate, educational systems’ long-term learn-
ing effects are challenging to evaluate. Moreover, manually annotated educational
datasets are challenging to find or to construct, which drives the need for innovative
methods and models to construct localized feedback with as little as possible manual
data annotation. Throughout the thesis project, it was challenging to combine edu-
cational theory with computer science in order to construct an effective educational
system. Apart from AES and AWE models, we recognize that any automated edu-
cational system needs to adhere to at least one educational principle to encourage
long-term learning effects combined with a focus on high feedback accuracy. Ide-
ally, any deployed automated feedback system needs a study about the long-term
learning effects to ensure the system’s effectiveness to stimulate positive learning
effects.

65

Chapter 10

Future Work

RevisionCoach is based upon the requirement that strictly limits the usage of manual
annotations, which provides opportunities for data augmentation of large datasets.
In principle, we suggest a hybrid approach of RevisionCoach and direct feedback
generation, where RevisionCoach is used to augment the dataset and to structure
the feedback. Given a large feedback dataset with sentence-level highlights and at-
tached feedback (peer reviews, expert feedback, or both), RevisionCoach can catego-
rize all sentence-level highlights. As a result, RevisionCoach categorizes the feedback
in readability, formality, coherence, cohesion, and no category. A potential next step
is to train a transformer model with the following input sequence for training:

fb before : [sentences before] h i g h l i g h t : [mistake h i g h l i g h t
] a f t e r : [sentences a f t e r] category : [category]
feedback : <extra_id_0 >

After fine-tuning the model, the following input sequence to generate feedback
and a category:

fb before : [sentences before] h i g h l i g h t : [h i g h l i g h t]
a f t e r : [sentences a f t e r] feedback :

As a result, the model generates a feedback text and a corresponding category
and has access to more information about the highlight’s mistake. RevisionCoach
can be used to double-check the assessment category for additional verification. Of
course, other model structures are possible, where separate models are used to pre-
dict feedback text and mistake categories. Furthermore, more scoring models can be
included to have more assessment categories.

In contrast to generating open-ended feedback that is challenging to evaluate,
categorized feedback can be evaluated against RevisionCoach, and expert evaluation
becomes easier because experts know what assessment category the feedback ad-
dresses. Second, for students it is easier to determine the feedback usefulness be-
cause the feedback text should relate to the assessment category.

Moreover, RevisionCoach’s scoring and revision models are extensible and left for
future work. More advanced scoring models require additional data annotation but
potentially increase RevisionCoach’s ability to assess the essay’s quality in certain as-
sessment categories. On the other hand, the text generation revision model can be
improved in terms of training data and preprocessing to generate better texts. In
the current essay sentence generation setup, the transformer is not informed about
the essay’s quality and related information directly, and it is interesting to evaluate
the potential revision texts with different preprocessing methods. In addition, an
intermediate training step to teach the transformer about high-quality texts - for ex-
ample, scientific papers and other articles - can help the generated revision’s quality.
The ideal revision model works for all essay types and topics, and transformers are
capable to train and learn from a large variety of texts.

66 Chapter 10. Future Work

Last, RevisionCoach needs additional expert evaluation sessions to evaluate the
feedback accuracy with a higher certainty because more expert evaluations decrease
the impact of the expert’s individual opinions. As a result, the comparison between
the average agreement between experts and the average agreement between experts
and RevisionCoach is more reliable. In addition, evaluating more essays and more
sentences provides better insights in the feedback importance prediction’s recall and
precision. Furthermore, RevisionCoach has an educational focus and requires multi-
ple evaluation sessions with students to evaluate the long-term learning effects on
the students’ writing skills.

67

Appendix A

Data Exploration

FIGURE A.1: Highlight and feedback definitions

During the data exploration, we focus on a single appropriate large peer review
dataset to narrow down the data exploration. Most of FeedbackFruit’s assignments
are similarly structured but vary in size, where each peer review item contains a
highlight, a linked feedback, and an entire essay (as visualized in Figure A.1).

To narrow down the data exploration further, we select a single assignment from
the peer review dataset. As a result, it becomes intuitively easier to find useful rela-
tionships and common writing mistakes when the essays are similar in content. In
order to find the dataset’s assignment, we follow the following steps:

1. Filter on assignments outside of Europe to avoid GDPR restrictions.

2. Filter on the number of submissions and on the number of feedback annota-
tions. Each submission is a single essay submitted by a student.

3. Filter on essay assignment descriptions. Some assignments result in widely
varying essays that make it difficult to find meaningful relationships and com-
mon mistakes. We assume that the essays cover the same main topic.

Based on the above steps, we selected an assignment that tasks students to write
an opinion piece about a news article. We refer to this assignment as ASSIGNMENTCOVID
since the news article is about COVID cases in the UK. An overview of the data is
in Table A.1.

The next step is to preprocess the data to clean, filter and remove noise. After-
ward, we explore the processed data. Preprocessing is discussed in detail in the
following section.

68 Appendix A. Data Exploration

Submitted essays 419
Number of students 419
Feedback items 2366
Feedback criterion Writing, General Comments, Engaging,

Overall Assessment, Persuasive
Annotation types Critique: 1030, compliment: 845, not specified: 491

TABLE A.1: Data statistics of ASSIGNMENTCOVID.

FIGURE A.2: Preprocessing steps for feedback data. Context consists of a high-
light, before context, and after context. The bounding boxes in the dataset are

the coordinates of the highlight in the essay PDF.

A.1 Dataset Preprocessing

The goal of data preprocessing is to improve the quality of the dataset and to remove
noise. The noise is caused primarily by students that select incomplete highlights or
that write nonsense as feedback. To address the quality and noise, the data pre-
processing stage entails three steps (as visualized in Figure A.2): (1) extract missing
highlights, (2) remove non-informative feedback, and (3), clean feedback items. We
discuss each step individually.

Figure A.2 step (1) addresses the highlight text extraction from the ASSIGNMENTCOVID
dataset. Since highlights are frequently incomplete and depend on the sentences
before and after, we include the highlight’s context up to a fixed number of words.
ASSIGNMENTCOVID uses the FeedbackFruit’s feedback structure, where highlights
are represented by coordinate bounding boxes that indicate the highlight’s position
in the essay PDF. We use an iterative algorithm to extract the context - a highlight,

A.2. Exploration 69

words before, and words after - as described in algorithm 1.

Algorithm 1: Context extraction based on a coordinates bounding box

Input: bounding_box, essay;
Output: context or None;
while bounding_box.width < essay.width do

text← extract_pdf_text(bounding_box);
matches← search_matches(essay, text);
if matches = 1 then

return extract_context(match, constants.MAX_CONTEXT_WORDS);
else

bounding_box.width ∗ 5%;
end

end

The second step (2 in Figure A.2) removes uninformative feedback which re-
quires some rules to separate ’useful’ from ’not useful’ feedback. The following
feedback is considered to be not useful and is removed using a rule-based filtering
module:

1. Grammatical or spelling related feedback

2. Feedback containing quotes because quotes contain original essay text which
is not real ‘feedback’ text

3. Feedback targeting specific parts of the text, for instance "the introduction
needs some work". This would require advanced document parsing to pre-
dict the function of pieces of text.

