

Comparing NetCDF and a multidimensional array

database on managing and querying large hydrologic

datasets: a case study of SciDB

Haicheng Liu

0001

1011

0100

1001

0000

1010

1011

0011

24 October 2014

ii

Title: Comparing NetCDF and a multidimensional array database on managing and querying large

hydrologic datasets: a case study of SciDB

Name: Haicheng Liu

Student number: 4252438

Master program: Geomatics

Graduation professor:

Prof. Dr. Ir. Peter van Oosterom

GIS technology, Faculty of Architecture,

TU Delft

Supervisor:

Ir. Theo Tijssen

GIS technology, Faculty of Architecture,

TU Delft

Advisor:

Ir. Tom Commandeur

Hydrologic Research B.V.

Co-reader:

Dr. Roderik Lindenbergh

Geoscience and Remote Sensing, Faculty of Civil Engineering and Geosciences,

TU Delft

Date: 24 October 2014

iii

Abstract

Like many ICT related domains, hydrology enters the era of big data and managing large volume of

data is a potential issue facing hydrologists. However at present, hydrologic data research is mostly

concerned with data collection, interpretation, modelling and visualization. Management and query

of large datasets do not draw much interest. The motivation of this research originates from a

specific data management problem reflected by Hydrologic Research B.V. and that is, time series

extraction costs intolerable time when the large multidimensional dataset is stored in NetCDF

classic or 64-bit offset format. The essence of this issue lies in the contiguous storage structure

adopted by NetCDF. So in this research, NetCDF-4 format and a multidimensional array database

applying chunked storage structure are benchmarked to learn whether and how chunked storage

structure can benefit queries executed by hydrologists.

To achieve a convincing and representative benchmark result, expert consultancy was conducted to

collect queries and sample datasets frequently handled by water experts. From the raw consultancy

records, 5 classes of query were summarized and specific queries for benchmarking were devised.

After this, 9 criteria were established to assess which multidimensional array database is most

suitable for benchmarking and finally SciDB was chosen. To establish a fair benchmark test

environment, HydroNET-4 system was utilized and adapters for NetCDF files and SciDB were

developed to manage and query data. For final benchmark tests, influence of data compression on

query, and scalability of diverse data solutions, i.e. 64-bit offset, NetCDF-4 and SciDB solutions

were investigated. In addition, chunk size and dimensions order effect of SciDB arrays on query

performance were also explored.

It turns out that NetCDF-4 solution with a recommended chunk size has the best overall

management and query performance among all solutions. SciDB arrays utilizing small chunk sizes

present favorable performance. However with current implementation of SciDB, large amount of

small chunks cause huge overload of main memory which constraints SciDB’s scalability. For

SciDB, DEFLATE compression can either have negative or no effect on query performance. In time

series extraction test, compression effect is found to be correlated with chunk size and the negative

impact of compression on query decreases as chunk size reduces. It is deduced that with hypercubic

and modest chunk sizes, the internal data structure of chunks in SciDB has no significant influence

on query performance. The research demonstrates that for large data management and query, a file

based solution can be a better choice than a database utilizing smart caching and indexing strategies.

But due to the limited scope of the research, for instance no parallel query processing tested, more

work need to be conducted in the future.

iv

Acknowledgments

First of all, I give my great gratefulness to my parents who supported my study in TU Delft which

is the very starting point yet crucial one for producing the thesis. I wish them all the best with their

health and work.

This thesis was conducted in Hydrologic Research B.V., Delft. It was actually a collaborative work

between the company and TU Delft. I would like to thank Dr. Ir. Slavco Velickov, the director of the

company to provide me the opportunity to perform the thesis research and also the second chance

to continue the research when my graduation was delayed.

I owe my great gratitude to the most crucial collaborator, also my daily advisor, Ir. Tom

Commandeur. We proposed the topic and implemented the research together. From him, I improved

practical programming skills. Besides, he also taught me essential skills to work in a company, for

which I had zero background. I cannot guarantee I have mastered those skills but I can feel that I

gained a lot.

This work wouldn’t have happened without Prof. Dr. Ir. Peter van Oosterom and Ir. Theo Tijssen’s

help. Peter provided advices constantly either through long emails or skype meeting in despite of

his sabbatical leave. More importantly, he offered kindly guidance when I lost myself in the research.

My writing skill progresses under his instructions. Theo also imparted useful experience and

knowledge related to the research, for which I appreciate. I thank Dr. Roderik Lindenbergh and Drs.

Dirk Dubbeling for their comments on the research and draft thesis.

My sincere thankfulness also goes to Dr. Ir. Susan Steele-Dunne, Prof. Dr. Nick van de Giessen and

Dr.ing. Sisi Zlatanova for their offers and suggestions when I started to define the research topic.

Sisi also helped a lot for managing other affairs in my graduation process and so did Dr. Ir. Stefan

van der Spek. I thank them a lot.

There are still people helping me during the research and I give my best wishes to them all.

Haicheng Liu

20/10/2014

Delft University of Technology

v

Table of content

Abstract ... iii

Acknowledgments .. iv

Table of content ... v

List of Figures ... vii

List of Tables .. ix

List of Appendix Figures .. xi

Glossary .. xiii

1 Introduction ... 1

1.1 Problem statement ... 1

1.2 Research questions .. 3

1.3 Methodology ... 3

1.4 Thesis outline .. 4

2 Background ... 5

2.1 NetCDF ... 5

2.1.1 Data model .. 5

2.1.2 Data format ... 6

2.2 Multidimensional array database .. 8

2.3 Previous work ... 9

3 Queries and datasets .. 11

3.1 Expert consultancy .. 11

3.2 Query design ... 14

3.2.1 Datasets for benchmarking .. 15

3.2.2 Queries for benchmarking ... 17

4 Selection of multidimensional array database ... 19

4.1 Current multidimensional array databases .. 19

4.2 Comparison between Rasdaman and SciDB ... 22

5 Testing environment setup .. 29

5.1 Overall architecture ... 29

5.2 Hardware ... 31

5.3 NetCDF connector .. 31

5.4 SciDB connector ... 32

5.4.1 Writer .. 33

5.4.2 Reader ... 38

6 Benchmark test and analysis ... 43

6.1 Data storage... 43

6.1.1 Files in 64-bit offset format ... 43

6.1.2 Files in NetCDF-4 format ... 43

6.1.3 SciDB arrays ... 44

6.2 Query benchmarking ... 51

6.2.1 Query performance on MPE dataset ... 52

6.2.2 Query performance on GEFS dataset .. 65

6.3 Overall evaluation ... 71

vi

7 Conclusions and future work .. 74

7.1 Summary ... 74

7.2 Extension of current research .. 77

7.3 Dimension and multidimensional data management ... 78

References ... 80

Appendix A: Questionnaire for expert consultancy .. 83

Appendix B: Records of interview .. 84

Appendix C: Two HydroNET-4 data structures .. 94

Appendix D: Configuration file of SciDB .. 95

Appendix E: Communicating records with SciDB team .. 96

Appendix F: Bash scripts for GEFS test on dimensions order effect .. 97

Appendix G: Benchmark figures .. 99

MPE benchmark figures .. 99

GEFS benchmark figures .. 111

vii

List of Figures

Figure 1.1. Storing a 3 dimensional precipitation dataset with contiguous storage structure and

chunked storage structure .. 2

Figure 2.1. a. Classic data model; b. Enhanced model with red words showing differences from

classic data model (Rew et al., 2006) .. 5

Figure 2.2. Relationships between NetCDF formats, data models and storage structures 6

Figure 2.3. A sample NetCDF file in classic format and its storage. .. 7

Figure 3.1. Sample fragment of MODIS NDVI product.. ... 14

Figure 3.2. Data organization with row-major order (blue) and column-major order (yellow) 18

Figure 4.1. Storage of a fourth dimensional dataset in Essbase.. .. 20

Figure 4.2. Dimension values and attributes of a two dimensional array are stored sequentially in

Caché’s data block. ... 20

Figure 4.3. Storage of raster data in Oracle spatial (Oracle, 2014). .. 21

Figure 4.4. Workflow of query execution with UFI .. 22

Figure 5.1. Benchmarking architecture ... 30

Figure 5.2. Server used for benchmarking .. 31

Figure 5.3. A sample API JSON request to calculate the average MPE rainfall rate in one hour in a

specific area .. 32

Figure 5.4. Fragments of MPE and GEFS upload file shown in ASCII .. 36

Figure 5.5. Two approaches to insert the 2D MPE slice array containing a gird into MPE. 38

Figure 5.6. Regrid a 3 x 3 block with 2 x 2 as sub block size.. ... 40

Figure 6.1. The storage of a sample dataset conforming to 4 GEFS schemas. 49

Figure 6.2. Distribution of the empty query response time for SciDB.. 51

Figure 6.3. MPE rainfall rate map for the one third of the world (purple box) at 01:00 01-09-13..

 .. 52

Figure 6.4. Performance of diverse data solutions for retrieving the grid covering northern part of

the Netherlands at one time step. .. 54

Figure 6.5. Performance of diverse data solutions at medium level for retrieving time series of

different lengths from a single location in the Indian Ocean. ... 57

Figure 6.6. Aligned performance of diverse data solutions at medium level for retrieving time series

of different lengths from a single location in the Indian Ocean. ... 58

Figure 6.7. Aligned performance of diverse data solutions at very large level for retrieving time

series of different lengths from a single location in the Indian Ocean. 59

Figure 6.8. Raw query response time measurements of three time series extraction on

SciDB_MPE_C4_vlarge array. ... 60

Figure 6.9. Aligned performance of diverse data solutions at very large level for retrieving time

series of different lengths from a single location in the Indian Ocean with modification of

SciDB measurements .. 61

Figure 6.10. Aligned performance of diverse data solutions at very large level for average calculation

with different time steps at the Netherlands scale. .. 62

Figure 6.11. Aligned performance of diverse data solutions at very large level for extracting

Netherlands grids in 2880 time steps .. 63

viii

Figure 6.12. Aligned performance of diverse data solutions at very large level for maximum

calculation with different time steps at the Netherlands scale. ... 64

Figure 6.13. GEFS precipitation map calculated with first ensemble for the whole world at 12:00

15-05-14. Three red objects refer to query areas, i.e. from outside inward, Europe, the

Netherlands and Delft (a spot location)... 65

Figure 6.14. Query performance of 4 GEFS arrays with identical moderate chunk size but different

dimensions order in schemas .. 66

Figure 6.15. Query performance of 4 GEFS arrays composed of only one chunk but different

dimension order in schemas .. 67

Figure 6.16. Query performance on extracting GEFS forecast time series of total precipitation ... 68

Figure 6.17. Query performance on GEFS total precipitation 80th percentile calculation 69

Figure 6.18. Query performance on ensemble mean calculation of GEFS total precipitation 70

Figure 7.1. Precipitation Map (Data scheme 1) .. 78

Figure 7.2. Precipitation map (Data scheme 2) ... 78

ix

List of Tables

Table 2.1. Equivalent terminologies in NetCDF and multidimensional array database 8

Table 3.1. Queries and datasets collected by consultancy ... 13

Table 3.2. Classification of queries collected from consultancy ... 13

Table 3.3. Datasets for benchmarking ... 16

Table 4.1. Licenses of Rasdaman and SciDB .. 23

Table 4.2. Implementation of data storage structure of Rasdaman and SciDB 23

Table 4.3. Compression support of Rasdaman and SciDB .. 24

Table 4.4. Parallel architectures of Rasdaman and SciDB .. 24

Table 4.5 .Net API for Rasdaman and SciDB ... 25

Table 4.6. Query language of Rasdaman and SciDB .. 25

Table 4.7. Spatial calculating capability of Rasdaman and SciDB ... 26

Table 4.8. Information of NetCDF importer for Rasdaman and SciDB .. 27

Table 4.9. Maintenance of Rasdaman and SciDB ... 27

Table 4.10. Relative grade for the open-source versions of two databases 27

Table 5.1. Functions provided by Shim... 33

Table 5.2. Arrays created for the storage of MPE dataset ... 34

Table 5.3. Arrays created for the storage of GEFS dataset .. 34

Table 5.4. Schema of one dimensional load arrays of MPE and GEFS .. 36

Table 5.5. List of all functionalities in the reader .. 38

Table 5.6. Rankings calculated by “rank” and “avg_rank” operator and SciDB connector on a sample

series ... 41

Table 6.1. Storage information for MPE NetCDF files in NetCDF-4 format 44

Table 6.2. Storage information for GEFS NetCDF files in NetCDF-4 format 44

Table 6.3. Five levels of MPE array in SciDB .. 45

Table 6.4. Storage information for MPE arrays with different chunk size and compression settings

at the tiny level .. 45

Table 6.5. Storage information for MPE arrays with different chunk size and compression settings

at the small level ... 46

Table 6.6. Storage information for MPE arrays with different chunk size and compression settings

at the medium level ... 46

Table 6.7. Storage information for MPE arrays with different compression setting at the large level

 .. 46

Table 6.8. Storage information for MPE arrays with different compression setting at very large level

 .. 46

Table 6.9. Storage information for GEFS arrays with different data scheme and compression settings.

 .. 50

Table 6.10. Configuration of second test of time series extraction ... 55

Table 6.11. Configuration of third test of time series extraction at very large level 59

Table 6.12. Configuration of average calculation on MPE data at very large level 62

Table 6.13. Two queries used to test the influence of dimensions order on query performance 65

Table 6.14. Performance of queries targeted at different dimensions ... 71

x

Table 6.15. Overall evaluation of diverse data solutions for managing and querying large hydrologic

datasets .. 72

xi

List of Appendix Figures

Figure G1. Distribution of 20 benchmark measurements of each data solution for retrieving the grid

covering Delft at one time step. .. 99

Figure G2. Performance of diverse data solutions for retrieving the grid covering Delft at one time

step .. 100

Figure G3. Distribution of 20 benchmark measurements of each data solution for retrieving the grid

covering northern part of the Netherlands at one time step .. 101

Figure G4. Performance of diverse data stores for retrieving the grid covering northern part of the

Netherlands. .. 102

Figure G5. Distribution of 20 benchmark measurements of each data solution for retrieving 8-step

time series from a spot location in the Indian Ocean. ... 103

Figure G6. Performance of diverse data stores for retrieving 8-step time series from a spot location

in the Indian Ocean. .. 104

Figure G7. Distribution of 20 benchmark measurements of each data solution at medium level for

retrieving time series of different lengths from a spot location in the Indian Ocean. 105

Figure G8. Performance of diverse data solutions at medium level for retrieving time series of

diverse lengths from a spot location in the Indian Ocean. .. 106

Figure G9. Aligned performance of diverse data solutions at medium level for retrieving time series

of different lengths from a spot location in the Indian Ocean. .. 107

Figure G10. Distribution of 20 benchmark measurements for each data solution at very large level

for retrieving time series of different lengths from a spot location in the Indian Ocean 108

Figure G11. Performance of diverse data solutions at very large level for retrieving time series of

different lengths from a spot location in the Indian Ocean ... 108

Figure G12. Aligned performance of diverse data solutions at very large level for retrieving time

series of different lengths from a spot location in the Indian Ocean 108

Figure G13. Distribution of 20 benchmark measurements for each data solution at very large level

for average calculation with different time steps at the Netherlands scale........................... 109

Figure G14. Performance of diverse data solutions at very large level for average calculation with

different time steps at the Netherlands scale ... 109

Figure G15. Aligned performance of diverse data solutions at very large level for average

calculation with different time steps at the Netherlands scale .. 109

Figure G16. Distribution of 20 benchmark measurements for each data solution at very large level

for maximum calculation with different time steps at the Netherlands scale 110

Figure G17. Performance of diverse data solutions at very large level for maximum calculation

with different time steps at the Netherlands scale ... 110

Figure G18. Aligned performance of diverse data solutions at very large level for maximum

calculation with different time steps at the Netherlands scale .. 110

Figure G19. Distribution of 10 benchmark measurements tested locally for selecting all ensembles

of total precipitation in Delft at one forecast step (Modest chunk size) 111

Figure G20. Distribution of 10 benchmark measurements tested locally for calculating ensemble

mean of total precipitation in Delft at one forecast step (Modest chunk size) 111

Figure G21. Distribution of 10 benchmark measurements tested locally for selecting all ensembles

xii

of total precipitation in Delft at one forecast step (Large chunk size) 112

Figure G22. Distribution of 10 benchmark measurements tested locally for calculating ensemble

mean of total precipitation in Delft at one forecast step (Large chunk size) 112

Figure G23. Distribution of 20 benchmark measurements of diversion solutions for extracting GEFS

forecast time series of total precipitation .. 113

Figure G24. Distribution of 20 benchmark measurements of diversion solutions for GEFS total

precipitation 80th percentile calculation .. 113

Figure G25. Distribution of 20 benchmark measurements of diversion solutions for ensemble mean

calculation on GEFS total precipitation .. 114

xiii

Glossary

AMSR-E Advanced Microwave Scanning Radiometer - Earth Observing System

CDL Common Data Language

DBMS Database Management System

MPE Multi-Sensor Precipitation Estimate

GEFS Global Ensemble Forecast System

GPM Global Precipitation Measurement

TRMM Tropical Rainfall Measuring Mission

1

1 Introduction

1.1 Problem statement

Original data collecting techniques with improved accuracy become increasingly prevalent currently,

radar systems for instance. Meanwhile, new sensor platforms and sources such as citizen-supplied

observations are arising all the time. All kinds of models never stop running to produce essential

results for decision making. These all make hydrology more and more data intensive. Take rainfall

measurement as an example. Doppler radars installed on the ground are widely used for rainfall

detection at present. Besides, the same precipitation information can be retrieved from several

satellite data products such as TRMM (Tropical Rainfall Measuring Mission), AMSR-E (Advanced

Microwave Scanning Radiometer - Earth Observing System) and also the GPM (Global

Precipitation Measurement) mission dedicated for collecting observations of rainfall and snow. Not

only the integration of these diverse datasets stored in different formats is problematic, but also due

to the large amount of data, it indeed brings inconvenience for professionals to extract effective

information for certain applications efficiently.

Several data models originally designed for meteorological purposes like HDF5, NetCDF, GRIB

and BUFR are recently introduced to the hydrologic domain to ease the exchange and storage of

data. Among them, NetCDF (Unidata, 2014) is notable for its simple data model, ease of use,

portability, and strong user support infrastructure (Rew, Hartnett, & Caron, 2006). NetCDF also

provides schema language to define metadata explicitly and it is implemented as the NetCDF format

which is then widely applied to record meteorologic, oceanographic as well as hydrologic

observation or simulation data. The data are normally multidimensional. Each dimension is one

property to confine the data of interest which is the core information for a certain multidimensional

dataset. For hydrology, the core data, also called variable can be precipitation, temperature, etc.

They are usually organized into spatial grids which are mostly represented by X and Y under a

certain reference system. Each cell in the spatial grid has a value of the hydrologic variable at a

particular time step. Since processes and variables change dynamically, all cell values at discrete

time steps are then separated into different time layers to be stored, which means a temporal

dimension is also involved. Moreover, for some forecasted datasets, they even have an additional

ensemble dimension which represents different initial conditions by adding perturbations for the

forecast simulation. A model run dimension recording the time to run the forecast model in reality

is yet another common dimension in forecast datasets.

However, NetCDF performs inefficiently in retrieving information from large datasets for certain

queries according to practical experience. This is radically caused by the way it stores the data,

which is known as contiguous storage structure. Basically, for a grid full of cell values in a certain

spatial area, NetCDF stores the variable in rows consecutively, i.e. a row is attached to the end of

its previous row to form a one-dimensional array (Figure 1.1b). And in this way, if one wants to

query the variable value stored in some cell, calculating the position of the cell value in the one-

dimensional array is needed. If multiple temporal layers of spatial arrays are stored in the NetCDF,

2

the extraction of a time series (Figure 1.1a), i.e. a series of cell values at all the time steps for a

certain location becomes very expensive. This is because the specific cell value of each layer should

be extracted from the whole array (Figure 1.1c) and finally these single values are combined to form

the time series. It is possible to store time series of specific locations as a one-dimensional variable

in NetCDF but then retrieving the grid at a single time step becomes the problem. Thus, queries

targeting at a dimension which is not the primary dimension used to store the data are indeed the

bottleneck for NetCDF. Although chunked storage structure is introduced to the later version of

NetCDF, i.e. NetCDF-4, contiguous storage structure is the implementation for most cases (This is

derived from discussion with geo-data experts as well as checking NetCDF data offered by popular

providers on the Internet).

 …

 b. Storing each grid as one-dimensional array

and connecting. Purple cells are in the time

series.

a. 3 dimensional precipitation data and a time series

c. Storage of first 3 grids of precipitation dataset with NetCDF classic format

d. Storage of first 3 grids of precipitation dataset with chunked storage structure. Each chunk is

stored as a one-dimensional array on the disk

Figure 1.1. Storing a 3 dimensional precipitation dataset with contiguous storage structure and

chunked storage structure

This then brings us to the multidimensional array database solution. It can specify metadata

(Pedersen & Jensen, 2001) and supports storage of multidimensional arrays. It employs the chunked

storage structure (Figure 1.1d) which divides a whole dataset into separate chunks (Baumann,

Grid 1

Grid 3

Grid 2

Grid 2 Grid 3 Grid 1

Grid 2

Grid 1

Grid 3

3

Dehmel, Furtado, Ritsch, & Widmann, 1998; Brown, 2010). Based on this storage structure,

multidimensional array databases then apply specific indexing approaches, which is proved to be of

high query efficiency (Colliat, 1996). In addition, set-oriented language provided by

multidimensional array databases like RasQL (Baumann, 1999), AQL (Brown, 2010) can be directly

used for executing queries, which is a lack for NetCDF. Last but not least, the multidimensional

array databases owns all features of a data base management system (DBMS) such as support of

abundant data types, transaction process. Also they are mostly optimized for scalability. Based on

these characteristics, multidimensional array databases seem to be an alternative to NetCDF for

storing and retrieval of large hydrologic datasets.

Hence, this research is aimed at investigating whether the multidimensional array database can have

a better performance in processing queries toward large multidimensional hydrologic datasets than

the NetCDF file based solution.

1.2 Research questions

Main research question:

Can a multidimensional array database process frequently implemented queries faster than NetCDF

solutions for large hydrological datasets?

We further divide the main question into 4 sub questions which then come through the whole

research process:

1. What datasets and queries should be used to fully assess the performance between a

multidimensional array database and NetCDF solutions?

2. Which specific multidimensional array database should be applied for tests?

3. For the multidimensional array database, is the performance in handling queries on different

dimensions at the same level using one data storage schema?

4. Does data compression in the multidimensional array database have an impact on the query

performance?

1.3 Methodology

To address the main research question, benchmark tests are performed. Several steps should be done

to construct the benchmark test.

1. Establishing benchmarks. Several hydrologic experts are interviewed to collect typical queries

they executed and corresponding datasets. The collected queries are then classified in order to

design queries suitable and available for this research. While for datasets, similar data products

as what experts mentioned are provided by Hydrologic Research and used for the benchmarking.

2. Selecting multidimensional array database. The multidimensional array database is designed

for efficiently manage and query exploding multidimensional datasets in many domains like

business and remote sensing. However there are many implementations of multidimensional

array database. In this research, first from literature study and former experience with data

storage systems, nine criteria are established for the assessment of multidimensional array

4

databases. Then focus is given to two most promising solutions, SciDB and Rasdaman. Each

criterion will be graded and the final grade determines which option will be implemented for

benchmarking. Evidence is concluded from literature study, source code checking and

discussion with product developing team. No practical tests are involved for the assessment.

3. Building benchmark test environment. On the one hand, queries for benchmarking should be

executed on NetCDF, which means an additional API for management and query need to be

developed because NetCDF does not provide direct native tools. On the other hand, the selected

multidimensional array database should be set up and configured. NetCDF system and

multidimensional array database are supposed to be constructed with same hardware and

operating system to guarantee a fair comparison. After setting up the benchmarking

environment, initial tests can be performed with NetCDF and database.

4. Implementing full benchmarks and analyzing results. Several data management options are of

interest to this research.

a. NetCDF files in classic format

b. NetCDF files in NetCDF-4 format with uncompressed chunks

c. NetCDF files in NetCDF-4 format with compressed chunks

d. Multidimensional array database with uncompressed chunks

e. Multidimensional array database with compressed chunks

During the research, datasets with varying sizes are stored with all these options and same

queries are executed for all the options to get query response time for later analyzing. Scalability

with data size is also assessed for each option. The effect of chunk size and data compression

on query performance is also investigated. The final judgment of the best solution for managing

and querying large hydrologic datasets is based on the overall performance of data storing,

loading and querying.

1.4 Thesis outline

In Chapter 1, the motivation for this research topic, specific research questions and brief description

of methodology are introduced. Then Chapter 2 provides the background knowledge which includes

NetCDF, multidimensional array database and previous work related to this research. After it, from

Chapter 3 to Chapter 6, four phases constituting the main research are described respectively. More

specifically, Chapter 3 describes how final queries and datasets for benchmarking are determined

based on the expert consultancy. Chapter 4 discusses the process for selecting one multidimensional

array database which is applied for final benchmarking. This is then followed by specific description

of benchmark test environment including both hardware and software aspects in chapter 5. In

Chapter 6, the main output of this research, i.e. the benchmark test results and analysis are elaborated.

The whole thesis ends up with conclusions and future work in Chapter 7.

5

2 Background

2.1 NetCDF

Developed by the Unidata Program of the University Corporation for Atmospheric Research

(UCAR), NetCDF is typically referred to as a self-describing, machine-independent binary data

format that supports the creation, access, and sharing of array-oriented scientific data. It also

represents a data model that organizes a collection of associated abstractions into a high-level view

of how to access data (Rew et al., 2006). While NetCDF can refer to a software implementation

with associated application program interfaces (APIs) released by Unidata as well. Here only data

model and format which constitute the abstract and implementation layers of the NetCDF storage

system are introduced. APIs to manage and query NetCDF files applied in this research are

developed by Hydrologic Research, which is described in Chapter 5.

2.1.1 Data model

There are only two NetCDF data models, one is the classic model and the other is the enhanced

model, also known as NetCDF-4 data model. UML representations of both models are shown in

Figure 2.1 below,

 a. b.

Figure 2.1. a. Classic data model; b. Enhanced model with red words showing differences from

classic data model (Rew et al., 2006)

In the classic model (Figure 2.1a), there are three key elements, namely, dimension, variable and

attribute. A dimension may represent a real physical dimension such as longitude, latitude or time.

It can also be used to index other quantities, for example, model run number (Unidata, 2011). In

6

definition, a dimension includes a name and a length. The length can be arbitrary positive integer or

UNLIMITED. However, only one dimension has the main grouping effect and this is often the case

for temporal dimension which allows grids in new time steps added in (Rew et al., 2006). As to

variable, it refers to data of interest like precipitation, temperature, etc. A variable has a name, a data

type, associated dimensions and attributes. Each variable represents an array of values of the same

type. There are totally six data types available for the classic model (Figure 2.1a). The shape of a

variable is described by its list of dimensions specified when the variable is created. A special

variable in NetCDF is the coordinate variable which has the same name as an existing dimension

and stores the dimension values. The attributes of a variable may be added, deleted or changed after

the variable is created. For the last element, attribute, it defines the metadata. Each attribute has an

associated variable, a name, a data type, a length and a value. Most attributes provide information

about variables, for instance, unit, missing value, valid range, etc. While global attributes that

describe the whole file like origin and history can also exist. The attribute is more flexible than

variable or dimension since it can be deleted or modified after creation, which is not possible for

the others.

The enhanced model incorporates more features than the classic model (Figure 2.1b). Group is the

added element and each acts as an entire NetCDF dataset in the classic model with multiple variables,

dimensions and attributes. It is similar to dictionaries in operating systems, i.e. hierarchically

organized and arbitrary depth enabled, which indicates its capability to hold larger dataset than

classic model. Group establishes namespace for variables, groups and types and in the same group,

their names must be unique. A notable feature is that dimensions can be shared between variables

in different groups which are defined under the same parent group. It is possible to define multiple

unlimited dimensions with enhanced model. Another strength of the enhanced data model is the

extension of data types. Not only has the number of primary data types increased to 12, but users

can also define specific data type, for example, an opaque blob of bytes.

2.1.2 Data format

NetCDF format includes four variants, namely, NetCDF classic, 64-bit offset, NetCDF-4 and

NetCDF-4 classic model format. They are implementations of NetCDF data models (Figure 2.2).

Classic model Enhanced model

NetCDF classic format 64-bit offset format
NetCDF-4 classic

model format
NetCDF-4 format

Contiguous storage structure Chunked storage structure

Figure 2.2. Relationships between NetCDF formats, data models and storage structures

Both NetCDF classic and 64-bit format are based on NetCDF classic data model. For storage, they

both consist of two parts, a header which is always the first part in the file and then followed by a

7

data part which contains variable (including coordinate variable) values occupying the main body

of the NetCDF file. Header contains information of dimensions, variables and attributes. In addition,

the offset to the beginning of each variable and dimension length information is also recorded, which

can then be used for locating specific variable value. However, a problem with the header is that it

reserves little extra space and any change requiring it to grow would cause copying and moving the

whole following data part. Regarding the data part, it consists of fixed-size data part containing data

for variables that do not have an unlimited dimension, and the record data part which is reserved for

variables holding an unlimited dimension. The whole data part is stored contiguously on the disk

(Figure 1.1c). A sample NetCDF classic file recording precipitation time series of 3 time steps is

provided in Figure 2.3. In the binary storage, i.e. Figure 2.3b, the first line displays the bytes in hex

while a line below presents the interpretation of the bytes in terms of NetCDF components and

values. Each line records 16 bytes. The main difference between NetCDF classic and 64-bit offset

format lies in the OFFSET entity which indicates the offset in bytes of the beginning of variables in

the header of NetCDF. For classic format, this is a 32 bit integer while 64-bit offset format uses a

64 bit integer for this to allow a larger file size, i.e. larger offset for specific data value. More details

can be acquired from Unidata (2011).

a. File content in CDL (“Common

Data Language”, the original ASCII

form of binary netCDF data)

 b. Binary storage and interpretation

Figure 2.3. A sample NetCDF file in classic format and its storage.

