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The analysis of 2D scattering maps generated in scatterometry experiments for detection and classification of
nanoparticles on surfaces is a cumbersome and slow process. Recently, deep learning techniques have been adopted
to avoid manual feature extraction and classification in many research and application areas, including optics. In
the present work, we collected experimental datasets of nanoparticles deposited on wafers for four different classes
of polystyrene particles (with diameters of 40, 50, 60, and 80 nm) plus a background (no particles) class. We trained
a convolutional neural network, including its architecture optimization, and achieved 95% accurate results. We
compared the performance of this network to an existing method based on line-by-line search and thresholding,
demonstrating up to a twofold enhanced performance in particle classification. The network is extended by a super-
visor layer that can reject up to 80% of the fooling images at the cost of rejecting only 10% of original data. The
developed Python and PyTorch codes, as well as dataset, are available online. ©2020Optical Society of America

https://doi.org/10.1364/AO.399894

1. INTRODUCTION

With the rapid growth of integrated circuits (ICs) fabrication
in the semiconductor industry and, accordingly, the dramatic
decrease in the size of the components, the next generation of
chips becomes more complex and compact [1,2]. As a conse-
quence, fast, sensitive, and reliable quality inspection of masks as
well as wafers utilized in lithography machines is essential [3]. In
order to maintain the high yield and quality in semiconductor
manufacturing, particle contamination in the range of 1 µm
down to 20 nm (in diameter) should be detected and, if possible,
removed. Coherent Fourier scatterometry (CFS) has been sug-
gested to fulfil the need for noninvasive and sensitive inspection
of nanoparticles on surfaces [4–7].

With the help of CFS, one can obtain precise information
about the condition of the unpatterned wafer, which is used for
all types of devices, such as those with III-V materials, analogue,
logic, and memory [8]. Inspection of wafers revealing the diam-
eters, density, and positions of killer-nanoparticles is vital for the
nanofabrication production environment because it is related
directly to wafer cleaning and has an essential relation with
fabrication yield [9]. Some traditional search and thresholding
algorithms for datasets as generated by CFS (scattered maps)
have been proved to be the appropriate schemes to estimate

the size distribution of the contamination particles accurately
[10–12].

Recently, there is growing interest in deep learning, which
has demonstrated its feasibility to significantly improve optical
microscopy, enhancing its spatial resolution over a large field of
view and depth of field [13], analysis of medical images [14],
analyzing TSOM images of nanostructures [15], detecting and
localizing holographic features [16], and many other application
areas in optics and physics [17,18]. Deep learning algorithms
are part of a broader family of machine learning algorithms,
which can be considered as a network consisting of multiple
neural layers with the idea to progressively extract higher level
features from the raw input, otherwise known as learning on
the representation of the data [19]. Examples include the deep
neural network (DNN) [20], recurrent neural network (RNN)
[21,22], long short-term memory (LTSM) [23], and convolu-
tional neural network (CNN) [24,25]. The feasibility of CNN
has been demonstrated by wafer map defect pattern classifica-
tion using simulated wafer maps (synthetic data) [26], relying
on SEM images for classification of defects and contamination
[27] and recently defining the chemical composition of particle
defects on semiconductor wafers by merging the SEM image
data with EDX spectral data as input [28].
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Recently, 2D scattered maps generated by the CFS tech-
nique have been studied with line-by-line search algorithms
resulting in histograms that rely on the features of characteristic
electronic signals that are generated when a particle is detected.
The cumbersome search routines are associated with the hyper-
parameters defined by the user for each specific input dataset,
e.g., an expected amplitude and width of the characteristic
signal, density, and number of points in a cluster of isolated
particles, and the zeroing parameters for different iterations
of the search [29]. There is still a need for discussion on mini-
mization of user–algorithm interaction [30,31]. However, it is
true that considering a growing amount of data and pressure to
inspect data more quickly, the line-by-line analysis of the dataset
can become computationally slow. The additional challenge is
the precise categorization of killer-particles using automated
contamination or defect classification. In other words, the con-
fusion between the different sizes of the particles on the sample
should be minimal. Moreover, while there are solutions to all of
these problems, there is a cost associated with each of them. For
instance, the application of neural networks requires re-training
the network when the physical parameters change, which will
consume a lot of resources and time. On the other hand, when
pre-trained and deployed, the classification runs almost at no
time, and virtually no a priori parameters or additional tuning of
the network is required.