4. Feedback containing less than 3 words

The last preprocessing step (3 in Figure A.2) cleans text to reduce the vocabulary
size in the essays and feedback. This process reduces the search space for any model.
We use a limited number of simple cleaning rules to avoid unnecessary cleaning
that results in information loss. The rules remove symbol repetitions (for instance
‘!!!!!!’ becomes ‘!’), remove redundant whitespaces, remove unicode characters, map
percentage styles (‘23 %’ and variations to ‘23%’), map prices (‘$ 100‘ and variations
to ‘100$’), map numbers (‘1000.0’ and variations ‘1,000.0’), and map similar symbols
(all quote variations to ‘"’).

A.2 Exploration

After the assignment selection and preprocessing, we explore the data with text sim-
ilarity methods. Figure A.3 shows a 2D visualization of the semantic similarity (a
high semantic similarity means that the texts’ meaning is similar) between feedback
texts, using the text embedding model “RoBERTa". A text embedding is a numerical
representation of text. We cluster the embeddings in two steps: (1) cluster the em-
bedding vectors and (2) reduce the dimensions to visualize the embeddings in 2D.
Embeddings that are close have a higher semantic similarity.

For the first step, the challenge is to find a metric that evaluates the clusters be-
cause the cluster label for each item is unknown (this is called unsupervised clus-
tering). When the cluster labels are known, it is possible to calculate accuracy, pre-
cision, and related metrics for each clustering method. On the other hand, we need

70 Appendix A. Data Exploration

FIGURE A.3: Peer feedback text clustered on semantic similarity and the num-
ber of items per cluster. The colors in the left graph represent 427 clusters.

other ways to measure the clustering methods’ performances for unsupervised clus-
tering. Liu et al., 2010 indicates various metrics to measure the clusters’ quality, for
example, by measuring the compactness of clusters and separation between clus-
ters. Liu et al., 2010 finds that the S_Dbw index performs best when considering the
impact of well-separated clusters, the impact of noise, the impact of various clus-
ter densities, the impact of nearby clusters, and the impact of unequal cluster sizes.
On the other hand, Yanchi Liu et al., 2013 finds that S_Dbw (and all other metrics
evaluated by Liu et al., 2010) has difficulty addressing the impact of various clus-
ter shapes, while CVNN does not in certain circumstances (Yanchi Liu et al., 2013).
Although CVNN is promising, it is based on nearest neighbours and it is required
to specify k (the number of nearest neighbours to consider), which is challenging to
determine. On the other hand, S_Dbw is promising, but it is computationally ex-
pensive to compute. Therefore, we choose the Silhouette (similar in performance
compared to S_Dbw excluding the impact of nearby clusters (Liu et al., 2010)) and
Calinski-Harabasz indices (similar in performance compared to S_Dbw including
nearby clusters), to evaluate cluster quality. We assume that the number of clusters
is between 256 and 1024 for 1229 items, to force the grid search to find more variation
in text similarity but not assign each item to an individual cluster. Table A.2 shows
the top 5 results of the result of the grid search, that tries to maximize the Silhouette
and the Calinski-Harabasz indices. The first row performs best overall.

The challenge of the second step is to represent the computed embeddings and
clusters in a single 2D graph. Since the resulting embeddings have 512 dimensions
it is hard to visualize. To solve that we use PCA to reduce the dimensions to 30
and t-SNE to reduce the dimensions to two, in order to visualize the clusters in 2D
(visualization in Figure A.3). This approach is proposed by Maaten and Hinton, 2008
to visualize high-dimensional data effectively.

Figure A.3 clearly shows that clusters are recognized and illustrates that the feed-
back texts share similar content. Manual experimentation shows that the feedback
texts in clusters share similarities, for example, the feedback texts target persuasive-
ness, use of evidence, or engagement. It requires significant manual effort to inves-
tigate the clusters in detail, which we leave for future work.

A.2. Exploration 71

Clusters S_cos S_eucl C Parameters Model

427 0.0880 0.0396 3.0709 {’affinity’: ’cosine’, ’linkage’: ’com-
plete’, ’distance_threshold’: 0.6}

agg

287 0.0529 0.0171 3.0382 {’affinity’: ’cosine’, ’linkage’: ’av-
erage’, ’n_clusters’: None, ’dis-
tance_threshold’: 0.6}

agg

938 0.0721 0.0385 2.8769 {’affinity’: ’cosine’, ’linkage’: ’com-
plete’, ’n_clusters’: None, ’dis-
tance_threshold’: 0.4}

agg

676 0.0950 0.0464 2.8149 {’affinity’: ’cosine’, ’linkage’: ’com-
plete’, ’n_clusters’: None, ’dis-
tance_threshold’: 0.5}

agg

912 0.0686 0.0358 2.7941 {’affinity’: ’cosine’, ’linkage’: ’av-
erage’, ’n_clusters’: None, ’dis-
tance_threshold’: 0.4}

agg

TABLE A.2: Top 5 gridsearch results of clustering algorithms Agglomera-
tiveClustering, DBSCAN, MeanShift, KMeans for text embeddings clustering.
Agg is AgglomerativeClustering, S_cos is the Silhouette Cosine index, S_eucl
is the Silhouette Euclidean index, and C is the Calinski-Harabasz index. Values

in bold show the most promising results per column.

73

Appendix B

T5 Text Generation Fine-Tuning
Predictions

This appendix contains T5’s sentence predictions for the text generation revision
model. The inputs are the sentences from the ASAP essay that is used in the evalua-
tion and the fine-tuning essay dataset does not contain this essay.

Input :
> Today I am going to t a l k about <extra_id_0 > Should they be

removed from the s h e l f i f they are found o f f e n s i v e ?
Expected :

> c e r t a i n m a t e r i a l s , such as books , music , movies , and
magazines .

T5 Base P r e d i c t i o n
> o f f e n s i v e books . o f f e n s i v e books . o f f e n s i v e books .

o f f e n s i v e books . o f f e n s i v e books ? o f f e n s i v e books . Should
they be removed from the s h e l f i f they are found

o f f e n s i v e ?
T5 Fine −Tuned Half Masked P r e d i c t i o n

> the books t h a t should be removed from the s h e l f i f they
are found o f f e n s i v e .