NetCDF-4 format offers new features such as group, compound types and multiple unlimited

dimensions since it is built on enhanced model of NetCDF. Besides, as has been pointed out,

contiguous storage structure cannot perform efficiently if the access pattern to variable values does

not follow a favored order. To tackle this issue, HDF5 is introduced as the storage layer for NetCDF-

4 format, which is known as the chunked storage structure. Basically, a dataset is partitioned into

fixed-size pieces that are transferred independently of each other to and from the disk. The fixed-

size pieces are referred to as chunks. With this storage sructure, it is possible to compress variable

values. Moreover, chunked storage structure does not need a contiguous header region and it can

then support dynamic schema change which allows new variables, dimensions and attributes added

dynamically without copying any data. However, chunking is a complex process and concerns

several parameters such as chunk size and chunk cache size, which significantly influences query

performance (Lee, Yang, & Aydt, 2008). If not tuned properly, it can results in performance penalty

compared to the use of contiguous storage structure.

Previous libraries which can operate NetCDF classic format or 64-bit offset format cannot work on

8

NetCDF-4 format which applies more advanced features like group. On the other hand, users may

not need to adopt those advanced features. While HDF5 storage structure can indeed bring benefits

in some cases. As a result, NetCDF-4 classic model format is created. It is the favorable solution if

no advanced features are needed while chunking or compression is wanted.

2.2 Multidimensional array database

In this thesis, multidimensional array database refers to a database of which the abstract model for

data management and query is multidimensional array consisting of dimensions and attributes. The

dimension shares the same concept defined in NetCDF data models. It can represents commonly

referred physical dimensions, i.e. spatial and temporal dimensions or any specific indexes. Attribute

is known as variable in NetCDF, i.e. representing the information of interest. For hydrologic

purposes, common attributes are precipitation, rainfall rate, evapotranspiration and so on. The

multidimensional array includes one attribute value case, i.e. only a single value is stored without

dimension information.

To avoid the ambiguous understanding of terms appearing in NetCDF and multidimensional array

database, the mapping of concepts for the two storage systems is listed in table 2.1.

NetCDF Multidimensional array database

Dimension Dimension

Variable Attribute

Attribute Array metadata

Chunk Chunk

File Array

Table 2.1. Equivalent terminologies in NetCDF and multidimensional array database

Analogous concept of multidimensional array database has occurred in previous publications. Array

database which provides database services to manage scientific and business data is the most

correlative terminology. However, its definition is vague and only some common features of array

databases are concluded. For example, the target to manipulate is multidimensional array. It has the

capability to manage “Big Data”. Chunks are used to store the array (Baumann and Stamerjohanns,

2014). Typical examples of array database are Rasdaman (Baumann et al., 1998), MonetDB (Zhang,

Kersten, & Manegold, 2013), SciDB (Brown, 2010) and Oracle Georaster (Oracle, 2014). Another

commonly mentioned concept multidimensional database should be considered as the superset of

the multidimensional array database. Its abstract data model, as indicated by Pedersen & Jensen

(2001) is the data hyper cube (Figure 2.4) which is indeed the multidimensional array.

Multidimensional database is designed for the efficient and convenient storage and retrieval of large

volumes of data that is intimately related and stored, viewed and analyzed from different dimensions

(Kenan Technologies, 1996). Its concept is originated from OLAP (OnLine Analytical Processing)

systems for business use (Pedersen & Jensen, 2001), such as Essbase from Orcacle and Netezza

from IBM. Both solutions for array database and multidimensional database will be concerned when

multidimensional array database is referred to.

Traditional relational databases employ table as the abstract data model for data management.

9

Although columns in the table can be regarded as different dimensions or attributes, the role or

importance of each column is equal. There is no distinction between a dimension and an attribute.

While in the multidimensional array database, dimensions are used to organize attribute data and

the focus is put on attributes. Queries to a multidimensional array database will never target at and

only select dimension values.

For data storage, most multidimensional array databases apply chunked storage structure. Basically,

a large multidimensional dataset can be chunked into small pieces and then stored on the disk.

Figure 2.4. Precipitation data for the Netherlands which is organized in a three dimensional array

or a data cube. The values shown in cells are precipitation in millimeter.

Figure 2.4 presents an array storing daily precipitation data in a certain region in the Netherlands.

The horizontal axis is longitude while the vertical axis represents latitude. Also a temporal

dimension is involved as shown at the right side in the figure. The spatial layer, also referred to as a

grid of precipitation for each day, for example, the front face in the cube can be saved as a chunk

and therefore for the whole dataset, there are totally three chunks stored. Index such as B-tree can

be built on these chunks. And when retrieving a specific value in the dataset (Colliat, 1996), first

through index, the chunk which the value is in can be returned. After it, within the chunk, the

position of the value is calculated using relative offsets, the same way as NetCDF contiguous

structure. Finally, the value can be extracted.

2.3 Previous work

Specific storage systems aside, previous studies have published results of relevant benchmark tests.

These include for example, comparison between relational database MySQL and multidimensional

array database SciDB on dealing with big datasets (Cudre-Mauroux et al., 2012). Researchers

cooperate with astronomical domain experts to propose scientific data processing benchmark. The

benchmark includes nine specific designed queries. The final results show that SciDB performs one

or two orders of magnitude faster on most queries than MySQL. But queries they propose are based

on astronomical case, which is not applicable to hydrologic domain. Nevertheless, their approach

on how to establish specific benchmarks provide crucial indication to this research.

Lee et al. (2008) present contrast between NetCDF-3 with contiguous storage and NetCDF-4 with

Grid Cell

10

both contiguous and chunked storage on handling datasets of diverse dimensions. In their research,

it is pointed out that the chunk size has crucial influence on data write rate and with the size of each

chunk increasing, the write rate fluctuates. As a result, chunk size is taken into account in this study.

Su and Agrawal (2012) develop a light weight management tool built on NetCDF classic format

files. They then evaluate the performance of the tool with OPeNDAP (Cornillon, Gallagher, &

Sgouros, 2003), a data access layer for files in different formats. Conclusion is that for all tasks

tested, the tool they built has a better sequential performance than OPeNDAP. However, their

address is more on the data management and access layer, i.e. the tool they developed, rather than

data storage. Databases are not discussed.

More relevant research is about the comparison between the relational database and NetCDF classic

format on executing four aggregate (sum, average, minimum, and maximum) and three index

queries (first, middle, and last element) (Cohen, Hurley, Schulz, Barth, & Benton, 2006). And the

result demonstrates the superiority of NetCDF over relational database for mentioned queries on

large datasets. But for all the publications reviewed until now, no research has been done to

investigate the query efficiency of NetCDF compared to multidimensional array databases for

hydrologic applications.

In the end, it should be mentioned that some parts of this research get inspiration from the Project

Massive point clouds for eSciences conducted in parallel. These include surveying costumers to

design benchmarks (Suijker, Alkemade, Kodde, & Nonhebel, 2014) as well as scale the data size to

explore the scalability of diverse data solutions (van Oosterom et al., 2014).

11

3 Queries and datasets

Determining appropriate benchmarks for testing is a crucial factor which influences the evaluation

of different storage systems. For comparing performance of databases, storage size, memory usage,

data loading time and query response time are benchmarks frequently considered. Recent research

on multidimensional array database performance, for example, Cudre-Mauroux, et al. (2012), Su

and Agrawal (2012) select typical queries representing different classes and then measure query

response time to show the performance. This research applies similar approach. First, several

hydrologic experts are consulted for queries they frequently execute as well as datasets on which

queries are based. After interviews, queries are classified, which paves the way for designing queries

for final benchmark test.

3.1 Expert consultancy

Totally 6 hydrologic experts are consulted. Five of them are interviewed in person while the left one

responses through questionnaire. More specifically, the interviewees are imparted what the main

questions are before the official structured interview. For the one answering with questionnaire,

crucial explanation is provided in the questionnaire to help understand. Then each interview is

conducted, which lasts for around half an hour. Essential text notes are made during the meeting.

After the interview, records are modified, organized and sent back to interviewees for verification.

The reply in questionnaire is kept without any further correction.

In this research, the concept of query comes from databases and is related to SQL, i.e. the query

language. More specifically, processes on data that can be executed with SQL are regarded as

queries. However queries should not be too complex as well. Tasks such as numerical computation

provided by professional software may also be expressed by SQL but these are excluded from this

research. During the consultancy, not only datasets and queries frequently handled by hydrologists

are discussed (Table 3.1), also their experience with advanced ICT techniques such as parallel

structure, compression to manage the data as well as their opinions about big data in hydrology are

covered. Interestingly, those experts who come from ICT related companies all think big data will

be or is currently the bottleneck in hydrology domain. While responses from hydrologic researchers

express that big data has slight influence on their daily work which are only concerned with limited

geographical area. The questionnaire as well as records of consultancy are presented in the Appendix

A and B.

Expert

number
Expert Queries Datasets

I

Dr. Ir. Steele-

Dunne (Delft

university of

technology)

1. Detection of

observations, i.e.

selecting non-null

variable values.

2. Quality control, selecting

value from variable grid
according to quality grid

Remote sensing data products,

such as TRMM, GRACE and

SMOS;

Two spatial dimensions

II Dr. Ir. Siek Observation records collected

12

(Hydrologic

Research B.V.)

from rain gauges;

One temporal dimension

III

Prof. Wang

(Hohai

university)

1. Accumulating daily

variable value to yearly

based value for whole

dataset

2. Calculating average

extreme variable value

per year for whole

dataset

3. Quality control. No-

value area should be

below 10% for the whole

spatial grid according to

empirical experience

1. Observation records

collected from spot gauges;

One temporal dimension

2. Satellite imageries;

Two spatial dimensions

3. Data products of remote

sensing, like MODIS NDVI

and NPP data;

Two spatial dimensions

IV

Ir.

Commandeur

(Hydrologic

Research B.V.)

1. Sub-selection according

to spatial or temporal

dimension from the

multidimensional

datasets

2. Statistical operation for

the dataset, sum

3. Statistical operation for

the dataset, average

4. Locating the maximum

value of the dataset

5. Calculating the

percentile curve for the

forecast dataset

6. Subtracting one grid of

one dataset from the

other grid of another

dataset

7. Detecting observations

from data captured by

orbiting satellites

1. Time series recorded by

gauges like precipitation,

discharge and temperature;

One temporal dimension

2. Precipitation data derived

from Doppler radar and also

calibrated radar precipitation

data using data recorded by

gauges;

Two spatial dimensions and

one temporal dimension

3. Processed satellite data like

precipitation and soil

moisture.

Two spatial dimensions and

one temporal dimension

4. Forecast datasets like GEFS

calculated from models;

Five dimensions, longitude,

latitude, time, ensemble and

model run time

5. Orbiting satellite observation

datasets in swaths;

Two spatial dimensions

V

Ing. Van der

Wielen

(Hydrologic

B.V.)

1. Selection of time series

data recorded by gauges

2. Sum of time series data

recorded by gauges

3. Extracting time series

from grids

4. Subtraction of

accumulated data, e.g.

precipitation

5. Combining data of two

grids with different cell

size, intersection and

multiplication are needed

6. Assigning color to

polygons according to

values got by intersecting

polygons with grids

7. Pyramid calculation from

1. Time series data from

gauges;

One temporal dimension

2. Radar data

Two spatial dimensions and

one temporal dimension

3. Results computed from

hydrologic models;

Four dimensions, longitude,

latitude, time and model run

date

4. Forecast data from models;

Five dimensions, longitude,

latitude, time, perturbation

and model run time

13

fine to coarse resolution

and query on pyramid.

VI
Ir. Villa Real

(IBM)

Selecting data from one

variable grid according to a

NODATA grid

1. Topographic and land cover

data;

Two spatial dimensions

2. Precipitation raster

calculated from forecast

model;

Two spatial dimensions

Table 3.1. Queries and datasets collected by consultancy

Table 3.1 lists conceptual queries and datasets collected by interview. The first three experts are

doing water research. Databases or NetCDF processing software are tools for their work, which

might be the reason why they contribute less queries. The second interviewee explained that his

work was mainly about modeling and he normally programs own scripts to process data and run the

model. Script does not belong to query according to his opinion. While the latter three experts are

specialized in ICT techniques and hydrology is the area for application. They have much experience

of what kind of queries users often request. Since customers of these ICT experts are mainly

hydrologic professionals or water related decision makers, queries offered by them can still be

regarded as typical hydrologic queries. As to the dataset, dimensions in the description refers to

dimensions that a specific dataset contains in a single file. These files may be combined to get larger

region or longer temporal coverage.

Queries listed in Table 3.1 are trivial. To make the overall query types more clearly, classification is

then performed (Table 3.2).

Class number Class Raw query

A Selection based on dimension value IV1, V1, V3

B Selection based on variable value I1, IV7

C
Selecting one array according to

information in another array, i.e. masking
I2, III3, VI

D Mathematical calculation
III1, III2, IV2, IV3, IV4, IV5,

IV6, V2, V4, V7

E Spatial operation V5, V6

Table 3.2. Classification of queries collected from consultancy

In table 3.2, the column raw query references queries listed in table 3.1. On the whole, five query

classes are defined. The classification approach draws on experience from previous studies.

Specifically speaking, Su and Agrawal (2012) proposed three query types, i.e. query based on

dimensions, coordinate variables and variable values to test the NetCDF query tool they developed.

Class A and B above covers those three query types. In addition, Cohen, et al. (2006) implement

four aggregate (sum, average, minimum, and maximum) and three index queries (first, middle, and

last value). The aggregate queries are included in class D which additionally contains algebraic

calculations such as subtraction of two arrays and statistical analysis like computing percentile. A

problem with previous researches is that they only focus on queries on single arrays and do not

consider queries using information more than one arrays. Through consultancy, masking queries

such as data quality check (Figure 3.1) for which the selection of variable is based on the information

recorded in the reliability or quality array are also collected. This type of query is also defined as a

separate class C. Class E represents spatial operations like intersection of a polygon of a city with

14

precipitation raster. Although hydrologists work on calculation based on rasters, sometimes

intersection of raster and vector is performed for visualization. In addition, even for two rasters,

spatial operation is needed at times. For example, given a rainfall raster calculated from forecast

model and a Doppler radar rainfall product, if the deviation is required but two rasters have different

cell sizes, then resampling one of them may be the solution. This is indeed what query V5 indicates.

Spatial operation is apparently another unique query type.

 a. b.

Figure 3.1. Sample fragment of MODIS NDVI product. Axis are longitude and latitude. Both arrays

share the same location and cell size. a. Array storing value related to NDVI. Real NDVI value

should be multiplication of the cell value and a factor 0.0001. b. Pixel reliability array where 0

refers to good data, 1 represents marginal data, 2 indicates snow/ice cover and 3 implies cloud

cover. If for a certain cell, its reliability value equals to 3, then the corresponding NDVI value is

contaminated and thus not going to be used.

Table 3.2 clearly shows that query of class D, i.e. statistical calculation is most frequently run by

hydrologists. While class B and E are the least crucial types. In practice, class B and A are often

combined as one query type. Specifically, in most cases, users first select the area of interest or a

certain period of time, i.e. selection according to dimension value and then focus on variable values.

Only executing query B, i.e. selecting certain range of values from a full grid has no actual meaning

because a full grid most of the time does not represent a whole country or a city. The grid is often a

part of a dataset with larger scale. As a result, the output can be nowhere. So query purely based on

variable value will not be included in the final benchmark test. As to spatial operation, for one thing,

it is not very common in the daily work of hydrologic experts; for another, realizing it with no spatial

extension enabled NetCDF or database would bring excessive developing work, which deviates

from the core of this research. So class E is excluded from implementation as well. Class C is also

removed since dataset which is capable to perform the query is in fairly small size due to coarse

spatial and temporal resolution, which is not the interest of the research.

3.2 Query design

This section describes how the queries for benchmark test are determined. Raw queries from experts

are not applicable for testing directly. This is because first, these queries are at a rather conceptual

level, no specific parameters attach to these queries. For instance, temporal dimension a query

concerns can range from 2001 to 2010 or from 01/01/2014 to 31/01/2014. While these specific

parameter values definitely influence query performance. Second, datasets at which raw queries

145 201 107 567

23 23 80 29

-4 -10 32 16

-35 -107 -67 3

2 2 1 0

2 2 1 1

3 3 3 1

3 3 3 3

15

target are in large numbers, which brings impediment for management. Moreover, some of these

datasets are inaccessible due to their licenses. Given above reasons, query design is required to

modify and specify the conceptual queries. Query design should be based on query classification as

well as research questions, which will be interpreted in the following.

There are several notes when designing queries:

1. First, the target of queries, i.e. specific dataset should be selected. Dataset size needs to be

sufficiently large and has the potential to exceed TB level. Dimensions of the dataset should

focus on spatial and temporal dimensions, which keep in line with commonality of datasets

described by experts. Multiple dimension is also a requirement. One dimensional dataset is the

strength of NetCDF’s contiguous storage structure and it does not cause the problem stated in

section 1.1, so it is not the interest of this research.

2. Each query should be a realistic request sent by users. That is to say, parameters in a query

should avoid being randomly fabricated. For example, it makes sense to select precipitation

time series for last 24 hours while it is odd to request information for the past 25 hours. Spatial

selection should also be country or city based and escape from being half sea and half land

situation. Besides, the scope of all queries is confined in class A and D as is explained in

previous Section 3.1.

3. Queries should address sub-research question 3, i.e. query performance on different

dimensions. As indicated in section 1.1, if variable values are stored in grids at different time

steps, then extracting time series for a single location is problematic for contiguous storage

structure. So for one dataset, queries on different dimensions for example, spatial and temporal

should be both included to show the performance variation.

3.2.1 Datasets for benchmarking

Considering all the requirements for datasets, i.e. data size, dimension and accessibility, two datasets

(Table 3.3) are selected for testing. Dataset MPE (Multi-Sensor Precipitation Estimate) stores the

rainfall rate data processed from raw satellite data. Besides, the Availability information indicating

whether a grid at a certain time step is missing and the Quality marking if the satellite data have

been corrected according to ground measurements are also recorded. Each file contains information

for one hour with four time steps. Hydrologic Research can provide records for more than two years,

which results in the total amount of data larger than 4.18 TB (2 x 365 x 24 x 250 MB). Dataset

GEFS (Global Ensemble Forecast System) is calculated from a global forecast model and it stores

8 meteorological variables as shown in the table. It also includes the auxiliary information,

Datastatus which is the combination of Availability and Quality. GEFS contains more dimensions.

The forecast dimension refers to the time steps simulated while model run represents the time to run

the forecast model in reality. Increments for both dimensions are 6 hours, i.e. every 6 hours the

model will be run and forecast temporal interval is also 6 hours. Ensemble represents initial

condition and 20 ensembles simulate 20 different initial conditions as the input for the forecast

model. This is done to decrease the uncertainty of the forecast as later the percentile and ensemble

mean are derived. GEFS latitudes range from -90 to 0 and then to 90 (181 integers). For both datasets,

the spatial reference system is WGS 84.

16

Dataset Information stored
Dimension

count

Dimension

Span (single file)

Temporal

resolution

Spatial resolution

and coverage

Single

file size

Data

format

 MPE rainfall rate

data, satellite data

product

Rainfall rate;

Availability;

Quality

3
x, y, time

(4000,4000,4)
15 minutes

0.03 degree

(3.3 km),

1/3 world

250 MB
64-bit

offset

GEFS weather

forecast data

Temperature 2m above

ground;

Maximum temperature

2m above ground;

Minimum temperature

2m above ground;

Relative humidity 2m

above ground ;

Total precipitation;

Total Cloud Cover;

U-Component of Wind

10m above ground;

V-Component of Wind

10m above ground;

Data status

5

Longitude, latitude, forecast,

ensemble, model run

(360,181,40,20,1)

6 hours

1 degree

(111 km),

Global

1.55 GB
64-bit

offset

Table 3.3. Datasets for benchmarking

17

3.2.2 Queries for benchmarking

Based on the above two datasets, designed queries are listed below.

Dataset MPE:

1. Selection on spatial dimension for Delft and northern part of the Netherlands (Class A):

a. Delft: Select rainfall rate in the bounding box (4.31, 51.97) (4.39, 52.03) at 16:30 01-09-13

b. Netherlands: Select rainfall rate in the bounding box (4.72, 51.93) (6.5, 53.36) at 16:30 01-

09-13

Expected output: a. a two dimensional array with size (4, 3), 12 cells. b. a two dimensional

array with size (60, 48), 2,880 cells.

2. Extraction of time series for Delft (Class A):

Select rainfall rate from 0:00 01-09-13 to 0:00 01-10-13 at (4.37, 52.02)

Expected output: a one dimensional array with length 30 x 4 x 24 = 2,880

3. Pyramid query at the Netherlands scale(Class D):

After building the rainfall rate pyramid (x4), i.e. average every 16 cells for the whole grid at

0:00 07-09-13, then retrieve the Netherlands grid with bounding box (3.36, 50.76) (7.21, 53.51)

from the pyramid.

Expected output: a two dimensional array with size 33 x 23 = 759

4. Historical average value for the Netherlands (Class D):

Select average rainfall rate from 0:00 01-09-13 to 0:00 01-10-13 in the bounding box (3.36,

50.76) (7.21, 53.51)

Expected output: a two dimensional array with size (129, 92), 11,868 cells while the calculation

goes through 129 x 92 x 30 x 24 x 4 = 34,179,840 cells

5. Historical maximum value for the Netherlands (Class D):

Select maximum rainfall rate in the bounding box (3.36, 50.76) (7.21, 53.51) from 0:00 01-09-

13 to 0:00 01-10-13

Expected output: a two dimensional array with size (129, 92), 11,868 cells while the calculation

goes through 129 x 92 x 30 x 24 x 4 = 34,179,840 cells

Dataset GEFS:

1. Forecast time series for Delft in 10 days (Class A):

18

Select precipitation for all ensembles at (4, 52) for 40 forecast steps, model run time is 6:00 15-

05-2014

Expected output: a one dimensional array of precipitation forecast and the length is 20 x 40 =

800.

2. 80th percentile for Delft in 10 days (Class D, percentile indicates the value below which a given

percentage of observations in a group of observations fall. For instance, suppose there are 10

natural numbers ranging from 1 to 10, the 80th percentile is 8 since 8 values are below it

including itself):

Select the 80th percentile at (4, 52) from all ensembles for 40 forecast steps, model run time is

6:00 15-05-2014

Expected output: a one dimensional array with length 40 while the calculation goes through 40

x 20 = 800 cells.

3. Ensemble mean for the Netherlands in 10 days (Class D):

Select mean of 20 ensembles of precipitation for 40 forecast steps in the bounding box (3, 51)

(7, 54), model run time is 6:00 15-05-2014

Expected output: 40 two dimensional arrays of which the size is (5, 4), 20 cells, i.e. totally 800

values are returned, while the calculation goes through 40 x 20 x 5 x 4 = 16,000 cells.

Totally 8 queries are designed. Output size is also taken into account when designing queries since

it influences the query performance as well. As is presented, the output size in cells span several

levels from 12 to 11,868. Another point should be noted is that the shape of the output refers to the

array size at the abstract level. So selecting a sub-grid, i.e. selection based on two spatial dimensions

from the whole grid results in a two dimensional array intuitively. While in practice, result is a series

of numbers in the row-major order (Figure 3.2). Query 1 and 2 of MPE dataset can be used for

evaluating whether querying on different dimensions can achieve same performance. This is

reasonable because the output size does not deviate much from each other. For GEFS dataset, there

is no queries for spatiotemporal aggregation since its resolution is fairly large, i.e. 1 degree and 6

hours. While aggregation like average on all ensembles are more general query types for ensemble

forecast datasets. It should be mentioned that although queries designed above consider several

crucial factors, in the real benchmarking (Chapter 6), more aspects are taken into account, for

example whether query results retrieved are all zero values or diverse non-zero values.

Figure 3.2. Data organization with row-major order (blue) and column-major order (yellow)

1 0 0 2 2 0 2 4 0

1 2 2 0 2 4 0 0 0

19

4 Selection of multidimensional array

database

Due to large numbers of various specific multidimensional array databases and the complexity to

implement full benchmarks, for example, importing data, cache management and employing

different storage schema, it is decided that only one database will be selected for benchmarking.

Literature study is the main methodology to select this databasee. In the following content, first

several solutions including both open-source and commercial multidimensional array databases are

presented. Then two typical multidimensional array databases, i.e. Rasdaman and SciDB which are

covered intensively by previous researches are compared in more detail with nine criteria. In the

end, based on their overall grades for all criteria, the final multidimensional array database applied

in this research for benchmarking is determined.

4.1 Current multidimensional array databases

Rasdaman

Rasdaman strives for domain-independent support for arrays of arbitrary size, dimension, and base

type through a general-purpose declarative query language RasQL, paired with internal execution,

storage, and transfer optimization (Baumann, 1998). Rasdaman implements chunked storage

structure and makes use of BLOB (binary large object) type within MySQL, Oracle, IBM DB2,

IBM Informix, PostgreSQL and file systems to store chunks. So it is always combined with other

DBMSs.

SciDB

SciDB is an open-source DBMS intended primarily for use in application domains that involve very

large (petabyte) scale array data. Scientific applications include astronomy, remote sensing, climate

modeling and bio-science information management. Commercial applications like risk management

systems in the financial services sector as well as web log analysis software can also be constructed

on SciDB. It is a bottom-up designed array database from the physical storage layer to logical access

layer. It utilizes chunked storage structure using native binary format.

MonetDB

MonetDB is applied for data mining, business intelligence, OLAP, scientific databases, XML Query,

text and multimedia retrieval required by high-performance applications (Idreos et al., 2012). Arrays

are stored using column-store structure and each dimension as well as the core data is stored as one

BAT (Binary Association Table) in the database. All BATs are related together through one column

OID stored inside each BAT. SciQL, a SQL-based declarative query language is later introduced to

MonetDB for scientific data management (Zhang, Kersten, & Manegold, 2013).

Essbase

Essbase is originally a multidimensional DBMS that serves for analytic applications. It is now held

20

by Oracle as a multidimensional OLAP server product, providing a rich environment for effectively

developing custom analytic and enterprise performance management applications. It separates dense

and sparse dimensions to organize data more efficiently. More specifically, in Essbase, dimensions

which usually have data in every cell are dense dimensions and are represented as blocks, i.e. chunks

on disk. Other dimensions are set to sparse dimensions and for those combinations of sparse

dimensions where data exists, pointers to corresponding dense blocks are stored in an array (Figure

4.1). Through the array index and relative offset in the data

block, a specific value can be retrieved (Colliat, 1996; Oracle, 2008).

Figure 4.1. Storage of a fourth dimensional dataset in Essbase. The left array is constructed by

sparse dimensions and the cell with star, i.e. pointer implies there is data in the cell. The right array

is one data block confined by dense dimensions.

InterSystems Caché

1 0 0

2 2 0

2 4 0

0 | 0: 2 | 1: 4 | 2: 0 | 1 | 0: 2 | 1: 2 | 2: 0 | 2 | 0: 1 | 1: 0 | 2: 0

Figure 4.2. Dimension values and attributes of a two dimensional array are stored sequentially in

Caché’s data block.

Intersystems Caché is a multidimensional DBMS based on which users are able to process and

analyze complex data, developing web and mobile applications. Caché provides native scripting

language to manipulate arrays directly, which is the multidimensional mode. Multidimensional

arrays in Caché are named “globals” which are stored on disk within a series of data blocks

(InterSystems, 2014). Dimension values and attributes are compressed by default and then stored

together in data blocks sequentially (Figure 4.2). A special case is for arrays with large object as the

attribute value, for example, a very long string. In this case, dimension values and attributes are

stored in separate blocks. And what is then stored with dimension values are pointers to

corresponding attribute blocks.

 * *

*

 *

1 0 0

2 2 0

2 4 0

D
en

se D
im

en
sio

n
 2

S
p

arse D
im

en
sio

n
 2

Sparse Dimension 1 Dense Dimension 1

0 1 2 X

Y

0

1

2

21

Oracle spatial

Oracle spatial provides users the ability to store, index, query, analyze and deliver raster images and

other gridded data together with associated metadata within the Oracle Relational Database

Management System (Xie, 2008). Basically, a raster data, for example, an image has an entry stored

in Oracle as a GeoRaster object. For each GeoRaster object, there is a corresponding raster data

table which records information of small blocks composing the image. While the actual BLOB with

image data for each block is stored separately from the raster data table (Oracle, 2014; Xie, 2008).

Figure 4.3 presents the overall physical raster storage structure adopted by Oracle spatial.

Figure 4.3. Storage of raster data in Oracle spatial (Oracle, 2014).

However, Oracle spatial can maximally supports storage of raster of three dimensions, i.e. x, y and

band. For higher dimensional datasets, they cannot be incorporated as a GeoRaster object. Strictly

speaking, the abstract data model of Oracle Spatial for GeoRasters is based on tables while the array,

i.e. raster is treated as a data type. But since many specific functionalities are developed for

managing multidimensional rasters (Oracle, 2014), so in a way, users can still handle arrays directly.

Consequently, Oracle spatial is included as one multidimensional array database.

Universal File Interface (UFI)

UFI (BCS, 2014) is IBM Informix database extension to index and query files stored outside the

database. The aim of this solution is to avoid the traditional difficult and slow data loading process.

Regarding its working principle, basically, it maps selected elements like columns in CSV files and

variables in NetCDF files into UFI Virtual Table (VT) columns. That is to say, one VT column

corresponds to one column or variable of a file. Then though querying the table with SQL, data

stored in the files can be retrieved (BCS, 2012). The UFI server communicates with various files

through different adapters. Specific adapters can be developed by users with UFI Adapter

SDK released by the development team. Figure 4.4 shows the query workflow of UFI.

22

Figure 4.4. Workflow of query execution with UFI

4.2 Comparison between Rasdaman and SciDB

Due to large numbers of variants of multidimensional array databases, it is insensible to evaluate

them all in detail to select the one for final benchmarking. Among these solutions, Rasdaman and

SciDB provide sufficient documentation for study and research. Besides, their source code is

accessible online, which is crucial for exploring more details of data structures later. Consequently,

for determining final multidimensional array database used for test, emphasis will be put on these

two options.

