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Abstract. A fast iterative method for gravity field
determination from low Earth satellite orbit coordinates
has been developed and implemented successfully. The
method is based on energy conservation and avoids
problems related to orbit dynamics and initial state. In
addition, the particular geometry of a repeat orbit is
exploited by using a very efficient iterative estimation
scheme, in which a set of normal equations is approx-
imated by a sparse block-diagonal equivalent. Recovery
experiments for spherical harmonic gravity field models
up to degree and order 80 and 120 were conducted based
on a 29-day simulated data set of orbit coordinates. The
method was found to be very flexible and could be easily
adapted to include observations of non-conservative
accelerations, such as (to be) provided by satellites like
CHAMP, GRACE, and GOCE. A serious drawback of
the method is its large sensitivity to satellite velocity
errors. Existing orbit determination strategies need to be
altered or augmented to include algorithms that focus
on optimizing the accuracy of estimated velocities.
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1 Introduction

Satellite tracking observations have been used success-
fully in global gravity field modeling over the last two
decades. However, no satellites were launched with the
primary aim of mapping the Earth’s gravity field before
July 2000, when CHAMP was put into orbit (Reigber
et al. 1999). The US/German GRACE and European
Space Agency (ESA) GOCE satellites will follow in 2002
and 2006, respectively (ESA 1999; Tapley and Reigber

1999). All these satellites are and will be equipped with
high-quality space-borne receivers that will allow high–
low satellite-to-satellite tracking (h–‘ SST) of the US
Global positioning system (GPS). SST observations
provide accurate information for recovering the orbits
of satellites, which are primarily determined by the
Earth’s gravity field. Non-conservative forces, as in-
duced by atmospheric drag, solar radiation and possibly
attitude and orbit control systems, will be measured by
on-board accelerometers, preventing the aliasing of
these forces in the gravity field solutions. Moreover,
high-resolution gravity field recovery will be enhanced
by low–low SST (l–l SST) for GRACE and satellite
gravity gradiometry (SGG) for GOCE. For all three
missions, the objectives cannot be met without the
acquisition of GPS SST observations. GPS SST obser-
vations of low Earth-orbiting satellites have been
employed successfully in gravity field models such as
EGM96 (Lemoine et al. 1997) and GRIM5-S1 (Biancale
et al. 2000) where use was made of classical numerical
integration techniques in establishing the observation
equations, which are in general solved by L2-norm
techniques resulting in normal equation systems. The
most common representation of the Earth’s gravity field
in satellite geodesy is a series expansion into spherical
harmonic functions. For high-degree and -order spher-
ical harmonic expansions, the size of the normal
equations becomes very large, posing strong demands
on computer memory. In addition, the computation of
full sets of normal equations for large spherical har-
monic expansions requires extensive computer resourc-
es. For missions such as CHAMP, GRACE, and
GOCE, it is foreseen that spherical harmonic expansions
are required to at least degree and order 100, 150, and
300, or 10 000, 22 500, and 90 000 gravity field
coefficients, respectively, for the full complement of
observations that will be provided by the respective
satellites (ESA 1999). Considering GPS SST observa-
tions only, it can be shown that for especially the very
low flying GOCE satellite (about 250 km altitude)
gravity field terms up to at least degree and order 150
are relevant SID (2000). For CHAMP and GRACE theCorrespondence to: P.N.A.M. Visser
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modeling and estimation of gravity field terms above
degree 100 are also required (Reigber et al. 2001).
Extensive computer resources are required to compute
such normal equation systems directly and store them in
memory.

A computationally efficient alternative method is
proposed that consists of two steps. First, a high-preci-
sion orbit is computed from the GPS observations using,
for example, a kinematic or reduced-dynamic orbit de-
termination technique (Visser and van den IJssel 2000).
Second, the resulting position and velocity coordinates
are used as observations for gravity field recovery. The
focus of this paper will be on the second step. The
gravity field recovery is formulated in such a way that
orbit unknowns, such as the epoch state vector (start
position and velocity), are eliminated entirely, in addi-
tion to linearization errors which are included when
using conventional techniques. This way, problems that
might arise due to correlations between unknown
gravity field parameters and state vector unknowns, and
due to linearization errors, are prevented (Visser et al.
2001).

The formulation is based on energy integrals, such as
proposed and described by Jekeli (1999), Reigber (1969),
Ilk (1983), and O’keefe (1957). An efficient iterative
method, in the following referred to as iterative energy
integral method, for gravity field recovery from orbit
coordinates based on energy considerations and block-
diagonal dominance of normal equation systems will be
outlined in detail. This method has been implemented
successfully and different gravity field recovery experi-
ments will be discussed, complete to degree and order
either 80 or 120. The gravity recovery error has been
found to be negligible. Attention will be paid to incor-
poration of dissipative accelerations in the energy inte-
grals. These accelerations may, for example, be
measured by on-board accelerometers. Finally, an as-
sessment has been made of the sensitivity of the method
to orbit errors.

2 Method

First, the observation equations for the gravity field
recovery from orbit perturbations are established. This
is followed by a description of the iterative solution
strategy.