T5 Fine −Tuned Ful ly Masked P r e d i c t i o n
> I b e l i e v e t h a t c e r t a i n m a t e r i a l s should not be removed

from the she lves i f they are found o f f e n s i v e .
__
Input :

> Today I am going to t a l k about c e r t a i n mater ia l s , such as
books , music , movies , and magazines . Should they be
removed <extra_id_0 > In todays world i t i s hard to please

every l i v i n g soul .
Expected :

> from the s h e l f i f they are found o f f e n s i v e ?
T5 Base P r e d i c t i o n

> ??? Should they be removed ??? Should they be removed ? ? .
T5 Fine −Tuned Half Masked P r e d i c t i o n

> or should they be removed from shelves ?
T5 Fine −Tuned Ful ly Masked P r e d i c t i o n

> I am going to t a l k about how people in t h i s world would
f e e l i f they were able to take these m a t e r i a l s o f f the
s h e l f .

__

74 Appendix B. T5 Text Generation Fine-Tuning Predictions

Input :
> Should they be removed from the s h e l f i f they are found

o f f e n s i v e ? In todays world i t <extra_ id_0 > Every one i s
going to disagree about something in there l i f e time .

Expected :
> i s hard to please every l i v i n g soul .

T5 Base P r e d i c t i o n
> i s a constant debate . i s i n e v i t a b l e . i s i n e v i t a b l e . i s

i n e v i t a b l e . i s i n e v i t a b l e . i s i n e v i t a b l e . I t i s
i n e v i t a b l e .

T5 Fine −Tuned Half Masked P r e d i c t i o n
> isn ’ t j u s t any one thing t h a t doesn ’ t agree with .

T5 Fine −Tuned Ful ly Masked P r e d i c t i o n
> Yes i think they should be removed from the s h e l f i f they

are found o f f e n s i v e .
__
Input :

> In todays world i t i s hard to please every l i v i n g soul .
Every one i s going <extra_ id_0 > L i f e as we know i t ,
everybody l i v e s i t a d i f f e r e n t way , and in a d i f f e r e n t
place , but everybody has read a book , l i s t e n e d to music ,
and even read a magazine a time or to .

Expected :
> to disagree about something in there l i f e time .

T5 Base P r e d i c t i o n
> through through through through through through a

d i f f e r e n t way . Everyone has read a book , l i s t e n e d to
music , and even l i s t e n e d to a magazine . Everybody i s
going through L i f e . Everybody i s going through L i f e .
Everybody i s going through L i f e . Everybody i s going
through L i f e . Everybody i s going through L i f e . Everybody
i s going through

T5 Fine −Tuned Half Masked P r e d i c t i o n
> to f e e l the same way we do .

T5 Fine −Tuned Ful ly Masked P r e d i c t i o n
> I cannot f u l l y grasp the concept in my head of hiding

m a t e r i a l s from the publ ic .

75

Bibliography

Anaby-Tavor, Ateret et al. (Nov. 2019). “Not Enough Data? Deep Learning to the
Rescue!” In: arXiv:1911.03118 [cs]. arXiv: 1911.03118. URL: http://arxiv.org/
abs/1911.03118 (visited on 02/02/2021).

Anders Ericsson, K. (Nov. 2008). “Deliberate Practice and Acquisition of Expert Per-
formance: A General Overview”. In: Academic Emergency Medicine 15.11, pp. 988–
994. ISSN: 10696563, 15532712. DOI: 10.1111/j.1553-2712.2008.00227.x. URL:
https://onlinelibrary.wiley.com/doi/10.1111/j.1553-2712.2008.00227.x
(visited on 08/09/2021).

Andersen, Øistein E et al. (2013). “Developing and testing a self-assessment and
tutoring system”. In: Proceedings of the eighth workshop on innovative use of NLP for
building educational applications, pp. 32–41.

Aroyehun, Segun Taofeek and Alexander Gelbukh (2018). “Aggression Detection in
Social Media: Using Deep Neural Networks, Data Augmentation, and Pseudo
Labeling”. In: Proceedings of the First Workshop on Trolling, Aggression and Cyber-
bullying (TRAC-2018), pp. 90–97.

Bernius, Jan Philip and Bernd Bruegge (2019). “Toward the Automatic Assessment
of Text Exercises”. In: Software Engineering (Workshops). Software Engineering
(Workshops), pp. 19–22.

Bernius, Jan Philip, Stephan Krusche, and Bernd Bruegge (June 2021). “A Machine
Learning Approach for Suggesting Feedback in Textual Exercises in Large Courses”.
In: Proceedings of the Eighth ACM Conference on Learning @ Scale. Virtual Event
Germany: ACM, pp. 173–182. ISBN: 978-1-4503-8215-1. DOI: 10.1145/3430895.
3460135. URL: https://dl.acm.org/doi/10.1145/3430895.3460135 (visited on
06/24/2021).

Boud, David and Nancy Falchikov (2007). Rethinking assessment in higher education:
learning for the longer term. OCLC: 252861992. London: Routledge. ISBN: 9780203964309
9786610738823 9781134152100 9781134152148 9781134152155 9781280738821. URL:
http://www.dawsonera.com/depp/reader/protected/external/AbstractView/
S9780203964309 (visited on 03/09/2021).

Burstein, Jill (2004). “Automated Essay Evaluation: The Criterion Online Writing Ser-
vice”. In: Ai magazine 25.3, pp. 27–27.

Campos, Ricardo et al. (Jan. 2020). “YAKE! Keyword extraction from single docu-
ments using multiple local features”. In: Information Sciences 509, pp. 257–289.
ISSN: 00200255. DOI: 10.1016/j.ins.2019.09.013. URL: https://linkinghub.
elsevier.com/retrieve/pii/S0020025519308588 (visited on 03/16/2021).

Celikyilmaz, Asli, Elizabeth Clark, and Jianfeng Gao (June 2020). “Evaluation of Text
Generation: A Survey”. In: arXiv:2006.14799 [cs]. arXiv: 2006.14799. URL: http:
//arxiv.org/abs/2006.14799 (visited on 01/26/2021).

Chen, Hongbo and Ben He (2013). “Automated Essay Scoring by Maximizing Human-
Machine Agreement”. In: Proceedings of the 2013 Conference on Empirical Methods
in Natural Language Processing, pp. 1741–1752.