In the following parts, essential criteria for the comparison are listed. And features for both databases

with respect to each criterion are described. How those descriptions come into being are also

provided. It should be noted that no practical test is involved for the comparison conducted in this

phase.

1 License

Open source product is preferable because on the one hand, more details of storage and query can

be acquired from checking the source code and on the other hand, additional budget is unavailable

for buying licenses for commercial ones. The licenses applied by Rasdaman and SciDB are listed in

table 4.1 below,

Rasdaman SciDB

Two versions: open source, i.e. Rasdaman

community and commercial version,

Rasdaman enterprise

For Rasdaman community, its

client library, applications and OGC frontends

are based on LGPL-3

(http://www.rasdaman.org/wiki/License)

It includes both community and enterprise

edition.

SciDB community applies Affero GPLv3

license (Feature chart，

http://www.paradigm4.com/licenses/; SciDB,
2014)

http://www.rasdaman.org/wiki/License
http://www.paradigm4.com/licenses/

23

While the server-side executables (such as

rasserver and rasmgr) are based on GPL-3

license

For Rasdaman enterprise, it extends rasdaman

community with improved features,

performance and maintenance. (Feature chart,

http://www.rasdaman.org/wiki/Features) and

is held by Rasdaman GmbH

Enterprise edition provides more

functionalities and support, e.g. additional

math and machine learning functions,

database replication, etc. (Feature chart). It is

held by paradigm4, Inc.

Table 4.1. Licenses of Rasdaman and SciDB

Both databases have free versions, i.e. Rasdaman community and SciDB community. As is indicated,

they are preferable over commercial counterparties, so features of free versions are the stress for the

comparison.

2 Implementation of multidimensional array storage

As has been indicated in Chapter 2, chunked storage structure are employed by most

multidimensional array databases. But the details for real implementation such as spatial index can

influence the query performance as well, which should be considered. Table 4.2 lists essential items

for both databases towards this criterion.

Rasdaman SciDB

1. Chunked storage structure. Rasdaman

divides the original dataset into chunks

which have same dimensions as the

original dataset. (Baumann, Furtado,

Ritsch, & Widmann, 1997)

2. Chunks can be regular, i.e. share the same

size and shape or arbitrary with different

shapes and sizes.

(http://rasdaman.org/wiki/Tiling)

3. A multidimensional index (e.g. R+) is

applied to identify chunks. (Baumann,

Furtado, Ritsch, & Widmann, 1997;

Baumann, Dehmel, Furtado, Ritsch, &

Widmann, 1998;

http://en.wikipedia.org/wiki/Rasdaman)

1. Chunked storage structure with chunks of

fixed logical size but variable physical

size (Stonebraker, Brown, Poliakov, &

Raman, 2011).

2. Based on the information of how the array

is divided into chunks and how the

chunks are distributed into different

instances, queries can be implemented

(SciDB forum,

http://www.scidb.org/forum/viewtopic.ph

p?f=13&t=1259&p=2546&hilit=index#p2

546).

3. Original dataset can be divided into basic

chunks of any dimensions (Stonebraker et

al., 2011; Email communication with

Prof. Stonebraker)

4. Overlap of chunks are applied to facilitate

querying process. (Brown, 2010)

Table 4.2. Implementation of data storage structure of Rasdaman and SciDB

The fixed logical size but variable physical size of chunks in SciDB means the size of a chunk is

fixed by lengths of dimensions while since there may be no value or null value in the chunk, the

physical size of such a chunk is variable. This design is considered more efficient for array operation

than the approach with variable logic size with fixed physical size. This is because for joining arrays,

a frequently implemented operation, fixed logical chunk size can guarantee chunks of both arrays

being processed in pairs while variable logical chunk size implies that the chunk of one array may

join to several chunks in the second array, which is costly (Stonebraker, Brown, Poliakov, & Raman,

2011).

http://www.rasdaman.org/wiki/Features
http://rasdaman.org/wiki/Tiling
http://en.wikipedia.org/wiki/Rasdaman
http://www.scidb.org/forum/viewtopic.php?f=13&t=1259&p=2546&hilit=index#p2546
http://www.scidb.org/forum/viewtopic.php?f=13&t=1259&p=2546&hilit=index#p2546
http://www.scidb.org/forum/viewtopic.php?f=13&t=1259&p=2546&hilit=index#p2546

24

3 Compression support

Compression support. The availability of compression is one of the interests of this research because

for hydrologic datasets, usually a large amount of zero values or no values can exist and it is deduced

that compression should thus have a notable influence on query efficiency. Table 4.3 concludes the

compression support for both databases.

Rasdaman SciDB

1. Compression is not available for

Rasdaman community. But through

format conversion, like JPEG,

compression can be incorporated in a

way. Besides, null value is not supported.

(Feature chart; Source code: compression

and conversion module; Email

communication with Prof. Baumann)

2. Format conversion as well as additional

compression techniques like Zlib, RLE

and wavelet are available for Rasdaman

enterprise. The commercial version also

supports null value. (Feature chart)

1. Delta encoding for version control. One

base array is stored while all other

updated array versions are stored as deltas

chain layers. (Stonebraker et al., 2011;

Seering, Cudre-Mauroux, Madden, &

Stonebraker, 2012)

2. Support for various types of chunk

compression (e.g., Run Length encoding,

Null suppression, Huffman encoding)

(Stonebraker et al., 2011; SciDB forum,

http://www.scidb.org/forum/viewtopic.ph

p?f=6&t=181)

3. SciDB supports null value and its default

value can be changed (SciDB, 2014).

Table 4.3. Compression support of Rasdaman and SciDB

Format conversion in Rasdaman refers to that some data formats such as JPEG implement a certain

lossy compression, so conversion can result in compression. However, the lossless compression

technique like zlib is not served by Rasdaman community, which is a critical drawback of Rasdaman

for this research. Delta encoding is a technique applied by SciDB to achieve equivalent effect as

compression. Basically, for an array of which values are constantly changing, for example,

precipitation array in different time steps, only the latest version of the array is stored while all its

previous versions are stored as a chain of “deltas” referenced from the latest array. This “no

overwrite” storage approach is implemented by SciDB automatically.

4 Parallelization

Parallel processing capability is needed because it is currently an effective technique dealing with

big data to improve query performance. The parallel architectures of both databases are summarized

in Table 4.4.

Rasdaman SciDB

Both shared memory, i.e. multi-core and

shared nothing parallel architecture are

supported (Hahn, Reiner, Höfling, &

Baumann, 2002)

Both shared nothing and shared memory

parallel architecture.

Queries can be run on several instances on a

single server with multiple threads or

distributed to a cluster and executed on

several servers in parallel (Cudre-Mauroux et

al., 2012).

Table 4.4. Parallel architectures of Rasdaman and SciDB

Shared memory architecture refers to the database making use of multiple processors which access

the same memory. It adopts a method of inter-process communication. That is, one process creates

a space in memory which is accessible by other processes, which significantly improve the speed of

communication. However, all communicating processes should run on the same machine and is not

http://www.scidb.org/forum/viewtopic.php?f=6&t=181
http://www.scidb.org/forum/viewtopic.php?f=6&t=181

25

suitable for systems which do not have cache coherent architecture. Shared nothing architecture

represents a group of computers which are treated as nodes and communicate with each other

through network. And query optimizer runs portions of the query on data stored locally. In essence,

it adopts a “send the query to the data” model which is applicable for petabyte scalability

(Stonebraker et al., 2011).

5 .Net C# API

.Net C # interface is a requirement because the HydroNet-4 system developed by Hydrologic which

later will be used for benchmarking is constructed on .Net platform. To keep consistency, it is

preferable that the database can be accessed through .Net C# API. Table 4.5 presents the comparison

on this criterion.

Rasdaman SciDB

No direct C# API for Rasdaman. But

Rasdaman has a GDAL driver which can

connect to rasdaman by defining a query

template. And GDAL indeed provides a .Net

C# API.

1. No, it only provides APIs of C++,

Java/JDBC, R and Python.

2. C# wrapper can be created from C++

code.

3. There is tutorial for Java (SciDB User

Guide), R

(https://github.com/Paradigm4/SciDBR/w

iki/_pages) and Python (SciDB-py, Online

tutorial), but no material about C++. It is

implied in the SciDB forum that from

source code, many C++ examples can be

used for learning.

Table 4.5 .Net API for Rasdaman and SciDB

Although SciDB can wrap C++ interfaces into C# classes to realize the C# API, but the

documentation of C++ API is not provided. Even though its source code can be used for leaning,

the source code is not as readable as Rasdaman which provides more comments.

6 Query language

Query language of the database should have a simple yet powerful interface which provides plenty

functionalities for communicating with the database. The query language for each database is

provided in Table 4.6 below.

Rasdaman SciDB

RasQL, constructed on standard SQL.

(Rasdaman, 2013)

AQL and AFL. Both are query languages.

AQL is modeled after SQL, so the grammar is

like SQL. While AFL provides a more

powerful functional language interface.

(SciDB, 2014)

Table 4.6. Query language of Rasdaman and SciDB

Below some sample commands with RasQL, AQL and AFL for manipulating arrays are provided,

Query: create a two dimensional rainfall array which is a spatial grid of 100 x100 cells with default

cell value 0.

RasQL:

1. typedef marray <float, [0:99, 0:99]> rainfallmap;

https://github.com/Paradigm4/SciDBR/wiki/_pages
https://github.com/Paradigm4/SciDBR/wiki/_pages

26

2. typedef set <rainfallmap> RainfallSet;

3. create collection rainfall RainfallSet;

4. insert into rainfall values marray x in [0:99, 0:99] values 0f;

AQL: create array rainfall <rainfall: float default float(0.0)> [x=0:99, 100, 0, y=0:99, 100, 0];

AFL: create array rainfall <rainfall: float default float(0.0)> [x=0:99, 100, 0, y=0:99, 100, 0];

Query: select a sub array of which both x and y dimensions range from 0 to 9, i.e. 10 x 10 array

from the original rainfall array created above.

RasQL: select rainfall[0:9, 0:9] from rainfall;

AQL: select * from rainfall where x < 10 and y <10;

AFL: between(rainfall, 0, 0, 9, 9);

The grammar of both RasQL and AQL is analogous to SQL. Apart from AQL, SciDB supports the

functional query language AFL. With AFL, general information of the array can be retrieved

conveniently, for example, with operator “analyze” (SciDB, 2014). Also commonly used

mathematical functions like “stdev” which calculates the standard deviation of the input array are

implemented as commands. RasQL also supports corresponding functional operators. For instance,

through “SELECT dbinfo() FROM…”, some general information of the array can also be acquired

(Rasdaman, 2013).

7 Spatial calculating capability

The database is expected to be able to perform spatial operations such as intersection, distance

calculation and projection conversion since some of the hydrologists work is spatial relevant (Table

3.2). Information of this aspect is shown in Table 4.7.

Rasdaman SciDB

No specific spatial operator is provided

(Rasdaman, 2013)

No specific spatial operator is provided.

(SciDB, 2014)

Table 4.7. Spatial calculating capability of Rasdaman and SciDB

Some operators of AFL like “regrid” can achieve the effect of resample, a common spatial operation.

But actually it is more a statistical calculation than spatial function. With RasQL, it is able to develop

a script to perform the same task. On the whole, both databases lack essential support for spatial

calculation.

8 NetCDF importer

A direct NetCDF importer for a database is also desired because datasets originally in different

formats can be converted to NetCDF formats inside HydroNET-4 system. Then it would be

convenient to import the NetCDF files directly into database with the specific importer.

Rasdaman SciDB

Rasdaman has a module supporting NetCDF

import. But sometimes it cannot work well

and needs prior process using extra tools like

ncdump, ncks, etc. (Google mail list,

https://groups.google.com/forum/#!topic/rasda

man-users/1UcadWb5aHw)

No function for loading NetCDF directly, but

it is possible to program a specific SciDB

plugin of the loader. SciDB can support CSV

import natively and HDF5 data through the

HDF5 loader plugin, i.e. SciDB-HDF5

(https://github.com/wangd/SciDB-HDF5) The

approach can thus be converting NetCDF to

CSV or HDF5 and then importing data into

https://groups.google.com/forum/#!topic/rasdaman-users/1UcadWb5aHw
https://groups.google.com/forum/#!topic/rasdaman-users/1UcadWb5aHw
https://github.com/wangd/SciDB-HDF5

27

SciDB.

Table 4.8. Information of NetCDF importer for Rasdaman and SciDB

Table 4.8 indicates Rasdaman has implemented specific NetCDF importer despite errors occur

sometimes. While through format conversion, there also exists a way to load NetCDF files into

SciDB. Besides, HydroNET-4 can provide such format conversion service.

9 Maintenance

The database should keep consistent maintenance to fix bugs, improve and add new features if they

are required by large numbers of users. Besides, the consultancy support for using the database

should also be sufficient, which can benefit this research. Table 4.9 lists relevant information of

maintenance for two databases.

Rasdaman SciDB

1. Community version is governed by its

Project Steering Committee (PSC)

consisting of 3 members.

(http://rasdaman.org/wiki/Governance)

while Rasdaman enterprise is maintained

by Rasdaman GmbH.

2. Source code is maintained through Git

where developers can contribute code for

Rasdaman

(https://github.com/PublicaMundi/rasdam

an). It is then determined by PSC whether

the code will be adopted

(http://rasdaman.org/wiki/Governance).

3. Google groups for Rasdaman users

(https://groups.google.com/forum/#!foru

m/rasdaman-users) and developers for

Rasdaman community

(https://groups.google.com/forum/#!foru

m/rasdaman-dev)

4. Obsolete website for both community

(http://rasdaman.org/) and enterprise

(http://rasdaman.com).

1. SciDB open source project is developed

by MIT, Brown University, university of

Washington

(http://scidb.cs.washington.edu/#),

Portland State University and University

of Wisconsin-Madison.

(http://database.cs.brown.edu/projects/sci

db/)

2. A forum publishes code and essential

documentation with respect to each

community version of SciDB. Developers

also communicate through this forum and

reflect to SciDB project team.

(http://www.scidb.org/forum/)

3. Advisory Board consists of engineers and

scientists from several specialized

research institutes and universities in the

US.

(http://www.scidb.org/about/science-

advisors.php)

4. Enterprise version is held by Paradigm4,

Inc. which also contributes to SciDB

community.

Table 4.9. Maintenance of Rasdaman and SciDB

In Table 4.9, it clearly shows that SciDB has more professional support, which can be utilized for

this research as well.

Given the above information, the performance of two databases with respect to all the criteria can

be summarized and compared (Table 4.10).

 C1 C2 C3 C4 C5 C6 C7 C8 C9 Final

Rasdaman

community
1 1 0 1 0.5 1 0 1 0.5 6

SciDB

community
1 1 1 1 0 1 0 0.5 1 6.5

Table 4.10. Relative grade for the open-source versions of two databases

In Table 4.10, C1 to C9 correspond to criterion from one to nine. The maximum grade is 1 while the

http://rasdaman.org/wiki/Governance
https://github.com/PublicaMundi/rasdaman
https://github.com/PublicaMundi/rasdaman
http://rasdaman.org/wiki/Governance
https://groups.google.com/forum/#!forum/rasdaman-users
https://groups.google.com/forum/#!forum/rasdaman-users
https://groups.google.com/forum/#!forum/rasdaman-dev
https://groups.google.com/forum/#!forum/rasdaman-dev
http://rasdaman.org/
http://rasdaman.com/
http://scidb.cs.washington.edu/
http://database.cs.brown.edu/projects/scidb/
http://database.cs.brown.edu/projects/scidb/
http://www.scidb.org/forum/
http://www.scidb.org/about/science-advisors.php
http://www.scidb.org/about/science-advisors.php

28

minimum is 0. There exists the 0.5 referring to that the database has partial support for the

corresponding criterion. The whole grade shows that SciDB has slight superiority. It should be noted

that the grade is based on the assumption that all criteria are of equal weight. As a matter of fact, the

C2 indicator, i.e. compression support is a critical factor since the research is concerned with it. And

SciDB community has compression functionality which is on the other hand, a lack for Rasdaman

community. So, the final multidimensional array database for benchmarking is determined to be

SciDB.

29

5 Testing environment setup

To benchmark two storage systems, i.e. NetCDF and SciDB, interfaces to query and manage data

stored in them should be available to use. Although there exist official tools to manipulate data for

both systems, to achieve fair benchmark purpose, customized data query and management layers

are developed for this research. The benchmark software environment is then built on a server.

In the following, first the overall benchmark architecture along with its working principle is

presented. Then the hardware and software parts of the architecture are described. Regarding

software, only the implementation of NetCDF connector and SciDB connector which are developed

for the research is discussed.

5.1 Overall architecture

HydroNET-3 system developed by HydroLogic provides functions to access data stored in NetCDF

classic and 64-bit offset format. Benchmark test is thus based on this system to avoid excessive code

development. However, HydroNET is built on Widows .Net platform while SciDB currently is only

available on Linux. In order to guarantee a fair comparison, a connector from HydroNET in

Windows to SciDB on Linux needs to be developed. So the query performance of both NetCDF and

SciDB can be assessed in the same HydroNET system. Besides, the company integrates the interface

to query and manage NetCDF-4 files in the next version of HydroNET, i.e. HydroNET-4. Therefore,

the whole benchmark environment (Figure 5.1) is elaborated in a beta version of HydroNET-4.

A data retrieving query starts at a web client which sends an http post request with a JSON object

describing essential parameters for executing the query. Parameters include the span of each

dimensions of the dataset for selection, for example, time steps and spatial region. Besides, a unique

ID for each dataset available, so called data source ID is also a crucial parameter involved. The data

access API receives the request and then parses it. API communicates with the catalog database, a

MySQL database and finds metadata of the corresponding dataset through ID. The metadata

indicates where the dataset is stored and according to this information as well as the query, API

retrieves the data from the specific data storage system through connectors. For example, if the

concerned dataset is stored as an array in SciDB, the catalog database will have a record for such a

data source. Through matching data source ID, the API can then send the query parameters to SciDB

connector which initiates an AFL command and transfers it to SciDB to extract the result. After it,

the result is returned to HydroNET-4 and stored as a HydroNET in-memory object. For NetCDF

files, API can determine which file contains the data needed for the query according to data source

ID and then retrieves the data through NetCDF connector. The result is also stored in a HydroNET

object. All connectors can communicate with Processor containing functions to execute more

complex computation such as aggregation and percentile calculation on data retrieved. For

benchmarking, the Processor is utilized for realizing complex queries for NetCDF while SciDB

process all calculation itself and communicates with API directly. It is though that the calculating

capability of a database is also important to understand. The total time spent for executing a query

30

can be measured in HydroNET-4, which forms the benchmark indicator.

Server

Figure 5.1. Benchmarking architecture

In practice, VMware Workstation, ESXi version 5.5 which holds two virtual machines is installed

on a server. On one virtual machine, Windows Server 2012 64-bit is installed to set up HydroNET-

4, and Ubuntu 12.04 64-bit version is established on the other virtual machine to run SciDB. Total

memory capacity of the server is 8 GB while each virtual machine takes a half, i.e. 4 GB. Each

virtual machine is equipped with 2 virtual CPUs sharing the same physical CPU with 2 cores.

Besides, each virtual machine owns 1 TB storage space allocated from the same 3 TB hard disk.

Another alternative architecture for benchmarking is to employ two physical machines installed

with Windows and Ubuntu separately and let the SciDB connector communicate through network.

But considering the possible delay in the network, which influence query measurements, the

approach is not implemented.

Client

HydroNET-4 on Windows virtual machine

MPE rainfall rate data and GEFS weather forecast data

Linux virtual machine

Queries

Data access API

NetCDF connector

NetCDF file

SciDB

SciDB array

SciDB connector

a. 64-bit offset format

b. NetCDF-4 (uncompressed)

c. NetCDF-4 (compressed)

d. Uncompressed chunk

e. Compressed chunk

Time

Catalog

database

Processor

31

5.2 Hardware

Figure 5.2. Server used for benchmarking

Server

Dell Inc. OptiPlex 745

CPU

Intel(R) Core(TM) 2 CPU 6600 @ 2.40GHz

Processor Sockets: 1

Processor Cores per Socket: 2

Logical Processors: 2

RAM

4x 2GB DDR2

Crucial DDR2 - 667 MHz / PC2-5300 - CL5 - 1.8 V

HDD

Western Digital

WD Red WD30EFRX - 3 TB - intern - 3.5" - 5400 rpm - SATA-600 - 64 MB cache (note: the

drive is SATA-600 but the motherboard has SATA-300)

5.3 NetCDF connector

Unidata has released programming libraries with different language interfaces such as C, Fortran,

Java, Python and MATLAB to access NetCDF files. Starting from the standard NetCDF library

version 4.0, it is possible to read and write files in NetCDF-4 format. In order to optimize specific

data flow for NetCDF classic files, earlier versions of HydroNET adopt HydroNetCDF library

developed themselves. In HydroNET-4, the NetCDF connector still uses functions provided by

HydroNetCDF to access NetCDF classic files. However, HydroNetCDF only supports classic and

32

64-bit offset format. To manage data stored in NetCDF-4 format, the connector applies SDS

(Scientific DataSet) 1.3 library released by Microsoft Research after comparing available options.

SDS’s NetCDF access module is constructed on the standard library NetCDF-4.1.3.

For the NetCDF connector, it implements the reader and writer class for the three formats. The data

structures designed and used by HydroNET objects can only be several types such like Grid and

TimeSeries (Appendix C) since the data access API only recognizes them. Basically, when a query

(Figure 5.3) reaches the reader, through processing the query with functions from NetCDF connector,

a HydroNET object is retrieved as the result. Functions are developed with SDS and C# standard

library, and are mostly constructed by iterations and assignment statements. After it, the object is

stored in a JSON ASCII file to accomplish the query process. The NetCDF writer writes HydroNET

objects read from other formats such as GRIB2 into NetCDF files. For NetCDF-4 format, the writer

also incorporates chunk size and compression parameters to implement chunked storage approach.

Figure 5.3. A sample API JSON request to calculate the average MPE rainfall rate in one hour in a

specific area

Considering queries listed for benchmarking, apparently query class A, i.e. sub-selection (Table 3.2)

can be directly processed by the reader. While for other queries, they are handled in the Processor

(Figure 5.1). The final results are also written into JSON files. Principle of functions for querying is

the same as those in SciDB connector, which is explained in the following section.

5.4 SciDB connector

SciDB, like many databases, provides a native query and management tool in Linux, iquery, with

which it is possible to use AQL and AFL to manipulate data stored. SciDB also has interfaces for

C++, Python and R. However, none of the above approaches is implementable on .Net platform.

Through discussing with developers of SciDB

33

(http://www.scidb.org/forum/viewtopic.php?f=13&t=1337), there are two options to realize the

SciDB connector:

1. Protocol Buffers: RPC (Remote Procedure Call) (https://developers.google.com/protocol-

buffers/docs/proto#services). It is a tool from Google for serializing structured data for use in

communications protocols, data storage and so on. Basically, it defines data structures for

transferring in a .proto file and through protocol buffer compiler, classes to access data stored

with the defined data structure in many languages including C# can be generated automatically.

2. Shim (https://github.com/Paradigm4/shim) “Shim is a super-basic SciDB client that exposes

limited SciDB functionality through a simple HTTP API.” Through parsing HTTP request

encapsulating queries expressed in AQL and AFL, Shim then communicates with SciDB to

access arrays. This approach is adopted for SciDB-py (https://github.com/Paradigm4/SciDB-

py), i.e. python implementation of SciDB API. Continuous versions of Shim have been

published online by SciDB team, so its stability can be guaranteed. Besides executing SciDB

queries, Shim provides several other useful functionalities (Table 5.1).

Function name Aim

execute_query Execute a query expressed in AFL in SciDB

cancel_query Cancel a query process in SciDB

upload Upload a file or a binary string to the server using POST method

loadcsv Load an uploaded CSV file into SciDB

read_bytes Read a query result as byte array

read_lines Read a query result as ASCII lines

stop_scidb Stop a SciDB database

start_scidb Start a SciDB database

measurement Post telemetry data such as free memory of SciDB passively

getlog Retrieve the running log of SciDB

 Table 5.1. Functions provided by Shim

In theory, Protocol Buffer is more efficient because it can be directly constructed on web socket.

But the implementation of Protocol Buffers in C# still needs intensive programming work.

Transplanting SciDB-py to C# platform is considered, but counterparts of many libraries used by

Python have to been found for C#, which is yet another time consuming work. Shim approach adds

additional layers on sockets to realize the generic HTTP service. However the overhead introduced

into HTTP request layer is acceptable, especially the HTTP service is built on localhost (Figure 5.1).

Besides, Shim offers essential functions which facilitate the realization of SciDB connector. So Shim

approach is adopted. Analogous to NetCDF connector, two classes, i.e. writer and reader are

implemented in the SciDB connector.

5.4.1 Writer

The writer is to load HydroNET objects into SciDB. In this research, since MPE and GEFS datasets

are initially stored in NetCDF files on Windows, the data is first read into memory object using

NetCDF connector and then used as the input to start the loading process on Linux SciDB server.

Totally four procedures are involved in the writer,

1. Creating arrays needed for storage of the data in SciDB.

2. Uploading data stored in byte array to SciDB server.

http://www.scidb.org/forum/viewtopic.php?f=13&t=1337
https://developers.google.com/protocol-buffers/docs/proto#services
https://developers.google.com/protocol-buffers/docs/proto#services
https://github.com/Paradigm4/shim

34

3. Loading uploaded data into one-dimensional load array in SciDB.

4. Redimensioning one-dimensional load array to final multidimensional array.

Creating arrays

The NetCDF header is not critical for benchmarking, so it is not loaded into a SciDB array. While

the data part of NetCDF should be completely imported into SciDB arrays. Arrays for storing MPE

and GEFS dataset should be set up before populating data later (Table 5.2 and 5.3).

Array name Schema

MPE_X <X:double> [X_id=0:3999, 4000,0]

MPE_Y <Y:double> [Y_id=0:3999, 4000,0]

MPE_Time <Time:int64> [T_idx=0:*,1,0]

MPE_Availability <Availability:int8> [T_idx=0:*,1,0]

MPE_Quality <Status:int8> [T_idx=0:*,1,0]

MPEinSciDB
<IRRATE:float>

[Time=0:*,1,0,Y_idx=0:3999,4000,0,X_idx=0:3999,4000,0]

Table 5.2. Arrays created for the storage of MPE dataset

Array name Schema

GEFS_X <X:double> [X_idx=0:*,360,0]

GEFS_Y <Y:double> [Y_idx=0:*,181,0]

GEFS_Modelrun <Modelrun: int64> [M_idx=0:*,1,0]

GEFS_Ensemble <Ensemble:string> [E_idx=0:19,20,0]

GEFS_Forecast <Time:int64> [F_idx=0:39,40,0]

GEFS_Datastatus <Datastatus:int64> [E_idx=0:19,20,0,F_idx=0:39,40,0]

GEFSinSciDB

<TMP:float,TMAX:float,TMIN:float,RH:float,APCP:float,TCD

C:float,UGRD:float,VGRD:float>[M_idx=0:*,1,0,E_idx=0:19,1,

0,F_idx=0:39,1,0,Y_idx=0:180,181,0,X_idx=0:359,360,0]

Table 5.3. Arrays created for the storage of GEFS dataset

GEFSinSciDB array is taken as an example to interpret the schema. Items listed in angle brackets

are attribute names followed by their data types. “TMP” is the short name for temperature 2m above

ground (Table 3.3). And dimensions are listed in square brackets and there are 5 dimensions for

GEFSinSciDB. The first number of a dimension is the lower boundary of the dimension value while

second number is the upper boundary value. “*” means the dimension is unlimited. The third number

is the chunk size of the specific dimension while the last number is the overlap parameter (a unique

feature provided by SciDB to facilitate querying). In this research, overlap feature is not investigated,

so in all cases, its value is set to 0. For MPEinSciDB and GEFSinSciDB listed above, no

compression is used. Later when testing compressed version of MPEinSciDB array, the schema then

becomes,

<IRRATE:float COMPRESSION 'zlib'>

[Time=0:*,1,0,Y_idx=0:3999,4000,0,X_idx=0:3999,4000,0]

It should also be noted that schemes for MPEinSciDB and GEFSinSciDB listed here are not the

final implementation for benchmarking. Specific data storage is presented in section 6.1.

In MPE NetCDF files, although X, Y and Time are dimensions, they are stored as coordinate variable,

i.e. values of these dimensions are explicitly stored. On the other hand, dimensions in SciDB can

35

only allow int64 as the data type. As a result, specific dimension values should be stored in separate

arrays, which is the case for GEFS storage as well. This is not a suitable design for multidimensional

array database which is supposed to provide more advanced support for managing dimensions.

Diverse arrays storing dimension values are related to main arrays through indexes such as X_idx

and T_idx. This implementation indeed pushes SciDB into the framework of relational databases.

Tracing all the released versions of SciDB, before version 13.12, the feature of non-integer

dimension is still supported (http://www.scidb.org/forum/viewtopic.php?f=18&t=1172). Majorly

due to efficiency problems, the feature is removed from SciDB. It can be imagined that when many

non-integer dimensions are involved, management of relationships is going to be an impediment.

Other attributes like Availability and Status in MPE are not stored in MPEinSciDB array along with

IRRATE attribute as they are only based on the temporal dimension.

After creating essential arrays, MPEinSciDB_X, MPEinSciDB_Y, GEFSinSciDB_X,

GEFSinSciDB_Y, GEFSinSciDB_Ensemble, GEFSinSciDB_Forecast and

GEFSinSciDB_Datastatus are populated. This is because values for these arrays can be calculated

in SciDB according to the prior knowledge of the datasets and then filled in. This on the other hand,

can decrease data that need to be transferred to the SciDB server, which speeds up the whole data

writing process. Other arrays are populated later.

Uploading byte array

The second step of the loading is to upload data from Windows virtual machine to Linux virtual

machine. The upload module is realized through Shim’s upload function using POST method. First

the SciDB writer transforms the input HydroNET objects, i.e. grids read from NetCDF files into

CSV memory stream. For each grid of MPE, three attributes are exported into CSV stream and they

are X, Y and IRRATE (i.e. rainfall rate). When the grid of size 4000 x 4000 is exported into a CSV

file, the file size becomes 808 MB, which can cause huge overhead if transferred through network.