The application and feasibility of deep learning for the
datasets of CFS have not been studied yet. In this paper, we
propose a method to classify the scattered maps of isolated
nanoparticles using CNN. We utilize calibrated samples of
polystyrene latex (PSL) nanospheres, spin-coated on the sili-
con wafer, with diameters ranging from 40 to 80 nm to collect
the training data. Polystyrene particles are standard for the
calibration of surface inspection tools because they have well-
characterized optical properties (low index of refraction, thus
most challenging to detect) and a very tight monodisperse
size distribution [32]. Furthermore, for the classification, we
study the areas of the wafer where the nanoparticle is absent,
contributing to the “background” class. We also target a novelty
detection by looking at ways for the network to separate the
“unknown” class from the input data, i.e., classes that have been
unseen in the training. In order to do that, we rely on a simple
baseline approach and also a more sophisticated approach of

introducing the OpenMax layer [33]. We realized an experi-
ment by adding noise to the scattered maps (degrading thus
the SNR), fooling images, as well as some unfamiliar (reversal)
images to the network. As one of the main goals for the CNN
is to accurately discriminate among classes, we study samples
that contain multiple classes of PSL particles with diameters of
40 and 50 nm, 50 and 60 nm, and 60 and 80 nm. The results
show that our model can successfully discriminate among the
proposed five classes with an accuracy up to 95%. By providing
the samples that were unseen during training, our results for
the first time highlight the importance of the novelty detection
to capture the confusing inputs in a contamination detection
problem. The results show that the proposed method has supe-
rior capabilities compared to classification with the traditional
search algorithm [29]. A vital issue for future research is to
merge the proposed classification CNN with the network for
automatic object detection. This will allow to speed up in char-
acterizing large amounts of data with the potential to nearly
real-time inspection. The dataset and the codes used to generate
the typical results of this paper are available online [34,35].

2. METHOD

The proposed CNN algorithm takes a set of “images” (signal
intensity maps) as the network input and outputs the class
labels [see Fig. 1(B)]. The discretization of the data is due to
the sampling speed of the NI 5922 acquisition board and selec-
tion of the scanning step between lines. The scale in Fig. 1(A)
(150× 150) is given in pixels with each pixel corresponding to
2 nm in x direction and 4 nm in y direction. The intensity maps
are captured from illuminating the sample with a blue diode
laser (405 nm by Power Technology, model: IQ1A25) that is
focused by a non-commercial objective designed for mastering
CDs in optical data storage of numerical aperture NA= 0.9.
The focused spot of ≈1 µm illuminates the sample containing
isolated nanoparticles deposited on a wafer and mounted on a
3D piezo-electric stage whose position can be controlled with
sub-nm precision (P-629.2CD by Physik Instrumente). The
sample is scanned in a raster fashion [see Fig. 1(A)]. The total
scattered and reflected fields from the nanoparticle and sample
surface are collected at the balanced detector (BD) via the beam
splitter (bi-cell silicon photodiode from Advanced Photonix).

(A) (B)

Fig. 1. (A) Differential detection principle: (left) schematic of setup, (right, top) raster scanning scheme, and (right, bottom) example of 2D map
with the signal obtained when an isolated particle is recorded by the balanced detector. (B) Schematic process of CNN-based classification. The
dotted red boxes indicate that the images are cut out. The inputs to the CNN are cut-out far-field maps containing the detection of nanoparticles; the
output of the CNN is the label of the particle diameter 1, 2, ... N.
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For each scan position, the left and right sections of the detector
are integrated and subtracted from each other, generating one
photocurrent value per scan position, sequentially. In order to
generate the 2D scan maps, the data points are arranged line per
line, according to the raster scan pattern.

The raw data yield the detection of numerous isolated par-
ticles. The density of deposited particles has been chosen in
order to have a considerable number of detected particles in a
scan area of, e.g., 40× 15 µm2 [Fig. 1(B)]. Other signals are
also present, corresponding to clusters of particles, particle
deposition residues, and possibly cross-contamination. Since
directly using all particle-like detections from a sample is not
always possible and would not give a high-quality dataset, we
performed manual labeling. The type of particle signal present
with the highest density inside the global scan area is representa-
tive of the nominal size. The bounding box is placed such that
the particle signal is fully visible in the region of interest [dotted
red boxes in Fig. 1(B)]. This square cut is centered about the
position of the maximum amplitude of the differential signal.
For the background class, the particle signal pattern (positive
and negative amplitudes) of the particle should be absent. We
have grouped the images into classes of 40, 50, 60, and 80 nm
particles, and the “background” class that corresponds to the
areas of the sample without particles [see Fig. 2(A)].