Chen, Yen-Yu et al. (2010). “An Unsupervised Automated Essay- Scoring System”.
In: Natural Language Processing, p. 7.

http://arxiv.org/abs/1911.03118
http://arxiv.org/abs/1911.03118
https://doi.org/10.1111/j.1553-2712.2008.00227.x
https://onlinelibrary.wiley.com/doi/10.1111/j.1553-2712.2008.00227.x
https://doi.org/10.1145/3430895.3460135
https://doi.org/10.1145/3430895.3460135
https://dl.acm.org/doi/10.1145/3430895.3460135
http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S9780203964309
http://www.dawsonera.com/depp/reader/protected/external/AbstractView/S9780203964309
https://doi.org/10.1016/j.ins.2019.09.013
https://linkinghub.elsevier.com/retrieve/pii/S0020025519308588
https://linkinghub.elsevier.com/retrieve/pii/S0020025519308588
http://arxiv.org/abs/2006.14799
http://arxiv.org/abs/2006.14799

76 Bibliography

Cummins, Ronan, Meng Zhang, and Ted Briscoe (2016). “Constrained Multi-Task
Learning for Automated Essay Scoring”. In: Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Berlin, Ger-
many: Association for Computational Linguistics, pp. 789–799. DOI: 10.18653/
v1 / P16 - 1075. URL: http : / / aclweb . org / anthology / P16 - 1075 (visited on
12/16/2020).

Devlin, Jacob et al. (May 2019). “BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding”. In: arXiv:1810.04805 [cs]. arXiv: 1810.04805.
URL: http://arxiv.org/abs/1810.04805 (visited on 01/08/2021).

Dikli, Semire (2016). “An Overview of Automated Scoring of Essays”. In: The Journal
of Technology, Learning and Assessment 5.1.

Dong, Fei and Yue Zhang (2016). “Automatic Features for Essay Scoring – An Em-
pirical Study”. In: Proceedings of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing. Austin, Texas: Association for Computational Linguis-
tics, pp. 1072–1077. DOI: 10.18653/v1/D16-1115. URL: http://aclweb.org/
anthology/D16-1115 (visited on 12/16/2020).

Dong, Fei, Yue Zhang, and Jie Yang (2017). “Attention-based Recurrent Convolu-
tional Neural Network for Automatic Essay Scoring”. In: Proceedings of the 21st
Conference on Computational Natural Language Learning (CoNLL 2017). Vancouver,
Canada: Association for Computational Linguistics, pp. 153–162. DOI: 10.18653/
v1 / K17 - 1017. URL: http : / / aclweb . org / anthology / K17 - 1017 (visited on
12/14/2020).

Elsner, Micha, Joseph Austerweil, and Eugene Charniak (2007). “A unified local and
global model for discourse coherence”. In: Human Language Technologies 2007:
The Conference of the North American Chapter of the Association for Computational
Linguistics; Proceedings of the Main Conference, pp. 436–443.

Ethayarajh, Kawin (Sept. 2019). “How Contextual are Contextualized Word Repre-
sentations? Comparing the Geometry of BERT, ELMo, and GPT-2 Embeddings”.
In: arXiv:1909.00512 [cs]. arXiv: 1909.00512. URL: http://arxiv.org/abs/1909.
00512 (visited on 07/01/2021).

Farra, Noura, Swapna Somasundaran, and Jill Burstein (2015). “Scoring Persuasive
Essays Using Opinions and their Targets”. In: Proceedings of the Tenth Workshop
on Innovative Use of NLP for Building Educational Applications. Denver, Colorado:
Association for Computational Linguistics, pp. 64–74. DOI: 10.3115/v1/W15-
0608. URL: http://aclweb.org/anthology/W15-0608 (visited on 12/17/2020).

Foltz, Peter W, Darrell Laham, and Thomas K Landauer (1999). “The Intelligent Es-
say Assessor: Applications to Educational Technology”. In: Interactive Multimedia
Electronic Journal of Computer-Enhanced Learning, pp. 939–944.

Gao, Silin et al. (2020). “Paraphrase Augmented Task-Oriented Dialog Generation”.
In: Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics. Online: Association for Computational Linguistics, pp. 639–649. DOI:
10.18653/v1/2020.acl-main.60. URL: https://www.aclweb.org/anthology/
2020.acl-main.60 (visited on 02/03/2021).

Ghufron, Muhammad Ali and Fathia Rosyida (Dec. 2018). “The Role of Grammarly
in Assessing English as a Foreign Language (EFL) Writing”. In: Lingua Cultura
12.4, p. 395. ISSN: 2460-710X, 1978-8118. DOI: 10.21512/lc.v12i4.4582. URL:
https://journal.binus.ac.id/index.php/Lingua/article/view/4582
(visited on 07/01/2021).

Gibbs, Graham and Claire Simpson (2005). “Conditions Under Which Assessment
Supports Students’ Learning”. In: Learning and teaching in higher education, pp. 3–
31.

https://doi.org/10.18653/v1/P16-1075
https://doi.org/10.18653/v1/P16-1075
http://aclweb.org/anthology/P16-1075
http://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/D16-1115
http://aclweb.org/anthology/D16-1115
http://aclweb.org/anthology/D16-1115
https://doi.org/10.18653/v1/K17-1017
https://doi.org/10.18653/v1/K17-1017
http://aclweb.org/anthology/K17-1017
http://arxiv.org/abs/1909.00512
http://arxiv.org/abs/1909.00512
https://doi.org/10.3115/v1/W15-0608
https://doi.org/10.3115/v1/W15-0608
http://aclweb.org/anthology/W15-0608
https://doi.org/10.18653/v1/2020.acl-main.60
https://www.aclweb.org/anthology/2020.acl-main.60
https://www.aclweb.org/anthology/2020.acl-main.60
https://doi.org/10.21512/lc.v12i4.4582
https://journal.binus.ac.id/index.php/Lingua/article/view/4582

Bibliography 77

Graesser, Arthur C et al. (2004). “Coh-Metrix: Analysis of text on cohesion and lan-
guage”. In: Behavior research methods, instruments, \& computers 32.2, pp. 193–202.

Graham, Steve and Dolores Perin (2007). “A meta-analysis of writing instruction for
adolescent students.” In: Journal of Educational Psychology 99.3, pp. 445–476. ISSN:
0022-0663. DOI: 10.1037/0022-0663.99.3.445. URL: http://doi.apa.org/
getdoi.cfm?doi=10.1037/0022-0663.99.3.445 (visited on 07/01/2021).

Graves, Alex (Nov. 2012). “Sequence Transduction with Recurrent Neural Networks”.
In: arXiv:1211.3711 [cs, stat]. arXiv: 1211.3711. URL: http://arxiv.org/abs/
1211.3711 (visited on 03/10/2021).

Guénette, Danielle (Mar. 2007). “Is feedback pedagogically correct?” In: Journal of
Second Language Writing 16.1, pp. 40–53. ISSN: 10603743. DOI: 10.1016/j.jslw.
2007 . 01 . 001. URL: https : / / linkinghub . elsevier . com / retrieve / pii /
S1060374307000021 (visited on 05/07/2021).

Hattie, John and Helen Timperley (Mar. 2007). “The Power of Feedback”. In: Re-
view of Educational Research 77.1, pp. 81–112. ISSN: 0034-6543, 1935-1046. DOI:
10.3102/003465430298487. URL: http://journals.sagepub.com/doi/10.
3102/003465430298487 (visited on 06/16/2021).

