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Object-Based Pose Graph for Dynamic
Indoor Environments

Clara Gomez , Alejandra C. Hernandez , Erik Derner , Ramon Barber, and Robert Babuška

Abstract—Relying on static representations of the environment
limits the use of mapping methods in most real-world tasks. Real-
world environments are dynamic and undergo changes that need to
be handled through map adaptation. In this work, an object-based
pose graph is proposed to solve the problem of mapping in indoor
dynamic environments with mobile robots. In contrast to state-
of-the art methods where binary classifications between movable
and static objects are used, we propose a new method to capture
the probability of different objects over time. Object probability
represents how likely it is to find a specific object in its previous
location and it gives a quantification of how movable specific objects
are. In addition, grouping object probabilities according to object
class allows us to evaluate the movability of different object classes.
We validate our object-based pose graph in real-world dynamic
environments. Results in mapping and map adaptation with a real
robot show efficient map maintenance through several mapping
sessions and results in object classification according to movability
show an improvement compared to binary classification.

Index Terms—Mapping, dynamics, service robots.

I. INTRODUCTION

R EAL-WORLD dynamic environments undergo huge
changes in short periods of time. Changes present a major

challenge for mobile robots as maps rapidly become outdated.
This is a problem that needs to be solved in order to enable mobile
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robots to autonomously operate in real-world environments. Our
goal is to solve this problem by building a map that adapts during
subsequent mapping sessions and classifies the elements of the
environment according to their movability.

The dynamics of an environment can be classified as high
dynamics, changes that occur while the robot is present in the
environment (i.e. a person walking or a car driving through a
road), or low dynamics, changes that happen while the robot
is elsewhere or not sensing (i.e. returning to a room after any
rearrangement of the furniture or daily register of cars in a car
park). We propose a solution for the low dynamics in which
the robot will register the changes between different mapping
sessions using an object-based pose graph. Object-based pose
graphs have been extensively used in recent years obtaining very
good results for static environments [1], [2]. Low-dynamic en-
vironments have been mainly addressed through feature-based
representations [3]–[5] and less research has focused on object-
based approaches.

In this letter, we propose to build an object-based pose graph
and maintain it during several mapping sessions. The probability
of an object being present in the environment will be calculated
for each session. To the best of our knowledge, probability-based
approaches have been used to model the dynamics when maps
are created from features but not from objects. Object probability
allows us to infer the movability and classify different objects
based on the long-term experience of the robot.

The proposed mapping method involves object detection and
representation, building the initial pose graph and adapting
the pose graph to the changes in the environment. The main
pipeline and an operation example is shown in Fig. 1, where
two mapping sessions are included and the map reflects the
changes as inclusion of new objects and variation of the object
probabilities. Our main contributions are:
� The design of a novel method to maintain object-based

pose graphs in dynamic environments.
� A function to capture how static or movable an object is

according to the experience of the robot.
� A fully autonomous dynamic-environment mapping sys-

tem that infers the movability of different object classes
and improves object classification according to their
movability.

This letter is organized as follows: Section II surveys the
relevant related work on mapping in low-dynamic environments.
Section III presents the building stones of the method proposed,
namely object detection and cuboid generation. Sections IV and
V describe the proposed mapping method and the adaptation
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Fig. 1. Proof of concept of the dynamic mapping method in an indoor environ-
ment. First, the original object-based pose graph is built (7 chairs, 1 computer
and 1 backpack were mapped). For the adaptation of the map, one chair was
moved and a bottle and a screen were added. The map adapted to the changes
adding the new objects and increasing or decreasing the probabilities of the old
ones.

of the map to changes, respectively. Finally, an experimental
evaluation of the method and the conclusions drawn from this
work are presented in Sections VI and VII.

II. RELATED WORK

Methods that adapt to the changes occurring in real-world
dynamic environments have received much attention from the
robotics community. Most low-dynamics approaches are based
on features extracted from laser scans, images or point cloud
information. Some authors propose a binary classification of
these features just considering if they are stable or not. In [6], a
pose graph is updated to remove the scans that no longer match
the environment. In such a way, the resulting map is built with
the scans that belong to static objects. Similarly, in [7], a grid
map, initialized with the architectonic map, is augmented with
the features that persist in time.

