
 
 

Delft University of Technology

Document Version
Final published version

Licence
CC BY

Citation (APA)
van Laatum, B., Msaad, S., van Henten, E. J., Mcallister, R. D., & Boersma, S. (2026). Stochastic model predictive
control with reinforcement learning for greenhouse production systems under parametric uncertainty. Control
Engineering Practice, 169, Article 106787. https://doi.org/10.1016/j.conengprac.2026.106787

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
In case the licence states “Dutch Copyright Act (Article 25fa)”, this publication was made available Green Open
Access via the TU Delft Institutional Repository pursuant to Dutch Copyright Act (Article 25fa, the Taverne
amendment). This provision does not affect copyright ownership.
Unless copyright is transferred by contract or statute, it remains with the copyright holder.
Sharing and reuse
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without
the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as
Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.

https://doi.org/10.1016/j.conengprac.2026.106787


Contents lists available at ScienceDirect

Control Engineering Practice

journal homepage: www.elsevier.com/locate/conengprac

Stochastic model predictive control with reinforcement learning for 
greenhouse production systems under parametric uncertainty 

Bart van Laatum a,∗, Salim Msaad b, Eldert J. van Henten a, Robert D. Mcallister b, 
Sjoerd Boersma a,c

aAgricultural Biosystems Engineering, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708PB, The Netherlands
bDelft Center for Systems and Control (DCSC), Delft University of Technology, Mekelweg 5, Delft, 2628 CD, The Netherlands
c Biometris, Wageningen Research, Droevendaalsesteeg 4, Wageningen, 6708PB, The Netherlands

a r t i c l e  i n f o

Keywords:
Stochastic model predictive control
Reinforcement learning
Terminal costs
Terminal region constraints
Feedback policies
Greenhouse production control

 a b s t r a c t

Uncertainty, if not explicitly accounted for in controller design, can significantly degrade the optimal control 
performance of greenhouse production systems. Scenario-based stochastic MPC (SMPC) addresses uncertainty 
by approximating its underlying probability distributions through sampling. However, SMPC rapidly becomes 
computationally intractable and can suffer from growing uncertainty with longer prediction horizons. Terminal 
costs and constraints ensure closed-loop performance of SMPC, but designing these for greenhouse systems is 
challenging since they rely on steady-state targets that often do not exist in greenhouse production systems. To 
overcome these challenges, this work introduces RL-SMPC, which uses reinforcement learning (RL) to learn a 
control policy that constructs both terminal region constraints and a terminal cost function. Additionally, this 
policy serves as a nonlinear feedback policy to attenuate uncertainty growth in the open-loop solution of scenario-
based SMPC. RL-SMPC’s closed-loop performance is compared against standalone RL, MPC, and scenario-based 
SMPC on a greenhouse lettuce model under parametric uncertainty. Simulation results showed that RL-SMPC 
outperformed MPC across all prediction horizons and surpassed SMPC for horizons shorter than five hours. 
Moreover, the results indicated that at equal online computational cost, RL-SMPC outperformed SMPC.

1.  Introduction

Greenhouse crop production systems can produce fresh food eco-
nomically and reliably year-round, regardless of seasonal weather vari-
ability. This is achieved by maintaining an ideal growing climate for 
greenhouse crops while minimizing resource consumption such as gas, 
electricity, and CO2. This climate is regulated through actuators such as 
CO2 injection, ventilation, and heating. Currently, growers define cli-
mate strategies, i.e., steady-state targets, that climate computers aim to 
follow through using traditional bang-bang or PID controllers (Chaud-
hary et al., 2019; Hamza et al., 2019; Lafont et al., 2015). However, 
these control methods do not consider optimal crop yield or resource 
efficiency, as they target steady-state setpoints rather than economic ob-
jectives, nor can they anticipate future disturbances. Moreover, apply-
ing PID control in multiple-input multiple-output (MIMO) greenhouse 
systems with complex dynamics and tightly coupled variables such as 
temperature and humidity often requires extensive controller tuning. 
To overcome these limitations, control methods are needed that enforce 

∗ Corresponding author.
 E-mail addresses: bart.vanlaatum@wur.nl (B. van Laatum), s.msaad@tudelft.nl (S. Msaad), eldert.vanhenten@wur.nl (E.J. van Henten), 
R.D.McAllister@tudelft.nl (R.D. Mcallister), sjoerd.boersma@wur.nl (S. Boersma).

hard constraints while optimizing long-term objectives. Optimal control 
and reinforcement learning (RL) are advanced control methods that can 
balance long-term performance and real-time system constraints by op-
timizing an economic objective.

Over the past decades, optimal control methods have been applied 
to support the operation of greenhouse production systems (Blasco 
et al., 2007; Ding et al., 2018; Gruber et al., 2011; Ito, 2012; Kui-
jpers et al., 2021; Montoya et al., 2016; Van Henten, 1994). Model 
predictive control (MPC) is a specific optimal control implementation 
that optimizes an objective function over a finite horizon using a pre-
diction model. Given the current state of the system, MPC computes 
the solution to the finite-horizon optimization problem, applies only 
the first optimal input, and repeats this procedure at the subsequent 
time step, i.e., a receding horizon method. The MPC framework ad-
dresses MIMO systems and can incorporate specific constraints on the 
state and input of the system. Since optimization occurs online, MPC 
naturally handles future disturbances like outdoor weather and mar-
ket price fluctuations. However, greenhouse prediction models do not 
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\begin {equation}\label {eq:discrete-time-model} \begin {aligned} x(t+1) &= f(x(t), u(t), d(t), p),\\ y(t) &= h(x(t)), \end {aligned}\end {equation}
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\begin {equation}\label {eq:model-vars} \begin {aligned} x(t) &= \bigl (x_{\text {DW}}(t),\ x_{\text {CO}_2}(t),\ x_{\text {T}}(t),\ x_{\text {H}_2\text {O}}(t)\bigr )^\top , \\ y(t) &= \bigl (y_{\text {DW}}(t),\ y_{\text {CO}_2}(t),\ y_{\text {T}}(t),\ y_{\text {RH}}(t)\bigr )^\top , \\ u(t) &= \bigl (u_{\text {CO}_2}(t),\ u_{\text {vent}}(t),\ u_{\text {heat}}(t)\bigr )^\top , \\ d(t) &= \bigl (d_{\text {Iglob}}(t),\ d_{\text {CO}_2}(t),\ d_{\text {T}}(t),\ d_{\text {H}_2\text {O}}(t)\bigr )^\top . \\ \end {aligned}\end {equation}


$p$


\begin {align}\label {eq:phatepsilondist} & p \sim \mathcal {U}\left ( \Theta \right ), \\ & \Theta := \left \{ p \in \mathbb {R}^{22} \;\Big |\; p_i \in \left [\bar {p} - \frac {\delta }{2}, \bar {p} + \frac {\delta }{2}\right ] \right \}\end {align}
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\begin {equation}\label {eq:EPI} \begin {aligned} EPI = & \,c_{\text {DW}}\, \bigl (x_\text {DW}(T)-x_\text {DW}(0)\bigr ) \\ &- \sum _{t=0}^{T-1} \bigl ( c_{\text {CO}_2} u_{\text {CO}_2}(t) + c_{\text {heat}} u_{\text {heat}}(t) \bigr ) \Delta t, \end {aligned}\end {equation}
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\begin {equation}\label {eq:stagecost} \begin {aligned} \ell _{\text {e}}\bigl ( u(t), x(t)&, x(t+1) \bigr ) = \\ & \, - c_{\text {DW}} \bigl ( x_\text {DW}(t+1) - x_\text {DW}(t) \bigr ) \\ & \, + \bigl ( c_{\text {CO}_2} u_{\text {CO}_2}(t) + c_{\text {heat}} u_{\text {heat}}(t) \bigr ) \Delta t. \end {aligned}\end {equation}


$y^{\min }$
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\begin {equation}\label {eq:penaltyfunction} \ell _{\text {p}}\bigl (x(t)\bigr ) = g_{\text {CO}_2}\bigl (y_{\text {CO}_2}(t)\bigr ) + g_\text {T}\bigl (y_\text {T}(t)\bigr ) + g_\text {RH}\bigl (y_\text {RH}(t)\bigr ),\end {equation}


$y_{\text {CO}_2}(t)$
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$y(t)=h(x(t))$
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\begin {equation}\label {eq:penaltyfactors} g_{(\cdot )}\bigl (y_{(\cdot )}(t)\bigr ) = \left \{\begin {array}{@{}ll} \lambda _{(\cdot )} \bigl (y_{(\cdot )}(t) - y_{(\cdot )}^\text {max}\bigr ) & \text {if } y_{(\cdot )}(t) > y_{(\cdot )}^\text {max}, \\ \lambda _{(\cdot )} \bigl (y_{(\cdot )}^\text {min} - y_{(\cdot )}(t)\bigr ) & \text {if } y_{(\cdot )}(t) < y_{(\cdot )}^\text {min}, \\ 0 & \text {otherwise}, \end {array}\right .\end {equation}


$\lambda _{(\cdot )}$


\begin {equation}\label {eq:objectivefunction} \begin {aligned} \ell \bigl (u(t)&, x(t), x(t+1)\bigr ) = \\ &\, \ell _{\text {e}}\bigl ( u(t), x(t), x(t+1) \bigr ) + \ell _{\text {p}}(x(t)). \end {aligned}\end {equation}
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\begin {align}& \underset {\pi _0, \dots , \pi _{T-1}}{\text {min}} & & \mathbb {E}_{\mathcal {U}(\Theta )} \left [ \sum _{t=0}^{T-1} \ell \bigl ( u(t),x(t), x(t+1) \bigr ) \right ] \label {eq:optimizationproblem:objectivefunction} \\ & \, \text {s.t.} & & x(t+1) = f\bigl (x(t),u(t),d(t),p\bigr ) \label {eq:optimizationproblem:statefunction}\\ & & & u(t) = \pi _t(x(t)) \label {eq:optimizationproblem:policy}\\ & & & u_\text {min} \leq u(t) \leq u_\text {max} \label {eq:optimizationproblem:inputconstraint}\\ & & &\left | u(t) - u(t-1) \right | \leq \delta u_{\text {max}} \label {eq:optimizationproblem:inputrate_constraint}\\ & & & x(0)=x_0, \, u(0)=u_0 \label {eq:optimizationproblem:initialstate}\end {align}
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\begin {equation}\label {eq:preddist} \mathbf {d}_{N}(t)=(d(t), \dots , d(t+N-1)),\end {equation}


$N$


$\pi _{RL}$


\begin {equation}\label {eq:rlpolicyto_input} u(t) = \pi _\text {RL}(x(t), u(t-1), \mathbf {d}_{N}(t), t)\end {equation}
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\begin {equation}\label {eq:rlactionto_input} u(t) = \max \bigl ( u_{\text {min}}, \min \bigl (u_{\text {max}}, u(t-1) + a(t) \, \delta u_{\text {max}} \bigr ) \bigr ).\end {equation}
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\begin {equation}\label {eq:rl-objective} \max _{\pi _{\text {RL}}} \mathbb {E}_{\substack { p \sim \mathcal {U}(\Theta )\\ (\mathbf {x},\mathbf {u}) \sim \rho (p,\pi _{\text {RL}})}} \left [\sum _{t=0}^{T-1} -\gamma ^{t}\ell \bigl (u(t), x(t), x(t+1)\bigr )\right ],\end {equation}
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\begin {equation}\begin {aligned} \mathbf {x} &= (x(t), x(t+1), \dots , x(t+N)), \\ \mathbf {u} &= (u(t), u(t+1), \dots , u(t+N-1)). \end {aligned} \label {Xeqn12-15}\end {equation}


\begin {align}& \underset {\mathbf {u}, \mathbf {x}}{\min } & & \sum _{k=t}^{t+N-1} \ell \bigl ( u(k),x(k),x(k+1) \bigr ) \\ & \text {s.t.} & & x(k+1) = f(x(k),u(k),d(k),p) \label {eq:MPCoptimizationproblem:state_function} \\ & & & y(k) = h(x(k)) \\ & & & u_\text {min} \leq u(k) \leq u_\text {max} \\ & & & \left |u(k) - u(k-1)\right | \leq \delta u_\text {max} \label {eq:MPCoptimizationproblem:input_rate_constraint}\end {align}
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\begin {equation}u(t) = \pi _\text {MPC}\bigl (x(t), u(t-1), \mathbf {d}_N(t)\bigr ), \label {Xeqn13-17}\end {equation}
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\begin {flalign}& \underset {\mathbf {u}, \mathbf {x}^{(1)}, \dots , \mathbf {x}^{(S)} }{\text {min}} && \hspace {-3.6em} \sum _{i=1}^{S}\sum _{k=t}^{t+N-1} \ell \bigl ( u(k),x^{(i)}(k),x^{(i)}(k+1) \bigr ) \\ & \hspace {1.5em} \text {s.t.} && \hspace {-2em} x^{(i)}(k+1) = f(x^{(i)}(k),u(k),d(k),p^{(i)}) \label {eq:SMPC:statefunction} \\ & && \hspace {-2em} y^{(i)}(k) = h(x^{(i)}(k)) \label {eq:SMPC:outputfunction} \\ & && \hspace {-2em} u_\text {min} \leq u(k) \leq u_\text {max} \\ & && \hspace {-2em} \left |u(k) - u(k-1)\right | \leq \delta u_\text {max} \label {eq:SMPC:inputrateconstraint}\end {flalign}
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\begin {equation}u(t) = \pi _\text {SMPC}\bigl (x(t), u(t-1), \mathbf {d}_N(t)\bigr ) \label {Xeqn14-19}\end {equation}
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\begin {equation}\label {eq:RL-feedback-zero-order} \pi ^{(i)}(x^{(i)}(t),\theta (t)) = \hat u^{(i)}(t) + \theta (t),\end {equation}
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\begin {equation}\label {eq:terminal-cost-objective} \begin {aligned} J_{\pi _\text {RL}}(x(t),t) &= \sum _{k=t}^{T} \ell \bigl ( u_{RL}(k),x(k),x(k+1) \bigr ) \\ \text {s.t. } &x(k+1) = f(x(k), u_{RL}(k), d(k), p) \\ &u_{RL}(k) = \pi _\text {RL}(x(k), u(k-1), \mathbf {d}_{N}(k), k) \end {aligned}\end {equation}
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\begin {equation}x^{(i)}(t^{(i)}) \sim \mathcal {U}\bigl (x^\text {n}_\text {min}(t^{(i)}), x^\text {n}_\text {max}(t^{(i)}) \bigr ), \label {Xeqn17-22}\end {equation}


\begin {equation}\begin {aligned} x^\text {n}_\text {min}(t) &= x^\text {n}(t)(1 - \sigma ), \\ x^\text {n}_\text {max}(t) &= x^\text {n}(t)(1 + \sigma ), \end {aligned} \label {Xeqn18-23}\end {equation}
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\begin {equation*}\mathcal {L}(\phi , \mathcal {D}) = \frac {1}{N_s} \sum _{i=1}^{N_s} \left ( \tilde J_\phi (x_\text {DW}^{(i)}(t^{(i)}), t^{(i)}) - J_{\pi _\text {RL}}(x^{(i)}(t^{(i)}),t^{(i)}) \right )^2.\end {equation*}
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\begin {equation}\label {eq:terminal-region} \mathbb {X}_f^{(i)}(\hat x^{(i)}(t+N)) = \left \{x \in \mathbb {X} \,|\, \|x - \hat x^{(i)}(t+N)\| \leq \epsilon \right \}\end {equation}


$\epsilon > 0$
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\begin {align}& \hspace {-2em} \min _{\boldsymbol \theta , \mathbf x^{(1)}, \dots , \mathbf x^{(S)}}\quad \sum _{i=1}^{S} \sum _{k=t}^{t+N-1} \Bigl ( \ell (u^{(i)}(k), x^{(i)}(k), x^{(i)}(k+1)) \notag \\ & \hspace {8em} + \tilde J_\phi (x^{(i)}(t+N),t+N) \Bigl ) \\ & \hspace {-2em} \text {s.t.} \quad x^{(i)}(k+1) = f(x^{(i)}(k), u^{(i)}(k), d(k), p^{(i)}) \label {eq:rl-smpc:state-function}\\ & y^{(i)}(k) = h(x^{(i)}(k)) \\ & u^{(i)}(k) = \hat u^{(i)}(k)+\theta (k) \\ & u_{\min }\leq u^{(i)}(k) \leq u_{\max } \\ & |u^{(i)}(k) - u^{(i)}(k-1)|\leq \delta u_{\max } \label {eq:rl-smpc:rate-constraint}\\ & x^{(i)}(t+N) \in \mathbb {X}_f^{(i)}(\hat x^{(i)}(t+N)) \label {eq:rl-smpc:terminal-constraint}\end {align}
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\begin {equation}u(t) = \pi _\text {RL-SMPC}\bigl (x(t), u(t-1), \mathbf {d}_N(t)\bigr ). \label {Xeqn20-26}\end {equation}
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\begin {equation}\label {eq:closed-loop-performance} \begin {aligned} \mathcal {J}(\pi _{(\cdot )}) \ & = \sum _{t=0}^{T-1}-\ell \bigl (u(t),x(t),x(t+1)\bigr )\\ \textnormal {s.t. } & x(t+1) = f(x(t),u(t),d(t)), \\ & u(t) = \pi _{(\cdot )}\bigl (x(t),u(t-1),\mathbf {d}_N(t),t\bigr ). \end {aligned}\end {equation}


\begin {equation}\label {eq:closed-loop-EPI} \begin {aligned} \text {EPI}(\pi _{(\cdot )}) & = \sum _{t=0}^{T-1}-\ell _{\text {e}}\bigl (u(t),x(t),x(t+1)\bigr ),\\ \textnormal {s.t. } & x(t+1) = f(x(t),u(t),d(t)), \\ & u(t) = \pi _{(\cdot )}\bigl (x(t),u(t-1),\mathbf {d}_N(t),t\bigr ). \end {aligned}\end {equation}


\begin {equation}\label {eq:closed-loop-penalty} \begin {aligned} \text {Cumulative penalty}&(\pi _{(\cdot )}) = \\\sum _{t=0}^{T-1}-&\ell _{\text {p}}\bigl (x(t)\bigr ),\\ \textnormal {s.t. } & x(t+1) = f(x(t),u(t),d(t)), \\ & u(t) = \pi _{(\cdot )}\bigl (x(t),u(t-1),\mathbf {d}_N(t),t\bigr ). \end {aligned}\end {equation}


\begin {equation}\begin {aligned}\label {eq:delta-performance} \Delta \%&\text {Cumulative reward}=\\ &100\times \frac {\mathcal {J}(\pi _{\text {RL-SMPC}}) - \mathcal {J}(\pi _{(\cdot )})}{\mathcal {J}(\pi _{(\cdot )})}. \end {aligned}\end {equation}
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\begin {equation}\label {eq:discrete-model} \begin {aligned} &f(x(t), u(t), d(t), p) = x(t) + \Delta t \frac {dx}{dt_c}\\ &\text {where}\\ \frac {d x_{\text {DW}}(t_c)}{dt_c} &= p_{\alpha \beta }\,\phi _{\mathrm {phot,c}}(t_c) - p_{\text {resp,d}}\,x_{\text {DW}}(t_c)\,2^{{x_{\mathrm {H_20}}(t_c)/10}-\frac {5}{2}},\\ \frac {dx_{\mathrm {CO_2}}(t_c)}{dt_c} &= \frac {1}{p_{\text {cap,c}}} \Bigl ( -\phi _{\mathrm {phot,c}}(t_c) + p_{\text {resp,c}}\,x_{\text {DW}}(t_c)\,2^{x_{\mathrm {H_2O}}(t)/10-\frac {5}{2}}\\ & \dots + u_{\mathrm {CO_2}}(t_c)\,10^{-6} - \phi _{\mathrm {vent,c}}(t_c) \Bigr ),\\ \frac {dx_{\text {T}}(t_c)}{dt_c}& = \frac {1}{p_{\text {cap,q}}} \Bigl ( u_{\text {heat}}(t_c) - \bigl (p_{\mathrm {cap, v}}\,u_{\mathrm {vent}}(t_c)\,10^{-3} + p_{\mathrm {cov}, \tau }\bigr )\\ &\cdots \bigl (x_{\mathrm {T}}(t_c) - d_{\mathrm {T}}(t_c)\bigr ) + p_{\mathrm {cov, rad}}\,d_{\mathrm {iGlob}}(t_c) \Bigr ),\\ \frac {dx_{\mathrm {H_2O}}(t_c)}{dt_c} &= \frac {1}{p_{\mathrm {cap, h}}} \bigl ( \phi _{\mathrm {transp,h}}(t_c) - \phi _{\mathrm {vent,h}}(t_c) \bigr ), \end {aligned}\end {equation}


\begin {equation}\begin {aligned} \phi _{\mathrm {phot,c}}(t_c) &= \bigl (1 - e^{-p_{\mathrm {LAI, d}}x_{\mathrm {DW}}(t_c)}\bigr ) \\ &\cdots p^{\mathrm {I}}_{\mathrm {phot}}d_{\mathrm {iGlob}}(t_c)\\ &\cdots \bigl (-p^{\mathrm {phot}}_{\mathrm {CO_2, 1}}x_{\mathrm {T}}(t_c)^{2}+p^{\mathrm {phot}}_{\mathrm {CO_2, 2}}x_{\mathrm {T}}(t_c)-p^{\mathrm {phot}}_{\mathrm {CO_2, 3}}\bigr )\\ &\cdots \bigl (x_{\mathrm {CO_2}}(t_c)-p_{8}\bigr )/ \varphi (t_c),\\ \varphi (t_c) &= p^{\mathrm {I}}_{\mathrm {phot}}d_{\mathrm {iGlob}}(t_c)+\\ &\cdots \bigl (-p^{\mathrm {phot}}_{\mathrm {CO_2, 1}}x_{\mathrm {T}}(t_c)^{2}+p^{\mathrm {phot}}_{\mathrm {CO_2, 2}}x_{\mathrm {T}}(t_c)-p^{\mathrm {phot}}_{\mathrm {CO_2, 3}}\bigr )\\&\cdots \bigl (x_{\mathrm {CO_2}}(t_c)-p_{8}\bigr ),\\ \phi _{\mathrm {vent,c}}(t_c) &= \bigl (u_{\mathrm {vent}}(t_c)\,10^{-3} + p_{\mathrm {leak}}\bigr )\,\bigl (x_{\mathrm {CO_2}}(t_c)-d_{\mathrm {CO_2}}(t_c)\bigr ),\\ \phi _{\mathrm {vent,h}}(t_c) &= \bigl (u_{\mathrm {vent}}(t_c)\,10^{-3} + p_{\mathrm {leak}}\bigr )\,\bigl (x_{\mathrm {H_2O}}(t_c)-d_{\mathrm {H_2O}}(t_c)\bigr ),\\ \phi _{\mathrm {transp,h}}(t_c) & = p_{\mathrm {vap}}\,\bigl (1 - e^{-p_{\mathrm {LAI, d}} x_{\mathrm {DW}}(t_c)}\bigr ) \\ &\cdots \Bigl ( \frac {p_{\mathrm {sat, {\rm H_2O}, 1}}}{p_{\mathrm {R}}\bigl (x_{\mathrm {T}}(t_c)+p_{\mathrm {T}}\bigr )} e{(\tfrac {p_{\mathrm {sat, {\rm H_2O}, 2}}x_{\mathrm {T}}(t_c)}{x_{\mathrm {T}}(t_c)+p_{\mathrm {sat, {\rm H_2O}, 3}}}} - x_{\mathrm {H_2O}}(t_c) \Bigr )\,. \end {aligned} \label {Xeqn26-A.2}\end {equation}
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perfectly mimic real-world greenhouse systems due to modeling er-
rors related to complex crop physiology and system variability. These 
errors can be represented as parametric model uncertainties, which 
can significantly affect control performance when not accounted for
(Boersma et al., 2022; Mondaca-Duarte et al., 2020; Van Henten, 2003). 
The majority of greenhouse optimal control or MPC applications as-
sumed deterministic models (Blasco et al., 2007; Ding et al., 2018; Kui-
jpers et al., 2021; Van Henten, 1994). Studies focusing on uncertainty in 
greenhouse systems have mainly addressed external disturbances such 
as weather or price forecasts rather than parametric uncertainties (Chen 
& You, 2020; García-Mañas et al., 2024; Kuijpers et al., 2022). There-
fore, there is a need for control methods that adapt inputs to mitigate 
the impact of parametric uncertainties.

Most literature on greenhouse control treats parametric uncertainty 
via worst-case bounds by using a linearized model for computational 
reasons. González et al. (2014), Hamza et al. (2019), Piñón et al. 
(2001) studied robust MPC by linearizing the greenhouse model and 
propagating uncertainty through bounded constraints. While effective, 
these worst-case methods could result in more conservative controllers. 
Svensen et al. (2024) addressed this conservatism by explicitly handling 
parametric uncertainty through stochastic MPC (SMPC) with chance 
constraints. However, all of these approaches rely on linearization of 
the greenhouse model, which may increase uncertainty when the system 
deviates from the linearization point. In contrast, Boersma et al. (2022) 
applied robust scenario-based MPC to a nonlinear greenhouse model, 
eliminating the need for model linearization. But this robust MPC frame-
work yielded a conservative controller, as evidenced by the decreased 
crop growth and increased CO2 and heating demand. Another line of 
work focuses on parameter estimation and learning in greenhouse con-
trol problems. Xu et al. (2018) proposed online parameter estimation 
for time-varying parameters of the greenhouse model, yielding an adap-
tive MPC formulation. More recently, Mallick et al. (2025) integrated RL 
and MPC by adapting a parameterized MPC controller as an RL policy 
and cost function approximator. Specifically, this work uses RL to learn 
the parameterization of the MPC framework. Although this approach re-
duced constraint violations, it does not explicitly propagate uncertainty 
distributions throughout the prediction horizon.

Scenario-based SMPC offers a promising direction for explicitly prop-
agating uncertainty in nonlinear optimal control problems (Mesbah, 
2016). By sampling a finite set of uncertainty realizations to approxi-
mate the uncertainty distribution, this approach enables optimization 
of uncertain processes, such as crop growth, under probabilistic system 
constraints. However, scenario-based SMPC can become computation-
ally intractable as the number of samples and the prediction horizon 
grow. Reducing the number of scenarios compromises coverage of the 
uncertainty space, while shortening the horizon risks neglecting long-
term climate-crop interaction, leading to suboptimal performance. Exist-
ing approaches aim to ensure closed-loop performance with short hori-
zons by incorporating terminal costs and constraints in the SMPC for-
mulation. For linear systems, conventional strategies handle additive or 
multiplicative disturbances using stochastic Lyapunov functions and/or 
tube-based methods as terminal costs and constraint functions to guar-
antee stability and recursive feasibility (Cannon et al., 2011; Primbs 
& Sung, 2009). The construction of terminal costs and constraints for 
performance guarantees is addressed in (Lorenzen et al., 2017), where 
a tradeoff is shown between feasible region size and average perfor-
mance. In Chatterjee and Lygeros (2015), stochastic Lyapunov functions 
were also used as terminal costs in a general nonlinear SMPC framework 
to establish stability and performance guarantees. However, these ap-
proaches typically require defining an appropriate steady state for the 
system. This requirement limits their use in greenhouse production con-
trol, where a steady state is either unavailable or undesirable. Though 
generalized terminal constraint methods avoid defining steady-state tar-
gets a priori, they still enforce that the terminal state-input pair satisfies 
a feasible steady state condition during online optimization (Fagiano & 
Teel, 2013; MÃ¼ller et al., 2014). To the authors’ knowledge, the de-

sign of terminal constraints, terminal costs, and feedback policies for 
scenario-based SMPC with economic objectives remains largely unex-
plored.

Moreover, uncertainty naturally grows with longer prediction hori-
zons, causing the planned trajectory to be overly conservative by keep-
ing an unrealistically high distance from the defined system constraints. 
Incorporating a feedback control policy for each sampled realization can 
attenuate this growth. A common approach is to approximate this with 
a linear feedback policy (Mayne et al., 2011; Messerer & Diehl, 2021). 
However, deriving such a linear policy for a nonlinear economic opti-
mal control problem is nontrivial for similar reasons as the construction 
of terminal costs and constraints. The reliance of linear feedback poli-
cies on steady-state targets conflicts with the objectives of greenhouse 
production systems, where such steady states are undesirable. Conse-
quently, there is a need for a control policy that can simultaneously 
provide terminal costs and constraints, as well as feedback laws within 
a tractable SMPC framework.

As an alternative to (S)MPC, RL is a framework that learns (near-)op-
timal control policies by optimizing an objective through numerous sys-
tem interactions (Sutton & Barto, 2018). Policies, usually parameterized 
by deep neural networks (DNNs), map observations to control inputs. 
Since training predominantly occurs offline using a model of the system, 
RL has relatively low online computational time. The RL objective func-
tion is defined to maximize the expected cumulative reward, enabling 
the learned policy to account for the long-term performance. Moreover, 
RL can naturally incorporate uncertainty by injecting sampled uncer-
tainty into the system dynamics during training, eliminating the need 
for online optimization and reducing computational overhead. Recent 
work has evaluated RL for greenhouse production control, comparing 
MPC with the deep deterministic policy gradient algorithm (Morcego 
et al., 2023), and developing stochastic simulation environments for 
RL-based greenhouse control (Van Laatum et al., 2025). Despite these 
advancements, RL struggles to enforce system constraints, which are 
usually formulated as a penalty in the objective function (Brunke et al., 
2022). This method requires careful tuning to balance the objective and 
the penalty function, often yielding overly conservative policies or con-
straint violations. In greenhouse production systems, this means that 
growers cannot be certain the controller will maintain climate variables 
within safe ranges, with potential negative implications on crop growth 
and health.

The properties of RL and SMPC offer complementary strengths: RL 
can achieve long-term performance under stochastic dynamics with low 
online computation time, while SMPC can consider constraints more 
precisely but becomes computationally demanding over long prediction 
horizons. This synergy motivates exploring integrated RL-SMPC meth-
ods. For RL and nominal MPC, there are a variety of recently proposed 
combinations that demonstrate the potential for performance improve-
ments achieved by the synergy between these methods (see the review in 
Reiter et al. (2025) for more details). However, there are fewer methods 
available to combine RL and SMPC. Two such methods were proposed 
in Chen et al. (2020), which used SMPC to track a trajectory generated 
by RL, and Zarrouki et al. (2024), which learn relevant parameters in 
the SMPC optimization problem (such as horizon length and constraint 
tightening) through closed-loop simulations.

Of these various methods to combine RL and MPC, this work focuses 
specifically on the capability of RL to provide terminal ingredients for 
(S)MPC. Msaad et al. (2025) and Reiter et al. (2025) demonstrated that 
RL can improve over nominal MPC solutions in a deterministic setting 
at short prediction horizons by providing warm starts, terminal con-
straints, and a terminal cost. This study proposes extending these meth-
ods to combine RL and SMPC, with the aim of achieving similar im-
provements in a stochastic environment and reducing the computational 
demand of scenario-based SMPC methods.

To this end, RL-SMPC is introduced, integrating a trained RL pol-
icy into the scenario-based SMPC framework. RL-SMPC extends the RL-
guided MPC algorithm (Msaad et al., 2025) into a scenario-based SMPC 
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Fig. 1. Illustrative sketch of RL-SMPC during online optimization. At time 
step 𝑡, the greenhouse state 𝑥(𝑡) is measured. Starting from this state, the trained 
RL policy 𝜋RL generates a set of rollout trajectories 𝜏RL over the prediction hori-
zon 𝑁 . The blue trajectories delineate these trajectories in the RL-SMPC con-
troller. The shaded areas represent the terminal region constraints provided by 
the trajectories. RL-SMPC then optimizes the decision variable 𝜃, a uniform shift 
applied to all rollout trajectories, resulting in the predicted RL-SMPC trajecto-
ries, visualized in red. The terminal-cost function 𝐽𝜙 evaluates each terminal 
state. Finally, the first control action 𝑢(𝑡) is applied to the system. (For interpre-
tation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

framework for greenhouse production control under parametric uncer-
tainty. At each control iteration, the policy provides a terminal region 
constraint and an approximation of the terminal cost, without the need 
for steady-state targets. Additionally, this RL policy serves as a nonlin-
ear feedback law, circumventing the design of an ad hoc linear feedback 
law that is typically required for SMPC. RL-SMPC modifies the standard 
scenario-based SMPC framework through three key components:
1. A trained RL policy generates rollout trajectories to define terminal 
region constraints for each sampled uncertainty scenario.

2. A DNN-based terminal cost function approximates state values at the 
end of the prediction horizon, learned from closed-loop trajectories 
of the RL policy.