However, a unique character for MPE dataset is that approximately 98% of its values equal to 0, i.e.

no precipitation. Then a substitute solution is to only export non-zero values (Figure 5.4a) and use

them to overwrite the MPE array created with default value 0 at corresponding cells. By exporting

non-zero values of a grid, the file size is decreased to 15 MB, 54 times smaller than previous version.

For uploading, the CSV stream is written into byte array instead of files. This is because writing

stream to local files has additional I/O cost, i.e. exchange with disk. In the iteration, only one grid

of MPE is uploaded every time.

For GEFS, also three attributes, X, Y and value for a specific meteorological variable is exported

into the CSV stream (Figure 5.4b) and then uploaded in the byte array. Since information such as

temperature and humidity in GEFS is normally unequal to 0, and each grid only contains 65160

(360 x 181) cells, all the data are exported and sent.

At the server side, the byte array is received and stored as CSV file in Linux /tmp folder, which is

automatically done by Shim’s upload function.

http://www.scidb.org/forum/viewtopic.php?f=18&t=1172

36

a. MPE data with only non-zero values b. GEFS temperature data with all values

Figure 5.4. Fragments of MPE and GEFS upload file shown in ASCII

Loading CSV file into load array

Shim provides loadcsv function which calls the csv2scidb tool in SciDB’s installation to import the

CSV file received into one dimensional load array in SciDB. And the schema of load array (Table

5.4) is an essential parameter of loadcsv.

Name of load array Schema

MPE_Flat <X:double, Y:double, IRRATE:float>[row=0:*,1000000,0]

GEFS_Flat <X:double, Y:double, Variable: float>[row=0:*,10000,0]

Table 5.4. Schema of one dimensional load arrays of MPE and GEFS

After loadcsv, the uploaded gird of MPE or GEFS is stored in the corresponding load array in SciDB.

Redimensioning load array

When inserting a gird into MPE, first a two-dimensional template array with size 4000 x 4000 is

created and initiated with default value 0. Then the MPE_Flat with non-zero values in the grid is

inserted into this template array. After it, the updated template array, i.e. a 2D MPE slice array is

inserted into final MPE array. The normal way to perform an inversion is utilizing “redimension”

operator which can transform attributes to dimensions (Figure 5.5a). However through testing,

“redimension” is an expensive operation and the improvement found in the research is applying

“adddim” and “concat” operators (Figure 5.5b). The latter approach is around four times faster than

the previous one according to tests. But “concat” can only function when chunk size of temporal

dimension equals to one. Otherwise, “redimension” is the only possibility to import grids into the

three dimensional MPE array.

37

a. “Redimension” approach. The grid to insert is at the third time step. First add the time step value

(“apply” operator) to the 2D MPE slice array. Second, redimension the multi-attribute 2D array to

a partial 3D array which then only contain values from the 2D array. Last, insert the partial 3D

array to the final MPE array.

b. “Concat” approach. First with “adddim” operator, the 2D MPE slice array is extruded to a 3D

array. Second, build an empty 3D array with only 2 time steps. Third, “concat” the populated

Time

3

0

1

2

insert

adddim

concat

redimension

Time

0

1

2

3

0

1

insert

Time

apply

38

3D array above the empty array. Last, insert the concated array to MPE, and the empty cells

inserted will no overlay the original values stored.

Figure 5.5. Two approaches to insert the 2D MPE slice array containing a gird into MPE.

Since all the data including zeros are uploaded and imported into GEFS_Flat, the array can be

redimensioned directly into GEFS. Since one GEFS grid includes 65160 (i.e. 181 x 360) values, yet

the total amount of GEFS to load is 1.6 GB, i.e. one model run, the overload of “redimension” is

not significant. The issue for importing GEFS data is that its 8 attributes are stored in each grid

instead of only one attribute. This is because when reading grids from GEFS NetCDF files, every

time only one variable is exported. Then the grid of one variable is uploaded and loaded into

GEFS_Flat. And after exporting all grids of one variable, grids of second variable starts to be read.

With SciDB 14.3, it is impossible to insert data of one variable into GEFS when there are other

variables already stored. The solution adopted is to first import grids of all variables into individual

5D GEFS arrays with only one attribute each. For example, the individual array of variable TMP,

i.e. temperature 2m above ground has the following schema,

<TMP:float>[M_idx=0:*,1,0,E_idx=0:19,1,0,F_idx=0:39,1,0,Y_idx=0:180,181,0,X_idx=0:359,36

0,0]

After all individual arrays are populated, “join” is adopted to combine all these arrays and insert the

combined one into GEFS. All individual arrays are deleted in the end.

5.4.2 Reader

The reader is used to send queries to SciDB to execute and then returns the results. Although

dimension values for X, Y and Time are explicitly stored, they are not referenced when executing

queries. The transformation of the real longitude, latitude and time to corresponding index values

of the MPE and GEFS arrays is hardcoded in the C# classes. This makes query processing procedure

consistent with NetCDF library which also calculates dimension index values rather than extracting

them.

Function Aim

Spatiotemporal

selection of MPE
Select subset either in spatial or temporal dimension from MPE dataset.

Spatiotemporal

selection of GEFS

For GEFS, the temporal dimension refers to the forecast index, i.e. time

step in the forecast series. This function selects spatiotemporal subset of

GEFS for specified ensembles in one model run.

Pyramid calculation

of MPE

Build pyramid, i.e. coarse grid from original MPE data at a certain

pyramid level on the fly.

Spatiotemporal

aggregation of MPE

Do a certain type of aggregation on the temporal dimension on a sub array

from the whole MPE array.

Percentile

calculation of GEFS

Calculate percentiles from all ensembles of one variable for a sub grid in

a certain period for the GEFS forecast data.

Ensemble

aggregation of

GEFS

Perform a certain kind of aggregation on all ensembles belonging to one

variable in a sub grid of the GEFS forecast dataset at multiple time steps.

If the aggregation type is mean, then the result is the ensemble mean for

the sub grid. If ensemble spread is need, then the standard deviation is

going to be computed.

Table 5.5. List of all functionalities in the reader

39

Table 5.5 presents all functions included in the reader. All functionalities make use of certain

operators of SciDB encapsulated in HTTP requests. Through Shim’s execute_query and read_bytes

functions on the SciDB server side, queries are executed and results in binary array are then returned.

Below, the working principle of each of these functions are described.

1. Spatiotemporal selection of MPE

HTTP request:

http://URL/execute_query?id=#&query=project(between(MPE,

T_idxlower, Y_idxlower, X_idxlower, T_idxupper, Y_idxupper,

X_idxupper), IRRATE)&save=(float)

The “between” operator in SciDB takes the lower and upper boundary of each dimension of an array

as parameters and return the corresponding sub array. “Project” is for selecting specific attributes

and this is done for generic use. For other three dimensional datasets with multiple variables,

“project” may be needed. The “save” command in the end is to save query result into a temporary

binary file on the disk, which is retrieved by Shim later.

In addition to “between”, “subarray” and “filter” operator in SciDB can also be choices for the same

job. But they have different performance. And according to initial tests, in most cases, “between”

and “subarray” are much faster than “filter”. This is caused by underlying algorithms, “between” is

an operator based on chunks. That is to say, “between” first judge whether the chunks located in the

between box and then goes into cells in the chunk. Another operator “subarray” implements the

same procedure as “between” while it provides another ability to build a map of all chunks that are

present, which is preferred when the input array is very sparse and the subarray box contains millions

of possible chunks. “Filter” on the other hand is a more generic operator, it simply checks every cell

to judge if it can satisfy the requirement. However, when selection based on attribute is involved,

then filter is the choice, and this capability is unavailable for “between” and “subarray”.

2. Spatiotemporal selection of GEFS

HTTP request:

http://URL/execute_query?id=#&query=project(between(GEFS, M_idx,

E_idxlower, F_idxlower, Y_idxlower, X_idxlower, M_idx,

E_idxupper, F_idxupper, Y_idxupper, X_idxupper), attributeName)&

save=(float)

For GEFS, it has additional model run and ensemble dimension. The model run is set to one value,

i.e. the latest model run while there are 20 different ensembles. In a request, it is possible to indicate

ensembles in which range need to be returned. Besides, GEFS contains several attributes such as

temperature and precipitation. There is an iteration for attributes and users can define interest

attributes in the request as well. In regard to benchmark test later, APCP, i.e. total precipitation is

selected, so do other GEFS queries.

http://url/execute_query?id=#&query=project(between(
http://url/execute_query?id=#&query=project(between(

40

3. Pyramid query of MPE

HTTP request:

http://URL/execute_query?id=#&query=regrid(project(between(MPE,

T_idxlower, Y_idxlower, X_idxlower, T_idxupper, Y_idxupper,

X_idxupper), IRRATE), 1, pyramidFactor, pyramidFactor,

aggregationType(IRRATE))&save=(float)

The input of the pyramid function is a 3D sub array while the output is also a 3D array sharing the

same dimension span as the input. Since the aggregation is done on spatial dimension, so the output

has coarser resolution on spatial dimensions than the input. When executing pyramid query on MPE,

it is unnecessary to pre-build pyramid which can be generated on the fly. The “regrid” operator in

SciDB functions for aggregation like average on top of a multidimensional block with defined sub

block size (Figure 5.6).

Figure 5.6. Regrid a 3 x 3 block with 2 x 2 as sub block size. If the aggregation type is average, then

for pyramid built, the upper left value is 1.25, upper right value is 0, lower left is 3 and lower right

value is 1. The target of “regrid” can be an array with more than 2 dimensions and more

aggregation types such as maximum and minimum are available (SciDB, 2014).

The sub block size is composed by pyramid factors, so if 4 is assigned as the pyramid factor in each

dimension for instance, then for a two dimensional grid, the resultant grid has 1/16 the number of

cells in original grid. After “regrid” operation, the coarse blocks calculated are returned as the result.

In the HTTP request, pyramid factor on temporal dimension is set to 1 while for spatial dimensions,

factors are dynamic. The function is specifically for MPE array. There is no need to build pyramid

for GEFS since its spatial span 360 x 181 is small, which is also the reason why pyramid is not listed

in query list for GEFS.

4. Spatiotemporal aggregation of MPE

HTTP request:

http://URL/execute_query?id=#&query=aggregate(project(between(MPE

, T_idxlower,

 Y_idxlower, X_idxlower, T_idxupper, Y_idxupper, X_idxupper),

IRRATE),

 aggregationType(IRRATE), Y_idx, X_idx)&save=(float)

http://url/execute_query?id=#&query=regrid(project(between(

41

The input for MPE aggregation is a 3D sub array and the output is a 2D array sharing the same

spatial extent as the input. So basically aggregation is performed on time series at all locations in

the spatial extent. With “between” and “project” operator, a sub array can be selected with assigned

span of X, Y and Time dimension. Then “aggregate” operator is used to perform average, maximum

or minimum calculation on such a sub array on the temporal dimension. The “aggregate” operator

is a compact version of “regrid” operator because “regrid” can support aggregation with specified

length on each dimension while “aggregate” can only aggregate the whole span of certain

dimensions. However, two operators share the same functional core by checking source code.

5. Percentile calculation of GEFS

HTTP request:

R = Percentage / 100 x SeriesLength

http://URL/execute_query?id=#&query=(select avg(attributeName) as

attributeName_lower from (select B.attributeName,

B.attributeName_rank as lower, A.attributeName_rank*2 -

B.attributeName_rank as upper from avg_rank(between(GEFS, M_idx,

0, F_idxlower, Y_idxlower, X_idxlower, M_idx, ensembleCount-1,

F_idxupper, Y_idxupper, X_idxupper), attributeName, F_idx) as A,

rank(between(GEFS, M_idx, 0, F_idxlower, Y_idxlower, X_idxlower,

M_idx, ensembleCount-1, F_idxupper, Y_idxupper, X_idxupper),

attributeName, F_idx) as B) as C where lower<=R and upper>=R

group by F_idx) &save=(float)

A specific spatiotemporal cell in GEFS dataset has 20 values corresponding to diverse ensembles.

The percentile query is to assign a specific percentile value calculated from 20 ensembles to a cell.

The input of the query is a 4D sub array (1 modelrun) and the output is a 3D sub array with

unchanged spatiotemporal range as input.There are many ways to calculate percentile from a series

of numbers. The method adopted by SciDB connector is from the second definition of percentile

used by Lane (2013) which is implemented for percentile calculation in HydroNET-4 as well. Using

the 75th percentile (i.e. the percentage is 75) as an example, the 75th percentile is the smallest value

that is greater than or equal to 75% of all values in the series.

The central part of the calculation in the HTTP request lies in the ranking of values. “rank” operator

in SciDB calculates the lower bound ranking of a specific value while “avg_rank” calculates average

rank as the average of the upper bound and lower bound rankings. Suppose a series contains 1, 7, 7,

7 and 8 and the ranking is listed in Table 5.6.

Value 1 7 7 8 7

Ranking by “rank” 1 2 2 5 2

Ranking by “avg_rank” 1 3 3 5 3

Connector lower bound ranking 1 2 2 5 2

Connector upper bound ranking 1 4 4 5 4

Table 5.6. Rankings calculated by “rank” and “avg_rank” operator and SciDB connector on a

sample series

42

To retrieve the 80th percentile from the sample series, the 4th smallest value has to be found. SciDB

connector uses two operators to derive the lower and upper bound ranking of a specific value to

finally determine that 7 is the 4th smallest value.

6. Ensemble aggregation of GEFS

HTTP request:

http://URL/execute_query?id=#&query=aggregate(project(between(GEF

S, M_idx, 0, F_idxlower, Y_idxlower, X_idxlower, M_idx,

ensembleCount-1, F_idxupper, Y_idxupper, X_idxupper),

attributeName), aggregationType(attributeName), F_idx, Y_idx,

X_idx)&save=(float)

In this query, first a 4D sub array with smaller X and Y span, one forecast step and all ensembles is

extracted (As is mentioned before, the model run dimension only has one value). After it, “aggregate”

operator is used to aggregate all ensemble values for the sub grid. The output is thus a 3D

spatiotemporal sub array.

Results returned by above functions are read and transferred as binary arrays with read_bytes

function of Shim, then they are stored in the HydroNET in-memory objects on Windows virtual

machine. In the end, the data access API exports objects to JSON files.

http://url/execute_query?id=#&query=aggregate(project(between(

43

6 Benchmark test and analysis

In fact, what are benchmarked are two databases. Basically, a database is considered to consist of

two essential parts, one is data stored on disks while the other is the management layer, i.e.

functionalities to manage data. For NetCDF, its management layer is NetCDF connector which is

embedded in HydroNET-4. SciDB is a database originally, and Shim is the interface to communicate

with SciDB which utilizes its own binary format to store data. In this research an enhanced control

layer, i.e. SciDB connector is also included in HydroNET-4. That is to say, HydroNET-4 is the

interface for both storage systems, which assures fair measurements for querying despite that query

is processed in different places (Figure 5.1). In the following parts, details of data storage in NetCDF

and SciDB are described. Then final testing results and analysis are presented.

6.1 Data storage

6.1.1 Files in 64-bit offset format

Although in the introduction chapter, it is mentioned that NetCDF files in classic format are expected

to be benchmarked, in practice, 64-bit offset format is tested. For one thing, MPE and GEFS datasets

are stored in 64-bit offset format originally and conversion can take much time. For another, what

is actually the research interest is the contiguous storage structure of NetCDF and 64-bit offset

format indeed applies this structure.

For MPE dataset, each NetCDF file contains four time steps constituting one hour, so totally 4000

x 4000 x 4 cells are included in a file. A folder contains 1722 such NetCDF files and files start

recording from 23: 45 on 31st August, 2013. So if query is concerned with four time steps starting

at 23: 45 on 31st August, only one NetCDF file would be read. But if data in the first hour of

September were retrieved, then 2 NetCDF files would be opened. Apparently, such divergence of

query response will be weakened when the time series extracted composes fairly large number of

time steps.

As is indicated in Table 3.3, each GEFS file only contains one model run, 20 ensembles, 40 forecast

steps, so totally 800 grids of size 360 x 181 are stored in a single file. As to benchmark test, only

one file is stored in the folder and is used for query. This is because, for forecast dataset, it is always

the latest forecast data that are intensively concerned. The model run time of the test sample file is

6:00 15-05-2014 and it includes the forecast for the following 10 days every 6 hours. The file size

is 1.55 GB.

6.1.2 Files in NetCDF-4 format

With NetCDF connector, all NetCDF files in 64-bit offset are converted into NetCDF-4 format with

44

same data types and metadata. NetCDF-4 format provides more possibilities for storing data

considering chunk size and compression setting. Lee, et al. (2008) showed the crucial impact of

employing diverse chunk sizes and compression settings on file reading and writing rate. However,

the reading in that investigation refers to reading the whole file at once and selectivity is not taken

into account.

In this research, no advanced features from NetCDF-4 data model such as group are involved. In

addition, the duration of this study cannot allow more chunk size experiments which is a trivial work.

On the other hand, effect of chunk size has been investigated by Lee, et al. (2008). They provide a

general recommendation that making chunk size exactly match the variable size can be an excellent

choice for NetCDF-4 file management. The recommendation is adopted (Table 6.1). Compression

of NetCDF-4 utilizes DEFLATE algorithm, a variation of LZ77 method (Ziv & Lempel, 1977).

Data store name Chunk size (X x Y x Time) Single file size

NetCDF4_ MPE_C2 4000 x 4000 x 1 250 MB

NetCDF4_ MPE_C2_C (compression) 4000 x 4000 x 1 3 MB

Table 6.1. Storage information for MPE NetCDF files in NetCDF-4 format

For each data store, a single file includes four time steps and the start time of each whole store is 0:

00 on 1st September, 2013, i.e. 15 minutes later than NetCDF files in 64-bit offset format. The whole

dataset covers data collected for the entire September of 2013 and 2 folders are established to hold

the two data stores. So every folder has 720 files in NetCDF-4 format. It should be mentioned that

with SDS library, NetCDF-4 files are created with all dimensions set to unlimited. This

implementation actually does not have influence on query since chunked storage structure

implements identical chunk storage with unlimited and limited dimension setting.

The GEFS forecast data produced by the model on 6:00, 15th May, 2014 is stored into 4 NetCDF-4

files including 2 chunk sizes and 2 compression settings. Table 6.2 lists specific parameters for these

files. Chunk size 360 x 181 x 1 x 20 x 1 is selected to keep consistency with SciDB GEFS arrays

created for benchmarking. In the S5 scheme, one chunk only contains a grid, which is a decision

comes from recommendations of earlier researches as well.

Data store name
Chunk size (X x Y x Forecast x

Ensemble x Modelrun)
Single file size

NetCDF4_GEFS_S3 360 x 181 x 1 x 20 x 1 1.55 GB

NetCDF4_GEFS_S3_C (compression) 360 x 181 x 1 x 20 x 1 654 MB

NetCDF4_GEFS_S5 360 x 181 x 1 x 1 x 1 1.55 GB

NetCDF4_GEFS_S5_C (compression) 360 x 181 x 1 x 1 x 1 561 MB

Table 6.2. Storage information for GEFS NetCDF files in NetCDF-4 format

6.1.3 SciDB arrays

Scalability coping with increasing data is a crucial factor for evaluating data management and query

systems, especially databases. Scalability of SciDB is tested with MPE data due to its large size of

uncompressed storage. 5 storage levels (Table 6.3) are established. For the first three levels, i.e. tiny,

small and medium, each contains 12 arrays (Table 6.4 ~ 6.6) recording the identical data but with

diverse chunk size and compression settings. The array here refers to the key array MPE which is

45

used for query. For last two array levels (Table 6.7 ~ 6.8), due to the large size, it is inapplicable to

load the identical data into 12 array versions, which takes lots of time. So only two array versions

with compression and non-compression but the same chunk size are stored at each level.

Array level MPE rainfall rate data stored
Time step

count

Original size of files in

64-bit offset format

Tiny First 2 hours of 1st September, 2013 8 488 MB

Small First 6 hours of 1st September, 2013 24 1.3 GB

Medium 1st September, 2013 96 5.7 GB

Large 7 days from 1st to 7th September, 2013 672 40 GB

Very large 30 days of September, 2013 2880 171.6GB

Table 6.3. Five levels of MPE array in SciDB

In the following parts, storage details for arrays at different levels are presented.

MPE tiny arrays

Array name
Chunk size

(Time x Y x X)

Chunk

count

Average chunk

storage size

Total storage

size

SciDB_MPE_C1_tiny 4 x 4000 x 4000 2 20M 40.1M

SciDB_MPE_C1_C_tiny

(compression)
4 x 4000 x 4000 2 5.5M 11.1M

SciDB_MPE_C2_tiny 1 x 4000 x 4000 8 5M 40.1M

SciDB_MPE_C2_C_tiny

(compression)
1 x 4000 x 4000 8 1.4M 11.1M

SciDB_MPE_C3_tiny 4 x 800 x 800 50 0.8M 40.2M

SciDB_MPE_C3_C

_tiny (compression)
4 x 800 x 800 50 0.2M 11.2M

SciDB_MPE_C4_tiny 1 x 800 x 800 200 0.2M 40.2M

SciDB_MPE_C4_C_tiny

(compression)
1 x 800 x 800 200 56.6K 11.3M

SciDB_MPE_C5_tiny 4 x 100 x 100 3200 13K 41.6M

SciDB_MPE_C5_C_tiny

(compression)
4 x 100 x 100 3200 3.7K 11.8M

SciDB_MPE_C6_tiny 1 x 100 x 100 12800 3.3K 42.3M

SciDB_MPE_C6_C_tiny

(compression)
1 x 100 x 100 12800 1K 12.8M

Table 6.4. Storage information for MPE arrays with different chunk size and compression settings

at the tiny level

MPE small arrays

Array name
Chunk size (Time x

Y x X)

Chunk

count

Average

chunk

storage size

Total storage

size

SciDB_MPE_C1_small 4 x 4000 x 4000 6 19.3M 115.9M

SciDB_MPE_C1_C_small

(compression)
4 x 4000 x 4000 6 5.3M 32.1M

SciDB_MPE_C2_small 1 x 4000 x 4000 24 4.8M 115.9M

SciDB_MPE_C2_C_small

(compression)
1 x 4000 x 4000 24 1.3M 32.1M

SciDB_MPE_C3_small 4 x 800 x 800 150 0.8M 116.3M

SciDB_MPE_C3_C

_small (compression)
4 x 800 x 800 150 0.22M 32.4M

SciDB_MPE_C4_small 1 x 800 x 800 600 0.2M 116.4M

SciDB_MPE_C4_C_small 1 x 800 x 800 600 55K 32.8M

46

(compression)

SciDB_MPE_C5_small 4 x 100 x 100 9600 13K 120.2M

SciDB_MPE_C5_C_small

(compression)
4 x 100 x 100 9600 3.6K 34.2M

SciDB_MPE_C6_small 1 x 100 x 100 38400 3.2K 122.2M

SciDB_MPE_C6_C_small

(compression)
1 x 100 x 100 38400 1K 37.1M

Table 6.5. Storage information for MPE arrays with different chunk size and compression settings

at the small level

MPE medium arrays

Array name
Chunk size

(Time x Y x X)

Chunk

count

Average

chunk

storage size

Total storage

size

SciDB_MPE_C1_medium 4 x 4000 x 4000 24 20.4M 489M

SciDB_MPE_C1_C_medium

(compression)
4 x 4000 x 4000 24 5.7M 136M

SciDB_MPE_C2_medium 1 x 4000 x 4000 96 5.1M 489M

SciDB_MPE_C2_C_medium

(compression)
1 x 4000 x 4000 96 1.4M 136.2M

SciDB_MPE_C3_medium 4 x 800 x 800 600 0.82M 490.8M

SciDB_MPE_C3_C

_medium (compression)
4 x 800 x 800 600 0.23M 137.1M

SciDB_MPE_C4_medium 1 x 800 x 800 2400 0.2M 491M

SciDB_MPE_C4_C_medium

(compression)
1 x 800 x 800 2400 58K 139M

SciDB_MPE_C5_medium 4 x 100 x 100 38400 13.2K 506.6M

SciDB_MPE_C5_C_medium

(compression)
4 x 100 x 100 38400 3.8K 145.2M

SciDB_MPE_C6_medium 1 x 100 x 100 153600 3.4K 514.7M

SciDB_MPE_C6_C_medium

(compression)
1 x 100 x 100 153600 1K 157.3M

Table 6.6. Storage information for MPE arrays with different chunk size and compression settings

at the medium level

MPE large arrays

Array name
Chunk size

(Time x Y x X)

Chunk

count

Average

chunk storage

size

Total storage

size

SciDB_MPE_C4_large 1 x 800 x 800 16800 0.18M 2.98G

SciDB_MPE_C4_C_large

(compression)
1 x 800 x 800 16800 51K 864M

Table 6.7. Storage information for MPE arrays with different compression setting at the large level

MPE very large arrays

Array name
Chunk size

(Time x Y x X)

Chunk

count

Average

physical

chunk size

Total storage

size

SciDB_MPE_C4_vlarge 1 x 800 x 800 72000 0.2M 13.7G

SciDB_MPE_C4_C_vlarge

(compression)
1 x 800 x 800 72000 58K 3.88G

Table 6.8. Storage information for MPE arrays with different compression setting at very large level

47

Analogous to MPE data stored in NetCDF-4 format, the starting time step of MPE dataset in SciDB

is 0: 00 01-09-2013, i.e. 15 minutes later than 64-bit offset files. Compared with MPE data stored

in 64-bit offset format, array storage size can be 10 times smaller from information listed in Table

6.4~6.8. This is thanks to SciDB’s automatic run length encoding (RLE) for all data stored. In fact,

SciDB’s indexing strategy is based on RLE. If DEFLATE compression is executed on RLE encoded

data, the storage size of an array experiences another decline with a factor of 4. When the array is

populated with data, SciDB creates fixed-size metadata such as starting physical address for each

chunk constituting an array. So arrays with small chunks utilize more space for metadata. Besides,

due to RLE and 98% values of MPE equal to 0, splitting large chunk into many small chunks

increases the storage size of chunks excluding metadata as well. For example, suppose a chunk of

size 1000 x 1000 containing all 0 values has storage size of 1 KB (excluding per-chunk metadata).

If it is split into 100 chunks with size 100 x 100, then each chunk will occupy more than 1 KB/100,

i.e. 0.01 KB. So per-chunk metadata together with RLE are the reasons why Table 6.4 ~ 6.6 show

with the decrease of chunk size, total storage of array grows.

MPE data are actually rasters organized along the temporal dimension and every 15 minutes, a raster

is generated. Setting the chunk size of temporal dimension equal to 1 keeps consistent with data

generating process. Additionally, although chunks are not implemented for 64-bit offset format yet

the chunk size of temporal dimension of NetCDF-4 files equals to 1, every NetCDF file indeed

elaborates 4 time steps. Consequently, at tiny, small and medium level, some arrays employ 4 as

the chunk size in temporal dimension in order to keep the similarity of storage between SciDB and

NetCDF at a certain level. It should be noted that, the order of dimensions used to structure data

inside chunks of SciDB differs from that of NetCDF-4 files. This is caused by different

specifications of storage scheme used by SciDB and NetCDF. Since chunks created for storing MPE

data have 2D or nearly 2D shape, i.e. temporal dimension equal to 1 or 4, it is considered the

dimensions order does not make too much difference.

1 x 800 x 800 is settled as the chunk size for MPE array at large and very large level, which becomes

the decision after initial testing of SciDB. Basically, as will be shown in section 6.2.1, the

performance of time series extraction degrades a lot if large chunk size such as 4 x 4000 x 4000 or

1 x 4000 x 4000 is adopted above tiny level. On the other hand, small chunks present the best

scalability with time series extraction, however they can cause huge overload in memory. As a

matter of fact, the first time to load MPE data at very large scale, 1 x 100 x 100 is put into practice.

After loading 756 time steps, the memory usage of SciDB after restarting increases 1.3 GB. This is

due to the fact that SciDB loads in-memory metadata of every array after starting up. Such metadata

are tuples as <InstanceID, ArrayID, ChunkID, VersionID> used to locate chunks from the data file

on the disk and large amount of chunks can make the metadata in memory bloat. So chunk size 1 x

800 x 800 is actually a compromise.

The unique point of GEFS dataset is its high dimensionality. It is the fact that the order of dimensions

to organize data determines how data are stored on the disk. Figure 6.1 presents storage of a sample

dataset with 1 modelrun, 2 ensembles, 2 forecast steps, 2 Y and X values. The modification of the

order of dimensions to structure data totally changes data storage on the disk, which might have

48

significant influence on query performance.

a. Data storage with dimension order Modelrun (M), Ensemble (E), Forecast (F), Y, X

b. Data storage with dimension order M F Y X E

c. Data storage with dimension order X Y F E M

49

d. Data storage with dimension order E X Y F M

Figure 6.1. The storage of a sample dataset conforming to 4 GEFS schemas.

In SciDB, several schemes (Table 6.9) are implemented to store GEFS dataset for benchmarking.

In Table 6.9, S1, S2, S3 and S4 represent 4 data schemes, i.e. structures for GEFS storage caused by

modifying the order of dimensions. S1, S2, S3 and S4 conform to the storage structures shown in

Figure 6.1a, b, c and d respectively. The chunk sizes of these 4 arrays keep at the same modest level,

i.e. 1 value in the model run and forecast dimension, 20 values in the ensemble dimension, 181

values in the Y dimension and 360 values in the X dimension. To fully investigate whether data

organization inside the chunk has an influence on query performance, GEFS dataset is additionally

stored into one chunk but with 4 different dimension orders, i.e. C1, C2, C3 and C4. The

compression again refers to DEFLATE method. All arrays store the same 8 attributes (Table 5.3).

Although model run dimension ranges from 0 to 675, the array only contains the 675th model run

step.

50

Array name Dimension part in the schema Chunk size
Chunk

count

Average

chunk

storage size

Total

storage

size

SciDB_GEFS_S1
[M_idx=0:675,1,0,E_idx=0:19,20,0,F_idx=0:39,1,0,Y_idx=0:180,

181,0,X_idx=0:359,360,0]
1 x 20 x 1 x 181 x 360 40 6.7 MB 268 MB

SciDB_GEFS_S1_C

(Compression)

[M_idx=0:675,1,0,E_idx=0:19,20,0,F_idx=0:39,1,0,Y_idx=0:180,

181,0,X_idx=0:359,360,0]
1 x 20 x 1 x 181 x 360 40 2.16 MB 86.4 MB

SciDB_GEFS_S2
[M_idx=0:675,1,0,F_idx=0:39,1,0,Y_idx=0:180,181,0,X_idx=0:359,

360,0,E_idx=0:19,20,0]
1 x 1 x 181 x 360 x 20 40 6.2 MB 247 MB

SciDB_GEFS_S2_C

(Compression)

[M_idx=0:675,1,0,F_idx=0:39,1,0,Y_idx=0:180,181,0,X_idx=0:359,

360,0,E_idx=0:19,20,0]
1 x 1 x 181 x 360 x 20 40 2 MB 79 MB

SciDB_GEFS_S3
[X_idx=0:359,360,0,Y_idx=0:180,181,0,F_idx=0:39,1,0,E_idx=0:19,

20,0,M_idx=0:675,1,0]
360 x 181 x 1 x 20 x 1 40 6.2 MB 246.5 MB

SciDB_GEFS_S4
[E_idx=0:19,20,0,X_idx=0:359,360,0,Y_idx=0:180,181,0,F_idx=

0:39,40,0,M_idx=0:675,1,0]
20 x 360 x 181 x 1 x 1 40 5.8 MB 232.4 MB

SciDB_GEFS_C1
[M_idx=0:675,1,0,E_idx=0:19,20,0,F_idx=0:39,40,0,Y_idx=0:180,

181,0,X_idx=0:359,360,0]
1 x 20 x 40 x 181 x 360 1 268 MB 268 MB

SciDB_GEFS_C2
[M_idx=0:675,1,0,F_idx=0:39,40,0,Y_idx=0:180,181,0,X_idx=0:359

,360,0,E_idx=0:19,20,0]
1 x 40 x 181 x 360 x 20 1 246.7 MB 246.7 MB

SciDB_GEFS_C3
[X_idx=0:359,360,0,Y_idx=0:180,181,0,F_idx=0:39,40,0,E_idx=

0:19,20,0,M_idx=0:675,1,0]
360 x 181 x 40 x 20 x 1 1 246.5 MB 246.5 MB

SciDB_GEFS_C4
[E_idx=0:19,20,0,X_idx=0:359,360,0,Y_idx=0:180,181,0,F_idx=

0:39,40,0,M_idx=0:675,1,0]
20 x 360 x 181 x 40 x 1 1 250 MB 250 MB

Table 6.9. Storage information for GEFS arrays with different data scheme and compression settings.

51

6.2 Query benchmarking

To start benchmarking, the configuration file of SciDB 14.3 has to be edited. This includes the

setting of some crucial parameters such as maximum amount of memory that can be occupied by

SciDB and the SciDB instance number. The SciDB instance refers to an independent SciDB group

of processes. For benchmarking, 3 GB is set as the maximum memory usage while only one instance

is set up. Appendix C provides the whole configuration file.

For every query executed, its specific record is profiled into the log generated by HydroNET-4. The

time spent on executing the corresponding function such like spatiotemporal selection of MPE in

SciDB connector can then be extracted from the log. For a specific data store, i.e. NetCDF files or

SciDB array, a query is executed 20 times discontinuously. Suppose there are 4 data stores, D1, D2

D3 and D4, to execute the query Q 20 times is to perform the program below,

For (int i = 0; i < 20; i++)

 {

 Query(D1);

 Query(D2);

 Query(D3);

 Query(D4);

 }

There is no disruption such as reboot system in between. The final result of a query response time

is the average of the middle 12 records with largest 4 and smallest 4 records removed for each data

store. It should be noted that the query response time of SciDB arrays also includes HTTP

communication between two virtual machines and query parsing in the Shim. To measure them, an

empty array is created in SciDB, and a testing function is developed in SciDB connector which

sends the request,

http://URL/execute_query?id=#&query=consume(emptyArray)

The query is to scan all data stored in the empty array. By executing the empty query 20 times, the

distribution of response time is depicted in a Whisker chart (Table 6.3).

Figure 6.2. Distribution of the empty query response time for SciDB. Horizontal line breaks are

maximum, 75th percentile, median, 25th percentile and minimum.

Figure 6.2 indicates that most empty query time (Qe) measurements are between 0.05 s to 0.2 s.

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

Empty array

Q
u
er

y
 r

es
p

o
n
se

 t
im

e
(s

)

http://url/execute_query?id=#&query=consume(

52

Compared with a normal query like selecting a sub grid at a certain time step from MPE array, the

empty query takes much less processing time in SciDB. It also has no cost on storing query result

on binary file disk, reading the binary file and sending query result to Windows virtual machine. So

by subtracting Qe from a normal query response time, the database processing time, writing and

reading time from disk, result transferring time through HTTP can be acquired. The largest query

result is from aggregation function of MPE dataset at the Netherlands scale and totally 11868 float

values are returned. Since Shim stores it as float array in the binary file, the file size is thus about

46 KB. The typical hard drive transferring speed is 147 MB/s. So the total reading and writing time

cost is below 0.001 s. Besides, it is tested that with current benchmark architecture, HTTP

communication between two virtual machines does not go into external network, but instead,

internal stacks. So the result transfer takes place in memory, which should take little time. So the

major part from the subtraction is the database processing time.

On the NetCDF side, a normal query time measured only refers to data processing, e.g. read sub

grid. Consequently, in principle, by subtracting Qe from SciDB measurements, the time cost of a

query for NetCDF and SciDB are comparable. However, since Qe also fluctuates and as later shown,

a normal query response time can be below 0.1 s, so Qe can only be used as a reference for discussion.

Due to large amount of benchmark tests, all query benchmarking figures are put into Appendix G.

6.2.1 Query performance on MPE dataset

Figure 6.3 shows locations used in queries on MPE dataset.

Figure 6.3. MPE rainfall rate map for the one third of the world (purple box) at 01:00 01-09-13.

Four green objects refer to query areas, i.e. from top down, the Netherlands, northern part of the

Netherlands, Delft (a rectangle area) and a spot location in the Indian Ocean.

53

Sub grid selection

With this query, two different sub grids are selected. The first sub grid covers Delft, a town in the

Netherlands, and it corresponds to 12, i.e. 4 x 3 cells in MPE dataset. The second sub grid covers

northern part of the Netherlands containing 2880, i.e. 60 x 48 cells. For both sub grid queries, the

scalability of NetCDF files in 64-bit offset format and NetCDF-4 format, and SciDB arrays is tested.

For all levels, Delft sub grid returns all zero values, i.e. no rainfall at that time. While except tiny,

small and large level for which the query results only contain zero values, selecting sub grid of

northern part of the Netherlands presents 20% and 25% non-zero values at medium and very large

scale respectively.

Figure 6.4 presents the average performance for retrieving the sub grid covering the northern part

of the Netherlands. On the whole, NetCDF-4 without compression shows its superiority over other

solutions. NetCDF 64-bit offset option ranks the second place and it is then followed by various

SciDB arrays with different chunk sizes and compression settings. However, the additional noise

such as HTTP communication included in SciDB measurements should not be underestimated.

Considering the range of noise shown in Figure 6.2, SciDB arrays can probably achieve the same

performance as 64-bit offset store especially the arrays with small chunk sizes. But NetCDF-4 store

will still be the fastest solution. In addition, the effect of chunk size in temporal dimension is not

significant comparing SciDB_MPE_C1 and SciDB_MPE_C2 or SciDB_MPE_C3 and

SciDB_MPE_C4, etc. Most likely, it is because the chunk size gap for temporal dimension, i.e. 1

and 4 is insufficient to observe performance variance. When DEFLATE compression is applied on

NetCDF-4 storage, the query performance degrades severely and it takes around 40 times longer to

extract the sub grid than normal NetCDF-4 files. This is mainly caused by decompressing process

in memory. While the compression of SciDB does not have significant influence because as is

mentioned, SciDB builds index on RLE encoded data and the compressing ratio introduced by

DEFLAET, i.e. a secondary compression is not high.

The figure clearly presents that for all data solutions, query processing scales well, and that is

performance keeps at a constant level as data size gets larger. For NetCDF files, the reason lies in

the B-tree index built by NTFS file system. Basically, the whole MPE dataset is split into separate

files each of which contains 4 time steps. All the files are arranged into one folder and the NTFS

file system then builds B-tree index for all the files. So if a grid at a certain time step is queried,

through the B-tree, HydroNET-4 API locates the corresponding file and then retrieves the grid. As

to SciDB arrays, the fine stability is thank to the metadata structure loaded in the memory which

functions as index for all chunks belonging to an array. Through ArrayID and ChunkID in the

metadata, SciDB retrieve right chunk and then extract grid requested.

Retrieving Delft sub grid takes less time than the grid of northern part of the Netherlands on the

whole (Appendix G). However, the performance of 64-bit offset is an exception and it takes more

time to retrieve Delft sub grid. This is probably owing to the unstable performance of HydroNetCDF

library as is mentioned in Chapter 5. Basically, the library is copied from HydroNET-3 system and

integrated into HydroNET-4 without further polishing.

54

0.036

0.012

0.462

0.144 0.158 0.159

0.099 0.103 0.092
0.123

0.086

0.156

0.116

0.090
0.110

0.029 0.013

0.467

0.215

0.166

0.117
0.139

0.124

0.090

0.152 0.147 0.154

0.102
0.121 0.113

0.027 0.012

0.499

0.190 0.189

0.088 0.094

0.187

0.109

0.094 0.088

0.141

0.072
0.082

0.142

0.030
0.012

0.430

0.067
0.063

0.027

0.013

0.483

0.120
0.094

0.000

0.100

0.200

0.300

0.400

0.500

0.600

A
v
er

ag
e

q
u

er
y
 r

es
p

o
n

se
 t

in
e

(s
)

Data store

Tiny Small Medium Large Very large

Scheme Chunk size

C1, C1_C 4 x 4000 x 4000

C2, C2_C 1 x 4000 x 4000

C3, C3_C 4 x 800 x 800

C4, C4_C 1 x 800 x 800

C5, C5_C 4 x 100 x 100

C6, C6_C 1 x 100 x 100

Figure 6.4. Performance of diverse data solutions for retrieving the grid covering northern part of the Netherlands at one time step.

55

Time series extraction

As is mentioned in the problem statement, time series extraction is the shortcoming of NetCDF’s

contiguous storage structure. To get more details, three test groups are developed. For all groups,

the location used for query is a point, i.e. one cell located in the Indian Ocean (Figure 6.3). The spot

location of Delft is not used (Section 3.2) because in September of 2013, Delft has very little rainfall.

On the one hand, hydrologists are more interested in precipitation. On the other hand, SciDB utilizes

RLE for storage which implies all zero values incorporate much compression and this may then

have specific influence on query performance. The single location in the Indian Ocean however

experiences more rainfall, i.e. around 4 hours precipitation on average every day in September, 2013.

The first test is to retrieve a time series consisting of 8 time steps from 64-bit offset files, NetCDF-

4 files and SciDB arrays at five levels. At the tiny and very large levels, values retrieved are all

positive numbers while the result at the small level has 63% zero values. There are half zero values

included in the query result at both medium and large levels. Specific benchmark graphs can be

checked in Appendix G. To conclude, all data solutions scale well like sub grid selection. NetCDF-

4 without compression have the best overall performance while 64-bit offset solution is around 6

times slower. Taking account of noise enrolled in the SciDB measurements, SciDB arrays can

achieve the same level as 64-bit offset option. SciDB arrays with smaller chunk sizes present

superiority over arrays with large chunk sizes. When chunk size is below 4 x 800 x 800, query

performance for SciDB arrays does not show obvious gap. Once again the DEFLATE compression

of NetCDF-4 causes huge negative effect, making the query executed 200 times longer than normal

NetCDF-4 solution. But the compression effect is insignificant for SciDB arrays.

The second test group is to extract time series of various lengths from NetCDF and SciDB arrays at

the medium level. Table 6.10 lists basic configuration for this test,

Length of time

series, i.e. time

step count

Data store tested Start time step End time step

8
64-bit offset, NetCDF4_C2,

NetCDF4_C2_C, MPE medium arrays

2013-09-

01T16:00:00

2013-09-

01T18:00:00

24
64-bit offset, NetCDF4_C2,

NetCDF4_C2_C, MPE medium arrays

2013-09-

01T00:30:00

2013-09-

01T06:30:00

96
64-bit offset, NetCDF4_C2,

NetCDF4_C2_C, MPE medium arrays

2013-09-

01T00:00:00

2013-09-

02T00:00:00

Table 6.10. Configuration of second test of time series extraction

The 8-step time series extracted has 50% values equal to 0. The ratios of zero values in the query

results increase to 63% and 67% for the 24-step and 96-step time series queries respectively. Figure

6.5 shows the average query response time for the second group of time series extraction. Due to

large values of NetCDF-4 with compression, corresponding bars are not visualized. In this test,

query ranges, i.e. time steps the query concerned are different and it is natural that it takes more time

to select a time series with larger length. To better understand scalability of solutions, the query

response time corresponding to 24-step and 96-step query are divided by 3 and 12 respectively to

get the average time to retrieve time series elaborating 8 time steps (Figure 6.6).

Figure 6.6 indicates that NetCDF-4 without compression and SciDB arrays with chunk size C5 and

56

C6 are the fastest solutions for extracting time series at the medium level. SciDB arrays with large

chunk size but no compression and 64-bit offset store are located at the same performance level.

The negative effect of compression on SciDB arrays with chunk size C1 and C2 is significant. While

for small chunk sizes, compression does not present negative impact. Such a pattern implies that

effect of DEFLATE compression in SciDB has correlation with chunk size and most likely, with the

decrease of chunk size, negative effect of compression declines as well. The DEFLATE compression

of NetCDF-4 on the other hand still causes severe degradation of query performance. The figure

also shows that MPE_C1 and MPE_C2 are slower than other SciDB arrays, which can imply that

indexing chunks works more efficient than indexing values inside a chunk for SciDB. This is derived

because for array with large chunk size, SciDB seeks the sub grid from one chunk while if chunk

size is small, first relevant chunks should be located and then internal index work to find target cells.

Figure 6.6 clearly indicates that NetCDF-4 and SciDB arrays with small chunk sizes have favorable

scalability. That is, as data searched increases, the time to extract a time series consisting of 8 steps

on average reduces. For other data stores, the scalability keeps at a constant level.

57

0.088
0.017 4.249

0.274 0.294 0.240 0.258
0.087 0.079 0.134 0.129 0.101

0.117 0.136
0.123

0.590

0.047 11.638

0.877

1.676

0.759

1.417

0.185
0.287 0.162 0.288

0.105
0.075

0.108
0.081

2.346

0.137 46.594

3.231

5.896

3.298

5.967

0.434
0.790

0.433
0.782

0.157
0.110

0.358
0.137

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

5.500

6.000

6.500

7.000

A
v
er

ag
e

q
u

er
y
 r

es
p

o
n

se
 t

in
e

(s
)

Data store

8-step 24-step 96-step

Scheme Chunk size

C1, C1_C 4 x 4000 x 4000

C2, C2_C 1 x 4000 x 4000

C3, C3_C 4 x 800 x 800

C4, C4_C 1 x 800 x 800

C5, C5_C 4 x 100 x 100

C6, C6_C 1 x 100 x 100

Figure 6.5. Performance of diverse data solutions at medium level for retrieving time series of different lengths from a single location in the Indian Ocean.

58

0.088

0.017
4.249

0.274
0.294

0.240

0.258

0.087

0.079

0.134 0.129

0.101
0.117

0.136 0.123

0.197

0.016
3.896

0.292

0.559

0.253

0.472

0.062

0.096

0.054

0.096

0.035 0.025

0.036 0.027

0.195

0.011
3.883

0.269

0.491

0.275

0.497

0.036

0.066

0.036

0.065

0.013 0.009

0.030
0.011

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

0.400

0.450

0.500

0.550

0.600

A
v
er

ag
e

q
u

er
y
 r

es
p

o
n

se
 t

im
e

(s
)

Data store

8-step 24-step 96-step

Scheme Chunk size

C1, C1_C 4 x 4000 x 4000

C2, C2_C 1 x 4000 x 4000

C3, C3_C 4 x 800 x 800

C4, C4_C 1 x 800 x 800

C5, C5_C 4 x 100 x 100

C6, C6_C 1 x 100 x 100

Figure 6.6. Aligned performance of diverse data solutions at medium level for retrieving time series of different lengths from a single location in the Indian Ocean.

59

0.106

0.020

0.106
0.097

0.123

0.015
0.032

0.040

0.168

0.011
0.018 0.019

0.143

0.013
0.027 0.036

0.140

0.011

0.047 0.044

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

64-bit offset MPE NetCDF4_MPE_C2 SciDB_MPE_C4_vlarge SciDB_MPE_C4_C_vlargeA
v
er

ag
e

q
u
er

y
 r

es
p

o
n
se

 t
im

e
(s

)

Data store

8-step 24-step 96-step 672-step 2880-step

The third group focuses on large dataset and extraction of time series of different lengths is further

explored at the very large level. Parameters of the test is listed in Table 6.11.

Length of time series,

i.e. time step count
Data store tested Start time step End time step

8
64-bit offset, NetCDF4_C2,

MPE very large arrays

2013-09-

27T10:15:00

2013-09-

27T12:15:00

24
64-bit offset, NetCDF4_C2,

MPE very large arrays

2013-09-

07T13:30:00

2013-09-

07T19:30:00

96
64-bit offset, NetCDF4_C2,

MPE very large arrays

2013-09-

21T05:00:00

2013-09-

22T05:00:00

672
64-bit offset, NetCDF4_C2,

MPE very large arrays

2013-09-

07T00:00:00

2013-09-

14T00:00:00

2880
64-bit offset, NetCDF4_C2,

MPE very large arrays

2013-09-

01T00:00:00

2013-10-

01T00:00:00

Table 6.11. Configuration of third test of time series extraction at very large level

The 8-step query returns all positive values while there are 46 percent zero values in the 24-step

query result. For the time series extraction with last three lengths, the ratios of zero in the query

result are all around 85%. As the previous test group, to clearly show the scalability of diverse

solutions, query response time is aligned to 8-step case (Figure 6.7). Through aligning, i.e. averaging

process, the noise for SciDB measurements becomes very small for the 672-step and 2880 step cases

and can thus be omitted.

Scheme Chunk size

C2 1 x 4000 x 4000

C4, C4_C 1 x 800 x 800

Figure 6.7. Aligned performance of diverse data solutions at very large level for retrieving time

series of different lengths from a single location in the Indian Ocean.

Due to large query response time of compressed NetCDF-4 solution in initial tests, it is excluded

from benchmarking. According to the figure, NetCDF-4 solution keeps the best performance. And

extracting time series is very expensive from NetCDF 64-bit offset files, which is the original

problem for this research. 64-bit offset store is nearly 10 times slower than NetCDF-4 for time series

extraction at the very large level. The NetCDF-4 option once again presents the pattern that the time

on average to extract time series decreases when more data is searched. While the 96-step seems to

undermine such a judgment. By doing an additional 5658-step time series extraction on MPE data

of two months, for which the average query response time is smaller than the 2880-step case,

previous conclusion is verified. From the raw test records, it is found that the NetCDF-4’s favorable

60

scalability is due to Windows caching mechanism since after the first query execution, response

time decreases to a certain level dramatically. Besides, the DEFLATE compression on SciDB array

does not bring significant effect on query performance.

a. Extracting 96-step time series from SciDB_MPE_C4_vlarge 20 times

b. Extracting 672-step time series from SciDB_MPE_C4_vlarge 20 times

c. Extracting 2880-step time series from SciDB_MPE_C4_vlarge 20 times

Figure 6.8. Raw query response time measurements of three time series extraction on

SciDB_MPE_C4_vlarge array.

0.232

2.385

0.178

1.428

0.455
0.183 0.188 0.18 0.182 0.182

0.344
0.184

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Q
u
er

y
 r

es
p

o
n
se

 t
im

e
(s

)

Measurement

11.533

7.712

5.787

2.755
1.491 1.455 1.451 1.46 1.475 1.476

2.716

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Q
u
er

y
 r

es
p

o
n
se

 t
im

e
(s

)

Measurement

42.938

29.943
25.68

20.766
18.385

16.136 14.253
11.337

7.698 6.238

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Q
u
er

y
 r

es
p

o
n
se

 t
im

e
(s

)

Measurement

61

0.106

0.020

0.106
0.097

0.123

0.015

0.032
0.040

0.168

0.011
0.018 0.019

0.143

0.013
0.018

0.032

0.140

0.011
0.018

0.032

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

64-bit offset MPE NetCDF4_MPE_C2 SciDB_MPE_C4_vlarge SciDB_MPE_C4_C_vlargeA
v
er

ag
e

q
u
er

y
 r

es
p

o
n
se

 t
im

e
(s

)

Data store

8-step 24-step 96-step 672-step 2880-step

The 96-step query turns out to be a trough for 2 SciDB arrays in Figure 6.7. To explore the reason,

original measurement records are checked (Figure 6.8).

Figure 6.8b and 6.8c indicates that the average query response time calculated by removing largest

4 and smallest 4 values still takes some large “outliers” into account. For instance, in Figure 6.8 b,

the 5th, 6th, 7th and 20th measurements are elaborated for averaging as well. The initial idea to remove

extreme values is to keep the remaining measurements at a constant level such as the 0.18 s level in

Figure 6.8 a. However, the calculation fails to function on extracting time series with large lengths

where query response time declines gradually. The same benchmark test is executed using script on

SciDB server to exclude possible noise, but analogous pattern is observed. In essence, this is a result

from caching process of SciDB. During the whole process for executing the query 20 times on a

SciDB array, for example, SciDB_MPE_C4_vlarge, relevant data such as chunks are cached into

memory gradually instead of all buffered into memory after executing the same query 2 or 3 times.

If the stable levels, i.e. 1.47 s and 6.3 s are used as the average execution time of 672-step and 2880-

step time series extraction on SciDB_MPE_C4_vlarge, and analogous operation is applied to

SciDB_MPE_C4_C_vlarge, then Figure 6.7 is modified to Figure 6.9 in which the scalability of

SciDB arrays presents the pattern as is expected to some extent.

Scheme Chunk size

C2 1 x 4000 x 4000

C4, C4_C 1 x 800 x 800

Figure 6.9. Aligned performance of diverse data solutions at very large level for retrieving time

series of different lengths from a single location in the Indian Ocean with modification of SciDB

measurements

Pyramid query

Pyramid query is not tested since this is an unfair comparison. SciDB does not provide functions to

build pyramid. With “aggregate” operator of SciDB, it is possible to generate pyramids on the fly.

While pyramids are built and stored along with creations of NetCDF files in HydroNET-4, and

query is then processed on the pre-stored data. It is possible to pre-store pyramids in SciDB but in

this case, pyramid query becomes grid sub selection of another dataset, i.e. MPE data in curse

resolution. This has no added value to the research. As a matter of fact, it is more worthwhile to

compare querying pyramids and querying its original dataset, which is not the focus of this study.

62

0.166

0.052

0.537

0.465

0.178

0.035

0.307 0.307
0.219

0.037

0.262 0.258 0.216

0.034

0.276 0.275

0.476

0.341 0.355
0.315

0.000

0.100

0.200

0.300

0.400

0.500

0.600

64-bit offset MPE NetCDF4_MPE_C2 SciDB_MPE_C4_vlarge SciDB_MPE_C4_C_vlargeA
v
er

ag
e

q
u
er

y
 r

es
p

o
n
se

 t
im

e
(s

)

Data store

8-step 24-step 96-step 672-step 2880-step

Average calculation

For average calculation of MPE dataset, focus is put on data at very large level. The input for this

query is a 3D spatiotemporal cube and the output is a 2D array sharing the same spatial extent as

the input. So basically average is performed on time series at all locations inside the spatial range.

In this benchmarking, spatial extent is the whole Netherlands covering 11,868 cells (129 x 92). The

lengths on temporal dimension of the input cube vary from 8 to 2880. Specific parameters for testing

is listed in Table 6.12.

Number of time steps

for averaging
Data store tested Start time step End time step

8
64-bit offset, NetCDF4_C2,

MPE very large arrays

2013-09-

27T10:15:00

2013-09-

27T12:15:00

24
64-bit offset, NetCDF4_C2,

MPE very large arrays

2013-09-

07T13:30:00

2013-09-

07T19:30:00

96
64-bit offset, NetCDF4_C2,

MPE very large arrays

2013-09-

21T05:00:00

2013-09-

22T05:00:00

672
64-bit offset, NetCDF4_C2,

MPE very large arrays

2013-09-

07T00:00:00

2013-09-

14T00:00:00

2880
64-bit offset, NetCDF4_C2,

MPE very large arrays

2013-09-

01T00:00:00

2013-10-

01T00:00:00

Table 6.12. Configuration of average calculation on MPE data at very large level

The first query, i.e. average over 8 time steps return all 0 values. Averaging 96 time steps leads to

99% 0 values in the result. While the queries concerning 24, 672 and 2880 time steps return all

positive values. Query result is aligned into 8-step case, i.e. response time of queries concerned with

more than 8 time steps is divided by certain factors to get the time on average to do aggregation on

8 time steps (Figure 6.10). Through such an aligning process, the noise involved in SciDB

measurements for averaging 672 and 2880 time steps become very small and can be neglected.

Scheme Chunk size

C2 1 x 4000 x 4000

C4, C4_C 1 x 800 x 800

Figure 6.10. Aligned performance of diverse data solutions at very large level for average

calculation with different time steps at the Netherlands scale.

Figure 6.10 shows that for average calculation at the very large scale, NetCDF-4 holds the best

performance on the whole. 64-bit offset file solution comes after while SciDB arrays take more time

to finish. Performance of the normal SciDB array and its compressed version do not vary much.

63

The execution of average calculation is composed of two phases for NetCDF file solutions. First

phase is to extract the related spatiotemporal sub cube from the whole MPE data store and this takes

place in NetCDF connector. Then aggregation is performed on selected data in the Processor (Figure

5.1). HydroNET-4 log records time measurements for both phases and it is found that the

aggregation process is several hundred times faster than sub selection. But the combination of

operator “aggregate” and “between” (Section 5.4.2) for average calculation in SciDB results in

much more overhead than only sub selection. Figure 6.11 shows performance of only selecting gird

covering the Netherlands in 2880 time steps at very large scale. The query response time is divided

by 360 to align to 8-step case.

Scheme Chunk size

C2 1 x 4000 x 4000

C4, C4_C 1 x 800 x 800

Figure 6.11. Aligned performance of diverse data solutions at very large level for extracting

Netherlands grids in 2880 time steps

By comparing performance of SciDB arrays in Figure 6.10 and 6.10, it can be seen that an additional

aggregating operation, query response time is doubled for SciDB arrays. The specific reason is

unknown but a possible solution to improve this is to select sub array inside SciDB and then

calculate average in the Processor, which can significantly fasten query processing of SciDB

solutions.

Figure 6.10 also presents an noticeable issue for NetCDF solutions and that is when average is

performed on 2880 time steps, the query response time suddenly increases several times especially

for NetCDF-4 solution. Such a pattern is also shown in Figure 6.11, i.e. selection of grids at 2880

time steps. By checking raw average aggregation measurements of NetCDF-4 store, all 20

measurements keep at nearly the same level, which entails Windows cached little relevant data for

the aggregation query. Additional tests are performed to work out reason. By calculating average

with 2880 time steps at Netherlands scale with NetCDF-4 store 20 times consecutively, the average

query response time is around 12 s and this corresponds to 0.033 s in Figure 6.10. However, if the

query is executed as below (the same way as is used for benchmarking),

For (int i = 0; i < 20; i++)

 {

 Query(64bitoffset);

 Query(NetCDF-4);

 }

Then there is no performance gain for NetCDF-4 and thus it can be deduced that the caching of 64-

bit offset store flushes the cached data of NetCDF-4 files. Average calculation with less time steps

64

0.174

0.046

0.416
0.382

0.233

0.034

0.290 0.298
0.230

0.034

0.260 0.261 0.233

0.033

0.276 0.274

0.491

0.342 0.337
0.301

0.000

0.100

0.200

0.300

0.400

0.500

0.600

64-bit offset MPE NetCDF4_MPE_C2 SciDB_MPE_C4_vlarge SciDB_MPE_C4_C_vlargeA
v
er

ag
e

q
u
er

y
 r

es
p

o
n
se

 t
im

e
(s

)

Data store

8-step 24-step 96-step 672-step 2880-step

results in smaller query results of sub selection, which is probably the reason why cache flushing

does not occur. Figure 6.10 indicates that SciDB provides a better caching strategy. Besides, the

reason of the trough in the middle of SciDB arrays in Figure 6.10 is explained in time series

extraction.

Maximum calculation

The only difference between maximum and average calculation is the change of aggregation type.

Other configurations remain the same. Ratio of zero values in the query results of maximum

calculation is also identical to that of the average calculation.

Figure 6.12. Aligned performance of diverse data solutions at very large level for maximum

calculation with different time steps at the Netherlands scale.

Figure 6.12 visualizes benchmarking results of maximum calculation. Compared with average

calculation, all solutions take similar amount of time to process the query. The reason for NetCDF

solutions is understandable and as is as mentioned, additional statistical calculation costs fairly small

amount of time compared to sub data selection. While data selection of both aggregation queries is

identical. SciDB on the other hand, calculates maximum slightly faster than average. Interpretation

of other patterns can be referenced in the part of average calculation.

Scheme Chunk size

C2 1 x 4000 x 4000

C4, C4_C 1 x 800 x 800

65

6.2.2 Query performance on GEFS dataset

Figure 6.13 presents locations used in queries on GEFS dataset.