Other authors found binary classification very limited and
defined methods to measure the object movability or stability
of the features. The Feature Stability Histogram (FSH) was
proposed in [3], where image features are gathered for each
node of a topological map. Over time, a voting scheme is used
to register the local feature stability and the resulting map is
built with the most stable features. Along the same line, the
work presented in [4] applies a ranking function that estimates
how likely a landmark is observable under the current situa-
tion. Top-ranked landmarks are stored for the resulting map. A

method for grid maps in which the belief about the occupancy of
a cell is represented with Hidden Markov Models is presented
in [5]. The resulting map includes the change probability for each
cell, which is a novelty in contrast to the aforementioned works.
In [3], [6], [7], mapping is only carried out for the most stable
features, which is a limitation as the information that could be
inferred from the dynamic objects is overlooked. In [8], another
solution is proposed based on maintaining different representa-
tions following a memory model. The sensory memory stores
the most current information. An attention mechanism selects
which information is moved to the Short term memory. And
finally, through rehearsal, static information can be committed
to the Long term memory.

Other works focus on maintaining the most updated version
of the environment by having a record of the static and current
dynamic elements. In [9], a pose graph based on point clouds
uses matching techniques to accumulate the aligned data and
remove the outdated ones. A more sophisticated approach is
introduced in [10], where a pose graph is maintained using
the belief of scan matches given a certain robot position and
observations. A pose is removed if its belief drops below a
tolerance value. These approaches, although being a solution
for localization, neglect prior situations and forget about the
former presence of elements and their locations. Some works
solve such issues by maintaining multiple representations. The
work presented in [11] keeps maps from different experiences
that are evaluated simultaneously selecting the most adequate
one for the current situation or creating a new one. Similarly,
in [12], several representations are maintained simultaneously
from multiple timescales, allowing the robot to detect patterns.
Patterns between different experiences are also sought in [13],
[14] through spectral representations that model the frequency
of appearance of different features.

The main drawback of the aforementioned works is the lack
of semantic meaning of the information stored in the map. For
this reason, some authors started to focus on objects as the
elements to map the environment. Relevant works in static
environments are [1], [2], where robust pose graphs of indoor
environments and object reconstruction are proposed. Recently,
an adaptation of this work for coping with high-dynamic envi-
ronments was proposed in [15]. Semantic, geometric and motion
information is used for object tracking and pose estimation.
Other solutions for high-dynamic environments have been pro-
posed [16]–[19]. In [17], a static weighing method estimates
whether an object is static or not based on the Euclidean distance
between object edges in two situations.

Regarding low-dynamic environments, changes at an object
level can be detected inferring if they are static or movable.
In [20], an approach is introduced where a map of the static en-
vironment and a database of the discovered objects is maintained
over time. Both the map and the objects are 3D reconstructions
that are refined as the robot discovers the environment. In [21],
several representations of the environment are maintained and
overlaps between objects and representations are checked for
changes. An object-based pose graph is developed in [22],
where the most up to date representation of the environment
is maintained by merging new objects and removing old ones.
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In [23] tracking of objects is performed in 3D maps. When an
object has disappeared from its mapped position, the system
looks for it until its new location is found. An updated 3D
representation of the environment is maintained over time.

In contrast to the related work, we propose to map the environ-
ment as an object-based pose graph that captures the movability
of the objects. To the best of our knowledge, such works have
been proposed for features but not for objects. In addition, a
new definition for describing the probability of an object to
be in an already-mapped position is presented. Our resulting
map is a probabilistic object-based pose graph where static and
movable objects are included and improved object classification
is obtained.

III. OBJECT DETECTION AND CUBOID REPRESENTATION

The most common approaches for object representation in
pose graphs are object reconstruction [2] and cuboid genera-
tion [19]. Both methods require an object detector that provides
information on the object position and class. With this informa-
tion, reconstruction approaches group the pixels or scans that be-
long to an object and extract the object geometry; on the contrary,
cuboid generation approaches identify the 3D bounding box of
the object representing the space that it occupies. Regarding
limitations, object reconstruction is highly demanding in terms
of memory and computing power, but it gives an individual and
detailed representation of objects. Cuboid generation overlooks
the specific characteristics of each object instance within the
class with the advantage of reducing computational costs. In this
work, a cuboid generation method is used as we are interested
in classifying objects according to their class.

Object detection is performed in RGB images through
ResNet-101 [24] trained with COCO Dataset [25]. Detections
contain all the objects, oi, present in the image frame Ik at
time step k. Each object is defined by the detection confidence,
p(oi|Ik), its 2D bounding box, bi,2D, and the object class. 2D
bounding boxes and point cloud information are used to calculate
the centroid ci = [xi, yi, zi] and the size of the 3D bounding box
bi,3D = [wi, hi, di], where the object, centroid and bounding
box are linked through their indices. Only objects with high
detection confidence, p(oi|Ik) > 0.7, are included in the map.
We consider such detections reliable, without further parameter
tuning, as the details of the object detection algorithm are out of
the scope of this letter. Cuboid generation is shown in Fig. 2.

Point cloud information is used to calculate transformations
between image pixels and coordinates in the map, as presented
in [26]. Such transformations are firstly used to obtain the object
depth. Object depth is characterized using minimum, mean and
maximum values. Minimum and maximum values are calculated
for defining vertex depth and mean value for centroid depth.
Minimum object depth is calculated as the median of the 2%
smallest depths within the 2D bounding box of the object.
Maximum object depth is calculated through an adaptation of
the flood fill algorithm, starting from the minimum-object-depth
pixel and recursively visiting its neighbors. A threshold, θ, is
defined for the difference in depth of two neighboring pixels.
If the difference in depth between the minimum-object-depth

Fig. 2. Object detection and generation of object cuboid. In (a), the 2D
bounding box, class and confidence of a detected object is shown. In (b), the
cuboid and centroid for the object are calculated using the 2D bounding box of
the object and the current point cloud.

pixel and its neighbor is smaller than the threshold, the two
pixels are connected and they belong to the object. Otherwise,
the neighboring pixel is considered part of the background and it
is discarded. Mean object depth is calculated as the mean value
between minimum and maximum object depths.

3D coordinates of the object centroid are obtained using the
mean object depth and pixel-to-coordinate transformation. Sim-
ilarly, 3D coordinates of the bounding box vertices are estimated
using the minimum and maximum object depths and the width
and height of the 2D bounding box.

This method provides a representation of every object that the
robot sees as a 3D cuboid characterized by its 3D bounding box
and its centroid from RGB images and point cloud information.

IV. INITIAL POSE GRAPH

The initial pose graph captures the objects and trajectory as
the robot explores the environment for the first time. This process
implies the generation of robot poses, mapping the detected
objects and connecting poses with objects. In addition, iden-
tifying whether the detected objects have been already mapped
is required for pose graph consistency.

A. Building the Initial Pose Graph

Our representation of the world is an object-based pose graph
that consists of robot poses, objects, and connections between
them. For pose generation, reliable information about the robot
pose is assumed. In addition, this pose is used to determine when
the robot has returned to an already-mapped pose.

Neighboring poses are connected and they are also connected
with the objects detected from them. In addition, every time an
object is detected, it is annotated with the connections to the
poses from where it was seen, the object class, the probability of
finding the object in that location, p(oi)0, and whether the object
is active (present in the mapping session), inactive (missed in the
mapping session) or unknown to be active (not visisted in the
mapping session). Newly detected objects are always identified
as active and their probability is set as an initial probability that
depends on the detection confidence p(oi|Ik). This probability
refers to how likely it is to find that object i again in the same
location. For this reason, and as it is the first time that the object
is detected, an initialization factor of 0.5 is used, as we do not
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Fig. 3. Object merging for a sofa. In (a), the two instances of the object as
shown. As the centroid of the second detection (right) is within the area of
influence of the first detection, in (b) both instances are merged.

know yet how dynamic the object is:

p(oi)0 = 0.5p(oi|Ik) (1)

Object-based pose graphs require to control the addition of
objects as redundant mapping can become a major problem.
This is solved through online object merging.

B. Object Merging

Object merging involves identifying that an object detected
in image frame Il at time step l was previously seen from the
same or another position in image frame Ik, where l > k. In this
work, every object to be added to the map is analyzed according
to its class and position. Firstly, two objects are only going to
be merged if they belong to the same object class. Secondly,
two conditions are introduced to evaluate the relation between
object positions. If the centroid of the new object lies inside the
cuboid of the already-mapped object, cj(x, y, z) ∈ bi,3D, they
are automatically merged without any modification. If the cen-
troid of the new object is within the area of influence, ainf (oi)
of the already-mapped object, the two objects are merged and
the cuboid of the object is reshaped. The area of influence of an
object is defined as a sphere centered in the object centroid where
given the size of the object no other centroid of the same object
class can be found. This sphere is defined by the diagonal of the

object
√

b2i,3D multiplied by a tolerance factorα, as objects from

the same object class may have approximately similar sizes but
not exactly the same:

ainf (oi) = α
√

b2i,3D (2)

If the centroid lies in the area of influence, cj(x, y, z) ∈
ainf (oi), the cuboid of the already-mapped object is reshaped
to include the centroid of the new detection. This situation is
illustrated in Fig. 3.

V. POSE GRAPH ADAPTATION OVER TIME

Every time that a new mapping session, m, starts the pose
graph is updated. The robot is assumed to travel through the
first mapping session path (although it can drive it partially or in
different directions), and we assume that the robot can always be

localized in one of the mapped poses. Updating the pose graph
implies adding new objects and detecting whether the already-
mapped objects are still present or have been moved/removed.
While objects detected within one mapping session are updated
and merged online, matching objects between different mapping
sessions is performed offline when the mapping session has
finished. Therefore, object probability is just evaluated and mod-
ified once and efficiency is improved as unnecessary evaluations
are avoided while the robot is moving.

A. Updating Already-Mapped Objects

As the robot moves, the expected already-mapped objects are
registered. An object becomes expected when it was already
mapped from the current robot pose and it is supposed to enter
the frustum of the camera according to its mapped position,
ci ∈ F , where F denotes the frustum defined by the vertical
and horizontal angles along with the minimum and maximum
detection distances of the camera. When the mapping session
has finished, the register of expected objects is compared to the
objects detected during the session.

If an expected object has been seen again, its probability
increases according to the following equation and it is considered
to be active:

p(oi)m =
s(cmi , cm−1

i )p(oi|Ik) + ξ + p(oi)m−1

2
(3)

Here, s(cmi , cm−1
i ) refers to the similarity between the cen-

troid position of both detections according to their Euclidean
distance and ξ relates to the false-negative rate of the detector
maintaining a low value for the new measurement even if the
object was not detected. The similarity takes values between
0 and 1, where the higher the measure is, the closer the two
detections are; and it is computed as follows:

s(cmi , cm−1
i ) =

1

1 + ‖cmi − cm−1
i ‖2

(4)

If an expected object is not detected again, its probability
decreases and it is considered inactive. In such a case, p(oi|Ik)
is zero and 3 simplifies as follows:

p(oi)m =
ξ + p(oi)m−1

2
(5)

If an already-mapped object was not expected (the robot has
not visisted it) and it was not detected its probability is not
affected by the map update, so it is labelled as unknown to be
active.

B. Adding New Objects

The objects to add are those ones detected by the robot that
do not correspond to any of the expected objects. Before adding
a new object a check is performed to confirm that the object was
not mapped to another pose. If it was already mapped, a new
connection is created. Otherwise, the new object is added and
annotated with its probability, class and cuboid. The probability
for newly added objects is calculated similarly to the initial
probability (first mapping session) as described in (1).
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TABLE I
EVALUATION OF PARAMETERS θ AND α

C. Inferring Object Class Movability

After every mapping session, m, the individual object proba-
bilities are updated. Grouping them according to object class re-
veals valuable information about object movability and allows to
classify static and movable objects. Movability, Mm,a ∈ [0, 1],
is the measure that captures whether an object class, a, is static
or movable. Movability is the complement of the mean object
probability for all the objects that belong to an object class, na,
defined by:

Mm,a = 1−
∑

i∈a p(oi)m
na

(6)

Movability for different object classes is inferred by the robot
based on its own experience in the environment.

VI. EXPERIMENTAL RESULTS

Experiments were conducted in an indoor environment
(15 × 6) m2 using a Turtlebot 2 robot equipped with an Asus
Xtion depth camera. The robot gathered information in 20
different mapping sessions during a month where 22 object were
present in the environment: 12 chairs, 3 sofas, 2 cups, 3 bottles,
1 plant and 1 laptop.

All the experiments presented in this letter were performed
with the same values for the threshold for depth, θ, tolerance
factor for merging, α and false-negative rate, ξ (including the
experiments shown in Figs.s 1, 2 and 3). The value of θ was set
to 15 cm, α to 0.9 and ξ is assumed to be 0. We have empirically
evaluated that this choice is suitable for different objects present
in the environment and for different environments, see Table I.
The first three columns in Table I refer to θ: d represents the
average difference between depth of neighboring pixels for each
object class (cm);%d∗ refers to the percentage of differences that
are greater than 15 cm; and %ε refers to the final error in size
comparing the real and calculated depth for the object. Although
several objects have differences between individual pixels higher
than the defined threshold, this only affects the chairs with a
5.91% error (a 50 cm-wide object will be detected as 47.05 cm
wide). Next three columns refer to α: min(s) column shows
the minimum separation (m) between objects of the same class
present in any of the environments; max(D) column shows the
maximum diagonal value (m) for each of the objects classes; and
finally, 0.9max(D) refers to the area of influence of the object.
Although the maximum diagonal values for some objects are
larger than the minimum distance (what would lead to an error),
using the α value of 0.9 solves these possible errors.

