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Model predictive control framework for optimizing offshore wind O&M

M. Borsotti, R.R. Negenborn & X. Jiang
Department of Marine and Transport Technology, Technical University of Delft, Delft, The Netherlands

ABSTRACT: Offshore wind farms are a promising source of renewable energy, but they face signifi-
cant challenges in terms of operation and maintenance (O&M). Traditional scheduling models often
overlook the potential of condition-based maintenance (CBM). Addressing this gap, this paper intro-
duces a novel framework, incorporating principles of Model Predictive Control (MPC), to optimize the
O&M scheduling of offshore wind farms using prognostic-driven maintenance. The framework inte-
grates probabilistic remaining useful life (RUL) prognosis in a mixed-integer linear programming
(MILP) optimization model with a rolling horizon approach, in alignment with MPC’s predictive and
adaptive decision-making approach. The optimization model determines the optimal time to replace
each component by minimizing the expected cost over the expected lifetime. This approach seeks to
achieve the lowest expense while guaranteeing the highest utilization rate of each component. For the
case study presented, the total O&M costs are reduced by up to 15% with respect to corrective main-

tenance strategies.

1 INTRODUCTION

In recent years, the global focus on renewable energy
sources has intensified, partly driven by the urgent
need to address climate change. Offshore wind farms
have emerged as a promising and significant contribu-
tor in this domain. In 2021, a record number of off-
shore wind farm projects were commissioned,
indicating a robust growth trajectory for this sector.
The cumulative deployment of offshore wind energy
is estimated to reach approximately 117 GW by 2027,
and potentially 370 GW by 2031, according to the US
Department of Energy (2022) (US Department of
Energy 2022). This expected growth positions offshore
wind as a pivotal component in achieving global elec-
tricity generation targets and in assisting countries to
meet their climate and renewable energy objectives.

However, the high cost of offshore wind, compared
to other renewable technologies, remains a significant
challenge (NREL 2023). A critical factor influencing
this cost is Operation and Maintenance (O&M),
which accounts for a substantial portion of the total
lifecycle costs of offshore wind projects, estimated to
be between 25-30%, as opposed to 10-15% for
onshore wind farms (National Renewable Energy
Laboratory 2022), (van Bussel & Schontag 1997).

Efficient and effective O&M strategies are essen-
tial to minimize downtime, enhance the performance
and availability of the wind farm, and thereby reduce
the overall Levelized Cost of Electricity (LCoE).
These strategies include reactive and proactive main-
tenance (Ren et al. 2021).
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Proactive strategies such as predictive mainten-
ance are based on Condition Based Monitoring
(CBM) and can substantially reduce the cost of
O&M (Van Horenbeek & Pintelon 2012b), CBM
involves monitoring the health and performance of
wind turbine components in real-time or periodically,
using sensors and other monitoring systems (Kou
et al. 2022). By analyzing the collected data, trends
and patterns, anomalies can be detected, allowing for
timely maintenance actions (Le & Andrews 2016).

Nevertheless, traditional scheduling models in off-
shore wind farm maintenance primarily rely on fixed
age thresholds for the planning of maintenance tasks,
while overlooking the potential of CBM (May et al.
2015). This approach can often lead to inefficiencies
since it does not account for the actual condition of
the components, leading to scenarios where mainten-
ance is either performed too early, resulting in
unnecessary costs, or too late, leading to unexpected
failures and extended downtimes (Fox et al. 2022).

In recent years, the advent of advanced control
strategies has significantly impacted the operational
efficiency of complex systems. Among these, Model
Predictive Control (MPC) stands out as a form of con-
trol strategy that utilizes a model of the process to
predict future outcomes and make decisions that opti-
mize a set of predefined objectives over a future time
horizon. It is characterized by its ability to anticipate
future events and take control actions accordingly,
making it an ideal framework for managing systems
where the cost of operational decisions is high and the
need for reliability is critical (Mayne et al. 2000).