2.1 Observation equations

Conventional methods for gravity field recovery from
satellite tracking observations rely on numerical inte-
gration techniques in order to solve the variational
equations (Montenbruck and Gill 2000). The solution of
these variational equations is required to establish the
observation equations. The method proposed here
consists of two steps: (1) a precise orbit determination
and (2) gravity field recovery using the orbit solution.
The orbit estimation is thus decoupled from the gravity
field recovery. It is assumed that the GPS receiver

provides a continuous data stream of h–l SST observa-
tions allowing the accurate determination of a contin-
uous time series of satellite positions and velocities, e.g.
by a kinematic or reduced-dynamic technique (Visser
and van den IJssel 2000). The orbit solution can thus be
seen as a condensed set of GPS tracking observations.
Conceptually, it is assumed that this solution is free of
dynamic model errors.

The gravity recovery will be based on a least-squares
(LS) solution of observation equations linking the orbit
position and velocity solution to the gravity field un-
knowns. The gravity field potential U is represented by a
spherical harmonic expansion

U ¼ l
r

(
1þ

X1
l¼2

Xl

m¼0

ae
r

� �l
ð �CClm cosmk

þ �SSlm sinmkÞ �PPlmðsin/Þ
) ð1Þ

where l is the gravity parameter, ae is the mean equatorial
radius, r;/; k are the spherical coordinates (radius,
geocentric latitude, longitude), �PPlm is the normalized
Legendre polynomial of degree l andorderm, and �CClm; �SSlm
represent the (unknown) gravity parameters.

The solved positions and velocities will not be used
directly, but will be inserted in an energy integral in
order to establish the observation equations for the
gravity recovery. The reference frames that are partic-
ularly relevant for describing Earth satellite motion and
the Earth gravity potential are the Earth-centered, in-
ertial reference frame (ECI) and the Earth-centered,
Earth-fixed reference frame (ECEF). In fact, the ECI
frame is a pseudo-inertial reference frame due to the
influence of third bodies such as the Sun, Moon, and
planets, but for the moment this influence is not taken
into consideration and the real world is considered to
consist of a uniformly rotating Earth with angular ro-
tation rate �xx. The starting point is the equation for the
Lagrangian L in the inertial ECI frame, which can be
written as

L ¼ T � V ¼ 1

2
�vvi � �vvi � V ð2Þ

where T is the kinetic energy per unit of mass and V the
potential energy per unit of mass in the physics sense (in
the remainder of this paper the simple term ‘energy’ will
be used instead of ‘energy per unit of mass’). The sign of
the potential energy V in the physics sense is opposite to
the sign of the potential U [Eq. (1)] in the geodetic sense
(V ¼ �U). The velocity vector in the ECI frame is
represented by �vvi. For the ECEF frame, the following
relation can be derived:

�vvi ¼ �vve þ �xx � �rre

L ¼ 1

2
�vve � �vve þ �vve � ð�xx � �rreÞ þ

1

2
ð�xx � �rreÞ � ð�xx � �rreÞ � V

ð3Þ

where �rre and �vve are the position and velocity vector in
the ECEF frame, respectively. The next step in deriving
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the final observation equation is the transformation
from the Lagrangian to the Hamiltonian H

H ¼ �ppe � �vve � L ð4Þ

where �ppe is the vector with generalized momenta
(Lanczos 1949; Landau and Lifschitz 1965)

�ppe ¼
@L
@�vve

¼ �vve þ �xx � �rre ð5Þ

Thus, Eq. (4) can be rewritten as

H ¼ 1

2
�vve � �vve �

1

2
ð�xx � �rreÞ � ð�xx � �rreÞ þ V ð6Þ

The part 1
2 ð�xx � �rreÞ � ð�xx � �rreÞ is the centrifugal potential.

The static potential energy V does not change in the
ECEF frame. The Hamiltonian H can be seen as the
total energy of the underlying mechanical system and is
a constant of the motion. By setting �vve ¼ �vvi � �xx � �rre, we
arrive at

H ¼ 1

2
�vvi � �vvi � �vvi � ð�xx � �rreÞ þ V ð7Þ

or by cyclical change of the triple vector product

H ¼ 1

2
�vvi � �vvi � �xx � ð�rre � �vviÞ þ V ð8Þ

It can be clearly seen that a rotating potential requires
an additional contribution to the simple Hamiltonian
H0 ¼ 1

2
�vvi � �vvi þ V , namely the angular momentum term

�xx � ð�rre � �vviÞ which appears as a kinetic energy term �vvi � �vvk
when replacing �xx � �rre by �vvk.

The observation equation is now obtained by in-
serting the positions and velocities obtained by the
precise orbit determination and Eq. (1) (with V ¼ �U )
in Eq. (8) and in addition using the principle of energy
conservation stating that the Hamiltonian is constant.
This constant may be considered as an additional un-
known that needs to be estimated simultaneously with
the unknown gravity field parameters. In the above
derivation it is assumed that no dissipative accelerations
are present. It is interesting to make a comparison with
the formulation by Jekeli (1999). He presented an al-
ternative derivation leading to the same result. However,
he included a term taking into account dissipative ac-
celerations. This term can be thought of as an energy
loss D and becomes equal to

D ¼
Z s

0

�aae � �vve dt ð9Þ

where �aae is the acceleration vector in the ECEF frame.
Based on the above, and assuming that the Earth is

rotating with a constant rotation rate xe around the
polar z-axis, the following equation can be derived from
Eq. (6) using ECEF coordinates:

H ¼ �Uðxe; ye; zeÞ þ
1

2
_xxe2 þ _yye

2 þ _zze2
� �

� 1

2
xe

2 xe2 þ ye2
� �

ð10Þ

or, when making use of ECI coordinates for the kinetic
energy and centrifugal terms (as coded in the used
software)

H ¼ �Uðxe; ye; zeÞ þ
1

2

n
ð _xxi þ xeyiÞ2 þ ð _yyi � xexiÞ2 þ _zzi2

o
� 1

2
xe

2 xi2 þ yi2
� �

ð11Þ

where the Hamiltonian H is constant in the case of no
energy dissipation, xe; ye; ze and _xxe; _yye; _zze are the Carte-
sian position and velocity coordinates in the ECEF
frame; and xi; yi; zi and _xxi; _yyi; _zzi are the Cartesian
positions and velocities in the ECI frame.

Combining Eqs. (11) and (9) yields the observation
equation for the gravity potential

H þ Uðxe; ye; zeÞ ¼
1

2
ð _xxi þ xeyiÞ2 þ ð _yyi � xexiÞ2 þ _zzi2

n o
� 1

2
xe

2 xi2 þ yi2
� �

�
Z s

0

�aae � �vve dt:

ð12Þ

In this equation, the unknowns H and �CClm; �SSlm are
included in the left-hand side, and observed orbit
components in the ECI and ECEF frames in the right-
hand side, in addition to possibly observed or modeled
dissipative accelerations �aae. In principle, Eq. (12) can be
further extended to include additional terms such as
those due to 3rd-body perturbations (Sun, Moon, and
planets), and solid-Earth and ocean tides, either in the
form of corrections (right-hand side) or unknowns (left-
hand side). Including additional unknowns might have
consequences for the iterative solution strategy: the
gravity part of the normal equations will remain block-
diagonally dominant (assuming a continuous stream of
orbit coordinate solutions for a repeat period; see
Sect. 2.2), a feature that can still be exploited in solution
strategies, but the parts of the normal matrix due to the
additional unknowns might have a different structure. In
addition, the method can be modified to include a more
realistic motion of the Earth in inertial space (preces-
sion, nutation, polar motion). Also, nuisance parameters
such as accelerometer biases and scale factors can be
added as either corrections or unknowns. These inclu-
sions and additions are, however, beyond the scope of
this paper. The research described in this paper primar-
ily served to test the concept of using energy integral
methods for deriving gravity from orbit perturbations
and did not aim at developing a comprehensive software
package that can take into account all kinds of known
physical models in addition to the Earth’s static gravity
field.

2.2 Iterative solution strategy

Equation (12) is linear with respect to the gravity
unknowns. In the case of classical methods, the obser-
vation equations are not really linear but linearized. In
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other words, when using classical methods the observa-
tion equations are approximated by a first-order Taylor
expansion. This means that higher-order terms are
neglected and approximation errors are introduced,
which sometimes requires more iterations depending
on the quality of the starting values and the non-
linearity of the problem. Using Eq. (12), no approxima-
tion errors are introduced. In principle, the gravity
recovery can be completed in one step, as opposed to the
multiple iterations that are generally required in the clas-
sical approach. However, in order to solve the observa-
tion equations in one step a full matrix approach is
required, while here a fast and numerically stable
solution method is aimed at.

An iterative method is selected where the normal
matrix is approximated by a block-diagonal matrix. It is
required that the normal matrix is organized per order.
The method was tested successfully for SGG observa-
tions and principles and implementation aspects are
described in detail in Rummel and Colombo (1985)
Klees et al. (2000), SID (2000), Visser et al. (2001). The
method is particularly suitable for satellites that fly a
near-circular repeat orbit and provide observations at a
constant sampling rate. The potential U can be repre-
sented as a series expansion in Kepler elements. As-
suming a circular orbit with zero eccentricity e, the
following relation can be derived (cf. Kaula 1966,
Sect. 3.3):