We created a class-balanced dataset (see Table 1) with roughly
260 images per class. The total amount of 1302 images is fed
to the network, and we use the 60− 20− 20 split for training,
validation, and testing. Here we ensure that all three sets contain
representative examples by randomly splitting data from each
class into three parts and then merging to form the unbiased sets.
We use the holdout method for validation, meaning that after
each epoch, the validation dataset is passed through the net-
work. When the training is complete, we show the test set to the

(A)

(B)

(C)

Fig. 2. (A) Examples of the five output classes. (B) The architecture
consists primarily of convolutional layers capable of extracting relevant
features of the input samples. Three fully connected layers at the end
serve as a decision layer, mapping the automatically extracted features
to the desired output class. (C) Error rate as a function of the number
of convolution layers and batch sizes. From the plots, we see that two
convolution layers and batch size of 15 are the optimal choice for the
architecture, since they introduce a good balance of training time and
low-enough error rate.

Table 1. Amount of Images Per Class (Original
Dataset)

Class 40 nm 50 nm 60 nm 80 nm Background Total

# of images 254 253 276 272 247 1302

network for a single time. The amount of images required for the
training of the network, contrary to expectations, turns out to
be relatively small, presumably due to the simple pattern of the
particle signal. We did not apply any geometric transformation
to the experimental data; thus, the input data contain diverse
examples due only to the inherent experimental conditions.

As shown in Fig. 2(B), we use the network architecture where
no manual feature selection is necessary. The simple deep neu-
ral network is composed of repeated units of convolutional
layers, whose number and sizes are chosen to have a balance
between speed and low error (1–Accuracy) [Fig. 2(C)]. The final
architecture includes an input size of 150× 150 pixels and two
convolution layers operating with filter (kernel) sizes of 5× 5
pixels. The amount of filters in the first convolutional layer is
five and in the second is eight; stride is one. In between and after
the convolutional layers, we have inserted two max-pooling
layers with a size of 2× 2 pixels, effectively reducing the image
resolution by a factor of two at each step. The purpose of these
layers is to reduce computation for consecutive layers and to
provide a form of translation invariance. All convolutional layers
have rectified linear unit (ReLU) activation. Each ReLU in the
network is followed with batch normalization [36]. The final
max-pool layer is fed into three fully connected layers of sizes
120, 84, and five. Final layers are necessary to learn the relation-
ship between the learned features and the sample classes, which
in our case is five. Finally, the logits are converted to the proba-
bility scores by the SoftMax function. The network’s output is
used to compute the mean-square error between the true label
and the predicted label, also known as the cross-entropy loss.
We used the Adam optimization scheme with a global learning
rate of 0.001 to minimize this loss function. The total number
of weights in the network updated during the training process is
1,326,087. We built a Pytorch [37] implementation and moved
it to the GPU (NVIDIA GTX1050 Ti) calculation with tensors.
More information about the implementation can be found in
Refs. [34,35].

3. RESULTS

A. Closed Set Classification

The best model has to be selected based on the accuracy metric
calculated on the test data. For the closed set of five classes, as
according to Table 1, we found that after approximately 12
epochs (12 times through all the training examples), the loss no
longer decreased significantly (Fig. 3A). The top performing
network (Ac c ur ac y = 95%) was stored to be used in further
tasks.

In order to see which classes the network struggles to dis-
tinguish and to what degree, we built the confusion matrix
[Fig. 3(B)]. The horizontal axis represents the particle classes
predicted by our model, and the vertical axis represents the true
input image labels. For example, the 80 nm row (fourth row
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Fig. 3. (A) Training and validation loss (left) and accuracy (right)
are evaluated across different numbers of epochs based on the optimal
parameters [Fig. 2(B)] architecture of the CNN model. (B) Accuracy
for the test set in the confusion matrix. (C) 2D visualization of the
loss surface of the CNN model with the projected learning trajectories
using normalized PCA direction (batch size of 20, Adam optimizer,
and 15 epochs of training).

in the matrix) indicates that 92.6% of the images labeled with
80 nm are correctly predicted as 80 nm; 1.9% are incorrectly
predicted as 60 nm; 5.6% are predicted as background. Our
experiment shows that 50 nm is often confused with 40 nm. The
reason is that there is a small difference between the scattering
cross sections generated by these two particle sizes (the scatter-
ing varies by the sixth power of the diameter [32]). It is clearly
visible that most misclassification involves the background
class. Finally, we built the landscape [38], where we demonstrate
the convergence to minima, as our learning procedure follows
the loss in a gradual manner. The projected learning trajectory
is estimated using normalized principal component analysis
(PCA) directions. The squared nature of the loss function leads
to a mostly convex loss landscape [Fig. 3(C)].

B. Comparison with Thresholding Classification
Method

We compared the performance of our CNN classifier, pre-
trained on the five classes (Section 3.A) with a method that has
been recently implemented by some of the authors of this paper
[29]. We did this on new test sets of separately 40, 50, 60, and
80 nm particles, with roughly 40 cut-out images per class. The
thresholding classification method can be summarized as:

• Search line by line for signals that have characteristic shape
(positive-negative pulses) and that are close to the expected
amplitude and time-width of the particle in question;

• Use the density-based spatial clustering of applications
with noise (DBSCAN) algorithm to define the group of signals
attributed to a single scatterer and return the estimate of the
time-width from centroid. By group of signals, we mean that
the signal should repeat itself at the same x position in a few
consecutive scan lines (in y direction);

• Use a calibration curve based on the time-width of the sig-
nal as a function of the particle size to return a class label for the
particle.

This method operates on the reference positions of the
cut-out images from the corresponding raw scan maps. We
keep the number of output classes equal to five to provide a fair

Table 2. Comparison of Accuracy Per Class between
the Proposed CNN and Method Based on Thresholding
and Search

40 nm
(35 Images)

50 nm
(37 Images)

60 nm
(37 Images)

80 nm
(46 Images)

Thresholding 0.37 0.43 0.63 0.82
CNN 0.97 0.94 1 1

comparison; hence, in the thresholding method, instead of the
background, the class of 100 nm particles is present.

In Table 2, we present the classification performance of
thresholding and CNN approaches on the four test sets. From
the results, we can see that the classifier based on the neural
network achieves better performance as compared to the clas-
sical search routine. Both approaches perform very accurate
on the data of 80 nm particle class, but when reducing the size
of a particle, the accuracy drops much faster in the case of the
thresholding method.

It is critical to note that both approaches can consider the 2D
local information inherent to our measured data. In the case
of the thresholding approach, positive-negative signals that
are present in consecutive scan lines at the same x positions are
clustered and considered as a single particle (see Fig. 1). In the
case of CNN, the convolution filter can extract the spatially con-
nected information by walking over the image. It is unlikely thus
that improved classification accuracy is due to the 2D nature of
convolutional kernels. The essential difference is the ability of
CNN to extract the higher-level representation by cascading the
filters and learning on these representations. On the contrary,
classification based on the calibration curve (signal feature as a
function of particle diameter) always relies on the representation
of the data that are manually engineered.

To address further the classification tendencies as they appear
in methods under comparison, we demonstrate the confu-
sion among the classes. The clustering method performed a
lot worse, where the overall accuracy was 56%, with relatively
accurate results for the 60 and 80 nm classes yet with a lot of
confusion on the 40 and 50 nm classes. Evidently, in both
approaches, the confusion between the neighboring classes is
present (see Fig. 4). For the thresholding method, it is clear that
the steeper the calibration curve becomes, the less confusion is
present. Inherently, this reference method relies on the time-
width, which has shown to be a sensitive parameter for the case
of particles ≥100 nm [39]. We point out that classification of
the single particle image takes 0.89 [s] for the case of the thresh-
olding algorithm and 0.02 [s] for the pre-trained network in this
paper. Generally speaking, other features can be selected in order
to allow for better discrimination, which addresses the topic of
feature engineering; however, this is beyond the scope of this
paper. At the same time, not so deep CNN is enough to pick
up on patterns in many different features of an input. Features
extracted by the network extend far beyond those that make
sense to the human eye, such as maxima, minima, or the pattern
size. A CNN trained to recognize particles might find other
features, such as patches of color, topography, or background,
which can become even stronger predictors.
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(A) (B)

Fig. 4. Confusion matrices comparing classification tendencies
between predicted and true labels by (A) thresholding and (B) CNN
approach. Squares are colored based on the value of the cell, with
darker colors indicating more matches. Values along the diagonal of
each confusion matrix represent the images classified correctly, while
values in off-diagonal regions represent blurring between types of
classes.

C. Towards Multi-Class Open-Set Classification

Making alterations to the regular input data even in the form
of tiny changes that are typically invisible to humans can mis-
lead the best neural networks. These problems are not easy to
solve because CNN’s are fundamentally fragile. As shown in
the previous two sections, the accuracy in classification is very
high, but this is possible until networks are taken into unfamiliar
territory where they can break in unpredictable ways. To bring
a spotlight on the problem of confusion by the so-called “adver-
sarial examples,” [40] scientists have evolved images that look
like an abstract pattern but that the DNNs see as familiar objects
[41,42]. In the context of CNN applied for the classification of
the different particle size contamination, we should envision
that distorted measurement data or other types of untrained
particles could also be spotted by the proposed network.

The output layer of the original architecture in Fig. 2(B) is a
SoftMax layer that contains the vector of probabilities

P (y = j |x)=
exp(v j (x ))

N∑
i=1

exp(vi (x ))

, (1)

where x is the sample image, and v(x ) is the corresponding
activation vector. The number of classes is j = 1, . . . , N, and
i is the index that goes over the classes. Due to the summation
in the denominator, the probabilities are normalized and sum
up to one. We want to build a (N + 1)-classifier f (x ) with the
classes C = {d1, d2, . . . , b, rejection}. The most straightfor-
ward approach of a novelty detection is to introduce the baseline
value for the scores of the SoftMax layer. If the probability of the
output classes is not high enough, the input image is assigned
with the unknown label. The novelty score NS is defined as

NS= 1−max(P (y = j |x)). (2)

The procedure of computing the OpenMax probabilities
includes four steps:

1. For each class C = [c j ,...,N], the mean activation vector is
computed MAV= [µ j ,...,N], where µ j =mean(v j (xi, j )),
and xi, j represents the correctly classified sample.

2. Per class, fit the Weibull model with parameters
pc j = (tc j , λc j , kc j ) to the distance between the input

sample and the mean of the set of η number of outlier
examples of class j . tc j is used for shifting the data, λc j and
kc j are, respectively, the scale and shape parameters derived
from the training data of the class c j and control the cumu-
lative density function (CDF). For more details on Weibull
distribution and extreme value theory, see Ref. [43].

3. Estimate the Weibull CDF probability on the distance
between sample xi and the known class’s mean activation
vector: MAV[µ j ,...,N] defined as w(x). Recalibrate the
activation vector by v̂(x )= v(x) ◦w(x). To allow the
novelty detection, augment output to N + 1 classes by
v̂N+1(x )=

∑
i v̂i (x )(1−wi (x )).

4. To support explicit rejection, the pseudo-probability of
an unknown class is estimated from the known class’s
activation scores:

P̂ (y = j |x)=
exp(v̂ j (x ))

N∑
i=0

exp(v̂i (x ))

, j = 1, . . . , N + 1.

(3)

The third way of dealing with the unknown input is similar to
OpenMax; however, it is much simpler and essentially relies on
the MAV:

1. Calculate the MAV for the correct classifications of each
class.

2. For each image x in the train and validation sets,
obtain the activation vector v(x ) and predicted class
c (x ). Then, calculate the distance to the MAV with
d = ||v(x )−MAVc (x )||. Save values of d separately for
correct and incorrect classifications.

3. For each image in the test set, calculate d in the same way,
and if it is above some threshold, reject the classification
(thus classifying it as unknown).

Thus, we utilize and compare three approaches of baseline,
OpenMax, and distance to MAV in order to catch open-set
examples, each time showing the unseen images to the network
without additional training. We introduce an input sample
with high noise, where Gaussian and 1/ f noises were added to
every image. For instance, samples that correspond to 80 nm
[see Fig. 5(A)] were modified such that the SNR decreased by
−9.7 dB (1.5 times), fooling images of an elephant from the
Animal–10 dataset [44], and finally, the mirrored image along
x axis of the 2D scattered maps with detected particles, which is
representative of the image of a defect such as a small pit.

It is not rare that studies on detecting fooling/adversarial
images have a narrow focus on optimizing the output or penul-
timate layer of the network, such that the probability for an
unknown image is low. This is something of a pitfall because it
is possible to optimize the score of rejecting the unknown class
with the cost of losing a significant number of correct images.
With this intention, when making the comparison, we apply
the network with different output layers for both the original
and fooling dataset. In different scenarios, we observe similar
behavior. The vast majority of the original images lie in the
shallow uncertainty region, which is an indication of a highly
accurate network. However, the incorrect ones span nearly the
same range as the correct ones, meaning we cannot completely
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Fig. 5. (A) Three types of open-set examples: image of defect,
fooling image of the elephant, and noisy particle image. (B) Summary
of comparison among three unknown detection methods as applied to
the open-set examples, ≈1090 images per type. Inset: example of the
best performing case, where the “distance to MAV” method is applied
to the fooling set of elephants. Blue points represent the complete origi-
nal set passed through the network, and the orange points represent
the fooling set. If the threshold (in red) is set such that only 10% of the
“good” images are dropped, then the same network can capture 80% of
the unknown images.

get rid of incorrect classifications by thresholding uncertainty.
No matter what threshold we would set, we would always have
some incorrect classification. Further, we chose this threshold
such that we reject approximately 10% of standard data. This
is an arbitrary value, since the acceptable maximum rejection
of standard data would depend on the application, and on how
frequently images appear in the data that should be rejected. As a
result, we compare the amount of rejection in open-set examples
by the three supervisor approaches in Fig. 5(B). In particular
(inset figure), for the fooling dataset, the best performing algo-
rithm is the one based on the distance to MAV, where we can see
how it is possible to separate 80% of the fooling images. We pass
the entire original dataset (blue points) and the whole fooling
elephant dataset (orange points) through a trained network and
set the threshold based on the information from the MAVs. The
additional information gained from using the entire vector of
outputs rather than just the maximum (novelty score) helps with
rejecting unknown inputs there. For the defect set, it performs
no better than the baseline approach, and on the noise set, it
performs significantly worse. Finally, the OpenMax gave us poor
results on all sets.

4. DISCUSSION

The Weibull model is the core of the OpenMax approach. As an
essential part of the algorithm, the method selects the m highest
activations per activation vector. Our data have only five classes,
meaning our activation vectors have only five entries. There is
not much selection possible in this case. The original paper of

OpenMax [33] visualizes activation vectors for a 450 class sys-
tem and provides some intuition about where the information
resides that is used in OpenMax. It is thus clear that, with a low
amount of classes, the CDF distribution would be very discrete,
and a lot less information could be gained from it.

Instead of having the supervisor in the network, such as
baseline or MAV, one can include the fooling images as a part
of the training data, in particular, to expose the network to
problematic cases regularly. In this form, the output layer would
explicitly contain the desired class. However, training a network
to withstand one kind of “unknown” images could weaken it
against others [45].

In case the network performs poorly, inspecting the images
that contribute to the off-diagonal elements of the confusion
matrix allows us to study the data better and, if required, remove
inputs from the dataset to get to higher accuracy. There are
also existing approaches where the subsets of outlier images are
removed from the training or test data. These are the interactive
learning-based methods for curating datasets using user-defined
criteria [46,47].

To deploy the network in the in-line fab inspection scenario,
more output classes should be provided, approaching the real-
world situation with a variety of particle sizes on the surface. The
synthetic data could replace the types of particles not available
experimentally for calibration.

5. CONCLUSION

In this paper, we have applied CNN to 2D maps obtained using
CFS for nanoparticle detection and classification. We trained
a CNN to recognize four classes of nanoparticles and a surface
background class. Based on a total of 1302 experimental images
rather than synthetic data, with a simple CNN with two convo-
lutional layers and batch normalization, we demonstrated 95%
accuracy on the test data. The proposed approach outperforms
the existing algorithm for analysis of scattered maps, which
is based on thresholding and search [29]. For relatively small
particles, with diameters (classes) of 40 and 50 nm, the accuracy
has been improved by a factor of two. Also, when studying the
amount of misclassification presented by both methods, we see
that the CNN can cope better in separating nanoparticles that
produce very similar scattering cross sections (such as particles
with diameters of 40 and 50 nm). The demonstrated increase
in accuracy and minimized confusion could be attributed to
the fact that CNN automatically extracts the features from the
proposed data, while the search approach looks only at manually
engineered features. Further, we experimented with selecting
the best approach to capture the images unseen during the train-
ing of the network. The output layer of the proposed CNN can
be augmented with a method based on MAVs, OpenMAX, or
simple baseline approach. Depending on the need, the thresh-
old value for the uncertainty of the unknown images can be
introduced as we show experimentally, e.g., 80% of the fooling
images of an elephant can be neglected at the cost of dropping
only 10% of the particle-type dataset. We believe that the pro-
posed CNN is an essential addition to nanoparticle detection
and classification.
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