Table 1. Acronyms and nomenclature. Table 1. (Continued)
Symbol Definition Symbol Definition
OFW Offshore Wind Farm EpMLifk,L)] Expected lifetime without replacement over
O&M Operation and Maintenance the planning horizon L
CBM Condition-Based Maintenance cy Cost over expected lifetime ratio for
MPC Model Predictive Control replacement
RUL Remaining Useful Life Chy Cost over expected lifetime ratio for doing
MILP Mixed-Integer Linear Programming nothing
CTV Crew Transfer Vessel
SOV Service Operation Vessel The integration of MPC principles into these
LCoE Levelized Cost of Electricity maintenance strategies offers a promising approach
Juv Jack-Up Vessel to further address these challenges. By adopting
HLV Heavy Lift Vessel a framework that includes both predictive and adap-
t Time in fiays Sif}ce the beginning of the tive elements, we can more effectively balance main-
observation period . tenance needs with operational efficiency.
k The current day or time step since the The methodological innovation in O&M schedul-
begm.mng, of component operation ing proposed in this paper involves the development
[k ghe time in d?.ys smnee Fge ?omglonent V has of a novel framework that incorporates probabilistic
Csfrr;rtl gs;rl? fon, consiceriig tie RUL prognosis into a mixed-integer linear program-
L Length of the maintenance planning horizon ming (MILP) 'model. Such an approach not'or.lly
d, Present day in the planning horizon aims to minimize O&M costs but also to maximize
. Time step in the planning horizon the utlillzatlon rate .o.f eac_h component, a cr1t.19a1
s Set of all possible maintenance schedules factor in the proﬁtablhty, viability, and sustainability
V Set of components in the wind turbine of offshore wind farms.
N Vessel used for the replacement of compo-
nent V 1.1 Paper structure
Corevenive r?:rf: ;fpreventwe replacement of compo- This paper will explore the concept of prognostic-
v . driven maintenance in depth, elaborating on its
Ceorrective Costt on corrective replacement of compo- methodology, implementation, and benefits. It aims
nen . H R > .
p[/,,ewnﬂve Preventive replacement time for component V to Contltlbuw to the. existing body of know.ledge by
Y ective Corrective replacement time for component 7 a.ddressmg the gap m current O&M. scheduling prac-
Nocs Number of technicians necessary for tices and tden(;qnstratmg thehpotentlal advantages of
replacemen a prognostic-driven approach.
Riour Sg;f; raetetofa technician An extensive review of current methpdolqgies in
C. Cost of electricity O&M for offshpre wind farms is outlmed. in Sec-
P( Power cutve of a turbine tion 2, showca.smg how current strategw; Incorpor-
Vooan Average wind speed ate fault detecthn, but. often'ovquoolf the integration
& (i) Probability that the RUL of component V is of fault prognosis. This section identifies gaps in the
exactly i days, after being used for k days literature and positions the paper within the context
el () Expected cost of potential downtime losses f)f existi.ng research: The methodology is explait{ed
for component ¥ over time in Section 3, detailing the proposed prognostic-
x/ Binary decision variable indicating if com- driven maintenance model. It explains how the
ponent Vis replaced at time s model is constructed, the synthetic model used for
/8 Binary variable indicating if weather RUL prediction in the absence of real-time data, and
B conditions are suitable at time s the mathematical formulations used for the optimiza-
Y Binary variable indicating if vessel ;" is tion of maintenance scheduling. A hypothetical case
available at time s scenario is outlined in Section 4, detailing the spe-
7 Binary Variab_le indicating if technicians cific components, operational parameters, and main-
with the required skills to replace compo- tenance requirements of a single offshore wind
nent Vare available at time s turbine. This scenario serves as a practical example
ErlCkt0] - Expected cost of rep,lacemem after #; days to illustrate the application of the prognostic-driven
fﬁ’\’[c”(k’ I]fl); ﬂicifgdhcgrsit giiomg nothing over the scheduling model. The findings from applying the
Z . .
ExlLukiy)]  Expected lifetime after replacement at time £; model to the case scenario are finally presented in

(Continued)
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Section 5. The results section includes graphs and
figures to visualize the cost implications of different
maintenance strategies over time, offering insights



into the model’s effectiveness. Lastly, in Section 6,
the reader will find a critical analysis of the model’s
outcomes, its implications for the O&M of offshore
wind farms, and a discussion on potential areas for
further research and model refinement.

2 LITERATURE REVIEW

Short-term scheduling in offshore wind farm O&M is
a critical factor for ensuring operational efficiency and
reliability. This horizon focuses on the daily or weekly
planning of maintenance tasks, influenced by real-time
factors like weather conditions, component health, and
logistical considerations (Irawan et al. 2017).

Recent advancements in technology, particularly in
data analytics and predictive modelling, have enabled
new, sophisticated approaches to short-term schedul-
ing. The integration of real-time data from sensors,
coupled with advanced prognostic models, allows for
more accurate predictions of component health and
maintenance needs (Le & Andrews 2016).

Several studies have highlighted the effectiveness
of prognostic-driven approaches in short-term sched-
uling. These case studies provide valuable insights
into the practical applications and benefits of adopting
a prognostic-driven approach in short-term scheduling
scenarios (Van Horenbeek & Pintelon 2012a).

The ongoing research in short-term scheduling is
oriented towards further refining prognostic models
and integrating them with dynamic scheduling sys-
tems. The focus is on enhancing the accuracy of pre-
dictions and developing more agile scheduling tools
that can respond in real-time to changes in compo-
nent conditions and environmental factors.

2.1 Short-term scheduling in offshore wind farms

Short-term scheduling within offshore wind farms
O&M remains an intricate process that demands
meticulous analysis and planning. The state of the
art in short-term scheduling predominantly revolves
around optimizing the routing of vessels and timing
of maintenance activities.

In the literature, various strategies have been pro-
posed to tackle these challenges. The routing and
scheduling problem is often addressed by optimizing
the paths and schedules for vessels to service wind
turbines (Irawan et al. 2017). These models aim to
minimize costs by reducing travel times, optimizing
resource allocation, and ensuring safe and efficient
transportation (Ade Irawan et al. 2023).

However, a significant aspect of these strategies is
the reliance on fixed age thresholds for maintenance
actions. These thresholds are identified using meth-
odologies that optimize the maintenance schedule
based on the age of the components (Sarker & Ibn
Faiz 2016). This approach has been the traditional
method for maintenance planning, where tasks are
scheduled at predetermined intervals, regardless of
the actual condition of the components.
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Age threshold optimization techniques in the lit-
erature underscore the influence of age groups and
thresholds on the overall maintenance costs (Sarker
& Tbn Faiz 2016),(Li et al. 2022). These techniques
utilize various decision rules and stochastic models
to determine the most cost-effective moments for
maintenance actions (Safaei et al. 2020). However,
they do not fully exploit the potential benefits of
prognostic information that could further optimize
scheduling.

In contrast to this traditional approach, recent
advancements have seen a shift towards prognostic-
driven scheduling models. These models deviate
from fixed age thresholds by employing probabilistic
RUL predictions to inform maintenance decisions
(Li et al. 2020). Prognostic-driven scheduling con-
siders the actual condition and predicted future state
of health of the components, potentially offering
a more dynamic and cost-effective maintenance
strategy.