Images gathered by the robot during some of the mapping
sessions are shown in Fig. 4. Red boxes highlight the changes in

Fig. 4. Sample of images captured by the robot in three different mapping
sessions. Changes as movement of chairs, presence of new objects such as cups
or bottles are introduced between mapping sessions (red boxes).

Fig. 5. Result for two mapping sessions. In (a) the objects of the first mapping
session are included (10 chairs, a plant and 2 sofas). In (b), the new objects
detected are shown (9 chairs, some of them were in a different position than in
the previous mapping session and 2 sofas). Finally, in (c), the adaptation of the
map to the new situation is shown.

the sample images. All the processing took place on a PC with
IntelCore i7-6500 U CPU@2.50 GHz 12 GB RAM.

Experiments presented in Section VI-A and VI-B show the
building and the adaptation process for the object-based pose
graph presented in this work. In addition, Section VI-C shows
the improvement in object classification regarding movability.

A. Real-World Experiments in a Dynamic Environment

This first experiment evaluates the performance of the map-
ping system and its adaptation to the changes in the map. For
this purpose, two mapping sessions (m = 0 and m = 1) are
evaluated in detail. The initial map, generated inm = 0, is shown
in Fig. 5(a), the active elements for the next mapping session are
shown in Fig. 5(b), and, finally, Fig. 5(c) shows the resulting
map after the two mapping sessions. Every object is represented
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TABLE II
OBJECT PROBABILITY FOR THE TWO FIRST MAPPING SESSIONS

Fig. 6. Results after 20 mapping sessions and the adaptation in the environ-
ment. (a) and (b) show the resulting map for the first and last mapping sessions
respectively, (c) shows the active elements for the last mapping session and (d)
shows the objects that are learned as static after the 20 mapping sessions.

using its cuboid, object class (color-coded) and the connections
to the poses where they were detected.

Table II shows the detail of object probabilities. Objects
not entering the frustum of the camera (unknown) are listed
with - and their probabilities remain constant, undetected objects
(inactive) decrease their probabilities whereas detected objects
(active) increase them after the two mapping sessions (forth
column).

B. Long-Term Inference of Object Movability

After validating the performance of the proposed method for
two mapping sessions, the map resulting from the complete set
of mapping sessions is evaluated. The initial map (first mapping
session) and the resulting map (all the objects mapped along
their probabilities) are shown in Fig. 6(a) and (b), respectively.
From the resulting map, the active map (objects present in the

TABLE III
MOVABILITY ACCORDING TO OBJECT CLASS

Fig. 7. Evolution of the movability for each object class during the mapping
sessions.

last mapping session) and static map (object probability> 50%)
can be obtained as shown in Fig. 6(c) and (d). Fig. 6(c) shows
the objects that were active in the last mapping session. Fig. 6(d)
shows the objects that the robot considers static after including
the complete set of mapping sessions. They are the three sofas,
the plant and three chairs, which corresponds to the elements
that were not moved during the experiments.

Updating object probabilities during 20 mapping sessions
results in a polarization between the objects that have not being
detected in most of the sessions (movable objects) and those that
remain for almost all the sessions (static objects). As shown in
Table III, object movability is scaled in a realistic fashion and
the robot has effectively learned which objects are more mov-
able (higher values of movability). The evolution of movability
within all the mapping sessions is shown in Fig. 7.

C. Comparison to Binary Object Classification

Comparison to binary object classification is included to
further evaluate the performance of the method. Binary object
classification identifies objects as movable or static. Most of the
approaches that use binary classification are meant to map the
static objects and discard the movable ones [21]–[23]. In order
to replicate this behavior, only the objects that have been labeled
as active or unknown for all of the mapping sessions are included
in the resulting map as they are supposed to be static. Fig. 8(a)
and (b) show the resulting static map for binary classification
and the static map of the proposed method after evaluating the
complete set of mapping sessions, respectively.
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Fig. 8. Comparison of object classification according to the movability of
objects between the binary classification method (a) and using the proposed
method (b) after evaluating all the mapping sessions.

As shown in Fig. 8, the method proposed outperforms binary
object classification as object probability increases the robust-
ness of object classification. Binary classification overlooks
static objects just because they were not detected in one mapping
session, obtaining a 42.85% of successful static objects mapped
in contrast to the 100% of the method proposed. Therefore,
robustness is increased in our method thanks to employing the
proposed object movability calculation in object classification.
In addition, binary classification can just infer about static and
movable objects, but it does not give any insight in the degree
of movability.

D. Discussion

Quantitative results of the proposed method and comparison
to binary classification have been presented in this section.
Comparison to other methods that define the movability of the
environment elements is not appropriate as those works map
the environment using features instead of objects. