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Chapter 1

Introduction

1.1 Background

Since the last century, the number of vehicles using road systems has been steadily increas-
ing all over the world due to population growth and economic prosperity. Unfortunately,
this increase in demand has resulted in more unstable traffic conditions, more frequent traf-
fic congestion, and longer traffic delays. Today, such problems have grown to an unbearable
level, particularly in metropolitan areas. The following scene can be observed every work-
ing day: drivers push themselves into already crowded freeways to join others who have
been trapped in traffic jams, and by doing so, those drivers also become part of the problem,
causing huge loss for both the economy and environment. In order to prevent, or at least to
alleviate traffic congestion, traffic management and control is urgently required.

Traffic management and control involves the implementation of strategies, policies, and
technologies to improve the performance of traffic networks [55]. It consists of components
such as infrastructure improvement, roadway operations and control, communications, de-
tection and surveillance, emergency evacuations, and so on. The goal is to provide drivers
with safe, reliable, and sustainable travel in a changing environment with varying demand,
and, at the same time, to take social and environmental factors into account.

This thesis develops several management and control strategies to improve the perfor-
mance of traffic networks, with a particular focus on freeway networks. More specifically,
this thesis involves

1. dynamic route guidance for vehicles traveling in a freeway network;

2. co-design of the topology of a freeway network (e.g., by construction), and traffic con-
trol measures;

3. path planning for unmanned aerial vehicles to monitor traffic conditions.

Since the corresponding problems are too complex to be solved analytically, they are all for-
mulated as optimization problems, and solved using optimization techniques. Usually such
problem formulations in a large-scale freeway network will result in nonlinear and non-
convex optimization problems. The main contribution of this thesis is to find a way to solve
these problems efficiently with a well-balanced trade-off between performance and compu-
tation speed. The considered approaches include reduction, approximation, and reformu-
lation of the problems, development of new optimization algorithms (Ant Colony Optimiza-
tion), and the hierarchical solution methods.

1
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The rest of this chapter is organized as follows. Section 1.2 provides some basic concepts
about freeway networks. Then, the objectives of the research presented in this thesis are
given in Section 1.3. Finally, a general overview, including the outline and the main contri-
butions of this thesis, is presented in Section 1.4.

1.2 Basic Concepts

This section gives some basic definitions and concepts of traffic flow theory and general free-
way networks, which will be used in this thesis. More information about traffic flow theory
and freeway networks can be found in [38] and [1], respectively.

1.2.1 Traffic Flow Theory

Traffic Flow Features

Three important variables are often used to describe the behavior of traffic flow over different
locations and observation periods:

• Flow is the number of vehicles passing a given point of a roadway during a given time
interval. It is equivalent to the term ‘volume’ in certain traffic engineering circles.

• Density is the number of vehicles occupying a given length of a roadway at a particular
time instant.

• Speed can be averaged across space and time. If the average is taken at a specific loca-
tion over a time interval, it is called time-mean speed, while if the average is taken at a
specific time instant over a space interval, it is called space-mean speed.

An approximate relationship among these variables is: flow is equal to density times space-
mean speed.

Fundamental Diagram

The Fundamental diagram is introduced to analyze the relationship between the basic traffic
variables (flow, density, and speed), and it can yield two of the three variables at a specific
point in space if the third one is given. Moreover, because three-dimensional curves are not
easy to plot on a sheet of paper, various two-dimensional representations of the relation-
ship are often used. Figure 1.1 gives an example of a diagram of flow versus density, and
speed is given by the slope of the line connecting a particular point with the origin. It should
be emphasized that these relationships are approximations, and only close to reality when
measuring many vehicles.

Macroscopic Traffic Model

One of the goals of investigating traffic dynamics is to predict the future traffic states from
some set of initial conditions, and some time-varying data. To make such a prediction, it
would be necessary to know how each vehicle reacts to different circumstances in its envi-
ronment. However, precisely predicting the detailed behavior of each individual vehicle is
impossible. Therefore, an alternative is to make such predictions based on coarse data such
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Figure 1.1: An example of the fundamental diagram of traffic behavior for a road with one
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as cumulative number of vehicles passing a road location. The best-known macroscopic
traffic model is called the Lighthill-Whitham-Richards (LWR) model [92, 119], which is de-
veloped based on the fundamental diagrams introduced above.

1.2.2 Solutions for Reducing Congestion

Congestion mainly results from the fact that traffic demand approaches or exceeds the avail-
able capacity of freeways. Efficient freeway management and control aims at finding a bal-
ance between capacity and demand. The demand can vary significantly depending on the
season of the year, the day of the week, and even the time of the day. On the other hand,
the capacity is impacted by physical attributes of the freeway such as number of lanes, lane
width, and degree of curvature, and by some other factors, such as weather, work zones, traf-
fic incidents, or other events. In order to reduce congestion in freeway networks, two major
solution methods are usually used : construction, or traffic control measures.

Construction

Construction refers to creating new freeways connections, or adding new lanes on existing
roads. Construction often seems to be the first choice to deal with congestion, because it can
provide a visible increase in capacity of freeway networks. However, construction may have
several drawbacks. First of all, it could be rather expensive and time consuming. Second,
it may temporarily cause even greater inefficiency because the construction sites may block
traffic. Third, even if new construction is done, it may only reduce existing congestion rather
than eliminate it completely because it is practically impossible to build sufficient capacity
to satisfy future demand.
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Traffic Control Measures

Since construction is often not feasible or insufficient to significantly reduce congestion, in-
troducing traffic control measures is an alternative to address congestion. A short descrip-
tion of the traffic control measures that are most frequently used in freeway networks is given
below.

• Ramp metering determines the flow rate at which vehicles enter the freeway, and is
implemented via traffic signals placed at the on-ramp. The vehicles should stop when
the light turns red, and they can pass when the light turns green. The purpose of ramp
metering is to control the number of the vehicles that enter the network, and to in-
fluence the traffic densities on the mainstream roads in order to prevent a traffic jam
or breakdown. Fixed-time ramp metering was adopted at first, but currently dynamic
ramp metering is used more and more [107]. ALINEA [108] is one of the best known
examples of a dynamic ramp metering strategy.

• Variable speed limits can be used to restrict the traffic speed on the freeway. The im-
plementation involves speed limit signs placed over or besides the roads to display
the maximum allowed speed for the given freeway stretches. The main purpose is to
increase safety by lowering the speed limits upstream of congested areas [111, 124].
However, variable speed limits can also be used to improve the traffic flows [141].

• Route guidance uses dynamic route information panels or on-board devices to assist
drivers in choosing the routes to their destinations. The original purpose is to inform
the drivers about the current state of the traffic, e.g. travel time or queue lengths on
different routes, to allow the drivers to take corresponding route choice decisions [18,
97]. This method can also be used to persuade drivers to change their route choice in
order to obtain a traffic assignment that gives a more optimal traffic performance from
the system point of view [75].

• Other traffic control measures include peak lanes that are only open during peak hours,
bi-directional lanes that change their direction at different times of a day, based on the
direction of the highest traffic demand [99].

1.3 Problem Statement

1.3.1 Objectives

Freeway management and control is used to influence traffic flows so as to prevent or allevi-
ate traffic congestion and to provide drivers with efficient and safe travel, or more generally
to improve the performance of the freeway network. From the network operation point of
view, the overall performance evaluation usually depends on a variety of objectives, such
as throughput, travel time, safety, fuel consumption, emissions, and so on. Therefore, it is
almost impossible to analytically find the best management and control strategy in a large-
scale freeway network. One promising way to find the optimal strategy is to formulate the
traffic problem as an optimization problem with respect to multiple objectives, and then to
solve the optimization problem using numerical optimization techniques.
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A major challenge for this approach is that it is usually characterized by an extremely
high computation burden, especially when online optimization is required. Since a free-
way network is a comparatively fast system, it usually requires that the control signals can
be determined in a fast way; however, the computation speed of solving an optimization
problem depends on the size of the freeway network and on the complexity of the problem.
Using faster computer processors is possible but rather expensive, and in general, it still will
not tackle the issued. Therefore, this thesis aims at improving the network performance, as
well as increasing the computational efficiency of the solution methods of the optimization
problem for traffic management and control in freeway networks.

The approaches adopted include:

• Reducing the complexity the optimization problems, e.g., problem approximation or
simplification;

• Developing new algorithms to solve the optimization problems, e.g., using artificial
intelligence techniques;

• Dividing the optimization problem into several sub-problems, and solving them in a
hierarchical way.

1.3.2 Methodology

An overview of different methodologies for management and control in a traffic network can
be found in [38, 78, 110]. This section discusses the ones that are used in this thesis.

• Optimal control aims at obtaining a sequence of optimal control signals based on the
system optimum conditions. For a given control period with the time horizon Hh ,
a sequence of control signals u(0),u(1), . . . ,u(Hh − 1) is determined by minimizing a
control objective function subject to constraints. Kotsialos et al. [87] used a nonlinear
optimal control approach to generate the splitting rates of traffic flows and the ramp
metering rates in a freeway network. Based on this method, Kotsialos and Papageor-
giou [84] developed a software tool called Advanced Motorway Optimal Control.

• Model Predictive Control (MPC) can be considered to be optimal control applied in
a rolling horizon scheme. The difference is that optimal control has an open-loop
structure, while MPC adopts a closed-loop control approach. More specifically, at
each control step kc, MPC determines a sequence of control signals u(kc|kc),u(kc +
1|kc), . . . ,u(kc+Hp−1|kc) for the prediction period [kcTc, (kc+Hp)Tc], with u(kc+ j |kc)
the control signal at the control step kc+ j based on the information of the control step
kc, Tc the control time length, and Hp the prediction horizon. However, only the first
sample of the control signal u(kc|kc) is applied to the system, and then the horizon
is shifted to the next prediction period. MPC has been successfully applied to online
traffic control measures in freeway networks (see [7, 71]).

• Parameterized feedback control aims at finding the optimal parameters of the con-
troller, and the control signals are determined based on the current state of the system
via a feedback control law at each control step. ALINEA [108] determines the ramp me-
tering rates via a feedback control law with fixed control parameters. [147] introduces
a dynamic framework for parameterized feedback control, containing two layers: the
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Figure 1.2: Structure of the thesis.

optimization layer and the control layer. At every control step, the optimization layer
optimizes and updates the parameters of the control laws, and the control layer then
determines the control signals via the control laws.

1.4 General Overview

1.4.1 Thesis Outline

This thesis contains six chapters (including this chapter), and it is divided into three parts.
Each part deals with a different subtopic, and is written independently, which means that
readers can read each part of the thesis separately. An overview of the relations between
different parts and chapters is shown in Figure 1.2. The detailed content of each part is sum-
marized as follows:

• Part I: Ant-based algorithms for dynamic traffic routing in freeway networks;

• Part II: Co-design of network topology and traffic control measures in freeway net-
works;

• Part III: Path planning for unmanned aerial vehicles to monitor the traffic conditions.

Part I contains two chapters. Chapter 2 first introduces a static routing algorithm for net-
works with capacity constraints, based on Ant Colony Optimization (ACO). The basic princi-
ple behind the use of ACO to solve a combinatorial optimization problem can be interpreted
as artificial ants searching for the best path in an ant graph. Motivated by this feature of
ACO, we propose the Ant Colony Optimization with Stench Pheromone (ACO-SP) algorithm
to solve a network routing problem. ACO-SP uses a novel concept called stench pheromone
to disperse ants to different paths, instead of letting ants converge on the same path in the



Chapter 1 - Introduction 7

ant graph. The amount of stench pheromone deposited on each arc is calculated based on
the number of ants on that arc. After ACO-SP terminates, the resulting assignment of ants
in the ant graph is used to determine the splitting rates for flows in the network. Based on
Chapter 2, Chapter 3 proposes the Ant Colony Routing (ACR) algorithm for solving the dy-
namic routing problem for freeway networks. In order to increase the computation speed,
before applying the ACR algorithm, a network pruning step is first implemented to remove
some “unnecessary” links and nodes from the original freeway network. After that, the ACR
algorithm is applied in a Model Predictive Control (MPC) framework.

Part II introduces a co-design approach that jointly optimizes the network topology and
the traffic control measures. Usually, this co-design approach has a problem because of dif-
ferent time scales: For a given design period, the network topology is fixed once determined,
while the traffic control measures have to be adapted according to the time-varying traffic
situations. Therefore, instead of optimizing the traffic control signals, parameterized con-
trol laws are used, and their parameters are optimized according to a pre-defined objective
function. The co-design method involves a nonlinear, non-convex optimization problem
with mixed-integer variables, which will be computationally expensive when dealing with a
large-scale network and multiple control measures. In order to tackle this issue, we consider
four different solution frameworks according to computational complexity, namely separate
optimization, iterative optimization, bi-level optimization, and joint optimization.

Part III addresses a path planning problem involving unmanned aerial vehicles (UAVs)
for monitoring freeway networks. Two distinct monitoring settings are considered: in the
first setting, the UAVs have two flying modes — monitoring and traversing, and in the sec-
ond setting, the UAVs only have one flying mode, which means that they can only moni-
tor when hovering in the air. For the first setting, the monitoring problem is formulated as
a periodical multiple rural postman problem, and solved using Mixed-Integer Linear Pro-
gramming (MILP). For the second setting, the problem is formulated as a Markov Decision
Process (MDP). However, since for large-scale traffic networks the standard MDP solution
methods are limited by the memory size, three alternative solution methods, namely the fit-
ted Q-iteration, the Model Predictive Control, and the parameterized control, are proposed.

Finally, the thesis is concluded in Chapter 6, in which each part of the thesis is summa-
rized, and several recommendations for the future work are presented.

1.4.2 Contributions

The main contributions of this thesis are:

• We develop an ant-based algorithm to solve the dynamic traffic routing problem in
freeway networks, which introduces two concepts, called stench pheromone and col-
ored ants, and proposes a fully-dynamic way of using artificial ants to calculate the link
cost while traffic is traveling on that link.

• We define a unified problem formulation for co-design of network topology and traf-
fic control measures in a model-based optimization framework, where the network
topology design and traffic control measures are jointly applied to a traffic model, and
a monetary cost is used to evaluate the performance of the traffic network.

• We consider the mobile sensor monitoring problem in two different settings: the first
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setting is formulated as a periodical multiple rural postman problem; the second set-
ting is formulated as a Markov Decision Process (MDP).



Part I

9





Chapter 2

Ant-Based Routing Algorithm in

Capacity-Constrained Networks

Ant Colony Optimization (ACO) is a powerful optimization heuristic for combinatorial opti-
mization. This chapter introduces an ant-based algorithm called Ant Colony Optimization
with Stench Pheromone (ACO-SP) to solve a routing problem in a network with capacity
constraints, i.e., in a network where for each link the amount of flow cannot exceed a given
upper bound. The basic idea is to map the network into an ant graph, which shares the same
topology as the network, and then to use artificial ants to search for the best routes in the
ant graph. The stench pheromone is a new concept introduced to repel ants when too many
of them converge to the same arc. Through the regular pheromone and the stench phero-
mone, ants can be dispersed over the ant graph in an optimal manner. The routing problem
is then solved by distributing the flow over the network according to the ant assignment de-
termined by ACO-SP. Moreover, for a static routing problem, ACO-SP can be recast as a linear
programming (LP) problem such that the routing problem can be solved by an LP method,
which in general results in a lower computation time while achieving a similar performance
as ACO-SP.

2.1 Introduction

Ants in the natural world often display intelligent collective behavior when seeking the short-
est path between their nest and a source of food. This self-organizing behavior results from
the fact that ants deposit pheromone trails on their way from the food source back to the
nest. Pheromone is used as a medium of communication among ants to indirectly exchange
information. Although this information exchange has a local scope, the collective behavior
of the whole ant colony leads to satisfying a global goal. Deneubourg was the first to perform
the double bridge experiments [40] in order to model the behavior of foraging ants. Based
on these experiments, Dorigo initially proposed the idea of an ant-based metaheuristic ap-
proach in his PhD thesis [43] to solve combinatorial optimization problems in computer
science. The class of algorithms that Dorigo introduced is called Ant Colony Optimization
(ACO) [46], and has proven to be very successful in solving a wide variety of combinatorial
optimization problems, such as traveling salesman problems [44, 45], scheduling problems
[126], vehicle routing problems [59], and so on. An overview of papers covering representa-
tive ACO applications is given in [16].

This chapter considers using ACO to solve a routing problem in a network with capacity

11
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constraints. The routing solution aims at determining an assignment of flows on the routes
through the network with a least cost, e.g., total travel distance or total travel time. If no
capacity is imposed on the links of the network, the problem is simplified as finding the
shortest or the fastest route in the network, which can then be easily solved by the standard
ACO algorithms.

AntNet [30] is one of the well-known ant-based routing algorithms, proposed for telecom-
munication networks. In AntNet, each node maintains a routing table, and an information
table of the statistics about the traffic distribution over the network. There are two types
of ants in AntNet, namely forward ants and backward ants. Forward ants are used as regu-
lar data packages that move from node to node in the network, and backward ants retrace
the paths of forward ants in the opposite direction to update the routing table and the in-
formation table. The data package is then routed to the best path determined by the ants.
However, AntNet is not suitable for solving the routing problem in some other types of net-
works, e.g., freeway networks. AntNet is an adaptive routing algorithm, and it directly puts
artificial ants in the network. However, a freeway network is a more complex and slower
system than a telecommunication network, and therefore it is impractical to embed ants
(e.g., an ant-function car) into the freeway networks. The problem needs to be first solved
in a separate ant graph, and then the solutions are implemented via traffic controllers in the
freeway networks. Therefore, this chapter proposes a different ant-based dynamic routing
algorithm for networks with capacity constraints, based on the work of biologists studying a
special species of ants, called Lasius niger.

Dussutour et al. [49] investigated how Lasius niger ants move on a diamond-shaped
bridge with two branches of equal length with limited capacity. They experimentally showed
that when both branches of the bridge are wide enough, the majority of ants use the same
branch. However, after reducing the width of both branches, the ants no longer converged
to one branch, but instead almost a half of them moved to the other branch. Fourcassié et al.
[56] interpreted this phenomena as that Lasius niger ants have the ability to optimally build
and maintain the foraging trails for the colony in order to maximize the rate of food delivery
to their nest. More specifically, if a route that ants travel along between a food source and
the nest becomes congested, then the number of collisions between ants will increase, and,
as a result, some ants are pushed to an alternative route by their opponents. This eventually
results in a congestion-free distribution of ants in the experiment [49].

In order to actively disperse ants in the network as discussed above, we propose a con-
cept called the stench pheromone. The stench pheromone has an opposite function to the
regular pheromone used in the standard ACO algorithms: it can push ants away when there
are too many ants on the same route. When no more ants can travel on the best (e.g., the
shortest) route in the ant graph, they will start to search the second best, the third best, and
so on. In this way, an optimal distribution of ants is achieved. Because of this concept,
this ACO version is called as Ant Colony Optimization with Stench Pheromone (ACO-SP for
short). In fact, the idea of using a pheromone with such a negative effect is not completely
new. Montgomery and Randall [102] introduced a so-called anti-pheromone, which has the
opposite effect to the regular pheromone. However, the goal of anti-pheromone differs from
ours. It is used to prevent the ACO algorithm from converging too soon so as to avoid local
optima when solving an optimization problem. A more similar concept to the stench pher-
omone is called pheromone repulsion [105], which is related to multiple-colony ant systems
[59, 80]. In this kind of algorithm, ants are repulsed by the pheromones of the ants from other
colonies. Because of the competition between different colonies, ants can find disjoint paths
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Figure 2.1: Illustration of how inflow qin is distributed along multiple routes in a network. The

dashed lines indicate the routing solutions.

in an ant graph. Compared to pheromone repulsion, the ACO-SP algorithm described in the
thesis is simpler, yet can still effectively diversify the search. It has to be emphasized that in
Chapter 3, we introduced a concept called colored ants, which can be considered as a kind of
multiple-colony ant system. However, in our approach, ants feel neutral to the pheromones
deposited by the ants from other colonies. The colored ants are only used for mapping a
network with multiple destinations into an ant graph, where each color corresponds to one
destination.

The rest of this chapter is structured as follows. The problem statement is introduced
in Section 2.2. Then, the standard ACO algorithm is briefly recapitulated in Section 2.3, fol-
lowed by the introduction of the new ACO-SP algorithm in Section 2.4. Section 2.5 discusses
how to recast ACO-SP as a linear programming problem under certain conditions. In Sec-
tion 2.6, a simulation-based case study is implemented to illustrate the use of ACO-SP for
solving a routing problem in a simple road network. Finally, Section 2.7 concludes this chap-
ter.

2.2 Problem Statement

This chapter only considers static routing problems; dynamic routing problems will be con-
sidered in the next chapter. It should be emphasized that ACO-SP may be overqualified for
solving static routing problems. However, for illustration purposes, it is easier to consider a
static routing problem to clearly explain the ACO-SP algorithm.

A general network can be modeled as shown in Figure 2.1, with a set M of links and a set
N of nodes. For illustration purposes, this chapter only considers a network with one origin
and one destination; the multi-origin multi-destination case will be considered in Chapter 3.
The inflow of the network is denoted by qin, and the flow on link m ∈ M is denoted by qm .
The total inflow of node n ∈N is computed by:

Qn =
∑

m∈In

qm , (2.1)

with In the set of incoming links of node n. Each outgoing link m ∈ On of node n is then
characterized by:

qm =βn,m ·Qn , (2.2)
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with βn,m the splitting rate that indicates the fraction of the total flow Qn that is leaving via
link m, and On the set of outgoing links of node n. The splitting rate is bounded by

0 Éβn,m É 1 , (2.3)

and

∑

m

βn,m = 1 . (2.4)

Each link has a cost ϕm per unit flow. The static routing problem is solved by minimizing the
objective function:

J =
∑

m∈M

ϕm ·qm , (2.5)

subject to the constraints (2.1)-(2.3).
The basic idea of using ACO-SP to solve a routing problem is to translate the network

into an ant graph1, mapping a node n into a vertex s or t , a link m into an arc (s, t ), with
the relationship m = ℓ(s, t ) that indicates that a link m corresponds to an arc (s, t ), and the
link cost ϕm of each link m is translated into the length Ls,t of each arc (s, t ). The ACO-SP
algorithm is used to minimize the objective function J in (2.5). Note that ACO-SP runs on
the ant graph, not the network. The splitting rate βn,m is calculated based on the number of
ants ys,t that have traveled each arc (s, t ) with m = ℓ(s, t ):

βn,ℓ(s,t) =
ys,t

∑

t ′∈Ns

ys,t ′
(2.6)

with Ns the set of vertices connected to vertex s. At the end, the flow on each link m is
determined according to (2.2).

2.3 Standard Ant Colony Optimization

This section briefly reviews the standard ACO algorithms in Section 2.3.1, and explains the
mechanism of one of the best-known ACO algorithms, the Ant System (AS), in Section 2.3.2.

2.3.1 Framework of ACO

The class of ACO algorithms has been developed to solve combinatorial optimization prob-
lems. In ACO, a combinatorial optimization problem is represented by a graph G (V ,A ),
called the ant graph, which consists of a set V of vertices, and a set A of arcs connecting the
vertices. A solution of the combinatorial optimization problem is an ordered set of solution
components, with each solution component corresponding to a pair of vertices in the ant
graph G . Therefore, a solution can be considered to be a route over G . To find a particular
solution, an artificial ant a on G starts on an initial vertex, and moves from one vertex to
another, adding the corresponding arc to its route ra , until it reaches the terminal vertex.

1In order to avoid confusion, in this chapter the terms “links" and “nodes" refer to the network, and the
terms “arcs" and “vertices" refer to the ant graph.
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Then, the construction of the route ra is completed, and ra then represents a candidate so-
lution found by ant a. The way that the terminal vertex is defined depends on the problem
considered. For example, in the traveling salesman problem, the terminal vertex is the same
as the initial vertex of ants, and in a control problem, the terminal vertex corresponds to the
desired state of the system.

Two variables are associated with an arc (s, t ): a pheromone variable τs,t , and a heuristic
variable ηs,t . The pheromone variable τs,t represents the knowledge acquired by ants about
the optimal solutions over time, and the heuristic variable ηs,t provides a priori information
about the quality of the given solution component, i.e., the quality of moving from vertex s

to vertex t . In general, a heuristic variable represents a short-term quality measure of each
solution component, while a pheromone variable evaluates the quality of concatenating the
respective solution components over a long term.

2.3.2 Ant System

Many ACO algorithms have been developed, e.g., Ant System (AS) [47], Max-Min Ant System
[128], Rank-based Ant System [24], and Ant Colony System [44], most of them only differing
in a few minor points to make them perform better on a specific type of problems. Among
these algorithms, AS stands at the basis for most of the ACO algorithms later developed,
including the ACO-SP algorithm introduced in the chapter.

The AS algorithm works as follows [47]. At the beginning, the pheromone variables τs,t

are set to some initial value τ0 > 0, and the heuristic variables ηs,t may be set to encode priori
knowledge of the problem by favoring the choice of some vertices over others. Then, the AS
algorithm keeps running in two loops: an inner loop, in which the solutions are constructed,
and an outer loop, in which the pheromone levels are updated:

• Inner loop: Each ant a is put at some initial vertex, and each route ra is initially empty.
In each step, ra is extended by adding arc (s, t ) to it if ant a moves from vertex s to
vertex t . The probability for ant a on vertex s to move to vertex t within its feasible
neighborhood Ns,a is defined as:

pa (t |s) =
ταs,tη

β
s,t

∑

t ′∈Ns,a

τα
s,t ′η

β

s,t ′

, ∀t ∈Ns,a (2.7)

with α> 0 and β> 0 being user-defined parameters to control the influence of τs,t and
ηs,t . The feasible neighborhood Ns,a of ant a on vertex s is the set of vertices that are
connected to s and that have not yet been visited by ant a in the current inner loop.
If the terminal vertex is reached, ant a stops searching, and route ra is put into a set
Supd of candidate solutions that are constructed, and used for the pheromone update
in the current iteration of the outer loop. Note that if Ns,a =;, ra cannot lead to a valid
route. In that case, the construction of ra is aborted, not used for pheromone update,
and ant a stops as well.

• Outer loop: In each iteration, ant a deposits a pheromone trail ∆τs,t (ra) on arc (s, t ) if
arc (s, t ) is a part of ra . The pheromone trail ∆τs,t (ra) is computed based on a fitness
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function F (·):

∆τs,t (ra) =
{

F (ra) , if (s, t ) ∈ ra

0 , otherwise
(2.8)

The function F (·) assigns strictly positive values to each route ra . In the ant graph, the
better the route is, i.e., the shorter the route is, the higher the value of F (·) is. One way
to implement F (·) is:

F (ra) =
K

Lra

, with Lra =
∑

(s,t)∈ra

Ls,t (2.9)

with Ls,t the length of arc (s, t ), and K > 0 a constant. Then, the pheromone variable
τs,t is updated as follows:

τs,t ← (1−ρevap)τs,t +
∑

ra∈Supd

∆τs,t (ra) , (2.10)

with ρevap ∈ (0,1] the evaporation rate, which has the purpose of uniformly decreasing
the pheromone values in order to avoid too rapid a convergence towards a sub-optimal
solution.

When the difference in the pheromone levels between two consecutive iterations of the outer
loop is smaller than a pre-defined threshold ǫτ, or when the iteration number of the outer
loop reaches a specified maximum number Imax, the AS algorithm terminates. The final so-
lution is then extracted by selecting the vertices from the initial vertex to the terminal vertex.
More specifically, at any vertex s, the next vertex t in the final route is selected by

t = argmax
t ′

(

ταs,t ′η
β

s,t ′

)

. (2.11)

2.4 Ant Colony Optimization with Stench Pheromone

This section first presents the basic principles of the ACO-SP algorithm with an example
in Section 2.4.1, then explains how to construct the stench pheromone function in Sec-
tion 2.4.2, and finally describes ACO-SP in a mathematical way in Section 2.4.3.

2.4.1 Basic Principles

Let us illustrate the ACO-SP algorithm with an example, see Figure 2.2, which shows how ants
move under the impact of both regular pheromone and stench pheromone. The ant graph
has one initial vertex, the nest, one terminal vertex, the food source, and two arcs, with one
being longer than the other. Suppose that the total number of ants is larger than the capacity
on either arc, but smaller than the sum of capacities on both arcs. With this assumption, not
all ants can travel on the same arc, but they have to split.

1. At the beginning, each ant starts to explore the ant graph, randomly selecting the
shorter arc or the longer arc, and deposits the regular pheromone (indicated by the
light grey dots) on the chosen arc. See Figure 2.2(a).
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Nest Food

(a) An ant starts to explore the ant graph.

Nest Food

(b) More ants choose the shorter route.

Nest Food

(c) Too many ants converge to the shorter route.

Nest Food

(d) A part of the ants choose the longer route.

Figure 2.2: An example to illustrate how ants choose routes in the ACO-SP algorithm. The light

grey dots indicate the regular pheromone, and the black dots indicate the stench

pheromone.

2. As shown in Figure 2.2(b), when the number of ants is much lower than the capacity of
the arc, only regular pheromone is deposited on that arc. So far, the process of ACO-
SP is the same as that of the standard ACO algorithm [44, 47], and therefore more and
more ants will gradually choose the shorter arc.

3. When the number of ants is approaching the capacity of the shorter arc, congestion
will occur and as a result the performance (e.g., the speed of delivering food to the
nest) will deteriorate. In this case, stench pheromone (indicated by the black dots) is
deposited on that arc, resulting in a decrease of the total pheromone level (See Fig-
ure 2.2(c)). As a result, the probability of ants choosing the shorter arc accordingly
decreases, and some ants will start to take the longer route.

4. Under the combined effect of the regular pheromone and the stench pheromone, the
numbers of ants traveling on both arcs will eventually evolve towards some final val-
ues. Consequently, the network yields a steady-state optimal distribution of ants as
shown in Figure 2.2(d).

Note that the stench pheromone is not deposited by ants, but is determined by some central-
ized entity according to the number of the ants on the arc. Therefore, the shape of the func-
tion that describes how much stench pheromone is deposited is designable. If the stench
pheromone function has a strong impact, then the number of ants on each route will be
small, while if the stench pheromone function has a weak impact, then the number of ants
on each route will be large. Therefore, the stench pheromone function should be designed
based on the requirements of the network managers. The construction of the stench phero-
mone function will be discussed in Section 2.4.2.

Generally speaking, regular pheromone can be considered as a reward for ants, while
stench pheromone can be considered as a penalty for ants. From a control point of view,
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Figure 2.3: Illustration of the ACO-SP algorithm from a feedback point of view.

ACO-SP involves a feedback mechanism as shown in Figure 2.3. The total pheromone level
on each arc results from the regular pheromone minus the stench pheromone, the number
of ants on that arc is determined by the total pheromone level via the attractiveness mech-
anism, and the amount of the regular pheromone and the stench pheromone is calculated
based on the number of ants.

As regards the convergence properties of the ACO-SP algorithm, we provide a proof for a
simple case involving an ant graph with two arcs (see Appendix A). In this case, the updating
pheromone process has four different modes:

• M1: No stench pheromone is deposited;

• M2: Stench pheromone is only deposited on arc 1;

• M3: Stench pheromone is only deposited on arc 2;

• M4: Stench pheromone is deposited on both arcs.