The integration of prognostics into maintenance
planning for OWFs represents a paradigm shift from
a purely reactive to a more predictive and proactive
approach. The impact that advanced monitoring
strategies can have on lifetime O&M costs for off-
shore wind turbines is evaluated in (Turnbull & Car-
roll 2021), here the authors showed a potential cost
reduction of up to 8% in direct O&M costs (trans-
port, staff and repair costs) and up to 11% reduction
in lost production, where the major source of savings
are obtained through early intervention to avoid fail-
ure and major component replacement.

In conclusion, while fixed age threshold optimiza-
tion has served as a foundational approach for
short-term scheduling in OWFs, the advent of prog-
nostic-driven models is suggesting the beginning of
a new era in maintenance strategy. This emerging
approach, grounded in probabilistic RUL predic-
tions, aims to redefine the maintenance optimization
landscape, promising increased efficiency, reduced
costs, and improved system reliability for OWFs.

2.2 Short-term scheduling in other industries

A review of contemporary literature in the domain
of maintenance scheduling for aircrafts, reveals
a variety of methodological approaches, each con-
tributing uniquely to the development of more
refined and predictive O&M scheduling models.
Prognostic models are central to forecasting the
RUL of components. The methodologies employed
across recent studies vary, with some common
approaches being highlighted.

Convolutional Neural Networks (CNN) and
Monte-Carlo dropout have been used by (Mitici
et al. 2023), (Lee & Mitici 2023), (de Pater et al.
2022), (de Pater & Mitici 2021), employing
a probabilistic Remaining Useful Life approach that
estimates the likelihood of component failure within
a given time frame, contributing to a more precise
and cost-cffective scheduling process.



Similarly, Bayesian Deep Learning (BDL), Long
Short-Term Memory networks (LSTM) and Feed-
forward Neural Networks (FNN) are used by (Zhuang
et al. 2023). Kalman Filters are employed by (Vianna
& Yoneyama 2018), where degradation trends and
future wear values are estimated considering an imple-
mentation of a multiple model approach of the
extended Kalman filter technique. The RUL prognosis
methodologies presented are summarized in Table 2

Table 2. RUL Prognosis methodologies.

Kalman

Authors CNN BDL LSTM FNN Filter NA

(Mitici etal.
2023)
(Zhuang et al.
2023)

(Lee & Mitici
2023)

(de Pater et al.
2022)

(de Pater &
Mitici 2021)
(Chen et al.
2021)

(Camci et al.
2019)

(Vianna &
Yoneyama
2018)

(Li et al.
2016)

v

The optimization of maintenance scheduling is
influenced by the predicted RUL, where various
methods are employed to ensure cost-effectiveness
and high component utilization.

Mixed-Integer Linear Programming (MILP) is
a widely adopted method, seen in most of the
reviewed papers such as (Mitici et al. 2023),
(Zhuang et al. 2023), (de Pater et al. 2022),(de Pater
and Mitici 2021), (Chen et al. 2021), (Camci et al.
2019), providing a structured approach to optimizing
cost while maintaining high component utilization
rates; in (Mitici et al. 2023) the authors claim that
through their novel approach, 95.6% of unscheduled
maintenance can be prevented.

The predictive maintenance planning can also be
formulated as a Deep Reinforcement Learning
(DRL) problem, as seen in (Lee & Mitici 2023), this
approach can be particularly useful in dealing with
the dynamic and complex nature of maintenance
scheduling. Exhaustive search methods, although
computationally intensive, provide a thorough
exploration of all possible solutions and are used in
(Vianna & Yoneyama 2018).
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Rolling-Horizon strategies, as seen in (Mitici
et al. 2023) and (Zhuang et al. 2023), are employed
for their adaptability and the capacity to update deci-
sions with new information over time. The main
scheduling optimization methods discussed are sum-
marized in Table 3.

Table 3. Scheduling optimization methods.

Exhaustive
MILP DRL search

Rolling-

Authors Horizon

v
v

v
v

(Mitici et al. 2023)
(Zhuang et al.
2023)

(Lee & Mitici
2023)

(de Pater et al.
2022)

(de Pater & Mitici
2021)

(Chen et al. 2021)
(Camci et al.
2019)

(Vianna &
Yoneyama 2018)
(Liet al. 2016)

NS S S

The objective functions in these models often
include maintenance costs and the utilization rate of
the system. For instance, (Chen et al. 2021) minim-
izes the expected costs over the component’s
expected lifespan (cost rate) while others only min-
imize maintenance cost (Li, Guo, & Zhou 2016). An
overview of the objective functions used by each
author is presented in Table 4

Table 4. Objective functions in scheduling models.

Maintenance
Cost

Maintenance Cost

Authors Rate

(Mitici et al. 2023)
(Zhuang et al. 2023)
(Lee & Mitici 2023)
(de Pater et al. 2022)
(de Pater & Mitici
2021)

(Chen et al. 2021)
(Camci et al. 2019)
(Vianna & Yoneyama
2018)

(Li et al. 2016)

AN

In summary, the literature presents a rich tapestry
of methodologies aimed at optimizing short-term
scheduling. The trend towards integrating predictive
analytics and probabilistic models is clear, with



a strong focus on optimizing maintenance activities
based on real-time data and advanced diagnostic
techniques. These studies form the bedrock upon
which future operational frameworks can be devel-
oped for offshore wind farms.

2.3 Research gap

As we have seen, the state of the art in scheduling for
offshore wind farms (OWFs) primarily focuses on
optimizing the allocation of resources, minimizing
travel time and costs, and ensuring the timely comple-
tion of maintenance tasks. The literature reveals that,
while fault detection is commonly accounted for in
current methodologies, there is a lack of integration
of fault prognosis and future component health pre-
dictions into these scheduling models.

Task sequencing and scheduling play crucial roles
in minimizing downtime and maximizing resource
utilization, however, current approaches typically do
not integrate prognostic-driven strategies that can
predict the future state of health of components. This
represents a significant gap in the literature, as the
incorporation of such strategies could potentially
lead to more effective and cost-efficient scheduling
by anticipating future maintenance needs and avoid-
ing the pitfalls of reactive maintenance approaches.

Table 5. Maintenance scheduling in literature.

Consider fault
prediction

Consider fault

Authors detection

(Irawan et al. 2017)
(Dai et al. 2015)
(Stock-Williams &
Swamy 2019)
(Pattison et al. 2016)
(Raknes et al. 2017)
(Ade Irawan et al.
2023)

(Nachimuthu et al.
2019)

(Lazakis & Khan
2021)

(Mazidi et al. 2017)
(Sinha et al. 2013)
(Dawid et al. 2018)
(Liu et al. 2019)
(Mitici et al. 2023)"
(Zhuang et al. 2023)"
(Tseremoglou et al.
2023)"

(Lee & Mitici 2023)"
(de Pater et al. 2022)"
(de Pater & Mitici
2021)"

(Chen et al. 2021)"

SN N N N N N N N N N N N N NN

NN N N

(Continued)

Table 5. (Continued )
Consider fault  Consider fault
Authors detection prediction
(Camci et al. 2019)! ¢ v
(Vianna & Yoneyama v
2018)!
(Gogu 2018)" v v
(Li, Guo, & Zhou v v
2016)"
(Rodrigues et al. v v
2015)"

Note: Papers marked with' are related to the maintenance
of aircrafts, the rest is related to the maintenance of OWFs.

On the other hand, as illustrated in Table 5, while
research in the field of offshore wind maintenance is
currently considering only fault detection, the air-
craft maintenance industry has made significant
strides in incorporating prognostic information and
fault predictions into its scheduling models. The
advanced adoption of CBM in aircraft maintenance
provides a framework from which OWF mainten-
ance can draw inspiration. The similarities between
the two industries, such as the criticality of mainten-
ance for safety and efficiency, the high costs associ-
ated with downtime, and the technical complexity of
the systems involved, justify the adoption of similar
methodologies in O&M scheduling for OWFs.

Addressing these challenges, the primary objective
of this research is to propose a novel framework that
not only integrates a prognostic-driven maintenance
approach into the O&M scheduling process of offshore
wind farms but also makes use of the predictive and
adaptive capabilities of MPC. This framework aims to
optimize maintenance activities based on probabilistic
RUL predictions, thereby reducing costs and maximiz-
ing operational efficiency and energy production. By
incorporating MPC, the research seeks to bridge the
gap in current O&M practices, offering a dynamic
scheduling model that can anticipate and adapt to the
operational state of the wind farm components.

3 METHODOLOGY

The methodology applied in this research constructs
a prognostic-driven optimization model for the short-
term scheduling of maintenance activities in offshore
wind farms. The proposed model is designed to inte-
grate the probabilistic estimation of Remaining Useful
Life (RUL) for components within a cost optimization
framework, enriched by the principles of Model Pre-
dictive Control (MPC). MPC’s predictive capabilities
enable the model to consider not just current compo-
nent states but also forecast future conditions, thereby
allowing for proactive maintenance decisions that can
adapt to changing operational needs.
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This chapter describes the foundational frame-
work of the model.

3.1 Synthetic model for probabilistic RUL
prediction

To address the inherent uncertainties in predicting
the Remaining Useful Life (RUL) of offshore wind
turbine components, our study employs a synthetic
model. This model is instrumental in generating
probabilistic RUL predictions in the absence of real-
time condition-based monitoring data.

The true RUL (RUL,,,..) of the components is con-
sidered a latent variable that follows a Weibull distri-
bution, a common choice for modeling the life of
mechanical systems. The probability density func-
tion of the Weibull distribution is defined as:

a [t

ft2,0) =7 (z)ailef(f)a (1)

where ¢ is the ime in days since the beginning of the
observation period, 4 is the scale parameter and o is
the shape parameter. To simulate the true RUL, we
use inverse transform sampling, where:

RULye = A(—In(U)'*, U ~Unif(0,1) (2)
where U is a random variable uniformly distributed
between 0 and 1, used in the inverse transform sam-
pling method.

Our model generates point predictions of RUL
and characterizes the uncertainty around these pre-
dictions, which decreases over time as more infor-
mation becomes available. The range for the
standard deviation of the predictions is set by:

stdyugr = RUL e - (large uncertainty) (3)
stdyim = RULgye - (small uncertainty) — (4)

where s,y 18 the maximum standard deviation repre-
senting the initial uncertainty in the RUL prediction
and ggmin 18 the minimum standard deviation repre-
senting the reduced uncertainty as more information
becomes available over time.

The confidence in the prediction increases with
time, converging towards the lower bound of uncer-
tainty. This is modeled as:

std(?) = stdyax — (Stdmax — Stdpin)-

1 ()

_ t=a:RULy,
1+ exp( D RUL, )

where std(?) is the confidence in the RUL prediction
at time ¢, which is a function of time reflecting
decreasing uncertainty. The maximum and minimum
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standard deviation, as well as the values of param-
eters a and b used in Equation 5, can be modified to
represent different behaviours of the RUL predic-
tions in time. Subsequently, the RUL prediction
adjusted for error at time ¢ is calculated as:

RULpred([) - RULtrue —t+ error(t) (6)

with the error term modeled as a normally distrib-
uted random variable with mean 0 and standard devi-
ation corresponding to the confidence at time ¢ is
calculated as:

error(¢) ~ N(0,std(¢)) (7)

The synthetic model allows us to construct
a probability distribution for the RUL at any
given day d, denoted by ¢°. This distribution is
a normal distribution centered around the point pre-
diction RUL,,,.,(f) with a standard deviation std(s):

¢(t) = N(RULprea(t), std(?)) (8)

The synthetic model serves as a stand-in for
actual condition-based monitoring data, which is
often scarce or unavailable. By creating a simulated
environment, we can test the robustness of our prog-
nostic framework and its underlying assumptions.
Furthermore, this model provides a controlled setup
to assess the performance of maintenance scheduling
algorithms and to investigate the effects of different
parameters on the maintenance optimization process.
Despite the benefits of using real sensor data for con-
dition monitoring and prognostics, the synthetic
model offers a valuable alternative for conducting
preliminary analyses.

Ultimately, while the synthetic model provides
valuable insights, it is designed to be supplanted by
real-life condition-based monitoring systems as they
become more prevalent and integrated into wind
farm O&M practices.

0.025

— Day 2700

Day 1800
0020 — Day 2100
Day 2400

0.015

Density

0.010

0,005

0.000

500 1000 1500 2000 2500 3000 3500 4000
Predicted RUL

Figure 1. Probability Distributions of Synthetic Daily RUL
Predictions.



In Figure 1, we observe the evolution of the prob-
ability distributions of the predicted Remaining
Useful Life (RUL) at different moments of
a component’s operational span. This visualization is
critical for understanding how the prognostic
model’s certainty improves as the component ages.

The graph illustrates several Gaussian distribu-
tions corresponding to different days in the compo-
nent’s lifecycle. Each curve represents the
probability density function ¢%(7) for the RUL pre-
diction on given days. The values of the days visual-
ized in the graph have been chosen arbitrarily at
intervals that give a comprehensive overview of the
behavior of the curves during the lifetime of
a component, while also highlighting the transition
from early uncertainty to later confidence in RUL
predictions. As time progresses, these distributions
evolve in the following manner:

Early Life (Day 0, Blue Curve): Initially, the RUL
distribution is wide with a peak far from zero, indi-
cating that the component has a long expected life-
span ahead. However, the broad spread of the curve
reflects significant uncertainty in this early predic-
tion. This uncertainty is due to the lack of oper-
ational data and the inherent unpredictability at the
beginning of the lifecycle.

Mid Life (Days 750 and 1500, Green and Red
Curves): As the component transitions into its mid-
life, the distributions start to narrow, indicating an
increase in confidence regarding the RUL. The peak
of the distributions starts to shift left, towards lower
RUL values, as the component naturally ages and
accumulates wear and tear.

Approaching End of Life (Days 1800 to 2400,
Yellow to Purple Curves): As the component nears
its end of life, the distributions become increasingly
sharper and more skewed towards the left, indicating
that the remaining lifespan is diminishing. The peak
of these distributions gets closer to zero, and the nar-
rowing of the curves signifies a higher confidence in
the RUL prediction. This increased precision is
likely due to the accumulation of more significant
operational data and wear patterns, allowing the
model to make more accurate forecasts.

The sharpening of the distributions towards the end
of the component’s life is a crucial aspect of the prog-
nostic model. It represents a condition-monitoring
framework where, as more operational data becomes
available over time, the RUL can be predicted with
greater accuracy.

3.2 Computation of maintenance costs

Maintenance activities for offshore wind farms, for
the purpose of this study, consist of corrective and
preventive replacements. The costs associated with
these activities are computed by considering various
factors such as transportation, labor, materials, and
potential downtimes. We disregard major and minor
repairs, focusing solely on replacements. Each cost
component is detailed below.
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The transportation cost is associated with the
usage of vessels to carry out maintenance activities.
It is computed based on the type of vessel used, the
duration of the activity, and the distance to the wind
farm. The transportation cost C,, is given by:

Ctmns = Umobil + (F consumption X Dtmvel X 2)

9
+(Rday X Tdurution) ( )
Equation (9) includes three elements: C,,,; is the
mobilization cost i.e. the initial cost to deploy the
vessel, Fonsumprion 1S the fuel consumption, calculated
by multiplying the vessel’s fuel consumption rate by
the travel distance D,,,,.; multiplied by two to take
into account both travels, the first one to reach the
wind turbine and the second one to get back to the
onshore base, Ry, is the operational cost of the vessel
per day, multiplied by the duration of the activity
T turation €Xpressed in days.
The cost of labor is determined by the number of
technicians needed, the duration of the activity, and
the hourly rate. The technician cost formula is:

Ctech = Ntech X R/wur X Tdumtion (10)
where C,..; 1s the technician cost, N, is the number
of technicians, R, is the hourly rate, and 7 ,qsi0r 1S
the duration of the maintenance activity in hours.

Downtime costs refer to the loss of revenue due to
the turbine being non-operational during mainten-
ance. It is calculated by considering the electricity
cost rate, the duration of downtime, and the rated
power output of the turbine, the formula is:

Cdt = Cel X P(Vmean> X Tdumtion (l 1)
where C,, is the downtime cost, C,; is the cost of
electricity per kWh, T, is the downtime duration,
and P(v) represents the power curve of the turbine
i.e. its power output as a function of wind speed,
therefore P(v,,.q,) is the power output at the average
wind speed at the selected location.