Hellman, Scott et al. (2020). “Multiple Instance Learning for Content Feedback Local-
ization without Annotation”. In: Proceedings of the Fifteenth Workshop on Innovative
Use of NLP for Building Educational Applications. Seattle, WA, USA → Online: As-
sociation for Computational Linguistics, pp. 30–40. DOI: 10.18653/v1/2020.
bea-1.3. URL: https://www.aclweb.org/anthology/2020.bea-1.3 (visited on
12/04/2020).

Heylighen, Francis and Jean-Marc Dewaele (1999). “Formality of Language: defini-
tion, measurement and behavioral determinants”. In: Interner Bericht, Center “Leo
Apostel”, Vrije Universiteit Brussel, p. 38.

Higgins, Derrick et al. (2004). “Evaluating Multiple Aspects of Coherence in Student
Essays”. In: Proceedings of the Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004,
pp. 185–192.

Ibarra-Sáiz, María Soledad, Gregorio Rodríguez-Gómez, and David Boud (July 2020).
“Developing student competence through peer assessment: the role of feedback,
self-regulation and evaluative judgement”. In: Higher Education 80.1, pp. 137–
156. ISSN: 0018-1560, 1573-174X. DOI: 10.1007/s10734-019-00469-2. URL: http:
//link.springer.com/10.1007/s10734-019-00469-2 (visited on 03/09/2021).

Jin, Cancan et al. (2018). “TDNN: A Two-stage Deep Neural Network for Prompt-
independent Automated Essay Scoring”. In: Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers). Mel-
bourne, Australia: Association for Computational Linguistics, pp. 1088–1097. DOI:
10.18653/v1/P18-1100. URL: http://aclweb.org/anthology/P18-1100 (visited
on 12/17/2020).

Jozefowicz, Rafal et al. (Feb. 2016). “Exploring the Limits of Language Modeling”.
In: arXiv:1602.02410 [cs]. arXiv: 1602.02410. URL: http://arxiv.org/abs/1602.
02410 (visited on 07/01/2021).

Ke, Zixuan and Vincent Ng (2019). “Automated Essay Scoring: A Survey of the State
of the Art”. In: IJCAI 19, pp. 1–9.

Kennedy, Declan, Áine Hyland, and Norma Ryan (2006). “Writing and Using Learn-
ing Outcomes: a Practical Guide”. In: University College Cork, p. 30.

Kirschner, Paul A. and Carl Hendrick (Feb. 2020). How Learning Happens: Seminal
Works in Educational Psychology and What They Mean in Practice. 1st ed. Abing-
don, Oxon ; New York : Routledge, 2020.: Routledge. ISBN: 978-0-429-06152-3.

https://doi.org/10.1037/0022-0663.99.3.445
http://doi.apa.org/getdoi.cfm?doi=10.1037/0022-0663.99.3.445
http://doi.apa.org/getdoi.cfm?doi=10.1037/0022-0663.99.3.445
http://arxiv.org/abs/1211.3711
http://arxiv.org/abs/1211.3711
https://doi.org/10.1016/j.jslw.2007.01.001
https://doi.org/10.1016/j.jslw.2007.01.001
https://linkinghub.elsevier.com/retrieve/pii/S1060374307000021
https://linkinghub.elsevier.com/retrieve/pii/S1060374307000021
https://doi.org/10.3102/003465430298487
http://journals.sagepub.com/doi/10.3102/003465430298487
http://journals.sagepub.com/doi/10.3102/003465430298487
https://doi.org/10.18653/v1/2020.bea-1.3
https://doi.org/10.18653/v1/2020.bea-1.3
https://www.aclweb.org/anthology/2020.bea-1.3
https://doi.org/10.1007/s10734-019-00469-2
http://link.springer.com/10.1007/s10734-019-00469-2
http://link.springer.com/10.1007/s10734-019-00469-2
https://doi.org/10.18653/v1/P18-1100
http://aclweb.org/anthology/P18-1100
http://arxiv.org/abs/1602.02410
http://arxiv.org/abs/1602.02410

78 Bibliography

DOI: 10.4324/9780429061523. URL: https://www.taylorfrancis.com/books/
9780429591891 (visited on 06/17/2021).

Knight, S. et al. (June 2020). “AcaWriter: A Learning Analytics Tool for Formative
Feedback on Academic Writing”. In: Journal of Writing Research 12.vol. 12 issue 1,
pp. 141–186. ISSN: 2030-1006, 2294-3307. DOI: 10.17239/jowr-2020.12.01.06.
URL: https://www.jowr.org/abstracts/vol12_1/Knight_et_al_2020_12_1_
abstract.html (visited on 11/10/2020).

Krishna, Kalpesh, John Wieting, and Mohit Iyyer (2020). “Reformulating Unsuper-
vised Style Transfer as Paraphrase Generation”. In: Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP). Online: As-
sociation for Computational Linguistics, pp. 737–762. DOI: 10.18653/v1/2020.
emnlp- main.55. URL: https://www.aclweb.org/anthology/2020.emnlp-
main.55 (visited on 02/03/2021).

Landauer, Thomas K, Peter W. Foltz, and Darrell Laham (Jan. 1998). “An intro-
duction to latent semantic analysis”. In: Discourse Processes 25.2-3, pp. 259–284.
ISSN: 0163-853X, 1532-6950. DOI: 10.1080/01638539809545028. URL: http://
www . tandfonline . com / doi / abs / 10 . 1080 / 01638539809545028 (visited on
07/01/2021).

Lapata, Mirella and Regina Barzilay (2005). “Automatic Evaluation of Text Coher-
ence: Models and Representations”. In: IJCAI, p. 6.

Li, Xia et al. (2018). “Coherence-Based Automated Essay Scoring Using Self-attention”.
In: Chinese Computational Linguistics and Natural Language Processing Based on Nat-
urally Annotated Big Data. Vol. 11221. Series Title: Lecture Notes in Computer
Science. Cham: Springer International Publishing, pp. 386–397. ISBN: 978-3-030-
01715-6 978-3-030-01716-3. DOI: 10.1007/978-3-030-01716-3_32. URL: http://
link.springer.com/10.1007/978-3-030-01716-3_32 (visited on 05/05/2021).

Liu, Ming et al. (2016). “Automated Essay Feedback Generation and Its Impact in
the Revision”. In: IEEE Transactions on Learning Technologies, p. 13.

Liu, Yanchi et al. (Dec. 2010). “Understanding of Internal Clustering Validation Mea-
sures”. In: 2010 IEEE International Conference on Data Mining. Sydney, Australia:
IEEE, pp. 911–916. ISBN: 978-1-4244-9131-5. DOI: 10.1109/ICDM.2010.35. URL:
http://ieeexplore.ieee.org/document/5694060/ (visited on 12/15/2020).