3. The RL policy serves as a nonlinear feedback policy.
By providing a terminal region constraint and cost function across all 
sampled scenarios, these RL components can transfer long-term infor-
mation to the SMPC framework, enabling better performance at shorter 
prediction horizons. Furthermore, employing the RL policy as a nonlin-
ear feedback law attenuates the growth of uncertainty over extended 
horizons, without relying on linear feedback approximations as most 
SMPC methods do (Mayne et al., 2011; Messerer & Diehl, 2021). This 
work compares RL-SMPC against standalone RL, MPC, and scenario-
based SMPC on a lettuce greenhouse model under parametric uncer-
tainty, addressing the research question: To what extent does RL-SMPC 
improve greenhouse production control, compared to SMPC and MPC, under 
parametric uncertainty? Fig. 1 illustrates the RL-SMPC algorithm during 
online deployment.

To the best of current knowledge, this work is the first to integrate 
RL with SMPC using terminal region constraints, terminal costs, and 
nonlinear feedback policies. In simulation experiments, the RL-SMPC 
framework was compared against standalone MPC, SMPC, and RL for a 
greenhouse production control problem under parametric model uncer-
tainty. The results showed that RL-SMPC outperformed nominal MPC 
across all eight tested prediction horizons (1 − 8 hours), and varying 
uncertainty levels (5% − 20%). Moreover, RL-SMPC surpassed SMPC in 
performance for prediction horizons up to four hours, while maintain-
ing comparable computational costs. Ablation studies indicated that the 
terminal region constraints primarily drive the performance gains.

The remainder of this paper is organized as follows: Section 2 in-
troduces the greenhouse production model and control problem. Sec-

tion 3 details the RL-SMPC methodology and implementation. Section 4 
presents results, which are discussed in Section 5. Finally, Section 6 con-
cludes the paper and outlines future research directions.

2.  Problem formalization

2.1.  Lettuce greenhouse model

The nonlinear dynamical greenhouse lettuce model in this work is 
taken from (Van Henten, 1994). The discrete-time form is obtained via 
numerical integration using the fourth-order Runge-Kutta method:

𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑑(𝑡), 𝑝),

𝑦(𝑡) = ℎ(𝑥(𝑡)),
(1)

with discrete time step 𝑡 ∈ ℤ0+, state variable 𝑥(𝑡) ∈ ℝ4, measurement 
𝑦(𝑡) ∈ ℝ4, input 𝑢(𝑡) ∈ ℝ3, weather disturbance 𝑑(𝑡) ∈ ℝ4, and 𝑝 ∈ ℝ22

represents the model parameters. The nonlinear functions 𝑓 (⋅) and ℎ(⋅)
represent the greenhouse model dynamics and measurement function, 
respectively. The state, output, control input, and disturbance are de-
fined as:

𝑥(𝑡) =
(

𝑥DW(𝑡), 𝑥CO2
(𝑡), 𝑥T(𝑡), 𝑥H2O(𝑡)

)⊤,

𝑦(𝑡) =
(

𝑦DW(𝑡), 𝑦CO2
(𝑡), 𝑦T(𝑡), 𝑦RH(𝑡)

)⊤,

𝑢(𝑡) =
(

𝑢CO2
(𝑡), 𝑢vent(𝑡), 𝑢heat(𝑡)

)⊤,

𝑑(𝑡) =
(

𝑑Iglob(𝑡), 𝑑CO2
(𝑡), 𝑑T(𝑡), 𝑑H2O(𝑡)

)⊤.

(2)

The model parameters 𝑝 are assumed to be uncertain and distributed 
uniformly as follows:

𝑝 ∼  (Θ), (3)

Θ ∶=
{

𝑝 ∈ ℝ22 |
|

|

𝑝𝑖 ∈
[

𝑝̄ − 𝛿
2
, 𝑝̄ + 𝛿

2

]}

(4)

where 𝑝̄ represents the nominal parameter values, and 𝑝𝑖 represents the 
𝑖-th element of 𝑝. The support Θ is thus defined by the nominal parame-
ter values and the uncertainty size 𝛿. The distribution  (Θ) denotes the 
uniform distribution over the hyper-rectangle Θ.
A complete description of the model, together with the nominal param-
eter values 𝑝̄ is provided in Appendix A.

2.2.  Greenhouse production control problem

Greenhouse production control aims to maximize crop yield by regu-
lating indoor climate: temperature, humidity, and CO2, using actuators 
such as heating, ventilation, and CO2 injection. The goal is high yield 
with minimal energy use. Although harvest timing affects profitability, 
this study imposes a fixed 40-day cultivation period 𝑇 , consistent with 
prior work (Boersma et al., 2022; Mallick et al., 2025; Morcego et al., 
2023; Msaad et al., 2025).

The Economic Profit Indicator (EPI) serves as the objective function 
to be maximized. It is defined as the revenue from selling the accumu-
lated crop weight minus the costs incurred during the cultivation period:

𝐸𝑃𝐼 = 𝑐DW
(

𝑥DW(𝑇 ) − 𝑥DW(0)
)

−
𝑇−1
∑

𝑡=0

(

𝑐CO2
𝑢CO2

(𝑡) + 𝑐heat𝑢heat(𝑡)
)

Δ𝑡,
(5)

where 𝑐DW is the unit selling price of the crop in dry weight, 𝑥DW(𝑇 )
is the yield at harvest time 𝑇 , 𝑐CO2

 and 𝑐heat are the unit costs of CO2
injection and heating, respectively, and Δ𝑡 is the time step size. Direct 
incorporation of the economic objective in (5) within the MPC or RL 
framework requires mapping the EPI to an economic stage cost, where 
the benefit for plant growth is evaluated at each time step rather than 
solely at the end of the growing period. For this reason, the following 

Control Engineering Practice 169 (2026) 106787 

3 



B. van Laatum et al.

economic stage cost is defined and evaluated at each time step:
𝓁e

(

𝑢(𝑡), 𝑥(𝑡), 𝑥(𝑡 + 1)
)

=

− 𝑐DW
(

𝑥DW(𝑡 + 1) − 𝑥DW(𝑡)
)

+
(

𝑐CO2
𝑢CO2

(𝑡) + 𝑐heat𝑢heat(𝑡)
)

Δ𝑡.

(6)

By construction, the cumulative sum of the stage cost over the cul-
tivation horizon corresponds to the EPI in (5), up to a sign reversal. 
The employed crop prediction model is valid only within specified cli-
mate bounds 𝑦min and 𝑦max, as operating outside this domain can in-
duce crop diseases. These bounds are not enforced as hard constraints 
in the optimization problem, since uncertainties in model parameters 
may cause violations or infeasibility. Similarly, reinforcement learning 
cannot guarantee strict satisfaction of state constraints. In order to have 
a fair comparison between methods, state constraint violations are pe-
nalized via linear penalty functions:
𝓁p

(

𝑥(𝑡)
)

= 𝑔CO2

(

𝑦CO2
(𝑡)
)

+ 𝑔T
(

𝑦T(𝑡)
)

+ 𝑔RH
(

𝑦RH(𝑡)
)

, (7)

where the outputs 𝑦CO2
(𝑡), 𝑦T(𝑡) and 𝑦RH(𝑡) are obtained from the mea-

surement function as 𝑦(𝑡) = ℎ(𝑥(𝑡)). The functions 𝑔CO2
, 𝑔T, and 𝑔RH apply 

penalties for deviations from their respective acceptable ranges. Each 
penalty function 𝑔(⋅) is defined as:

𝑔(⋅)
(

𝑦(⋅)(𝑡)
)

=

⎧

⎪

⎨

⎪

⎩

𝜆(⋅)
(

𝑦(⋅)(𝑡) − 𝑦max(⋅)
)

if 𝑦(⋅)(𝑡) > 𝑦max(⋅) ,
𝜆(⋅)

(

𝑦min(⋅) − 𝑦(⋅)(𝑡)
)

if 𝑦(⋅)(𝑡) < 𝑦min(⋅) ,
0 otherwise,

(8)

where the values of 𝜆(⋅) represent the penalty coefficients that regulate 
the scale of each penalty term. These coefficients influence the solu-
tions obtained by the controllers. Choosing the coefficients to scale the 
penalty terms of comparable magnitude to the economic stage cost (6) 
yielded controllers with balanced economic performance and constraint 
satisfaction. The effect of the penalty coefficients on controller perfor-
mance is discussed in Section 5.1. Combining the economic stage cost
(6) and the penalty function (7) results in the following stage cost func-
tion:

𝓁
(

𝑢(𝑡), 𝑥(𝑡), 𝑥(𝑡 + 1)
)

=

𝓁e
(

𝑢(𝑡), 𝑥(𝑡), 𝑥(𝑡 + 1)
)

+ 𝓁p(𝑥(𝑡)).
(9)

In addition to limitations on the system states, the control inputs are also 
constrained. Specifically, the CO2 injection 𝑢CO2

, ventilation rate 𝑢vent, 
and heating input 𝑢heat are restricted to lie within predefined bounds. 
To ensure smooth actuation, rate constraints are also imposed on the 
control inputs. For each control input, the maximum allowed change 
per time step is limited to 10% of its respective upper bound. Taking 
into account the objective function in (9), along with the dynamic model 
and the input and rate constraints, the greenhouse production control 
problem is formulated as: 

min
𝜋0 ,…,𝜋𝑇−1

𝔼 (Θ)

[𝑇−1
∑

𝑡=0
𝓁
(

𝑢(𝑡), 𝑥(𝑡), 𝑥(𝑡 + 1)
)

]

(10a)

s.t. 𝑥(𝑡 + 1) = 𝑓
(

𝑥(𝑡), 𝑢(𝑡), 𝑑(𝑡), 𝑝
)

(10b)

𝑢(𝑡) = 𝜋𝑡(𝑥(𝑡)) (10c)

𝑢min ≤ 𝑢(𝑡) ≤ 𝑢max (10d)

|𝑢(𝑡) − 𝑢(𝑡 − 1)| ≤ 𝛿𝑢max (10e)

𝑥(0) = 𝑥0, 𝑢(0) = 𝑢0 (10f)

where constraints (10b–10e) need to be enforced for each 𝑡 ∈ {0,… , 𝑇 −
1} and for each 𝑝 ∈ Θ. It is important to notice how this formula-
tion involves solving for an optimal trajectory of feedback policies 
{𝜋0,… , 𝜋𝑇−1} in which 𝑢(𝑡) = 𝜋𝑘(𝑥(𝑡)), rather than an optimal trajectory 
of inputs. Optimizing feedback policies is preferred under uncertainty, 
as it makes it possible to restrain the spread of the trajectories result-
ing from uncertainty. However, optimizing over feedback policies is a 
difficult task, especially if nonlinearities or constraints characterize the 
optimal control problem. This challenge is faced in Sections 3.3 and 

3.4, where feedback parametrization is used in the proposed RL-SMPC 
formulation to find an approximate solution.

This greenhouse production control problem in (10) serves as the 
common control formulation approximated by the RL agent, MPC, 
SMPC, and RL-SMPC. The resulting controllers are evaluated by closed-
loop performance metrics, which are introduced in Section 3.5

3.  Methodology

3.1.  Reinforcement learning

This work leverages the Soft Actor-Critic (SAC) algorithm (Haarnoja 
et al., 2018), an off-policy actor-critic method known for its robust-
ness and sample efficiency. SAC augments the standard reward objective 
with an entropy maximization term, promoting a trade-off between ex-
ploiting known strategies and exploring new ones. The entropy term pro-
motes exploration by encouraging varied action selection, which helps 
the agent discover diverse strategies. It also mitigates premature conver-
gence by preventing the policy from committing too early to suboptimal 
behaviors.

The observation used in the RL policy includes the current state 𝑥(𝑡), 
previous input 𝑢(𝑡 − 1), time 𝑡, and a sequence of future weather distur-
bances

𝐝𝑁 (𝑡) = (𝑑(𝑡),… , 𝑑(𝑡 +𝑁 − 1)), (11)

where 𝑁 corresponds to a six-hour horizon. The RL policy 𝜋𝑅𝐿 maps 
this observation space to a control input:
𝑢(𝑡) = 𝜋RL(𝑥(𝑡), 𝑢(𝑡 − 1),𝐝𝑁 (𝑡), 𝑡) (12)

The policy 𝜋RL is implemented as a neural network that maps the 
current observation to an intermediate action 𝑎(𝑡), followed by a trans-
formation layer that converts 𝑎(𝑡) into the control input 𝑢(𝑡). This trans-
formation layer is necessary to ensure that the final control input re-
spects the system’s constraints. To account for the control input bounds 
and rate constraints in (10d) and (10e), the previous input 𝑢(𝑡 − 1) is 
included in the observation space, and the action 𝑎(𝑡) is interpreted as 
a scaled adjustment to 𝑢(𝑡 − 1). This adjustment from action to control 
input is defined as:
𝑢(𝑡) = max

(

𝑢min,min
(

𝑢max, 𝑢(𝑡 − 1) + 𝑎(𝑡) 𝛿𝑢max
))

. (13)

Moreover, each one of the three components of 𝑎(𝑡) is constrained to 
lie within the interval [−1, 1] by the activation functions in the neural 
network.

The choice of the observation space is critical for the agent’s per-
formance. In practice, greenhouse operators do not directly observe the 
dry weight of the crop. Nevertheless, this study assumes that the dry 
mass, 𝑦DW(𝑡), is available to the agent, the MPC, the SMPC, and the RL-
SMPC to facilitate performance benchmarking. The observation space 
also includes sensor-based measurements commonly available in real 
greenhouses: CO2 level 𝑦CO2

(𝑡), indoor temperature 𝑦T(𝑡), and relative 
humidity 𝑦RH(𝑡). These outputs form the measurement vector 𝑦(𝑡), which 
is derived from the state of the system via the mapping 𝑦(𝑡) = ℎ(𝑥(𝑡)). 
The observation space also includes external weather conditions. Specif-
ically, instead of using only the current condition 𝑑(𝑡), the agent receives 
an entire sequence of values 𝐝𝑁 (𝑡). This ensures consistency across all 
control strategies, as all are provided with similar information. Lastly, 
the agent receives the current time step as part of its observation. This 
temporal information allows the policy to adjust its behavior according 
to the specific moment in the growing cycle.

A key hyperparameter in this setup is the discount factor 𝛾 ∈ [0, 1]. 
Setting a discount factor 𝛾 = 1 would allow full consideration of long-
term effects over the entire growing period, which is ideal for optimizing 
economic returns. However, 𝛾 = 1 leads to unstable learning dynamics 
in this problem formulation. To balance foresight and training stabil-
ity, a slightly reduced value of 𝛾 = 0.95 was used, which yields more 
reliable and effective policy learning. This discount factor was adopted 
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Table 1 
Hyperparameters for SAC.
 Hyperparameter  Value
 Total time steps 192, 000
 Learn starts 17, 460
 Learning rate (𝛼) 5 × 10−3

 Batch size 1024
 Discount factor (𝛾) 0.95
 Activation fn  ReLU
 Buffer size 105

 Polyak-coefficient 0.005
 Train freq 1
 Grad steps 1

from closely related work on RL policy-guided MPC by Msaad et al. 
(2025). It was observed that larger values resulted in less stable train-
ing without improved performance. A discount factor of 𝛾 = 0.95 pro-
vided a sufficiently long horizon for the RL agent to capture the rel-
evant climate-crop dynamics required for efficient greenhouse lettuce 
production control with the employed model. Lower values of 𝛾 would 
create myopic agents that prioritize short-term rewards (e.g., minimize 
costs) while neglecting long-term economic performance through sus-
tained crop growth.

The reward function used to train the RL agent is defined as the neg-
ative of the stage cost in (9). During the training process, the agent’s 
objective is then defined by the expected value of the discounted cumu-
lative reward:

max
𝜋RL

𝔼 𝑝∼ (Θ)
(𝐱,𝐮)∼𝜌(𝑝,𝜋RL)

[𝑇−1
∑

𝑡=0
−𝛾 𝑡𝓁

(

𝑢(𝑡), 𝑥(𝑡), 𝑥(𝑡 + 1)
)

]

, (14)

subject to the dynamics in (1), and where the state-input trajectory fol-
lows the distribution 𝜌 induced jointly by the randomized model pa-
rameter and the exploration noise of the stochastic policy. The sign in-
version enables the agent to maximize cumulative reward while main-
taining alignment with the optimization goals of the MPC and hybrid 
approaches, allowing for fair performance comparisons across meth-
ods. As mentioned in Section 2, state constraint violations are penal-
ized through the stage cost function (9). RL methods are sensitive to the 
relative scaling of these penalty terms. Excessively large penalty coeffi-
cients may cause the penalty term to dominate policy updates, resulting 
in conservative policies. By scaling the penalty terms to a magnitude 
comparable to the economic stage cost (6), stable policy learning and a 
balanced trade-off between economic performance and constraint sat-
isfaction were observed. Section 5.1 discusses the effect of the penalty 
coefficients on controller performance in more detail.

The RL policy was trained with Stable-Baselines-3 (Raffin et al., 
2021). The complete set of hyperparameters is listed in Table 1.

3.2.  Model predictive control

At each time step 𝑡, given the current state 𝑥(𝑡) and previous input 
𝑢(𝑡 − 1), the predicted state and input sequences over a horizon of length 
𝑁 are defined as:
𝐱 = (𝑥(𝑡), 𝑥(𝑡 + 1),… , 𝑥(𝑡 +𝑁)),

𝐮 = (𝑢(𝑡), 𝑢(𝑡 + 1),… , 𝑢(𝑡 +𝑁 − 1)).
(15)

The controller then solves the following finite-horizon optimal control 
problem: 

min
𝐮,𝐱

𝑡+𝑁−1
∑

𝑘=𝑡
𝓁
(

𝑢(𝑘), 𝑥(𝑘), 𝑥(𝑘 + 1)
)

(16a)

s.t. 𝑥(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑢(𝑘), 𝑑(𝑘), 𝑝) (16b)

𝑦(𝑘) = ℎ(𝑥(𝑘)) (16c)

𝑢min ≤ 𝑢(𝑘) ≤ 𝑢max (16d)

|𝑢(𝑘) − 𝑢(𝑘 − 1)| ≤ 𝛿𝑢max (16e)

where all constraints must be satisfied at each prediction step 𝑘 ∈
{𝑡,… , 𝑡 +𝑁 − 1}. After solving this problem, only the first optimal in-
put is applied to the system. The optimization is then solved again at 
every subsequent time step until the end of the growing period. This 
procedure implicitly defines a policy 𝜋MPC that maps the current state 
𝑥(𝑡), previous input 𝑢(𝑡 − 1), and future disturbances 𝐝𝑁 (𝑡) to the control 
input 𝑢(𝑡):
𝑢(𝑡) = 𝜋MPC

(

𝑥(𝑡), 𝑢(𝑡 − 1),𝐝𝑁 (𝑡)
)

, (17)

where 𝐝𝑁 (𝑡) represents the future weather disturbances for the predic-
tion horizon 𝑁 . Note the difference in the prediction horizon with the 
RL agent, which uses a fixed six-hour horizon in its observation space.

The MPC optimization problem was implemented with the automatic 
differentiation framework CasADi (Andersson et al., 2019) and solved 
with the interior-point solver IPOPT (Wächter & Biegler, 2006).

3.3.  Stochastic model predictive control

Stochastic Model Predictive Control (SMPC) extends the traditional 
MPC framework by explicitly incorporating uncertainty into the opti-
mization problem. Unlike deterministic MPC, which assumes perfect 
knowledge of the prediction model, SMPC incorporates probabilistic in-
formation to optimize control inputs over a finite horizon. Many SMPC 
formulations propagate full probability distributions through the pre-
diction horizon, but this quickly becomes intractable for nonlinear sys-
tems. Therefore, this work builds on scenario-based SMPC to approx-
imate the optimization problem in (10). The scenario-based approach 
assumes that the uncertainty follows a known distribution, which is 
approximated by sampling a finite number of disturbance realizations. 
By optimizing over this scenario set, the controller captures the effect 
of uncertainty without propagating complete probability distributions 
through the prediction horizon. This discretization of the probability 
space yields a computationally tractable optimization problem.

At each time step, 𝑆 scenarios are sampled from the uncertainty 
set. These sampled scenarios are then explicitly included in the op-
timization problem, allowing the controller to account for the uncer-
tainty in the system dynamics. The optimization problem is then solved 
by minimizing the expected cost over all scenarios. Ideally, it would 
minimize over a trajectory of feedback policies as discussed in Sec-
tion 2.2. However, in practice, this is computationally infeasible. There-
fore, the optimization is performed over one trajectory of control in-
puts 𝐮 = (𝑢(𝑡), 𝑢(𝑡 + 1),… , 𝑢(𝑡 +𝑁 − 1)) shared by all scenarios and over 
𝑆 trajectories of predicted states 𝐱(𝑖) = (𝑥(𝑖)(𝑡), 𝑥(𝑖)(𝑡 + 1),… , 𝑥(𝑖)(𝑡 +𝑁)), 
one for each scenario 𝑖. At each time step 𝑡, the following optimization 
problem is solved: 

min
𝐮,𝐱(1) ,…,𝐱(𝑆)

𝑆
∑

𝑖=1

𝑡+𝑁−1
∑

𝑘=𝑡
𝓁
(

𝑢(𝑘), 𝑥(𝑖)(𝑘), 𝑥(𝑖)(𝑘 + 1)
)

(18a)

s.t. 𝑥(𝑖)(𝑘 + 1) = 𝑓 (𝑥(𝑖)(𝑘), 𝑢(𝑘), 𝑑(𝑘), 𝑝(𝑖)) (18b)

𝑦(𝑖)(𝑘) = ℎ(𝑥(𝑖)(𝑘)) (18c)

𝑢min ≤ 𝑢(𝑘) ≤ 𝑢max (18d)

|𝑢(𝑘) − 𝑢(𝑘 − 1)| ≤ 𝛿𝑢max (18e)

in which, 𝑝(𝑖) are the sampled parameters, and 𝑥(𝑖)(𝑡), 𝑦(𝑖)(𝑡) represent the 
corresponding state and output trajectories. Moreover, the constraints 
are enforced for each 𝑘 ∈ {𝑡,… , 𝑡 +𝑁 − 1} and for each 𝑖 ∈ {1,… , 𝑆}. As 
in MPC (Section 3.2), only the first control input is applied at each time 
step, and the procedure is repeated, thereby defining policy 𝜋SMPC:
𝑢(𝑡) = 𝜋SMPC

(

𝑥(𝑡), 𝑢(𝑡 − 1),𝐝𝑁 (𝑡)
)

(19)

3.4.  RL-SMPC

The RL-SMPC proposed in this work combines the strengths of both 
RL and SMPC to enhance the performance of greenhouse production sys-
tems under parametric uncertainties. Ideally, the optimization should 
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be performed over a trajectory of feedback policies as discussed in Sec-
tion 2.2. Since this is not feasible in practice, the RL policy obtained in 
Section 3.1 is used to define a feedback parameterization for the SMPC 
optimization problem. A natural idea is to directly embed the RL policy 
in the feedback parameterization. While theoretically appealing, this 
approach would embed the neural network of the policy 𝜋RL into the 
SMPC optimization problem, which is not computationally appealing 
and should be avoided.

Instead, at each time step, 𝑆 scenarios are sampled from the uncer-
tainty set  (Θ), as with the scenario-based SMPC method proposed in 
the previous subsection. A rollout (simulation) of the RL policy is then 
considered for each scenario from 𝑡 to 𝑡 +𝑁 . Thus, for a given scenario 𝑖, 
a state trajectory 𝑥̂(𝑖)(𝑡) and the corresponding input trajectory 𝑢̂(𝑖)(𝑡) are 
obtained from the RL policy. These trajectories are then used to define 
a feedback parameterization 𝜋(𝑖)(𝑥(𝑖)(𝑡), 𝜃(𝑡)).

For a zero-order approximation, the feedback parameterization for 
each sample 𝑖 is given by:
𝜋(𝑖)(𝑥(𝑖)(𝑡), 𝜃(𝑡)) = 𝑢̂(𝑖)(𝑡) + 𝜃(𝑡), (20)

in which 𝑢̂(𝑖)(𝑡) is now a constant defined before the optimization prob-
lem. In other words, the optimization is performed over a trajectory of 
decision variables 𝜽 = (𝜃(0),… , 𝜃(𝑁 − 1)) where each 𝜃(𝑡) represents a 
shift from the prescribed RL policy’s control input 𝑢̂(𝑖)(𝑡), applied uni-
formly across all samples 𝑖.

Terminal cost
The proposed RL-SMPC incorporates a terminal cost and a terminal 

region constraint into the optimization problem of each scenario. The 
terminal cost is intended to approximate the cumulative cost beyond 
the finite prediction horizon using the policy 𝜋RL, potentially enhancing 
long-term performance. While the true return of the RL policy 𝜋RL from 
time 𝑡 to the terminal harvest time 𝑇  is given by:

𝐽𝜋RL (𝑥(𝑡), 𝑡) =
𝑇
∑

𝑘=𝑡
𝓁
(

𝑢𝑅𝐿(𝑘), 𝑥(𝑘), 𝑥(𝑘 + 1)
)

s.t. 𝑥(𝑘 + 1) = 𝑓 (𝑥(𝑘), 𝑢𝑅𝐿(𝑘), 𝑑(𝑘), 𝑝)

𝑢𝑅𝐿(𝑘) = 𝜋RL(𝑥(𝑘), 𝑢(𝑘 − 1),𝐝𝑁 (𝑘), 𝑘)

(21)

this return cannot be directly used as the terminal cost. Instead, 
𝐽𝜋RL (𝑥(𝑡), 𝑡) is approximated by sampling multiple trajectories and train-
ing a neural network 𝐽𝜙 to predict the return of policy 𝜋RL given a certain 
state. This setup allows the controller to incorporate long-term effects 
into its decision-making without increasing the prediction horizon. To 
train 𝐽𝜙, an approach based on expected return learning is used. From 
a reference trajectory 𝑥n(𝑡), 1000 time steps 𝑡(𝑖) are randomly selected 
from the interval {0, 1,… , 𝑇 }. For each 𝑡(𝑖), a corresponding initial state 
𝑥(𝑖)(𝑡(𝑖)) is sampled uniformly from a range around the nominal value
𝑥(𝑖)(𝑡(𝑖)) ∼ 

(

𝑥nmin(𝑡
(𝑖)), 𝑥nmax(𝑡

(𝑖))
)

, (22)

with bounds defined as:
𝑥nmin(𝑡) = 𝑥n(𝑡)(1 − 𝜎),

𝑥nmax(𝑡) = 𝑥n(𝑡)(1 + 𝜎),
(23)

where 𝜎 = 0.5 controls the spread of the sampling space. For each sam-
pled state, a closed-loop rollout under policy 𝜋RL is simulated until 
time 𝑇 . The cost of each trajectory is computed by (21). Each sample 
(

𝑥DW(𝑡(𝑖)), 𝑡(𝑖), 𝐽𝜋RL (⋅)
) becomes part of dataset , which is split 80/20 

into training and validation sets. A neural network with parameters 𝜙 is 
then trained to approximate 𝐽𝜋RL (⋅) based on 𝑥DW(𝑡(𝑖)) and 𝑡(𝑖). The model 
minimizes the following loss using the Adam optimizer Table 2:

(𝜙,) = 1
𝑁𝑠

𝑁𝑠
∑

𝑖=1

(

𝐽𝜙(𝑥
(𝑖)
DW(𝑡(𝑖)), 𝑡(𝑖)) − 𝐽𝜋RL (𝑥

(𝑖)(𝑡(𝑖)), 𝑡(𝑖))
)2

.

Finally, 𝐽𝜙 is integrated into the RL-SMPC’s cost function via a second-
order Taylor approximation around the center of the terminal region, 
rather than being integrated directly.

Table 2 
Neural Network Hyperparam-
eters of 𝐽𝜙.
 Parameter  Value
 Hidden layers  2
 Neurons per layer  128
 Batch size  1024
 Learning rate 1 ⋅ 10−3

 Buffer size  1024
 Activation  tanh

Terminal region constraint
For each scenario trajectory 𝑥̂(𝑖)(𝑡), a corresponding terminal region 

constraint is defined based on its predicted state at the end of the hori-
zon. Specifically, at each time step 𝑡, 𝑆 terminal regions 𝕏(𝑖)

𝑓  are con-
structed around the final states 𝑥̂(𝑖)(𝑡 +𝑁) as:
𝕏(𝑖)

𝑓 (𝑥̂(𝑖)(𝑡 +𝑁)) =
{

𝑥 ∈ 𝕏 | ‖𝑥 − 𝑥̂(𝑖)(𝑡 +𝑁)‖ ≤ 𝜖
}

(24)

where 𝜖 > 0 determines the size of each region. The terminal region 
constraint for each scenario is then enforced as 𝑥(𝑖)(𝑡 +𝑁) ∈ 𝕏(𝑖)

𝑓 (𝑥̂(𝑖)(𝑡 +
𝑁)). This process is repeated at every time step following the scenario 
rollout under the current policy.

Finite-horizon optimal control problem
The RL-SMPC optimization problem solved at each time step t is then 

defined as: 

min
𝜽,𝐱(1) ,…,𝐱(𝑆)

𝑆
∑

𝑖=1

𝑡+𝑁−1
∑

𝑘=𝑡

(

𝓁(𝑢(𝑖)(𝑘), 𝑥(𝑖)(𝑘), 𝑥(𝑖)(𝑘 + 1))

+ 𝐽𝜙(𝑥(𝑖)(𝑡 +𝑁), 𝑡 +𝑁)
)

(25a)

s.t. 𝑥(𝑖)(𝑘 + 1) = 𝑓 (𝑥(𝑖)(𝑘), 𝑢(𝑖)(𝑘), 𝑑(𝑘), 𝑝(𝑖)) (25b)

𝑦(𝑖)(𝑘) = ℎ(𝑥(𝑖)(𝑘)) (25c)

𝑢(𝑖)(𝑘) = 𝑢̂(𝑖)(𝑘) + 𝜃(𝑘) (25d)

𝑢min ≤ 𝑢(𝑖)(𝑘) ≤ 𝑢max (25e)

|𝑢(𝑖)(𝑘) − 𝑢(𝑖)(𝑘 − 1)| ≤ 𝛿𝑢max (25f)

𝑥(𝑖)(𝑡 +𝑁) ∈ 𝕏(𝑖)
𝑓 (𝑥̂(𝑖)(𝑡 +𝑁)) (25g)

where the constraints (25b–25f) need to be enforced for each 𝑘 ∈
{0,… , 𝑁 − 1} and each scenario 𝑖 ∈ {1,… , 𝑆}, while (25g) needs to 
be enforced for each scenario 𝑖. At each time step, the RL-SMPC op-
timization problem in (25) is solved, and only the first predicted input 
is applied to the system. This procedure is repeated at every subsequent 
time step until the end of the growing period, thereby defining policy 
𝜋RL-SMPC:

𝑢(𝑡) = 𝜋RL-SMPC
(

𝑥(𝑡), 𝑢(𝑡 − 1),𝐝𝑁 (𝑡)
)

. (26)

The learning framework L4CasADi (Salzmann et al., 2024, 2023) is used 
to incorporate the learned terminal cost function into the optimal con-
trol problem.

3.5.  Performance metrics

This section introduces four metrics for assessing closed-loop con-
troller performance of the four controllers presented in Sections 3.1–3.4.

The first metric is based on the cumulative sum of the stage cost (9) 
over the entire growing period. This metric, referred to as cumulative 
reward  , quantifies how well each controller optimizes the given cost 
function. Specifically, for a given controller 𝜋(⋅), the cumulative reward 
is defined as:

 (𝜋(⋅)) =
𝑇−1
∑

𝑡=0
−𝓁

(

𝑢(𝑡), 𝑥(𝑡), 𝑥(𝑡 + 1)
)

s.t. 𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑑(𝑡)),

𝑢(𝑡) = 𝜋(⋅)
(

𝑥(𝑡), 𝑢(𝑡 − 1),𝐝𝑁 (𝑡), 𝑡
)

.

(27)
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Negating the stage cost function inverts the objective, so a higher value 
means better performance for this metric.

The next two metrics decompose the stage cost into its economic 
component (6), and its penalty component (7). Yielding the Economic 
Performance Indicator (EPI) and the cumulative penalty. The closed-
loop EPI is:

EPI(𝜋(⋅)) =
𝑇−1
∑

𝑡=0
−𝓁e

(

𝑢(𝑡), 𝑥(𝑡), 𝑥(𝑡 + 1)
)

,

s.t. 𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑑(𝑡)),

𝑢(𝑡) = 𝜋(⋅)
(

𝑥(𝑡), 𝑢(𝑡 − 1),𝐝𝑁 (𝑡), 𝑡
)

.

(28)

and the cumulative penalty is:
Cumulative penalty(𝜋(⋅)) =

𝑇−1
∑

𝑡=0
−𝓁p

(

𝑥(𝑡)
)

,

s.t. 𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑑(𝑡)),

𝑢(𝑡) = 𝜋(⋅)
(

𝑥(𝑡), 𝑢(𝑡 − 1),𝐝𝑁 (𝑡), 𝑡
)

.

(29)

Note that the closed-loop EPI metric is equivalent to (5). Again, the 
two metrics are summed with a reversed sign, maximizing the EPI and 
minimizing the cumulative penalty. Both metrics serve an illustrative 
purpose, indicating which component of the cost function the controller 
emphasizes.

Finally, a relative performance metric is introduced. This metric al-
lows for a pairwise comparison between RL-SMPC and the three stan-
dalone controllers, and is defined as follows:
Δ%Cumulative reward =

100 ×
 (𝜋RL-SMPC) −  (𝜋(⋅))

 (𝜋(⋅))
.

(30)

4.  Simulation results

To evaluate the performance of RL-SMPC, four simulation experi-
ments were performed. Each simulation spans a fixed interval of 40 
days, beginning on February 9, 2014, with a discretization time of Δ𝑡 =
1800(s) = 30(min). The weather data used in the simulations are real-
world measurements recorded at Bleiswijk, The Netherlands (Kempkes 
et al., 2014).

Closed-loop controller performance was evaluated based on the cu-
mulative reward (27), the EPI (28), and the cumulative penalty (29). 
The coefficients of the underlying cost functions (6) and (7) are given 
in Table 3. The three indoor climate states were constrained with upper 
and lower bounds, while the crop state was unbounded. Similarly, all 
three control inputs are constrained. The bounds for these constraints 
are defined in Table 4. For consistency, the initial conditions are fixed 
across all simulations as follows:
𝑢(0) = (0 0 50)T,
𝑥(0) = (0.0035 0.001 15 0.008)T

Both SMPC and RL-SMPC employ an identical cost function (9) in their 
finite-horizon optimization frameworks (18), (25), with cost and penalty 
coefficients, and input and output bounds as listed in Tables 3 and 4. In 
contrast, the nominal MPC formulation (16) imposes an upper bound 
of 78% on relative humidity 𝑦RH. In industrial practice, this style of 
empirical constraint tightening is common and therefore replicated here 
to ensure a realistic comparison.

The remainder of this section presents the results of four simulation 
experiments. First, Section 4.1 compared all four controllers, RL-SMPC, 
SMPC, MPC, and RL, under 10% (𝛿 = 0.1) parametric model uncertainty. 
Next, Section 4.2 presents a comparison of the computational cost be-
tween RL-SMPC and SMPC. The third experiment, in Section 4.3, inves-
tigated the relative improvement in performance of RL-SMPC over the 

Table 3 
Economic stage cost and linear penalty function coefficients.
 Variable  Value  Unit  Description
Δ𝑡  1800  s  Discretization interval
𝑐CO2

 0.1906  €/kg  CO2 price coefficient
𝑐heat  0.1281  €/kWh  Heating price coefficient
𝑐DW  22.29  €/kg{DW}/m2  Crop dry-weight price
𝜆CO2

5 × 10−5  –  Penalty for CO2 violations
𝜆min𝑇 3 × 10−3  –  Penalty for 𝑇  lower-bound violations
𝜆max𝑇 5 × 10−3  –  Penalty for 𝑇  upper-bound violations
𝜆RH 7 × 10−4  –  Penalty for relative-humidity violations

Table 4 
Output (𝑦) and control input (𝑢) con-
straints used in the (S)MPC formulation.

Variable
 Bounds
 Lower  Upper  Unit

 Output
𝑦CO2

 500  1600  ppm
𝑦𝑇  10  20 ◦C
𝑦RH  0  80  %
 Input
𝑢CO2

 0  1.2  mg/m2/s
𝑢heat  0  150  W/m2

𝑢vent  0  7.5  m3/m2/s

other three controllers across eight uncertainty levels and eight predic-
tion horizons. Finally, Section 4.4 presents the results of the ablation 
study.

4.1.  Performance under parametric model uncertainty

For the first simulation experiment, all four controllers (RL, MPC, 
SMPC, and RL-SMPC) approximated the optimal control problem de-
fined in (10) under 10% (𝛿 = 0.1) parametric model uncertainty. This 
experiment assessed whether, and to what extent, RL-SMPC can improve 
greenhouse production control under parametric uncertainty. Each con-
troller was evaluated over ten simulation runs using unique random 
seeds to sample different model parameters in each run. Additional 
runs did not narrow the confidence interval but significantly increased 
the computation time, so ten runs were deemed sufficient. The finite-
horizon controllers, i.e., RL-SMPC, SMPC, and MPC, were evaluated with 
a prediction horizon H ranging from 1 − 8 hours. With a discretization 
time of 30 minutes, this corresponds to horizons of 𝑁 = [2 − 16] control 
steps. Each controller was executed for ten simulation runs for all eight 
prediction horizons. The closed-loop performance metrics are averaged 
across ten simulation runs and visualized in Fig. 2.

The comparison shows that RL-SMPC outperformed SMPC on short 
prediction horizons (Fig. 2). At a one-hour prediction horizon, RL-SMPC 
achieved a cumulative reward of (2.547 ± 0.032), an increase of 12.6%
with respect to SMPC. This advantage remained significant up to a four-
hour horizon. At a four-hour prediction horizon, RL-SMPC converged 
to its asymptotic performance (2.849 ± 0.029) and matched the perfor-
mance of SMPC with an eight-hour prediction horizon (2.871 ± 0.029). 
Beyond a prediction horizon of six hours, RL-SMPC and SMPC converged 
toward similar asymptotic performance.

The improvement of RL-SMPC over SMPC was driven by a higher 
EPI of 3.641 ± 0.014, an increase of (0.347) at H = 1, while incurring a 
slightly larger cumulative penalty (0.065). The experiment also showed 
that the RL policy performed similarly to MPC with a four-hour pre-
diction horizon, and outperformed SMPC up to a two-hour prediction 
horizon. RL’s high economic performance (3.905) came at the expense 
of more frequent output constraint violations, reflected by a higher cu-
mulative penalty (1.323).

An illustrative snapshot of the open-loop output (𝑦) trajectories just 
before sunrise on day 13 of the simulation highlights the differences
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Fig. 2. Comparison of closed-loop controller performance under parametric uncertainty (𝛿 = 0.1). This figure visualizes the cumulative sum of three metrics 
averaged across ten simulation runs for MPC, SMPC, RL, and RL-SMPC against the controller’s prediction horizon. The shaded area represents the 99% confidence 
interval. Simulations were executed under parametric uncertainty with 𝛿 = 0.1. Left: The cumulative reward as defined in (27). Middle: The EPI as defined in (28).
Right: The cumulative sum of the linear penalty function as defined (29). Note that higher penalty values correspond to more state violations.

between RL-SMPC and SMPC (Fig. 3). RL-SMPC raised the indoor CO2
concentration before the global radiation increases, while SMPC re-
mained at the lower bound of 500 (ppm) for the entire prediction hori-
zon. The raised CO2 levels were induced by the RL-rollouts, which con-
strain the terminal state to lie within the accentuated region. The closed-
loop trajectories (Fig. 4) confirm that RL-SMPC begins to raise the CO2
levels earlier in the day by increasing the CO2 supply rate and reducing 
the ventilation rate, thereby accelerating crop growth during daytime. 
In contrast, both controllers find similar closed- and open-loop solutions 
for temperature and relative humidity. Interestingly, raising indoor tem-
perature through heating during the daytime was not considered bene-
ficial.

Both the open-loop solution and the closed-loop solution exhib-
ited the greatest uncertainty in relative humidity (Figs. 3, 4). For the 
open-loop trajectories, relative humidity showed the largest uncertainty 
bounds. This variability was reflected in the closed-loop results, where 
relative humidity fluctuated rapidly near its upper boundary of 80%. 
These fluctuations indicate that the controllers put considerable effort 
into imposing the humidity constraint.

Note that the results presented for RL and RL-SMPC are based on 
a single RL policy trained with a fixed random seed. Appendix B.2 pro-
vides an analysis of the performance variability of both RL and RL-SMPC 
across different random seeds.

4.2.  Computational complexity

The second experiment evaluated the online computational cost of 
SMPC and RL-SMPC for six prediction horizons (𝐻 = [1,… , 6] hours) 
with a fixed number of sampled scenarios (𝑆 = 10). This experiment 
compared the average computation time per time step, measured in 
seconds, against closed-loop controller performance quantified by the 
cumulative reward (27). The results illustrate the trade-off between 
computational cost and controller performance for both SMPC and 
RL-SMPC. Each controller was simulated for ten independent runs 
for all six prediction horizons. Fig. 5 shows the average computa-
tion time per time step plotted against the corresponding closed-loop
performance.

At short prediction horizons, RL-SMPC achieved significant improve-
ments over SMPC in terms of cumulative reward while maintaining com-
parable computational costs. Specifically, at a one-hour prediction hori-
zon, the improvement of 12.6%, as reported in Section 4.1, had a small 
trade-off in computational cost, 0.21 seconds per time step for RL-SMPC 
versus 0.22 seconds for SMPC. This pattern persisted across all tested 
prediction horizons, where RL-SMPC consistently outperformed SMPC 
while requiring slightly more average computation time per time step. 
For a six-hour horizon, RL-SMPC was even marginally faster than SMPC, 
with 3.06 versus 3.24 seconds.

RL-SMPC achieved its asymptotic performance at a four-hour pre-
diction horizon, whereas SMPC required longer horizons to reach simi-
lar performance levels. Furthermore, the average computation time in-
creased approximately exponentially with the prediction horizon for 
both controllers. Consequently, RL-SMPC reached its asymptotic perfor-
mance with an average computation time of 1.10 seconds, while SMPC 
required 1.33 seconds at 𝐻 = 5 and up to 3.24 seconds at 𝐻 = 6.

Appendix B.1 provides an analysis of the effect of the number of sam-
pled scenarios (𝑆) on computational cost and closed-loop performance.

All runtime measurements were obtained on a workstation with an 
Intel(R) Xeon(R) W-2133 CPU @ 3.60GHz. The SMPC and RL-SMPC 
nonlinear programs were implemented in CasADi version 3.6.7 using 
Python 3.11.0 and solved using IPOPT version 3.14.3.

4.3.  Varying model parameter uncertainty and prediction horizons

The second experiment evaluated controller perfor-
mance across eight levels of parametric model uncertainty 
(𝛿 = [0.025, 0.05… , 0.175, 0.20]) and eight prediction horizons 
(𝐻 = [1,… , 8] hours). This experiment was conducted to evalu-
ate the robustness of RL-SMPC across varying prediction horizons 
and degrees of parametric uncertainty. Fig. 6 visualizes the relative 
performance of RL-SMPC against each of the other three controllers.

RL-SMPC outperformed MPC at every uncertainty level and predic-
tion horizon. The margin between the two controllers increased with 
shorter horizons and higher uncertainty. Conversely, at a one-hour pre-
diction horizon, RL matched RL-SMPC and even surpassed it when 
𝛿 ≤ 0.1. In the most extreme case at 𝛿 = 0.025 RL had an 8.1% perfor-
mance gain over RL-SMPC. However, with longer horizons or increased 
uncertainty, RL-SMPC generally improved over RL.

In comparison with SMPC, a different pattern emerged. The uncer-
tainty level had a low effect on the relative performance between RL-
SMPC and SMPC. Regardless of the uncertainty level, RL-SMPC consis-
tently outperformed SMPC at short horizons, while for horizons of six 
hours or longer, the two controllers performed nearly identically, find-
ings in line with Fig. 2.

4.4.  Ablations

In the final experiment, an ablation study was performed to quan-
tify the contribution of individual algorithmic components to RL-SMPC’s 
performance (Fig. 7). Within the RL part, future weather disturbances 
𝐝𝑁 (𝑡 + 1) were removed from the observation space, leaving only the 
current weather measurement 𝑑(𝑡). A new RL policy and terminal cost 
function were trained under this new setting, and reevaluated RL-SMPC 
closed-loop performance in ten simulation runs at 𝛿 = 0.1. Excluding fu-
ture weather disturbances reduced the cumulative reward of the RL 
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Fig. 3. Comparison of the open-loop solution of both the controllers by solving (18) and (25). Visualization of the average state and input trajectories, and the 
corresponding weather disturbance for RL-SMPC and SMPC with a three-hour prediction horizon. The graphs represent the mean prediction over 𝑆 = 20 with one 
standard deviation shaded. Also, the sampled RL rollout trajectory is visualized. This trajectory represents the average over the sampled trajectories. The vertical bar 
at the end of the prediction horizons represents the terminal region constraint. These results were obtained under parametric model uncertainty of 𝛿 = 0.1.

Fig. 4. Comparison of the closed-loop trajectories of both the controllers by approximating (10) with a one-hour prediction horizon. Each plot visualizes 
days 13 and 14 of the simulation. The solid lines represent the mean taken over ten simulation runs, with one standard deviation shaded. The results were obtained 
under parametric model uncertainty of 𝛿 = 0.1. The horizontal dashed lines in b and c represent lower and upper bounds. The outdoor weather variables are colored 
grey. Shaded areas represent night time (𝑑iGlob = 0).

policy by 9.3%, driven by a larger drop in EPI than the improvement in 
the cumulative penalty. Using that new RL policy in RL-SMPC lowered 
RL-SMPC’s performance at shorter horizon lengths. The largest drop was 
observed at a one-hour prediction horizon, decreasing the cumulative 
reward by 3.7%.

Three elements of the RL-SMPC optimization formulation (25), the 
terminal cost function 𝐽𝜙, the non-linear RL feedback policy 𝑢̂, and the 

terminal region constraint 𝑋𝑁 , were removed one at a time. The ter-
minal region constraint had the largest impact, primarily for prediction 
horizons lower than six hours. The EPI dropped significantly for these 
prediction horizons, while the cumulative penalty improved slightly. 
Overall behavior without the terminal region constraint closely matched 
SMPC, also see Fig. 2. Removing the non-linear RL feedback policy 
reduced the algorithm’s asymptotic performance, mainly because of a 
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Fig. 5. Computational complexity of SMPC and RL-SMPC. Visualization of 
the controller’s cumulative reward (27) averaged over ten simulation runs, plot-
ted against the average compute time per time step in seconds. The horizontal 
error bar indicates the 95% confidence interval. The variance in average com-
pute time was too low to report for either of the methods.

higher cumulative penalty. Setting 𝐽𝜙(⋅) = 0 resulted in nearly identical 
performance of RL-SMPC, suggesting that the terminal cost function is 
the least critical of the three components under the tested conditions.

5.  Discussion

This section discusses the results of the simulation experiments pre-
sented in Section 4 in the context of the main research question: To what 
extent does RL-SMPC improve greenhouse production control, compared to 
SMPC and MPC, under parametric uncertainty? More precisely, Section 5.1 
discusses the performance and behavior of the RL-SMPC controller as 
defined in (25) compared to baseline controllers: MPC, SMPC, and RL. 
Section 5.2 studies the computational cost of RL-SMPC and SMPC. Next, 
Section 5.3 analyzes the relative performance of RL-SMPC against the 
other three controllers across eight levels of uncertainty. Finally, Sec-
tion 5.4 discusses the contributions of individual algorithmic compo-
nents through the ablation study.

5.1.  Performance of RL-SMPC

This work found that RL-SMPC significantly outperformed SMPC on 
prediction horizons up to four hours, as shown in Fig. 2. Additionally, 
the RL-SMPC improved over MPC at all eight evaluated prediction hori-
zons. These improvements were driven by the RL policy, which learned 
long-term relationships between model input and the optimization ob-
jective. This information was transferred to RL-SMPC’s finite-horizon 
optimization problem defined in (25). The exemplary open-loop solu-
tion in Fig. 3 demonstrated how RL guided RL-SMPC towards different 
solutions that resulted in higher long-term economic performance. In-
creasing CO2 concentration before sunrise to maximize crop growth dur-
ing daylight demonstrated RL-SMPC’s focus on long-term performance 
regardless of near-sighted prediction horizons.

At longer prediction horizons, RL-SMPC and SMPC converged to sim-
ilar asymptotic performance. This work argues that three factors con-
tributed to this behavior. First, as the prediction horizon lengthens, the 
initial control input computed by RL-SMPC relies less on the terminal 
cost and constraint derived from the RL policy, since the long horizon 
itself captures most of the long-term controller performance. Consistent 
with prior work showing that extending the horizon yields greater per-
formance gains than improving the learned value or policy functions 
(Bertsekas, 2024; Msaad et al., 2025; Reiter et al., 2025). Second, in this 
problem definition (10a), SMPC did not suffer from extensive growth 

of uncertainty at longer horizons impacting performance, as illustrated 
by the relatively small uncertainty bounds of the open-loop solution in 
Fig. 3. However, in systems that exhibit significant growth in uncer-
tainty over the prediction horizon, one might expect SMPC to become 
overly conservative. Since RL-SMPC incorporates non-linear feedback 
from the RL policy, it is expected to maintain its performance over SMPC 
with longer prediction horizons. Third, the lettuce greenhouse model 
employed in this simulation study is relatively simple and therefore does 
not capture long-term relationships between climate and crop. Conse-
quently, RL-SMPC and SMPC converged to similar solutions at horizons 
longer than six hours. When using more complex greenhouse models 
(Katzin et al., 2020; Van Laatum et al., 2025) that capture climatic ef-
fects on crop growth over multiple days or weeks, it is expected that 
RL-SMPC would provide a benefit at longer horizons.

The solutions from both RL-SMPC and SMPC exhibited the largest 
sensitivity to relative humidity under parametric model uncertainty. 
This result is illustrated in Figs. 3 and 4, which show the largest un-
certainty bounds for humidity in both the open-loop and closed-loop 
solutions, and is consistent with a previous sensitivity analysis of the 
employed lettuce greenhouse model (Van Henten, 2003). Unexpectedly, 
crop growth was much less affected by parametric model uncertainty 
during closed-loop operation. This outcome could be dedicated to two 
aspects of the problem definition. First, the controllers are optimized 
for a single deterministic weather trajectory, and because biomass 
accumulation is mainly driven by global radiation, weather-induced 
variability in growth is small. Second, randomizing the model parame-
ters at each time step may have little effect on the slow biomass dynam-
ics, so its long-term impact on crop growth remains limited.

To have a fair comparison between controllers, this work proposed a 
penalty-based method for handling state constraint violations, as intro-
duced in Section 2. The choice of these penalty coefficients influences 
the performance of individual methods. The RL policy is most sensitive 
to tuning these coefficients, which in turn influences the RL-SMPC con-
troller. If the penalty terms are not scaled to a magnitude comparable 
to the economic stage cost, the RL policy may become overly conserva-
tive or allow excessive state constraint violations. In such extreme cases, 
the learned policy may bias RL-SMPC toward sub-optimal solutions, re-
ducing its advantage over SMPC at the same prediction horizon. With 
the penalty coefficients reported in Table 3, such behavior was not ob-
served. In preliminary experiments, order-of-magnitude changes to the 
penalty coefficients substantially influenced the RL policy and, in turn, 
RL-SMPC performance.

Besides the factors discussed above that influence RL-SMPC perfor-
mance, the proposed method may be sensitive to the random seed used 
in the RL training process. As mentioned in Section 4.1, the results pre-
sented for RL and RL-SMPC are based on a single RL policy trained 
with one random seed. To assess the robustness of this method against 
this choice, Appendix B.2 presents an additional simulation experiment 
evaluating the performance of RL and RL-SMPC across multiple random 
seeds. Though some variance is observed in the performance of stan-
dalone RL policies across different seeds, this variance is substantially 
reduced when the policies are integrated with RL-SMPC. These findings 
confirm the robustness of RL-SMPC even when using RL policies that 
exhibit variability in performance due to stochasticity in the training 
process.

The performance advantages discussed above were obtained under 
several simplifying assumptions. Specifically, this study assumed per-
fectly accurate system measurements, the use of actual future weather 
disturbances in the optimization problems, perfect information about 
market prices, and fixed harvest time. In practice, these conditions are 
not perfectly known due to measurement and prediction inaccuracies, 
resulting in errors and uncertainty. Therefore, the overall controller 
performance should be interpreted as a performance bound, i.e., the 
performance that can be achieved if perfect predictions and measure-
ments are available to the controllers. However, previous work suggests 
some of these assumptions can be relaxed in practice with appropriate
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Fig. 6. Relative performance of RL-SMPC compared to MPC, RL, and SMPC for varying prediction horizons and parametric uncertainties. Each heatmap 
visualizes the relative performance, computed with (30), as a function of the prediction horizon and the parametric uncertainty. From left to right, RL-SMPC is 
compared against MPC, RL, and SMPC. Red indicates RL-SMPC outperforms the opposing controller, and blue vice versa. Note the symmetric logarithmic scale of 
the colorbar to also cover negative values. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Ablation study results for RL-SMPC. These graphs visualize the performance of RL-SMPC and variations of the algorithm when removing specific com-
ponents. The cumulative reward, EPI, and penalty are shown. The cumulative reward is calculated via (27), the EPI and penalty calculated by (28), and (29). a)
Shows RL-SMPC and RL optimized and trained with and without future weather disturbances in the observation space of the RL policy. The dashed line represents 
the performance of the RL policy. b) Shows RL-SMPC when removing some components from the optimization problem (25). Where 𝐽𝜙 represents the terminal cost 
function, 𝑢̂ the sampled feedback policy, and 𝑋𝑁 the terminal region constraint.
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techniques. Boersma et al. (2022) already showed that ensemble Kalman 
filtering can accurately estimate crop dry weight from indoor climate 
measurements, even in the presence of modeling errors due to incor-
rect model parameters and uncertain initial conditions. Additionally, 
Kuijpers et al. (2022) demonstrated that realistic weather forecast er-
rors have a minimal effect on controller performance when properly 
accounted for using robust MPC.

While a fixed harvest time was assumed for comparability across 
experiments, commercial greenhouse operations typically harvest once 
each lettuce head reaches a target weight. To better reflect this practice, 
the controller stage cost could be reformulated to minimize the time 
and operational costs required to reach the target weight. This potential 
extension to the proposed method should yield similar performance in-
crements as presented in this work. These prior findings and potential 
extensions to the proposed method indicate that RL-SMPC could main-
tain its performance advantages under realistic conditions with suitable 
state estimation, robust optimization techniques, and objective reformu-
lation.

Finally, the generalizability of the proposed approach is considered. 
This work presented results based on a single greenhouse crop model. 
However, with some modifications, the proposed RL-SMPC approach 
should be able to generalize to different greenhouse systems. Since the 
proposed RL-SMPC approach is model-agnostic, changes to the system, 
such as structural modifications in greenhouse design or different crop 
species, must be incorporated into the employed controller model. Dif-
ferent crops may introduce distinct challenges compared to lettuce. For 
instance, the economic performance of fruit-bearing crops such as toma-
toes primarily depends on fruit yield, which should be incorporated 
into the stage cost function. Given these potential modifications and the 
model-agnostic nature of RL-SMPC, similar performance improvements 
could be expected across different greenhouse systems.

5.2.  Computational complexity

The analysis of the computational cost per time step and closed-
loop controller performance demonstrates the superior performance of 
RL-SMPC over SMPC (Fig. 5). As shown in Section 5.1, for short pre-
diction horizons (𝐻 ≤ 4), RL-SMPC achieved significantly higher per-
formance while requiring a similar computational cost. Moreover, RL-
SMPC reached its asymptotic performance with an average computation 
time of 1.10 seconds per time step, whereas SMPC required 3.24 sec-
onds to attain a comparable performance level (2.85 ± 0.04 for RL-SMPC 
versus 2.86 ± 0.03 for SMPC). These results indicate that scenario-based 
SMPC can become computationally demanding as the prediction horizon 
grows, whereas RL-SMPC mitigates this effect by maintaining asymp-
totic closed-loop performance at shorter prediction horizons. Additional 
simulation experiments confirmed that this trend also holds across vary-
ing numbers of sampled scenarios (𝑆) (Appendix B.1).

Because generating RL policy rollout trajectories is computation-
ally inexpensive, coupling RL with SMPC in the RL-SMPC optimiza-
tion framework did not substantially increase the computational cost. In 
fact, at a six-hour prediction horizon, RL-SMPC was even slightly more 
computationally efficient than SMPC (∼ 5.6% faster). This improvement 
may result from the RL-generated terminal region constraints and feed-
back parameterization, which likely guide the optimization toward bet-
ter solutions. These computational results demonstrate that RL-SMPC 
can maintain high performance under parametric model uncertainty 
while requiring fewer computational resources than SMPC. Maintain-
ing performance with reduced computation time is particularly valuable 
when real-time execution is critical for greenhouse control. Although 
all reported computation times remain well within the limits of physi-
cal greenhouse operations with control intervals of several minutes, the 
computational advantage of RL-SMPC could become increasingly im-
portant when moving to larger-scale greenhouse systems.

The greenhouse lettuce model employed in this work is relatively 
small and does not require extended prediction horizons to capture sys-

tem dynamics over multiple days, making scenario-based SMPC compu-
tationally tractable in this case. However, for larger-scale greenhouse 
systems with more complex crops and additional controllable inputs, 
including lighting and shading screens, the optimization problem can 
quickly become intractable. In such scenarios, RL-SMPC could offer a 
computationally viable alternative that achieves improved closed-loop 
performance with lower computational cost.

5.3.  Effect of uncertainty levels and prediction horizon

Fig. 6 illustrates the superior performance of RL-SMPC over MPC for 
all tested uncertainty levels and prediction horizons. This demonstrates 
that controller performance can degrade significantly if uncertainties are 
not accounted for. The performance margin between the two controllers 
widens as the horizon length increases.

Similarly, RL-SMPC demonstrated greater improvement over RL as 
the horizon increased. At a one-hour horizon and for 𝛿 ≤ 0.1, RL per-
formed slightly better. Two effects might have contributed to this re-
sult. First, RL focuses on economic gain while tolerating more constraint 
violations, which the SMPC component then corrects in the combined 
RL-SMPC controller. For this short horizon, the immediate correction 
of these violations by the SMPC component can decrease the economic 
performance of RL-SMPC, giving RL a slight advancement. Second, RL-
SMPC used scenario-based approximation to estimate the expected cost 
using only ten scenarios, while RL was trained on far more data than 
RL-SMPC. Therefore, for short horizons, RL-SMPC might have a worse 
estimate of the expected cost in comparison to RL, possibly decreasing 
closed-loop performance. At long horizons, this is less relevant since RL-
SMPC’s estimates of the long-term performance become better overall.

Across all uncertainty levels, RL-SMPC consistently outperformed 
SMPC for prediction horizons shorter than six hours. Given the signifi-
cant computational cost of SMPC at long prediction horizons, these re-
sults indicate that RL-SMPC can maintain high performance under para-
metric model uncertainty with fewer computational resources. Main-
taining performance while reducing computational cost is particularly 
important when execution time becomes a critical factor. This occurs 
when more complex greenhouse models are employed.

5.4.  Ablation study

The ablation studies showed that removing future weather distur-
bances from the RL observation space decreased RL performance by 9.3%
(Fig. 7). Without foresight of future weather disturbances, the RL policy 
prioritizes economic performance less, as reflected by improved cumu-
lative penalty. However, this large decrease in performance was not ob-
served when using that RL policy in RL-SMPC. Without future weather 
disturbances, the algorithm adhered more closely to output constraints 
while maintaining its economic performance, which may explain this 
observation.

Structural ablations revealed several insights into the contribution 
of algorithmic components to RL-SMPC performance (Fig. 7). First, the 
terminal region constraint 𝑋𝑁  was the most significant contribution to 
RL-SMPC’s performance. Without this constraint, RL-SMPC’s behavior, 
which is defined by the RL policy, was similar to SMPC. This constraint 
guides RL-SMPC to states that improve long-term performance, for in-
stance, by increasing the indoor CO2 concentration (Figs. 3 & 4). Next, 
removing the non-linear feedback policy 𝑢̂ from (20) resulted in lower 
asymptotic performance, which was caused by the solver failing to con-
verge at longer horizons. Finally, the algorithm performed identically 
without the terminal cost function 𝐽𝜙. This invariance likely arises be-
cause the gradient of the cost function with respect to the terminal state 
was relatively small compared to the cumulative cost estimated from the 
open-loop trajectory. Consequently, selecting different terminal states 
produced little change in the expected cost estimate and had minimal 
effect on closed-loop performance.
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6.  Conclusion

Parametric model uncertainty can severely decrease the control per-
formance of greenhouse crop production systems when not accounted 
for. Methods that explicitly handle uncertainty are either computation-
ally demanding (scenario-based SMPC) or struggle to enforce constraints 
(RL). Therefore, this work integrated RL with SMPC (RL-SMPC), a finite-
horizon optimization algorithm. The algorithm integrates RL with SMPC 
for system control under uncertainties. The framework used an RL-
policy to incorporate a terminal region, feedback policy, and termi-
nal cost function into an SMPC optimization formulation. The algo-
rithm’s efficacy was demonstrated on a lettuce-greenhouse model sub-
ject to parametric uncertainty. The source code required to reproduce 
the results is publicly available at https://github.com/BartvLaatum/
RL-SMPC. Trained models and data for visualizations are available upon 
request.

The simulation experiments showed that RL-SMPC outperformed 
MPC across the eight evaluated prediction horizons. For horizons up to 
four hours, RL-SMPC achieved significantly higher cumulative rewards 
than SMPC, while using comparable computational cost. At longer hori-
zons, both RL-SMPC and SMPC converged to similar asymptotic perfor-
mance. These performance gains remained consistent across all eight 
evaluated uncertainty levels. Results of open-loop and closed-loop so-
lutions illustrated RL’s capability to transfer learned long-term infor-
mation to the finite-horizon optimization framework within RL-SMPC. 
The ablation study indicated that this transfer predominantly occurred 
through the terminal region constraint provided by the RL policy. More-
over, this RL-SMPC algorithm is expected to be particularly effective in 
applications, like greenhouse control, for which steady-state targets are 
either not available or not desirable for the process, thereby precluding 
standard methods for terminal cost/constraint design.

This work assumed perfectly accurate state estimates and actual re-
alizations of future weather and market prices. Moreover, harvest tim-
ing can influence auction prices more than dry weight accumulation. 
Therefore, future work could adopt market-price models that vary with 
seasonal factors and weight per lettuce head. Finally, because the used 
greenhouse model is relatively small and simple, it does not capture 
the system’s full complexity. Subsequent work should evaluate how RL-
SMPC scales to more complex, large-scale greenhouse models and ac-
commodates additional uncertainty sources such as state-estimation and 
forecast errors.

CRediT authorship contribution statement

Bart van Laatum: Conceptualization, Methodology, Software, For-
mal analysis, Writing – original draft, Writing – review & editing, Vi-
sualization, Project administration; Salim Msaad: Conceptualization, 
Methodology, Software, Writing – original draft, Writing – review & 
editing; Eldert J. van Henten: Supervision; Robert D. Mcallister: Con-
ceptualization, Methodology, Writing – review & editing, Supervision;
Sjoerd Boersma: Conceptualization, Methodology, Writing - review & 
editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments

This work was funded by the Sector Plan for Science and Technol-
ogy (project number 3183019014), established by the Dutch Ministry 
of Education, Culture and Science. 

Appendix A.  Nonlinear lettuce greenhouse model

The lettuce greenhouse model is defined as:

𝑓 (𝑥(𝑡), 𝑢(𝑡), 𝑑(𝑡), 𝑝) = 𝑥(𝑡) + Δ𝑡 𝑑𝑥
𝑑𝑡𝑐

where
𝑑𝑥DW(𝑡𝑐 )

𝑑𝑡𝑐
= 𝑝𝛼𝛽 𝜙phot,c(𝑡𝑐 ) − 𝑝resp,d 𝑥DW(𝑡𝑐 ) 2

𝑥H20(𝑡𝑐 )∕10−
5
2 ,

𝑑𝑥CO2
(𝑡𝑐 )

𝑑𝑡𝑐
= 1

𝑝cap,c

(

−𝜙phot,c(𝑡𝑐 ) + 𝑝resp,c 𝑥DW(𝑡𝑐 ) 2
𝑥H2O(𝑡)∕10−

5
2

⋯ + 𝑢CO2
(𝑡𝑐 ) 10−6 − 𝜙vent,c(𝑡𝑐 )

)

,

𝑑𝑥T(𝑡𝑐 )
𝑑𝑡𝑐

= 1
𝑝cap,q

(

𝑢heat(𝑡𝑐 ) −
(

𝑝cap,v 𝑢vent (𝑡𝑐 ) 10−3 + 𝑝cov,𝜏
)

⋯
(

𝑥T(𝑡𝑐 ) − 𝑑T(𝑡𝑐 )
)

+ 𝑝cov,rad 𝑑iGlob(𝑡𝑐 )
)

,

𝑑𝑥H2O(𝑡𝑐 )
𝑑𝑡𝑐

= 1
𝑝cap,h

(

𝜙transp,h(𝑡𝑐 ) − 𝜙vent,h(𝑡𝑐 )
)

,

(A.1)

with

𝜙phot,c(𝑡𝑐 ) =
(

1 − 𝑒−𝑝LAI,d𝑥DW(𝑡𝑐 )
)

⋯ 𝑝Iphot𝑑iGlob(𝑡𝑐 )

⋯
(

−𝑝photCO2 ,1
𝑥T(𝑡𝑐 )2 + 𝑝photCO2 ,2

𝑥T(𝑡𝑐 ) − 𝑝photCO2 ,3
)

⋯
(

𝑥CO2
(𝑡𝑐 ) − 𝑝8

)

∕𝜑(𝑡𝑐 ),

𝜑(𝑡𝑐 ) = 𝑝Iphot𝑑iGlob(𝑡𝑐 )+

⋯
(

−𝑝photCO2 ,1
𝑥T(𝑡𝑐 )2 + 𝑝photCO2 ,2

𝑥T(𝑡𝑐 ) − 𝑝photCO2 ,3
)

⋯
(

𝑥CO2
(𝑡𝑐 ) − 𝑝8

)

,

𝜙vent,c(𝑡𝑐 ) =
(

𝑢vent (𝑡𝑐 ) 10−3 + 𝑝leak
) (

𝑥CO2
(𝑡𝑐 ) − 𝑑CO2

(𝑡𝑐 )
)

,

𝜙vent,h(𝑡𝑐 ) =
(

𝑢vent (𝑡𝑐 ) 10−3 + 𝑝leak
) (

𝑥H2O(𝑡𝑐 ) − 𝑑H2O(𝑡𝑐 )
)

,

𝜙transp,h(𝑡𝑐 ) = 𝑝vap
(

1 − 𝑒−𝑝LAI,d𝑥DW(𝑡𝑐 )
)

⋯
( 𝑝sat,H2O,1

𝑝R
(

𝑥T(𝑡𝑐 ) + 𝑝T
) 𝑒(

𝑝sat,H2O,2𝑥T(𝑡𝑐 )
𝑥T(𝑡𝑐 )+𝑝sat,H2O,3

− 𝑥H2O(𝑡𝑐 )
)

.

(A.2)

Where 𝑡𝑐 ∈ ℝ represents the continuous time and 𝜙phot,c, 𝜙vent,c, 𝜙vent,h
and 𝜙transp,h are the gross canopy photosynthesis rate, mass exchange 
of CO2 through the vents, mass exchange of H2O through the vents, 
and canopy transpiration. The model is discretized using the explicit 
fourth-order Runge-Kutta method, resulting in the discrete-time model 
as presented in (1).

The system output function is defined as:
𝑦(𝑡) = ℎ

(

𝑥(𝑡)
)

,

ℎ
(
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(
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(
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(

𝑥(𝑡))
)

⎤

⎥

⎥

⎥

⎥

⎥
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⎦

,
(A.3)

with:

ℎ1(𝑥(𝑡)) = 𝑥DW(𝑡),

ℎ2(𝑥(𝑡)) =
106𝑐R

(

𝑥T(𝑡) + 𝑐K
)

𝑐p 𝑐M
𝑥CO2

(𝑡),

ℎ3(𝑥(𝑡)) = 𝑥T,

ℎ4(𝑥(𝑡)) =
𝑐R
(

𝑥T(𝑡) + 𝑐K
)

𝑒

𝑐sat,H2O,4 ,𝑥T(𝑡)
𝑥T(𝑡)+𝑐sat,H2O,5

𝑥H2O(𝑡).

(A.4)

The nominal model parameters (𝑝̄) are chosen according to Boersma 
et al. (2022), Van Henten (1994) and are given in Table A.1. To not 
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Table A.1 
The nominal model parameter values (𝑝̄) used during simulation.
 Variable  Value  Unit  Description
𝑝𝛼𝛽 0.544  –  Yield factor
𝑝cap,c 4.1  m3/m2  Vol. CO2 capacity of indoor air
𝑝cap,q 3 × 104  J/m2/◦C  Effective heat capacity of indoor air
𝑝cap,h 4.1  m3/m2  Vol. humidity capacity of indoor air
𝑝LAI,d  53  m2/kg  Effective canopy surface
𝑝𝐼phot 3.55 × 10−9  kg/J  Light-use efficiency
𝑝photCO2 ,1

5.11 × 10−6  m/s/◦C2  Temp. factor (1) on gross canopy photosynthesis
𝑝photCO2 ,2

2.30 × 10−4  m/s/◦C  Temp. factor (2) on gross canopy photosynthesis
𝑝photCO2 ,3

6.29 × 10−4  m/s  Temp. factor (3) on gross canopy photosynthesis
𝑝resp,d 2.65 × 10−7  s−1  Respiration rate of crop’s dry matter
𝑝phot 5.2 × 10−5 kg∕m3 CO2 compensation point
𝑝resp,c 4.87 × 10−7  s−1 CO2 release-rate factor from respiration
𝑝leak 7.5 × 10−6  m/s  Greenhouse-cover ventilation leakage
𝑝cap,v 1290  J/m3/◦C  Air heat capacity per volume
𝑝cov,𝜏 6.1  W/m2/◦C  Heat-transmission factor through cover
𝑝covrad 0.2  –  Solar heat-load coefficient
𝑝vap 3.6 × 10−3  m/s  Vapour mass-transfer factor (leaf-air)
𝑝sat,H2O,1 9348  J/m3  Saturation-pressure poly. coefficient 1
𝑝sat,H2O,2 17.4  –  Saturation-pressure poly. coefficient 2
𝑝sat,H2O,3 239 ◦C  Saturation-pressure poly. coefficient 3
𝑝R 8314  J/K/kmol  Universal gas constant
𝑝T 273.15  K  Kelvin-Celsius conversion offset

Table A.2 
The coefficient values for the measurement function (A.4) used during simu-
lation.

 Variable  Value  Unit  Description
𝑐R 8.3144598  Jmol−1 K−1  molar gas constant
𝑐K 273.15  K  Conversion from ◦C to K
𝑐p 101325  Pa  Atmospheric pressure
𝑐M 44.01 × 10−3  kgmol−1  molar mass of CO2
𝑐sat,H2O,4 610.48  -  Saturation-pressure poly. coefficient 4
𝑐sat,H2O,5 17.2694  -  Saturation-pressure poly. coefficient 5

introduce noise in only half of the output variables, the coefficients of 
the measurement function are fixed; their values are listed in Table A.2.

Appendix B.  Additional simulation results

B.1.  Scenario sample size

This section examines the sensitivity of RL-SMPC to the number of 
sampled scenarios (𝑆) by comparing its average computational cost and 

closed-loop performance with those of SMPC. In this additional simu-
lation experiment, both controllers, as presented in Sections 3.3 and 
3.4, approximated the optimal control problem (10) using a varying 
number of sampled scenarios (𝑆). Specifically, for each method, the fol-
lowing values were tested: 𝑆 = [5, 10, 15, 20] with prediction horizons 
𝐻 = [1, 2, 3, 4]. For each setting, both controllers were evaluated across 
ten independent simulation runs with unique random seeds. The results 
demonstrate that, regardless of the number of sampled scenarios, RL-
SMPC outperforms SMPC in terms of cumulative reward, see Table B.2, 
while using similar computational cost per time step, see Table B.1. 
These findings are consistent with those reported in Section 4.2, indi-
cating that RL-SMPC is not more sensitive to the number of scenarios 
than SMPC.

B.2.  Robustness RL-SMPC against RL random seed

Training RL policies is well known to be sensitive to the choice of 
the random seed. This seed controls several stochastic processes during 
training, including the initialization of the neural network parameters, 
the sampling of actions from the stochastic policy, and the sampling of 
batches from the replay buffer for computing gradients in the stochas-
tic gradient descent algorithm. The results presented in Section 4 are 
based on a single RL policy trained with one random seed. To assess the 
robustness of RL-SMPC to variation in the RL training seed, this simu-
lation experiment examines the variance in performance of standalone 
RL policies and when paired with RL-SMPC.

Specifically, five RL policies were trained using five unique random 
seeds. After training, each policy was evaluated across ten simulation 
runs. Subsequently, each policy was paired with an RL-SMPC controller 
and tested for the following prediction horizons of 𝐻 = [1, 2, 3, 4]. Fi-
nally, the mean closed-loop performance of the five policies and their 
corresponding RL-SMPC controllers was used to compute the average 
and confidence interval across random seeds.

The results show some variance in the performance of RL policies 
across different random seeds. The differences between individual poli-
cies appear to result from their varying focus on either economic per-
formance or state constraint satisfaction. Interestingly, this variance de-
creased substantially when the RL policies were paired with RL-SMPC. 
Moreover, increasing the prediction horizons further decreased the vari-
ance across random seeds, as RL-SMPC becomes less dependent on the 
performance of the underlying policy. These findings demonstrate the 
robustness of RL-SMPC to the random seed used during RL policy train-
ing Fig. B.1
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Table B.1 
The computational cost per time step per number of sampled scenarios (𝑆) and prediction 
horizon length (𝐻). for both SMPC and RL-SMPC in seconds. The computational costs are 
averaged across ten simulations with reported standard deviation.

 Scenarios (𝑆)  Controller  Horizon (𝐻)
 1  2  3  4

 5  SMPC  0.10 (0.0005)  0.22 (0.0011)  0.34 (0.0012)  0.47 (0.0032)
 RL-SMPC  0.11 (0.0002)  0.24 (0.0014)  0.37 (0.0022)  0.51 (0.0011)

 10  SMPC  0.21 (0.0006)  0.46 (0.0022)  0.73 (0.0022)  1.02 (0.0060)
 RL-SMPC  0.22 (0.0006)  0.49 (0.0015)  0.78 (0.0024)  1.10 (0.0058)

 15  SMPC  0.34 (0.0026)  0.75 (0.0114)  1.19 (0.0072)  1.71 (0.0265)
 RL-SMPC  0.33 (0.0009)  0.74 (0.0022)  1.22 (0.0029)  1.75 (0.0048)

 20  SMPC  0.46 (0.0043)  1.05 (0.0166)  1.70 (0.0367)  2.33 (0.0165)
 RL-SMPC  0.45 (0.0006)  1.00 (0.0023)  1.65 (0.0030)  2.40 (0.0139)

Table B.2 
The cumulative reward (27) for SMPC and RL-SMPC per number of sampled scenar-
ios (𝑆) and prediction horizon length (𝐻), with reported one standard deviation. 
The cumulative reward is averaged across ten simulation runs.
 Scenarios (𝑆)  Controller  Horizon (𝐻)

 1  2  3  4
 5  SMPC  2.18 (0.04)  2.43 (0.04)  2.59 (0.05)  2.71 (0.04)

 RL-SMPC  2.47 (0.03)  2.64 (0.04)  2.74 (0.05)  2.79 (0.04)
 10  SMPC  2.25 (0.04)  2.49 (0.04)  2.64 (0.04)  2.76 (0.04)

 RL-SMPC  2.54 (0.04)  2.70 (0.04)  2.79 (0.04)  2.85 (0.04)
 15  SMPC  2.28 (0.04)  2.51 (0.04)  2.66 (0.03)  2.77 (0.03)

 RL-SMPC  2.55 (0.04)  2.72 (0.04)  2.81 (0.04)  2.87 (0.04)
 20  SMPC  2.29 (0.04)  2.52 (0.03)  2.68 (0.04)  2.79 (0.04)

 RL-SMPC  2.57 (0.04)  2.74 (0.03)  2.82 (0.04)  2.88 (0.04)

Fig. B.1. Performance variability of RL and RL-SMPC across five random seeds. This figure visualizes the mean cumulative sum of three performance metrics 
averaged across five random seeds for RL and RL-SMPC. The shaded area represents the 95% confidence interval. Simulations were executed under parametric 
uncertainty with 𝛿 = 0.1. Left: The cumulative reward as defined in (27). Middle: The EPI as defined in (28). Right: The cumulative sum of the linear penalty 
function as defined (29). Note that higher penalty values correspond to more state violations.

References

Andersson, J., Gillis, J., Horn, G., Rawlings, J. B., & Diehl, M. (2019). CasADi: a software 
framework for nonlinear optimization and optimal control. Mathematical Programming 
Computation, 11(1), 1–36. https://doi.org/10.1007/s12532-018-0139-4

Bertsekas, D. P. (2024). Model predictive control and reinforcement learning: a unified 
framework based on dynamic programming. IFAC-PapersOnLine, 58(18), 363–383. 
https://doi.org/10.1016/j.ifacol.2024.09.056

Blasco, X., Martínez, M., Herrero, J. M., Ramos, C., & Sanchis, J., et al. (2007). Model-
based predictive control of greenhouse climate for reducing energy and water con-
sumption. Computers and Electronics in Agriculture, 55(1), 49–70. https://doi.org/10.
1016/j.compag.2006.12.001

Boersma, S., Sun, C., & Van Mourik, S., et al. (2022). Robust sample-based model predic-
tive control of a greenhouse system with parametric uncertainty. IFAC-PapersOnLine, 
55(32), 177–182. https://doi.org/10.1016/j.ifacol.2022.11.135

Boersma, S., Van Mourik, S., Xin, B., Kootstra, G., & Bustos-Korts, D. (2022). 
Nonlinear observability analysis and joint state and parameter estimation in a 
lettuce greenhouse using ensemble kalman filtering. IFAC-PapersOnLine, 55(32),
141–146.

Brunke, L., Greeff, M., Hall, A. W., Yuan, Z., Zhou, S., Panerati, J., & Schoellig, A. P., et al. 
(2022). Safe learning in robotics: from learning-Based control to safe reinforcement 
learning. Annual Review of Control, Robotics, and Autonomous Systems, 5(Volume 5, 
2022), 411–444. https://doi.org/10.1146/annurev-control-042920-020211

Cannon, M., Kouvaritakis, B., Rakovic, S. V., & Cheng, Q., et al. (2011). Stochastic tubes in 
model predictive control with probabilistic constraints. IEEE Transactions on Automatic 
Control, 56(1), 194–200. https://doi.org/10.1109/tac.2010.2086553

Chatterjee, D., & Lygeros, J. (2015). On stability and performance of stochastic predictive 
control techniques. IEEE Transactions on Automatic Control, 60(2), 509–514. https://
doi.org/10.1109/TAC.2014.2335274

Chaudhary, G., Kaur, S., Mehta, B., & Tewani, R., et al. (2019). Observer based fuzzy and 
PID controlled smart greenhouse. Journal of Statistics and Management Systems, 22(2), 
393–401. https://doi.org/10.1080/09720510.2019.1582880

Chen, W.-H., & You, F. (2020). Data-driven robust optimization for greenhouse temper-
ature control using model predictive control. Chemical Engineering Transactions, 81, 
721–726. https://doi.org/10.3303/CET2081121

Chen, Z., Hu, H., Wu, Y., Zhang, Y., Li, G., & Liu, Y. (2020). Stochastic model predictive 
control for energy management of power-split plug-in hybrid electric vehicles based 
on reinforcement learning. Energy, 211, 118931.

Ding, Y., Wang, L., Li, Y., & Li, D., et al. (2018). Model predictive control and its application 
in agriculture: a review. Computers and Electronics in Agriculture, 151, 104–117. https:
//doi.org/10.1016/j.compag.2018.06.004

Fagiano, L., & Teel, A. R. (2013). Generalized terminal state constraint for model pre-
dictive control. Automatica, 49(9), 2622–2631. https://doi.org/10.1016/j.automatica.
2013.05.019

García-Mañas, F., Rodríguez, F., Berenguel, M., & Maestre, J. M., et al. (2024). 
Multi-scenario model predictive control for greenhouse crop production considering

Control Engineering Practice 169 (2026) 106787 

15 

https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1016/j.ifacol.2024.09.056
https://doi.org/10.1016/j.ifacol.2024.09.056
https://doi.org/10.1016/j.compag.2006.12.001
https://doi.org/10.1016/j.compag.2006.12.001
https://doi.org/10.1016/j.compag.2006.12.001
https://doi.org/10.1016/j.compag.2006.12.001
https://doi.org/10.1016/j.ifacol.2022.11.135
https://doi.org/10.1016/j.ifacol.2022.11.135
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0005
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0005
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0005
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0005
https://doi.org/10.1146/annurev-control-042920-020211
https://doi.org/10.1146/annurev-control-042920-020211
https://doi.org/10.1109/tac.2010.2086553
https://doi.org/10.1109/tac.2010.2086553
https://doi.org/10.1109/TAC.2014.2335274
https://doi.org/10.1109/TAC.2014.2335274
https://doi.org/10.1109/TAC.2014.2335274
https://doi.org/10.1109/TAC.2014.2335274
https://doi.org/10.1080/09720510.2019.1582880
https://doi.org/10.1080/09720510.2019.1582880
https://doi.org/10.3303/CET2081121
https://doi.org/10.3303/CET2081121
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0011
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0011
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0011
https://doi.org/10.1016/j.compag.2018.06.004
https://doi.org/10.1016/j.compag.2018.06.004
https://doi.org/10.1016/j.compag.2018.06.004
https://doi.org/10.1016/j.compag.2018.06.004
https://doi.org/10.1016/j.automatica.2013.05.019
https://doi.org/10.1016/j.automatica.2013.05.019
https://doi.org/10.1016/j.automatica.2013.05.019
https://doi.org/10.1016/j.automatica.2013.05.019


B. van Laatum et al.

market price uncertainty. IEEE Transactions on Automation Science and Engineering, 
21(3), 2936–2948. https://doi.org/10.1109/TASE.2023.3271896

González, R., Rodríguez, F., Guzmán, J. L., & Berenguel, M. (2014). Robust constrained 
economic receding horizon control applied to the two time-scale dynamics problem of 
a greenhouse. Optimal Control Applications and Methods, 35(4), 435–453. https://doi.
org/10.1002/oca.2080

Gruber, J. K., Guzmán, J. L., Rodríguez, F., Bordons, C., Berenguel, M., & Sánchez, J. A., 
et al. (2011). Nonlinear MPC based on a volterra series model for greenhouse temper-
ature control using natural ventilation. Control Engineering Practice, 19(4), 354–366. 
https://doi.org/10.1016/j.conengprac.2010.12.004

Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S., et al. (2018). Soft actor-Critic: off-
Policy maximum entropy deep reinforcement learning with a stochastic actor. In 
Proceedings of the 35th international conference on machine learning (pp. 1861–1870).
PMLR.

Hamza, A., Ramdani, M., & Bougheloum, W. (2019). Robust T-S fuzzy constrained pre-
dictive control design for greenhouse micro-climate. International Journal of Scientific 
Research & Engineering Technology, 13, 1–4.

Ito, K. (2012). Greenhouse temperature control with wooden pellet heater via model pre-
dictive control approach. In 2012 20Th mediterranean conference on control & automa-
tion (MED) (pp. 1542–1547). https://doi.org/10.1109/MED.2012.6265858

Katzin, D., Van Mourik, S., Kempkes, F., & Van Henten, E. J., et al. (2020). Greenlight – 
an open source model for greenhouses with supplemental lighting: evaluation of heat 
requirements under LED and HPS lamps. Biosystems Engineering, 194, 61–81. https:
//doi.org/10.1016/j.biosystemseng.2020.03.010

Kempkes, F. L. K., Janse, J., & Hemming, S. (2014). Greenhouse concept with high 
insulating double glass with coatings and new climate control strategies; from de-
sign to results from tomato experiments. Acta Horticulturae, (1037), 83–92. https:
//doi.org/10.17660/ActaHortic.2014.1037.6

Kuijpers, W. J. P., Antunes, D. J., Van Mourik, S., Van Henten, E. J., & Van De Molengraft, 
M. J. G., et al. (2022). Weather forecast error modelling and performance analysis 
of automatic greenhouse climate control. Biosystems Engineering, 214, 207–229. https:
//doi.org/10.1016/j.biosystemseng.2021.12.014

Kuijpers, W. J. P., Katzin, D., Van Mourik, S., Antunes, D. J., Hemming, S., & Van 
De Molengraft, M. J. G., et al. (2021). Lighting systems and strategies compared 
in an optimally controlled greenhouse. Biosystems Engineering, 202, 195–216. https:
//doi.org/10.1016/j.biosystemseng.2020.12.006

Lafont, F., Balmat, J.-F., Pessel, N., & Fliess, M., et al. (2015). A model-free control strat-
egy for an experimental greenhouse with an application to fault accommodation. Com-
puters and Electronics in Agriculture, 110, 139–149. https://doi.org/10.1016/j.compag.
2014.11.008

Lorenzen, M., Dabbene, F., Tempo, R., & Allgower, F., et al. (2017). Constraint-tightening 
and stability in stochastic model predictive control. IEEE Transactions on Automatic 
Control, 62(7), 3165–3177. https://doi.org/10.1109/tac.2016.2625048

Mallick, S., Airaldi, F., Dabiri, A., Sun, C., & De Schutter, B., et al. (2025). Reinforce-
ment learning-based model predictive control for greenhouse climate control. Smart 
Agricultural Technology, 10, 100751. https://doi.org/10.1016/j.atech.2024.100751

Mayne, D. Q., Kerrigan, E. C., van Wyk, E. J., & Falugi, P. (2011). Tube-based robust non-
linear model predictive control. International Journal of Robust and Nonlinear Control, 
21(11), 1341–1353. https://doi.org/10.1002/rnc.1758

Mesbah, A. (2016). Stochastic model predictive control: an overview and perspectives 
for future research. IEEE Control Systems Magazine, 36(6), 30–44. https://doi.org/10.
1109/MCS.2016.2602087

Messerer, F., & Diehl, M. (2021). An efficient algorithm for tube-based robust nonlinear 
optimal control with optimal linear feedback. In 2021 60Th IEEE conference on decision 
and control (CDC) (pp. 6714–6721). Austin, TX, USA: IEEE. https://doi.org/10.1109/
CDC45484.2021.9683712

Mondaca-Duarte, F. D., van Mourik, S., Balendonck, J., Voogt, W., Heinen, M., & van Hen-
ten, E. J., et al. (2020). Irrigation, crop stress and drainage reduction under uncer-
tainty: a scenario study. Agricultural Water Management, 230, 105990. https://doi.org/
10.1016/j.agwat.2019.105990

Montoya, A. P., Guzmán, J. L., Rodríguez, F., & Sánchez-Molina, J. A., et al. (2016). A 
hybrid-controlled approach for maintaining nocturnal greenhouse temperature: simu-
lation study. Computers and Electronics in Agriculture, 123, 116–124. https://doi.org/
10.1016/j.compag.2016.02.014

Morcego, B., Yin, W., Boersma, S., Van Henten, E., Puig, V., & Sun, C., et al. (2023). 
Reinforcement learning versus model predictive control on greenhouse climate con-
trol. Computers and Electronics in Agriculture, 215, 108372. https://doi.org/10.1016/j.
compag.2023.108372

Msaad, S., Harraway, M., & McAllister, R. D. (2025). RL-Guided MPC For autonomous 
greenhouse control. IFAC-PapersOnLine, 59(23), 449–454. https://doi.org/10.1016/j.
ifacol.2025.11.829

MÃ¼ller, M. A., Angeli, D., & AllgÃ¶wer, F. (2014). On the performance of economic 
model predictive control with self-tuning terminal cost. Journal of Process Control, 
24(8), 1179–1186. https://doi.org/10.1016/j.jprocont.2014.05.009

Piñón, S., Peña, M., Camacho, E. F., & Kuchen, B., et al. (2001). Robust predictive con-
trol for a greenhouse using input/output linearization and linear matrix inequalities. 
IFAC Proceedings Volumes, 34(29), 82–87. https://doi.org/10.1016/S1474-6670(17)
32797-0

Primbs, J. A., & Sung, C. H. (2009). Stochastic receding horizon control of constrained lin-
ear systems with state and control multiplicative noise. IEEE Transactions on Automatic 
Control, 54(2), 221–230. https://doi.org/10.1109/tac.2008.2010886

Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., & Dormann, N., et al. (2021). 
Stable-baselines3: reliable reinforcement learning implementations. Journal of Machine 
Learning Research, 22(268), 1–8.

Reiter, R., Ghezzi, A., BaumgÃ¤rtner, K., Hoffmann, J., McAllister, R. D., & Diehl, M. 
(2025). Ac4mpc: Actor-critic reinforcement learning for guiding model predictive
control. IEEE Transactions on Control Systems Technology, (pp. 1–16). https://doi.org/
10.1109/TCST.2025.3620521

Reiter, R., Hoffmann, J., Reinhardt, D., Messerer, F., Baumgärtner, K., Sawant, S., 
Boedecker, J., Diehl, M., & Gros, S. (2025). Synthesis of model predictive control and 
reinforcement learning: Survey and classification. arXiv preprint arXiv:2502.02133.

Salzmann, T., Arrizabalaga, J., Andersson, J., Pavone, M., & Ryll, M., et al. (2024). Learn-
ing for casADi: data-driven models in numerical optimization. In Proceedings of the 6th 
annual learning for dynamics & control conference (pp. 541–553). PMLR.

Salzmann, T., Kaufmann, E., Arrizabalaga, J., Pavone, M., Scaramuzza, D., & Ryll, M., et al. 
(2023). Real-time neural MPC: deep learning model predictive control for quadrotors 
and agile robotic platforms. IEEE Robotics and Automation Letters, 8(4), 2397–2404. 
https://doi.org/10.1109/LRA.2023.3246839

Sutton, R. S., & Barto, A. G. (2018). Reinforcement Learning: An Introduction. Cambridge, 
MA, USA: A Bradford Book.

Svensen, J. L., Cheng, X., Boersma, S., & Sun, C., et al. (2024). Chance-constrained stochas-
tic MPC of greenhouse production systems with parametric uncertainty. Computers 
and Electronics in Agriculture, 217, 108578. https://doi.org/10.1016/j.compag.2023.
108578

Van Henten, E. J. (1994). Greenhouse climate management : an optimal control approach. 
Ph.D. thesis. Agricultural University. https://doi.org/10.18174/205106

Van Henten, E. J. (2003). Sensitivity analysis of an optimal control problem in green-
house climate management. Biosystems Engineering, 85(3), 355–364. https://doi.org/
10.1016/S1537-5110(03)00068-0

Van Laatum, B., Van Henten, E. J., & Boersma, S. (2025). Greenlight-Gym: Reinforcement 
learning benchmark environment for control of greenhouse production systems. IFAC-
PapersOnLine, 59(23), 437–442. https://doi.org/10.1016/j.ifacol.2025.11.827

Wächter, A., & Biegler, L. T. (2006). On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical Programming, 
106(1), 25–57. https://doi.org/10.1007/s10107-004-0559-y

Xu, D., Du, S., & Van Willigenburg, G., et al. (2018). Adaptive two time-scale receding 
horizon optimal control for greenhouse lettuce cultivation. Computers and Electronics 
in Agriculture, 146, 93–103. https://doi.org/10.1016/j.compag.2018.02.001

Zarrouki, B., Wang, C., & Betz, J. (2024). Adaptive stochastic nonlinear model predic-
tive control with look-ahead deep reinforcement learning for autonomous vehicle mo-
tion control. In 2024 IEEE/RSJ International conference on intelligent robots and systems 
(IROS) (pp. 12726–12733). IEEE.

Control Engineering Practice 169 (2026) 106787 

16 

https://doi.org/10.1109/TASE.2023.3271896
https://doi.org/10.1109/TASE.2023.3271896
https://doi.org/10.1002/oca.2080
https://doi.org/10.1002/oca.2080
https://doi.org/10.1002/oca.2080
https://doi.org/10.1002/oca.2080
https://doi.org/10.1016/j.conengprac.2010.12.004
https://doi.org/10.1016/j.conengprac.2010.12.004
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0017
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0017
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0017
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0017
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0018
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0018
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0018
https://doi.org/10.1109/MED.2012.6265858
https://doi.org/10.1109/MED.2012.6265858
https://doi.org/10.1016/j.biosystemseng.2020.03.010
https://doi.org/10.1016/j.biosystemseng.2020.03.010
https://doi.org/10.1016/j.biosystemseng.2020.03.010
https://doi.org/10.1016/j.biosystemseng.2020.03.010
https://doi.org/10.17660/ActaHortic.2014.1037.6
https://doi.org/10.17660/ActaHortic.2014.1037.6
https://doi.org/10.17660/ActaHortic.2014.1037.6
https://doi.org/10.17660/ActaHortic.2014.1037.6
https://doi.org/10.1016/j.biosystemseng.2021.12.014
https://doi.org/10.1016/j.biosystemseng.2021.12.014
https://doi.org/10.1016/j.biosystemseng.2021.12.014
https://doi.org/10.1016/j.biosystemseng.2021.12.014
https://doi.org/10.1016/j.biosystemseng.2020.12.006
https://doi.org/10.1016/j.biosystemseng.2020.12.006
https://doi.org/10.1016/j.biosystemseng.2020.12.006
https://doi.org/10.1016/j.biosystemseng.2020.12.006
https://doi.org/10.1016/j.compag.2014.11.008
https://doi.org/10.1016/j.compag.2014.11.008
https://doi.org/10.1016/j.compag.2014.11.008
https://doi.org/10.1016/j.compag.2014.11.008
https://doi.org/10.1109/tac.2016.2625048
https://doi.org/10.1109/tac.2016.2625048
https://doi.org/10.1016/j.atech.2024.100751
https://doi.org/10.1016/j.atech.2024.100751
https://doi.org/10.1002/rnc.1758
https://doi.org/10.1002/rnc.1758
https://doi.org/10.1109/MCS.2016.2602087
https://doi.org/10.1109/MCS.2016.2602087
https://doi.org/10.1109/MCS.2016.2602087
https://doi.org/10.1109/MCS.2016.2602087
https://doi.org/10.1109/CDC45484.2021.9683712
https://doi.org/10.1109/CDC45484.2021.9683712
https://doi.org/10.1109/CDC45484.2021.9683712
https://doi.org/10.1109/CDC45484.2021.9683712
https://doi.org/10.1016/j.agwat.2019.105990
https://doi.org/10.1016/j.agwat.2019.105990
https://doi.org/10.1016/j.agwat.2019.105990
https://doi.org/10.1016/j.agwat.2019.105990
https://doi.org/10.1016/j.compag.2016.02.014
https://doi.org/10.1016/j.compag.2016.02.014
https://doi.org/10.1016/j.compag.2016.02.014
https://doi.org/10.1016/j.compag.2016.02.014
https://doi.org/10.1016/j.compag.2023.108372
https://doi.org/10.1016/j.compag.2023.108372
https://doi.org/10.1016/j.compag.2023.108372
https://doi.org/10.1016/j.compag.2023.108372
https://doi.org/10.1016/j.ifacol.2025.11.829
https://doi.org/10.1016/j.ifacol.2025.11.829
https://doi.org/10.1016/j.ifacol.2025.11.829
https://doi.org/10.1016/j.ifacol.2025.11.829
https://doi.org/10.1016/j.jprocont.2014.05.009
https://doi.org/10.1016/j.jprocont.2014.05.009
https://doi.org/10.1016/S1474-6670(17)32797-0
https://doi.org/10.1016/S1474-6670(17)32797-0
https://doi.org/10.1016/S1474-6670(17)32797-0
https://doi.org/10.1016/S1474-6670(17)32797-0
https://doi.org/10.1109/tac.2008.2010886
https://doi.org/10.1109/tac.2008.2010886
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0037
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0037
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0037
https://doi.org/10.1109/TCST.2025.3620521
https://doi.org/10.1109/TCST.2025.3620521
https://doi.org/10.1109/TCST.2025.3620521
https://doi.org/10.1109/TCST.2025.3620521
http://arxiv.org/abs/2502.02133
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0040
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0040
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0040
https://doi.org/10.1109/LRA.2023.3246839
https://doi.org/10.1109/LRA.2023.3246839
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0042
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0042
https://doi.org/10.1016/j.compag.2023.108578
https://doi.org/10.1016/j.compag.2023.108578
https://doi.org/10.1016/j.compag.2023.108578
https://doi.org/10.1016/j.compag.2023.108578
https://doi.org/10.18174/205106
https://doi.org/10.18174/205106
https://doi.org/10.1016/S1537-5110(03)00068-0
https://doi.org/10.1016/S1537-5110(03)00068-0
https://doi.org/10.1016/S1537-5110(03)00068-0
https://doi.org/10.1016/S1537-5110(03)00068-0
https://doi.org/10.1016/j.ifacol.2025.11.827
https://doi.org/10.1016/j.ifacol.2025.11.827
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1016/j.compag.2018.02.001
https://doi.org/10.1016/j.compag.2018.02.001
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0049
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0049
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0049
http://refhub.elsevier.com/S0967-0661(26)00031-6/sbref0049

	Stochastic model predictive control with reinforcement learning for greenhouse production systems under parametric uncertainty 
	1 Introduction
	2 Problem formalization
	2.1 Lettuce greenhouse model
	2.2 Greenhouse production control problem

	3 Methodology
	3.1 Reinforcement learning
	3.2 Model predictive control
	3.3 Stochastic model predictive control
	3.4 RL-SMPC
	3.5 Performance metrics

	4 Simulation results
	4.1 Performance under parametric model uncertainty
	4.2 Computational complexity
	4.3 Varying model parameter uncertainty and prediction horizons
	4.4 Ablations

	5 Discussion
	5.1 Performance of RL-SMPC
	5.2 Computational complexity
	5.3 Effect of uncertainty levels and prediction horizon
	5.4 Ablation study

	6 Conclusion
	A Nonlinear lettuce greenhouse model
	B Additional simulation results
	B.1 Scenario sample size
	B.2 Robustness RL-SMPC against RL random seed