Figure 6.13. GEFS precipitation map calculated with first ensemble for the whole world at 12:00

15-05-14. Three red objects refer to query areas, i.e. from outside inward, Europe, the Netherlands

and Delft (a spot location)

Effect of order of dimensions in the schema on query performance

As is mentioned, the order of dimensions to organize attribute in the array can change the data

storage on the disk (Figure 6.1), which may have much influence on query performance. Two queries

(Table 6.13) are established to investigate such an effect on SciDB_GEFS_S1, SciDB_GEFS_S2,

SciDB_GEFS_S3and SciDB_GEFS_S4.

Conceptual query Query for implementation (AFL)

Select total precipitation for all ensembles

in Delft at 0:00, 20-05-2014

project(between(SciDB_GEFS_S1,675,0,17,38,18

4,675,19,17,38,184),APCP)

Calculate ensemble mean of total

precipitation in Delft at 0:00, 20-05-2014

aggregate(project(between(SciDB_GEFS_S1,675,

0,17,38,184,675,19,17,38,184),APCP),avg(APCP)

,X_idx,Y_idx,F_idx)

Table 6.13. Two queries used to test the influence of dimensions order on query performance

Table 6.13 only lists AFL command for implementing queries on SciDB_GEFS_S1, for other

schemas, the order of numbers inside the “between” operator should be modified. Delft corresponds

to one cell in GEFS dataset. It is commonly believed that retrieving values which are stored close

to each other on the disk should be faster than values stored discontinuously. So considering

dimensions order of 4 arrays above, SciDB_GEFS_S1 should take less time to execute two queries

than SciDB_GEFS_S2 while SciDB_GEFS_S4 should response faster than SciDB_GEFS_S3.

Besides, SciDB_GEFS_S1 and SciDB_GEFS_S4 should both response more quickly than either

66

SciDB_GEFS_S2 or SciDB_GEFS_S3. Benchmark tests are then performed locally on SciDB

server with bash script (Appendix F). Basically, the first query is executed on the 4 arrays and this

is followed by the second query run on the 4 queries. Such 8 query executions form one workflow

which is then implemented 10 times. It should be noted that with basic configuration file in

Appendix D, an additional line “mgr-cache-size=0” is added to disable caching of SciDB. In

addition, in the testing script, the command

sh -c 'echo 3 >/proc/sys/vm/drop_caches'

is executed to clean Linux cache after each query run. Through procedures above, for a specific

query and an array, 10 measurements mostly keep at constant level. By calculating average for 10

measurements without the largest 2 and smallest 2 values, for all arrays, the query performance is

provided in Figure 6.14. The first query returns all positive values and so does the aggregation query.

a. Selecting all ensembles of total precipitation in Delft at one forecast step

b. Calculating ensemble mean of total precipitation in Delft at one forecast step

Figure 6.14. Query performance of 4 GEFS arrays with identical moderate chunk size but different

dimensions order in schemas

Figure 6.14a presents the pattern as is expected, i.e. SciDB_GEFS_S1 outperforms

SciDB_GEFS_S2 by 8 ms, while SciDB_GEFS_S3 is slower than SciDB_GEFS_S4 by 21 ms. Also

SciDB_GEFS_S1 and SciDB_GEFS_S4 rank the first two places. However, the gap is still not

significant due to the short query execution time. For ensemble mean query, an exception arises that

SciDB_GEFS_S1 on average costs 10 ms more to process than SciDB_GEFS_S2. In addition,

response time of SciDB_GEFS_S2 is shorter than SciDB_GEFS_S4. To exclude the effect of chunk

size on performance, GEFS dataset is managed into 4 other arrays, namely, SciDB_GEFS_C1,

SciDB_GEFS_C2, SciDB_GEFS_C3 and SciDB_GEFS_C4 (Table 6.9). Each array has one chunk.

Scheme
Dimensions

order

S1 M E F Y X

S2 M F Y X E

S3 X Y F E M

S4 E X Y F M

Scheme
Dimensions

order

S1 M E F Y X

S2 M F Y X E

S3 X Y F E M

S4 E X Y F M

67

Their dimension orders conform to 4 SciDB_GEFS_S arrays. By testing same benchmarks again

with another script (Appendix F), average performance is then depicted in Figure 6.15.

a. Selecting all ensembles of total precipitation in Delft at one forecast step

b. Calculating ensemble mean of total precipitation in Delft at one forecast step

Figure 6.15. Query performance of 4 GEFS arrays composed of only one chunk but different

dimension order in schemas

By storing GEFS dataset into one chunk and perform the two queries, effect of dimensions order on

query performance becomes more significant, especially from the gap between SciDB_GEFS_C1

and SciDB_GEFS_C2. However, the exception still exists that SciDB_GEFS_C2 in which ensemble

values in a single location at one forecast step are stored discontinuously responses faster than

SciDB_GEFS_C4 where ensemble values are stored successively for both queries. There are indeed

some other factors of storage on disk that has been changed with the modification of dimensions

order, for example, the starting physical storage address of 20 ensemble values in a single location

at a certain forecast step. Generally speaking, the experiments to explore the influence of dimensions

order to arrange data storage on query performance present some patterns as are expected, but

because of high dimensionality of GEFS dataset which adds much complexity to the mapping from

dimensions order to data organization on disk, some patterns are still not fully understandable.

Nevertheless, dimensions order can indeed cause significant change of query performance, as gaps

between diverse arrays shown in Figure 6.15. As a matter of fact, the analysis of dimensions order

influence is more complex for SciDB due to RLE. Assume the 20 ensemble values extracted in first

query are all equal to 0 (this is not the case in fact), then with C1 and C4 scheme, they are stored as

Scheme
Dimensions

order

C1 M E F Y X

C2 M F Y X E

C3 X Y F E M

C4 E X Y F M

Scheme
Dimensions

order

C1 M E F Y X

C2 M F Y X E

C3 X Y F E M

C4 E X Y F M

68

0.109
23.112 48.031

0.910

1.430

1.061

2.281

1.142

2.702

0.000

0.500

1.000

1.500

2.000

2.500

3.000

A
v
er

ag
e

q
u
er

y
 r

es
p

o
n
se

 t
im

e
(s

)

Data store

‘200’, i.e. 20 zero values. However, with C2 and C3 scheme, 20 zero values are separated and it is

likely that RLE may not achieve the best performance since neighbors of each zero value are unequal

to 0. This causes different storage size of 4 arrays (Table 6.9) and introduces more uncertainty to

query performance.

In the following, due to relatively better performance in initial tests (Figure 6.14), SciDB_GEFS_S1

and SciDB_GEFS_S2 are used for benchmarking. On the NetCDF side, due to current

implementation of NetCDF connector in HdyroNET-4, it is only possible to write NetCDF files with

dimensions order in S3 schema. But NetCDF-4 files can be created with different chunk size. At

last, in addition to 64-bit offset solutions, two NetCDF-4 schemes are tested together with their

compressed versions (Table 6.2).

Forecast time series extraction

This query is to extract 20 ensembles of precipitation in Delft, a spot location at all forecast steps.

56% data in the query result equal to 0. Figure 6.16 shows the benchmark result.

Figure 6.16. Query performance on extracting GEFS forecast time series of total precipitation

In Figure 6.16, performance of NetCDF-4 stores with schema S3 are not visualized for their high

values. On the whole, 64-bit offset solution performs the best and is 9 time faster than NetCDF-4

with smaller chunk size which comes the second. The outstanding performance of 64-bit offset

solution is majorly owing to small data size of GEFS dataset. SciDB arrays without compression

take more time to return query results but the noise included in the measurements cannot be

neglected. With HTTP communication time removed, SciDB_GEFS_S1 and SciDB_GEFS_S2 can

approach the performance of 64-bit offset solution closely. SciDB_GEFS_S1 takes less time than

Scheme
Dimensions

order
Chunk size

S1, S1_C M E F Y X 1 x 20 x 1 x 181 x 360

S2, S2_C M F Y X E 1 x 1 x 181 x 360 x 20

S3, S3_C X Y F E M 360 x 181 x 1 x 20 x 1

S5, S5_C X Y F E M 360 x 181 x 1 x 1 x 1

69

0.223
22.941 48.125

0.906

1.408

2.811

3.965

3.017

4.487

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

5.000

A
v
er

ag
e

q
u
er

y
 r

es
p

o
n
se

 t
im

e
(s

)

Data store

S2 to process the query while the gap is insignificant. For their compressed versions, i.e.

SciDB_GEFS_S1_C and SciDB_GEFS_S2_C, the difference becomes more obvious, and these

result from modification of dimensions order. The compression of SciDB arrays doubles the query

response time compared with non-compressed arrays. This is also the case for

NetCDF4_GEFS_S3_C. The compression on NetCDF4 S5 store however does not cause so much

degradation. Compared with the intolerable performance decrease caused by compression of

NetCDF-4 in MPE benchmark tests, 2 reasons lead to amelioration of query performance of

NetCDF-4 compressed stores. For one thing, the compressing ratio of GEFS dataset is 2, much less

than 83 of MPE dataset. For another, the caching of compressed NetCDF-4 store also contributes

and this is significant for NetCDF4_GEFS_S5_C by checking raw testing records.

The high response time of NetCDF-4 S3 stores is due to little caching and the explanation is

provided in MPE aggregation benchmark. That is the buffered data of NetCDF4 S3 stores are fluxed

by caching of other NetCDF stores. NetCDF-4 with smaller chunk size, i.e. scheme S5 can benefit

from caching and therefore the chunk size of NetCDF-4 can influence the behavior of caching as

well. The caching pattern of NetCDF-4 files also applies to GEFS queries later.

Percentile calculation

This query is to calculate the 80th percentile of total precipitation for all 40 forecast steps in Delft, a

spot location. Query result contains 35% 0 values and the rest are diverse values above 0.

Figure 6.17. Query performance on GEFS total precipitation 80th percentile calculation

Figure 6.17 indicates that the 64-bit offset data solution holds the fastest query processing record. It

is then followed by NetCDF-4 S5 stores and SciDB solutions. NetCDF-4 S3 solutions rank the last.

Scheme
Dimensions

order
Chunk size

S1, S1_C M E F Y X 1 x 20 x 1 x 181 x 360

S2, S2_C M F Y X E 1 x 1 x 181 x 360 x 20

S3, S3_C X Y F E M 360 x 181 x 1 x 20 x 1

S5, S5_C X Y F E M 360 x 181 x 1 x 1 x 1

70

0.368

23.174 23.56

0.911

1.409

1.009

2.206

1.146

2.554

0.569

48.924 48.335

1.190

1.720

3.651

4.925

3.740

5.091

0.000

1.000

2.000

3.000

4.000

5.000

6.000

A
v
er

ag
e

q
u
er

y
 r

es
p

o
n
se

 t
im

e
(s

)

Data store Netherlands Europe

The overall pattern is analogous to forecast time series extraction. However, the complex

implementation of percentile calculation in SciDB (Section 5.4.2) cause much overhead on query

performance. Compared with only sub selection shown in Figure 6.16, the compound percentile

function triples the time cost. While on the other hand, after selecting relevant data in NetCDF files

for the percentile calculation in NetCDF connector, these data are transferred into Processor to

derive the 80th percentile. The calculating in the Processor takes 0.001 s to finish. So an improvement

for SciDB solutions is to only execute sub selection in SciDB but deliver the job of percentile

calculation to the Processor, then the performance can be boosted. In addition, dimensions order has

slight influence on query performance of SciDB arrays. Reasons of other interesting characters in

the figure are interpreted in the previous query.

Ensemble mean calculation

Ensemble mean calculation of a cell is to average the attribute values belonging to all ensembles in

that cell. So one cell contains one ensemble mean value. In this test, two locations are used for

precipitation ensemble mean calculation at all 40 forecast steps. One is the Netherlands containing

20 cells (5 x 4) and the other Europe scope has 3888 cells (72 x 54) in GEFS dataset. For the query

on Netherlands, 32% of the returned values are 0. While for the Europe scope, 18% values retrieved

are zero values. Testing results are provided in Figure 6.18.

Figure 6.18. Query performance on ensemble mean calculation of GEFS total precipitation

For the calculation of either query area, the pattern of performance shown in Figure 6.18 keep

similarity to previous two GEFS tests. Compared with percentile calculation, ensemble mean

calculation at the Netherlands scale costs 0.001 s in the Processor while at the Europe scale, time

cost in the Processor increases to 0.03 s. The effect of dimensions order is insignificant for SciDB

Scheme
Dimensions

order
Chunk size

S1, S1_C M E F Y X 1 x 20 x 1 x 181 x 360

S2, S2_C M F Y X E 1 x 1 x 181 x 360 x 20

S3, S3_C X Y F E M 360 x 181 x 1 x 20 x 1

S5, S5_C X Y F E M 360 x 181 x 1 x 1 x 1

71

arrays. Thanks to caching, compression of NetCDF4 S5 store cause less negative impact on query

performance compared with SciDB arrays. NetCDF-4 solutions with larger chunk size, i.e. S3 do

not benefit from caching undermined by query execution on other data stores.

NetCDF4 S5 data stores present the best scalability and with the query area increases 200 percent,

the query response time only grows 20 to 30 percent. The query processing time of 64-bit offset

solution experiences a 54 percent increase. With little caching, NetCDF-4 S3 data stores cost twice

the time to on the Europe scope compared to the Netherlands scope. The scalability of SciDB

solutions rank the last. It should be noted that the realization of ensemble mean calculation in SciDB

connector is a hybrid function using two AFL operators, i.e. “aggregate” and “between” rather than

only one operator. The added complexity might be a reason for the worse scalability.

6.3 Overall evaluation

To investigate the third sub research question, i.e. for the multidimensional array database, if queries

on different dimensions can achieved the same performance level, specific benchmark tests are

devised. In MPE benchmark tests, the sub grid selection of northern part of the Netherlands returns

2880 values while the extraction of time series in a spot location in the Indian Ocean at the very

large level also includes 2880 values. So through comparing related data solutions on processing

these two queries (Table 6.14), some conclusions can be drawn.

Data store Sub grid selection (s) Time series extraction (s) Ratio

64-bit offset MPE 0.03 50.54 1685

NetCDF4_MPE_C2 0.01 3.95 395

SciDB_MPE_C4_vlarge 0.12 17.07 142

SciDB_MPE_C4_C_vlarge 0.09 15.97 177

Table 6.14. Performance of queries targeted at different dimensions

Table 6.14 clearly indicates that spatial selection is much faster than temporal selection, especially

from the large ratio of 64-bit offset solution. All the large ratios presents that spatial dimension are

superior dimensions on which queries can be processed more efficiently. However the priority of

dimensions is indeed reflected in the storage scheme adopted, essentially, the chunk size and

dimensions order. For MPE data stored in NetCDF-4 and SciDB arrays, the chunk size on temporal

dimension always equals to 1 while chunk sizes of spatial dimensions range from 100 to 4000. In

this way, MPE storage schemas adopted indeed give superiority to spatial dimensions. Besides, the

order of dimensions in each chunk cannot remedy inferior temporal dimension since the only

possibility is to exchange X and Y dimension which cannot benefit time series extraction. It can be

imagined that decreasing chunk sizes of spatial dimensions while extruding the chunk size of

temporal dimension can improve the performance of time series extraction. Thus a cubic chunk size

is needed to judge query performance on different dimensions fairly.

In GEFS benchmark tests, storage schemes with cubic chunk sizes are implemented, i.e. 4

SciDB_GEFS_S arrays without compression. Each chunk has 1 modelrun and forecast value but

incorporates 20 ensembles, 181 latitudes and 360 longitudes. When exploring the effect of

dimensions order on query performance, two queries targeted at ensemble dimension are used for

72

testing. It is the fact that executing the same queries on an array with a different dimension order

can be considered equivalent to executing queries targeted at another dimension on the original array

(For easy understanding, one can think each chunk contains 20 ensembles, 20 longitudes and 20

latitudes). The test results show that exchanging the order of ensemble, longitude and latitude

dimension inside each chunk has insignificant influence on query performance. That is equivalent

to say, with the scheme utilizing modest and cubic chunk sizes, there is no priority on any dimension

inside the chunk and query performance on different dimensions enrolled in one chunk can locate

at the same level. Even though later SciDB solutions with large chunks, i.e. 4 SciDB_GEFS_C

arrays show notable effect of dimensions order, which may prove the superior dimensions do exist,

but in most cases, modest chunk size is employed due to better query capability. As can be seen

from Figure 6. 13 and 6.14, the solutions with moderate chunk sizes can be 10 times faster than

large chunk solutions for processing two queries. In addition, significant variation of performance

of arrays with large chunk size can be caused by RLE of SciDB, as has been analyzed.

It is thus inferred that for SciDB arrays, to make dimensions have fair roles in query processing, 2

conditions should be satisfied. One is the chunk size is modest. The other is the chunk sizes on all

dimensions are equal, i.e. hypercube. Nonetheless, more benchmarking tests should be implemented

to verify such an inference.

In the end, as the research is concerned with management and query performance of large hydrologic

datasets, a comprehensive evaluation of different data solutions is provided in Table 6.15.

Data solution
64-bit

offset
NetCDF-4

NetCDF-4

DEFLATE

compression

SciDB

array

SciDB array

DEFLATE

compression

Management

Data loading 5 4 3 1 1

Storage 1 1 5 3 4

Scheme

transformation
1 1 1 4 4

Management overall score 7 6 9 8 9

Query

MPE sub grid

selection
4 5 1 3 2

MPE time series

extraction
2 5 1 4 3

MPE average

calculation
4 5 1 3 3

MPE maximum

calculation
4 5 1 3 3

GEFS forecast time

series extraction
5 4 2 3 1

GEFS percentile

calculation
5 4 3 2 1

GEFS ensemble

mean calculation
5 4 3 2 1

Query overall score 29 32 12 20 14

Compound score (management *

0.33 + query * 0.14)
6.48 6.57 4.71 5.52 5.00

Table 6.15. Overall evaluation of diverse data solutions for managing and querying large hydrologic

datasets

Data solutions refer to combined data managing and querying systems. So 64-bit offset, NetCDF-4

73

with and without compression actually represent systems composed of HydroNET-4 interfaces

together with diverse NetCDF file stores. As is mentioned in the beginning of this chapter, such a

hybrid NetCDF system is in essence a database. SciDB array solutions include the SciDB database

and the enhanced interface, SciDB connector embedded in HydroNET-4. The criteria listed are

confined for this research, some general strengths of databases like parallel, security and transaction

support are not taken into account. The maximum score of each criterion such as data loading and

MPE sub grid selection is 5 while the minimum is 1. The total final compound score equals to 10

with management and query performance sharing a half respectively. The specific calculating

formula is provided in the table.

Table 6.15 indicates that NetCDF-4 without compression scores the highest among all solutions. It

is then followed by 64-bit offset solution. Two SciDB solutions come after while NetCDF-4 with

compression ranks the last. The remarkable scores of NetCDF-4 and 64-bit offset solutions lie in

their outstanding query performance.

Regarding data management, 3 aspects are considered. Original MPE and GEFS data are in GRIB2

format and converted to 64-bit offset format by Hydrologic Research for daily use. So the 64-bit

offset solution gains 5 for data loading since files have already existed. With NetCDF and SciDB

connectors, 64-bit offset NetCDF files are transformed to other files. The loading process of SciDB

constituting several steps (Section 5.4.1) and very slow. Loading 170 GB MPE data of one month

into SciDB_MPE_C4_vlarge (14 GB) and SciDB_MPE_C4_C_vlarge (4 GB) took one and a half

days to finish. While it cost half a day to import same amount of MPE data into NetCDF-4 files

including the compressed version. Transforming the GEFS data of one model run into NetCDF files

without compression cost 3.6 minutes while time cost increases to 4.9 minutes when DEFLATE is

applied to NetCDF-4. For both MPE and GEFS dataset, NetCDF-4 files without compression

occupy same disk space as 64-bit offset files, which is the reason why both of them are scored 1. In

regard to MPE data, due to RLE and possible DEFLATE compression, storage size of SciDB arrays

can be 10 times smaller. Moreover, SciDB provides generic “redimension” and “repart” operators

to support scheme transformation. However, according to practical experience, these two operators

are inefficient. NetCDF solutions have no support on transforming data storage scheme. To change

dimensions order or chunk size for example, specific functions have to be developed in NetCDF

connector. Besides, new query functional modules have to be developed to adapt to new data

schemes accordingly.

As to query performance, it should be noted that SciDB solutions include some noise such as HTTP

communication in the query response time. For MPE aggregation queries, NetCDF-4 with

compression take too much time to finish, so it is excluded from MPE aggregation benchmarking.

Nonetheless, it should score the lowest in query performance. Recalling GEFS benchmark tests, two

NetCDF-4 schemes, i.e. S3 and S5 are tested however the NetCDF-4 S3 solutions spent longest time

to process queries due to cache fluxing. The score is based on the assumption that caching of

NetCDF-4 can work effectively on GEFS queries, i.e. NetCDF-4 S3 solution, then NetCDF-4

solutions get higher score than SciDB solutions. Another point is that two regions are used for

ensemble mean calculation, and the score is derived according to the average of query performance

on both areas.

74

7 Conclusions and future work

7.1 Summary

The whole research is summarized with respect to research questions as follows.

Main research question:

Can a multidimensional array database process frequently implemented queries faster than NetCDF

solutions for large hydrological datasets?

Within the scope of this research, the answer is negative. Through interviews, queries and datasets

frequently processed by water experts are collected. After query classification and designing,

specific queries and datasets used for benchmarking are determined. 9 criteria are established to

compare multidimensional array databases and SciDB is selected for benchmarking. After

constructing testing environment in HydroNET-4 system, NetCDF solutions and SciDB solutions

are benchmarked and analyzed. In Table 6.15, diverse data solutions are scored with respect to 7

queries tested. And the overall score indicate that the solution of NetCDF-4 without DEFLATE

compression and 64-bit offset solution outperform SciDB solutions with and without DEFLATE

compression. However, this conclusion is constrained by several points,

1. Since the benchmark environment is the HydroNET-4 system built on a Windows virtual

machine, a SciDB connector is developed to communicate with SciDB on Linux virtual

machine through HTTP requests. As a result, measurements of SciDB query response time

include additional time cost like HTTP communication and data transfer. Such noise can indeed

influence the judgment of favorable data solutions for specific queries. One notable example is

MPE sub grid selection, by removing the noise, SciDB solutions can even be faster than 64-bit

offset solution. Fortunately, the noise cannot change the final conclusion that NetCDF solutions

are preferable due to the large gap of overall query performance (Table 6.15).

2. As the benchmark results present, the chunk size plays a crucial role in query performance but

chunk sizes tested for SciDB arrays are limited. Besides, for MPE tests, chunks are all of 2D or

near 2D shape, i.e. chunk size on temporal dimension equal to 1 or 4. Performance of SciDB as

well as NetCDF-4 solutions with real cubic chunks are still unknown. According to experience

and understanding acquired from SciDB tests, it is inferred that cubic chunk size can boost

SciDB’s performance on MPE time series extraction and two aggregation calculation.

3. A fundamental issue of this research is concerned with the concept “large dataset”. It is thought

that “large” concerns two aspects. One is the semantic context, i.e. application domain. The

other is technical indicator. More specifically, as big data is bloating all the time and

benchmarking always ends at a certain level of data size, large dataset should cause bottlenecks

of software or hardware employed. From two aspects, GEFS data of size 1.55 GB is indeed

small. The MPE satellite dataset at very large level is 170 GB stored in 64-bit offset files. Its

spatial resolution is 3.3 km and more importantly, the temporal resolution is 15 minutes, very

high among satellite data products. Also as the tests reveal, MPE data at large and very large

level causes long caching process for SciDB in aggregation queries. Caching has little effect for

NetCDF-4 files at very large level due to flux. The intolerable slow data loading of SciDB also

75

arises. So despite that 98% of MPE values are 0, it is thought that MPE data achieve the property

of large hydrologic dataset.

4. Parallelization is the current trend to solve big data problems. NetCDF libraries until now have

limited support for reading with multiple threads while SciDB is applying both shared memory

and shared nothing architecture. Some operators are optimized to utilize multithreads with one

core. While combination of operators and some algebra operators can redistribute data and

execute queries on all logic nodes, i.e. all SciDB instances

(http://www.scidb.org/forum/viewtopic.php?f=11&t=1441). In this research, such a strength of

SciDB is not tested.

Taking account of data management such as loading and storage space, Table 6.15 actually presents

a more comprehensive comparison among diverse data solutions. NetCDF-4 without compression

still ranks the first place but a bit surprisingly, 64-bit offset solution is just behind NetCDF-4 solution

with little gap. As developers of Hydrologic Research explain, this is thanks to constant optimization

of the data flow to read 64-bit offset files. For example, a single file is kept open until all reading

tasks are completed. Such a research does not deny SciDB which is a relatively new product and

still needs to be optimized. Nonetheless, combining the research results, a general suggestion for

data management might be that before importing all data into specific DBMSs, spend some time on

learning if there is possibility to improve available file based solutions.

4 sub research questions:

1. What datasets and queries should be used to fully assess the performance between a

multidimensional array database and NetCDF solutions?

Datasets and queries for benchmarking should be frequently processed by hydrologists. In total, 6

water specialists are interviewed among whom half come from academia while the other half are

from industry. Multiple dimensions and large volume are the interests when selecting datasets. In

the end 3 dimensional MPE satellite data and 5 dimensional GEFS model forecast data are chosen

for tests. Conceptual queries collected from experts are classified and redesigned to conform to

datasets. 8 queries are designed elaborating sub grid selection, time series extraction, pyramiding

and aggregation. But in the final benchmarking, majorly due to different implementations of

NetCDF solution and SciDB, pyramiding is not tested.

From the consultancy, more insight on queries and datasets on which hydrologists are working has

been acquired. Since current hydrologic tasks increasingly deal with more than one data sources,

queries based on two or more different datasets are executed frequently, like data quality check.

Besides, the consultancy also indicates that spatial operation, as another query class can be a daily

work for hydrologic experts. This is understandable since natural hydrological data are normally

recorded in grids while information of urban environment are stored as vector maps. Many

applications related to human and natural interaction need certain kind of spatial operation such as

intersection. These two queries are omitted by researchers before and should receive more attention

for comprehensive benchmarking.

http://www.scidb.org/forum/viewtopic.php?f=11&t=1441

76

2. Which specific multidimensional array database should be used for tests?

A definition of multidimensional array database is proposed in this thesis that it refers to a database

of which the abstract model for data management and query is multidimensional array consisting of

dimensions and attributes. According to this definition, array database like Rasdaman and SciDB,

commercial DBMS for OLAP such as Essbase and hybrid system UFI are all specific

implementations (Section 4.1). The research then focuses on Rasdaman and SciDB. By establishing

9 criteria such as compression support and NetCDF loader, these two solutions are compared with

evidence retrieved from literature, forum, source code, etc. But no practical tests are involved for

assessment.

Through grading all criteria, SciDB is eventually chosen mainly due to lossless compression support

in its community version. Also it scores higher in knowledge support included in maintenance

criterion. Recalling the whole research progress, the SciDB forum indeed keeps input (Appendix

E). However, the lack of .Net API and NetCDF importer for SciDB adds much additional

development work in the research, which took several months to finish.

3. For the multidimensional array database, is the performance in handling queries on different

dimensions at the same level using one data storage schema?

The answer is yes, i.e. if the SciDB array schema utilizes modest and hypercubic chunk size, then

dimensions have equal roles in query processing. But this is derived from analysis indirectly from

benchmark tests. Specific explanation is provided in the first part of Section 6.3. In brief, arrays

with cubic and modest chunk sizes are created for storing GEFS data. But these arrays vary in the

order of dimensions to organize data structure. By testing two queries, the result shows that

exchanging the order of longitude, latitude and ensemble dimensions inside each chunk has slight

influence on query performance. Based on this, it is further derived that if the chunk size is identical

on each dimension and total chunk size is modest, say, containing around 1 million cells, a level

recommended by SciDB developers, there is no superior dimension on which queries can be

processed faster. More tests are needed for verification, of course. Anyway, according to the tests

on dimensions order effect, it is thus suggested that the research emphasis on chunked storage

structure should move to designing appropriate chunk sizes or smartly indexing chunks instead of

data structure and indexing inside chunks.

4. Does data compression in the multidimensional array database have an impact on the query

performance?

SciDB implements RLE for data storage and that is to say, data have been compressed when stored

into SciDB arrays. SciDB constructs indexing strategy based on RLE encoded data. Other

compression types are also supported on top of the RLE encoded data. And when decompressing,

data return to the RLE state. In the tests, additional DELFATE compression is applied and compared

with normal RLE encoded version to learn the influence of DELFATE compression on query

performance.

77

Through benchmark tests, it is found that the DEFLATE compression on SciDB arrays can either

have negative effect or no effect on query performance. In addition, from the MPE time series

extraction, the performance of DEFLATE compressed SciDB arrays presents correlation with chunk

size. That is, the negative impact of DEFLATE compression on query decreases as chunk size

reduces. Although specific reasons for such a correlation still need to be investigated, it is considered

that the overhead of uncompressing large chunks inside memory is the origin.

7.2 Extension of current research

In regard to existing flaws as well as more interests inspired by the research, extension work can be

conducted. Typical directions are:

1. Chunk model. Previous researches (Lee et al., 2008) and this study demonstrate that the chunk

size is perhaps the most crucial factor for efficiency of chunked storage structure. On the other

hand, the effect of chunk size is unpredictable and for example, at which chunk size a specific

query performance experience significant tuning point. It is expected from analysis with cubic

and modest chunk sizes, sub grid selection and time series extraction can consume same amount

of time but this still needs to be clarified. Regarding this, intensive experiments can draw

specific conclusions on chunk size impact while more generic understanding relies on

theoretical support. A possible way is to propose a model concerning important factors such as

hardware configuration, data size and query habits to predict the performance of chunks. After

this, the model should be verified by comprehensive benchmark tests.

2. “Hot” and “cold” query tests. Normal approaches used to measure the average query response

time include two types. “Hot” test means that the same query is executed on each data store

consecutively several times and then average time is calculated. Caching effect is elaborated.

As the opposite, “cold” test purges the cache every time before executing each query. Lower

boundary of query response time comes from “hot” test while upper boundary depends on “cold”

test. The method used in this research however is neither of them (Section 6.2). It is a state close

to “hot”, i.e. cache is not cleaned for a specific data store but can be fluxed by caching of other

data stores. Honestly, none of these 3 approaches reflect the reality. A more scientific way might

be through analyzing query logs recorded by Hydrologic Research for instance to learn what

users query in reality and try to simulate those scenarios for testing.