Lonsdale, Deryle and Diane Strong-Krause (2003). “Automated rating of ESL es-
says”. In: Proceedings of the HLT-NAACL 03 workshop on Building educational ap-
plications using natural language processing -. Vol. 2. Not Known: Association for
Computational Linguistics, pp. 61–67. DOI: 10.3115/1118894.1118903. URL:
http://portal.acm.org/citation.cfm?doid=1118894.1118903 (visited on
11/24/2020).

Louis, Annie and Derrick Higgins (2010). “Off-topic essay detection using short
prompt texts”. In: proceedings of the NAACL HLT 2010 fifth workshop on innovative
use of NLP for building educational applications, pp. 92–95.

Maaten, Laurens Van der and Geoffrey Hinton (2008). “Visualizing data using t-
SNE.” In: Journal of machine learning research 9.11.

Mayfield, Elijah and Alan W Black (2020). “Should You Fine-Tune BERT for Auto-
mated Essay Scoring?” In: Proceedings of the Fifteenth Workshop on Innovative Use
of NLP for Building Educational Applications. Seattle, WA, USA → Online: Associ-
ation for Computational Linguistics, pp. 151–162. DOI: 10.18653/v1/2020.bea-
1.15. URL: https://www.aclweb.org/anthology/2020.bea-1.15 (visited on
03/30/2021).

McInnes, Leland, John Healy, and Steve Astels (Mar. 2017). “hdbscan: Hierarchical
density based clustering”. In: The Journal of Open Source Software 2.11, p. 205. ISSN:

https://doi.org/10.4324/9780429061523
https://www.taylorfrancis.com/books/9780429591891
https://www.taylorfrancis.com/books/9780429591891
https://doi.org/10.17239/jowr-2020.12.01.06
https://www.jowr.org/abstracts/vol12_1/Knight_et_al_2020_12_1_abstract.html
https://www.jowr.org/abstracts/vol12_1/Knight_et_al_2020_12_1_abstract.html
https://doi.org/10.18653/v1/2020.emnlp-main.55
https://doi.org/10.18653/v1/2020.emnlp-main.55
https://www.aclweb.org/anthology/2020.emnlp-main.55
https://www.aclweb.org/anthology/2020.emnlp-main.55
https://doi.org/10.1080/01638539809545028
http://www.tandfonline.com/doi/abs/10.1080/01638539809545028
http://www.tandfonline.com/doi/abs/10.1080/01638539809545028
https://doi.org/10.1007/978-3-030-01716-3_32
http://link.springer.com/10.1007/978-3-030-01716-3_32
http://link.springer.com/10.1007/978-3-030-01716-3_32
https://doi.org/10.1109/ICDM.2010.35
http://ieeexplore.ieee.org/document/5694060/
https://doi.org/10.3115/1118894.1118903
http://portal.acm.org/citation.cfm?doid=1118894.1118903
https://doi.org/10.18653/v1/2020.bea-1.15
https://doi.org/10.18653/v1/2020.bea-1.15
https://www.aclweb.org/anthology/2020.bea-1.15

Bibliography 79

2475-9066. DOI: 10.21105/joss.00205. URL: http://joss.theoj.org/papers/
10.21105/joss.00205 (visited on 07/01/2021).

McNamara, Danielle S. and Walter Kintsch (Oct. 1996). “Learning from texts: Effects
of prior knowledge and text coherence”. In: Discourse Processes 22.3, pp. 247–
288. ISSN: 0163-853X, 1532-6950. DOI: 10.1080/01638539609544975. URL: http:
//www.tandfonline.com/doi/abs/10.1080/01638539609544975 (visited on
07/27/2021).

McNamara, Danielle S. et al. (Jan. 2015). “A hierarchical classification approach to
automated essay scoring”. In: Assessing Writing 23, pp. 35–59. ISSN: 10752935.
DOI: 10.1016/j.asw.2014.09.002. URL: https://linkinghub.elsevier.com/
retrieve/pii/S1075293514000427 (visited on 11/12/2020).

Mikolov, Tomas et al. (Sept. 2013). “Efficient Estimation of Word Representations in
Vector Space”. In: arXiv:1301.3781 [cs]. arXiv: 1301.3781. URL: http://arxiv.
org/abs/1301.3781 (visited on 07/01/2021).

Nicol, David, Avril Thomson, and Caroline Breslin (Jan. 2014). “Rethinking feed-
back practices in higher education: a peer review perspective”. In: Assessment &
Evaluation in Higher Education 39.1, pp. 102–122. ISSN: 0260-2938, 1469-297X. DOI:
10.1080/02602938.2013.795518. URL: http://www.tandfonline.com/doi/abs/
10.1080/02602938.2013.795518 (visited on 03/09/2021).

Ormerod, Christopher M., Akanksha Malhotra, and Amir Jafari (Feb. 2021). “Au-
tomated essay scoring using efficient transformer-based language models”. In:
arXiv:2102.13136 [cs]. arXiv: 2102.13136. URL: http://arxiv.org/abs/2102.
13136 (visited on 04/15/2021).

Papineni, Kishore et al. (2001). “BLEU: a method for automatic evaluation of ma-
chine translation”. In: Proceedings of the 40th Annual Meeting on Association for
Computational Linguistics - ACL ’02. Philadelphia, Pennsylvania: Association for
Computational Linguistics, p. 311. DOI: 10.3115/1073083.1073135. URL: http:
//portal.acm.org/citation.cfm?doid=1073083.1073135 (visited on 08/02/2021).

Peters, Matthew E. et al. (Mar. 2018). “Deep contextualized word representations”.
In: arXiv:1802.05365 [cs]. arXiv: 1802.05365. URL: http://arxiv.org/abs/1802.
05365 (visited on 07/01/2021).

Phandi, Peter, Kian Ming A Chai, and Hwee Tou Ng (2015). “Flexible Domain Adap-
tation for Automated Essay Scoring Using Correlated Linear Regression”. In:
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Pro-
cessing, pp. 431–439.

Pintrich, Paul R. (1995). “Understanding self-regulated learning”. In: New Directions
for Teaching and Learning 1995.63, pp. 3–12. ISSN: 0271-0633, 1536-0768. DOI: 10.
1002/tl.37219956304. URL: https://onlinelibrary.wiley.com/doi/10.1002/
tl.37219956304 (visited on 09/16/2021).

Pruksachatkun, Yada et al. (2020). “Intermediate-Task Transfer Learning with Pre-
trained Language Models: When and Why Does It Work?” In: Proceedings of the
58th Annual Meeting of the Association for Computational Linguistics. Online: Asso-
ciation for Computational Linguistics, pp. 5231–5247. DOI: 10.18653/v1/2020.
acl-main.467. URL: https://www.aclweb.org/anthology/2020.acl-main.467
(visited on 02/11/2021).

Radford, Alec et al. (2018). “Improving Language Understanding by Generative Pre-
Training”. In: p. 12.

Radford, Alec et al. (2020). “Language Models are Unsupervised Multitask Learn-
ers”. In: OpenAI blog 1.8, p. 9.

Raffel, Colin et al. (2019). “Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer”. In: arXiv preprint arXiv:1910.10683, p. 67.

https://doi.org/10.21105/joss.00205
http://joss.theoj.org/papers/10.21105/joss.00205
http://joss.theoj.org/papers/10.21105/joss.00205
https://doi.org/10.1080/01638539609544975
http://www.tandfonline.com/doi/abs/10.1080/01638539609544975
http://www.tandfonline.com/doi/abs/10.1080/01638539609544975
https://doi.org/10.1016/j.asw.2014.09.002
https://linkinghub.elsevier.com/retrieve/pii/S1075293514000427
https://linkinghub.elsevier.com/retrieve/pii/S1075293514000427
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.1080/02602938.2013.795518
http://www.tandfonline.com/doi/abs/10.1080/02602938.2013.795518
http://www.tandfonline.com/doi/abs/10.1080/02602938.2013.795518
http://arxiv.org/abs/2102.13136
http://arxiv.org/abs/2102.13136
https://doi.org/10.3115/1073083.1073135
http://portal.acm.org/citation.cfm?doid=1073083.1073135
http://portal.acm.org/citation.cfm?doid=1073083.1073135
http://arxiv.org/abs/1802.05365
http://arxiv.org/abs/1802.05365
https://doi.org/10.1002/tl.37219956304
https://doi.org/10.1002/tl.37219956304
https://onlinelibrary.wiley.com/doi/10.1002/tl.37219956304
https://onlinelibrary.wiley.com/doi/10.1002/tl.37219956304
https://doi.org/10.18653/v1/2020.acl-main.467
https://doi.org/10.18653/v1/2020.acl-main.467
https://www.aclweb.org/anthology/2020.acl-main.467

80 Bibliography

Rogers, Anna, Olga Kovaleva, and Anna Rumshisky (Nov. 2020). “A Primer in BERTol-
ogy: What we know about how BERT works”. In: arXiv:2002.12327 [cs]. arXiv:
2002.12327. URL: http://arxiv.org/abs/2002.12327 (visited on 01/09/2021).

Roscoe, Rod D et al. (2012). “Developing Pedagogically-Guided Threshold Algo-
rithms for Intelligent Automated Essay Feedback”. In: p. 6.

Rudner, Lawrence M and Tahung Liang (2002). “Automated Essay Scoring Using
Bayes’ Theorem”. In: The Journal of Technology, Learning and Assessment 1.2, p. 22.

Si, Luo and Jamie Callan (2001). “A Statistical Model for Scientific Readability”. In:
Proceedings of the tenth international conference on Information and knowledge man-
agement, p. 3.

Taghipour, Kaveh and Hwee Tou Ng (2016). “A Neural Approach to Automated
Essay Scoring”. In: Proceedings of the 2016 Conference on Empirical Methods in Nat-
ural Language Processing. Austin, Texas: Association for Computational Linguis-
tics, pp. 1882–1891. DOI: 10.18653/v1/D16-1193. URL: http://aclweb.org/
anthology/D16-1193 (visited on 11/23/2020).

Thakur, Nandan et al. (Oct. 2020). “Augmented SBERT: Data Augmentation Method
for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks”. In: arXiv:2010.08240
[cs]. arXiv: 2010.08240. URL: http://arxiv.org/abs/2010.08240 (visited on
01/19/2021).

Thomas, Glyn, Dona Martin, and Kathleen Pleasants (2011). “Using self- and peer-
assessment to enhance students’ future-learning in higher education”. In: Journal
of University Teaching \& Learning Practice 8, p. 17.

Uto, Masaki, Yikuan Xie, and Maomi Ueno (2020). “Neural Automated Essay Scor-
ing Incorporating Handcrafted Features”. In: Proceedings of the 28th International
Conference on Computational Linguistics. Barcelona, Spain (Online): International
Committee on Computational Linguistics, pp. 6077–6088. DOI: 10.18653/v1/
2020.coling- main.535. URL: https://www.aclweb.org/anthology/2020.
coling-main.535 (visited on 04/15/2021).

Vaswani, Ashish et al. (Dec. 2017). “Attention Is All You Need”. In: arXiv:1706.03762
[cs]. arXiv: 1706.03762. URL: http://arxiv.org/abs/1706.03762 (visited on
01/08/2021).

Verma, Pradeepika and Hari Om (May 2019). “A novel approach for text summa-
rization using optimal combination of sentence scoring methods”. In: Sādhanā
44.5, p. 110. ISSN: 0256-2499, 0973-7677. DOI: 10.1007/s12046- 019- 1082- 4.
URL: http://link.springer.com/10.1007/s12046-019-1082-4 (visited on
05/12/2021).

Villalón, Jorge et al. (2008). “Glosser: Enhanced Feedback for Student Writing Tasks”.
In: 2008 Eighth IEEE International Conference on Advanced Learning Technologies.
Santander, Cantabria, Spain: IEEE, pp. 454–458. ISBN: 978-0-7695-3167-0. DOI: 10.
1109/ICALT.2008.78. URL: http://ieeexplore.ieee.org/document/4561736/
(visited on 11/18/2020).

Witte, Stephen P. and Lester Faigley (May 1981). “Coherence, Cohesion, and Writing
Quality”. In: College Composition and Communication 32.2, p. 189. ISSN: 0010096X.
DOI: 10.2307/356693. URL: https://www.jstor.org/stable/10.2307/356693?
origin=crossref (visited on 01/05/2021).

Woods, Bronwyn et al. (Aug. 2017). “Formative Essay Feedback Using Predictive
Scoring Models”. In: Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining. Halifax NS Canada: ACM, pp. 2071–
2080. ISBN: 978-1-4503-4887-4. DOI: 10 . 1145 / 3097983 . 3098160. URL: https :
//dl.acm.org/doi/10.1145/3097983.3098160 (visited on 11/13/2020).

http://arxiv.org/abs/2002.12327
https://doi.org/10.18653/v1/D16-1193
http://aclweb.org/anthology/D16-1193
http://aclweb.org/anthology/D16-1193
http://arxiv.org/abs/2010.08240
https://doi.org/10.18653/v1/2020.coling-main.535
https://doi.org/10.18653/v1/2020.coling-main.535
https://www.aclweb.org/anthology/2020.coling-main.535
https://www.aclweb.org/anthology/2020.coling-main.535
http://arxiv.org/abs/1706.03762
https://doi.org/10.1007/s12046-019-1082-4
http://link.springer.com/10.1007/s12046-019-1082-4
https://doi.org/10.1109/ICALT.2008.78
https://doi.org/10.1109/ICALT.2008.78
http://ieeexplore.ieee.org/document/4561736/
https://doi.org/10.2307/356693
https://www.jstor.org/stable/10.2307/356693?origin=crossref
https://www.jstor.org/stable/10.2307/356693?origin=crossref
https://doi.org/10.1145/3097983.3098160
https://dl.acm.org/doi/10.1145/3097983.3098160
https://dl.acm.org/doi/10.1145/3097983.3098160

Bibliography 81

Xu, Peng et al. (2020). “MEGATRON-CNTRL: Controllable Story Generation with
External Knowledge Using Large-Scale Language Models”. In: Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). On-
line: Association for Computational Linguistics, pp. 2831–2845. DOI: 10.18653/
v1/2020.emnlp-main.226. URL: https://www.aclweb.org/anthology/2020.
emnlp-main.226 (visited on 02/03/2021).