In Appendix A, we show that, for a specific range of parameters of the stench pheromone
function, the process will transit among M1, M2, M3, and M4 in different ways, depending on
the total numbers of ants and the thresholds for depositing the stench pheromone. However,
no matter which mode transition sequence results, the pheromone levels on the two arcs will
always converge.

2.4.2 Stench Pheromone Function

The deposit of the stench pheromone is activated by the capacity constraint, or by some
predefined thresholds in terms of the numbers of ants on the arcs, depending on the prob-
lem considered. Moreover, the amount of stench pheromone deposited on arc (s, t ) should
correspond to the number ys,t of ants that have selected arc (s, t ) as a part of their (valid)
final route. The more ants choose arc (s, t ), the more stench pheromone is deposited. The
amount of stench pheromone deposited on arc (s, t ) is calculated through a function Gs,t :
ys,t →Gs,t (ys,t ), which has the following properties:

1. Gs,t (0) = 0, i.e., if no ants have selected link (s, t ), no stench pheromone is deposited;
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Figure 2.4: General shape of the stench pheromone function Gs,t (·).

2. Gs,t is monotonically non-decreasing as ys,t increases;

3. Gs,t can include one or more intermediate threshold levels, at which the value of Gs,t

increases significantly;

4. Gs,t rises steeply as soon as ys,t reaches the capacity Nmax,s,t of the arc.

Figure 2.4 shows the general shape of the stench pheromone function Gs,t . The specific form
of Gs,t depends on the network routing problem at hand.

One way to formulate Gs,t is to use a piecewise affine (PWA) function :

Gs,t (ys,t ) =







Ps,t ,0 · ys,t , if 0 É ys,t < Ns,t ,1

Ps,t ,1(ys,t −Ns,t ,1)+Bs,t ,1 , if Ns,t ,1 É ys,t < Ns,t ,2
...

Ps,t , j (ys,t −Ns,t , j )+Bs,t , j , if ys,t Ê Ns,t , j

(2.12)

with Ns,t , j the j th threshold number of ants on arc (s, t ), Ps,t , j Ê 0 the slope of the j th affine
sub-function, and Bs,t , j a constant to guarantee continuity of the stench pheromone func-
tion, which is

Bs,t ,i =
{

Ps,t ,0 ·Ns,t ,1 , for i = 1

Bs,t ,i−1 +Ps,t ,i−1(Ns,t ,i −Ns,t ,i−1) , for i = 2, · · · , j
(2.13)

The value of Ns,t , j corresponds to the capacity of link ℓ(s, t ), or some predefined threshold
of flow on link ℓ(s, t ).

Recall that the number ys,t of ants on each arc (s, t ) in the ant graph is used to determine
the splitting rate βn,ℓ(s,t) , which is the solution of the routing problem, on each link ℓ(s, t )
in the network. Therefore, the regular pheromone and the stench pheromone should be
deposited to eventually result in a well-balanced total pheromone level on each arc (s, t ) that
can lead to the minimal value of the objective function J in (2.5). For this purpose, the values
of the parameters (e.g., the slopes Ps,t , j and the threshold numbers Ns,t , j in (2.12)) of the
stench pheromone function need to be set properly.

In order to do that, we use a parameterization method. The basic idea of the param-
eterization method is to find the optimal parameters of the algorithms or the control laws
(usually via solving an optimization problem) to optimize a pre-defined objective function.
A more detailed description about this method will be introduced in Chapter 4, in which a
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Figure 2.5: Schematic representation of using ACO-SP to solve the network routing problem by

parameterized control. The dashed box indicates the parameterized control step.

The ant graph itself is an input of ACO-SP.

parameterized traffic control approach will be used. Actually, the ACO-SP algorithm can be
considered as a control law, and the splitting rate βn,m as the control signal.

Figure 2.5 illustrates how to use ACO-SP to solve the network routing problem by the
parameterization method. There are two steps in this method: an offline parameterization
step, and an online network routing step. In the offline step, we consider a representative
inflow qrep,in entering the network. Then, an optimization approach is used to optimize the
parameters of the stench pheromone function in ACO-SP in such a way that the objective
function J is minimized. Next, the ACO-SP algorithm uses the parameters, together with
the ant graph mapped from the network, to calculate the splitting rates. Subsequently, the
splitting rates are applied to the network, and the newly generated flow on each link will be
fed back to the optimization approach for a new iteration of optimizing J . The parameterized
control step stops until the difference between the values of J in two consecutive iterations is
smaller than a predefined tolerance, or the maximum number of iterations is reached. After
that, we run the online step. The network is characterized by the real inflow qin. We solve the
routing problem by the ACO-SP algorithm, using the optimal parameters determined in the
parameterization step.

Remark 2.1 For static routing problems, the representative inflow qrep,in can be selected
the same as the network inflow qin, while for dynamic routing problems, e.g., in a freeway
network, the representative inflow qrep,in can be obtained via historical data, or based on a
prediction model. ✷

2.4.3 Mathematical Formulation

In this section, the ACO-SP algorithm is formulated in a mathematical way. The frame-
work of the ACO-SP algorithm (see Algorithm 2.1) is similar to the AS algorithm, including
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Algorithm 2.1 The ACO-SP algorithm

Input: ant graph G (V ,A ), total number of ants Nants,total, initial pheromone level τ0, min-
imum pheromone level τmin, evaporation rate ρevap, weight parameter α, maximum
number of iterations Imax, predefined tolerance ǫτ

1: τs,t ← τ0, ∀(s, t )
2: repeat

3: Supd ←;,
4: ys,t ← 0, ∀(s, t )
5: for all ants a ∈ {1,2, . . . , Nants,total} in parallel do

6: ra ←;
7: initialize Ns,a , ∀s ∈V

8: s ← initial vertex for ant a

9: repeat

10: select the next vertex t according to

pa(t |s) =
(

max{τmin,τs,t }
)α

∑

t ′∈Ns,a

(

max{τmin,τ(s,t ′)}
)α ,

11: ra ← ra ∪ {(s, t )},
12: Ns,a ←Ns,a \ {t },
13: s ← t ,
14: until s is the terminal vertex or Ns,a =;
15: if s is the terminal vertex then

16: Supd ←Supd ∪ {ra}
17: ys,t ← ys,t +1, ∀(s, t ) ∈ ra

18: end if

19: end for

20: compute Gs,t (ys,t ), ∀(s, t )
21: τs,t ,prev ← τs,t

22: update τs,t :

τs,t ← (1−ρevap)τs,t +
(

∑

ra∈Supd

∆τs,t (ra)

)

−Gs,t (ys,t ), ∀(s, t )

23: until i = Imax or |τs,t −τs,t ,prev| É ǫτ, ∀(s, t )
Output: ys,t , ∀(s, t )
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the inner loop and the outer loop. In each iteration of the outer loop, the total pheromone
level is updated by subtracting the amount of the stench pheromone from the regular pher-
omone. The pheromone update equation (2.10) is therefore modified as follows:

τs,t ← (1−ρevap)τs,t +
(

∑

ra∈Supd

∆τs,t (ra)

)

−Gs,t (ys,t ) . (2.14)

By adopting this modification, the pheromone levels on the arcs may become negative. In
that case, the probability pa(t |s) would not be well defined. Therefore, (2.7) should be mod-
ified as well:

pa (t |s) =
(

max{τmin,τs,t }
)α

∑

t ′∈Ns,a

(

max{τmin,τs,t ′ }
)α , (2.15)

with τmin > 0 a parameter that prevents the denominator of (2.15) from becoming zero. In
(2.15), the heuristic variable ηs,t is disregarded, assuming that no information about the
quality of each arc is available a priori. This is implemented by setting all heuristic variables
equal to one.

The termination conditions of the ACO-SP algorithm are the same as the ones of the AS
algorithm. When ACO-SP terminates, the output of the algorithm is the numbers of ants ys,t

on each arc (s, t ).

2.5 Routing by Linear Programming

This section presents a linear programming (LP) method motivated by ACO-SP. The ACO-SP
algorithm can be recast as an LP method if both of the following conditions are satisfied:

• Condition (a): the link cost in the network is constant;

• Condition (b): the stench pheromone function in ACO-SP is a convex piecewise affine
(PWA) function.

Condition (a) always holds for static routing problems, and for dynamic routing problems, it
also holds in a quasi-static method (see Section 3.3.3), in which the link cost is considered as
fixed between every two control steps if the control time interval is not too large. Moreover,
Condition (b) can usually be satisfied too as the stench pheromone function is constructed
by the designer. In this way, the routing problem is formulated as an LP problem. Note that
in this section, the ant graph is not used, so all the variables are defined for the network.

The primary objective is to minimize the total cost, which is defined as follows:

min Jcost = min
qm

∑

m∈M

ϕm ·qm (2.16)

with qm the flow on link m, ϕm the cost of link m, and M the set of links in the network. This
minimization problem is constrained by:

∑

m∈Oo

qm = qin, (2.17)
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∑

m∈In

qm =
∑

m′∈On

qm′ , ∀n ∈N , (2.18)

qm É qmax,m , ∀m ∈M . (2.19)

with qin the incoming flow of the network, o the origin of the network, qmax,m the maximum
flow on link m, I and O the sets of incoming and outgoing links respectively.

Recall that the stench pheromone function in ACO-SP is used to penalize that too many
ants converge to the same arc. In the LP approach, it is considered as a penalty function
Jpen,m with a PWA form:

Jpen,m =







Pm,0qm , if 0 É qm ÉQm,1

Pm,1(qm −Qm,1)+B1, if Qm,1 < qm ÉQm,2
...

Pm, j (qm −Qm, j )+B j , if Qm, j < qm É qmax,m

(2.20)

with Qm,i , i = 1,2, . . . , j , the predefined thresholds for the flow on link m, Pm,i the slope of
the i th affine sub-function, and Bi a constant to guarantee continuity of the function Jpen,m ,
which is defined as:

Bi =
{

Pm,0Qm,1, for i = 1

Bi−1 +Pm,i−1(Qm,i −Qm,i−1), for i = 2, · · · , j
(2.21)

The penalty function Jpen =
∑

m∈M Jpen,m is another objective to be minimized. If Jpen,m is a
convex PWA function, then minimizing Jpen can be recast in an LP format by introducing an
additional optimization variable gm :

min Jpen = min
qm ,gm

∑

m∈M

gm (2.22)

subject to

gm Ê Pm,0qm , ∀m ∈M (2.23)

gm Ê Pm,1(qm −Qm,1)+B1, ∀m ∈M (2.24)

...

gm Ê Pm, j (qm −Qm, j )+B j , ∀m ∈M (2.25)

It is easily to verify that the LP problem (2.22)–(2.25) amounts to minimizing Jpen.

By combining the two objectives, the LP routing problem is formulated as:

min
qm ,gm

α1 Jcost +α2 Jpen (2.26)

with α1,α2 > 0 the weight parameters, subject to the constraints (2.17)–(2.19) and (2.23)–
(2.25). This LP problem can be solved using one of the many available algorithms for linear
programming (see e.g., [112, Chapter 1] or [39]). In this way, the optimal flows q∗

m in the
network are determined, yielding a balanced trade-off between minimizing the total cost
and avoiding congestion.
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Remark 2.2 However, if Jpen,m is a non-convex PWA function, we obtain a so-called mixed-
integer linear programming (MILP) problem [11]. As will be shown next.

First, the penalty function Jpen,m is rewritten as a recursive function:

gm,0 = P ′
m,0qm , if 0 É qm ÉQm,1

gm,i = gm,i−1 +P ′
m,i (qm −Qm,i ), if Qm,i É qm ÉQm,i+1, i = 1, . . . , j (2.27)

with Qm, j+1 = qmax,m , and P ′
m,i a new parameter for slope, which can be obtained according

to (2.20). Then, each condition qm Ê Qm,i is associated with a binary logical variable δm,i ∈
{0,1} such that

[δm,i = 1] ⇔ [qm ÊQm,i ] , (2.28)

where “⇔” means “if and only if”. It is easy to verify that (2.28) is equivalent to

qm ÉQm,i − (Qm,i −qmax,m)δm,i (2.29)

qm ÊQm,i −Qm,i (1−δm,i ) (2.30)

Then (2.20) can be rewritten as:

Jpen,m = δm,0P ′
m,0qm +

j∑

i=1
δm,i

(

P ′
m,i (qm −Qm,i )

)

(2.31)

The term δm,i qm can be replaced by an auxiliary real variable zm,i = δm,i qm , which can be
expressed as:

zm,i É qmax,mδm,i , (2.32)

zm,i Ê 0 , (2.33)

zm,i É qm , (2.34)

zm,i Ê qm −qmax,m(1−δm,i ) . (2.35)

So (2.31) is reduced to a linear equation:

Jpen,m = P ′
m,0zm,0 +

j∑

i=1
P ′

m,i (zm,i −Qm,iδm,i ) . (2.36)

subject to the linear constraints (2.29), (2.30), and (2.32)–(2.35). Note that the optimization
variables in (2.36) include continuous variables qm and zm,i , and also binary variables δm,i .
In this way, the problem becomes an MILP problem, which can be solved efficiently by sev-
eral existing state-of-the-art commercial and free solvers, such as CPLEX, Gurobi, Xpress-MP,
or GLPK [3, 93]. ✷

2.6 Case Study

The case study considered here chooses a traffic scenario to illustrate the use of ACO-SP to
solve a routing problem. Note however that ACO-SP can be used for solving other general
routing problems. The case study network is chosen to be simple with only two essential
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Figure 2.6: A simple network with one origin, one destination, and four links.

routes. For a traffic scenario, the network in general has a time-variant inflow. Therefore, we
consider a discrete-time setting, where in each simulation period [kT, (k+1)T ] for k = 0,1, . . .,
with T the length of the simulation period, the traffic inflow and the traffic state on each link
is fixed. In this way, we still solve a static routing problem in each simulation period. More-
over, in order to evaluate the performance and computational efficiency, ACO-SP is com-
pared with another traffic routing method, namely the non-linear optimal control approach
[87]. All simulations are programmed in Matlab by using a desktop computer with the Linux
OS, and an Intel(R) Core(TM) 2 Duo CPU with 3.00 GHz and 4GB RAM.

2.6.1 Network set-up

The network of the case study is shown in Figure 2.6. The lengths of m1 and m3 are 2.5 km,
and the lengths of m2 and m4 is 5 km. Each link is divided into several segments, with the
segment length L1 = L2 = L3 = L4 = 0.5 km. The number of lanes is λ1 =λ2 =λ3 =λ4 = 1, and
the capacity is C1 =C2 =C3 =C4 = 2000 veh/h.

The traffic condition on each link is described by the fundamental diagram (see Fig-
ure 1.1), which can be mathematically formulated as:

vm,i (k) = vfree,mexp

(

−
1

am

(
ρm,i (k)

ρcrit,m

)am
)

(2.37)

qm,i (k) = ρm,i (k)vm,i (k)λm (2.38)

with qm,i (k), vm,i (k), andρm,i (k) the outflow, the speed, and the density of traffic on segment
i of link m at time step k, vfree,m the free-flow speed, ρcrit,m the critical density, and am the
model parameter. The values are set as vfree,m = 50 km/h, ρcrit,m = 30 veh/h/lane, and am =
1.867. Moreover, to follow the conservation law, the density of a segment at each time step
equals the density of that segment at previous time step plus the inflow from the upstream
segment, minus the outflow of the segment itself:

ρm,i (k +1) = ρm,i (k)+
T

Lmλm
(qm,i−1(k)−qm,i (k)) (2.39)

with T the length of simulation time step, and it is set as T = 60 s. The inflow qm,0(k) of the
virtual upstream segment is determined by the splitting rate:

qm,0(k) =βo,m(k)qin(k) (2.40)
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with qin(k) the inflow of the network, which is set as qin(k) = 1800 veh/h. We consider three
different simulation periods, lasting 0.5 hour, 1 hour, and 1.5 hours respectively. The link
cost is chosen as the travel time on each link:

ϕm(k) =
Nm∑

i=1

Lm

vm,i (k)
(2.41)

with Nm the number of segments of link m. Therefore, the objective function at each simu-
lation step k is then:

J (k) =
∑

m∈M

ϕm(k) ·qm (k) . (2.42)

2.6.2 ACO-SP settings

Note that although the case study network has four links, links m1 and m3, and links m2 and
m4 can be mapped into one arc respectively when translating the network into the ant graph,
because links m3 and m4 are the only outgoing link of links m1 and m2, and links m3 and m4

have the same number of lanes and the same capacity as links m1 and m2. So, we map links
m1 and m3 into arc (s1, t2), and links m2 and m4 into arc (s1, t3).

The parameters of the ACO-SP algorithm are set as follows: the total number of ants
is Nants,total = 5000, the evaporation rate is ρevap = 0.1, the initial value of pheromone is
τ0 = 10, the lower bound of pheromone is τmin = 3, the model parameterα= 1, the maximum
number of the outer loop of ACO-SP is Imax = 1000, the maximum number of simulation-
optimization iterations is Niter = 10, the tolerance for pheromone is ǫτ = 10−6, and the toler-
ance for the splitting rate is ǫβ = 10−3.

The stench pheromone function is defined as a PWA function. According to the funda-
mental diagram, traffic congestion may occur if the critical density is exceeded. Therefore,
the threshold number Ns,t of ants on arc (s, t ) corresponds to the critical density of the link
m = ℓ(s, t ) in the network:

Ns,t = γs,tρcrit,ℓ(s,t)Lℓ(s,t)λℓ(s,t) (2.43)

with γs,t > 0 the weight parameter for the threshold number Ns,t . The smaller γs,t is, the eas-
ier the stench pheromone is activated. Then, the stench pheromone function is formulated
as:

Gs,t (ys,t ) = max(0,Ps,t (ys,t −Ns,t )) . (2.44)

The slopes P1,2 and P1,3, and the weights γ1,2 and γ1,3 are optimized using the parame-
terized control method by considering two representative network inflows: qrep,in,1 = 1500
veh/h, and qrep,in,2 = 2000 veh/h. In this case study, we choose the genetic algorithm as the
optimization method in parameterized control, which is implemented via the ga function of
the Matlab Global Optimization Toolbox.

2.6.3 Simulation results

The results of optimizing the parameters of the stench pheromone function are P1,2 = 4.4492,
P1,3 = 3.5438, γ1,2 = 18.0956, and γ1,3 = 25.1981.
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Table 2.1: Comparison of the results of ACO-SP and the non-linear optimal control approach

(“NA” indicates not applicable)

Methods Simulation period [h] TTS [veh· h]
Computation time [s]

For optimizing For solving
parameters routing problem

ACO-SP
0.5 204.1965

1222.1
682.5

1.0 390.6310 1388.6
1.5 605.4330 1997.4

Optimal control
0.5 198.6345

NA
441.6

1.0 404.4612 2670.2
1.5 586.7164 16213.7

The results of the routing problem are shown in Table 2.1. Since ACO is a stochastic
algorithm, in fact we have run the simulation five times to compare the difference between
each result set. Because the network has such a tiny size, the variability of the results is small,
so we only show one specific set of the results here. Note that the non-linear optimal control
approach of [87] is a comprehensive traffic control strategy, considering the use of ramp
metering, route guidance, and freeway-to-freeway control measures. However, in order to
compare it with ACO-SP, this case study only extracts the part involving the solution of the
routing problem, with the objective of minimizing the total time spent (TTS). According to
[87], this problem is solved by considering it as a discrete-time optimal control problem:

min J = min
βn,m (k)

T
K∑

k=1

∑

m∈M

Nm∑

i=1
ρm,i (k)Lmλm (2.45)

subject to the constraints (2.37)–(2.40).
According to Table 2.1, the performance in terms of TTS resulting for the two methods is

similar in this case study. More specifically, ACO-SP works better than the non-linear optimal
control approach in the case that the simulation period is 1 hour, while the non-linear opti-
mal control approach performs better in the other two cases. Comparing the computation
time, ACO-SP has an offline step for optimizing the parameters of the stench pheromone
function. This offline step only needs be executed once for the same representative inflow
qrep,in in the same network. For solving the routing problem, ACO-SP is faster than the non-
linear optimal control, especially in the third case.

The non-linear optimal control optimizes the splitting rates in a direct way; thus the
number of the optimization variables is2 (Nlink − Nnode) ·K , with Nlink the number of links
in the network, Nnode the number of nodes in the network, and K the total number of time
steps. Therefore, the complexity of the problem increases as the simulation period becomes
longer. On the other hand, ACO-SP is a parameterized method, which aims at finding op-
timal parameters of the stench pheromone function to deposit an appropriate amount of
stench pheromone on each arc. Therefore, the number of optimization variables will be
much less. For instance, in this case study, the stench pheromone function is a PWA func-
tion, and the optimization variables are the slopes Ps,t and the weight parameters γs,t of

2Due to the constraint
∑

m∈On
βn,m (k) = 1, for each node n, the number of the splitting rates to be optimized

is |On |−1, with On the set of outgoing links of node n, and | · | the cardinality of a set.
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the threshold numbers of ants. In this case, the number of the optimization variables is
2Nants,thresh ·Nlink, with Nants,thresh the threshold number of ants for the stench pheromone
function. Since the stench pheromone function is designable, the number Nants,thresh is in
general a much smaller number than K . Therefore, compared to non-linear optimal control,
ACO-SP is a more efficient algorithm to yield a well-balanced trade-off between performance
and computation speed.

2.7 Conclusion

In order to solve the routing problems in a network with capacity constraints, a variant of
the Ant Colony Optimization (ACO) method is proposed, called Ant Colony Optimization
with Stench Pheromone (ACO-SP). For illustration purpose, we only consider using ACO-SP
for the static routing problems in this chapter, and the dynamic routing problems will be
introduced in the next chapter.

ACO-SP uses two conflicting types of pheromone, i.e., the regular pheromone and the
newly introduced stench pheromone, to determine an optimal assignment of ants in the ant
graph, so as to determine the splitting rates for flows in the network, with the objective of
minimizing the total travel cost. Moreover, if Conditions (a) and (b) in Section 2.5 are satis-
fied, ACO-SP can be recast as a linear programming (LP) approach. To illustrate ACO-SP, a
simulation-based case study in a traffic scenario is implemented on a simple network. The
simulation result shows that ACO-SP can provide a well-balanced trade-off between perfor-
mance and computation speed.



Chapter 3

Ant Colony Routing for Freeway Networks

Dynamic traffic routing refers to the process of (re)directing vehicles at junctions in a traf-
fic network according to the traffic conditions. Traffic management centers can determine
desired routes for drivers in order to optimize the performance of the traffic network by dy-
namic traffic routing. However, a traffic network may have thousands of links and nodes,
resulting in a large-scale and computationally complex nonlinear, non-convex optimiza-
tion problem. To solve this problem, Ant Colony Routing (ACR) is introduced in this chap-
ter. ACR solves the dynamic traffic routing problem by applying an extended version of the
Ant Colony Optimization with Stench Pheromone (ACO-SP) algorithm in a Model Predic-
tive Control (MPC) framework. Moreover, in order to reduce the complexity of the prob-
lem, a network pruning step is implemented before the ACR step, to remove some links and
nodes from the traffic network. To illustrate the effectiveness of this algorithm, the pro-
posed method is tested in a simulation-based case study involving the Walcheren area in
the Netherlands.

Research work of this chapter has been published in [35].

3.1 Introduction

Dynamic traffic routing [78] is an effective traffic management and control method that
guides drivers to their route according to current (and future) traffic conditions when several
alternative routes exist to their destination. In dynamic traffic routing, the notions system
optimum and user equilibrium play an important role. According to [140], the system opti-
mum is achieved when the vehicles are guided such that the total travel costs of all drivers
(typically the total travel time) are minimized, while the user equilibrium means that on all
alternative routes used, the costs are equal and minimal, and lower than those on the routes
that are not used. In general, the system optimum and the user equilibrium are two conflict-
ing objectives. The system optimum does not necessarily minimize the travel cost of every
individual driver, so some drivers may have higher cost than the others, and in the user equi-
librium the collective objective will not necessarily be optimized.

A broad literature exists on the topic of the dynamic traffic routing [87]. Papageorgiou
and Messmer [106] have proposed a theoretical framework for route guidance in traffic net-
works. Three different traffic control problems are formulated: an optimal control prob-
lem w.r.t. the system optimum, an optimal control problem w.r.t. the user equilibrium, and
a feedback control problem w.r.t. the user equilibrium. Wang et al. [138] have developed
a predictive feedback controller based on the predicted travel time, which is the time that

29
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drivers will experience when they drive along the give route. The results show that the pre-
dictive feedback control approach can yield nearly optimal splitting rates, and it is robust for
several cases, e.g., incorrectly predicted demand, or an unpredicted incident. Kotsialos et al.
[87] formulated the dynamic traffic routing problem as a discrete-time optimal control prob-
lem w.r.t. the system optimum, and used a numerical non-linear optimization algorithm to
solve it. Other work includes e.g. analyzing the drivers’ reaction to the provided guidance
information [113, 114], and generating the route guidance instructions by using real-time
measurements and short-term predictions of traffic situations [21].

The objective of this chapter is twofold:

1. Finding an optimal routing solution to reduce the travel cost (total time spent (TTS) in
this chapter1) in the freeway network;

2. Controlling the number of vehicles on each link in the traffic network, especially in
some sensitive zones, e.g., near hospitals and schools, in order to improve safety and
to reduce noise and pollution.

For this purpose, this chapter introduces an Ant Colony Routing (ACR) algorithm, based
on the Ant Colony Optimization with Stench Pheromone (ACO-SP) algorithm proposed in
Chapter 2. Generally speaking, using the regular ACO algorithm for dynamic traffic routing
suffers from four main issues:

1. Ants in ACO only strive for the user equilibrium, while traffic management has global
objectives;

2. Ant graphs have no limiting capacities on arcs, while traffic networks are constrained
by link capacity;

3. Ants typically have a common destination, while each vehicle in a traffic network has
its own pre-determined destination;

4. The length of each arc in ant graphs is fixed and static, while the link costs in traffic
networks dynamically depend on the time-varying traffic conditions.

The first two issues can be easily tackled by the original ACO-SP algorithm, where the stench
pheromone is used to disperse ants over the ant graph for the sake of a system-wide objec-
tive, and the capacity constraints, as well as other limitations on the numbers of vehicles
on links, can be addressed by properly defining the stench pheromone function. In order
to tackle the other two issues, ACO-SP has to be extended especially for traffic scenarios.
First of all, a new concept called colored ants is added, in which each color is assigned to a
corresponding destination of the traffic network, and colored ants are only sensitive to the
pheromone of their own color. Moreover, future traffic information is predicted by traffic
simulation models, and is taken into account for the ant graph as well as the current traffic
information.

The ACR algorithm applies the extended version of ACO-SP2 within a Model Predictive
Control (MPC) framework [95, 118]. However, before that, a network pruning step is imple-
mented. This is because for a large-scale traffic network, some of the links and nodes com-
pose routes that could be relatively long such that they are unlikely to be chosen by drivers.

1Any other cost, e.g., tolls, fuel consumption, and emissions, can be added to the travel cost.
2For the sake of compactness, in the rest of this chapter, the term ACO-SP refers to the extended version of

the original ACO-SP algorithm.
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Figure 3.1: Structure of the proposed control strategy for dynamic traffic routing.

Therefore, such “unnecessary” links and nodes should be removed to reduce the complexity
of the traffic network, so as to decrease the computational burden of the ACR algorithm. It
must be emphasized that the network pruning step involves a static optimization problem,
which is not solved by an ACO-based algorithm but by linear programming, and which is
only performed once. For on-line dynamic traffic routing, the MPC controller is repeatedly
executed using ACO-SP as the optimization method. More specifically, at each control step,
the current state of the traffic network is measured, and the future state is predicted by a dy-
namic traffic model for a certain prediction period. Then, both the current and future traffic
states are used to calculate the link cost, which will be assigned to each arc in the ant graph.
The ACO-SP algorithm solved the dynamic traffic routing problem based on this ant graph,
and as a result, the control signals in the traffic network — splitting rates, are determined
according to the assignment result of ants in the ant graph. Such a prediction-optimization
loop is repeated at each control step until a given convergence criterion is satisfied, and
then the resulting splitting rate is applied to the real traffic network. Next, both the control
horizon and the prediction horizon of the MPC controller is shifted one sample time step
forward, and the whole process is repeated. The structure of the proposed control strategy is
illustrated in Figure 3.1.

The rest of this chapter is structured as follows. Section 3.2 briefly reviews the MPC ap-
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Figure 3.2: Schematic representation of the MPC approach.

Table 3.1: Symbols used for MPC

symbol meaning

k discrete time step for the simulation process
kc discrete time step for the controller
T length of simulation sample time
Tc length of control sample time
Hp prediction horizon
Hc control horizon
x(k) process state
x̂(k) vector of the predicted states based on the knowledge at simulation step k

u(kc) control variable
u(kc) vector of the control variables based on the knowledge at control step kc

f (·) process state update function
J (·) objective function
u∗(kc) vector of the optimal control variables based on the knowledge at control step

kc

proach. Next, the extended version of the ACO-SP algorithm is introduced in Section 3.3.
In Section 3.4, a two-step control strategy — network pruning and the ACR algorithm — is
elaborated on. Section 3.5 illustrates the proposed approach using a study case involving
the freeway network in the Walcheren area in the Netherlands. A short discussion finally
concludes the chapter in Section 3.6.

3.2 Model Predictive Control

Model Predictive Control (MPC) [95, 118] is a methodology that implements and repeatedly
applies optimal control in a rolling horizon way. The symbols used for MPC are listed in
Table 3.1. The MPC approach makes an explicit difference between the simulation time step
k for the process model and the control time step kc for the controller. The relationship
between the length T of simulation sample time and the length Tc of control sample time is
Tc = MT , with M an integer.
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A general MPC process is shown in Figure 3.2(a), which can be described by three major
parts:

• Prediction: The prediction is made at each control step kc, for which the correspond-
ing simulation time step is k = Mkc. The process is described by the discrete-time state
update function:

x(k +1) = f (x(k),u(kc)), for k = Mkc, Mkc +1, . . . , M(kc +1)−1 (3.1)

with f (·) the state update function, x(k) the state of the process at simulation step k,
and u(kc) the control variables at control step kc. The prediction is made by repeatedly
applying (3.1) for the simulation period [kT, (k +M Hp)T ), with Hp the length of pre-
diction horizon in units of control steps. The inputs for the model-based prediction
are the current process state x(k), and the control vector u(kc) = [uT(kc|kc) uT(kc +
1|kc) . . . uT(kc + Hp − 1|kc)]T, with u(·|kc) the control variables for the correspond-
ing control step based on information available at control step kc. Based on these
inputs, the future evolution of the process is predicted, and is denoted by a vector
x̂(k) = [x̂T(k +1|k) x̂T(k +2|k) . . . x̂T(k +M Hp −1|k)]T.

• Optimization: An optimization algorithm is applied to find the optimal control vector
u∗(kc) that minimizes the objective function J (x̂(k),u(kc)) during the prediction period
[kT, (k + M Hp)T ). The control variables are only optimized for the so-called control
horizon Hc(É Hp). If Hc is smaller than Hp, the control variables follows the constraint
u(kc +k ′

c|kc) = u(kc +Hc −1|kc) for k ′
c = Hc, Hc +1, . . . , Hp −1.