O ¼ H þ U ¼ H þ l
a

Xlmax

l¼2

Xl

m¼0

Xl

p¼0

ae
a

� �l
FlmkðiÞSmk u;Kð Þ

ð13Þ

Smk u;Kð Þ ¼
�CClm

��SSlm

� �
cosðkuþ mKÞ

þ
�SSlm
�CClm

� �l�m even

l�m odd

sinðkuþ mKÞ ð14Þ

where O represents the right-hand side of Eq. (12) and
includes the orbit solution, lmax is the maximum degree
at which the series expansion is truncated, k is equal to
l� 2p, u is equal to x þM , and K to X � h. Use has
been made of the Kepler elements: the orbital semi-
major axis a (equal to the radius r for a circular orbit),
argument of perigee x, inclination i, right ascension of
ascending node X, and the mean anomaly M . The
Greenwich mean sidereal time is denoted by h, while
FlmkðiÞ is a function depending on the orbital inclination
i only. The argument of the cosine and sine components
of the function Smk u;Kð Þ can be written as

w ¼ kuþ mK ¼ fmkxsatt ¼ ðk � m
nr
Þxsatt

¼ ðk � m
nday
nrev

Þxsatt ð15Þ

where xsat is the orbital angular velocity and nr is the
number of revolutions per nodal day, which for a repeat
orbit is the ratio of two relative primes nrev and nday,

where the repeat period is equal to nday nodal days in
which the satellite completes nrev orbital revolutions.
With a continuous data stream of observations O and
assuming a data set spanning a multiple integer of repeat
orbits, the observations can be represented by a Fourier
series and the normal matrix becomes block diagonal
when the gravity unknowns are organized per order
(Colombo 1984; Visser 1992). The normal equations can
then be computed very fast and efficiently.

The exact observation equations [Eq. (12)] will be
approximated by Eqs. (13) and (14) in a way similar to
that described in Klees et al. (2000) and Visser et al.
(2001), where the real orbit is approximated by a best-
fitting circular repeat orbit. Visser et al. (2001) used the
following notation for the exact observation equations
and, in conjunction, normal equations:

At�xx ¼ �yy;Nt�xx ¼ At
T At�xx ¼ At

T �yy ð16Þ

and for the approximated observation and normal
equations

Aa�xx ¼ �yy;Na�xx ¼ Aa
TAa�xx ¼ Aa

T �yy ð17Þ

where At and Aa are the design matrices, �xx represents the
vector of unknowns H , �CClm; �SSlm, and �yy the vector of
observations O. Then the model or approximation error
D�xx becomes

D�xx ¼ ðNt
�1At � Na

�1AaÞ�yy ð18Þ

In Klees et al. (2000) an iterative scheme has been
adopted to eliminate the approximation errors, which
will also be used to solve the observation equations
based on Eq. (12). Applying this scheme results in a re-
computation after each iteration of the right-hand side
of the normal equations using the same Aa matrix, but
with updated observations O. The left-hand side remains
constant, i.e. the block-diagonal matrix Na. After some
manipulations Klees et al. (2000), it can be shown that
the iterative process only converges to the right solution
when the following criterion is met:

qðI � Na
�1AT

aAtÞ < 1 ð19Þ

where q is the spectral radius and I the identity matrix.
The spectral radius of a matrix is defined as its
maximum eigenvalue [in Eq. (19) of I � Na

�1AT
aAt]. If

Aa is a close approximation of At, the following formula
will give a good indication for convergence (Visser et al.
2001):

qðI � ½Nt
bd
�1NtÞ < 1 ð20Þ

where ½Nt
bd is the block-diagonal part of the true
normal matrix. Actual computations of the spectral
radius will be discussed in Sect. 4.1.

3 Configuration

The satellite orbital position and velocity in the ECEF
frame form the basic observables for the energy integral
equation [Eq. (10)]. In order to assess the feasibility of

210



the iterative energy integral method, a time series of these
positions and velocities was generated assuming a pure
gravitational orbit, i.e. the orbit was determined by a
static gravity field model only. Moreover, the Earth was
modeled as rotating around the polar axis with constant
angular velocity. The resulting equations of motion were
solved by applying a 10th-order Adams–Moulton inte-
grator (Boyce and DiPrima 1986). A GOCE-type orbit
was selected, which repeats to within a few kilometers
after 29 days, in which the satellite completes 467 orbital
revolutions. The average altitude is equal to 250 km.
The inclination is equal to 96�, leading to a sun-
synchronous orbit. Such an orbit will be sensitive to
gravity field terms up to at least degree 100, and
significant gravity field terms might be recovered beyond
this degree (Colombo 1984; Visser et al. 1994; ESA
1998). Therefore, the Earth’s gravity field was modeled
by a spherical harmonic expansion complete to degree
and order 120. This truncation degree was adopted in
both the nominal orbit integration and gravity recovery,
enabling a closed-loop test of the iterative energy integral
method (in some cases the maximum degree was equal to
80, as will be explained in Sect. 4). The EGM-96 gravity
field model was used to represent the real world
(truncated at the appropriate degree).

The resolution of a 120 � 120 gravity field model is
equal to about 175 km at 250 km altitude. It takes the
satellite about 22 s to traverse such a distance and the
Adams–Moulton orbit integration step has to be
smaller. In the recovery experiments it was taken equal
to 10 s, equal to the time interval of the observed orbital
positions and velocities.

An important aspect will be the inclusion of accel-
erometer observations in the iterative energy integral
method. These observations will provide a measure of
the dissipative forces that act on the satellite. CHAMP,
GRACE, and GOCE are or will be equipped with ac-
celerometers providing these observations. In addition,
GOCE will be equipped with a drag-free control (DFC)
system that will reduce the non-conservative accelera-
tions below the level of 10�6 m/s2. The remaining ac-
celerations will be measured with very high accuracy,
also at low frequencies (ESA 1999). Because a GOCE-
type orbit was selected for the simulations, it is assumed
that the satellite will experience random accelerations
with this magnitude that are measured by the acceler-
ometers. In the recovery experiment, these accelerations
are included both in the orbit integration, by generating
a random time series with a Gaussian distribution, and
as observations in the gravity field recovery. The time
step of this time series was taken equal to 10 s, i.e. equal
to the time step of the Adams–Moulton orbit integra-
tion.

4 Results

The gravity recovery experiments were all based on the
selected 29-day repeat period with the gravity field
model complete to degree and order 80 or 120. The
experiments included the computation of spectral radii,

iterative gravity solutions, incorporation of accelerom-
eter observations and orbit error sensitivity analyses.

4.1 Spectral radii computations

First, the spectral radius according to Eq. (20) has been
computed as a function of the maximum degree of the
gravity field model recovery. A comparison has been
made with spectral radii obtained for gravity field
recovery from other observables using the same orbit
geometry, namely h–l SST and SGG observables. The
h–l SST observations and the associated normal equa-
tions were obtained by numerical integration of the
observation equations using the GEODYN software
(Rowlands et al. 1995). The SGG observations and
associated normal equations were computed with similar
procedures and software as outlined in Klees et al.
(2000). The spectral radii are displayed in Fig. 1 up to
degree 80 [for the SGG case they are an extension of the
spectral radii displayed in Visser et al. (2001, Fig. 4)]. It
can be seen that the iterative energy integral method
seems feasible: the spectral radius is well below 1 up to
degree and order 80 and does not seem inclined to
increase rapidly for higher degrees. In fact, the spectral
radius seems to ‘compete’ with the spectral radius for the
SGG observables. It can also be seen that a block-
diagonal iterative approach based on classical numerical
integration methods for h–l SST will not be feasible, as
already found by Visser et al (2001).

4.2 Gravity recovery experiment

Encouraged by the spectral radii computations, a
gravity field recovery experiment was conducted where
the EGM-96 model complete to degree and order 120
was used to simulate a 29-day time series of positions
and velocities. The iterative energy integral method was

Fig. 1. Spectral radii for iterative solution schemes based on
approximation of the full normal matrix by a reduced block-diagonal
normal matrix: orbit perturbations derived from SST observations (h–
l SST), energy equation derived from orbit perturbations (h–l SST),
and space-borne gravity gradients (SGG)
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used to recover all gravity coefficients from degree 2 to
degree 120, where the a priori values were set to zero.
Thus the entire gravity signal was to be recovered, apart
from the central term. It was found that the solution
converged after seven iterations (Fig. 2), where conver-
gence was defined to be achieved when the total gravity
field adjustment in a certain iteration was smaller than
1 mm in terms of global geoid root mean square (RMS).
After convergence, one more iteration is always made as
an additional check of convergence. It is interesting to
note that, before convergence, gravity recovery errors
concentrate at resonance errors, i.e. at order zero and
multiples of 16, which is close to the number of orbit
revolutions per day. In addition, the convergence of
zonal gravity field terms is relatively slow. This can be
explained by the fact that the full normal matrix displays
clear side bands at the resonance orders, cf. Visser et al.
(2001), which are not represented in the block-diagonal
matrix which is used in the iterative solution procedure.
Obviously, the recovery error due to approximating the
full matrix by a block-diagonal matrix is eliminated by
iteration, which can be explained by the fact that the
spectral radius q [Eq. (19)] is smaller than 1. The gravity
field recovery error is found to be equal to 9 mm after
convergence in terms of global geoid RMS when the
zonal terms are excluded. Including these terms, the
global geoid RMS error fluctuates between 2 and 7 cm.
This fluctuation can be attributed to instabilities in the
normal equations due to the orbital inclination of 96�,
leading to the well-known polar gap phenomenon
(Visser et al. 1994; Sneeuw and Van Gelderen 1997;
ESA 1999), that primarily affect low-order, and thus
also zonal, gravity field terms. Regularization schemes
can be applied, and are in fact required when going to
higher degrees and orders. The subject of regularization
is, however, beyond the scope of this paper. It was found

that almost the entire geoid error is located in these
polar gaps. For example, the global geoid error RMS,
including the zonal terms, is equal to 20 mm after the
7th iteration, whereas this error is equal to 5 mm when
excluding the polar gaps, i.e. the areas south of �84�

latitude and north of 84� latitude (Table 1). After the
7th iteration, only significant gravity recovery changes
can be found in the polar gap areas (which represent less
than 1% of the total Earth’s surface).

The remaining 5- mm geoid error can be attributed
for the larger part to energy dissipation, or equivalently
to errors in the positions and velocities, due to very
small, but significant, orbit integration errors. If the
10th-order Adams–Moulton was infinitely accurate, the
sum of kinetic and potential energy along the computed
orbit would be perfectly constant. However, it is found
that this sum varies with an RMS about mean of 0.0018
m2/s2 in terms of energy. Using the inverse of the block-
diagonal approximation of the normal matrix scaled
with this value, the predicted gravity field recovery error
becomes as displayed in Fig. 3. The formal error is equal

Table 1. Gravity field recovery with the iterative energy integral
method

Maximum
degree

Geoid error (mm) Observation error
Due to numerical.
integration (m2/s2)

Global No polar gaps

120a 20 5 0.0018
120b 25 6 0.0027

80c 4 0.0058
80d 585 0.6226
80e 585 0.6229

aNo dissipative accelerations.
bRandom dissipative accelerations: 10-6m/s2.
cOrbit errors included: position errors only.
d 7Orbit errors included: velocity errors only.
e Orbit errors included: position + velocity errors.

Fig. 2. Result of a gravity field recovery experiment complete to
degree and order 120 based on a 29-day simulated data set of error-
free orbit perturbations. The RMS of the formal errors of the
spherical harmonic expansion is displayed as a function of degree
(left) and order (right). The dashed line represents Kaula’s rule of
thumb (left). The other three lines denote from top to bottom the total
gravity signal and the recovery error after the 4th and the 7th
iteration, respectively (left and right)

Fig. 3. Formal gravity field recovery error (cf. Fig. 2) obtained from
the inverse of the block-diagonal normal approximation for a 29-day
observation period. The formal errors were scaled according to the
RMS about mean of the energy equation errors due to orbit
integration error
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to 6.3 cm in terms of global geoid RMS, and 3 mm
when excluding the polar gaps. The actual and prediced
formal gravity recovery errors are in good agreement
with each other. It can thus be concluded that the iter-
ative gravity recovery scheme leads to a good solution,
where remaining errors are largely caused by numerical
integration imperfections.

4.3 Dissipative accelerations

The separation of conservative from non-conservative
forces, mainly inflicted by atmospheric drag and solar
radiation, but also for example by maneuvers and
albedo, is crucial to the success of all gravity missions.
This separation is (or will be) enabled by the provision
of measurements of the non-conservative accelerations
by space-borne accelerometers providing time series of
such measurements.

Gravity field recovery experiments with the iterative
energy integral method were conducted where the ob-
servation equations include corrections based on accel-
erometer observations, i.e. the integral term

R s
0 �aae � �vve dt

[Eq. (12)] was taken into account. As with the numerical
orbit integration, use was made of a 10th order Adams–
Moulton integrator to evaluate the integral term [see
also Eq. (9)].

Again, a recovery experiment with the EGM-96
gravity field model complete to degree and order 120
was conducted, this time including random non-con-
servative accelerations with a standard deviation of 10�6

m/s2 and zero mean. The change in total energy, i.e. the
sum of kinetic and potential energy, is displayed in
Fig. 4, together with the dissipated energy obtained by
solving Eq. (9). It must be noted that because a random
time series of non-conservative forces was generated
with zero mean, this may lead to both energy decreases
and increases at a certain time instant, which can be
clearly observed. It can also be seen that, as to be ex-
pected, the left and right part of this figure are mirror
images, and the sum is equal to zero apart from nu-
merical integration and computer round-off errors. In
fact, the RMS of the sum was found to be equal to
0.0027 m2/s2 (Table 1), with minimum and maximum
values of �0:0240 and 0.0215 m2/s2 with respect to the
mean. The RMS is about equal to

ffiffiffi
2

p
times the nu-

merical integration error for the pure gravitational orbit

(Sect. 4.2), a factor which can be expected when sum-
ming two uncorrelated error distributions.

The iterative procedure for gravity recovery complete
to degree and order 120 again converged after seven
iterations with a global geoid error RMS of 25 mm
(6 mm excluding the polar gaps), which can be attrib-
uted to numerical integration error of both the orbit
equations of motion and the dissipative term (Eqs. (9)],
similarly as for the test case described in the previous
section. Fluctuations similar to the test case without the
random accelerations (previous section) could be ob-
served for zonal gravity field terms for higher iterations.
It can be concluded that observed non-conservative ac-
celerations can be easily included in the iterative energy
integral method.

4.4 Sensitivity to orbit error

As indicated in Sect. 2, the gravity field recovery method
based on the energy integral is in fact a two-stage
procedure, the first stage consisting of a precise orbit
determination and the second stage of the gravity field
parameter estimation. Although the focus of this paper
is on the second stage, attention needs to be paid to the
accuracy of the precise orbit determination, more
specifically to the accuracy of the determined satellite
positions and velocities. Based on Eq. (11), the sensitiv-
ity to position and velocity uncertainties in the ECI
frame can be established. Taking into account first order
terms only, the following relation can be derived:

DðH þ UÞ ¼ ð _xxiD _xxi þ _yyiD _yyi þ _zziD _zziÞ
þ ð _xxixeDyi � _yyixeDxiÞ þ ðxeyiD _xxi � xexiD _yyiÞ

ð21Þ

where, DðH þ UÞ is the energy observation error, and
Dxi;Dyi;Dzi and D _xxi;D _yyi;D _zzi denote the position and
velocity errors, respectively. By analyzing this equation,
it can be derived that position and velocity errors enter
into the energy equation with different multiplication
factors

OðDðH þ UÞÞpos 
 DPsatVsatxe ð22Þ

OðDðH þ UÞÞvel 
 DVsat

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vsat2 þ xe

2Psat2
q

ð23Þ

Fig. 4. Change of total energy of
a GOCE-type orbit for a gravity
field model complete to degree
and order 120 and random ac-
celerations with a standard de-
viation of 10�6 m/s2 (left) and
the dissipated energy (right)
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where O denotes order of magnitude, Vsat is the absolute
value of the satellite velocity (� 7.7 km/s for GOCE),
Psat is the absolute value of the satellite position (� 6630
km for GOCE), and DPsat and DVsat are proportional to
the orbit determination errors, or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dxi2 þ Dyi2 þ Dzi2

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D _xxi2 þ D _yyi

2 þ D _zzi2
q

, respectively. The ratio qobs;�

between energy observation error due to position and
velocity errors is thus proportional to

qobs;� ¼
OðH þ UÞerr;pos
OðH þ UÞerr;vel


 xeDPsat

DVsat
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xe

2Psat2

Vsat2

q ð24Þ

Typically, for classical dynamic orbit determination
approaches, position errors cluster at 1 cycle per orbital
revolution (cpr) and to a lesser extent at 0 cpr. In this
case, the ratio has the following order of magnitude:

qobs;� ¼
xe

xsat

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xe

2

xsat
2

q ð25Þ

For typical CHAMP, GRACE, and GOCE orbits, this
ratio is between 1/15 and 1/16 since these satellites
complete 15–16 orbital revolutions per day, which
would indicate that the conversion of the orbit solution
to energy observation is seriously hampered by velocity
coordinate errors. However, the situation will change
when adopting reduced-dynamic or kinematic orbit
determination approaches. Due to the specific nature
of these approaches, orbit error spectra might change
drastically, leading to a more noisy behavior of position
and velocity errors, although with smaller amplitudes
for the position errors.

A gravity field recovery experiment was conducted in
the presence of position and velocity errors coming from
a precise orbit determination experiment described in
detail in Visser and van den IJssel (2000, Table 4,
CHAMPc;d ). The orbit determination resembled a re-
duced-dynamic approach: empirical accelerations were
estimated in 10 min intervals. This test case was ex-
tended to a period of 10 days, enabling a gravity field
recovery experiment complete to degree and order 80 (as
opposed to the recovery experiments in the previous
sections, which were complete to degree and order 120).
The RMS of inertial x; y; z position and velocity errors is
equal to 1.5, 1.5, 1.6 cm, and 0.10, 0.08, 0.08 mm/s, re-
spectively. In this case, the ratio qobs;� is equal to 0.013

or 1/78, which is much worse than even the estimated
guess for the dynamic orbit determination approach
mentioned above. The latter can be explained by con-
sidering that for each 10 min empirical accelerations
were estimated, which leads to a kind of averaging in-
terval of 600 s when deriving for example, velocity from
position estimates: position errors of a few centimeters
then lead to velocity errors of the order of 0.1 mm/s.

Three different gravity field recovery experiments
were conducted, taking into account (1) only position
coordinate errors, (2) only velocity coordinate errors,
and (3) both position and velocity coordinate errors.
The last case is of course the most realistic one. The
RMS of energy observation errors was found to be equal
to 0.0058, 0.6226, and 0.6229 m2/s2 for the first, second,
and third cases, respectively (Table 1). Thus the effect of
velocity coordinate errors exceeds by far the effect of
position coordinate errors. However, the amplitude
spectra for the energy observation errors are quite dif-
ferent (Fig. 5). At low frequencies, in the bandwidth
from 10�4 to 10�3 Hz, position coordinate errors lead to
a more or less flat spectrum, whereas the velocity coor-
dinate errors lead to a rise in amplitude with increasing
frequency. The latter can be explained by considering
that velocity is the time derivative of position, leading to
a stronger amplification at higher frequencies. In the
bandwidth from 10�3 to about 5 � 10�2 a strong decay
can be observed for position coordinate errors and a
more or less flat behavior for velocity coordinate errors.
Finally, at even higher frequencies, a steep decline can be
observed for the velocity coordinate errors, which is
caused by the smoothing effect due to the estimation of
empirical accelerations in the precise orbit determination
(Visser and van den IJssel 2000).

The gravity field recovery performance in the pres-
ence of velocity errors (cases 2 and 3) is about two or-
ders of magnitude worse compared to the performance
in the presence of only position coordinate errors (case
1, Fig. 6). The recovery error in terms of global geoid
RMS is equal to 58.5 and 0.4 cm for cases 2/3 and case
1, respectively. Due to the truncation at degree 80, the
polar gaps hardly play a role. Therefore, it is anticipated
that the gravity field recovery errors will be much bigger
when truncating at higher degrees, which may be sup-
pressed to a certain extent by regularization. Based on
these results, it can be concluded that velocity errors

Fig. 5. Amplitude spectrum
of energy observation errors due
to position coordinate errors
(left) and velocity coordinate
errors (right)
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ruin the gravity field recovery performance when using
energy equations. This will not be the case when using
more classical approaches where the velocity coordi-
nates enter the observation equations via a linear term,
as opposed to a square term in energy equations, i.e. in
the form of kinetic energy. Therefore, the question needs
to be addressed how velocity errors can be reduced
significantly when using methods based on energy
equations. This can only be achieved by adopting a
different orbit determination strategy. It has to be real-
ized that, in principle, the primary product of a precise
orbit determination is the satellite position coordinates,
with the velocity coordinates as a derived, secondary,
product.

The orbit determination is based on GPS pseudo-
range and carrier phase observations. The pseudo-range
observations are absolute range measurements at about
the 0.5-m accuracy level and contain information for
absolute positioning. The carrier phase observations are
in fact range change observations at the few millimeter
accuracy level and provide the information for reducing
the positioning uncertainty down to the few centimeter
level (ESA 1999; Visser and van den IJssel 2000). The
GPS observing geometry is changing continuously, with
certain GPS satellites rising and others setting. In a ki-
nematic and reduced-dynamic precise orbit determina-
tion strategy, this easily leads to discontinuities in
position coordinate errors at the centimeter level over
short time spans. As shown above, this does not lead to
serious errors in the energy observation equations.
However, these discontinuities lead to velocity errors up
to a few tenths of millimeter per second and result in
large kinetic energy errors due to the squaring of the
absolute velocity. It might be possible to improve the
velocity estimates in an off-line process by selecting only
continuous links between the GPS satellites and the user
satellite within a moving window centered around the

time for which the velocity is to be derived. For example,
when using a normal point window of 5 min and a 1-Hz
sampling, the velocity of the user satellite can be deter-
mined with an accuracy of 0.006 mm/s, assuming an
ionospheric-free carrier phase noise level of 9 mm and a
second-order polynomial fit evaluated at the center of the
window. With a typical geometric dilution of precision
(GDOP) value of less than 3, this leads to an absolute
velocity error of less than 0.018 mm/s, compared to the
0.15 mm/s 3-dimensional velocity error of the test case
described above (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:12 þ 0:082 þ 0:082

p
mm/s), or a re-

duction by more than a factor of 8. It must be noted that
by generating normal points by, for example, a second-
order polynomial, high-frequency velocity coordinate
signals are smoothed as well, posing a limit to the length
of the window. These kinds of procedures are, however,
beyond the scope of this paper and are left for further
research. It is interesting to note that similar questions
have been addressed in deriving accelerations in airborne
gravimetry using GPS and Inertial Navigation Systems
(Jekeli and Garcia 1997).

5 Discussion and conclusions

An efficient tool for fast gravity field recovery up to
high degree and order from orbit perturbations has
been developed and implemented successfully. The
associated method, referred to as iterative energy
integral method, was first verified by simulating a 29-
day test orbit in the presence of a 120 � 120 gravity
field model. The block-diagonal approach required a
total CPU time of 105 min (15 min per iteration) on a
power PC (1.7 GHz clock speed), compared to 72
hours for computing the full matrix (1 iteration
required), or a ratio of about 40. For higher-degree
spherical harmonic expansions, such as foreseen for
GRACE and GOCE, this ratio will become much
larger. In addition, the flexibility of the method with
respect to measured non-conservative accelerations was
proven by an experiment incorporating a time series of
random accelerations. Remaining gravity field recovery
errors could be attributed to numerical integration
errors when solving the orbital equations of motion
and when integrating the energy loss integral.

The sensitivity analysis in relation to orbit determi-
nation errors (for gravity field recovery complete to
degree and order 80) revealed a serious sensitivity of the
iterative energy integral method to velocity errors as
opposed to a much reduced sensitivity to position errors.
It must be noted that this sensitivity is not due to the
iterative nature of this method, using a block-diagonal
approximation of the normal matrix. Comparable re-
sults will be obtained when employing a full normal
matrix approach. Therefore, special attention needs to
be paid to strategies for improved recovery of velocities.
A possibility to achieve this has been indicated and is a
candidate for further research. Existing kinematic and
reduced-dynamic orbit determination approaches more
or less optimize the accuracy of position coordinates and
yield the risk of relatively large velocity errors that can

Fig. 6. Result of a gravity field recovery experiment complete to
degree and order 80 based on a 10-day simulated data set of orbit
perturbations with orbit determination errors included. The lower
solid line (left and right) denotes the gravity recovery error when only
the position errors are included after convergence (7th iteration). The
upper solid line consists of two lines which cannot be distinguished. It
represents the two cases where velocity errors are included
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be attributed to noise amplification of the intrinsically
position and position-change GPS observations.
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