Yanchi Liu et al. (June 2013). “Understanding and Enhancement of Internal Clus-
tering Validation Measures”. In: IEEE Transactions on Cybernetics 43.3, pp. 982–
994. ISSN: 2168-2267, 2168-2275. DOI: 10.1109/TSMCB.2012.2220543. URL: http:
//ieeexplore.ieee.org/document/6341117/ (visited on 12/15/2020).

Yang, Ruosong et al. (2020). “Enhancing Automated Essay Scoring Performance via
Fine-tuning Pre-trained Language Models with Combination of Regression and
Ranking”. In: Findings of the Association for Computational Linguistics: EMNLP 2020.
Online: Association for Computational Linguistics, pp. 1560–1569. DOI: 10.18653/
v1/2020.findings-emnlp.141. URL: https://www.aclweb.org/anthology/
2020.findings-emnlp.141 (visited on 04/08/2021).

Yannakoudakis, Helen, Ted Briscoe, and Ben Medlock (2011). “A New Dataset and
Method for Automatically Grading ESOL Texts”. In: Proceedings of the 49th annual
meeting of the association for computational linguistics: human language technologies,
pp. 180–189.

Yu, Qian et al. (2020). “Review-based Question Generation with Adaptive Instance
Transfer and Augmentation”. In: Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Online: Association for Computational
Linguistics, pp. 280–290. DOI: 10.18653/v1/2020.acl-main.26. URL: https:
//www.aclweb.org/anthology/2020.acl-main.26 (visited on 02/02/2021).

Zesch, Torsten, Michael Wojatzki, and Dirk Scholten-Akoun (2015). “Task-Independent
Features for Automated Essay Grading”. In: Proceedings of the Tenth Workshop on
Innovative Use of NLP for Building Educational Applications. Denver, Colorado: As-
sociation for Computational Linguistics, pp. 224–232. DOI: 10.3115/v1/W15-
0626. URL: http://aclweb.org/anthology/W15-0626 (visited on 11/23/2020).

Zhang, Haoran and Diane Litman (2020). “Automated Topical Component Extrac-
tion Using Neural Network Attention Scores from Source-based Essay Scoring”.
In: Proceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics. Online: Association for Computational Linguistics, pp. 8569–8584. DOI:
10.18653/v1/2020.acl-main.759. URL: https://www.aclweb.org/anthology/
2020.acl-main.759 (visited on 04/06/2021).

Zhang, Tianyi et al. (Feb. 2020). “BERTScore: Evaluating Text Generation with BERT”.
In: arXiv:1904.09675 [cs]. arXiv: 1904.09675. URL: http://arxiv.org/abs/1904.
09675 (visited on 01/27/2021).

Zhang, Xiang and Yann LeCun (Apr. 2016). “Text Understanding from Scratch”. In:
arXiv:1502.01710 [cs]. arXiv: 1502.01710. URL: http://arxiv.org/abs/1502.
01710 (visited on 07/29/2021).

https://doi.org/10.18653/v1/2020.emnlp-main.226
https://doi.org/10.18653/v1/2020.emnlp-main.226
https://www.aclweb.org/anthology/2020.emnlp-main.226
https://www.aclweb.org/anthology/2020.emnlp-main.226
https://doi.org/10.1109/TSMCB.2012.2220543
http://ieeexplore.ieee.org/document/6341117/
http://ieeexplore.ieee.org/document/6341117/
https://doi.org/10.18653/v1/2020.findings-emnlp.141
https://doi.org/10.18653/v1/2020.findings-emnlp.141
https://www.aclweb.org/anthology/2020.findings-emnlp.141
https://www.aclweb.org/anthology/2020.findings-emnlp.141
https://doi.org/10.18653/v1/2020.acl-main.26
https://www.aclweb.org/anthology/2020.acl-main.26
https://www.aclweb.org/anthology/2020.acl-main.26
https://doi.org/10.3115/v1/W15-0626
https://doi.org/10.3115/v1/W15-0626
http://aclweb.org/anthology/W15-0626
https://doi.org/10.18653/v1/2020.acl-main.759
https://www.aclweb.org/anthology/2020.acl-main.759
https://www.aclweb.org/anthology/2020.acl-main.759
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1904.09675
http://arxiv.org/abs/1502.01710
http://arxiv.org/abs/1502.01710

	Abstract
	Acknowledgements
	Introduction
	Problem Statement
	Research Questions
	Proposed Solution
	Contributions
	Report Organization

	Related Work
	Automated Essay Scoring
	Automated Writing Evaluation
	Feedback Systems

	Requirement Analysis
	Discussions with Experts
	FeedbackFruits
	Professor with Education System Experience
	Professor with NLP Experience
	Writing Expert
	Educational Systems Expert

	Feedback Data Exploration
	Final Requirements

	Conceptual Design
	Explored Automated Feedback Systems
	Feedback Linking
	Feedback Generation
	Data Preprocessing
	Feedback Generation
	Feedback Generation Evaluation

	RevisionCoach
	Revision Models
	Rephrase Revision
	Rewrite Revision
	Reword Revision

	Scoring Models
	Readability
	Coherence
	Cohesion
	Formality

	Feedback Model
	User Interface Design Prototype

	Implementation
	Revision Models
	Background of Transformer Models
	BERT and GPT-2
	T5

	Rephrase Revision
	Rewrite Revision
	Text Generation Architecture
	Fine-Tuning T5

	Reword Revision

	Scoring Models
	Readability
	Coherence
	LSA and Word2Vec
	ELMo and BERT

	Cohesion
	Formality

	Feedback Controller
	User Interface Design

	Evaluation
	Method
	Study
	Study Biases
	Study Setup

	Limitations

	Results
	Discussion
	Interpretation of RevisionCoach's Evaluation Results
	Answers to the Research Questions

	Conclusion
	Future Work
	Data Exploration
	Dataset Preprocessing
	Exploration

	T5 Text Generation Fine-Tuning Predictions
	Bibliography