3. Query performance with less memory. Caching is influential on query processing and both

NetCDF and SciDB solutions benefit much from it. However, the cached data cannot exceed

the capacity of main memory. It is therefore interesting to learn what will happen if data queried

is too large to fit into the memory. This research does not reach such an edge. Earlier experience

indicate that server query performance degradation will take place when memory is full for

databases. But the situation for file based solution is not clear yet.

4. Parallelization. Parallel data loading of SciDB with the tool loadcsv.py presents better

performance according to extra tests. But as is mentioned previously, the parallel query

processing of SciDB is not explored in the research. Also the research demonstrates the

favorable capability of NetCDF solutions without parallelization. Then a potential topic in the

future is to compare parallel query performance between SciDB and NetCDF solutions. Besides,

as data loading is indeed a problem for SciDB, effort can also be put on parallel loading

78

techniques.

7.3 Dimension and multidimensional data management

Dimension and attribute are introduced when discussing multidimensional data storage in Chapter

2. There, only some samples of what can be dimensions and attributes are presented without clearly

distinguishing these two concepts. In essence, on the abstract level for understanding the world,

there is no difference between dimension and attribute. Sounds, temperature and precipitation are

different dimensions of information acquired from the world. Location and time are also dimensions

related to life. These dimensions can also be called attributes. On the abstract level, it does not make

sense to distinguish these two concepts.

The distinction happens in the implementation and in both NetCDF and SciDB, such a distinction

between dimension and attribute exists. A simple example, a 2D grid recording precipitation show

in Figure 7.1 is used for the explanation.

1 0 0

2 2 0

2 4 1

Figure 7.1. Precipitation Map (Data scheme 1)

In most cases, attribute is the precipitation data which is stored on the disk. Dimensions have not to

be necessarily stored, they are used as indexes and can be reflected in the order of how precipitation

data is arranged on the disk. However it is possible to transform the attribute into dimension and

vice versa (Figure 7.2).

(1,2) (2,1) (2,2) (0,2) (2,0) (0,0) (0,1) (1,1) (1,0)

 0 1 2 3 4 P

Figure 7.2. Precipitation map (Data scheme 2)

In Figure 7.2, precipitation is regarded as the only dimension while the original (x, y) tuples are

stored as attributes. Sometimes multiple attributes are stored in the same grid layer, e.g. precipitation,

temperature and humidity in one dataset, which can then be transformed into another

multidimensional dataset with precipitation, temperature and humidity as dimensions. This

transformation from dimension to attribute indeed makes sense. In fact, two types of queries are

frequently referred to, one is based on dimensions, i.e. sub-selection and the other is based on

attribute values. With the first data scheme (Figure 7.1), the first type of query can be efficiently

executed while for second type of query, data scheme 2 has the superiority. The conversion between

0 1 2 X

Y

0

1

2

79

dimension and attribute also implies the transformation of the two types of query.

Now that on the abstract level, there is no difference between attributes and dimensions, a logical

thinking is to implement this in the data model, i.e. an all dimensional data model. In this model,

original attributes are realized as dimensions and what is then stored in each cell of the

multidimensional array is the information indicating whether the corresponding combination of

dimension values exists or not. Such information can be expressed by 1 bit, which entails using 0

to represent non-existence while 1 refers to existence. However, it should be noted that the

precipitation example presented above is an ideal case. In reality, measurements such as

precipitation are normally floating numbers and their range can even be unlimited, which can result

in huge overhead to implement an all dimensional data model. In other words, the resultant array

can be very sparse, a few 1 values filled in a very large multidimensional cube. From this point of

view, the all dimensional data model cannot bring any benefits. The implementation of such a model

requires more understanding.

Even with current dimension-attribute storage scheme, smart use of dimension can reach the

performance gain. In this research, the way NetCDF files of MPE dataset is managed, i.e. whole

dataset is split into many single files indeed adds an additional dimension which is the index of files.

The original contiguous data storage is split into separate data blocks on the disk thanks to the

additional dimension. Though this is some work has to be done because of the file size limitation of

64-bit offset format. Nevertheless, the query processing can then benefit from B-tree index of NTFS

system functioning on the additional dimension introduced.

Besides, a dimension always has meaning such as ensemble, time as well as the artificially created

dimension, the file index for example. The semantics of file index dimension refers to every file

consisted of 4 time steps. And due to the semantic property of dimensions, it is possible to embed

additional information or knowledge by adding artificial dimensions to original datasets, which

implies a datasets can contain more information than the original information it conveys. For

example, on the one hand, there is a rectangle image covering the coastal area of The Hague and on

the other hand, a precipitation map covering the same area needs to be stored. From the image, the

land type, i.e. sea or mainland can be derived. So it is possible to add an additional dimension, i.e.

land type to the precipitation map and split the map into two chunks according to land type

dimension. In this way, the knowledge of land type is reflected in the data storage structure of the

precipitation map, i.e. the separation of chunks. So if the image of The Hague is deleted, there is

still relevant information in the precipitation data storage. But the impediment lies in recovery of

the land type information. From two chunks, it is possible to derive an underlying dimension

composed of two members, but it is difficult to deduce that the dimension is land type. The burden

cannot simply be moved to metadata which becomes too heavy then.

By the way, the knowledge embedded in the data structure is sort of like DNA where most

information is expressed in permutation and combination of base pairs rather than the 4 bases…

80

References

Baumann, P. (1999). A database array algebra for spatio-temporal data and beyond. In Next

Generation Information Technologies and Systems (pp. 76-93). Springer Berlin Heidelberg.

Baumann, P., Dehmel, A., Furtado, P., Ritsch, R., & Widmann, N. (1998). The multidimensional

database system RasDaMan. In ACM SIGMOD Record (Vol. 27, No. 2, pp. 575-577). ACM.

Baumann, P., Furtado, P., Ritsch, R., & Widmann, N. (1997). The RasDaMan approach to

multidimensional database management. In Proceedings of the 1997 ACM symposium on Applied

computing (pp. 166-173). ACM.

Baumann, P., & Stamerjohanns, H. (2014). Towards a Systematic Benchmark for Array Database

Systems. In Specifying Big Data Benchmarks (pp. 94-102). Springer Berlin Heidelberg.

BCS. (2012). The Universal File Interface (an in-depth presentation). Retrieved from

http://www.barrodale.com/UFIinDepth.pdf

BCS. (2014). Universal File Interface (UFI): querying large files without database loading.

Retrieved from: http://www.barrodale.com/universal-file-interface-ufi

Brown, P. G. (2010). Overview of SciDB: large scale array storage, processing and analysis. In

Proceedings of the 2010 ACM SIGMOD International Conference on Management of data (pp. 963-

968). ACM.

Cohen, S., Hurley, P., Schulz, K. W., Barth, W. L., & Benton, B. (2006). Scientific formats for object-

relational database systems: a study of suitability and performance. In ACM SIGMOD Record (Vol.

35, No. 2, pp. 10-15). ACM

Colliat, G. (1996). OLAP, relational, and multidimensional database systems. In ACM SIGMOD

Record (Vol. 25, No. 3, pp. 64-69). ACM

Cornillon, P., Gallagher, J., & Sgouros, T. (2003). OPeNDAP: Accessing data in a distributed,

heterogeneous environment. Data Science Journal, 2(5), 164-174.

Cudre-Mauroux, P., Kimura, H., Lim, K. T., Rogers, J., Madden, S., Stonebraker, M., ... & Brown,

P. (2012). SS-DB: A standard science DBMS benchmark. Retrieved from: http://www-

conf.slac.stanford.edu/xldb10/docs/ssdb_benchmark.pdf

Hahn, K., Reiner, B., Höfling, G., & Baumann, P. (2002). Parallel query support for

multidimensional data: inter-object parallelism. In Database and Expert Systems Applications (pp.

820-830). Springer Berlin Heidelberg.

http://www.barrodale.com/UFIinDepth.pdf
http://www.barrodale.com/universal-file-interface-ufi
http://www-conf.slac.stanford.edu/xldb10/docs/ssdb_benchmark.pdf
http://www-conf.slac.stanford.edu/xldb10/docs/ssdb_benchmark.pdf

81

Hartnett, E., & Rew, R. K. (2008). Experience with an enhanced NetCDF data model and interface

for scientific data access. In 24th Conference on IIPS. American Metereological Society, New

Orleans C (Vol. 7).

Idreos, S., Groffen, F., Nes, N., Manegold, S., Mullender, K. S., & Kersten, M. (2012). MonetDB:

Two decades of research in column-oriented database architectures. Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering, 35, 40-45.

InterSystems. (2014). Using Caché Globals. Retrieved from

http://docs.intersystems.com/documentation/cache/20141/pdfs/GGBL.pdf

Kenan Technologies. (1996). An Introduction to multidimensional database Technology. Retrieved

from

http://www.fing.edu.uy/inco/grupos/csi/esp/Cursos/cursos_act/2003/DAP_SistDW/Material/ken96

.pdf

Lane, D. M. (2013). Introduction to Statistics. Retrieved from

http://onlinestatbook.com/Online_Statistics_Education.pdf

Lee, C., Yang, M., & Aydt, R. (2008). NetCDF-4 Performance Report. Retrieved from

http://www.hdfgroup.org/pubs/papers/2008-06_netcdf4_perf_report.pdf

Manegold, S., Kersten, M. L., & Boncz, P. (2009). Database architecture evolution: Mammals

flourished long before dinosaurs became extinct. Proceedings of the VLDB Endowment, 2(2), 1648-

1653.

Oracle. (2008). Oracle Essbase Database Administrator's Guide. Retrieved from

http://docs.oracle.com/cd/E12825_01/epm.111/esb_dbag/frameset.htm?dinconc.htm

Oracle. (2014). GeoRaster Developer's Guide, 12c Release 1 (12.1). Retrieved from

http://docs.oracle.com/cd/E16655_01/appdev.121/e17894.pdf

Pedersen, T. B., & Jensen, C. S. (2001). Multidimensional database technology. Computer, 34(12),

40-46.

Rasdaman. (2013). Rasdaman query language guide, version 9.0. Retrieved from

http://www.rasdaman.org/export/eb24d6243de082c64a898a28277cc4cb6d623f06/manuals_and_e

xamples/manuals/doc-guides/ql-guide.pdf

Rew, R., Hartnett, E., & Caron, J. (2006). NetCDF-4: Software implementing an enhanced data

model for the geosciences. In 22nd International Conference on Interactive Information Processing

Systems for Meteorology, Oceanograph, and Hydrology.

http://docs.intersystems.com/documentation/cache/20141/pdfs/GGBL.pdf
http://www.fing.edu.uy/inco/grupos/csi/esp/Cursos/cursos_act/2003/DAP_SistDW/Material/ken96.pdf
http://www.fing.edu.uy/inco/grupos/csi/esp/Cursos/cursos_act/2003/DAP_SistDW/Material/ken96.pdf
http://onlinestatbook.com/Online_Statistics_Education.pdf
http://www.hdfgroup.org/pubs/papers/2008-06_netcdf4_perf_report.pdf
http://docs.oracle.com/cd/E12825_01/epm.111/esb_dbag/frameset.htm?dinconc.htm
http://docs.oracle.com/cd/E16655_01/appdev.121/e17894.pdf
http://www.rasdaman.org/export/eb24d6243de082c64a898a28277cc4cb6d623f06/manuals_and_examples/manuals/doc-guides/ql-guide.pdf
http://www.rasdaman.org/export/eb24d6243de082c64a898a28277cc4cb6d623f06/manuals_and_examples/manuals/doc-guides/ql-guide.pdf

82

SciDB. (2014). SciDB User’s Guide. Retrieved from

http://scidb.org/HTMLmanual/14.3/scidb_ug/index.html

Seering, A., Cudre-Mauroux, P., Madden, S., & Stonebraker, M. (2012). Efficient versioning for

scientific array databases. In Data Engineering (ICDE), 2012 IEEE 28th International Conference

(pp. 1013-1024). IEEE.

Stonebraker, M., Brown, P., Poliakov, A., & Raman, S. (2011). The architecture of SciDB. In

Scientific and Statistical Database Management (pp. 1-16). Springer Berlin Heidelberg.

Stonebraker, M., & Cetintemel, U. (2005). One size fits all: An idea whose time has come and gone.

In Proceedings of the 21st International Conference on Data Engineering (pp. 2–11).

Su, Y., & Agrawal, G. (2012). Supporting user-defined subsetting and aggregation over parallel

netcdf datasets. In Cluster, Cloud and Grid Computing (CCGrid), 2012 12th IEEE/ACM

International Symposium (pp. 212-219). IEEE

Suijker, P., Alkemade, I., Kodde, M.P., & Nonhebel, A. (2014). User requirements massive point

clouds for esciences (wp1) (Technical Report). Retrieved from TU Delft library:

http://repository.tudelft.nl/view/ir/uuid%3A351e0d1e-f473-4651-bf15-8f9b29b7b800/

Unidata. (2014). In Unidata’s NetCDF website. Retrieved from

http://www.unidata.ucar.edu/software/netcdf/

Unidata. (2011). NetCDF Users’ Guide. Retrieved from

http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/

Van Oosterom, P., Marinez-Rubi, O., Horhammer, M., Geringer, D., Ravada, S., Tijssen, T.,…&

Goncalves, R. (2014). Massive point cloud data management: design, implementation and

execution of a point cloud benchmark [Paper under review]. Delft, the Netherlands: Delft University

of Technology, Faculty of Architecture.

Xie, Q. J. (2008). Oracle Spatial, Raster Data. In Encyclopedia of GIS (pp. 826-832). Springer US.

Zhang, Y., Kersten, M., & Manegold, S. (2013). SciQL: array data processing inside an RDBMS.

In Proceedings of the 2013 international conference on Management of data (pp. 1049-1052). ACM.

Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE

Transactions on information theory, 23(3), 337-343.

http://scidb.org/HTMLmanual/14.3/scidb_ug/index.html
http://repository.tudelft.nl/view/ir/uuid%3A351e0d1e-f473-4651-bf15-8f9b29b7b800/
http://www.unidata.ucar.edu/software/netcdf/
http://www.unidata.ucar.edu/software/netcdf/docs/netcdf/

83

Appendix A: Questionnaire for expert

consultancy

Q1: What kind of queries do you execute most?

(Query mainly refers to queries executed with SQL, or simple calculations that can be expressed

using SQL. Complex computation based on data, for instance data assimilation is not the query.

Some query examples are provided below,

E.g.1 aggregation, from monthly rainfall to yearly rainfall

E.g.2 selection of subset, select data from 2001 to 2010 from original dataset which ranges from

1990 to 2013

E.g.3 Some soil moisture datasets have a flag field which indicates the accuracy of the data, so if

the data value exceed the accuracy threshold, then this data value should not be selected and used.

Above queries are just examples, do not be constrained by these examples.)

Q2: For queries you mentioned above, which datasets are they based on? How many dimensions do

these datasets have?

(Dimension refers to the property to confine the data of interest. For example, in a 5 dimensional

precipitation forecast dataset, the data of interest is of course the precipitation. While it contains

latitude and longitude dimensions, a temporal dimension, a perturbation dimension which indicates

the ensembles (normally 20 times). And the last dimension is the time you run the forecast model.)

Q3: Which format (which version, for example NetCDF has version 1 to 4) is used to store the

datasets you mentioned or are they stored in the database?

(Besides, you may also provide some general remarks about database or data formats used by

hydrologists)

Q4: What problems did you encounter with executing queries using the data format or database?

(Are they efficient for running queries? Are the data retrieved expected by you, i.e. may be the data

returned contains only part of the data you wanted?)

Q5: Do you think big data (mainly refer to big size) is a problem or will the big data become a

problem in hydrologic domain in the future?

(Have you ever thought about it?)

Q6: Do you have experience with parallel query processing or data compression techniques which

can improve the query efficiency?

84

Appendix B: Records of interview

Interview with Dr.ir.Steele-Dunne from water resources management group in TU Delft.

Q: I am now doing a research on comparison of querying efficiency between a multidimensional

database and NetCDF. And as an expert of remote sensing and soil moisture, you must have a lot

experience dealing with satellite data or other relevant datasets, so which queries do you execute

most frequently?

A: I usually process satellite datasets in which observations are within swaths and outside those

swaths, there is no data. So in a NetCDF file which encodes a whole array, which can be soil

moisture for example, only cells within a swath have observation values and other cells contain null

value. A frequent task I do is to retrieve those cells which hold values and then start interpretation.

Using NetCDF, each cell should be checked and then cells containing non-null values can be

extracted, which takes some time. But since the datasets I use can be utmost several GBs, querying

efficiency is not a big issue. In addition, for some soil moisture products, they also include a flag

layer indicating whether soil moisture values in corresponding cells contain high errors. So another

job we do is to exclude those cells which do not satisfy quality constraints.

Well, since my job is mainly about interpreting the data and then demonstrating the physics behind

these data, not so many queries are performed. But there is a project called Digital Delta in which

our group is also involved and its aim is to integrate different kinds of hydrologic datasets on a

platform and then serve as a portal for users to download data. Perhaps you can find queries which

are executed most or other relevant information about querying on the website of that project.

Q: OK, then which datasets are often used for you analysis?

A: Remote sensing data, like TRMM, GRACE or SMOS. Besides, I still recommend you the Digital

Delta project where you can find popular datasets as well.

85

Interview with Dr.ir.Siek from Hydrologic Research B.V.

Q: As an expert of hydroinformatics, you must have lots of experience of querying hydrologic data.

So what kind of queries do you often execute?

A: Hydrologists typically have various kinds of observed data to be processed and analyzed. My

current work mostly relates to hydraulic and hydrologic modelling. For these modelling, I often

program my own scripts to read and process the data which are stored in formats that are simple to

operate like .txt or gis files. As the data is mostly not stored in a database, some queries are not

really required. For instance, a historic precipitation time series collected by rainfall gauges is a

crucial input for a typical hydrologic model for calibration. If the calibration period is 30 years, a

single txt file is used to store precipitation time series of 30 years recorded by each gauge. For

missing values, there is a flag column in the file indicating no value for specific time steps which is

15 minutes. The program can recognize this and run without errors popping up.

Q: Michael, you have talked something about the data you use but I want more details. So how large

are the datasets, how many dimensions do they have? Do you also process data stored in NetCDF

or database?

A: For hydrologic modelling I mentioned, the model input data are evaporation, precipitation, runoff,

etc. The size could in total be as large as 500 MB for one model. There are just three columns for

these datasets: date time, input variable and a flag indicating missing value. For my current work, I

seldom use NetCDF data or retrieve data from database.

Q: What do you think of big data from a hydrologist point of view? And do you have experience

with techniques like compression or parallel processing to improve performance of data processing?

A: I do not think large raw data is a problem, but the data analysis of it could create a very large

data. From my experience, hydrologic raw data size increases linearly. That is to say, this year the

data size is 500 MB for example, next year, it can be more or less double to 1000 MB, assuming

they have the same data structure and spatiotemporal resolutions.

I never tried data compression nor parallel processing, but the memory block data retrieval was used

to foster the highly-required computation for model calibration. Personally, I think compression

takes more time due to the required compressing and decompressing processes, but this depends on

case by case. On the other hand, parallel computing has a great potential to speed up the large data

processing.

86

Interview with Prof. Wang from school of hydrology and water resources, Hohai University

Q: As a professor specialized in hydrologic remote sensing and hydrometeorology, you must have

some experience with executing queries on various hydrologic datasets. And which type of query

do you run most frequently?

A: Data analysis is a very important part in our research, but we do not explicitly execute queries in

databases. Instead, some professional softwares like R and Matlab are normally applied for these

work.

We mainly use two kinds of data. First type of data is ground-based observations, mainly

precipitation or discharge data stored in txt or excel files. For these data, we can perform trend

analysis which majorly include two types. One is the change of total value. Take precipitation as an

example, the data we use are daily based and we want to know whether the rainfall increases or

decreases over 60 years. Then these daily precipitation records should be summed into yearly data

for analysis. The other trend analysis type is the change of extreme value, for instance, how the

maximum precipitation changes during decades of years. For precipitation of each year, peaks, that

is maximum rainfall values should be averaged. After it, statistical methods can be performed on

the averaged extreme rainfall value of each year to detect the trend.

The second type of data are products processed from satellite imageries, for example, MODIS.

There are many MODIS products freely available on line, such as land surface temperature, NDVI

and NPP (Net Primary Productivity), but data quality is not guaranteed. So we need to select data

based on the data quality. But the selection is more or less empirical, depending on the purpose and

the cloud coverage for the area of interest. For instance, at daily time interval, we may select land

surface temperature products with less than 10% no-value data which indicate cloud contamination

for a given catchment. After the quality control, we can use the products for some further analysis,

such as estimating soil moisture or evapotranspiration.

Q: How many dimensions do these datasets have and do you have experience with NetCDF or

databases?

A: For precipitation and discharge data itself, it is only one dimensional. But there are many stations

normally, so that is also a three-dimensional problem, i.e., two spatial dimensions and one time

dimension. For satellite’s products, normally they contain two spatial dimensions and that is

longitude and latitude. Normally we should analyze the temporal changes of what we observe from

satellite images, so that is also a three-dimensional issue.

Except time series stored in ASCII files, remote sensing products we use are often stored in GeoTiff

or IMAGE formats which are easy to process with mature proffessional softwares like ArcGIS. We

do not often use NetCDF. Also, my group seldomly apply databases. There are standards for storing

precipitation or flow data in China like which attributes should be recorded and how the metadata

should be like. With these standards, it is convenient to manage data in databases. While for research,

we usually store data in a casual and specific way to achieve high processing efficiency and

87

databases do not have the priority.

Q: Do you think big data will become a headache for hydrologists in the future? And do you have

experience with compression or parallel processing techniques to improve efficiency of data

processing?

A: Whether big data will become a problem or not depends on the aim and application. For my

research, for example, mostly we focus on a certain area such as a basin. Even though in the future,

data volume can get larger and larger, but for analysis in a certain area which only takes limited

kinds of datasets as input, we do not require very high computing power. But for data centres which

provide different datasets, I do think big data will be an issue.

As to compression, some remote sensing data have already been compressed and there are

corresponding softwares to interpret these data. So there is no need to further compress them. For

time series, we do not implement compression.

Parallelization is a potential technique. For instance when combining distributed hydrologic

modelling with EnKF algorithm, the iteration process indeed costs lots of time and parallel structure

would improve the performance.

88

Interview with Ir. Commandeur from Hydrologic Research B.V.

Q: I know you are one of the main developers of HydroNet, a hydrologic information system

provides hydrometeorological services. So can you tell me types of queries frequently executed by

you or your clients?

A: HydroNET is the core product of our company and through it, we provide services for hydrologic

experts to perform their own analysis. Besides that, we also do our own hydrologic projects. On the

whole, queries can be categorized into several types.

1. Sub-selection of original datasets. For example, select the rainfall data of Delft from a rainfall

raster of the world. Sub-selection of time series is also included.

2. Extraction of time series from a set of rasters at different time steps.

3. Statistical operations. These includes simple mathematic calculations such as averaging or

summing. A particular statistical problem is to determine extreme events from datasets. Taking

precipitation as an example, this means locating pixels of maximum precipitation values from

a spatial-temporal rainfall cubic dataset.

4. Determination of percentile for forecast datasets. Normally a set of ensembles are used in a

forecast model to produce forecast datasets like precipitation forecast data. Before we use these

forecast data, a specific percentile, e.g. 80th percentile of the dataset has to be calculated to

filter out large values.

5. Subtraction one layer from another layer. For example, to calculate the quantity of water held

by the ground. We should subtract evapotranspiration data from precipitation data. A problem

exists that the resolution of involved datasets may be different, so techniques like interpolation

should be performed before the subtraction.

Q: What datasets are involved in the queries you mentioned and how many dimensions do these

datasets have?

A: Queries are based on datasets of different dimensions. These datasets include,

1. Time series recorded by gauges like precipitation, discharge and temperature. They are one

dimensional datasets.

2. Precipitation data derived from Doppler radar and a step further, calibrated radar precipitation

data using data recorded by gauges. They include three dimensions, x, y and time.

3. Satellite data products like precipitation and soil moisture. And they are also consisted of two

spatial dimensions and a temporal dimension.

4. Forecast datasets like GEFS precipitation forecast data including five dimensions, longitude,

latitude, time, perturbation and model run time.

5. Orbiting satellite observation datasets. Data are recorded for different swaths and have x, y two

dimensions.

Q: Which formats are these datasets stored with and do you also retrieve data from databases?

89

A: I usually get multidimensional datasets stored in GRIB 1/2, HDF5, NetCDF, BUFR and ASCII.

To manage these different datasets, our company developed a NetCDF-1 system which can

transform all these formats into NetCDF-1. Then our analysis and services can all be constructed on

NetCDF. We also retrieve time series data from MySQL database constructed by data providers.

Q: What problems did you encounter with running queries either using the database or NetCDF?

A: Extraction time series from spatial layers takes a lot of time using NetCDF-1. Another problem

with requesting data from MySQL database is that it is impossible to input the spatial coordinate of

a station to get the recorded time series. You can only retrieve the data with station ID.

Q: Nowadays, big data is an issue facing many disciplines. As a water-ICT experts, what is your

opinion about big data? Have you ever try compression or parallel processing techniques which may

improve data processing efficiency?

A; Scientists and engineers have already proposed smart approaches to solve big data problem like

cloud computing and distributed computing. For hydrology, it is not difficult to build workbench in

cloud to tackle hydrologic big data issue. We have already use multi-threads approaches based on

GPU to run hydrodynamic models and achieved performance gain. For data compression, I think it

can help improve the query efficiency because I/O transfer is the most time consuming part for

executing queries and compression can decrease the data transferred from disk to caches. .

90

Interview with Ing. Van der Wielen from Hydrologic B.V.

Q: You are the hydro-ICT engineer from Hydrologic and I learnt that you were constructing web

services for providing water information. So could you tell me hydrologic queries executed most

frequently either by clients or you?

A: I run several types of queries most frequently and they are,

1. For time series data like precipitation data collected by specific gauges, we do sub-selection

and summation.

2. Extracting time series from grid layers.

3. Subtraction of accumulated data. Instead of storing variable at specific intervals, we store the

accumulated values. For example, for rainfall observed every five minutes, the original dataset

may be 5, 5, 5..., while we store accumulated data for convenience of certain queries and

accumulated dataset should then be 5, 10, 15... So a query can be what is the amount of rainfall

for a certain hour and this is concerned with subtraction of the dataset at start and end time

steps.

4. Combining data of two different grids. An example is actual precipitation deficit, which is

precipitation minus evaporation. The precipitation grid is in a different projection from the

evaporation grid, which means the grids need to be intersected. Each cell in the evaporation

grid needs to know the percentage of intersecting with precipitation grid cells. Calculating /

retrieving this intersection is currently the most intensive task. Later we do summation of the

combined data along temporal dimension.

5. Intersecting polygons with grids, a spatial operation.

6. We are also working on a new application where colors will be applied to polygons depending

on the underlying values based on intersection of polygons and grids.

Q: What are the datasets these queries based on? How are these datasets stored?

A: As is elaborated partly earlier, datasets are,

1. Time series data for certain locations, 2D including time and location.

2. Radar data, 3D including x, y and time.

3. Results from hydrologic model, 4D including x, y, time and model run date

4. Forecast data, 5D including x, y, time, ensemble and model run date

We use MySQL to store some point time series data while for nearly all grid data, we apply NetCDF

classic format.

Q: What problems did you encounter with executing queries using the data format or database?

A: The biggest problem right now is intersecting grids from different projections. Actually

intersection operation is not very serious. But problem lies that we store intersections in cache,

which is of course volatile and data are removed when restarting the API, for example. And this is

91

not efficient. Besides, as is mentioned earlier, although using accumulated grids can bring

convenience for some scenarios, it also has drawbacks. For instance, once a time layer is added

which is originally missing will lead to the recalculation of values at all following time steps.

Another problem is that currently our WMS service can only read the complete grid rather than the

extent to which the user is zoomed in. This may cause problems with large grids.

Q: Do you think big data will become a problem in hydrologic domain in the future? We focus big

data size here.

A: Yes, big data will be a challenge for us because we will soon have to deal with very large data

sets: meteorologic data of Yemen containing 1.2 billion cells of 30x30m and evaporation data in the

Netherlands at 8x8m cell size.

As a matter of fact, big data will not be the issue if the data is static. However, in reality, normally

dynamic dimensions like time and ensembles are involved, which then cause the problem.

Q: Do you have experience with parallel query processing or data compression techniques which

can improve the query efficiency?

A: Accumulated grids as mentioned before has an enormous performance gain for some scenarios,

but it has shortcomings. I have experience with multi-threads calculation using CUDA, which helps

solve intensive calculations on data in memory. But I think bottleneck lies in the hard drive speed,

not memory speed. I don’t use parallel query processing and compression techniques. While I guess

compression will speed up data retrieval from the hard drive, but it depends on the speed of the

decompression algorithm. There’s probably a break-even point somewhere depending on the scale

of the retrieved data size and also the CPU speed and HDD speed.

In the near future we will develop a scaling algorithm to create pyramids, i.e. coarser versions of

the original data set. If a user is zoomed out to a large extent, he will see the coarse data rather than

the fine data. So preprocessing pyramids can be a technique to improve query efficiency.

92

Reply from Ir. Villa Real in IBM using questionnaire

Q1: What kind of queries do you execute most on hydrological/multidimensional data?

(Query mainly refers to queries executed with SQL, or simple calculations that can be expressed

using SQL. Complex computation based on data, for instance data assimilation is not the query.

Some query examples are provided below,

E.g.1 aggregation, from monthly rainfall to yearly rainfall

E.g.2 selection of subset, select data from 2001 to 2010 from original dataset which ranges from

1990 to 2013

E.g.3 Some soil moisture datasets have a flag field which indicates the accuracy of the data, so if

the data value exceed the accuracy threshold, then this data value should not be selected and used.

Above queries are just examples, do not be constrained by these examples.)

A1: The input data we have is comprised of various NetCDF files, each of which representing a

specific feature of the area of interest (e.g. elevation data, soil type, land use, initial soil saturation

conditions). Most of these grids are processed once (we crop them to the extents of interest, sanitize

them to make sure cells have values that make sense, etc) and used many times. The only flag which

we utilize is the so-called “NODATA”, that masks out certain parts of the grids from the simulation.

Anyhow, given that our tools deal with NetCDF directly we do not issue any SQL queries. Rather,

we simply read the files and skip the areas which are not of interest to us during runtime.

Q2: For queries you mentioned above, which datasets are they based on? How many dimensions do

these datasets have?

(Dimension refers to the property to confine the data of interest. For example, in a 5 dimensional

precipitation forecast dataset, the data of interest is of course the precipitation. While it contains

latitude and longitude dimensions, a temporal dimension, a perturbation dimension which indicates

the ensembles (normally 20 times). And the last dimension is the time you run the forecast model.)

A2: Besides the single-variable NetCDF files mentioned above, we too have precipitation grids

produced by WRF. Each of these grids is given as NetCDF and variables have typically a resolution

of 1x90x90 – meaning it's a 1-dimensional grid with a resolution of 90x90. We care about 5 variables

at most, whereas the original NetCDF file comes with more than 200 variables. To save space we

remove the variables that we do not care about with the NCO tools, and then transfer the modified

files to the computer(s) that will utilize them. It's worth mentioning that rather than having multi-

dimensional precipitation variables, we have multiple NetCDF files, each of which containing data

for a given simulation time step.

Q3: Which format (which version, for example NetCDF has version 1 to 4) is used to store the

datasets you mentioned or are they stored in the database?

(Besides, you may also provide some general remarks about database or data formats used by

hydrologists)

A3: We use NetCDF version 3 for now, but are intending to upgrade to NetCDF 4 for larger datasets.

93

Q4: What problems did you encounter with executing queries using the data format or database?

(Are they efficient for running queries? Are the data retrieved expected by you, i.e. may be the data

returned contains only part of the data you wanted?)

A4: All problems that we had so far had to do with two things: (a) parsing NetCDF files can be

tricky because of the lack of official ways (i.e. flags) to tell if a file is turned upside down or not,

and (b) the NetCDF format has several limitations on the size of the grids that it can hold, even

when 64-bit support is enabled and used. Regarding performance we have found in Parallel NetCDF

a great way to improve I/O, although there are some considerations that need to be addressed in the

software to properly use it.

Q5: Do you think big data (mainly refer to big size) is a problem or will the big data become a

problem for hydrologists in the future?

(Have you ever thought about it?)

A5: It already is a problem today, especially for those working with large domains (say, a whole

continent) or with high resolution data such as LiDAR. Satellites are becoming more accessible than

ever, and they also have increased resolution as compared with former products (e.g. VIIRS,

LANDSAT). The combination of the various datasets used in hydrological models is therefore a

problem that needs to be addressed somehow at the storage level and from an I/O perspective.

Q6: Do you have experience with techniques like parallel query processing or data compression

which can improve the query efficiency?

A6: I have been using Parallel NetCDF (which relies on MPI infrastructure) with a degree of success.

There is still work going on to improve performance using different load balancing techniques, but

we were able to have dramatic performance gains with its use.

With regard to data compression, I have evaluated HDF5 with different compression settings. The

impact of the on-the-fly decompression was significant, though, making it prohibitive to operational

flood forecasting. I have also attempted to save the static data in a compressed file system called

SquashFS, but the very same observation with regard to performance apply.

It seems to me that Huffman-based compression algorithms are not the way to go when both space

and performance need to be optimized. One possible approach is to employ the use of file systems

with de-duplication support. De-duplication works at the block layer, meaning that two if two blocks

are the same then it will be saved only once in the hard disk. There is no performance degradation

to read the file back, because there is nothing to decompress. I have not tested such file systems in

the realm of hydrology yet, however. My experience with that comes from evaluation of storing

dozens of virtual machine images on said file systems.

94

Appendix C: Two HydroNET-4 data

structures

Grid{

 GridDescription{

 CellHeight,

 CellWidth,

 Columns,

 Rows,

 XLL,

 YLL

 },

 Start date,

 End date,

 Interval,

 Projection,

 Variable{

 Values

},

 Data type,

 NoDataValue,

 Availability,

 Quality

}

TimeSeries{

 Location{

 X, Y

 },

 Start date,

 End date,

 Interval,

 Projection,

 Variable{

 Values,

 Dates,

 Qualities,

 Availabilities

 },

 Data type,

 NodataValue

}

95

Appendix D: Configuration file of SciDB

[hydronet]

server-0=localhost,0

db_user=hydrologic

db_passwd=hydroresearch

install_root=/opt/scidb/14.3

pluginsdir=/opt/scidb/14.3/lib/scidb/plugins

logconf=/opt/scidb/14.3/share/scidb/log4cxx.properties

base-path=/home/scidb/data

tmp-path=/tmp

base-port=1239

interface=eth0

enable-catalog-upgrade=true

max-memory-limit=3072

96

Appendix E: Communicating records with SciDB team

Issue Web link Time

NetCDF loader for SciDB http://www.scidb.org/forum/viewtopic.php?f=13&t=1309 18/03/2014

SciDB interface on Windows http://www.scidb.org/forum/viewtopic.php?f=13&t=1337 17/04/2014

Inserting data records into SciDB with AFL http://www.scidb.org/forum/viewtopic.php?f=11&t=1348 06/05/2014

Retrieving storage details of chunks and arrays from SciDB http://www.scidb.org/forum/viewtopic.php?f=13&t=1368 11/06/2014

Possibility to load CSV file directly into a final multidimensional array without one

dimensional load array
http://www.scidb.org/forum/viewtopic.php?f=11&t=1378 24/06/2014

Specific implementation of SciDB operator “filter”, “between” and “subarray” http://www.scidb.org/forum/viewtopic.php?f=13&t=1388 14/07/2014

Deleting array versions, which causes significant overload when load large datasets http://www.scidb.org/forum/viewtopic.php?f=11&t=1393 16/07/2014

Importing 5D ensemble forecast data into SciDB http://www.scidb.org/forum/viewtopic.php?f=11&t=1397. 24/07/2014

Tool to observe SciDB resource usage in real time http://www.scidb.org/forum/viewtopic.php?f=11&t=1387 30/07/2014

Increasing memory usage of SciDB after starting up, a problem with utilization of small

chunk size for storage
http://www.scidb.org/forum/viewtopic.php?f=11&t=1437 02/09/2014

SciDB instance setting, run length encoding for storage and influence of using unlimited

dimension on query performance
http://www.scidb.org/forum/viewtopic.php?f=11&t=1441 06/09/2014

Influence of the order of dimension on SciDB array storage structure and query

performance
http://www.scidb.org/forum/viewtopic.php?f=11&t=1449 29/09/2014

Chunk size and total array storage size http://www.scidb.org/forum/viewtopic.php?f=11&t=1455 07/10/2014

http://www.scidb.org/forum/viewtopic.php?f=13&t=1309
http://www.scidb.org/forum/viewtopic.php?f=13&t=1337
http://www.scidb.org/forum/viewtopic.php?f=11&t=1348
http://www.scidb.org/forum/viewtopic.php?f=13&t=1368
http://www.scidb.org/forum/viewtopic.php?f=11&t=1378
http://www.scidb.org/forum/viewtopic.php?f=13&t=1388
http://www.scidb.org/forum/viewtopic.php?f=11&t=1393
http://www.scidb.org/forum/viewtopic.php?f=11&t=1397
http://www.scidb.org/forum/viewtopic.php?f=11&t=1387
http://www.scidb.org/forum/viewtopic.php?f=11&t=1437
http://www.scidb.org/forum/viewtopic.php?f=11&t=1441
http://www.scidb.org/forum/viewtopic.php?f=11&t=1449
http://www.scidb.org/forum/viewtopic.php?f=11&t=1455

97

Appendix F: Bash scripts for GEFS test on

dimensions order effect

Script 1

#!/bin/bash

#Test on SciDB_GEFS_S1, SciDB_GEFS_S2, SciDB_GEFS_S3 and

SciDB_GEFS_S4

for ((i=1; i<=10; i++))

do

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(project(between(GEFS_S1,675,0,17,38,184,675,19,17,38,184

),APCP))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(project(between(GEFS_S2,675,17,38,184,0,675,17,38,184,19

),APCP))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(project(between(GEFS_S3,184,38,17,0,675,184,38,17,19,675

),APCP))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(project(between(GEFS_S4,0,184,38,17,675,19,184,38,17,675

),APCP))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(aggregate(project(between(GEFS_S1,675,0,17,38,184,675,19

,17,38,184),APCP),avg(APCP),X_idx,Y_idx,F_idx))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(aggregate(project(between(GEFS_S2,675,17,38,184,0,675,17

,38,184,19),APCP),avg(APCP),X_idx,Y_idx,F_idx))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(aggregate(project(between(GEFS_S3,184,38,17,0,675,184,38

,17,19,675),APCP),avg(APCP),X_idx,Y_idx,F_idx))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(aggregate(project(between(GEFS_S4,0,184,38,17,675,19,184

,38,17,675),APCP),avg(APCP),X_idx,Y_idx,F_idx))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

98

done

Script 2

#!/bin/bash

#Test on SciDB_GEFS_C1, SciDB_GEFS_C2, SciDB_GEFS_C3 and

SciDB_GEFS_C4

for ((i=1; i<=10; i++))

do

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(project(between(GEFS_C1,675,0,17,38,184,675,19,17,38,184

),APCP))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(project(between(GEFS_C2,675,17,38,184,0,675,17,38,184,19

),APCP))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(project(between(GEFS_C3,184,38,17,0,675,184,38,17,19,675

),APCP))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(project(between(GEFS_C4,0,184,38,17,675,19,184,38,17,675

),APCP))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(aggregate(project(between(GEFS_C1,675,0,17,38,184,675,19

,17,38,184),APCP),avg(APCP),X_idx,Y_idx,F_idx))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(aggregate(project(between(GEFS_C2,675,17,38,184,0,675,17

,38,184,19),APCP),avg(APCP),X_idx,Y_idx,F_idx))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(aggregate(project(between(GEFS_C3,184,38,17,0,675,184,38

,17,19,675),APCP),avg(APCP),X_idx,Y_idx,F_idx))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

 /usr/bin/time -f "%e" -a -o GEFS_localtest iquery -anq

"consume(aggregate(project(between(GEFS_C4,0,184,38,17,675,19,184

,38,17,675),APCP),avg(APCP),X_idx,Y_idx,F_idx))"

 sudo sh -c 'echo 3 >/proc/sys/vm/drop_caches'

done

99

0

0.5

1

1.5

2

2.5

3

Q
u

er
y
 r

es
p

o
n

se
 t

im
e

(s
)

Data store

Tiny Small Medium Large Very large

Appendix G: Benchmark figures

MPE benchmark figures

Figure G1. Distribution of 20 benchmark measurements of each data solution for retrieving the grid covering Delft at one time step.

Scheme Chunk size

C1, C1_C 4 x 4000 x 4000

C2, C2_C 1 x 4000 x 4000

C3, C3_C 4 x 800 x 800

C4, C4_C 1 x 800 x 800

C5, C5_C 4 x 100 x 100

C6, C6_C 1 x 100 x 100

100

0.042

0.011

0.466

0.154
0.172

0.110 0.105

0.074 0.077
0.080 0.085 0.078 0.070

0.091 0.084

0.035
0.011

0.473

0.269

0.138

0.101
0.085

0.150

0.089

0.070 0.079

0.102 0.082

0.072

0.085

0.037

0.011

0.510

0.162

0.174

0.091
0.085

0.074

0.064
0.077

0.099
0.084 0.075

0.067
0.069

0.045

0.010

0.429

0.065 0.071
0.046

0.011

0.469

0.102
0.079

0.000

0.100

0.200

0.300

0.400

0.500

0.600

A
v
er

ag
e

q
u

er
y
 r

es
p

o
n

se
 t

in
e

(s
)

Data store

Tiny Small Medium Large Very large

Figure G2. Performance of diverse data solutions for retrieving the grid covering Delft at one time step

Scheme Chunk size

C1, C1_C 4 x 4000 x 4000

C2, C2_C 1 x 4000 x 4000

C3, C3_C 4 x 800 x 800

C4, C4_C 1 x 800 x 800

C5, C5_C 4 x 100 x 100

C6, C6_C 1 x 100 x 100

101

0

0.5

1

1.5

2

2.5

3

3.5

4
Q

u
er

y
 r

es
p

o
n

se
 t

im
e

(s
)

Data store

Tiny Small Medium Large Very large

Figure G3. Distribution of 20 benchmark measurements of each data solution for retrieving the grid covering northern part of the Netherlands at one time step

Scheme Chunk size

C1, C1_C 4 x 4000 x 4000

C2, C2_C 1 x 4000 x 4000

C3, C3_C 4 x 800 x 800

C4, C4_C 1 x 800 x 800

C5, C5_C 4 x 100 x 100

C6, C6_C 1 x 100 x 100

102

0.036

0.012

0.462

0.144 0.158 0.159

0.099 0.103 0.092
0.123

0.086

0.156

0.116

0.090
0.110

0.029 0.013

0.467

0.215

0.166

0.117
0.139

0.124

0.090

0.152 0.147 0.154

0.102
0.121 0.113

0.027 0.012

0.499

0.190 0.189

0.088 0.094

0.187

0.109

0.094 0.088

0.141

0.072 0.082

0.142

0.030
0.012

0.430

0.067
0.063

0.027

0.013

0.483

0.120
0.094

0.000

0.100

0.200

0.300

0.400

0.500

0.600

A
v
er

ag
e

q
u

er
y
 r

es
p

o
n

se
 t

in
e

(s
)

Data store

Tiny Small Medium Large Very large

Figure G4. Performance of diverse data stores for retrieving the grid covering northern part of the Netherlands.

Scheme Chunk size

C1, C1_C 4 x 4000 x 4000

C2, C2_C 1 x 4000 x 4000

C3, C3_C 4 x 800 x 800

C4, C4_C 1 x 800 x 800

C5, C5_C 4 x 100 x 100

C6, C6_C 1 x 100 x 100

103

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Q
u

er
y
 r

es
p

o
n

se
 t

im
e

(s
)

Data store

Tiny Small Medium Large Very large

Figure G5. Distribution of 20 benchmark measurements of each data solution for retrieving 8-step time series from a spot location in the Indian Ocean.

Scheme Chunk size

C1, C1_C 4 x 4000 x 4000

C2, C2_C 1 x 4000 x 4000

C3, C3_C 4 x 800 x 800

C4, C4_C 1 x 800 x 800

C5, C5_C 4 x 100 x 100

C6, C6_C 1 x 100 x 100

104

0.129 0.020

3.956

0.238
0.236

0.275
0.223 0.111 0.086 0.123

0.108
0.105

0.073

0.114 0.094
0.150 0.022

3.968

0.327
0.388 0.286

0.254 0.132 0.140

0.091

0.316 0.115 0.114
0.081

0.089 0.088 0.017

4.249

0.274
0.294

0.240

0.258

0.087 0.079

0.134
0.129

0.101
0.117

0.136
0.123

0.325 0.024

3.710

0.092

0.080

0.397

0.020

3.738

0.091

0.109

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

A
v
er

ag
e

q
u

er
y
 r

es
p

o
n

se
 t

in
e

(s
)

Data store

Tiny Small Medium Large Very large

Scheme Chunk size

C1, C1_C 4 x 4000 x 4000

C2, C2_C 1 x 4000 x 4000

C3, C3_C 4 x 800 x 800

C4, C4_C 1 x 800 x 800

C5, C5_C 4 x 100 x 100

C6, C6_C 1 x 100 x 100

Figure G6. Performance of diverse data stores for retrieving 8-step time series from a spot location in the Indian Ocean.

105

0

5

10

15

20

25

30

35

40

45

50

Q
u

er
y
 r

es
p

o
n

se
 t

im
e

(s
)

Data store

8-step 24-step 96-step

Figure G7. Distribution of 20 benchmark measurements of each data solution at medium level for retrieving time series of different lengths from a spot location in the

Indian Ocean.

Scheme Chunk size

C1, C1_C 4 x 4000 x 4000

C2, C2_C 1 x 4000 x 4000

C3, C3_C 4 x 800 x 800

C4, C4_C 1 x 800 x 800

C5, C5_C 4 x 100 x 100

C6, C6_C 1 x 100 x 100

106

0.088 0.017

4.249

0.274 0.294 0.240 0.258 0.087 0.079 0.134 0.129 0.101

0.117 0.136 0.123 0.590 0.047

11.688

0.877
1.676 0.759 1.417

0.185 0.287 0.162 0.288 0.105
0.075 0.108 0.081

2.346 0.137

46.594

3.231

5.896

3.298

5.967

0.434 0.790 0.433 0.782 0.157
0.110

0.358 0.137

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

A
v
er

ag
e

q
u

er
y
 r

es
p

o
n

se
 t

in
e

(s
)

Data store

8-step 24-step 96-step

Scheme Chunk size

C1, C1_C 4 x 4000 x 4000

C2, C2_C 1 x 4000 x 4000

C3, C3_C 4 x 800 x 800

C4, C4_C 1 x 800 x 800

C5, C5_C 4 x 100 x 100

C6, C6_C 1 x 100 x 100

Figure G8. Performance of diverse data solutions at medium level for retrieving time series of diverse lengths from a spot location in the Indian Ocean.

107

0.088
0.017

4.249

0.274 0.294
0.240

0.258 0.087
0.079

0.134 0.129 0.101 0.117 0.136 0.123
0.197

0.016

3.896

0.292

0.559

0.253
0.472

0.062
0.096

0.054
0.096

0.035 0.025
0.036 0.027 0.195

0.011

3.883

0.269

0.491 0.275
0.497

0.036 0.066 0.036
0.065

0.013 0.009
0.030 0.011

0.000

0.500

1.000

1.500

2.000

2.500

3.000

3.500

4.000

4.500

A
v
er

ag
e

q
u

er
y
 r

es
p

o
n

se
 t

im
e

(s
)

Data store

8-step 24-step 96-step

Figure G9. Aligned performance of diverse data solutions at medium level for retrieving time series of different lengths from a spot location in the Indian Ocean.

Scheme Chunk size

C1, C1_C 4 x 4000 x 4000

C2, C2_C 1 x 4000 x 4000

C3, C3_C 4 x 800 x 800

C4, C4_C 1 x 800 x 800

C5, C5_C 4 x 100 x 100

C6, C6_C 1 x 100 x 100

108

0.106 0.020 0.106
0.097

0.369 0.046
0.095

0.121
2.010

0.137
0.210

0.234

12.027

1.091
2.280

3.066

50.536

3.950

17.069 15.970

0

10

20

30

40

50

60

64-bit offset MPE NetCDF4_MPE_C2 SciDB_MPE_C4_vlarge SciDB_MPE_C4_C_vlarge

A
v
er

ag
e

q
u

er
y
 r

es
p

o
n

se
 t

in
e

(s
)

Data store 8-step 24-step 96-step 672-step 2880-step

Figure G10. Distribution of 20 benchmark measurements for each data solution at very large level

for retrieving time series of different lengths from a spot location in the Indian Ocean

Figure G11. Performance of diverse data solutions at very large level for retrieving time series of

different lengths from a spot location in the Indian Ocean

Figure G12. Aligned performance of diverse data solutions at very large level for retrieving time

series of different lengths from a spot location in the Indian Ocean

0

10

20

30

40

50

60

70

80

90

100

64-bit offset MPE NetCDF4_MPE_C2 SciDB_MPE_C4_vlarge SciDB_MPE_C4_C_vlarge

Q
u

er
y
 r

es
p

o
n

se
 t

im
e

(s
)

Data store 8-step 24-step 96-step 672-step 2880-step

0.106

0.020

0.106
0.097

0.123

0.015

0.032
0.040

0.168

0.011
0.018 0.019

0.143

0.013
0.027

0.036

0.140

0.011

0.047 0.044

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

64-bit offset MPE NetCDF4_MPE_C2 SciDB_MPE_C4_vlarge SciDB_MPE_C4_C_vlarge

A
v
er

ag
e

q
u

er
y
 r

es
p

o
n

se
 t

im
e

(s
)

Data store 8-step 24-step 96-step 672-step 2880-step

Scheme Chunk size

C2 1 x 4000 x 4000

C4, C4_C 1 x 800 x 800

109

0.166 0.052 0.537 0.465
0.533 0.105

0.922 0.922 2.625 0.449 3.139 3.097
18.153

2.836
23.198 23.098

171.442

122.742 127.864
113.521

0

20

40

60

80

100

120

140

160

180

200

64-bit offset MPE NetCDF4_MPE_C2 SciDB_MPE_C4_vlarge SciDB_MPE_C4_C_vlarge

A
v
er

ag
e

q
u

er
y
 r

es
p

o
n

se
 t

in
e

(s
)

Data store 8-step 24-step 96-step 672-step 2880-step

Figure G13. Distribution of 20 benchmark measurements for each data solution at very large level

for average calculation with different time steps at the Netherlands scale

Figure G14. Performance of diverse data solutions at very large level for average calculation with

different time steps at the Netherlands scale

Figure G15. Aligned performance of diverse data solutions at very large level for average

calculation with different time steps at the Netherlands scale

0

20

40

60

80

100

120

140

160

180

200

220

64-bit offset MPE NetCDF4_MPE_C2 SciDB_MPE_C4_vlarge SciDB_MPE_C4_C_vlarge

Q
u

er
y
 r

es
p

o
n

se
 t

im
e

(s
)

Data store 8-step 24-step 96-step 672-step 2880-step

0.166

0.052

0.537

0.465

0.178

0.035

0.307 0.307

0.219

0.037

0.262 0.258
0.216

0.034

0.276 0.275

0.476

0.341 0.355
0.315

0.00

0.10

0.20

0.30

0.40

0.50

0.60

64-bit offset MPE NetCDF4_MPE_C2 SciDB_MPE_C4_vlarge SciDB_MPE_C4_C_vlarge

A
v
er

ag
e

q
u

er
y
 r

es
p

o
n

se
 t

im
e

(s
)

Data store 8-step 24-step 96-step 672-step 2880-step

Scheme Chunk size

C2 1 x 4000 x 4000

C4, C4_C 1 x 800 x 800

110

0.174 0.046 0.416 0.382
0.700

0.103
0.870

0.895 2.765 0.413
3.116

3.132

19.559
2.792

23.145 23.044

176.902

123.084 121.450
108.534

0

20

40

60

80

100

120

140

160

180

200

64-bit offset MPE NetCDF4_MPE_C2 SciDB_MPE_C4_vlarge SciDB_MPE_C4_C_vlarge

A
v
er

ag
e

q
u

er
y
 r

es
p

o
n

se
 t

in
e

(s
)

Data store 8-step 24-step 96-step 672-step 2880-step

Figure G16. Distribution of 20 benchmark measurements for each data solution at very large level

for maximum calculation with different time steps at the Netherlands scale

Figure G17. Performance of diverse data solutions at very large level for maximum calculation

with different time steps at the Netherlands scale

Figure G18. Aligned performance of diverse data solutions at very large level for maximum

calculation with different time steps at the Netherlands scale

0

20

40

60

80

100

120

140

160

180

200

220

64-bit offset MPE NetCDF4_MPE_C2 SciDB_MPE_C4_vlarge SciDB_MPE_C4_C_vlarge

Q
u

er
y
 r

es
p

o
n

se
 t

im
e

(s
)

Data store 8-step 24-step 96-step 672-step 2880-step

0.174

0.046

0.416
0.382

0.233

0.034

0.290 0.298
0.230

0.034

0.260 0.261
0.233

0.033

0.276 0.274

0.491

0.342 0.337
0.301

0.00

0.10

0.20

0.30

0.40

0.50

0.60

64-bit offset MPE NetCDF4_MPE_C2 SciDB_MPE_C4_vlarge SciDB_MPE_C4_C_vlarge

A
v
er

ag
e

q
u

er
y
 r

es
p

o
n

se
 t

im
e

(s
)

Data store 8-step 24-step 96-step 672-step 2880-step

Scheme Chunk size

C2 1 x 4000 x 4000

C4, C4_C 1 x 800 x 800

111

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

SciDB_GEFS_S1 SciDB_GEFS_S2 SciDB_GEFS_S3 SciDB_GEFS_S4

Q
u
er

y
 r

es
o

n
se

 t
im

e
(s

)

SciDB array

GEFS benchmark figures

 (Note: only distribution of measurements are shown, average performace are ploted in Figure

6.14 to 6.18)

Figure G19. Distribution of 10 benchmark measurements tested locally for selecting all ensembles

of total precipitation in Delft at one forecast step (Modest chunk size)

Figure G20. Distribution of 10 benchmark measurements tested locally for calculating ensemble

mean of total precipitation in Delft at one forecast step (Modest chunk size)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

SciDB_GEFS_S1 SciDB_GEFS_S2 SciDB_GEFS_S3 SciDB_GEFS_S4

Q
u
er

y
 r

es
o

n
se

 t
im

e
(s

)

SciDB array

Scheme Dimensions order Chunk size

S1 M E F Y X 1 x 20 x 1 x 181 x 360

S2 M F Y X E 1 x 1 x 181 x 360 x 20

S3 X Y F E M 360 x 181 x 1 x 20 x 1

S4 E X Y F M 20 x 360 x 181 x 1 x 1

112

Figure G21. Distribution of 10 benchmark measurements tested locally for selecting all ensembles

of total precipitation in Delft at one forecast step (Large chunk size)

Figure G22. Distribution of 10 benchmark measurements tested locally for calculating ensemble

mean of total precipitation in Delft at one forecast step (Large chunk size)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

SciDB_GEFS_C1 SciDB_GEFS_C2 SciDB_GEFS_C3 SciDB_GEFS_C4

Q
u
er

y
 r

es
o

n
se

 t
im

e
(s

)

SciDB array

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

SciDB_GEFS_C1 SciDB_GEFS_C2 SciDB_GEFS_C3 SciDB_GEFS_C4

Q
u
er

y
 r

es
o

n
se

 t
im

e
(s

)

SciDB array

Scheme Dimensions order Chunk size

C1 M E F Y X 1 x 20 x 40 x 181 x 360

C2 M F Y X E 1 x 40 x 181 x 360 x 20

C3 X Y F E M 360 x 181 x 40 x 20 x 1

C4 E X Y F M 20 x 360 x 181 x 40 x 1

113

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Q
u

er
y
 r

es
p

o
n

se
 t

im
e

(s
)

Data store

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

Q
u

er
y
 r

es
p

o
n

se
 t

im
e

(s
)

Data store

Figure G23. Distribution of 20 benchmark measurements of diversion solutions for extracting GEFS

forecast time series of total precipitation

Figure G24. Distribution of 20 benchmark measurements of diversion solutions for GEFS total

precipitation 80th percentile calculation

Scheme Dimensions order Chunk size

S1, S1_C M E F Y X 1 x 20 x 1 x 181 x 360

S2, S2_C M F Y X E 1 x 1 x 181 x 360 x 20

S3, S3_C X Y F E M 360 x 181 x 1 x 20 x 1

S5, S5_C X Y F E M 360 x 181 x 1 x 1 x 1

Scheme Dimensions order Chunk size

S1, S1_C M E F Y X 1 x 20 x 1 x 181 x 360

S2, S2_C M F Y X E 1 x 1 x 181 x 360 x 20

S3, S3_C X Y F E M 360 x 181 x 1 x 20 x 1

S5, S5_C X Y F E M 360 x 181 x 1 x 1 x 1

114

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

64-bit offset GEFS NetCDF4_GEFS_S3 NetCDF4_GEFS_S3_C NetCDF4_GEFS_S5 NetCDF4_GEFS_S5_C SciDB_GEFS_S1 SciDB_GEFS_S1_C SciDB_GEFS_S2 SciDB_GEFS_S2_C

Q
u

er
y
 r

es
p

o
n

se
 t

im
e

(s
)

Data store

Netherlands Europe

Figure G25. Distribution of 20 benchmark measurements of diversion solutions for ensemble mean calculation on GEFS total precipitation

Scheme Dimensions order Chunk size

S1, S1_C M E F Y X 1 x 20 x 1 x 181 x 360

S2, S2_C M F Y X E 1 x 1 x 181 x 360 x 20

S3, S3_C X Y F E M 360 x 181 x 1 x 20 x 1

S5, S5_C X Y F E M 360 x 181 x 1 x 1 x 1

	Abstract
	Acknowledgments
	Table of content
	List of Figures
	List of Tables
	List of Appendix Figures
	Glossary
	1 Introduction
	1.1 Problem statement
	1.2 Research questions
	1.3 Methodology
	1.4 Thesis outline

	2 Background
	2.1 NetCDF
	2.1.1 Data model
	2.1.2 Data format

	2.2 Multidimensional array database
	2.3 Previous work

	3 Queries and datasets
	3.1 Expert consultancy
	3.2 Query design
	3.2.1 Datasets for benchmarking
	3.2.2 Queries for benchmarking

	4 Selection of multidimensional array database
	4.1 Current multidimensional array databases
	4.2 Comparison between Rasdaman and SciDB

	5 Testing environment setup
	5.1 Overall architecture
	5.2 Hardware
	5.3 NetCDF connector
	5.4 SciDB connector
	5.
	5.3
	5.4.1 Writer
	5.4.2 Reader

	6 Benchmark test and analysis
	6.1 Data storage
	6.1.1 Files in 64-bit offset format
	6.1.2 Files in NetCDF-4 format
	6.1.3 SciDB arrays

	6.2 Query benchmarking
	6.2.1 Query performance on MPE dataset
	6.2.2 Query performance on GEFS dataset

	6.3 Overall evaluation

	7 Conclusions and future work
	7.1 Summary
	7.2 Extension of current research
	7.3 Dimension and multidimensional data management

	References
	Appendix A: Questionnaire for expert consultancy
	Appendix B: Records of interview
	Appendix C: Two HydroNET-4 data structures
	Appendix D: Configuration file of SciDB
	Appendix E: Communicating records with SciDB team
	Appendix F: Bash scripts for GEFS test on dimensions order effect
	Appendix G: Benchmark figures
	MPE benchmark figures
	GEFS benchmark figures