• Control action: Only the first sample u∗(kc|kc) of the optimal control vector u∗(kc)
is applied to the process. Then, the procedure from prediction to control action is
repeated at control step kc+1 with the prediction horizon shifted one time step ahead,
and so on (see Figure 3.2(b)).

3.3 Extension of ACO-SP for Dynamic Traffic Routing

The original ACO-SP algorithm is now extended for the dynamic traffic routing problems
using the following elements: colored ants, constraints on the number of vehicles, and dy-
namic link cost.

3.3.1 Colored Ants

Colored ants are used to distinguish vehicles with different destinations. The vehicles with
destination d correspond to ants with color ηd . Colored ants only move and deposit the
pheromone in an ant graph with the corresponding color. For each ant graph, the number
Nant,total,d of ants with color ηd depends on the size of the corresponding pruned network
(see Section 3.4.1 for more details). The more nodes and links the pruned network has, the
more ants are needed to get a good performance. The number Nant,total,d of ants is assumed
to be fixed and time-invariant during each ACR run. Therefore, a dynamic factor µd (kc)
is defined to relate the number Nant,total,d of ants to the number Nveh,in,d (kc) of incoming
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Figure 3.3: Piecewise affine stench functions Gs,t .

vehicles with destination d at each control step kc:

µd (kc) =
Nant,total,d

Nveh,in,d (kc)
. (3.2)

This factor indicates how many vehicles an ant with color ηd represents at each control step
kc. Note that the stench pheromone is not colored because it is used to push all of the ants
away from an arc.

3.3.2 Constraints on the Number of Vehicles

Several constraints on the number of vehicles are considered for each link in the traffic net-
work. More specifically, there is a number corresponding to the link capacity that can never
be exceeded, a number corresponding to critical traffic density that should preferably not be
exceeded since otherwise traffic congestion may occur, and probably one or more threshold
numbers for sensitive zones where a limit portion of vehicles are allowed to pass for societal
or environmental reasons, e.g., hospitals and schools. All these constraints and thresholds
are implemented through the stench pheromone function Gs,t (·) defined on each arc (s, t ) in
the ant graph. For instance, the function Gs,t can be specified as a piecewise affine function
as (see Figure 3.3):

Gs,t (ys,t ) =







0 , if 0 É ys,t < Nsens,s,t

Ps,t ,1(ys,t −Nsens,s,t ) , if Nsens,s,t É ys,t < Ncrit,s,t

Ps,t ,2(ys,t −Ncrit,s,t )+Bs,t ,1 , if Ncrit,s,t É ys,t < Nmax,s,t

Ps,t ,3(ys,t −Nmax,s,t )+Bs,t ,2 , if ys,t Ê Nmax,s,t

(3.3)

with Nsens,s,t the number of ants corresponding to the threshold number of incoming vehi-
cles on link ℓ(s, t ) in sensitive zones, Ncrit,s,t the number of ants corresponding to the crit-
ical traffic density on link ℓ(s, t ), Nmax,s,t the number of ants corresponding to the capac-
ity on link ℓ(s, t ) in the traffic network, Ps,t ,1 , Ps,t ,2 , Ps,t ,3 the slopes of the affine functions
in each piece of the function Gs,t (·), with a relationship Ps,t ,1 < Ps,t ,2 < Ps,t ,3 , and Bs,t ,1 =
Ps,t ,1(Ncrit,s,t −Nsens,s,t ) and Bs,t ,2 = Ps,t ,2(Nmax,s,t −Ncrit,s,t )+Ps,t ,1(Ncrit,s,t −Nsens,s,t ) the con-
stants to guarantee continuity of the function Gs,t (·).

Recall that the relationship between the number Nant,total,d of ants with color ηd and the
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number of vehicles Nveh,in,d (kc) with destination d at control step kc is characterized by the
factor µd (kc) (cf. (3.2)). Instead of directly adding up the numbers of ants for different colors,
the number ys,t of ants on each arc (s, t ) is calculated using so-called standard ants, which
have a one-to-one relationship with the vehicles:

ys,t (kc) =
∑

d∈D

ys,t ,d (kc)

µd (kc)
. (3.4)

Note that the numbers Nsens,s,t , Ncrit,s,t , and Nmax,s,t also represent standard ants.

Remark 3.1 In practice, the values of the slopes Ps,t ,1 , Ps,t ,2, and Ps,t ,3 can be dynamically
assigned to better serve and manage the traffic network. During a day, the values of the
slopes can be increased to allow fewer vehicles to enter the sensitive zones so as to avoid
danger, pollution, and noise, or the values of the slopes can be decreased to allow more
vehicles to enter the sensitive zones to guarantee the smoothness of traffic flow and to reduce
the burden for other zones. ✷

3.3.3 Dynamic link cost

A dynamic traffic model is used to assign a dynamic cost to each link in the traffic network,
and in this chapter, the METANET model (see more details in Appendix B) is chosen. The
link cost ϕm(kc) is calculated based on the traffic state at each control step kc. In this chap-
ter, only the total time spent (TTS) is considered as the link cost. Two different methods to
calculateϕm(kc) are presented, called quasi-static and fully-dynamic, respectively. The main
difference between the two cases is whether or not the cost ϕm(kc) is being updated while
ACR is running.

Quasi-static case

The quasi-static case first uses the predicted traffic state, in particular the speed vm,i (kc)
in this chapter, to calculate the travel time on segment i of link m, for all simulation steps
k = Mkc, Mkc + 1, . . . , M(kc + Hp)− 1 in the prediction period, and then sums up the travel
time on all the segments of link m for all the simulation steps to calculate ϕm(kc), which is
formulated as:

ϕm(kc) =
M(kc+Hp)−1

∑

k=Mkc

Nm∑

i=1

Lm

vm,i (k)
, (3.5)

with Lm the length of each segment, and Nm the number of segments on link m. As a matter
of fact, the cost ϕm(kc) is kept fixed at each control step kc when ACR is running. At the end
of each iteration of ACR, the speed vm,i (kc) is updated based on the new control variable (cf.
(3.15)), such that the new link cost is obtained. Then, a new iteration of ACR is repeated.

Fully-dynamic case In the fully-dynamic case, the cost ϕm(kc) varies while ACR is running.
Note that in principle ants move on the ant graph, which is based on the (pruned) traffic
network. However, for the sake of the simplicity of the explanation, in this section we assume
that ants travel on the links of the traffic network. Therefore, for a given link m, each ant a

traveling on it will incur a possibly different cost ϕm,a(kc). Figure 3.4 describes how to track
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Figure 3.4: Travel time determined by ant a on link m.

the travel time of ant a according to the dynamic speed profile vm,i (k) for all link-segment
pairs (m, i ), and for the simulation time steps k. Since the speed of the traffic model varies
in different segments and at different time steps, the point where the speed vm,i (k) changes
to a new speed vm,i (k + 1) or vm,i+1(k) is called a jump point (indicated by j ). Obviously,
jump points can only placed on the boundary of segments or on the simulation time steps.
If a jump point j is placed in the segment i , the segment i is denoted as i j to illustrate the
relationship between jump point j and segment i . Similarly, if a jump point j is placed at
the simulation step k, the simulation step k is denoted as k j .

At a given jump point j , ant a predicts the travel time between jump points j and j +1,
and then jumps to j +1 to make a new prediction. Ants will keep this predict-jump-predict

mode until they reach the end of the link m, which yields the last jump point jend. The time
instant when ant a on link m is at jump point j is denoted as tm,a, j (kc). Figure 3.5 illustrates
the four possible transitions of ant a from jump points j to j + 1. For each case, the time
instant tm,a, j+1(kc) is calculated as follows:

• Case A: tm,a, j+1(kc) = tm,a, j (kc)+
Lm −Dm,a, j (kc)

vm,i j

(

k j

)

• Case B: tm,a, j+1(kc) =
(

k j+1 +1
)

T

• Case C: tm,a, j+1(kc) = tm,a, j (kc)+
Lm

vm,i j

(

k j

)

• Case D: tm,a, j+1(kc) =
(

k j+1 +1
)

T

where Dm,a, j (kc) is the distance between the beginning of segment i j and the jump point j

as shown in Figure 3.5. The distance between jump points j and j +1 is denoted as dm,a, j ,
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Figure 3.5: Four possible ways in which ant a on link m can jump from point j to point j +1
between the time intervals kT and (k +1)T .

which is expressed as

dm,a, j (kc) = vm,i j

(

k j

)(

tm,a, j+1(kc)− tm,a, j (kc)
)

. (3.6)

Therefore, the total distance between the jump point j = 0 and current jump point j is the

sum
∑ j−1

z=0 dm,a,z . Besides, the length of each segment of link m equals Lm . The distance
Dm,a, j (kc) can then be obtained by:

Dm,a, j (kc) = mod

(
j−1∑

z=0
dm,a,z (kc), Lm

)

, (3.7)

where mod denotes the modulo operator. Note that Case C can be considered as Dm,a, j (kc) =
0, so the equation of Case A also holds for Case C. Hence, a unified formulation of the time
instant tm,a, j (kc) for all four cases is:

tm,a, j+1(kc) =min

(

tm,a, j (kc)+
Lm −Dm,a, j (kc)

vm,i j

(

k j

) ,
(

k j+1 +1
)

T

)

. (3.8)

The time instant tm,a,0(kc) is recorded when ant a enters link m, and the time instant
tm,a, jend (kc) of the last jump point jend is calculated by using (3.8). The cost ϕm,a(kc) on link
m is then the travel time of ant a:

ϕm,a (kc) = tm,a, jend (kc)− tm,a,0(kc). (3.9)
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3.4 Control Strategy

3.4.1 Network Pruning

The network pruning step aims at removing the “unnecessary” links and nodes in a traffic
network, i.e. those links and nodes that only belong to routes that are relatively long and that
will therefore not be favored by drivers. This step first runs for each OD-pair to yield the K

best routes to set up a pruned network, with K an integer that could be different for each OD-
pair. Next, the pruned networks with the same destination d are merged, and then mapped
into an ant subgraph with color ηd . The number of the ant subgraphs equals the number Nd

of the destinations of the traffic network. At last, all the ant subgraphs are combined as one
overall ant graph, used for ACO-SP. Recall that the colored ants only move and deposit the
pheromone in the ant subgraph with the corresponding color, but the stench pheromone
is calculated by the total number of ants on each arc, thus it is put down in the overall ant
graph.

Two different approaches are considered for network pruning, which are the K -shortest
routes method, and the linear programming method.

• The simplest way is to choose the K shortest loopless routes to construct the pruned
network. Several algorithms have been developed for this, e.g., [68, 79, 146]. These
algorithms can be used to determine the K shortest routes for each OD-pair by con-
sidering the length of each link, or the average travel time based on historical data.
Afterwards, the links that do not belong to any route are removed, and, as a result, the
pruned network is obtained. However, this method cannot guarantee that the capacity
of each link on the routes is never exceeded.

• One way to address the capacity issue is to use linear programming with capacity con-
straints to find the links with the highest link flows to determine the K best routes for
each OD-pair. This method involves a quasi-static approach by considering the traffic
situations in a representative day. More specifically, the representative day is divided
into several time slots (e.g., the morning rush hour, the non-busy midday period, and
the evening rush hour), and for each time slot, the traffic flows qm,d on each link m

will be determined for each destination d such that the total travel time is minimized
subject to capacity constraints. This is done as follows. For each link m, the average
travel time is defined as tm = Lm/vm with Lm the length of link m, and vm the average
speed on link m. The linear programming problem for minimizing the total travel time
is defined as:

min
qm,d

∑

d∈D

∑

m∈M

T · tm ·qm,d (3.10)

subject to

qm,d = qin,o,d , ∀(o,d) ∈H ×D,∀m ∈Oo (3.11)
∑

d∈D

∑

m∈In

qm,d =
∑

d∈D

∑

m∈On

qm,d , ∀n ∈N (3.12)

∑

d∈D

qm,d É qmax,m , ∀m ∈M (3.13)

qm,d Ê 0, ∀m ∈M ,∀d ∈D, (3.14)
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with T the length of the simulation sample time, qmax,m the capacity of link m, Oo

the set of outgoing links of origin o, and In and On respectively the sets of incoming
and outgoing links of node n. Note that (3.10) minimizes the total travel time, because
T ·qm,d expresses the number of vehicles on link m per simulation step, thus T ·tm ·qm,d

corresponds to the total travel time on link m. Moreover, (3.12) states that the inflow of
node n equals the outflow of node n (conservation of vehicles). It is easy to verify that
(3.10)–(3.14) is a linear programming problem, which can be solved very efficiently
using, e.g., a simplex method or an interior-point algorithm [103, 142]. Once the solu-
tion is determined, only the links satisfying the condition

∑

d∈D qm,d Ê qthresh,m , with
qthresh,m a pre-defined positive threshold value, are selected, and the other links are
removed. Next, the links that do not belong to any route for the OD-pair are also re-
moved. The remaining links are kept as the pruned network. However, the shortcom-
ing of this method is that possibly no route from origin o to destination d is contained
in the set of the selected links. If this occurs, the value qthresh,m should be decreased to
guarantee at least one route.

Remark 3.2 One can combine the two methods introduced above to address both the ca-
pacity constraint issue of the K shortest routes method and the no-route problem of the
linear programming method. First, the K shortest routes are determined in order to con-
struct a pruned network; next, the linear programming problem (3.10)–(3.14) is solved for
the pruned network. If the linear programming problem is feasible, the capacity problem
does not occur; otherwise, the value K is augmented, and the procedure is repeated until a
feasible linear programming problem is yielded. ✷

Sometimes, when using a K -shortest-routes algorithm, the problem may occur that there
are too many overlapping links in the resulting routes. In that way, the pruned network does
not have sufficient links to build up an ant graph. If that happens, besides simply increasing
the value of K to find some more candidate routes, one could use a dedicated K -shortest-
routes algorithm that avoids having too many links in common between different routes (see
e.g. [148]), or disjoint shortest path algorithm (see e.g. [130]).

3.4.2 ACR run

The MPC control scheme is shown in Figure 3.6. The traffic model predicts the evolution
of the traffic network at every simulation step k, while the ACR algorithm only runs at each
control step kc. We start the prediction of the traffic system at control step kc, for which the
corresponding simulation step is k = Mkc. The process is described by the selected dynamic
traffic model during the prediction period [kcTc, (kc +Hp)Tc). The prediction requires three
inputs:

• the current traffic states3 xm,i (k) for each segment i on link m, and xo(k) for each origin
o at simulation time step k = Mkc;

• a vector of the expected inflows of the network at each simulation step during the pre-
diction period: q̂in,o,d (k) = [qin,o,d (k) qin,o,d (k +1) · · · qin,o,d (k +M Hp −1)]T for all OD-
pairs;

3The state can be the number of vehicles, flow, speed, density, emission, etc, according to different traffic
models.
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Figure 3.6: Closed-loop control of a traffic system with the ACR algorithm and the dynamic

traffic prediction model.

• the currently imposed control signal — splitting rates βn,m,d (kc(k)) for node n, outgo-
ing link m, and destination d , at control step kc = kc(k) = ⌊k/M⌋, with kc(k) the value
of the control step counter kc corresponding to simulation step k, and the operator ⌊·⌋
the largest integer less than or equal to the function argument.

The output of model-based prediction is the future traffic state vector x̂m,i (k) = [x̂m,i (k +
1|k) x̂m,i (k + 2|k) · · · x̂m,i k +M Hp −1|k]T , with x̂m,i (·|k) the predicted state at the corre-
sponding simulation step based on knowledge at simulation step k.

The ACR algorithm is used as the optimization method in the MPC controller, aiming at
generating the splitting rates of the traffic flow to each destination d ∈D at each node n ∈N

in the traffic network. After the ACR algorithm has terminated, the number of ants ys,t ,d of
color ηd that have traveled on each link (s, t ) is determined. These values are used to update
the splitting rates for each n ∈N , m ∈On , and each d ∈D, :

βn,m,d (kc(k)) =
ys,t ,d (kc)

∑

t ′∈Ss,d

ys,t ′ ,d (kc)
, with m = ℓ(s, t ) (3.15)

with Ss,d the set of the nodes in the ant graph that are connected to node s for color ηd .
Moreover, if a link m in the traffic network does not have a corresponding arc in the ant graph
for destination d , we set βn,m,d (kc(k)) = 0. All of the resulting splitting rates will be applied to
the prediction model, and as a result, we will obtain new traffic states for updating the cost
ϕm(kc), as well as new values of ys,t ,d (kc). We repeatedly run the prediction-ACR updating
process until one of the criteria below (or their combination) is satisfied:

1. The maximum number of iteration steps Nfixed is reached;

2. |∆βn,m,d (kc(k))| < ǫβ, for all n, m, and d , where ∆βn,m,d (kc(k)) is the difference be-
tween the new and the previous value of βn,m,d (kc(k)), and ǫβ > 0 is a predefined tol-
erance.
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Figure 3.7: Map of the Walcheren area (source: google maps).

Then the final splitting rates are the outputs of the MPC controller, and they are used to con-
trol the real traffic system via lower level controllers, such as dynamic matrix panels with
route information, on-board route guidance devices, and so on. Moreover, a financial com-
pensation or penalty can be applied to convince drivers to follow the suggested route guid-
ance instructions for the system sake. For instance, drivers have to pay if they travel in so-
called congestion charge zones, while they need not pay if they travel outside of these areas
[123], (see e.g. congestion charge schemes in London, Stockholm and Singapore). In the
Netherlands, the government is testing a reward system called Spitsmijden [15] that tracks
commuters and pays a range of rewards (AC3,AC5, andAC7 per day) to those who avoided trav-
eling during the morning peak (7:30 am to 9:30 am). More information about the implemen-
tation of the route guidance mechanism can be found in e.g. [14].

3.5 Case Study

The ACR algorithm is now tested in a simulation of the Walcheren area in Zeeland, the Nether-
lands [76]. First, the set-up of the case study and the routing scenario are described in Sec-
tion 3.5.1. Section 3.5.2 shows the result of the pruning step, which consists in finding a
reduced network for each destination. To analyze the ACR algorithm, we first compare a
congested traffic situation with and without ACR control in Section 3.5.3, and then compare
the ACR algorithm with two other dynamic routing methods in Section 3.5.4.

3.5.1 Simulation Scenario

A map of the Walcheren area is shown in Figure 3.7. Middelburg at its center is the provincial
capital and the biggest municipality in the area. Vlissingen in the south is the main harbor
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Figure 3.8: Inflows of the freeway network from the different origins, and the fractions of each

inflow traveling to different destinations.

and the second biggest municipality. The third biggest municipality is Veere in the north-
east. Moreover, the whole area is connected to the mainland by three main freeways, which
are the N57 in the north, the E312 in the middle, and the N254 in the south. The entire
freeway network has 142 links and 62 nodes, including the origins and the destinations.

We consider a scenario that drivers outside Walcheren enter the area only through the
N57, the E312, or the N254, and they are going to Middelburg, Vlissingen, or Veere by using
the freeway network only. The origins of the traffic network are put at the entrances of the
N57 (o1), the E312 (o2), and the N254 (o3), indicated by the large white dots in Figure 3.7.
The destination nodes are put at the exits of the freeway network in Middelburg (d1), Veere
(d2), and Vlissingen (d3), indicated by the large red, blue, and green dots respectively. The
sensitive zones in this case study include the links across the urban areas, where a threshold
value for the traffic density is set as ρsens,m = 20 veh/km/lane. The simulation period is set
to 2 hours, with an empty network as the initial state. The inflow from each origin, with the
fractions of each inflow traveling to different destinations, is shown in Figure 3.8.

For this scenario, the routing instructions are optimized using the ACR approach pro-
posed in this chapter. Although we have discussed two different ways to compute the link
cost in the network, and the fully-dynamic case is much more accurate than the quasi-static
case, we only implement the quasi-static case in this case study. This is because the fully-
dynamic case calculates the link cost for each jump point, which results in a very high com-
putational burden. On the contrary, in the quasi-static case we only need to calculate the
average travel time on each link, and in that way we can achieve a balanced trade-off be-
tween computation speed and accuracy.

3.5.2 Network Pruning

We first use Yen’s K -shortest-loopless routes algorithm [146] to find the K shortest routes for
each OD pair, with K = 3. Then, we solve the linear programming problem (3.10)–(3.14) to
verify whether the flow on any link of these routes exceeds the link capacity. Since the result
shows that the link capacity is not exceeded, the value of K should not to be augmented in
this case.
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(a) Pruned network for destination d1

(b) Pruned network for destination d2

(c) Pruned network for destination d3

Figure 3.9: Pruned networks for different destinations.



44 Efficient Optimization Methods for Freeway Management and Control

0 0.5 1 1.5 2
0

10

20

30

40

50

60

70

80

90

Time (h)

S
pe

ed
 (

km
/h

)

 

 

no control
ACR algorithm

0 0.5 1 1.5 2
0

20

40

60

80

100

120

Time (h)

D
en

si
ty

 (
ve

h/
km

/la
ne

)

 

 

no control
ACR algorithm

Figure 3.10: Congested traffic conditions with and without ACR control on the representative

link.

Three different pruned networks for different destinations are established, as shown in
Figure 3.9. The first pruned network has 26 links and 21 nodes, the second pruned network
has 21 links and 19 nodes, and the third pruned network has 30 links and 26 nodes.

3.5.3 Routing Results for ACR

In this case study, we assume that the resulting routing instructions will be perfectly followed
by the drivers. The reason for this is that the primary objective of this case study is to discuss
the functioning of the ACR algorithm. By assuming full compliance, the functioning can be
more easily compared with other methods.

We compare the traffic conditions with and without ACR control. Figure 3.10 shows
an example of the traffic density and travel speed on a representative link, indicated by
“RepLink” in Figure 3.7. This representative link has been chosen because it belongs to all
three subnetworks. Moreover, this link has different statuses in different subnetworks:

1. It belongs to the shortest route from origin o1 to destination d3 in the green subnet-
work, and it is shared by all the routes from o1 to d3;

2. It belongs to the shortest route from origin o1 to destination d1 in the red subnetwork,
but there is an alternative route that does not include the representative link;

3. It does not belong to the shortest route from origin o1 to destination d2 in the blue
subnetwork.

When there is no control, we assume that all the drivers always choose the shortest-
distance route. As shown in Figure 3.10, the maximal density on the link is eventually reached,
resulting in an extremely low travel speed. However, if the ACR algorithm is applied, no traffic
congestion will occur.

3.5.4 Comparison with Other Methods

To evaluate the performance and the computational efficiency of the ACR algorithm, we
compare our approach with two other dynamic traffic routing methods. The first one is
the non-linear optimal control approach of [87], which has been used in the case study in
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Chapter 2, and the second one is the time-dependent shortest routes method described in
[136].

The non-linear optimal control problem of [87] is formulated as:

min J = min JTTS + Jpen

subject to x(k +1) = f (x(k),β(kc(k)),d(k)),

0 Éβ(kc(k)) É 1,

for k = 1,2, . . . ,K , (3.16)

with f (·) the traffic model, x(k) the traffic state at simulation step k, d(k) the demand at sim-
ulation step k, β(kc(k)) the splitting rate used as the control variable at the control step kc(k),
and K the simulation horizon. The sub-objective functions JTTS and Jpen are calculated as:

JTTS = T ·
K∑

k=1

∑

m∈M

Nm∑

i=1
ρm,i (k)

Lmλm

Nm

Jpen = P ·
K∑

k=1

∑

m∈M

Nm∑

i=1

(

ρm,i (k)−ρthresh
m

) Lmλm

Nm
(3.17)

with T the length of the simulation time step, P a penalty factor, ρm,i (k) the density on seg-
ment i of link m at simulation time step k, ρthresh

m the threshold density on link m, Lm the
length of link m, λm the number of lanes of link m, M the set of all the links in the network,
and Nm the number of segments on the link m. Note that unlike in Chapter 2, the objective
function J is not exactly the same as the one formulated in [87]. The paper [87] only aims
at minimizing the TTS (JTTS), while in this chapter we want to find a balance between min-
imizing the TTS and controlling the numbers of vehicles on the links. Therefore, we add a
term Jpen in the objective function. The sub-objective function Jpen represents a soft con-
straint, and works in a similar way as the stench pheromone function in the ACR algorithm,
by penalizing the number of vehicles exceeding a threshold number on each link. The value
of ρthresh,m is equal to either the critical density ρcrit,m = 33.5 veh/km/lane in non-sensitive
zones, or to a pre-defined value ρsens,m = 20 veh/km/lane in sensitive zones. Moreover, the
optimality conditions are expressed in terms of the discrete-time Hamilton function, fulfilled
by the Karush-Kuhn-Tucker conditions, and a numerical gradient-based algorithm is used to
solve the discrete-time optimal control problem (see [87] for more details).

The time-dependent shortest routes approach of [136] uses an iterative algorithm to in-
crementally distribute the traffic flow over more and more routes. Each iteration consists of
three steps:

• Step 1: In the first iteration, all links get assigned the free-flow travel time; while in
subsequent iterations, a simple traffic model based on the speed-density fundamental
diagram is used to determine the travel times on links that carry traffic (other links still
get assigned the free-flow travel time).

• Step 2: Dijkstra’s shortest path algorithm is applied to search the shortest-time route
from each origin to each destination.

• Step 3: In the first iteration, all vehicles are assigned to the shortest-time route; while
in subsequent iterations, a part of the traffic from previously selected routes is redis-
tributed to the new shortest-time route.
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Table 3.2: Comparison of the results obtained with different algorithms for one MPC step. ACR

stands for Ant Colony Routing, NOC stands for Nonlinear Optimal Control, and

TDSP stands for Time-Dependent Shortest Paths

Methods JTTS [veh· h] Jpen [veh] Computation time [s]

ACR 3.8316×104 0 5.11×104

NOC 3.8318×104 7.903 2.31×105

TDSP 4.7116×104 6.303×102 2.86×102

In this way, the newly generated route always has a shorter travel time than the previously
generated ones in the current iteration. Note that this approach does not have an explicit
objective function J as in (3.16). In order to compare the three approaches, we define assess-
ment functions JTTS and Jpen in the same manner as in (3.17).

The comparison of results for one MPC step is shown in Table 3.2. It shows that in this
case study the performance of the ACR algorithm is better than the other two approaches,
since the ACR algorithm can achieve a more balanced trade-off between accuracy and com-
putational efficiency, which is needed for on-line model-based traffic control. Compared
with the non-linear optimal control (NOC) algorithm , we can see that the ACR algorithm
can achieve a slightly better performance (3.8316× 104 veh·h versus 3.8318× 104 veh·h in
JTTS), satisfies the capacity constraints (0 veh versus 7.903 veh in Jpen), and moreover it re-
quires one order of magnitude less computation time: 5.11×104 s versus 2.31×105 s. The
fact that the values for JTTS between ACR and non-linear optimal control are almost exactly
the same is probably a coincidence, but it shows that ACR can yield almost the same per-
formance as the established optimal control approach of [87], which requires much more
computation time. Moreover, according to the nature of the ACO algorithm, artificial ants
independently search the network in parallel. Therefore, if we have enough processors, we
can further reduce the computation time.

In general, when solving the dynamic routing problem, one should consider a balance
between required computation time and performance among these three methods. More
specifically, if the computation time is more important than the performance, then the time-
dependent shortest paths algorithm is recommended. Otherwise, ACR should be used since
it requires less computation time than the non-linear optimal control.

3.6 Conclusions

We have proposed a novel Ant Colony Routing algorithm for solving the dynamic traffic rout-
ing problem. The ACR algorithm uses artificial ants to search in the ant network, and the
resulting assignment of ants is used to determine the splitting rates in the traffic network.
We have applied the ACR algorithm in a two-step control approach: network pruning and
Model Predictive Control (MPC). Through removing some “unnecessary” links and routes,
the network pruning part can reduce the size of the objective network such that ants can
more efficiently search in the network. The MPC control part uses the novel ACR algorithm
with the stench pheromone and colored ants to efficiently guide the vehicles from multiple
origins to multiple destinations. A simulation-based case study involving the Walcheren area
in the Netherlands has been performed. The results show that the ACR algorithm is suitable
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for on-line optimization, and can achieve a well-balanced trade-off between control per-
formance and computation speed. Moreover, from the implementation point of view, it is
recommended to run the ACR algorithm using multi processors, for further improving the
computational efficiency.
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Chapter 4

Co-design of Freeway Network Topology

and Control Measures

The two main directions to improve traffic flows in networks involve changing the network
topology and introducing new traffic control measures. In this chapter, we consider a co-
design approach to apply these two methods jointly to improve the interaction between dif-
ferent methods and to get a better overall performance. We aim at finding the optimal net-
work topology and the optimal parameters of traffic control laws at the same time by solving
a co-optimization problem. However, such an optimization problem is usually highly non-
linear and non-convex, and it possibly involves a mixed-integer form. Therefore, we discuss
four different solution frameworks that can be used for solving the co-optimization prob-
lem, according to different requirements on the computational complexity and speed. A
simulation-based study is implemented on the Singapore freeway network to illustrate the
co-design approach and to compare the four different solution frameworks.

Research work of this chapter has been published in [37].

4.1 Introduction

In order to improve the performance of a traffic network, traffic authorities and policy mak-
ers usually pose this problem in one of the following two forms: changing the network topol-
ogy or introducing traffic control measures. Network topology design involves construction
works such as building new links or expanding existing links in the network. The advantage
of this approach is that it may directly and effectively solve the capacity limitation prob-
lem, while the disadvantage is that the implementation may be very expensive and time-
consuming, and sometimes the required free space may be not available. On the other hand,
traffic control measures aim at a more efficient use of the existing infrastructure, without
changing the network topology. However, this approach may be not able to improve traffic
flows in some cases, e.g., when the total demand exceeds the capacity of the network. There-
fore, we consider a co-design method that jointly optimizes the network topology design and
the traffic control measures. Intuitively, a better performance of traffic networks is expected
by doing co-design of the network topology and the control measures compared to optimiz-
ing each of them separately. In fact, we will show in this chapter that the co-design approach
can indeed yield better results in terms of overall costs. Moreover, the co-design approach
can be used to assist in the design of a new network, as it allows to compare different net-
work topologies including variations in types and locations of traffic control measures. In

51
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this chapter, we focus on freeway networks, but the co-design approach can also be easily
adapted to urban traffic networks.

In a freeway network, topology design refers to adding or removing links, or to changing
the numbers of lanes of links. It seems counterintuitive to remove links or lanes in order to
improve the performance of the network, but in fact additional road capacity can sometimes
induce extra traffic demand, and if not accurately predicted and planned, this extra traffic
may lead to the road becoming congested sooner (a well-known example is the Braess para-
dox [23]). Moreover, from an environmental point of view, when freeway networks are built
near or through existing communities, the quality of life in the neighborhoods is decreasing
due to noise and pollution. In this case, it could be considered beneficial for societal rea-
sons to remove links in the network. In summary, network topology design is a multifaceted
problem, where different questions such as environmental impact, budgeting, safety, pub-
lic inconvenience, etc., have to be considered together. Moreover, some post-design issues
such as network maintenance after construction should also be taken into account.

Sometimes, it is not necessary to change the network topology in order to improve the
performance of the network, because it is possible that the available infrastructure in the net-
work is not effectively used. Traffic congestion can be caused by the fact that drivers choose
routes selfishly or drive in an inappropriate manner. In this case, traffic authorities can in-
troduce traffic control measures to influence driving behavior so that traffic congestion can
be eliminated or at least reduced. Papageorgiou et al. [109] illustrate with a simple example
that in a congested area, the total time spent (TTS) in the controlled case can be 14% less
than in the uncontrolled case, if the traffic outflow is improved by 5% thanks to appropriate
traffic control measures. However, this consequence also implies that any disturbance that
reduces the traffic outflow with a few percents may significantly increase the TTS, and hence
decrease the performance of the network.