The total cost of maintenance is the sum of the
replacement material cost which is given, transporta-
tion cost, technician cost, and downtime cost. The
formula is as follows:

Cmaintenanw = Umaterial + Ctrans + Ctech + Cdt (12)
These computations ensure a comprehensive
understanding of the costs involved in the mainten-

ance of offshore wind farms.

3.3 Expected costs

Two key cost considerations form the basis of
the model: the expected cost of replacement and
the expected cost of doing nothing, denoted by



Er[Cifk,ty)] and Epn[Cy(k,L)], respectively. The
expected cost of replacement after ¢, days is cal-
culated using equation (13) which computes the
expected total cost by considering both the risks
of failure and the costs associated with preventive
actions.

Furthermore, in the offshore wind farm O&M
scheduling, downtime can significantly affect the total
cost due to lost production. Thus, it is necessary to
incorporate the expected cost of downtime losses due
to potential unexpected failures, cf,/t, into the optimiza-
tion model. This cost is associated with the expected
production losses when the turbine is unavailable due
to the failure of component ¥, in contrast to the down-
time cost computed in Equation 11 which is used to
evaluate only the downtime and power losses during
the maintenance activity itself.

The expected cost of potential downtime losses is
calculated over the time horizon #;, and is a function
of the cost of electricity C,;, the probability of compo-
nent V failing at each time i, denoted as ¢/ (i), the
average power production of the turbine P(v,,.,,), and
the average electricity market price. The cost is accu-
mulated over all possible failure moments within the
planning horizon, weighted by the duration of down-
time that would result from a failure at each moment.

t—1

[CV (k tk - cmrectlve Z ¢k pl eventive
l— 41
( Z¢k >+Cdtz¢k (t—i—1)
(13)

8where ER[Ci{k,t;)] is the expected cost of replace-
ment after the component 7 has been used for k + ¢,
days. <;Sk (i) is the probability that the RUL of compo-
nent V is exactly i days, after being used for £ days.
Cpreventive 15 the cost of preventive maintenance.
Ceorrective 18 the cost of corrective maintenance, includ-
ing downtime and potential penalties and the daily cost
of downtime losses due to delayed maintenance, c};t, is
given by the equation:

¢l = Cor - P(Vipean) - 24 (14)

The expected cost of doing nothing denotes the
expected cost if no maintenance action is taken
within the planning horizon L. Here, the cost is
purely the cost of corrective actions, as no prevent-
ive maintenance is performed. It is calculated by
summing the probabilities of failure for each day
within the planning horizon and multiplying by the
cost of corrective maintenance. The expected cost of
doing nothing if the component is not replaced
within the period [k,k + L] is given by:
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—1
Epy[Cr(k,L)]

= Ceorrective ¢

) =0 (15)
+CZZ¢Z(Z’)(L —i—1)
i=0

3.4 Expected cost/lifetime ratio

The model also estimates the expected lifetime for
both replacement and doing nothing scenarios.

H—1

Ex[Ly(k,t)] =k -+ i 6] (i)
o\ 09
‘. (1 _ Z¢Z(i>>
i=0

ER[LiAk,t)] is the sum of the days the component
has been in service k, the remaining useful life
weighted against its probability distribution ¢; (i), and
the additional lifetime # if no failure occurs. This gives
a comprehensive view of the expected operational life
of a component considering both scenarios, failure and
no failure within the time to replacement. Furthermore,
it accounts for the risk of early interventions and the
potential reduction in component life due to the accu-
mulated probability of failure.

L-1
Epy[Ly(k, L)) =k+>_i-¢f (i)

o (17)
L- (1 Z¢Z<z‘)>

Epn[Li(k,L)] takes into account the component’s
current service life £ and the weighted sum of the
remaining useful life throughout the planning hori-
zon L in both scenarios, failure and no failure within
the planning horizon.

The decision-making process involves comparing
the cost over the expected lifetime for replacement
and doing nothing, for this reason we defined Cy as
the ratio of the expected replacement cost over the
expected lifetime and C hy as the ratio of the
expected cost of doing nothing over the expected
lifetime without intervention, offering a perspective
on the long-term cost implications of deferring
maintenance.

ER[Cy(k, t)]

8 = BulLy k.1)

(18)



Epn[Cr(k.L)]

cly=———""=
DN Epn[Ly(k,L)]

3.5 Optimization model

The optimization model is formulated to determine
the optimal time to maintain a component to minim-
ize the total expected cost of maintenance over the
expected lifetimes of the components.

The decision variable is a binary variable that
indicates whether component V is to be replaced at
a specific time s.

1
V_
o{!

The model aims to minimize the sum of the cost
rates over the expected lifetime for all components,
providing a decision framework that balances cost
with component health and operational effectiveness.
The objective function to be minimized is:

if component V is replaced at time s
if component V is not replaced at time s

(20)

min |y "(Ck-x! + Chy - (1 =x)))
vev

(21)

The model is subject to logical constraints to
ensure feasibility:

doxl<1 wer (22)
seS
x/ €{0,1} VWeVVvseS (23)

Equation 22 ensures that for any given component
¥, at most one maintenance activity can be scheduled
within the planning horizon.

Equation 23 defines the decision variable x” as
binary, where x/" = 1 indicates that maintenance is
scheduled for component V at time s, and x = 0
indicates that no maintenance is scheduled.

Although the model currently focuses on these
logical constraints, it is designed to be extensible.
Future iterations should include operational con-
straints to account for the following factors:

Weather Window: Scheduling must consider the
availability of suitable weather conditions for safe
maintenance operations. The constraint ensures that
maintenance is only scheduled when weather condi-
tions are favorable.

X' <W, YWev,vseS (24)
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Where W is a binary variable indicating if weather
conditions are suitable at time s, depending on the
available weather forecast and the operational limits
of the vessels.

Vessel Capacity and Availability: Maintenance
scheduling depends on the availability of vessels
with the necessary capacity to transport technicians
and equipment to the turbines. This constraint
ensures that maintenance is only scheduled when
a suitable vessel is available.

<NV Wrevvses
jeJ

(25)

Where Y{:V is a binary variable representing the avail-
ability of vessel /" at time s, j” being a vessel with
a suitable capacity for carrying out the replacement
of component V.

Spare Parts Availability: The availability of neces-
sary spare parts must be assured for scheduled main-
tenance activities. This constraint ensures that
maintenance is only scheduled when the required
spare parts are available.

x! <7/ YevvseS (26)

Where Z! is a binary variable indicating the avail-
ability of a spare component Vat time s.

Technician Availability: Scheduling must align
with the availability of technicians, both in terms of
numbers required and their specific skill sets. This
constraint ensures that maintenance is only sched-
uled when the necessary technicians are available.

x/ <T/ WWeVyVseS (27)

Where T/ is a binary variable representing the avail-
ability of technicians with the required skills to
replace component V at time s.

By incorporating these additional constraints, the
model will more accurately reflect the complexities
of real-world offshore wind farm maintenance oper-
ations. The integration of these factors would
enhance the model’s capability to generate schedules
that are not only cost-effective but also operationally
viable.

The rolling horizon approach updates the schedul-
ing decisions at regular intervals to reflect the current
state of the farm and maintenance needs. As new
information becomes available, the model recali-
brates the schedule, ensuring that it remains respon-
sive to the actual conditions and performance of the
wind farm components. The maintenance planning



window moves forward with each time step 7, allow-
ing for the reevaluation of maintenance decisions
based on the latest data and predictions.

The current day is updated according to:

k=k+t (28)

where d,, is the present day and 7 is the time step within
the planning horizon L.

Maintenance activities planned until £ + 7,7 <
L are executed according to the updated schedule.

A comprehensive overview of the methodology
proposed is presented in 2.
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-
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\J

Update time

Figure 2. Flowchart of the proposed methodology.

4 CASE SCENARIO DESCRIPTION

In constructing the prognostic-driven optimization
model, several assumptions were considered to
reduce the complexity of the model.

The first assumption is that only replacement and
preventive replacement are considered.

It is then assumed that the wind farm is always
accessible and there are no delays or restrictions due
to weather or other external factors, reflecting the
ideal operational conditions where weather or other
environmental factors do not impede maintenance
activities. This could be applicable in regions with
very stable and predictable weather conditions or
where advanced forecasting allows for precise plan-
ning around weather constraints.
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All necessary resources, including vessels, spare
parts, and maintenance crews, are assumed to be
available whenever required, aligning with situations
where operations are well-funded, and resource man-
agement is efficient enough to maintain a surplus or
quick availability of resources, possibly in smaller
wind farms or farms close to supply bases.

Finally, only one maintenance activity can be per-
formed at a time, precluding the possibility of simul-
taneous maintenance actions, which applies to
a strategy that does not include opportunistic group-
ing of maintenance activities.

These assumptions could potentially lead to an
underestimation of costs and scheduling times, as
they do not account for delays and unavailability
that often occur in real-world scenarios. While they
allow for the development of an optimized mainten-
ance schedule under ideal conditions, the actual
implementation may require adjustments to account
for the unpredictability of real-life operations and
are left for further development of the model.

The proposed framework is applied to a single
wind turbine located in an offshore wind farm charac-
terized by specific environmental and operational con-
ditions. Having assumed a strategy that does not
capitalize on grouping maintenance tasks, addressing
turbines individually becomes not just a simplification
for modeling purposes, but a practical approach.

Cost data and failure rates for each component, as
well as the duration of corrective and preventive
replacements and the number of technicians required
are presented in Table 6-8 and are taken or adjusted
from (Li et al. 2022), (Golestani et al. 2023) and
(Carroll et al. 2017), whereas other values are rea-
sonably assumed and presented for the replicability
of the model.

4.1 Operational parameters

A wind turbine consists of several critical compo-
nents such as blades, bearings, gearbox, generator,
and shaft. A detailed breakdown of these compo-
nents includes their failure distribution parameters
(shape and scale), material costs for preventive and
corrective replacements, and the time required for
each task type as presented in Table 6.

Table 6. Component maintenance and vessel
assignments.

Material  Time  Assigned
Component Shape Scale Cost (§) (hrs)  Vessel
Blades 3 3000 90,000 288 HLV
Bearings 2 3750 10,000 36 HLV
Gearbox 3 2400 230,000 231 HLV
Generator 2 3300 60,000 81 HLV
Shaft 1.5 7300 13,000 57 HLV




The key specifications of the wind turbine are
included in Table 7.

Table 7. Turbine specifications.

Specification Value
Rated Power Output (MW) 3
Cut-in wind speed (m/s) 3
Cut-out Wind Speed (m/s) 25
Rated Wind Speed (m/s) 12
Hub Height (m) 90

These specifications are used for determining the
turbine’s performance and for the computation of
downtime losses. For the O&M environment, the
operational parameters presented in Table 8 are
considered:

The case scenario presented provides a comprehen-
sive view of the operational, maintenance, and logis-
tical aspects of O&M for an offshore wind turbine.

Table 8. Operational parameters.

Parameter Value
Mean Wind Speed (m/s) 8.5
Cost of Electricity ($/kWh) 0.15
Distance from Shore (km) 25
Planning horizon L (days) 180
Time step 7 (7) 1
Technicians for Replacement 8
Hourly Rate for Technicians Hourly Rate for 60
Technicians ($/4)

Vessel Day rate ($) 75000
Vessel mobilisation cost ($) 200000
Fuel consumption (L/km) 200
Vessel mean speed (km/h) 12

5 RESULTS

The implementation of MPC principles within our
O&M scheduling optimization framework is illustrated
in Figure 3 and 4, which display the updated results
over successive weeks as the optimization model is
rerun with new data inputs, simulating a rolling hori-
zon approach characteristic of MPC strategies. These
figures reveal the evolving decision-making process,
where maintenance schedules are adaptively adjusted
based on updated probabilistic RUL forecasts, reflect-
ing MPC’s inherent adaptivity and reactivity to system
feedback.

On week 166, as seen in 3, the maintenance deci-
sion aligns with the initial prognosis, suggesting
a conservative approach with an  earlier
maintenance day proposed relative to the MPC’s roll-
ing horizon forecast. As the weeks progress, on week
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Figure 3. Optimization result on week
replacement day: 1262.
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Figure 4. Optimization result on week 168, proposed
replacement day: 1259.

168 a shift in the proposed maintenance day is noticed
4, illustrating the model’s responsiveness to updated
component health information. This dynamic adjust-
ment exemplifies MPC’s predictive control feature,
which dictates that actions are based not only on the
current state but also on predicted future states of the
system.

The analysis of the expected costs and cost to life-
time ratios provides a clear indication that timely, pre-
ventive maintenance is financially prudent in the long
run. The results of this model highlight the importance
of scheduling maintenance before the probability of
failure and the associated costs increase.

When compared to the cost of corrective mainten-
ance, represented by the Expected cost of doing
nothing, planning the replacement based on RUL
prognosis can lead to a potential decrease in main-
tenance costs that ranges between 1 and 15%,
depending on the component that requires mainten-
ance and other operational parameters.

When focusing only on potential downtime losses
the cost decrease becomes more significant, which is
obvious given that other cost items in this study are
assumed to be fixed and do not depend on the sched-
uling of maintenance activities, such as the cost of
materials for replacements, the cost of technicians
and the high mobilisation costs of the vessels.

The optimization results, therefore, confirm the
suitability of incorporating MPC strategies within
the O&M scheduling for offshore wind farms. By
leveraging the predictive and adaptive capabilities of



MPC, our framework achieves a dynamic and cost-
efficient schedule that minimizes the expected total
O&M costs while maximizing the utilization rate of
each component.

6 CONCLUSIONS

This study has provided a comprehensive analysis of
an innovative prognostic-driven scheduling model
for offshore wind farm operation and maintenance
(O&M). The results demonstrate the model’s poten-
tial to minimize O&M costs while maximizing
equipment utilization rate. The integration of prob-
abilistic remaining useful life (RUL) predictions
within a mixed-integer linear programming (MILP)
model underscores the practical utility of condition-
based maintenance (CBM) strategies over traditional
fixed interval maintenance schedules.

The strength of this model lies in its ability to use
prognosis information about the RUL of critical
components to optimize maintenance schedules
accordingly. This adaptive scheduling approach miti-
gates the risk of unexpected failures, enhancing the
overall reliability and efficiency of the system. By
doing so, the model not only ensures the highest util-
ization rate of each component but also minimizes
downtime, which is a significant cost driver in off-
shore wind farm operations.

The use of probabilistic methods to forecast com-
ponent failure provides a more dynamic and respon-
sive approach to maintenance scheduling, allowing
for adjustments based on real-time data and predic-
tions. The integration of MPC principles into the
prognostic-driven scheduling model has been instru-
mental in demonstrating the model’s capacity for
adaptive and dynamic decision-making, critical for
optimizing O&M. The rolling horizon approach,
characteristic of MPC, has enabled the model to
adjust maintenance schedules in response to continu-
ally updated RUL forecasts.

However, the model is not without its limitations.
The assumption of constant accessibility and the
availability of resources does not reflect the complex
reality of offshore wind farm environments, where
conditions are highly dynamic and often unpredict-
able. Weather conditions, logistical constraints, and
limited resources can lead to significant deviations
from the model’s recommendations. Furthermore, the
assumption of performing only one maintenance
activity at the time does not reflect the most recent
advancements in opportunistic maintenance strat-
egies, whose advantages have been highlighted in
studies such as (Li et al. 2021) and (Li et al. 2020). In
the future, the integration of opportunistic mainten-
ance strategies in the model might reveal additional
benefits of a prognostic-driven strategy for O&M
scheduling.

Another limitation is the model’s reliance on
synthetic data for RUL predictions, which, while
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useful in the absence of actual sensor data, may
not fully capture the nuances of real-world oper-
ational conditions. The adaptation of the model to
utilize real-life data from monitoring systems
could enhance its accuracy and reliability. For
future developments, research could focus on
relaxing some of the model’s simplifying assump-
tions to better reflect the operational challenges
faced by offshore wind farms. Incorporating wea-
ther prediction models and stochastic resource
availability could provide a more realistic main-
tenance scheduling framework. Additionally,
exploring the potential for opportunistic mainten-
ance where multiple maintenance activities are
performed simultaneously could further optimize
resource utilization and reduce operational costs.
In conclusion, the proposed prognostic-driven
scheduling model serves as a starting point for fur-
ther research on O&M scheduling for offshore wind
farms. The model’s integration of MPC principles,
CBM strategies and probabilistic RUL predictions,
make it a promising solution to the complex chal-
lenge of maintaining offshore wind farms. Future
research should aim to build upon this foundation,
refining the model to account for the full spectrum of
real-world operational variables and constraints.
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