While the network topology is not changed once determined for the given design period,
the traffic control measures do need to be adapted to the time-varying traffic situations. Due
to this different time scale, one usually chooses a standard “optimal” setting of the control
strategy, which is static, when doing the topology design. However, this method is not accu-
rate enough to capture the dynamic nature of the traffic flows in the network. Therefore, we
introduce a so-called parameterized traffic control approach [147], where the parameters of
the control laws are optimized according to a pre-defined objective function. The reason for
using parameterized control is that for some other control approaches such as optimal con-
trol or model predictive control, the traffic control inputs usually consist of dynamic signals
that vary on a minute to minute basis according to the time-varying traffic situations; how-
ever, in the parameterized control approach, the parameters of the control laws are consid-
ered fixed over the design period, and the control laws generate dynamic traffic signals based
on the state of the traffic network. Moreover, we can even consider a more comprehensive
quasi-dynamic setting (see Section 4.4.2), where the design period is divided into different
sub-periods, and where each sub-period has a separate group of control law parameters.
By using the predicted long-term future evolution of traffic demand, both the topology and
the control law parameters can then be optimized jointly. It is however important to note
that although we use the co-design approach to determine the parameters of control laws
for the traffic control measures, this does not mean that these parameters should be fixed
for the entire design period. Instead, we can still use online control measures, and regularly
retune or optimize the parameters of the control law based on the real traffic situation, via
e.g. standard traffic control strategies, optimal control, or model predictive control.



Chapter 4 - Co-design of Freeway Network Topology and Control Measures 53

Topology
(e.g. adding or removing
lanes or links, etc.)

Control
(e.g. ramp metering,
variable speed limits, etc.)

Traffic model
(microscopic or
macroscopic)

Monetary
cost

Figure 4.1: Representative scheme of the co-design problem.

The main aim of solving the co-design problem is to find the optimal topology design
decisions and the optimal parameters of the control laws. In order to obtain those opti-
mal solutions, both topology design decisions and traffic control measures are applied to a
traffic model, and a cost is calculated based on the resulting traffic states (typically traffic
density, flow, and speed), and used to evaluate the performance of the traffic system under
the impact of topology changes and traffic control measures (see Figure 4.1). From the traffic
management point of view, the objectives of the co-design problem can vary from avoiding
traffic congestion to increasing network safety and reliability, and to decreasing fuel con-
sumption and pollution, etc. In this chapter, we consider a total monetary cost that includes
the budget of construction and maintenance for the network, and a valuation of travel time
and travel distance. Note that the construction cost is spent only once, but the maintenance
cost is spent every year. Moreover, the price level of the maintenance is not constant but
might change every year because of inflation effects. The value of travel time is often used
for appraisal of road and public transport projects. It should be included in the monetary
cost because it is closely related to the economical factors, e.g., drivers’ wages, and interest
or depreciation of the freight, etc. A full discussion of the value of travel time is out of the
scope of this chapter, but we refer the interested reader to [41, 139] for more information on
this topic. Moreover, travel distance is taken into account in this chapter as well because it is
also related to the economic factors such as fuel consumption and wear of vehicles.

The main contributions of this chapter are:

1. We define a unified problem formulation for co-design of network topology and traffic
control measures. We formulate the co-design problem in a model-based optimization
framework, where the network topology design and traffic control measures are jointly
applied to a traffic model, and a monetary cost is used to evaluate the performance of
the traffic network;

2. We discuss four different solution frameworks for solving the proposed co-design prob-
lem, namely separate optimization, iterative optimization, bi-level optimization, and
joint optimization, according to different requirements regarding performance and
computational speed.

The rest of this chapter is structured as follows. Section 4.2 briefly summarizes the state-
of-the-art on network topology design. Section 4.3 presents the problem statement. We
formulate the co-design problem in a mathematical way in Section 4.4, and propose four
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different solution frameworks in Section 4.5. A simulation-based case study of the Singa-
pore freeway network is used to illustrate the proposed approach for solving the co-design
problem in Section 4.6. Finally, we conclude our work in Section 4.7.

4.2 State-of-the-art on topology design

According to different forms of design decision variables, the network topology design prob-
lem can be posed in a discrete form that deals with changing the number of links or lanes, or
a continuous form that deals changing the capacity of links in the network [145].

4.2.1 Discrete network topology design

The discrete network topology design problem concerns the modification of a traffic net-
work by changing the numbers of links or lanes, and the design decision variables usually
have binary or integer values. The objective of the discrete network topology design is to
make an optimal investment decision in order to minimize both the total travel cost and to-
tal construction cost in the network. [96] presents a unified view for modeling the discrete
network topology design problem, and proposes a unifying framework for describing a num-
ber of solution algorithms. [115] develops a bi-level programming method, where the lower
level aims at finding a user equilibrium flow pattern in the traffic network, and the upper
level then determines the design decision variables based on the equilibrium flow resulting
from the lower level. [32] studies the lower-level problem by using a logit-based stochas-
tic incremental traffic assignment approach. [61] proposes a new solution algorithm for the
bi-level problem by using the support function concept. One of the challenges for the dis-
crete network topology design problem is that one usually has to solve a nonlinear bi-level
mixed-integer optimization problem, which could be extremely computationally complex.

4.2.2 Continuous network topology design

The continuous network topology design problem deals with improvement of the link capac-
ity, and the design decision variables then have continuous values. From an implementation
point view, there is not much difference between discrete network topology design and con-
tinuous network topology design. They have the same objective, and can be formulated
in the same solution framework, e.g., bi-level programming. However, because the design
decision variables are continuous in the continuous network topology design problem, the
gradient of the objective function can be obtained, and gradient-based methods can be used
to solve the proposed problem [33]. Moreover, sensitivity analysis methods [58, 135, 144] for
the equilibrium network flows can then also be used.

4.3 Problem statement

Figure 4.2 shows the overall scheme of the co-design approach for determining the optimal
network topology and the optimal traffic control strategies, involving two main parts — the
real traffic system and the optimization layer.
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Figure 4.2: The overall co-design scheme.

The real traffic system contains the traffic network and the low-level controllers, such as
traffic signals, ramp metering installations, variable speed limits, dynamic route informa-
tion panels, and so on. The control measures are governed by parameterized control laws.
The topology design decisions involve construction work in the network, e.g., building or
removing lanes or links. Moreover, installing traffic controllers can also be considered as a
topology design problem, e.g., whether to install the controllers, which type of the controllers
to choose, and where to locate the controllers.

The optimization layer is used to determine the optimal network topology design de-
cisions and the optimal parameters of the control laws. To do so, the real traffic system is
simulated by traffic models in the optimization layer. The traffic simulation is based on:

• the expected daily demand patterns, as well as their long-term forecast;

• the planned topology design decisions and parameters of the control laws.

The performance is evaluated according to the simulated traffic states, and an optimization
method is used to determine the optimal solutions. Usually, a traffic network is designed to
be used for a long term. However, it will result in an extremely high computational burden
to run the traffic simulation and optimization for the entire design period. Therefore, we
choose a short range, e.g., one day or one month as a representative basic design period. The
traffic simulation and optimization only run for the basic design period, but the resulting
solutions are applied to the real traffic system for the entire design period, or for different
time slots of the entire design period in the quasi-dynamic parameterized control approach
(see Section 4.4.2).
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4.4 Mathematical formulation

4.4.1 Network topology design

A vector δ is defined as the construction decision variable. As mentioned in Section 4.2,
the network topology design has a discrete form and a continuous form. For instance, the
vector δ in the discrete form can be defined as a decision variable corresponding to adding
or removing links or lanes in the network. In this case, the mth element δm of δ corresponds
to the number of lanes that will be added to or subtracted from link1 m, where δm with a
positive value means addition of lanes, andδm with a negative value means removal of lanes.
In this chapter, we assume that the construction decision variable δm may have a negative
value, which means that links or lanes can be blocked in order to improve the performance
of the network2. Note that the value of δm is constrained by the current number of lanes on
link m and the available free space: δmin

m É δm É δmax
m . More specifically, the lower bound

value δmin
m should guarantee that the total number of lanes on link m after construction is

non-negative, and the upper bound value δmax
m should guarantee that the total number of

lanes on link m after construction does not exceed the physical limitations. Similarly, for the
continuous form, the vector δ corresponds to e.g. expansion or reduction of link capacity, in
which case δm could correspond to difference between the current width and the new width
of lanes in link m.

Changing the network topology will in general influence the traffic flow patterns in the
network, which means that the traffic state x (usually traffic flow, density, and speed) de-
pends on the construction decision variable δ. Thus, traffic evolution can be described by a
difference equation as follows:

x(k +1) = f (x(k),u(k),d(k),δ) , (4.1)

where f is the traffic update function, x(k) ∈Rnx denotes the traffic state vector at simulation
step k, u(k) ∈ Rnu denotes the control inputs vector at simulation step k, and d(k) ∈ Rnd

denotes the disturbance (typically, the traffic demand) at simulation step k.

4.4.2 Parameterized traffic control

A parameterized traffic control law is generally formulated as:

uc(kc) = h(x(Mkc),d(Mkc),θ) , (4.2)

where h denotes the control law, uc(kc) ∈ Rnu denotes the control inputs vector at control
step kc, and θ ∈ Rnθ contains all the parameters of the traffic controllers. The integer M is
defined as by M = Tc/T , with Tc the control interval and T the simulation interval. For the
sake of simplicity, we assume that T is an integer divisor of Tc. We make an explicit difference
between the control interval Tc and the simulation interval T , because traffic evolution is a
comparatively fast process, while the control actions are not necessarily updated as fast as
the traffic evolution. Therefore, the relationship between the control inputs uc(kc) and u(k)

1Link m can initially be a virtual link with 0 lanes. In that case, a new link m is considered to be built with
δm lanes (δm Ê 0).

2Braess et al. [23] illustrate that adding new links may in some cases deteriorate the performance of the
traffic network.
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is captured as u(k) = uc(⌊k/M⌋), where the operator ⌊·⌋ denotes the largest integer less than
or equal to the function argument.

Two examples of the parameterized traffic control measures for the discrete-time, macro-
scopic model are formulated in this section, and will be used for the case study in Section 4.6.
Note that one can design a parameterized control law for any type of control measure, and
that the formulation of the control law does not necessarily have to follow the structures to
be presented here.

• A possible control law for ramp metering originates from ALINEA3 [108]:

ro(kc) = min
(

max
(

ro(kc −1)+θr
o

ρcrit,m −ρm,1(Mkc)

ρcrit,m
,0

)

,1
)

, (4.3)

where ro(kc) denotes the ramp metering rate at the origin o connected to link m at
control step kc, ρm,1(Mkc) denotes the density of the first segment of link m at the
simulation step k = Mkc, ρcrit,m denotes the critical density on link m, and θr

o is the
metering parameter to be designed. A high value of θr

o means that the ramp metering
rate is more sensitive to the change in the traffic density. The functions max(·) and
min(·) are used to bound the ramp metering rate between 0 and 1.

• A possible control law for variable speed limits is formulated as follows [147]:

v lim
m,i (kc) =min

(

max
(

θv
m,0v lim

m,i (kc −1)+θv
m,1

vm,i+1(Mkc)−vm,i (Mkc)

vm,i+1(Mkc)+κm,v

+θv
m,2

ρm,i+1(Mkc)−ρm,i (Mkc)

ρm,i+1(Mkc)+κm,ρ
, v min

m

)

, vfree,m

)

, (4.4)

where v lim
m,i (kc) denotes the maximum allowed speed of segment i on link m at control

step kc, and κm,v and κm,ρ are parameters preventing denominators from becoming
zero. The constants θv

m,0, θv
m,1, and θv

m,2 are the target parameters to be designed. The

maximum allowed variable speed v lim
m,i (kc) is bounded by the free flow speed vfree,m

and the minimum speed v min
m .

In principle, the parameter vector θ should be constant for a relatively long time, i.e., at
the same time scale as the topology design. However, simple static traffic control using the
same parameters over a long period may be inadequate for dynamic demand. In order to
improve the performance of the traffic controllers, we consider a so-called quasi-dynamic
parameterized traffic control approach. As shown in Figure 4.3, the entire design period is
divided into years, a year can be divided into seasons, a season can be divided into days, and
a day can be even further divided into different time slots, e.g., morning rush hours, midday
non-rush hours, afternoon rush hours, and evening non-rush hours. We assume that driver
behavior and traffic situations such as weather condition change in different seasons, so a

3In ALINEA, the occupancy, which is defined as the fraction of time that vehicles are detected by the sen-
sors, is used to determine the ramp metering rate, while in our approach, the traffic density is used in the con-
trol law instead. The reason is that the traffic density is usually used as a state variable in many macroscopic
traffic models; however, it is not easy to directly measure the density via the sensors used in traffic networks
(in particular loop detectors). Hence, the occupancy is often used in practice. Note however that there is an
approximate relationship between the traffic density and the occupancy [4]: occupancy = density × average
vehicle length.
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Figure 4.3: Sub-periods for quasi-dynamic parameterized traffic control.

season is considered as the basic unit for a set of parameters in the quasi-dynamic param-
eterized control. For one day, the parameters in different time slots have different values,
while for the same time slot, the parameters in different days have the same value. In this
way, we only need to optimize the parameters for one day, but can apply them for a season.
In such a way, for complicated traffic situations, the parameters can be defined in a much
more refined way than in the case of static traffic control.

4.4.3 Traffic models

The co-design problem uses a model-based optimization approach to determine the topol-
ogy design decisions and the parameters of the traffic control laws. The traffic model used
in this approach consists of two parts: a traffic flow model, and a route choice model. In
this chapter, as an example, we choose the METANET model [98] as the traffic flow model,
and the multinomial logit model [121] as the route choice model. However, it is important
to note that our approach is generic, so any other traffic flow model and route choice model
can replace the ones used here.

As we have a network with multiple destinations involving route choice, we select the
destination-dependent version of METANET model. The destination-dependent METANET
model has the following characteristics:

• The traffic network is divided into links that corresponds to homogeneous freeway
stretches, and each link m is divided into Nm segments of equal length Lm (typically
500-1000 m);

• The traffic network has three different types of nodes, origins, destinations, and inter-
mediate nodes, and let O , D and N be the set of origins, destinations and intermediate
nodes respectively;
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• Each segment i of link m is characterized by its density ρm,i ,d (k) (veh/km/lane), mean
speed vm,i (k) (km/h), outflow qm,i (k) (veh/h) at simulation step k, and number of
lanes λm ;

• Each origin is described by a traffic waiting queue with length wo,d (k) (veh);

• At each segment, the composition rate γm,i ,d (k) denotes the fraction of traffic flow to
destination d on segment i of link m at simulation step k;

• At each intermediate node, the splitting rate βn,m,d (k) expresses the fraction of the
total flow with destination d that leaves node n via outgoing link m at simulation step
k.

The main equations of the METANET model can be found in Appendix B.
The route choice behavior of drivers in the METANET model is described by the split-

ting rate βn,m,d (k). In our case, the splitting rate βn,m,d (k) is determined by the travel time
according to the logit model:

βn,m,d (k) =
e−ξn,d tn,m,d (k)

∑

m′∈On

e−ξn,d tn,m′ ,d (k)
, (4.5)

where tn,m,d (k) denotes the predicted travel time from node n to destination d via link m

at simulation step k, and On denotes the set of outgoing links from node n. The predicted
travel time tn,m,d (k) can be communicated to the drivers via variable message signs, on-
board devices, or on-line traffic information (e.g., radio or other resources). The parameter
ξn,d > 0 reflects how drivers react on a travel time difference between different routes to
destination d at node n. The higher ξn,d , the less travel time difference is needed to convince
drivers to choose the fastest route.

4.4.4 Performance criteria

The objective of the co-design problem is two-fold:

• To improve the traffic flows in the network;

• To reduce the construction and maintenance cost.

Flow performance criteria

As an illustration, let us interpret improving the traffic flows as minimizing both the total
time spent (TTS) and total distance traveled (TDT) by all the vehicles in the network. We
define a day as the representative basic design period. The TTS and the TDT for the given
day is formulated by a monetary valuation, and can be easily calculated for METANET as
follows:

JTTS =
∑

k∈K

∑

d∈D

( ∑

m∈M

∑

i∈Im

αtρm,i ,d (k)LmλmT +
∑

o∈H

αwwo,d (k)T
)

+ JTTS,endpoint , (4.6)

JTDT =
∑

k∈K

∑

m∈M

∑

i∈Im

αdqm,i (k)T Lm + JTDT,endpoint , (4.7)
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withαt ($/h) the monetary cost per unit travel time,αw ($/h) the monetary cost per unit wait-
ing time, αd ($/km) the monetary cost per unit distance, wo,d (k) the number of vehicles to
destination d waiting on origin o at simulation step k, M the set of links of the network, Im

the set of segments on link m,H the set of origins, K the set of simulation steps for the given
day, and JTTS,endpoint and JTDT,endpoint are end point penalties. The factor ρm,i ,d (k)Lmλm in
(4.6) indicates the number of vehicles with destination d in segment i of link m, and hence
multiplied by the time interval T this gives the time spent by the vehicles in the correspond-
ing segment. Similarly, the term qm,i (k)T in (4.7) represents the number of vehicles leaving
segment i of link m, and multiplied by the length of segment Lm this gives the distance trav-
eled by the vehicles. Note that because we consider a representative day as the basic design
period, it is possible that some vehicles may be still traveling in the network, or even wait-
ing at origins at the end of the day. These vehicles will eventually reach their destination,
and hence we should also take the travel time cost and travel distance cost spent after the
end of the representative day into account, and add them to JTTS and JTDT respectively. This
part of the cost is called an end point penalty [95]. The end point penalties JTTS,endpoint and
JTDT,endpoint can be computed in several ways, e.g.,

1. We estimate the TTS and the TDT spent by all the vehicles that are still in the network
or at the origins after the end of the representative day:

JTTS,endpoint =αt
∑

d∈D

( ∑

m∈M

∑

i∈Im

ρm,i ,d (kend)Lmλmτm,i ,d

+
∑

o∈H

wo,d (kend)τo,d

)

, (4.8)

JTDT,endpoint =αd
∑

d∈D

( ∑

m∈M

∑

i∈Im

γm,i ,d (kend)qm,i (kend)Tℓm,i ,d

+
∑

o∈H

wo,d (kend)ℓo,d

)

, (4.9)

with τm,i ,d and τo,d the typical travel times that a vehicle in the segment i of link m

and at origin o needs to reach destination d , ℓm,i ,d and ℓo,d the typical travel distances
that a vehicle in the segment i of link m and at origin o needs to reach destination d ,
and kend ∈ K the last simulation step of K . The typical travel time and distance can be
calculated based on historical data or a prediction model.

2. We use the same expressions of (4.8) and (4.9) to calculate the end point penalties, but
the typical travel time τm,i ,d (kend) and τo,d (kend) and the typical travel distance ℓm,i ,d

and ℓo,d are determined according to the traffic state on the fastest or shortest route at
simulation step kend:

τm,i ,d (kend) =
Nm∑

j=i+1

Lm

vm, j (kend)
+

∑

l∈rm,d

Nl∑

j=1

Ll

vl , j (kend)
, (4.10)

τo,d (kend) =
∑

l∈ro,d

Nl∑

j=1

Ll

vl , j (kend)
, (4.11)

ℓm,i ,d =
Nm∑

j=i+1
Lm +

∑

l∈rm,d

Nl∑

j=1
Ll , (4.12)
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ℓo,d =
∑

l∈ro,d

Nl∑

j=1
Ll , (4.13)

where rm,d denotes the fastest or shortest route from the end of link m to destination
d , and ro,d denotes the fastest or shortest route from origin o to destination d .

3. We determine K shortest or fastest loop-less routes [68, 79, 146] from any link end and
any origin to any destination — provided that some vehicles are still traveling between
that link or origin and that destination at the end of the representative day — and then
those vehicles are distributed over these K shortest routes. The end point penalties are
then computed by summing the total travel time cost and the total travel distance cost
for all the vehicles remaining in the network at simulation step kend.

4. We keep simulating the traffic network until all the vehicles have left it, while setting
the demand to zero after the end of the representative day. The end point penalties
can then be directly computed based on the simulation results.

One should choose one of these four approaches w.r.t finding a balanced trade-off between
the accuracy and the computation speed when computing the end point penalties.

For each sub-period (e.g., week, season, year) corresponding to the quasi-dynamic ap-
proach of Section 4.4.2 and Figure 4.3, by computing the TTS and the TDT for those days
using (4.6) and (4.7), and next multiplying the result with the number of days of the given
sub-period, we can compute yearly monetary TTS and TDT values JTTS,y and JTDT,y for each
year y in the full period under consideration.

Construction and maintenance performance criteria

Another objective is to reduce the construction and maintenance cost of the network. A
linear construction cost function can be adopted:

JCC =
∑

m∈M

δm>0

αc
m NmLmδm −

∑

m∈M

δm<0

αr
m NmLmδm , (4.14)

where αc
m ($/year) denotes the construction cost per lane per unit length, αr

m ($/year) de-
notes the removal cost per lane per unit length, and Nm denotes the number of segments on
link m. The maintenance cost depends on the number of lanes after construction, and the
cost for the first year is formulated as:

JMC =
∑

m∈M

αm
m NmLm(λm +δm) , (4.15)

where αm
m ($/year) denotes the maintenance cost per lane per unit length.

Overall performance criteria

The overall objective function can be obtained by summing up all the objective functions.
Note that the major difference between the construction cost and the other three costs is
that the construction cost is only spent in the first year, while the other three costs should be
considered every year, and will be increasing annually due to the inflation effect. We assume
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that the inflation effect starts at the beginning of every year, so the overall objective function
is formulated as:

J = JCC +
Ny∑

y=1
(1+ r )y−1(JMC + JTTS,y + JTDT,y

)

, (4.16)

where r denotes the yearly inflation rate, and Ny denotes the number of years during the
entire design period.

4.4.5 Constraints

Recall that as introduced in Section 4.4.1 the value of the topology design decision variable
δm is constrained by the number of lanes on link m and the available free space: δmin

m É
δm É δmax

m . Moreover, in order to avoid reducing the region of possible solutions, or causing
an infeasible problem, constraints on the parameters of control laws are not directly put
on the parameters themselves, but instead a minimum and a maximum value is added to
each control signal as shown in (4.3) and (4.4). Moreover, the traffic simulation model is also
included as a set of equality constraints.

4.4.6 Overall optimization problem

So far we have introduced the objective functions and the constraints for optimization, to-
gether with the topology design methods, traffic control measures, and traffic models. The
overall optimization problem can be formulated as:

min
θ,δ

J (θ,δ)

subject to y(θ,δ) = 0

z(θ,δ) É 0 (4.17)

where J (·) includes all the objective functions, y(·) = 0 includes all the equality constraints,
and z(·) É 0 includes all the inequality constraints. For the sake of compactness in Section
4.5, the constraints of (4.17) will be denoted via a constraint set C

C = {(θ,δ)|y(θ,δ) = 0 and z(θ,δ) É 0} . (4.18)

In addition, we define Cθ(δ) and Cδ(θ) as the sets of feasible θ and δ for a given value of δ
and θ respectively, i.e.,

Cθ(δ) = {θ|(θ,δ) ∈C } (4.19)

Cδ(θ) = {δ|(θ,δ) ∈C } . (4.20)

4.5 Solution approaches

4.5.1 Solution frameworks

We have described an optimization formulation (4.17) in order to solve the co-design prob-
lem of the network topology and traffic control measures. However, optimizing both θ and δ
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Figure 4.4: Schematic representation of four solution frameworks.

will potentially result in a high computational burden. Therefore, the development of an ef-
ficient solution approach is required to guarantee successful solution of the co-design prob-
lem.

We discuss four solution frameworks for (4.17), i.e., separate optimization, iterative opti-
mization, bi-level optimization, and joint optimization (see Figure 4.4). We introduce each
framework in more detail next.

Separate optimization

Separate optimization means that the optimization problem is decomposed into multiple
separate subproblems. This framework has been applied to solve e.g. the machining op-
timization problem [122], and the mesh optimization problem [74]. In our case, we first
determine the optimal topology design decision variable δ by fixing the parameters of the
traffic control law to θfix:

δ∗ = arg min
δ∈Cδ(θfix)

J (θfix,δ) . (4.21)

The value of θfix can be chosen according to the default settings of the control laws, or based
on knowledge from experts. After δ∗ is determined, we then only optimize the parameters θ
of the control laws in the network with the fixed topology:

θ∗ = arg min
θ∈Cθ(δ∗)

J (θ,δ∗) (4.22)

This yields the pair (δ∗,θ∗) as the approximate solution of the optimization problem (4.17).

Iterative optimization

A more advanced approach compared to separate optimization is iterative optimization. In
iterative optimization, we also solve the optimization problems (4.21) and (4.22), but these
two problems are solved iteratively instead of only once. The solution θ∗ from (4.22) is fed
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back to (4.21) by replacing θfix with θ∗, and in this way, a new solution of δ∗ can be obtained.
Generally, we repeat solving:

δ∗i+1
= arg min

δ∈Cδ

(

θ∗i
) J

(

θ∗i

,δ
)

(4.23)

θ∗i+1
= arg min

θ∈Cθ

(

δ∗i+1
) J

(

θ,δ∗i+1
)

(4.24)

until one of the following stop criteria is satisfied:

1. The maximum number of iteration steps N is reached;

2. The difference in the values of δ and θ between two consecutive iteration steps is

smaller than some predefined threshold: ‖δ∗i+1
−δ∗i

‖ < ǫδ and ‖θ∗i+1
−θ∗i

‖ < ǫθ .

More information about the iterative optimization approach can be found in [13, 22].

Bi-level optimization

Bi-level optimization [28] divides the optimization problem (4.17) into two levels (an inner
one and an outer one), where one problem is embedded within another. Generally, the outer
optimization task is commonly referred to as the upper-level optimization task, and the in-
ner optimization task is commonly referred to as the lower-level optimization task. In the
given problem setting, it is assumed that for any network topology (a given δ), there exists
a corresponding optimal parameter θ∗(δ) of the control law. Therefore, in the bi-level opti-
mization, the lower level aims at finding a relationship between δ and θ, and the upper level
aims at determining the network topology.

The relationship between δ and θ can be expressed by a function θ∗(δ), which can be
obtained from the lower level optimization

θ∗(δ) = arg min
θ∈Cθ(δ)

J (θ,δ) . (4.25)

In the upper level, the topology design decision is determined according to

δ∗ = arg min
δ∈Cδ

J (θ∗(δ),δ) , (4.26)

with Cδ = {δ|∃θ such that (θ,δ) ∈C }. The optimal parameter is obtained by:

θ∗ = θ∗(δ∗) (4.27)

Joint optimization

The aforementioned three frameworks deal with the topology design and traffic control mea-
sures one after the other. Unlike them, joint optimization solves (4.17) by considering both
δ and θ at the same time, which can be obtained by:

(θ∗,δ∗) = arg min
(θ,δ)∈C

J (θ,δ) (4.28)
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Discussion

One should consider the complexity of the co-design problem when choosing the appro-
priate solution framework. The complexity of the problem changes when the design settings
are different. For instance, choosing a week as the basic design period, in which the expected
traffic demand and traffic situations can be distinguished between weekdays and weekends,
can yield more refined design results than choosing a day as the basic design period. How-
ever, the computational burden for simulation will be also higher when a longer basic de-
sign period. Among the aforementioned solution frameworks, the separate optimization
approach is the easiest approach to implement. The iterative optimization approach will
in general achieve a better performance than the separate optimization approach, but the
computation speed may be lower because of the iterative procedure. [29] presents the iter-
ative optimization approach to solve a co-design problem with network topology and traffic
signal setting. To the best knowledge of the authors, the co-design problem by using the
bi-level optimization approach or the joint optimization approach has not yet been investi-
gated in the literature. In these two approaches, the topology design and the traffic control
can interact with each other well, so the performance is expected to be improved signifi-
cantly. However, the computation time will also increase highly. Therefore, an appropriate
solution framework should be selected to provide a balance between the performance and
the computation speed according to the design requirements.

4.5.2 Optimization algorithms

In general, the co-design problem will result in a non-linear, non-convex optimization prob-
lem. To tackle such a problem, different optimization algorithms can be applied.

• For real-valued problems, i.e., when the topology design has a continuous form and
the parameters of the control law have continuous values, we can use multi-start se-
quential quadratic programming [19], pattern search [73], simulated annealing [83],
genetic algorithms [5], and so on;

• For mixed-integer problems, i.e., when the topology design has a discrete form or
the parameters of the control law have discrete values, we can also use genetic algo-
rithms and simulated annealing. Moreover, other mixed-integer nonlinear program-
ming approaches such as branch-and-bound algorithms [89], branch-and-cut algo-
rithms [133], Benders decomposition method [63], and outer approximation method
[48] can be used as well.

4.6 Case study

4.6.1 Set-up

We illustrate the four proposed solution frameworks to the co-design problem introduced
in Section 4.5.1 in a simulation of the central and eastern parts of the Singapore expressway
network (Figure 4.5), which is one of the busiest areas in Singapore, including the central
business district and the international airport. This area contains 40 one-way highway links
(with the parameters of each link presented in Table 4.1), 8 origins (o1–o8), and 8 destinations
(d1–d8).
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Figure 4.5: The central and eastern parts of the Singapore expressway network.

Table 4.1: Parameters of links in the Singapore expressway network

Link index Length (km) Number of lanes Nodes Capacity (veh/h)

1, 2 3.0 3 9, 10 6000
3, 4 3.5 4 10, 17 8000
5, 6 13.0 4 11, 4 8000
7, 8 2.0 4 3, 4 8000

9, 10 1.0 3 8, 11 6000
11, 12 2.0 3 6, 8 6000
13, 14 8.0 3 2, 6 6000
15, 16 6.5 3 2, 3 6000
17, 18 2.0 4 6, 5 8000
19, 20 7.0 3 1, 2 6000
21, 22 7.5 2 1, 5 4000
23, 24 3.5 2 5, 7 4000
25, 26 2.5 2 7, 16 4000
27, 28 11.0 4 6, 3 8000
29, 30 1.0 4 15, 4 8000
31, 32 3.0 3 12, 9 6000
33, 34 3.0 4 13, 5 8000
35, 36 3.0 3 14, 1 6000
37, 38 2.0 2 9, 16 4000
39, 40 1.0 4 11, 17 8000
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The topology design problem involves determining whether new links should be con-
structed or existing links should be removed, or whether the number of lanes on the existing
links should be changed. According to the simulation scenario (see Section 4.6.3), we as-
sume that new links 41 and 42 can be built between nodes 12 and 13, and new links 43 and
44 can be built between nodes 16 and 17, as shown by dash lines in Figure 4.5. The upper
bound on the number of lanes for each new link is set as 2. Moreover, we may change the
number of lanes on links 9, 17, 23, 25, 32, and 33, which are main roads around the central
business district. The upper bound for the number of lanes for each existing link is set as 4.
As traffic control measures, ramp metering installations are put at origins o2, o4, o5, and o7,
and variable speed limits are installed on link 32, as well as link 41 if it is built. Only the seg-
ments on the second half of link 32 and 41 are controlled by the dynamic speed limits, which
is similar in the settings considered by [72]. Eventually, we have a co-optimization problem
with 10 integer optimization variables and 10 continuous optimization variables.

4.6.2 Optimization and model parameters

According to a report by the [137], the unit cost of building a stretch of highway ranged from
about $2.5 million per km to $16 million per km in 25 U.S. states in 2002. In this case study,
we set the construction cost as αc

m = $10 million per lane per km, and the removal cost as
αr

m = $5 million per lane per km. The maintenance cost for the first year is αm
m = $1 million

per lane per km, and it will increase every year at the rate of r = 0.04. The total length of the
entire design period is set to Ny = 20 years. For other parameters, we assume that the travel
time cost is equal to the waiting time cost, defined as αt = αw = $10 per h per vehicle, and
the travel distance cost is set as αd = $1 per km per vehicle.

The destination-dependent METANET model is used to simulate the traffic flow evolu-
tion, and we use the traffic control laws (4.3) and (4.4) in this case study. The model pa-
rameters are defined as follows [71]: simulation time step length T = 10 s, free flow speed
vfree,m = 120 km/h, lower bound of speed limit v min

m = 50 km/h, critical density ρcrit,m =
33.5 veh/km/lane, maximum density ρmax,m = 180 veh/km/lane, flow capacity qcap = 2000
veh/h/lane. Other parameters can be found in [86].

4.6.3 Scenario

We consider four different traffic inflows in the network (see Figure 4.6(a)) from origins o2,
o4, o5, and o7, and all of them have the same destination d1:

• For traffic flows from o2 and o4, we define a high traffic demand profile: it starts with a
flow of 200 veh/h at 12.00 a.m., reaches the first peak of 4000 veh/h at 6.30 a.m., grad-
ually decreases to 2000 veh/h at 10.00 a.m., reaches the second peak of 4000 veh/h at
5.30 p.m., decreases to 200 veh/h at 9.00 p.m., and maintains this level until midnight;

• For traffic flows from o5 and o7, we define a low traffic demand profile: it starts with
a flow of 0 veh/h at 12.00 a.m., reaches the first peak of 1000 veh/h at 6.30 a.m., de-
creases to 100 veh/h at 10.00 a.m., reaches the second peak of 1000 veh/h at 5.30 p.m.,
decreases to 0 veh/h at 9.00 p.m., and maintains this level until midnight.

In order to create traffic congestion during the peak hours, we add a large pulse with a max-
imum value of 75 veh/km/lane to the downstream density of the network at each peak-hour



68 Efficient Optimization Methods for Freeway Management and Control

0 6 12 18 24
0

1000

2000

3000

4000

5000

Time (h)

D
em

an
d 

(v
eh

/h
)

 

 
main origin
on−ramp

(a) Demand profile

0 6 12 18 24

30

40

50

60

70

80

90

Time (h)

D
en

si
ty

 (
ve

h/
km

/la
ne

)

(b) Downstream density profile

Figure 4.6: Traffic scenario considered in the simulation experiment.

period, as shown in Figure 4.6(b). These pulses can generate a back-propagating wave and
make the traffic in the network more busy.

4.6.4 Simulation results

We use the four solution frameworks to solve the co-design problem for the Singapore ex-
pressway network, and compare the results. In order to prevent that the results from dif-
ferent solution frameworks would be fully determined by the optimization algorithm, two
optimization algorithms are used to benchmark all the solution frameworks: one is a ge-
netic algorithm implemented in the ga function of the Matlab Global Optimization Toolbox,
and the other is an outer approximation branch-and-bound algorithm implemented in the
minlp function of the TOMLAB Mixed-Integer Nonlinear Programming toolbox for Matlab.
The default parameters settings of the ga function are used in this case study. More informa-
tion about parameter tunning of genetic algorithms can be found in [50, 94].

The results of the four solution frameworks by using ga and minlp are displayed in Ta-
bles 4.2 and 4.3. We can see that for each solution framework the total cost is almost the
same by using the ga and minlp functions, except that in the separate optimization frame-
work, the total cost by using the minlp function is a little higher than the one by using the
ga function. Therefore, we can conclude that the simulation results are mainly determined
by the solution framework, not by the optimization algorithms. Moreover, it clearly shows
that the separate optimization framework results in a much higher total cost than the other
three frameworks. The other three frameworks yield almost the same solution in this case
study, especially for the total cost and for the topology design decisions. In Tables 4.2 and
4.3, for the construction decision δ, the subscript of each variable corresponds to the index
of the link, and the value of each variable indicates the modification of the numbers of lanes
on the link, i.e., positive values mean adding lanes, negative values mean removing lanes,
and zero values mean no change. For the control parameter θ, the superscript ‘r’ means that
the variable is a parameter for the on-ramp control law, and the superscript ‘v’ means that
the variable is a parameter for the variable speed limits control law. Since the variable speed
limits control law has three parameters, we use 0, 1, and 2 in the subscript to distinguish
these three parameters. In Table 4.2, the joint optimization yields different topology design
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Table 4.2: Simulation results obtained by using ga

Solution framework Total cost ($) Topology decision Control parameters

Separate optimization 4.6431 ·1010

δ9 =−2 θr
2 = 0.61

δ12 =−2 θr
4 = 0.73

δ17 =−4 θr
5 = 0.10

δ23 =−2 θr
7 = 1.65

δ24 =−2 θv
32,0 = 1.37

δ25 =−1 θv
32,1 = 2.36

δ41 = 2 θv
32,2 = 0.04

δ42 = 0 θv
41,0 = 1.92

δ43 = 2 θv
41,1 = 1.78

δ44 = 0 θv
41,2 = 2.80

Iterative optimization 3.6430 ·1010

δ9 =−1 θr
2 = 13.72

δ12 =−3 θr
4 = 12.75

δ17 =−3 θr
5 = 18.62

δ23 =−2 θr
7 = 8.99

δ24 =−2 θv
32,0 = 1.49

δ25 =−1 θv
32,1 = 337.81

δ41 = 2 θv
32,2 = 1127.17

δ42 = 0 θv
41,0 = 1.62

δ43 = 2 θv
41,1 = 104.37

δ44 = 0 θv
41,2 = 2311.53

Bi-level optimization 3.6428 ·1010

δ9 =−1 θr
2 = 13.23

δ12 =−3 θr
4 = 11.95

δ17 =−3 θr
5 = 8.17

δ23 =−2 θr
7 = 14.50

δ24 =−2 θv
32,0 = 1.55

δ25 =−1 θv
32,1 = 917.19

δ41 = 2 θv
32,2 = 760.89

δ42 = 0 θv
41,0 = 1.76

δ43 = 2 θv
41,1 = 226.12

δ44 = 0 θv
41,2 = 2858.39

Joint optimization 3.6399 ·1010

δ9 =−3 θr
2 = 17.20

δ12 =−2 θr
4 = 13.21

δ17 =−4 θr
5 = 10.94

δ23 =−2 θr
7 = 10.53

δ24 =−2 θv
32,0 = 1.19

δ25 =−1 θv
32,1 = 315.06

δ41 = 0 θv
32,2 = 264.98

δ42 = 0 θv
41,0 = 0.73

δ43 = 0 θv
41,1 = 375.66

δ44 = 1 θv
41,2 = 2677.94
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Table 4.3: Simulation results obtained by using minlp

Solution framework Total cost ($) Topology decision Control parameters

Separate optimization 4.7390 ·1010

δ9 =−2 θr
2 = 1.97

δ12 =−2 θr
4 = 0.73

δ17 =−4 θr
5 = 0.01

δ23 =−2 θr
7 = 0.35

δ24 =−2 θv
32,0 = 1.47

δ25 =−1 θv
32,1 = 0.06

δ41 = 2 θv
32,2 = 0.91

δ42 = 0 θv
41,0 = 1.12

δ43 = 2 θv
41,1 = 1.77

δ44 = 0 θv
41,2 = 0.86

Iterative optimization 3.6435 ·1010

δ9 =−1 θr
2 = 12.09

δ12 =−3 θr
4 = 13.95

δ17 =−3 θr
5 = 10.62

δ23 =−2 θr
7 = 14.03

δ24 =−2 θv
32,0 = 1.71

δ25 =−1 θv
32,1 = 144.35

δ41 = 2 θv
32,2 = 617.42

δ42 = 0 θv
41,0 = 1.49

δ43 = 2 θv
41,1 = 293.56

δ44 = 0 θv
41,2 = 1848.33

Bi-level optimization 3.6435 ·1010

δ9 =−1 θr
2 = 13.08

δ12 =−3 θr
4 = 8.86

δ17 =−3 θr
5 = 10.62

δ23 =−2 θr
7 = 16.01

δ24 =−2 θv
32,0 = 1.03

δ25 =−1 θv
32,1 = 285.77

δ41 = 2 θv
32,2 = 1230.33

δ42 = 0 θv
41,0 = 1.49

δ43 = 2 θv
41,1 = 293.56

δ44 = 0 θv
41,2 = 1474.57

Joint optimization 3.6435 ·1010

δ9 =−3 θr
2 = 12.59

δ12 =−2 θr
4 = 17.63

δ17 =−4 θr
5 = 13.46

δ23 =−2 θr
7 = 13.21

δ24 =−2 θv
32,0 = 1.23

δ25 =−1 θv
32,1 = 197.78

δ41 = 0 θv
32,2 = 761.87

δ42 = 0 θv
41,0 = 1.34

δ43 = 0 θv
41,1 = 323.92

δ44 = 1 θv
41,2 = 1273.11
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decisions than the iterative optimization and the bi-level optimization, and the total cost is
also slightly lower than the one obtained by the other two frameworks. In Table 4.3, iterative
optimization, bi-level optimization and joint optimization yield the same topology design
decisions, but different control parameters. However, the values of the total costs of these
three solution frameworks are identical for the first five digits. Therefore, in this scenario,
the topology design has a more dominant impact on the performance of the traffic network
than the traffic control.

4.7 Conclusions

In this chapter, we have introduced a co-design method that jointly optimizes the network
topology and traffic control parameters. We have proposed four different solution frame-
works for such a co-design problem, namely separate optimization, iterative optimization,
bi-level optimization, and joint optimization. One should choose the most appropriate so-
lution framework according to the computational complexity requirements. We have tested
these four solution frameworks in a simulation-based case study — the Singapore express-
way network. The results show that joint optimization, bi-level optimization, and iterative
optimization can result in a superior performance than separate optimization.
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Chapter 5

Unmanned Aerial Vehicles for Monitoring

Freeway Networks

In this chapter, Unmanned Aerial Vehicles (UAVs) are considered to monitor the traffic con-
ditions in a freeway network, where the goal is to find an optimal path for each UAV. Two dif-
ferent monitoring settings are considered: (1) UAVs can monitor while flying, and (2) UAVs
can only monitor when hovering in the air. The first setting is recast as a multiple rural post-
man problem. Next, the problem is translated into a multiple traveling salesman problem by
mapping the freeway network into a virtual graph, and then the resulting problem is period-
ically solved using mixed-integer linear programming. The second setting is formulated as
a Markov Decision Process (MDP). The freeway network is decomposed into multiple cells,
and the task is to let UAVs visit the cells that cover the freeway links as frequently as possible.
Since usually a freeway network is so large that the problem cannot be solved using standard
MDP solution methods, three alternative solution methods are considered instead, namely
fitted Q-iteration, model predictive control, and parametrized control. A simulation-based
case study involving the Singapore expressway network is used to illustrate our approaches
for the two settings.

5.1 Introduction

Traffic information is important for traffic management and control. In order to obtain real-
time traffic information, surveillance systems are often used in freeway networks. Tradition-
ally, fixed sensors are installed on roads, such as cameras or road-embedded sensors, and
they cannot be moved once installed. Determining good sensor locations for flow observa-
tion and estimation are reviewed in [62]. However, fixed sensors cannot be deployed every-
where in the network due to limited budgets, and as a result, the available fixed sensors may
fail to gather reliable representative traffic information in case of a dynamic traffic situation.
This is the motivation to introduce mobile sensors in the traffic network.

Some work considers mobile sensors as probe vehicles, e.g., using floating car data (FCD)
technique, which move in the same way as regular vehicles on the roads. FCD is can be used
to estimate the traffic speed in the traffic network [82], based on the collection of localization
data, such as vehicle speeds, vehicle headings and time information using mobile phones
or on-board GPS devices. In contrast to conventional methods, no additional hardware in-
stalled in the traffic network is necessary. However, the reliability of travel time estimation
based on FCD highly depends on the percentage of FCD-equipped cars that participate in

75
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the traffic flow [54]. If the FCD-equipped cars are not enough in the traffic flow, it may not
collect reliable traffic information.

Alternatively, Unmanned Aerial Vehicles (UAVs) can be chosen as mobile sensors for traf-
fic surveillance. This approach was used as early as in 1965, when a transportation consul-
tant in Maryland used a fixed-wing aircraft to collect traffic information [77]. In recent years,
research studies have been done at many different universities and research institutes. The
University of Florida initiated a project named Airborne Traffic Surveillance Systems [125],
which mainly aims at monitoring remote and rural areas of the state of Florida by using
UAVs. The UAV they used is called the Aerosonde UAV; it can endure over 32 hours at an
altitude between 100 and 6000 meters above the ground. Linköping University is conduct-
ing a long-term fundamental research project on UAVs [42], in cooperation with a number
of universities in Europe, USA, and South America. The goal is to develop technologies for
a fully autonomous UAV operating over diverse geographical terrain containing road and
traffic networks. Some other research activities include the experiments conducted by Ohio
State University [34], the COMETS project funded by European Commission [60], and the
Ultimate Auto-Pilot system built by University of California, Berkeley [57]. More information
about this topic can be found in [117].

The advantage of using UAVs is that they can move anywhere above the traffic network,
not directly being influenced by the traffic situation, and not limited by physical restrictions
of the network, e.g., narrow roads or uneven terrain. In reality, each UAV usually has a limited
local field of view around itself, and cannot cover the whole domain of interest all the time.
Therefore, path planning strategies for the UAVs are crucial for a successful surveillance sys-
tem, especially when monitoring a large-scale traffic network with a limited number of UAVs.
In this way, all UAVs thus have to fly around to update the monitored traffic information.

It has to be emphasized that in the literature, many papers, e.g. [2, 20, 31, 143], use the
term “path planning” to refer to finding a shortest or fastest path for each UAV from an initial
point to a terminal point in the network. However, in this chapter, “path planning” means to
find a path for each UAV so that the trajectories of all the UAVs cover the whole network or a
selected part of it as well as possible w.r.t. some cost criteria.

We consider two different settings of UAVs monitoring the freeway network in this chap-
ter:

• Setting I: Each UAV can monitor when flying along a link; so it has two modes — mon-
itoring and traversing. If a UAV is monitoring a link, it flies with a low speed; if a UAV
is traversing a link, it flies with a high speed. This setting is often used to track objects
moving on the ground [132, 134].

• Setting II: Each UAV can only monitor when hovering in the air. Therefore, it only has
one flying mode, and flies with a high speed. This setting is often used to inspect fixed
targets, e.g., parking lots or buildings [34, 104].

In the first setting, the UAVs path planning problem can be generalized as finding a least-
cost tour1 on a specified set of arcs in a graph. It is closely related to two types of arc routing
problems — the Chinese postman problem and the rural postman problem. The Chinese
postman problem has been posed by Kwan [88]. Generally speaking, the goal is to seek a
minimum-cost closed tour that visits all arcs of a graph. Hardgrave and Nemhauser [69]

1In this chapter, a tour refers to a path from an origin to a destination for a UAV.
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have shown that this problem can be immediately transformed into a traveling salesman
problem [90], and then solved by dedicated traveling salesman algorithms. However, more
direct approaches are also possible (see e.g. [100]). A comprehensive literature on this topic
can be found in [51]. The rural postman problem is to find a closed tour that visits each arc of
a given subset on a graph at least once, with the total cost minimized. This type of problem
usually underlies applications in practical contexts where it is not necessary to service all
links of a network, such as street sweeping [17], garbage collection [10], mail delivery [91],
and so on. Interested readers are referred to [52] for detailed information. The problem in
this setting is a variant of the rural postman problem, including two types of links for UAV:
the physical roads that are going to be monitored (each of them must be visited once and
only once), and the aerial links that are just used for traversal (they can be visited if needed).
The problem will be translated into a multiple traveling salesman problem, and solved by a
mixed-integer linear programming (MILP) approach.

In the second setting, the UAVs path planning problem can be considered as a decision
making process, in which the freeway network is divided into multiple cells. At each step,
the decision maker chooses for each UAV which cell to move to, and then the UAV flies to
the center of the chosen cell to monitor, e.g., by taking a picture. According to the moni-
toring performance, a reward is given to the decision maker so that he knows how good the
chosen action was. This process can be formulated as a Markov Decision Process (MDP) [8].
However, the path planning problem for UAVs in a large-scale freeway network will result in
an MDP problem with a big state space, which cannot be solved by standard MDP solution
methods. In order to tackle this issue, we use three alternative solution methods to solve the
problem in practice, namely fitted Q-iteration, model predictive control, and parameterized
control.

The rest of the chapter is organized as follows. Section 5.2 introduces the MILP approach
to solve the UAVs path planning problem of the first setting. In Section 5.3, the problem of
the second setting is formulated by using MDPs, and then solved. After that, simulations and
results of a case study are shown in Section 5.4. Finally, conclusions are given in Section 5.5.

5.2 Setting I: Mixed-integer linear programming

5.2.1 Problem definition

The objective in this setting is to let UAVs monitor a selected subset of physical links in the
freeway network during each monitoring period [κTm, (κ+1)Tm] for κ = 0,1,2, . . . , with Tm

the length of the monitoring period. Note that the value of Tm should be selected large
enough to allow the UAVs to finish monitoring all the selected links. The basic idea we pro-
pose is to translate the freeway network into a virtual graph (see Figure 5.1 for an example),
mapping each selected link to a vertex, with the relationship l = ℓ(i ) indicating that link l

corresponds to vertex i . In order to avoid confusion, in this chapter, we use the terms “links"
and “nodes" to refer to the freeway network, and “arcs" and “vertices" to refer to the virtual
graph. The links to be monitored are selected based on one or more of the following condi-
tions:

1. The last monitoring action to link ℓ(i ) has happened a long time ago, or link ℓ(i ) was
not even monitored yet;
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Figure 5.1: Example: mapping a freeway network into a virtual graph. The physical links l1-l5

are mapped to vertices indicated by black dots, the pure aerial links l6 and l7 are

mapped to vertices indicated by circles, and the incoming and outgoing links of the

depots p1 and p2 are mapped to vertices indicated by black squares.
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Figure 5.2: Example of the evolution of attraction level in different periods: link ℓ(i ) should be

monitored at most once during the period [κTm, (κ+1)Tm] because Φlow Éφd
i

(κ) <
Φhigh, and ℓ(i ) should not be monitored during the period [(κ+ 1)Tm, (κ+ 2)Tm]
because φd

i
(κ+1)<Φlow, with ti ,κ the time instant at which a UAV leaves ℓ(i ) after

monitoring the link during the κth monitoring period, and Ti the time spent by a

UAV on link ℓ(i ).
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2. The traffic density2 of link ℓ(i ) is high;

3. Link ℓ(i ) is so vital that it needs frequent monitoring.

All these conditions can be captured by defining a variable called attraction level φi (t ). In
general, the larger φi (t ) is, the higher the probability will be that link ℓ(i ) has to be selected
for monitoring in the upcoming period. The attraction level φi (t ) is assumed to increase as
time elapses, until link ℓ(i ) is monitored by a UAV, and then φi (t ) is reset to zero. In this way,
the first condition is guaranteed. We letφi (t ) increase with a piecewise constant slope, where
the slope can change after each monitoring action and at the beginning of each monitoring
period (see e.g. Figure 5.2). Moreover, the rate of increase of the attraction level does not only
depend on the traffic density of link ℓ(i ), but it can also be manually tuned by the operators
in the traffic control centers. Thus, the second and the third conditions are guaranteed, too.
Below we will show that by introducing the attraction level the dynamic nature of the freeway
network can be captured within a mixed-integer linear programming (MILP) approach; in
particular, a rural postman problem has to be solved periodically. In this way, this problem
can be considered as a periodical multiple rural postman problem, by mapping the freeway
network into a virtual graph, as will be explained next.

All important symbols used in this section are listed in Table 5.1.

Freeway network

The freeway network contains a set Lphys of physical links that represent roads to be moni-
tored, a set Lair of aerial links that are only used for traversing by UAVs, and a set D of depots
where UAVs start and finish their tours. Without loss of generality, it is assumed that each
depot only has one incoming link and one outgoing link. In each depot p, there are Np UAVs
that can be used to monitor the traffic network, with Cp the capacity of depot p (Np É Cp ).
The total number of UAVs is thus N =

∑

p∈D Np . Note that the physical links can be visited
not only for monitoring purposes, but also for traversing purposes, just as the aerial links.
We assume that a UAV is able to accurately monitor the traffic situation on a link while flying
across it at a low speed. So, if a UAV monitors a link, the link should be visited only once,
and the monitoring speed of a UAV is vlow; if a UAV traverses a link, the link can be visited
multiple times, and the traversing speed of a UAV is vhigh.

The subset Lphys,select(κ) of physical links to be monitored is selected at the beginning of
each period. The attraction level φi (t ) is sampled at each time instant t = κTm for κ= 0,1, . . . ,
withφd

i
(κ) =φ(κTm). Two thresholdsΦlow andΦhigh are defined: if Φlow Éφd

i
(κ) <Φhigh, then

ℓ(i ) is considered to be “moderately attractive”, which means that a UAV may monitor it or
not during the κth period; if φd

i
(κ) ÊΦhigh, then ℓ(i ) is considered to be “highly attractive”,

which means a UAV must monitor it during the κth period.

Virtual graph

The virtual graph3
G = (V ,A ) is defined according to the given freeway network, where V is

the set of vertices associated with the links in the freeway network, and A =∈ V ×V } is the
set of arcs connecting the vertices. The sets V and A are constructed as follows.

2If a traffic flow model is available, the traffic density is predicted for the upcoming monitoring period;
otherwise, it is based on measurement in the previous periods.

3In fact, the graph G may be different for each period [κTm, (κ+1)Tm], but for the sake of compactness, the
index κ of G is omitted in the chapter.
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Table 5.1: Symbols used for Setting I

symbol meaning

Lphys set of physical links
Lair set of aerial links
D set of depots
Np number of UAVs at depot p

Cp capacity of depot p

Lphys,select(κ) set of selected physical links to be monitored during the κth period
Vmoni set of vertices corresponding to the physical links to be monitored
Vmoni,high set of vertices corresponding to the physical links that must be monitored

once and only once
Vmoni,mod set of vertices corresponding to the physical links that should be moni-

tored not more than once
Vtrav,base set of vertices corresponding to both the physical links and the aerial links
Vtrav set of vertices corresponding to the links used for traversing
Vorig set of origins
Vdest set of destinations
Qi set of duplications of vertex i

Ii set of incoming arcs of vertex i

Oi set of outgoing arcs of vertex i

N set of UAVs
Tm length of the monitoring period
φi (t ) attraction level on link ℓ(i )
φd

i
(κ) sampled attraction level at time instant t = κTm

Φlow, Φhigh thresholds for the attraction levels
ai (κ) rate of increase of the attraction level for the κth period
ρ̄i ,κ average density measured on link ℓ(i ) during the κth period
ρcrit,i critical density of link ℓ(i )
αi , βi , γi parameters for computing ai (κ)
τi ,n(κ) arrival time of UAV n at link ℓ(i ) during the κth period
ei ,n(κ) energy level of UAV n when entering link ℓ(i ) during the κth period
Ti ,n time spent by UAV n on link ℓ(i )
Ei ,n energy consumed by UAV n on link ℓ(i )
vi ,n speed of UAV n on link ℓ(i )
Li length of link ℓ(i )
Ca,n activation cost of UAV n

ci (κ) auxiliary variable for vertex i for cycle imposement constraint during the
κth period

E max
n maximum energy level of UAV n

Mt , Me large positive constants
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• The vertex set consists of three groups:

– The first group (denoted by the set Vmoni) represents the physical links that should
be monitored by UAVs in the freeway network, with Vmoni = {i |ℓ(i ) ∈Lphys,select(κ)}.
Moreover, this group can be further divided into two subgroups: Vmoni,high which
contains the vertices that corresponds to the “highly attractive” links, which must
be monitored once and only once, and Vmoni,mod which contains the vertices that
corresponds to the “moderately attractive” links, which should be monitored not
more than once.

– The second group (denoted by the set Vtrav) represents the links that are used by
the UAVs for traversing. Any link ℓ(i ) in the freeway network can be traversed
multiple times. However, since we will use a binary optimization variable to in-
dicate whether or not a link is visited by a given UAV, it is unknown how many
times a link is traversed by a given UAV. In order to tackle this issue, each vertex
i ∈ Vtrav,base is duplicated Qi times, with Vtrav,base = {i |ℓ(i ) ∈ Lphys ∪Lair}, and Qi

a constant. The qth duplication i [q] of vertex i indicates that link ℓ(i ) may be
traversed for the qth time by the same UAV. In this way, the set Vtrav is defined as:

Vtrav =
⋃

i∈Vtrav,base

Qi (5.1)

with Qi = {i [1], i [2], . . . , i [Qi ]}. So if a physical link ℓ(i ) is visited by a UAV for the first
time, link ℓ(i ) is considered to be monitored, and thus vertex i ∈ Vmoni is visited;
if link ℓ(i ) is visited for the second time, and so on, then link ℓ(i ) is considered to
be traversed, and vertices i [1], i [2], . . . ∈ Vtrav are visited.

– The third group of vertices includes the set Vorig of origins, and the set Vdest of
destinations, which contains the vertices that corresponds to the outgoing and
incoming links of depots respectively. Moreover, if vertex o ∈ Vorig corresponds
to the outgoing link of depot p, and vertex d ∈ Vdest corresponds to the incoming
link of depot p, the relationship between d and o is defined as d = dest(o). All the
UAVs are initially put at origins, and the set of all the UAVs is

N =
⋃

o∈Vorig

No (5.2)

with No the set of UAVs at origin o.

As a result, the vertex set equals V = Vmoni ∪Vtrav ∪Vorig∪Vdest.

• The arc set represents the physical restrictions of link connections in the freeway net-
work. For each vertex i ∈ V , an incoming neighborhood Ii is defined as the set of
vertices that are directly connected to vertex i by one of its incoming arcs. Similarly, Oi

is defined as the outgoing neighborhood of vertex i . Moreover, a binary-valued vari-
able xi , j ,n(κ) is associated with each arc (i , j ), indicating whether (xi , j ,n(κ) = 1) or not
(xi , j ,n (κ) = 0) vertex j is visited directly after vertex i by UAV n during the κth period
[κTm, (κ+1)Tm].
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5.2.2 Mathematical formulation

Attraction level update

The attraction level is only calculated at each time step κ= 0,1, . . ., increasing with a constant
rate ai (κ). The initial attraction level φd

i
(0) and the initial rate ai (0) can be computed based

on a standard value for all the links, or based on historical data for each individual link. There
are two cases for updating the attraction level at the end of the κth period [κTm, (κ+1)Tm]:

1. If link ℓ(i ) is monitored by a UAV during the κth period, the attraction level is com-
puted as

φd
i (κ+1) = ai (κ)((κ+1)Tm − ti ,κ) (5.3)

where ti ,κ denotes the time instant at which the UAV leaves link ℓ(i ) after monitoring
it during the κth period, calculated as

ti ,κ =
∑

j∈Oi

∑

n∈N

(τi ,n(κ)+Ti ,n)xi , j ,n (κ), (5.4)

with τi ,n(κ) the arrival time of UAV n at link ℓ(i ) during the κth period (see (5.31)), and
Ti ,n the time spent by UAV n monitoring link ℓ(i ) for i ∈ Vmoni (see (5.12)). The value
of the rate ai (κ) depends on the density measured on link ℓ(i ). More specifically, if the
average density ρ̄i ,κ of link ℓ(i ) during the κth period is larger than the critical density
ρcrit,i , the attraction level will increase at a higher rate. Therefore, the rate ai (κ) can be
computed e.g. by:

ai (κ) = max

(

αi ,αi e

(

βi

(
ρ̄i ,κ

γi ρcrit,i
−1

)))

(5.5)

with αi ,βi > 0 constants reflecting the importance of link ℓ(i ), and 0< γi É 1 a thresh-
old factor for the critical density.

2. If link ℓ(i ) is not monitored during the κth period, the attraction level is computed as

φd
i (κ+1)=φd

i (κ)+ai (κ)Tm (5.6)

and the rate of increase is computed as

ai (κ) = ai (κ−1) (5.7)

Remark: If a traffic flow model is available, then instead of using (5.7) the rate ai (κ) can
be calculated based on the estimated instantaneous density ρ̂i (κTm) by using (5.5).

Objective function

The objective function used in this chapter establishes a trade-off between minimizing the
total travel time, the total energy consumption, and the total activation cost of the UAVs, and
maximizing the total attraction levels on the monitored links during each monitoring period.
The trade-off can be made among the different objectives by using weighting coefficients
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λ1,λ2,λ3,λ4,λ5 Ê 0 in the objective function:

JMILP(κ) =λ1 Jenergy(κ)+λ2 Jtime(κ)+λ3 Jactive(κ)+λ4 Jattract(κ)+λ5 Jnum(κ) (5.8)

The definitions of Jenergy(κ), Jtime(κ), Jactive(κ), Jattract(κ), and Jnum(κ) are given next.

• Energy consumption: In this chapter, the energy consumption is assumed to be related
with the speed of the UAVs, and to be proportional to the length of the links. The energy
consumed when link ℓ(i ) is visited is then formulated as

Ei ,n = fe(vi ,n) ·Li , ∀i ∈ V (5.9)

where fe represents the relationship between the speed of the UAV and the energy con-
sumption per unit distance, Li is the length of link ℓ(i ), and vi ,n denotes the speed of
a UAV n on link ℓ(i ), with

vi ,n =
{

vlow, if i ∈ Vmoni

vhigh, else
(5.10)

The total energy consumption is then

Jenergy(κ) =
∑

i∈V

∑

j∈Oi

∑

n∈N

Ei ,n ·xi , j ,n (κ) (5.11)

• Travel time: This depends on the length of each link in the freeway network, and the
speed of the UAV when visiting that link. The time spent on link ℓ(i ) by UAV n is for-
mulated as

Ti ,n =
Li

vi ,n
. (5.12)

Note that both Ti ,n and Ei ,n are constants so that our problem is ensured to be an MILP
problem. The total travel time is formulated similarly to the total energy consumption:

Jtime(κ)=
∑

i∈V

∑

j∈Oi

∑

n∈N

Ti ,n ·xi , j ,n (κ) (5.13)

• Fixed activation cost: An activation cost Ca,n is incurred whenever a UAV n is activated.
The total cost of using UAVs is then:

Jactive(κ) =
∑

o∈Vorig

∑

i∈Oo

∑

n∈N

Ca,n ·xo,i ,n (κ) (5.14)

• Attraction levels: Since each vertex i ∈ Vmoni,high must be visited exactly once, the sum
of the attraction levels on the corresponding links is fixed. Therefore, only the links
that correspond to the vertices in Vmoni,mod should be considered in the optimization
problem. The goal is to maximize the sum of the attraction levels on all the monitored
links, which is equivalent to minimizing the sum of the attraction levels on all the non-
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monitored links. Therefore, the objective function is formulated as:

Jattract(κ)=
∑

i∈Vmoni,mod

φd
i (κ)

(

1−
∑

j∈Oi

∑

n∈N

xi , j ,n(κ)

)

(5.15)

with the term
∑

j∈Oi

∑

n∈N

xi , j ,n (κ) indicating whether link ℓ(i ) is monitored or not.

• Number of monitoring actions: For the links that correspond to the vertices in Vmoni,mod,
it could happen that the attraction level on one link equals the sum of the attraction
levels on several other links. In this extreme case, UAVs should be encouraged to mon-
itor multiple links instead of that single link with the highest attraction level only. In
order to do so, the sum of the number of times that each link ℓ(i ) for i ∈ Vmoni,mod is
visited is also considered:

Jnum(κ)=
∑

i∈Vmoni,mod

(

1−
∑

j∈Oi

∑

n∈N

xi , j ,n(κ)

)

(5.16)

Constraints

• Assignment constraints: For any origin o ∈ Vorig, the UAVs can stay idle. This means that
each arc (o, i ) ∈A with o ∈ Vorig, i ∈Oo can be visited by a UAV n at most once:

∑

i∈Oo

xo,i ,n (κ) É 1, ∀o ∈ Vorig,∀n ∈No (5.17)

and a UAV n can only leave its own depot:

xo,i ,n(κ) = 0, ∀i ∈Oo ,∀o ∈ Vorig,∀n 6∈No (5.18)

When UAVs finish their tours and return to the depots, there are two different cases:

– Case A: A UAV can return to any depot. In this case, the number of UAVs at each
depot should not exceed the capacity of that depot (recall that the relationship
d = dest(o) represents origin o and destination d corresponding to the same de-
pot):

No +
∑

n∈N

∑

i∈Idest(o)

xi ,dest(o),n (κ)−
∑

n∈No

∑

j∈Oo

xo, j ,n(κ) ÉCdest(o), ∀o ∈ Vorig (5.19)

with No the number of UAVs at the depot that corresponds to origin o, and Cd the
capacity of depot that corresponds to destination d . Moreover, the total number
of outgoing UAVs equals the total number of returning UAVs:

∑

o∈Vorig

∑

n∈No

∑

j∈Oo

xo, j ,n (κ) =
∑

o∈Vorig

∑

n∈No

∑

i∈Idest(o)

xi ,dest(o),n(κ), (5.20)

– Case B: Each UAV must return to its original depot. In this case, the number of
outgoing UAVs should be the same as the number of returning UAVs for each
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depot:

∑

n∈No

∑

j∈Oo

xo, j ,n (κ) =
∑

n∈No

∑

i∈Idest(o)

xi ,dest(o),n(κ), ∀o ∈ Vorig (5.21)

Moreover, a so-called cycle imposement constraint, which has been introduced
by [25], is added. Generally speaking, the cycle imposement method associates
a unique current co (κ) with each origin vertex o ∈ Vorig, and ensures that cd (κ) =
co(κ) if d = dest(o), with cd (κ) the current at destination d . If a vertex j is pre-
ceded by another vertex i , these two vertices share the same current ci (κ) = c j (κ).
In this way, the tour is imposed to make the UAVs return to the same depot as the
one they started from. The following constraints ensure this:

co,n(κ) = o, ∀o ∈ Vorig,∀n ∈No (5.22)

cdest(o),n(κ) = co,n (κ), ∀o ∈ Vorig,∀n ∈No (5.23)

ci ,n(κ)−c j ,n(κ) É (D −1)(1−xi , j ,n(κ)−x j ,i ,n(κ)), ∀i , j ∈ V (5.24)

with D the number of depots, and where it is assumed without loss of generality
that Vorig = {1,2, . . . ,D}.

A link ℓ(i ) for i ∈ Vmoni,high should be visited once and only once by any UAV, which
means that each vertex i ∈ Vmoni,high is succeeded and preceded by exactly one vertex
in the route of the UAVs:

∑

n∈N

∑

j∈Oi

xi , j ,n (κ) = 1, ∀i ∈ Vmoni,high, (5.25)

∑

n∈N

∑

j∈Ii

x j ,i ,n (κ)= 1, ∀i ∈ Vmoni,high, (5.26)

Moreover, a link ℓ(i ) for i ∈ Vmoni,mod should be visited no more than once by any UAV,
which is formulated as:

∑

n∈N

∑

j∈Oi

xi , j ,n(κ) É 1, ∀i ∈ Vmoni,mod, (5.27)

∑

n∈N

∑

j∈Ii

x j ,i ,n(κ) É 1, ∀i ∈ Vmoni,mod, (5.28)

For a vertex i ∈ Vmoni ∪ Vtrav, the number of times that UAV n enters link ℓ(i ) should
equal the number of times that UAV n exits link ℓ(i ):

∑

j ′∈Ii

x j ′,i ,n(κ) =
∑

j∈Oi

xi , j ,n(κ), ∀i ∈ Vmoni ∪Vtrav, ∀n ∈N (5.29)

• Travel time constraints: As it is known from the traveling salesman literature [6], the
assignment constraints mentioned above do not avoid subtours in the network, which
means that tours could be formed between vertices in Vmoni∪Vtrav only and not be con-
nected to any depot. One way to tackle this issue is to use so-called cycle elimination
constraints. The idea behind these constraints is to assign an additional variable ui to
each vertex i , representing a vertex voltage. These vertex voltages have bounded val-
ues, and they increase at each vertex along the route until a terminal depot is reached.
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By using these constraints, if a subtour exists, then no terminal depot is included there,
so the voltages at the vertices in this route will increase to infinity, which is a contra-
diction.

One of the well-known approaches is called the Miller-Tucker-Zemlin cycle elimina-
tion constraints approach, which was introduced by Miller et al. [101]. We follow this
method in this chapter. However, instead of using the vertex voltages, which have no
practical meaning in our application, we introduce an arrival time variable τi ,n(κ),
which is the time instant that UAV n arrives at link ℓ(i ), to act as the vertex voltage.
For each UAV at an origin, that time is defined as:

τo,n(κ)= κTm, ∀o ∈ Vorig,∀n ∈N (5.30)

If a vertex j succeeds a vertex i for the same UAV, the arrival time τ j ,n(κ) is equal to the
arrival time τi ,n(κ), plus the travel time spent by UAV n on vertex i :

τ j ,n(κ)= τi ,n(κ)+Ti ,n , if xi , j ,n (κ) = 1, (5.31)

for all i , j ∈ Vmoni ∪Vtrav. This equation is equivalent to

(τi ,n(κ)−τ j ,n(κ)+Ti ,n)xi , j ,n (κ) = 0, ∀i , j ∈ Vmoni ∪Vtrav,∀n ∈N (5.32)

and it can be redefined as a linear inequality constraint by using the big-M method
[131]

τi ,n(κ)−τ j ,n(κ)+Ti ,n +Mtxi , j ,n(κ) É Mt, (5.33)

τ j ,n(κ)−τi ,n(κ)−Ti ,n +Mtxi , j ,n(κ) É Mt, (5.34)

with Mt a large positive constant.

• Energy level constraints: The energy level constraints guarantee that all UAVs return
to the depots before their batteries are depleted or before they run of fuel. Therefore,
each UAV should never run out of energy:

0 É ei ,n(κ) É E max
n , ∀i ∈ V ,∀n ∈N (5.35)

Moreover, similar to the travel time constraints, the energy level is defined as

eo,n(κ) = E max
n , ∀o ∈ Vorig,∀n ∈N (5.36)

(ei ,n(κ)−e j ,n(κ)−Ei ,n)xi , j ,n(κ) = 0, ∀i , j ∈ V ,∀n ∈N (5.37)

with Ei ,n computed by (5.9), and E max
n the maximum energy level that UAV n can have.

Similarly, (5.37) can be recast as linear constraints using the big-M method

ei ,n(κ)−e j ,n(κ)−Ei ,n +Mexi , j ,n(κ) É Me, (5.38)

e j ,n(κ)−ei ,n(κ)+Ei ,n +Mexi , j ,n(κ) É Me, (5.39)

with Me a large positive constant.
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(a)

cell

UAV local view

R

(b)

Figure 5.3: (a) Network is decomposed into cells, with the black cell indicating that no freeway

link is present in that cell, and UAVs only visit the cells containing freeway links;

(b) Relationship between the local field of view of the UAVs and the hexagonal cell.

5.2.3 Solution methods

The optimization problem for each period [κTm, (κ+1)Tm] is formulated as:

min
xi , j ,n (κ), τi ,n (κ), ei ,n (κ), ci ,n (κ)

JMILP(κ)

subject to ΦMILP(xi , j ,n(κ), τi ,n(κ), ei ,n(κ), ci ,n(κ)) = 0

ΨMILP(xi , j ,n (κ), τi ,n(κ), ei ,n(κ), ci ,n (κ))É 0 (5.40)

where ΦMILP(·) captures all the equality constraints (5.18), (5.20)-(5.23), (5.27)-(5.30), and
(5.36), and ΨMILP(·) captures all the inequality constraints (5.17), (5.19), (5.24), (5.33)-(5.35),
(5.38), and (5.39).

This is a standard mixed-integer linear programming program. It can be solved using
cutting plane methods [81], or branch and bound methods [89].

5.3 Setting II: Markov decision processes

5.3.1 Problem definition

Since each UAV only has a limited local field of view around itself, the traffic network is ac-
cordingly decomposed into small cells, as shown in Figure 5.3(a). If a cell covers no freeway
link, that cell is called an empty cell. The task of the UAVs is to consecutively move and mon-
itor each non-empty cell. The location of each cell is characterized by its center, denoted
by yi , with i ∈ {1,2, . . . , Nc}, with Nc the total number of non-empty cells. In this chapter, a
regular hexagon is chosen as the shape of the cell. The advantage of using this hexagonal
decomposition is that the distance between the centers of any two adjacent cells is identical.
If each UAV is considered as a point mass moving from the center of one cell to the center
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of another at each time step, only the heading of the UAVs is controlled, while the speed is
considered as a constant vhigh. The size of the hexagonal cell depends on the size of the local
view of the UAVs. We assume that a UAV has a circular local view with a radius R around its
position. Then, the distance between the center and any vertex of the hexagon is equal to R ,
as shown in Figure 5.3(b). Therefore, the length of each time step is4 T = L/vhigh, with L is
the distance between the centers of two adjacent cells: L =

p
3R .

The objective of an MDP problem is to maximize the return, i.e. the cumulative aggre-
gation of rewards along a trajectory starting from the initial state. Therefore, the reward in
this setting should be defined w.r.t. the monitoring performance. The uncertainty about the
traffic situation in each cell keeps increasing until that cell is visited by a UAV, which means
that the monitoring performance depends on how frequently the traffic information for each
cell is updated. Therefore, the UAVs should move to the cells that have not been visited for
a long time. In this way, the current state (e.g. the positions of the UAVs) will depend on the
previous states. However, an MDP problem requires that the process possesses the Markov
property, i.e., the next state of the process and the given reward only depend on the current
state of the process and the current action of the decision maker, and they are (conditionally)
independent of all previous states and actions, which is a contradiction.

In order to guarantee the Markov property of our problem, an interest level ηi (k) at each
cell i is defined as an auxiliary state variable. If any UAV visits a cell i at time step k, the
interest level ηi (k) is immediately set to a minimum value ηmin,i so that cell i will temporarily
not be visited by other UAVs; otherwise, ηi (k) will keep increasing at each time step k. The
higher ηi (k) is, the more likely a UAV will visit cell i . The advantage of introducing the interest
level is threefold:

1. As a state variable, the interest level in the current step only depends on the one in the
previous step, just as the other state variable, i.e., the current position of each UAV, so
that the Markov property of the problem is guaranteed;

2. The interest level can be directly considered as the reward to be granted to a UAV, if it
visits the corresponding cell;

3. The interest level is used as a indirect medium of communications that allows UAVs to
coordinate their actions.

Remark: In fact, the interest level and the attraction level defined in setting I are both a
measure of need to visit a cell/link.

All symbols used in this section are listed in Table 5.2.

5.3.2 Mathematical formulation

UAV state transition function

Let pn(k) ∈ R2 denote the position of the nth UAV at time step k, for k = 0,1, . . . , and n =
1,2, . . . , Nu, with Nu the total number of UAVs. The state transition function for the UAV po-
sition is

pn(k +1) = pn(k)+L

[
cosθn(k)
sinθn(k)

]

, (5.41)

4In general, the value of T is much smaller than the value of the length of the monitoring period Tm in
Setting I.
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Table 5.2: Symbols used for Setting II

symbol meaning

pn(k) position of UAV n at time step k

θn(k) controllable heading of UAV n at time step k

ηi (k) interest level of cell i at time step k

ηmin,i minimum interest level of cell i

Nu number of UAVs
Nc number of non-empty cells
Ni number of interest levels after discretization
T length of time step
R radius of cell

with pn(k) ∈ {yi |i = 1,2, . . . , Nc}, and θn(k) ∈Θ= {π6 , π2 , 5π
6 , 7π

6 , 3π
2 , 11π

6 } the controllable heading
of UAV n at time step k.

Moreover, the interest level ηi (k) at each cell i is a state variable as well. An advanced way
to calculate the interest level is to take the traffic dynamics into account, e.g., if traffic flows
in a cell become more dense, that cell should get a higher interest level. The state transition
function is thus generally formulated as:

ηi (k +1) =
{

Freset(ηmin,i , ρ̂i (k)), if pn(k) = yi

Fupdate(ηi (k), ρ̂i (k)), else
(5.42)

with ηmin,i the minimum interest level of cell i , and ρ̂i (k) the estimated traffic density in cell
i at time step k. One possible way to formulate Freset and Fupdate is similar to (5.5):

Freset(ηmin,i , ρ̂i (k)) = max



ηmin,i ,ηmin,i e

(

β′
i

(
ρ̂i (k)

γ′
i
ρcrit,i

−1

))

 (5.43)

Fupdate(ηi (k), ρ̂i (k)) = (1+α′
i ) ·max



ηi (k),ηi (k)e

(

β′
i

(
ρ̂i (k)

γ′
i
ρcrit,i

−1

))

 (5.44)

with ρcrit,i the critical density of cell i , α′
i
,β′

i
> 0 constants reflecting the importance of the

traffic dynamics in cell i , and 0 < γ′
i
É 1 a threshold parameter for the critical density.

Note that an MDP is usually described in a discrete way, so the interest levels may be
discretized into Ni levels. If so, the value ofα′

i
should be selected to be large enough such that

the discretized value of the interest level will change once ηi (k) is updated. Moreover, the
number Ni should be selected as Ni >αNc with α ≈ 1. Otherwise, the interest level on each
cell will reach its maximum so quickly that there is no incentive for UAVs to visit different
cells.
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Reward function

As explained in Section 5.3.1, the UAVs are encouraged to visit the cells with high interest
level, so the interest level is in fact the reward:

rn(k) = ηi (k), if pn(k) = yi . (5.45)

5.3.3 Solution methods

The UAV path planning problem is formulated as a standard deterministic MDP problem,
which can be solved by standard MDP solution methods, e.g., Q-iteration [9]. Generally
speaking, the goal of the Q-iteration is to find an optimal Q-function, and the optimal con-
trol policy is derived by selecting at each state an action with the largest value of the optimal
Q-function. More information about solution methods for MDP can be found in [12, 129].

The main problem when using Q-iteration for the given setting is that the Q-function is
usually represented in a tabular form with one entry for each state-action pair (x,u). There-
fore, when dealing with very large discrete or continuous state and action spaces, it is obvi-
ously impossible to store the value of the Q-function for every (x,u). Moreover, the compu-
tational cost when applied to a deterministic MDP with a finite number of states and actions
is |X ||U |(2+ |U |) per iteration [26], where X denotes the state space, U denotes the ac-
tion space, and | · | denotes the cardinality of the argument set. In the UAVs path planning
problem, the number of states is

|X | = N
Nc
i ·N

Nu
c , (5.46)

with Ni the number of interest levels after discretization, Nc the number of cells, and Nu the
number of UAVs. The number of actions is

|U | = N
Nu
a (5.47)

with Na the number of possible actions at each state. Therefore, it is not only memory in-
tensive, but also computationally expensive to directly use Q-iteration to solve the UAV path
planning problem in a large-scale network.

In order to solve this problem in practice, some alternative solution methods are intro-
duced, namely fitted Q-iteration, model predictive control, and parameterized control.

Fitted Q-iteration

One way to deal with very large discrete or with continuous state and action spaces is to ap-
proximate the Q-functions [116]. The fitted Q-iteration method [53] is an offline reinforce-
ment learning algorithm that iteratively yields an approximation of the Q-function. The ba-
sic idea of this algorithm is to compute the Q-function by regressively approximating it based
on a set T of training samples that consists of four-tuples (x,u,r, x′) with x the current state,
u the action, r the reward, and x′ the next state. The algorithm is presented in Algorithm 5.1.
It has two main steps for each training iteration t : (1) building the training set St and (2)
training the Q-function Qt . The training set St contains input-output pairs, where the input
is the state-action pair (x,u), and the output is determined by using the standard Q-iteration
rule based on the previous Q-function Qt−1. The Q-function Qt is then derived based on the
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training set St by using a regression algorithm R , which is a supervised learning method,
e.g., the extremely randomized trees approach [53], or an artificial neural network approach
[120].

Algorithm 5.1 Fitted Q-iteration algorithm

Input: set of train samples T , regression algorithm R , discount parameter γ, maximum it-
eration Tmax

1: initialize Q-function: Q0 ← 0
2: t ← 1
3: repeat

4: St ←;
5: for every (x,u,r, x′) ∈T do

6: o ← r +γmaxu′ Qt−1(x′,u′)
7: St ←St ∪ {((x,u),o)}
8: end for

9: train Q-function Qt = R(St )
10: t ← t +1
11: until t = Tmax

Output: Q-function QTmax

The reasons to choose the fitted Q-iteration are:

• The method allows to use any approximator to fit the Q-function [53];

• The control policy can be successfully learned from relatively few training samples, so
the method is data efficient.

Model predictive control

The objective of an MDP problem is in fact to solve an optimization problem that seeks to
maximize the cumulative aggregation of rewards over a given time horizon. This idea is in
the spirit of receding horizon techniques, which are associated with model predictive control
(MPC). Therefore, a model-based MDP problem can be also solved by using MPC. A detailed
explanation of MPC is out of the scope of this chapter, but interested readers are referred to
[27, 95, 118].

For the specific problem in this chapter, the MPC process is described by:

1. Prediction: The prediction is made by repeatedly applying (5.41), (5.42), and (5.45)
during the prediction period [kT, (k + Hp)T ], with Hp the prediction horizon. The
inputs for the model-based prediction are the current position pn(k) for UAV n, the
current interest level ηi (k) on cell i , and the control vector θn(k) = [θn(k|k) θn(k +
1|k) . . . θn(k+Hc−1|k)]T , where θn(·|k) denotes the control action for the correspond-
ing control step based on information available at time step k, and Hc(É Hp) denotes
the control horizon. If Hc is smaller than Hp, the control action follows the constraint
θn(k +k ′|k) = θn(k +Hc −1|k) for k ′ = Hc, Hc +1, . . . , Hp −1. Based on these inputs, the
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future evolution of the positions, interest levels and the rewards are predicted:

p̂n(k) = [p̂n(k +1|k)p̂n(k +2|k) . . . p̂n(k +Hp|k)] (5.48)

η̂i (k) = [η̂i (k +1|k)η̂i (k +2|k) . . . η̂i (k +Hp|k)] (5.49)

r̂ n(k) = [r̂n(k +1|k)r̂n(k +2|k) . . . r̂n(k +Hp|k)] (5.50)

2. Optimization: The goal is to find the optimal action vector θ∗
n(k) to maximize the total

rewards of all the UAVs during the prediction period [kT, (k + Hp)T ]. Therefore, the
objective function is formulated as:

J (k) =
k+Hp∑

k′=k+1

Nu∑

n=1
rn(k ′) . (5.51)

The following optimization problem is then solved:

max
θn (k)

JMPC(k)

subject to ΦMPC(θn(k)) = 0,

ΨMPC(θn(k)) É 0 (5.52)

where ΦMPC(·) captures all the equality constraints, and ΨMPC(·) captures all the in-
equality constraints. In general, the problem (5.52) is a real-valued nonconvex opti-
mization problem, which can be solved by e.g. multi-start sequential quadratic pro-
gramming [19], simulated annealing [83], genetic algorithms [5], ant colony optimiza-
tion [46], and so on.

3. Control action: Only the first sample θ∗n(k|k) of the optimal control action θ∗
n(k) is

applied to the process.

Then, the procedure from prediction to control action is repeated at time step k +1 with the
prediction horizon shifted one time step ahead, and so on.

Parameterized control

The parameterized control proposed in this chapter is a heuristic method, where actions
are determined at each time step by control rules that contain parameters. The goal is to
optimize the parameters in the rules such that the rewards received by UAVs during a certain
period are maximized. The advantage is that only a few parameters need to be optimized, so
the approach is computationally efficient.

Intuitively, at each time step a UAV should strive for the cell i∗ with the highest interest
level ηi∗(k) in the network in order to maximize the total reward. However, this may in fact
reduce the total reward, e.g., if the distance between cell i∗ and the current cell i is too large,
or if the difference between the interest levels on cell i∗ and cell i is too small. Therefore,
a UAV should move not only with a global objective, but also with a local objective. A local
objective for a UAV n at cell i could be characterized by a neighborhood set Ni , and a reach-
able set H i ,θ. A neighborhood set Ni includes the cells that are adjacent to cell i . Moreover,
if a UAV n moves twice5 from cell i to cell j by taking the same action θ, the neighborhood

5The size of a reachable set can be easily increased by making the UAV move three or more times.
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Figure 5.4: Illustration of neighborhood set and reachable set: i0 is the current cell, Ni0 =
{i1, i2, i3, i4, i5, i6} is the neighborhood set of i0; the reachable set H i0,π6

includes all

the green cells, and the reachable set H i0,π2
includes all the yellow cells (the over-

lapping cell of the sets H i0,π6
and H i0,π2

is indicated by both colors).

set N j of cell j plus cell j itself is called the reachable set H i ,θ (see Figure 5.4 for an exam-
ple). The purpose of defining the reachable set is to let UAVs compare more cells than their
immediate neighborhood at each step. From a local objective point-of-view, a UAV at cell i

should select the action θ ∈ Θ that results in the highest interest level in the corresponding
reachable sets H i ,θ.

Supposing that the current position pn(k) of UAV n is pn(k) = yi , some global and local
rules are proposed as follows (many other variations are possible):

• Global rule: with a probability P (k) = δP · L
‖pn (k)−yi∗‖

· ηi∗ (k)−ηi (k)
ηi∗ (k) , the next position is

pn(k +1) = y j , for j = argminj ′∈Ni
‖h(−−−→yi y j ′)−h(−−−→yi yi∗)‖;

• Local rules: with a probability 1−P (k),

1. If
η j (k)

∑

j ′∈Ni

η j ′ (k) Ê δ1, for j ∈Ni , the next position is pn(k +1) = y j

2. Else if

∑

j∈Hi ,θ

(η j (k))δ3

∑

θ′∈Θ

∑

j ′∈H i ,θ′
(η j ′ (k))δ3

Ê δ2, for θ ∈ Θ, the next position is pn(k + 1) = fp(yi ,θ),

with fp given by (5.41);

3. Else, the next position is pn(k +1) = y j , for j = argmax j ′∈Ni
η j ′(k);

with −−→
yi y j the vector from the point yi to the point y j , the operator h(·) the heading of a

vector, and δP , δ1, δ2 > 0, and δ3 > 1 the parameters to be optimized.
The parameters δP and δ1, δ2, δ3 can be optimized online and offline. The online opti-

mization can be the same as the aforementioned MPC method, through parameterization of
the MPC inputs, while the offline optimization could consider a set of representative scenar-
ios with different traffic densities of the freeway network, and the different configurations of
the UAVs.

5.4 Case study

In this section, we provide a simulation example of the proposed UAV path planning strate-
gies. The case study involves a part of the Singapore expressway network, as shown in Fig-
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Figure 5.5: Central and eastern part of the Singapore Expressway Network.
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Figure 5.6: Traffic inflow of the origins during 7.30 am to 9.00 am for the case study.

ure 5.5. This area contains 8 origins, 8 destinations, and 18 highway roads, which are mod-
eled as 36 one-way physical links in this case study. We use a dynamic traffic model to repre-
sent the Singapore expressway network. In particular, in order to obtain fast computations,
the METANET model [98] is chosen as the simulation model. We set up a rush hour traffic
scenario for this simulated freeway network, and let the UAVs monitor it. Then, the perfor-
mance of the UAVs is evaluated for the two monitoring settings.

5.4.1 Simulation setting

Traffic scenario

For the case study, we consider the traffic conditions during a rush hour period between 7.30
am and 9.00 am, with the traffic inflow of each origin during this period shown in Figure 5.6.
Moreover, in order to evaluate the monitoring performance of the UAVs in severe traffic situ-
ations, traffic congestion is created at the destinations d5 and d6 between 7.30 am to 8.00 am,
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and at the destinations d7 and d8 between 7.30 am to 8.00 am respectively, by adding a large
downstream density in the network with a value of 50 veh/km/lane as boundary conditions.

Parameters of the traffic simulation model

The METANET model (see Appendix B) is used to simulate the traffic flow evolution in this
case study. The model parameters are set as [85]: length of each simulation step T = 10
s, length of each segment Lm = 500 m, free flow speed vfree,m = 90 km/h, critical density
ρcrit,m = 27 veh/km/lane, maximum density ρmax,m = 110 veh/km/lane, link capacity Cm =
1500 veh/h/lane, and model parameters η= 60 km2/h, κ= 40 veh/km/lane, and τ= 18 s.

UAV settings

Each UAV is modeled as a moving mass point in this case study, which means that we only
consider its speed and energy consumption. We set the low speed6 at vlow = 100 km/h, and
the high speed at vhigh = 300 km/h. The energy-speed function fe in (5.9) is modeled by a
second-order polynomial:

fe(v)= av 2 +bv +c , (5.53)

with a = 0.5 ·10−3, b = 2 ·10−3, and c = 10−3.

Monitoring Setting I

Three UAVs are used to monitor the network in Setting I, and the length of each monitoring
period is Tm = 0.5 h. The UAVs are put at three different depots at the beginning of the
simulation. UAV 1 is put at depot 1, which is connected to origin o1, UAV 2 is put at depot 2,
which is connected to origin o3, and UAV 3 is put at depot 3, which is connected to origin o4.

For the first monitoring period, we select the links in the central business area (links 1,
2, 3, 4, 9, 10, 11, 12, 17, 18, 23, 24, 25, and 26), and the links that enter this area (links 5, 13,
21, 28, 31, 33, and 35) as the links that must be monitored, and these links are mapped into
Vmoni,high. The remaining links are mapped into Vmoni,mod. The initial value of the attraction
level for links in Vmoni,high is set equal toΦhigh = 0.5, and the initial value of the attraction level
for links in Vmoni,mod is set equal to Φlow = 0.25 (see Figure 5.7(a)). For the rate of increase of
the attraction level, the parameter αi in (5.5) for the links in the central business area is set
equal to 2, and for the remaining links it is set equal to 1. The parameter βi is set equal to 2,
and the parameter γi is set equal to 0.95.

For the objective function (5.8), the weighting parameters are: λ1 = 0.001, λ2 = 0.7, λ3 =
0.1, λ4 = 0.2, and λ5 = 0.01.

The MILP problem was solved via the Tomlab toolbox for Matlab using CPLEX.

Monitoring Setting II

In this setting, the number of the UAVs, the location of each depot, and the length of the
monitoring period are chosen the same as the ones in Setting I. In Setting II, the UAVs only
fly with a constant speed vhigh = 300 km/h from one cell to another, and pause at the center
of each cell to monitor. The radius of each hexagonal cell is R = 500 m.

6Usually, the speed of civilian UAVs is between 30 km/h and 400 km/h, and the speed of military UAVs is
between 200 km/h and 800 km/h.
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Since the METANET model divides a link into multiple segments, the traffic density ρi (k)
of each non-empty cell i equals the average traffic density of the segments that are covered
by cell i . If a segment is partially covered by a cell, we only consider the traffic situation on
the covered part. We define a parameter 0 < pi ,m, j É 1 to indicate the percentage of the part
that segment j of link m is covered by cell i . In this way, the traffic density ρi (k) is calculated
as:

ρi (k) =

∑

(m, j )∈Si

pi ,m, jλmρm, j (k)Lm

∑

(m, j )∈Si

pi ,m, jλmLm
, (5.54)

with ρm, j (k) the traffic density of segment j in link m at time step k, Si the set of pairs of
indices (m, j ) of the links and segments that are covered by cell i , Lm the length of segments
in link m, and λm the number of lanes of link m.

The minimum interest level ηmin,i in (5.43) is set equal to 0, the parameters α′
i
, β′

i
, and

γ′
i

in (5.44) are set equal to 1, 1.5, and 1 respectively. The number of the discretized interest
levels is Ni = 50.

For the solution methods, the regression algorithm used in the fitted Q-iteration is the
regression tree package created by [64], and the optimization algorithm used in MPC and
the parameterized control is the genetic algorithm implemented via the ga function of the
Matlab Global Optimization Toolbox.

5.4.2 Simulation results

Setting I

In order to reduce the computation cost of the optimization problem, the number of the op-
timization variables can be decreased by merging some links if these links are concatenated.
For the Singapore expressway network, we merge links 1 and 3, links 2 and 4, links 9 and 11,
links 10 and 12, links 23 and 25, and links 24 and 26 respectively. In this way, the number of
the physical links for the case study is decreased to 30.

The results of the attraction levels on each link at the beginning of each monitoring pe-
riod are shown in Figure 5.7. If the value of the attraction level is above Φhigh (indicated by
the red dashed line), the corresponding link must be monitored in the upcoming period; if
the value of the attraction level is between Φhigh and Φlow (indicated by the green solid line),
the corresponding link may be monitored in the upcoming period; else, the corresponding
link may only be used by UAVs for traversing in the upcoming period.

The results of the proposed path planning algorithm for UAVs are shown in Figure 5.8.
Each subfigure shows the trajectories of the UAVs when monitoring the network, and each
table shows the order of the links that are visited by the UAVs. We consider the case that the
UAVs can return to any depot when finishing the surveillance; so, at the beginning of a new
monitoring period, each UAV starts from the depot at which it ended in the previous period.

Setting II

The network is decomposed into multiple hexagonal cells as shown in Figure 5.9. The dark
cells indicate the empty cells that do not cover any freeway link, so only the white cells are
required to be monitored.
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(a) Attraction levels at 7.30 am

0

0.5

1

1.5

1&
3

2&
4 5 6 7 8

9&
11

10
&

12 13 14 15 16 17 18 19 20 21 22

23
&

25

24
&

26 27 28 29 30 31 32 33 34 35 36

Link index

A
ttr

ac
tio

n 
le

ve
l

(b) Attraction levels at 8.00 am
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(c) Attraction levels at 8.30 am

Figure 5.7: Simulation result: attraction levels at the beginning of different monitoring peri-

ods. The red dashed line indicates the threshold Φhigh, and the green solid line

indicates the threshold Φlow.
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(a) Simulation results: path planning for UAVs between 7.30 am and 8.00 am
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Figure 5.8: Simulation results of setting 1 by using MILP.
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Figure 5.9: Hexagonal decomposition of the Singapore expressway network.

For the sake of compactness, we only show the results of the first monitoring period; the
results of the other periods are similar. The trajectories of the UAVs obtained using the three
different approaches are presented in Figures 5.10 – 5.12, and the computation time and
the monitoring performance are listed in Table 5.3. Comparing the computation time, fitted
Q-iteration is the fastest approach, because the Q-function was yielded by offline training
before simulation; on the other hand, MPC is much slower than the other two approaches,
because the prediction of the future states and the future control actions of the UAVs result in
extra computation time. Comparing the monitoring performance, we introduce two criteria
for evaluation. The first criterion is the covering percentage, which is computed by dividing
the number of cells covered by the UAVs during the monitoring period by the total number of
non-empty cells. As shown in Table 5.3, fitted Q-iteration results in the best covering perfor-
mance, a full coverage, while the other two approaches only have a coverage rate of 98.35%.
The second criterion is the monitoring quality, i.e., the degree to which the traffic situations
are monitored by each UAV. Note that this quality is not the same as the reward received by
each UAV. The reason is that the reward computed by (5.42)-(5.45) is also related to when the
cell is monitored, and the importance of the cell. In order to only compare the traffic situ-
ations monitored, we define the monitoring quality as follows: at every step k, if the traffic
density ρ̂i (k) of cell i monitored by UAV n is below the critical density ρcrit,i , the quality is 1;
otherwise, the quality is computed by:

µn(k) = max

(

1,
ρ̂i (k)

ρcrit,i

)

, if pn(k) = yi . (5.55)

Comparing the three different approaches, the performance obtained by using MPC is a lit-
tle better, because the sum of the monitoring qualities is higher than the ones of the other
two approaches. Moreover, by using MPC, the monitoring quality of each UAV is almost the
same, while for the other two approaches, UAV 1 is better than UAV 2 and UAV 3. To sum-
marize, for the given case study, the fitted Q-iteration approach has a better coverage perfor-
mance, but MPC performs better on the monitoring quality, but in general, the performance
results of these three approaches are similar with each other.
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Figure 5.10: The trajectories of the UAVs yielded by the fitted Q-iteration in the first monitoring

period.
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Figure 5.11: The trajectories of the UAVs yielded by the MPC in the first monitoring period.
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Figure 5.12: The trajectories of the UAVs yielded by the parameterized control in the first mon-

itoring period.

Table 5.3: Monitoring performance of using three different approaches in the first monitoring

period

Solution methods Computation time [s]
Covering Average monitoring quality

percentage UAV 1 UAV 2 UAV 3

Fitted Q-iteration 1736.3 100% 1.25 1.12 1.07
MPC 8246.3 98.35% 1.15 1.18 1.16
Parameterized control 2062.7 98.35% 1.26 1.03 1.10
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Note that we do not consider that UAVs must return to a depot before the end of the
monitoring period as in Setting I, but just let the UAVs stop at the end of each monitoring
period, and afterwards they directly fly back to their own depot for recharging or refuel. In
order to prevent that UAVs are too far away from the depots at the end of the monitoring
period, one can add an endpoint penalty to the reward, based on the distances between the
depots and the location of each UAV when finishing the surveillance. The longer the distance
is, the higher the penalty is.

5.5 Conclusions

This chapter has addressed the path planning problem of unmanned aerial vehicles (UAVs)
for monitoring freeway networks. We have considered two distinct monitoring settings: in
the first setting, the UAVs have two flying modes — monitoring and traversing, while in the
second setting, the UAVs only have one flying mode, so they can only monitor when hover-
ing in the air. For the first setting, the monitoring problem has been formulated as a period-
ical multiple rural postman problem, and solved using Mixed-Integer Linear Programming
(MILP). For the second setting, the problem has been stated as a Markov Decision Process
(MDP), and three solution methods, namely the fitted Q-iteration, the Model Predictive Con-
trol, and the parameterized control, have been proposed. A case study involving a part of the
Singapore expressway network has shown that our proposed algorithms can find near full
coverage paths for the network monitoring problem. A common idea used in both settings
is to introduce an auxiliary variable to indicate the need of a link/cell to be monitored, called
the attraction level and the interest level respectively, and they both work as a medium on
each link/cell providing dynamic traffic information for UAVs.





Chapter 6

Conclusions and Future Research

This thesis has presented several approaches for traffic management and control in freeway
networks, with the goal of improving the network performance, as well as decreasing the
computational burden. In this chapter, the contributions of the thesis are summarized in
Section 6.1, the main conclusions are given in Section 6.2, and some open issues that can be
investigated in the future are highlighted in Section 6.3.

6.1 Contributions

The main contributions of this thesis are summarized as follows:

• We have developed an ant-based algorithm to solve the dynamic traffic routing prob-
lem in freeway networks, including two main concepts: stench pheromone, which is
used to expel ants from crowded arcs, and colored ants, which are used for a network
with multiple destinations. Moreover, we have also proposed how to use artificial ants
to calculate the dynamic link cost when traffic conditions are changing on that link.

• We have defined a unified problem formulation for co-design of network topology and
traffic control measures in a model-based optimization framework, where the network
topology design and the traffic control measures are jointly optimized.

• We have considered the monitoring problem for Unmanned Aerial Vehicles (UAVs)
in two different settings: the first setting is formulated as a periodical multiple rural
postman problem, and the second setting is formulated as a Markov Decision Process
(MDP). We have introduced an attraction/interested level in both settings to indicate
the importance of each link in the network.

6.2 Conclusions

For a traffic control approach, improving the network performance and reducing the com-
putational complexity are in general two conflicting objectives: a better performance usually
comes at the cost of a higher computational burden. The complexity of a traffic control ap-
proach could increase exponentially with the number of nodes and links in the network.
Therefore, when dealing with a large-scale network, it is possible that the problem cannot
be solved in practice due to the limitations of the computational capabilities of the available
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hardware, although theoretically the control approaches might be able to find the optimal
solutions, such as the fully-dynamic approach for the Ant Colony Routing (ACR) algorithm
proposed in Chapter 3, or the standard Markov Decision Process (MDP) solution methods
for the UAV path planning problem proposed in Chapter 5. Therefore, a general conclusion
of this thesis is that for an appropriate traffic control approach, a well-balanced trade-off
between the network performance and the computational efficiency is more important than
only considering the performance or the computational efficiency independently.

A few guidelines for choosing an appropriate traffic control approach w.r.t. achieving a
well-balanced trade-off between the performance and the computational efficiency are pro-
vided next:

• Reducing the size of the network:
In order to reduce the computational burden of a control approach, the most straight-
forward way is to apply that approach to a reduced network. For a large-scale network,
it is possible that some of the links are used by less drivers, so compared to the other
links, these links should not necessarily be controlled. In this way, we can temporarily
remove them from the network, and only apply the control approach for the remaining
part. Note that this method can be applied multiple times for the same network, e.g.,
for each origin-destination pair, or at each control step.

This thesis gives some examples that show how to appropriately reduce the size of the
network. In Chapter 3, we use a linear programming method to find the links with the
highest flows to determine the pruned network; in Chapter 5, we define an auxiliary
variable called attraction level, based on the traffic density of each link, to determine
whether the corresponding link is chosen to be monitored in the next period. Gener-
ally speaking, the goal is to remove the less important links, and the importance of each
link is usually associated with the traffic conditions on that link, or it can be manually
defined by the traffic authorities.

• Solving the problem in a hierarchical way:
When dealing with a multi-objective problem, one can divide it into multiple levels,
and then solve them in a hierarchical way, which means that the different levels of the
problem are solved step by step.

Chapter 4 divides the co-design problem for a traffic network into two levels: topology
design and control measures design, and compares four different solution frameworks.
In the case study considered in this thesis, the separate optimization framework yields
the worst result, with the total cost being about 28% higher than the other three frame-
works. This is because the separate optimization framework solves the two levels of the
problem independently, not considering any relationship between them. The other
three frameworks yield results that are similar to each other. The iterative solution
framework solves the two levels in an alternating way; the bi-level optimization frame-
work embeds a lower level into an upper level optimization problem, and focuses on
solving the upper level of the problem; the joint optimization framework solves the two
levels as a whole, which can be considered as a special case of the hierarchical solution
framework. Although in the case study the results of these three solution frameworks
are similar, it should be emphasized that the iterative solution framework may never
converge to the optimal solution itself. Therefore, solving a problem in a hierarchical
way is indeed helpful for improving the network performance and the computational
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efficiency, but there is no general rule of which framework is the best. One should
choose the most appropriate framework on a case-by-case basis.

• Reducing the number of control/optimization variables:
In traffic control, a control signal is applied to the network at every control step. The
computational burden of a control approach can be decreased by reducing the num-
ber of the control variables. One way to do that is to make the control step interval
longer so that there are fewer control steps during the entire control period. More-
over, by using model predictive control, one can manipulate the trade-off between the
performance and the computation time by changing the length of the prediction hori-
zon or the control horizon. However, if the entire control period is too long, these
methods may still have a high computational burden. Therefore, this thesis considers
another method — parameterized control, which optimizes the parameters of the con-
trol laws instead of the control signals themselves. Usually, the parameters are time-
independent, so their number is much less than the number of the control signals.
Hence, the computation time is reduced.

In Chapter 2, we aim at finding the optimal parameters of the stench pheromone func-
tion for the ACO-SP algorithm. In the case study, ACO-SP is four times faster than the
optimal control method, while obtaining almost the same total travel time as the lat-
ter one. In Chapter 4, we use parameterized control to bring the network topology
design and the control measures design to the same time scale. In this way, the opti-
mization variables only involve the parameters of the control measures, instead of the
time-varying control signals.

6.3 Recommendations for Future Research

In this section, we give some recommendations for possible future research directions:

• Alternatives for ACO-SP:
In order to disperse ants in an ant graph, one can consider how to construct better
stench pheromone functions in ACO-SP, or even develop a totally different mecha-
nism. For example, instead of using the stench pheromone, one can let the phero-
mone evaporation rate depend on the number of ants on each arc. If too many ants
choose the same arc, the pheromone on that arc will then evaporate faster, resulting
in a decline of the pheromone level, such that the probability that subsequent ants
will choose that arc decreases accordingly, and vice versa. Alternatively, one can just
adopt the collision mechanism that Lasius niger ants use to distribute themselves [49].
When an ant is going to choose an arc, it may collide with another ant; if a collision
occurs, that ant is immediately pushed to another arc. The probability that a collision
will happen is based on the number of ants on the arc that the ant is going to choose.
The more ants are on that arc, the more possible it is that a collision will occur. Hence,
the ants will be distributed over the ant graph.

• Further extension of the co-design method:
When using the co-design method, one may only take a limited number of control
measures into account during the design phase. However, it is possible that new con-
trol measures will be added in the network in the future. In this case, the robustness of
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the co-design method should be taken into account, preventing the newly added con-
trol measures from having a negative impact on the network performance. Moreover,
the proposed co-design method could be difficult to apply in case of a control measure
that is hard to parameterize, or that has too many parameters. Therefore, one can also
consider co-design methods using non-parameterized control, while the time scales
of the network topology and control measures can still stay at the same level.

• Implementations of UAVs path planning:
It is still an open question what is the better way to implement path planning for UAVs
in real life. Currently, the use in practice of UAVs for traffic monitoring mainly focuses
on the surveillance performance, not on path planning. Usually, the UAVs are manu-
ally assigned to fly over a pre-defined area, such as a straight line, or a circle. However,
for improving performance, one can consider to let UAVs make their own choice of the
roads or the areas to be monitored. For example, UAVs can decide based on both the
short-term information, e.g., the traffic conditions just collected, and the long-term
information, e.g., the historical data of the traffic network. Moreover, if multiple UAVs
are simultaneously used, they might be able to share their own information with each
other, and cooperate.

• Driverless cars using ACO:
A future application for ACO in traffic control could be path planning for driverless
cars, e.g., the Google car [65]. Compared to human-driven cars, driverless cars could
be much more predictable and obedient, which makes them act more like ants. When
traveling on the roads, each car might deposit a pheromone, which contains informa-
tion such as travel time, travel speed, weather, and so on. Such a pheromone could be
stored in some roadside facilities, and it could evaporate as time elapses. The roadside
facilities are able to communicate with each other locally to share pheromone, such
that information on any road can be sent upstream to the bifurcation points, where
subsequent cars will make their own choice based on the pheromone level on each
alternative road, just like the behavior of ants in the ACO algorithm. In this way, no
central management system is needed. The driverless cars are more than just vehicles,
but they also play roles of distributed sensors. The challenges in such an application
are tremendous. For instance, it requires a robust and adaptive online extension of
the proposed ACR algorithm, and fast communication and computation abilities for
driverless cars. Some other problems could be how to guide the ACR cars in mixed
networks where some links can collect, store and propagate pheromone, and others
cannot, how to collect pheromones from regular cars that cannot deposit pheromone
by themselves, and so on.



Appendix A

Convergence Proof of ACO-SP in a Two-Arc

Graph

The research presented in this appendix is the first step towards a convergence proof of the
Ant Colony Optimization with Stench Pheromone (ACO-SP) algorithm introduced in Sec-
tion 2. It analytically proves the convergence property of ACO-SP in a graph with two arcs.
This appendix is based on [36].

The convergence analysis of ACO algorithms has been introduced in [66, 67, 127]. Gutjahr
[66, 67] presented a convergence proof for an ACO algorithm called graph-based ant system.
The proof shows that the algorithm can generate an optimal solution at least once during the
optimization. Stützle and Dorigo [127] prove that the ACOgb,τmin algorithm, which employs
the global-best update rule, asymptotically converges to the optimal solution. However, be-
cause of the complexity and the diversity of ACO algorithms, there is no a general method to
prove convergence for the entire class of ACO algorithms.

This appendix is structured as follows. Section A.1 states the convergence problem, as
well as the assumptions for the proof. In particular, we introduce an auxiliary function that
is used for the convergence proof. Next, the convergence of the auxiliary function is proved
in Section A.2. Consequently, the convergence of the pheromone levels of ACO-SP in a two-
arc graph is proved in Section A.3.

f1

f2

Figure A.1: A simple graph with two arcs.
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A.1 Problem Statement

A.1.1 Notations and formulations

Definition A.1 The ACO-SP algorithm is said to converge, if the pheromone levels on all arcs

converge as the iteration step t →∞.

As the first step, this appendix investigates a simple graph with two arcs as shown in Fig-
ure A.1. Without loss of generality, it is assumed that arc 1 is a better solution than arc 2, so
the value of the fitness function f1 of arc 1 is larger than the value of the fitness function f2

of arc 2:

Assumption A.1 f1 > f2.

Before proceeding with the convergence proof, some important notations are first intro-
duced. The pheromone levels in iteration t on arc 1 and 2 are denoted by τ1(t ) and τ2(t ),
respectively. According to (2.12) and (2.14), the pheromone update equation is adapted as:

τ1(t +1) =(1−ρevap)τ1(t )+n1(t ) · f1 −max(0,P (n1(t )−N1))

τ2(t +1) =(1−ρevap)τ2(t )+n2(t ) · f2 −max(0,P (n2(t )−N2)) (A.1)

with n1(t ) and n2(t ) the numbers of ants that chose arc 1 and arc 2 in iteration t , and N1

and N2 the threshold numbers, respectively. Since there are only two arcs in the graph, it
always holds that n1(t )+n2(t ) = Nants,total, t = 1,2, . . . According to the attraction mechanism
of the ACO algorithm, the arc on which more pheromone has been accumulated has a higher
probability to be chosen by ants. The probabilities p1(t ) and p2(t ) for selecting respectively
arc 1 and arc 2 are computed based on (2.15):

p1(t ) =
max(τmin,τ1(t ))

max(τmin,τ1(t ))+max(τmin,τ2(t ))

p2(t ) =
max(τmin,τ2(t ))

max(τmin,τ1(t ))+max(τmin,τ2(t ))
(A.2)

For illustration purposes, the value of α is set as α= 1, but the proof is similar for αÊ 1. For
the parameters of the ACO-SP algorithm, the following assumptions are made:
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Assumption A.2

1. P É min

(
Nants,total · f1 −ρevapτmin

Nants,total−N1
,

Nants,total · f2 −ρevapτmin

Nants,total−N2

)

2. τmin É f2
ρevap

and τmin É τ0

3. Nants,total is sufficiently large such that n1(t ),n2(t ) Ê 1, ∀t

4. Nants,total 6= N1 and Nants,total 6= N2

Lemma A.1 If Assumptions A.2.1 to A.2.3 are satisfied, it holds that τ1(t ),τ2(t ) Ê τmin,∀t .

Proof : For t = 0, τ1(t ) = τ2(t ) = τ0 Ê τmin according to Assumption A.2.2. For t = 1,2, . . . the
proof will be done by introducing 3 cases:

Case A. If there is no stench pheromone, the pheromone update equations are given by:

τ1(t +1) = (1−ρevap)τ1(t )+n1(t ) · f1

τ2(t +1) = (1−ρevap)τ2(t )+n2(t ) · f2 (A.3)

To prove that τ1(t +1),τ2(t +1) Ê τmin when τ1(t ),τ2(t ) Ê τmin, it should hold that

(1−ρevap)τ1(t )+n1(t ) · f1 Ê τmin

(1−ρevap)τ2(t )+n2(t ) · f2 Ê τmin (A.4)

According to Assumption A.2.3, n1(t ) Ê 1 and n2(t ) Ê 1. Therefore, a sufficient condition for
(A.4) to hold is

(1−ρevap)τmin + f1 Ê τmin

(1−ρevap)τmin + f2 Ê τmin (A.5)

To satisfy the inequalities above, it is required that τmin É f1
ρevap

and τmin É f2
ρevap

. Because of

Assumption A.1, we only need τmin É f2
ρevap

(Assumption A.2.2) as the sufficient condition.

Case B. If the stench pheromone is deposited on arc 1, i.e., n1(t ) > N1, then according to
(2.12) and (2.14), the pheromone update equation is given by:

τ1(t +1) = (1−ρevap)τ1(t )+n1(t ) · f1 −P (n1(t )−N1) (A.6)

To prove that τ1(t +1) Ê τmin, when τ1(t ) Ê τmin, it should hold that

(1−ρevap)τ1(t )+n1(t ) · f1 −P (n1(t )−N1) Ê τmin (A.7)

This inequality holds if

P É
(1−ρevap)τ1(t )−τmin +n1(t ) · f1

n1(t )−N1

É
(1−ρevap)τ1(t )−τmin

n1(t )−N1
+

n1(t ) · f1

n1(t )−N1
(A.8)
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Given a rational function defined by y(x) =
ax

x −b
, with x > b and a,b > 0, it is easy to verify

that y(·) is a monotonically decreasing function. Since τ1(t ) Ê τmin and n1(t ) É Nants,total, a
sufficient condition for (A.8) to hold is

P É
(1−ρevap)τmin −τmin

Nants,total−N1
+

Nants,total · f1

Nants,total−N1

É
Nants,total · f1 −ρevapτmin

Nants,total−N1
(A.9)

Case C. Similarly, if stench pheromone is deposited on arc 2, a sufficient condition for
τ2(t ) Ê τmin is that

P É
Nants,total · f2 −ρevapτmin

Nants,total−N2
(A.10)

This holds by Assumption 2.1. ✷

With Lemma A.1, (A.2) can be further simplified as:

p1(t ) =
τ1(t )

τ1(t )+τ2(t )
and p2(t ) =

τ2(t )

τ1(t )+τ2(t )
(A.11)

The expected values of the numbers of ants that will select arc 1 and arc 2 in iteration t can
be computed based on (A.11):

n1(t ) = p1(t ) ·Nants,total =
τ1(t )

τ1(t )+τ2(t )
·Nants,total

n2(t ) = p2(t ) ·Nants,total =
τ2(t )

τ1(t )+τ2(t )
·Nants,total (A.12)

A.1.2 Cases and Modes

According to the relationship between the total number Nants,total of ants and the threshold
numbers of ants on arcs 1 and 2, N1 and N2, there are four different cases:

• Case 1: Nants,total < min(N1, N2);

• Case 2: N1 < Nants,total < N2;

• Case 3: N2 < Nants,total < N1;

• Case 4: Nants,total > max(N1, N2);

where Nants,total neither equals to N1 nor N2 due to Assumption 2.4. In each case, the pro-
cess of updating pheromone is divided into four different modes, based on whether stench
pheromone is deposited or not on the arcs:

• M1: No stench pheromone is deposited;

• M2: Stench pheromone is only deposited on arc 1;

• M3: Stench pheromone is only deposited on arc 2;
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Case 1: Nants,total < min(N1, N2) Case 2: N1 < Nants,total < N2

M1 : F (t ) > 0 M1 : 0 < F (t ) É Fb,1

M2 : NR M2 : F (t ) > Fb,1

M3 : NR M3 : NR
M4 : NR M4 : NR

Case 3: N2 < Nants,total < N1 Case 4: Nants,total > max(N1, N2)
M1 : F (t ) Ê Fb,2 M1 : Fb,2 É F (t ) É Fb,1

M2 : NR M2 : F (t ) > max(Fb,1,Fb,2)
M3 : 0 < F (t ) < Fb,2 M3 : 0 < F (t ) < min(Fb,1,Fb,2)
M4 : NR M4 : Fb,1 < F (t ) < Fb,2

Table A.1: Defining four modes using F (t ). NR indicates “not reachable”

• M4: Stench pheromone is deposited on both arcs.

The four modes M1 to M4 can be redefined by introducing an auxiliary function F (t ) =
τ1(t )/τ2(t ). Since both τ1(t ) and τ2(t ) are positive, F (t ) > 0 for all t . Taking M1 as an exam-
ple, if there is no stench pheromone deposited on either of the arcs, the numbers n1(t ) and
n2(t ) are not larger than the corresponding threshold number on each arc, i.e., n1(t ) É N1

and n2(t ) É N2. By using (A.12), we have:

τ1(t )

τ1(t )+τ2(t )
Nants,total =

F (t )

F (t )+1
Nants,total É N1,

τ2(t )

τ1(t )+τ2(t )
Nants,total =

1

F (t )+1
Nants,total É N2. (A.13)

Simplifying (A.13), it obtains:

F (t ) Ê
N1

Nants,total−N1
and F (t ) Ê

Nants,total−N2

N2
(A.14)

For the sake of compactness, let Fb,1 = N1
Nants,total−N1

and Fb,2 =
Nants,total−N2

N2
. Since in Case 1 both

Fb,1 and Fb,2 are negative, and F (t ) > 0 always holds by definition. Therefore, in Case 1, only
M1 is possible, and the other modes cannot occur. Using a similar reasoning, each of the 4
cases can be summarized in Table A.1.

The processes of updating pheromone for Cases 1−4 is illustrated in Figure A.2. In par-
ticular, Case 4 has three sub-cases:

• Subcase 4.a: Nants,total É N1 +N2

• Subcase 4.b: Nants,total > N1 +N2 and P É
( f1 − f2)(Nants,total−N2)

Nants,total−N1 −N2

• Subcase 4.c : Nants,total > N1 +N2 and P >
( f1 − f2)(Nants,total−N2)

Nants,total−N1 −N2

This will be explained in more detail in Section A.3.
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M1 M2 M3 M4

(a) Mode transitions in Case 1

M1 M2 M3 M4

(b) Mode transitions in Case 2

M1 M2 M3 M4

(c) Mode transitions in Case 3

M1 M2 M3 M4

(d) Mode transitions of Subcase 4.a

M1 M2 M3 M4

(e) Mode transitions of Subcase 4.b

M1 M2 M3 M4

(f) Mode transitions of Subcase 4.c

Figure A.2: Mode transitions in four different cases. The transitions indicated by a dashed line

can occur only once.
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A.2 Convergence Properties of F

In this section, the properties of F are investigated. As given in Section A.1.2, Fb,1 and Fb,2

represent the mode boundaries of F . If the value of F becomes larger or smaller than Fb,1 or
Fb,2, then a transition will occur from one mode to another.

Lemma A.2 In M1 and M3, F is a monotonically increasing function.

Proof : In M1, the pheromone update equations are formulated as:

τ1(t +1) = (1−ρevap)τ1(t )+N1(t ) f1

= (1−ρevap)τ1(t )+
τ1(t )

τ1(t )+τ2(t )
Nants,total f1

τ2(t +1) = (1−ρevap)τ2(t )+n2(t ) f2

= (1−ρevap)τ2(t )+
τ2(t )

τ1(t )+τ2(t )
Nants,total f2

The value F (t +1) can thus be written as:

F (t +1) =
τ1(t +1)

τ2(t +1)
=

(1−ρevap)τ1(t )+
τ1(t )

τ1(t )+τ2(t )
Nants,total f1

(1−ρevap)τ2(t )+
τ2(t )

τ1(t )+τ2(t )
Nants,total f2

=
(1−ρevap)τ2(t )F (t )+

τ2(t )F (t )

τ2(t )F (t )+τ2(t )
Nants,total f1

(1−ρevap)τ2(t )+
τ2(t )

τ2(t )F (t )+τ2(t )
Nants,total f2

= F (t )
(1−ρevap)τ2(t )+

1

F (t )+1
Nants,total f1

(1−ρevap)τ2(t )+
1

F (t )+1
Nants,total f2

Because of Assumption A.1, i.e., f1 > f2, we can conclude that F (t +1) > F (t ), which means
that F (·) is a strictly monotonically increasing function in M1.

In M3, the pheromone update equations are formulated as:

τ1(t +1)= (1−ρevap)τ1(t )+n1(t ) f1

= (1−ρevap)τ1(t )+
τ1(t )

τ1(t )+τ2(t )
Nants,total f1

τ2(t +1)= (1−ρevap)τ2(t )+n2(t ) f2 −P (n2(t )−N2)

= (1−ρevap)τ2(t )+n2(t )( f2 −P )+P N2

= (1−ρevap)τ2(t )+
τ2(t )

τ1(t )+τ2(t )
Nants,total( f2 −P )+P N2
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Hence, F (t +1) can be written as:

F (t +1) = F (t )
(1−ρevap)τ2(t )+

Nants,total f1

F (t )+1

(1−ρevap)τ2(t )+
Nants,total( f2 −P )

F (t )+1
+P N2

Since we want to prove that F (t +1) > F (t ), it should hold that

(1−ρevap)τ2(t )+
Nants,total f1

F (t )+1

(1−ρevap)τ2(t )+
Nants,total( f2 −P )

F (t )+1
+P N2

> 1

To satisfy the inequality above, we need

F (t ) <
Nants,total( f1 − f2)+P (Nants,total−N2)

P N2
, (A.15)

Because of Assumption A.1, the right-hand side of (A.15) is larger than Fb,2. Therefore, in M3,
(A.15) always holds, and F is a strictly monotonically increasing function in M3. ✷

Define

Fequ,1 =
P N1

Nants,total( f2 − f1)+P (Nants,total−N1)

Fequ,2 =
1

2P N2

(

Nants,total( f1 − f2)+P (N1 −N2)+
√

(

Nants,total( f1 − f2)+P (N1 −N2)
)2 +4P 2N1N2

)

Lemma A.3 If Fequ,1 Ê max(Fb,1,Fb,2), then Fequ,1 is the only equilibrium point of F in M2. In

M2, when F (t ) > Fequ,1, then F (t +1) < F (t ), and when F (t ) < Fequ,1, then F (t +1) > F (t ). If

Fb,1 < Fequ,2 < Fb,2, then Fequ,2 is the only equilibrium point of F in M4. In M4, when F (t ) >
Fequ,2, then F (t +1) < F (t ), and when F (t ) < Fequ,2, then F (t +1) > F (t ).

Proof : In M2, the pheromone update equations are given by:

τ1(t +1)= (1−ρevap)τ1(t )+n1(t ) f1 −P (n1(t )−N1)

= (1−ρevap)τ1(t )+n1(t )( f1 −P )+N1P

= (1−ρevap)τ1(t )+
τ1(t )

τ1(t )+τ2(t )
Nants,total( f1 −P )+N1P

τ2(t +1)= (1−ρevap)τ2(t )+n2(t ) f2

= (1−ρevap)τ2(t )+
τ2(t )

τ1(t )+τ2(t )
Nants,total f2



Chapter A - Convergence Proof of ACO-SP in a Two-Arc Graph 115

The value F (t +1) can be written as:

F (t +1) = F (t )
(1−ρevap)τ2(t )+

Nants,total( f1 −P )

F (t )+1
+

N1P

F (t )

(1−ρevap)τ2(t )+
Nants,total f2

F (t )+1

(A.16)

Since we want to find the equilibrium point, we let F (t +1)= F (t ) = Fe. Therefore, we have:

(1−ρevap)τ2(t )+
Nants,total( f1 −P )

Fe +1
+

N1P

Fe

(1−ρevap)τ2(t )+
Nants,total f2

Fe +1

= 1 (A.17)

This yields

Fe =
N1P

Nants,total( f2 − f1)+P (Nants,total−N1)
(A.18)

This is the equilibrium point Fequ,1. Furthermore, if F (t ) < Fequ,1, the factor that multiples
F (t ) in (A.16) is larger than 1, which means that F (t+1) > F (t ), and if F (t ) > Fequ,1, that factor
is smaller than 1, which means that F (t +1) < F (t ).

Similarly, we can prove that Fequ,2 is the only equilibrium point in M4 . When F (t ) <
Fequ,1, we have F (t +1)> F (t ), and when F (t ) > Fequ,1, we have F (t +1) < F (t ). ✷

Assumption A.3

P >
Nants,total( f1 − f2)

Nants,total−N1
(A.19)

With Assumption A.3, it is easy to verify Fequ,1 > 0, and Fequ,2 > 0 always holds. Therefore, if
F (t ) < Fequ,1 when F (t ) is in M2, or if F (t ) < Fequ,2 when F (t ) is in M4, F (·) is a monotonically
increasing function, while if F (t ) > Fequ,1 when F (t ) is in M2, or if F (t ) > Fequ,2 when F (t ) is in
M4, F (·) is a monotonically decreasing function. In the other words, F always moves towards
an equilibrium point when it stays in M2 or M4. However, Lemma A.3 does not guarantee
that F will converge to either Fequ,1 or Fequ,2 as it could still oscillate around Fequ,1 or Fequ,2.
Therefore, another lemma is introduced.

Lemma A.4 In M2, lim
t→∞

|F (t )−Fequ,1| = 0, and in M4, lim
t→∞

|F (t )−Fequ,2| = 0.

Proof : We first reformulate (A.18) as follows:

N1P = Fequ,1
(

Nants,total( f2 − f1)+P (Nants,total−N1)
)

⇒ N1P = Fequ,1Nants,total f2 −Fequ,1Nants,total f1 +Fequ,1Nants,totalP −Fequ,1N1P

⇒ Fequ,1Nants,total f2 = Fequ,1Nants,total( f1 −P )+ (Fequ,1 +1)N1P (A.20)

Then,

|F (t +1)−Fequ,1|
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=

∣
∣
∣
∣
∣
∣
∣
∣

F (t )
(1−ρevap)τ2(t )+

Nants,total( f1 −P )

F (t )+1
+

N1P

F (t )

(1−ρevap)τ2(t )+
Nants,total f2

F (t )+1

−Fequ,1

∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

F (t )(1−ρevap)τ2(t )+
F (t )Nants,total( f1 −P )

F (t )+1
+N1P −Fequ,1

(

(1−ρevap)τ2(t )+
Nants,total f2

F (t )+1

)

(1−ρevap)τ2(t )+
Nants,total f2

F (t )+1

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(F (t )−Fequ,1)(1−ρevap)τ2(t )+
F (t )Nants,total( f1 −P )−

substituted using (A.20)
︷ ︸︸ ︷

Fequ,1Nants,total f2

F (t )+1
+N1P

(1−ρevap)τ2(t )+
Nants,total f2

F (t )+1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

(F (t )−Fequ,1)(1−ρevap)τ2(t )+
(F (t )−Fequ,1)

(

Nants,total f1 −Nants,totalP +N1P
)

F (t )+1

(1−ρevap)τ2(t )+
Nants,total f2

F (t )+1

∣
∣
∣
∣
∣
∣
∣
∣
∣

=|F (t )−Fequ,1| ·

∣
∣
∣
∣
∣
∣
∣
∣
∣

(1−ρevap)τ2(t )+
(

Nants,total f1 −Nants,totalP +N1P
)

F (t )+1

(1−ρevap)τ2(t )+
Nants,total f2

F (t )+1

∣
∣
∣
∣
∣
∣
∣
∣
∣

(A.21)

From Assumption A.3, we can derive from that Nants,total( f2 − f1)+P (Nants,total −N1) > 0,
which means that Nants,total f1 −Nants,totalP +N1P < Nants,total f2. Recall from Assumption A.2
Nants,total f1 −Nants,totalP +N1P > 0. Therefore, we can conclude that

0<

∣
∣
∣
∣
∣
∣
∣
∣
∣

(1−ρevap)τ2(t )+
(

Nants,total f1 −Nants,totalP +N1P
)

F (t )+1

(1−ρevap)τ2(t )+
Nants,total f2

F (t )+1

∣
∣
∣
∣
∣
∣
∣
∣
∣

< 1

As a result, (A.21) is a contraction to 0, which implies lim
t→∞

|F (t +1)−Fequ,1| = 0.

In a similar way, we can also prove that lim
t→∞

|F (t +1)−Fequ,2| = 0. ✷

From Lemma A.4, F will asymptotically converge to these equilibrium points. However,
Lemma A.4 can only be applied if F always stays in M2 or M4. It is possible that F jumps out
of M2 or M4 due to the mode transition. In such case, the convergence is still not guaranteed.

Lemma A.5 In all four modes, if F transits from M† to M∗, where M† denotes a mode without

an equilibrium point, and M∗ denotes a mode with an equilibrium point, F will stay in M∗.

Proof : When Nants,total É N1+N2 as in Subcase 4.a, the equilibrium point Fequ,1 is in M2, and
F can only transit from M1 to M2. We suppose that F (t0) is in M1, in which F (t0) < Fb,1, and
F (t0 +1) is in M2, in which F (t0 +1) > Fb,1. From the contraction in (A.21), we know that F

always moves towards Fequ,1 in M2. If we can prove that |F (t0+1)−Fequ,1| < Fequ,1−Fb,1, then
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we have proved that F (t ) will stay in M2 from iteration step t0. Because F (t0 +1) > Fb,1, it is
clear that Fb,1−Fequ,1 < F (t0+1)−Fequ,1. We only need to prove F (t0+1)−Fequ,1 < Fequ,1−Fb,1.
Since F (t0) is in M1, F (t0 +1) is calculated by the equations of M1:

(F (t0 +1)−Fequ,1)− (Fequ,1 −Fb,1)

=F (t0)
(1−ρevap)τ2(t0)+

Nants,total f1

F (t0)+1

(1−ρevap)τ2(t0)+
Nants,total f2

F (t0)+1

+Fb,1 −2Fequ,1

<Fb,1

(1−ρevap)τ2(t0)+
Nants,total f1

F (t0)+1

(1−ρevap)τ2(t0)+
Nants,total f2

F (t0)+1

+Fb,1 −2Fequ,1

=Fb,1

2(1−ρevap)τ2(t0)+
Nants,total( f1 + f2)

F (t0)+1

(1−ρevap)τ2(t0)+
Nants,total f2

F (t0)+1

−2Fequ,1

=
N1

Nants,total−N1
·

2(1−ρevap)τ2(t0)+
Nants,total( f1 + f2)

F (t0)+1

(1−ρevap)τ2(t0)+
Nants,total f2

F (t0)+1

−
2P N1

Nants,total( f2 − f1)+P (Nants,total−N1)

=
N1

(Nants,total−N1)

(

(1−ρevap)τ2(t0)+
Nants,total f2

F (t0)+1

) ·
1

(

Nants,total( f2 − f1)+P (Nants,total−N1)
) ·

(

2(1−ρevap)τ2(t0)Nants,total( f2 − f1)+
Nants,total

F (t0)+1
( f2 − f1)

(

Nants,total( f1 + f2)−P (Nants,total−N1)
))

By using f1 > f2, as well as Assumption A.2.1, we can prove that (F (t0 +1)−Fequ,1)− (Fequ,1 −
Fb,1) < 0. As a conclusion, we have |F (t0 +1)−Fequ,1| < Fequ,1 −Fb,1.

We can also use the similar method to prove that when Nants,total > N1+N2, if F (·) transits
into M2 or M4 , it will stay in those modes. ✷

Lemma A.5 shows that F will not jump out of M2 or M4 when it enters these modes. More
specifically, as shown in Figures A.2(b) and A.2(d), when F transits from M1 to M2, F will not
go back to M1. The case that F may transit from M2 to M1 (shown by the dashed line) can
only occur when F is initialized in M2, and such a transition can only occur once. Similarly,
in Figure A.2(e), when F transits from M4 to M2, F will not go back to M4, and in Figure
A.2(f), when F transits from M2 and M3 to M4, F will not go back to neither M2 nor M3.

A.3 Convergence of the pheromone levels

Proposition A.1 In Case 1, the pheromone levels on both arcs asymptotically converge to a

finite value.

Proof : In Case 1, F will only stay in M1. According to Lemma A.2, F is a monotonically
increasing function in M1, so the value of F (t ) will monotonically converge when t → ∞.
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Let1 F ′ = lim
t→∞

F (t ). According to (A.12),

lim
t→∞

n1(t ) = lim
t→∞

F (t )

F (t )+1
·Nants,total =

1/F ′

1/F ′+1
·Nants,total ,

lim
t→∞

n2(t ) = lim
t→∞

1

F (t )+1
·Nants,total =

1

F ′+1
·Nants,total .

Therefore, the numbers of ants n1(t ) and n2(t ) also converge.
Given a difference equation x(t +1) = ax(t )+b(t ), with 0 < a < 1, if lim

t→∞
b(t ) = B , then:

∀ε> 0, ∃T : B −ε< b(t ) < B +ε,∀t > T.

Therefore,

ax(t )+B −ε< ax(t )+b(t ) < ax(t )+B +ε,∀t > T.

This is equivalent to

ax(t )+B −ε< x(t +1) < ax(t )+B +ε,∀t > T.

From x(t +1) < ax(t )+B +ε, we can conclude that

x(t +1) < at x(0)+ (at−1 +at−2 +·· ·+1)(B +ε)

Now select T ′ > T such that

at x(0) <
ε

1−a
, ∀t > T ′

Since 0 < a < 1, such a T ′ always exists. Then for all t > T ′, it holds that

x(t +1) <
ε

1−a
+

1

1−a
(B +ε)

<
B

1−a
+

2ε

1−a

Moreover, because a > 0, it holds that

x(t +1)>
1

1−a
(B −ε) >

B

1−a
−

2ε

1−a

Defining ε′ =
2ε

1−a
, we find

∀ε′ > 0, ∃T ′ :
B

1−a
−ε′ < x(t +1) <

B

1−a
+ε′,∀t > T ′.

Hence,

lim
t→∞

x(t +1) =
B

1−a
(A.22)

1F ′ can be ∞. In that case, lim
t→∞

n1(t) = Nants,total, and lim
t→∞

n2(t) = 0.
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Using (A.22) for (A.3), it is proven that pheromone levels τ1(t ) and τ2(t ) converge. ✷

Proposition A.2 In Case 2, the pheromone levels on both arcs asymptotically converge.

Proof : We first prove the mode transition in Figure A.2(b). In Case 2, M3 and M4 cannot be
reached. Due to Lemma A.2, if F is initialized in M1, it will keep increasing until reaching
Fb,1, and then it will transit to M2. If F is initialized in M2, it may transit from M2 to M1.
However, Lemma A.5 proves that after F transits from M1 to M2, it will stay in M2, because
M2 has an equilibrium point Fequ,1, while M1 has no equilibrium point. In this way, the
process described by Figure A.2(b) is proved.

Since F finally stays in M2 , it will converge to Fequ,1, as stated in Lemma A.4. According
to (A.12),

lim
t→∞

n1(t ) = lim
t→∞

F (t )

F (t )+1
·Nants,total =

Fequ,1

Fequ,1 +1
·Nants,total ,

lim
t→∞

n2(t ) = lim
t→∞

1

F (t )+1
·Nants,total =

1

Fequ,1 +1
·Nants,total .

Therefore, the numbers of ants n1(t ) and n2(t ) also converge, which results in convergence
of the pheromone levels τ1(t ) and τ2(t ). ✷

Proposition A.3 In Case 3, the pheromone levels on both arcs asymptotically converge.

Proof : Similar to Propostion A.2. ✷

Lemma A.6 In Case 4, if N1 < Nants,total É N1+N2, then Fb,1 Ê Fb,2, and if Nants,total > N1+N2,

then Fb,1 < Fb,2.

Proof : We have

Fb,1 −Fb,2 =
N1

Nants,total−N1
−

Nants,total−N2

N2

=
N1N2 − (Nants,total−N1)(Nants,total−N2)

(Nants,total−N1)N2

=
Nants,total(N1 +N2 −Nants,total)

(Nants,total−N1)N2

If N1 < Nants,total É N1 +N2, then Fb,1 Ê Fb,2, and if Nants,total < N1 +N2, then Fb,1 > Fb,2. ✷

Proposition A.4 In Case 4, the pheromone levels on both arcs asymptotically converge.

Proof : In Subcase 4.a, we know that Fb,1 Ê Fb,2 from Lemma A.6. The four modes M1 –M4
can be further described as:

M1 : Fb,2 É F (t ) É Fb,1 ,

M2 : F (t ) > Fb,1 ,

M3 : 0 < F (t ) < Fb,2 ,

M4 : NR.
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As proved in Lemma A.2, F monotonically increases in both M1 and M3. Therefore, if F is
initialized in M3, it will eventually transit to M1, and if F is initialized in M1, it will eventually
transit to M2. Because f1 > f2 according to Assumption A.1, Fequ,1 > Fb,1 always holds, which
means that Fequ,1 is always located in the range of M2 due to Lemma A.3. Therefore, similarly
to Case 2, if F is initialized in M2, it may transit from M1 to M2, but after F transits from M1
to M2, it will stay in M2 according to Lemma A.5. Moreover, F will finally converge to Fequ,1,
which proves the mode transitions of Figure A.2(d).

In Subcase 4.b and Subcase 4.c, we know that Fb,1 < Fb,2 from Lemma A.6. The four
modes M1–M4 can be further described as:

M1 : NR ,

M2 : F (t ) Ê Fb,2 ,

M3 : 0 < F (t ) É Fb,1 ,

M4 : Fb,1 < F (t ) < Fb,2 .

In Subcase 4.b, we have P É
( f1 − f2)(Nants,total−N2)

Nants,total−N1 −N2
, and one can prove that Fequ,1 > Fb,2

and Fequ,2 > Fb,2. As a result, Fequ,1 is in M2, while Fequ,2 is outside the range of M4. Since F is
a monotonically increasing function in M4, we can use a method similar to that of Subcase
4.a to prove the mode transitions of Figure A.2(e), where F will also converge to Fequ,1 in M2.

In Subcase 4.c, we have P >
( f1 − f2)(Nants,total−N2)

Nants,total−N1 −N2
, and one can prove that Fequ,1 < Fb,2,

and Fb,1 < Fequ,2 < Fb,2. As a result, Fequ,1 is outside the range of M2, while Fequ,2 is in M4.
Since F is a monotonically decreasing function in M2, we can also prove the mode transitions
of Figure A.2(f) similar to Subcase 4.a, where F will converge to Fequ,2 in M4.

Since all of the three subcases of Case 4 lead to convergence of F , we can prove that in
Case 4 the numbers of ants n1(t ) and n2(t ) converge, and accordingly the pheromone levels
also converge. ✷

From Propositions A.1–A.4, Definition A.1 is satisfied. In conclusion, the convergence of
ACO-SP in a graph with two arcs is proven.



Appendix B

The Basic METANET Model

For the sake of completeness, the basic METANET traffic flow model used in thesis is pro-
vided in this appendix. This appendix is based on Chapter 3 of [70] 1.

The METANET model was originally developed by Messmer and Papageorgiou [98]. It is a
deterministic, discrete-time, discrete-space, and macroscopic model. The METANET model
can operate in two modes: the destination-independent and the destination-dependent
mode. The destination-dependent mode is useful for networks that have multiple destina-
tions and the possibility for route choice. We first present the equations for the destination-
independent mode, and next we give the extensions necessary to represent destination-
dependent traffic. For the full description of METANET we refer to the literature [86, 98].

B.1 Link equations

The METANET model represents a network as a directed graph with the links (indicated by
the index m) corresponding to freeway stretches. Each freeway link has uniform characteris-
tics, i.e., no on-ramps or off-ramps and no major changes in geometry. Where major changes
occur in the characteristics of the link or in the road geometry (e.g., on-ramp or an off-ramp),
a node is placed. Each link m is divided into Nm segments (indicated by the index i ) of length
Lm (typically 500-1000 m, see also Figure B.1). Each segment i of link m is characterized by
three quantities:

• traffic density ρm,i (k) (veh/km/lane),

• space-mean speed vm,i (k) (km/h),

• traffic volume or outflow qm,i (k) (veh/h),

where k indicates the time instant t = kT , and T is the time step used for the simulation of
the traffic flow (typically T = 10 s). For stability, the segment length and the simulation time
step should satisfy for every link m

Lm > vfree,mT , (B.1)

where vfree,m is the average speed that drivers assume if traffic is freely flowing.

1We would like to thank Dr. András Hegyi for the permission to include this material here, and for sharing
the source files of his chapter with us.
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freeway link m
traffic flow

. . .. . .segment 1 segment i segment Nm

Figure B.1: In the METANET model a freeway link is divided into segments.

The outflow of each segment is equal to the density multiplied by the mean speed and
the number of lanes on that segment (denoted by λm):

qm,i (k) = ρm,i (k) vm,i (k)λm . (B.2)

The density of a segment equals the previous density plus the inflow from the upstream seg-
ment, minus the outflow of the segment itself (conservation of vehicles):

ρm,i (k +1) = ρm,i (k)+
T

Lmλm

(

qm,i−1(k)−qm,i (k)
)

. (B.3)

While equations (B.2) and (B.3) are based on physical principles, the equations that describe
the speed dynamics and the relation between density and the desired speed are heuristic. In
the METANET model the mean speed at the simulation step k + 1 is taken to be the mean
speed at time step k plus a relaxation term that expresses that the drivers try to achieve a de-
sired speed V (ρ), a convection term that expresses the speed increase (or decrease) caused by
the inflow of vehicles, and an anticipation term that expresses the speed decrease (increase)
as drivers experience a density increase (decrease) downstream:

vm,i (k +1) =vm,i (k)+
T

τ

(

V
(

ρm,i (k)
)

−vm,i (k)
)

+

T

Lm
vm,i (k)

(

vm,i−1(k)−vm,i (k)
)

−
ηT

τLm

ρm,i+1(k)−ρm,i (k)

ρm,i (k)+κ
, (B.4)

where τ, η2, and κ are model parameters, and with

V
(

ρm,i (k)
)

= vfree,m exp

[

−
1

am

(
ρm,i (k)

ρcrit,m

)am
]

, (B.5)

with am a model parameter, and where the free-flow speed vfree,m is the average speed that
drivers assume if traffic is freely flowing, and the critical densityρcrit,m is the density at which
the traffic flow is maximal on a homogeneous freeway.

Origins are modeled with a simple queue model. The length wo(k) of the queue at origin
o equals the previous queue length plus the demand do(k), minus the outflow qo(k):

wo(k +1) = wo(k)+T
(

do(k)−qo(k)
)

.

The outflow of origin o depends on the traffic conditions on the main stream freeway and,

2In the original METANET model this parameter is denoted by ν (nu), but because of the small typograph-
ical difference with v (speed) we prefer to use η.



Chapter B - The Basic METANET Model 123

link m −1 link m

vm,1(k)

ρm,1(k)

Figure B.2: When there is an on-ramp connected to the freeway the speed vm,1(k) in the first

segment of link m is reduced by merging phenomena according to (B.7).

travel direction

link m, segment Nm −1 link m, segment Nm link m +1, segment 1

Figure B.3: When there is a lane drop the speed vm,Nm (k) in the last segment of link m is re-

duced by merging phenomena according to (B.8).

for a metered on-ramp, on the ramp metering rate3 ro(k), where ro(k) ∈ [0,1]. The ramp flow
qo(k) is the minimum of three quantities:

• the available traffic at simulation step k (queue plus demand),

• the maximal flow allowed by the metering rate,

• and the maximal flow that could enter the freeway because of the main-stream condi-
tions.

So,

qo(k) = min

[

do(k)+
wo(k)

T
, Coro(k), Co

(
ρmax,m −ρm,1(k)

ρmax,m −ρcrit,m

)]

, (B.6)

where Co is the on-ramp capacity (veh/h) under free-flow conditions, the global parameter
ρmax,m (veh/km/lane) is the maximum density of a segment (also called jam density), and m

is the index of the link to which the on-ramp is connected.
In order to account for the speed drop caused by merging phenomena, if there is an on-

ramp, then the term

−
δT qo(k)vm,1(k)

Lmλm(ρm,1(k)+κ)
(B.7)

is added to (B.4), where vm,1(k) and ρm,1(k) are the speed and density of the segment that
the on-ramp is connected to, as shown in Figure B.2, and δ is a model parameter.

3For an unmetered on-ramp we also can use (B.6) by setting ro (k) ≡ 1.
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link m

link m

segment 1

segment 1

segment 2

segment 2

. . .

. . .

segment Nm

segment Nm

virtual segment Nm +1

Figure B.4: A node with one entering link m and several leaving links. The densities in the

first segments of the leaving links are aggregated in the virtual downstream density

ρm,Nm+1(k) according to (B.9).

When there is a lane drop as shown in Figure B.3, the speed reduction due to weaving
phenomena,

−
φT∆λmρm,Nm (k)v 2

m,Nm
(k)

Lmλmρcrit,m
, (B.8)

is added to (B.4), where ∆λm = λm −λm+1 is the number of lanes being dropped, and φ is a
model parameter.

B.2 Node equations

The coupling equations to connect links are as follows. Every time there is a major change
in the link parameters or there is a junction or a bifurcation, a node is placed between the
links. This node provides the incoming links with a downstream density (or a virtual down-
stream density when there are more leaving links), and the leaving links with an inflow and
an upstream speed (or a virtual upstream speed when there are more entering links). The
flow that enters node n is distributed among the leaving links according to

Qn(k) =
∑

µ∈In

qµ,Nµ (k) ,

qm,0(k) =βn,m (k)Qn(k) ,

where Qn(k) is the total flow that enters node n at simulation step k, In is the set of links
that enter node n, βn,m (k) are the turning rates (the fraction of the total flow through node
n that leaves via link m), and qm,0(k) is the flow that leaves node n via link m, where link m

is one of the links leaving node n.

When node n has more than one leaving link as shown in Figure B.4, the virtual down-
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link m

link m

segment 1

segment 1

segment 2

segment 2

. . .

. . .

segment Nm

segment Nmvirtual segment 0

Figure B.5: A node with one leaving link m and several entering links. The speeds in the last

segments of the entering links are aggregated in the virtual upstream speed vm,0(k)
according to (B.10).

stream density ρm,Nm+1(k) of entering link m is given by

ρm,Nm+1(k) =

∑

µ∈On

ρ2
µ,1(k)

∑

µ∈On

ρµ,1(k)
, (B.9)

where On is the set of links leaving node n.

When node n has more than one entering link as shown in Figure B.5, the virtual up-
stream speed vm,0(k) of leaving link m is given by

vm,0(k) =

∑

µ∈In

vµ,Nµ(k)qµ,Nµ (k)

∑

µ∈In

qµ,Nµ (k)
. (B.10)

B.3 Boundary conditions

Boundary conditions need to be defined for the entries and exits of the traffic network. As
in METANET the state of a segment also depends on the upstream speed, the outflow of the
upstream node, and the downstream density, we need to define the upstream speed and the
inflow for the entries of the network, and the downstream density for the exits of the net-
work. These boundary conditions can be user-specified or a default value can be assumed.
We already presented the boundary conditions for the traffic demand at on-ramps, now we
present the boundary conditions for the upstream speed and the downstream density.

B.3.1 Upstream speed

When there is a main-stream origin entering node n, the virtual speed vµ(k) of the origin can
be user-specified, where µ is the index of the origin. If vµ(k) is not specified, then it is often



126 Efficient Optimization Methods for Freeway Management and Control

set equal to the speed of the first segment of the leaving link m

vµ(k) = vm,1(k) .

B.3.2 Downstream density

Similarly, the virtual downstream ρm,Nm+1(k) density for the entering link at a node that is
connected to a destination, is calculated as follows. First, the user can specify a destination
density scenario ρµ(k) where µ is the index of the destination link. Alternatively, a flow limi-
tation qbound,µ(k) can be defined, and the virtual downstream density is calculated according
to

ρµ(k +1) =







ρupstream,n(k) , if qµ < qbound,µ(k) and ρupstream,n(k) < ρcrit,µ

ρµ(k)+Cµ

(

qµ(k)−qbound,µ(k)
)

, else.

where ρupstream,n(k) is the density of the upstream link, and Cµ is a parameter. If ρµ(k) nor
qbound,µ(k) is defined, then it can be set that

ρµ(k) = ρm,Nm (k) .

B.4 The destination-dependent mode

For the destination-dependent mode the variable γm,i , j (k) is introduced to express the frac-
tion of traffic on link m, segment i that has destination j . The total density ρm,i (k) is now
decomposed into partial densities ρm,i , j (k) for each destination j :

ρm,i , j (k) = γm,i , j (k)ρm,i (k) .

The conservation equation also becomes destination dependent:

ρm,i , j (k +1) = ρm,i , j (k)+
T

Lmλm

(

γm,i−1, j (k)qm,i−1(k)−γm,i , j (k)qm,i (k)
)

,

Origins are also modeled with a destination-dependent queue model. The evolution of the
partial queue length wo, j (k) at origin o with destination j is described by:

wo, j (k +1) = wo, j (k)+T
(

γo, j (k)do(k)−γo, j (k)qo(k)
)

,

where do(k) is the traffic demand at the origin, γo, j (k) the fraction of the demand traveling
to destination j , and qo(k) the outflow of the origin, and

wo(k) =
∑

j∈Do

wo, j (k) ,

where Do is the set of destinations reachable from origin o.
The flow that enters node n is distributed among the leaving links according to

Qn, j (k) =
∑

µ∈In

qµ,Nµ (k)γµ,Nµ , j (k)
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qm,0(k) =
∑

j∈Dm

Qn, j (k)βn,m, j (k),

γm,0, j (k) =
βn,m, j (k)Qn, j (k)

qm,0(k)
,

where Qn, j (k) is the total flow that enters the node at simulation step k, Nµ the index of the
last segment of link m, In is the set of links that enter node n, βn,m, j (k) are the splitting rates
(the fraction of the total flow through node n with destination j that leaves via link m), Dm is
the set of destinations reachable from link m, and qm,0(k) is the flow that leaves node n via
link m.
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Summary

Efficient Optimization Methods for Freeway Management and

Control

Due to the rapid growth of human population, and jobs being distributed unevenly in dif-
ferent locations, daily commuting is required more than ever, which in its turn is creating a
huge socio-economic issue: traffic congestion. In order to prevent, or at least to alleviate this
problem, traffic management and control is urgently required.

This thesis develops three different management and control methods to improve the
performance of traffic networks, with a particular focus on freeway networks, namely

• ant colony optimization for dynamic traffic routing;

• co-design of network topology and control measures;

• path planning of unmanned aerial vehicles for monitoring traffic networks.

Usually, solving these problems for a large-scale freeway network will result in an extremely
high computational burden. The main contribution of this thesis consists in the develop-
ment of solution methods for these problems to solve them efficiently with a well-balanced
trade-off between performance and computation speed. Each method is summarized as
follows:

• Ant colony optimization for dynamic traffic routing

We propose a dynamic traffic routing algorithm, called Ant Colony Routing (ACR). The
algorithm is developed based on Ant Colony Optimization, which is an optimization
algorithm that mimics the behavior of ants seeking the shortest path between their
nest and a source of food. The ACR algorithm contains two parts: network pruning
and model predictive control. The network pruning step is used to remove some “un-
necessary” links and nodes from the original freeway network, in order to increase the
computation speed. The model predictive control step involves using artificial ants to
determine traffic flows in the reduced network. More specially, at each control step,
we first map the reduced network into an ant graph, then use a concept called stench
pheromone to disperse ants to different paths in the ant graph, and when ants finish
searching the graph, the resulting assignment of ants in the ant graph is used to de-
termine the splitting rates for flows in the freeway network. The ACR algorithm can
effectively guide the vehicles from multiple origins to multiple destinations in a traffic
network.

• Co-design of network topology and control measures

We consider a co-design method that jointly optimizes the topology and the control
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measures in a freeway network. Usually, co-design involves a nonlinear, non-convex
optimization problem with mixed-integer variables, which will be computationally ex-
pensive when dealing with a large-scale network and for multiple control measures.
Therefore, we discuss four different solution frameworks that can be used for solving
this problem, according to different requirements on the computational complexity
and speed, namely separate optimization, iterative optimization, bi-level optimiza-
tion, and joint optimization. The results show that the separate optimization is the
most computationally efficient, but the other three approaches have much better per-
formance.

• Path planning of unmanned aerial vehicles for monitoring networks

We address a path planning problem involving unmanned aerial vehicles (UAVs) for
monitoring freeway networks. We consider two different monitoring settings: UAVs
can monitor while flying, and UAVs can only monitor when hovering. In the first set-
ting, the monitoring problem is formulated as a periodical multiple rural postman
problem, and solved using mixed-integer linear programming. In the second setting,
the problem is formulated as a Markov decision process, and solved by three different
solution methods, namely the fitted Q-iteration, the model predictive control, and the
parameterized control. Both methods can nearly achieve a full coverage of the net-
work.

Zhe Cong



Samenvatting

Efficiënte optimalisatiemethoden voor het managen en rege-

len van autowegen

Door de snelle groei van de menselijke bevolking en banen die ongelijk verdeeld zijn over
verschillende locaties, is dagelijks pendelen meer dan ooit noodzakelijk, wat op zijn beurt
een groot sociaaleconomisch probleem creëert: verkeersopstoppingen. Om dit probleem
te voorkomen, of in ieder geval te verzachten, is management en regeling van snelwegen
dringend nodig.

Dit proefschrift ontwikkelt drie verschillende management en regelmethoden om de pres-
taties van verkeersnetwerken te verbeteren, met een specifieke focus op netwerken van au-
towegen, namelijk

• mierenkolonie-optimalisatie voor dynamische verkeersroutering;

• co-ontwerp van netwerk topologie en regelacties;

• routeplanning van onbemande luchtvaartuigen.

Meestal resulteert het oplossen van deze problemen voor een grootschalig netwerk van auto-
wegen in een extreem hoge rekenkundige belasting. De voornaamste bijdrage van dit proef-
schrift bestaat uit de ontwikkeling van efficiënt oplossungen van deze problemen met een
goed gebalanceerde afweging tussen prestaties en rekensnelheid. De methodes kunnen als
volgt kort samengevat worden:

• mierenkolonie-optimalisatie voor dynamische verkeersroutering

We stellen een dynamisch verkeersroutering-algoritme voor, genaamd Ant Colony Rou-
ting (ACR). Dit algoritme bestaat uit twee delen: netwerk reductie en model-gebaseerde
voorspellende regeling. Het reduceren van het netwerk wordt gebruikt om “overbo-
dig” verbindingen en knooppunten uit het originele autowegen netwerk te verwijde-
ren om zo de rekensnelheid te verhogen. De model-gebaseerde voorspellende regel-
nstap maakt gebruik van kunstmatige mieren om de verkeersstromen in het geredu-
ceerde netwerk te bepalen. Tijdens elke regelstap vertalen we doorbij eerst het gere-
duceerde netwerk in een mierengraaf. Daarna gebruiken we een concept genaamd
stank-feromoon om de mieren te verspreiden over de verschillende paden in de mie-
rengraaf, en zodra de mieren klaar zijn met het doorzoeken van de graaf wordt de re-
sulterende toewijzing van mieren in de mierengraaf gebruikt om de verdeelratio’s van
de stromen in het autowegen netwerk te bepalen. Het ACR algoritme kan voertuigen
effectief geleiden van verschillende vertrekpunten naar verschillende bestemmingen
in een autowegen netwerk.
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• Co-ontwerp van netwerktopologie en regelacties

We beschouwen een co-ontwerp-methode dat gezamenlijk de topologie en de regelac-
ties in een autowegen netwerk optimaliseert. Meestal wordt voor co-ontwerp een niet-
lineair, niet-convex optimalisatieprobleem met geheeltallige en reële variabelen ge-
bruikt, wat rekenkundig gezien erg zwaar is voor grootschalige netwerken en met een
groot aantal regelacties. Om dit probleem aan te pakken gebruiken we vier verschil-
lende oplossingskaders, namelijk aparte optimalisatie, iteratieve optimalisatie, twee-
laags optimalisatie, en gezamenlijke optimalisatie. De resultaten laten zien dat aparte
optimalisatie rekenkundig het meest efficient is, maar de overigen methoden een veel
betere prestatie leveren

• Route planning van onbemande luchtvaartuigen

We pakken het routeplanning-probleem voor de onbemande luchtvaartuigen (in het
Engels: Unmanned Aerial Vehicles, UAV’s), die gebruikt worden om toezicht te hou-
den over het netwerk van autowegen, aan. We beschouwen twee verschillende situ-
aties voor het toezicht – UAV’s kunnen toezicht houden terwijl ze vliegen, en UAV’s
kunnen alleen toezicht houden als ze stationair zweven. In de eerste situatie wordt
het toezichtsprobleem geformuleerd als een periodiek meervoudig landelijk postbode
probleem en wordt opgelost door middel van lineaie optimalisatie met geheeltallige
en reële variabelen. In de tweede situatie wordt het probleem geformuleerd als een
Markov beslissingsproces en wordt het opgelost door middel van drie verschillende
oplossingsmethodes, namelijk fitted Q-iteration, modelgebaseerde voorspellende re-
geling, en geparameteriseerde regeling. Beide methodes kunnen een vrijwel volledige
dekking van het netwerk bereiken.

Zhe Cong
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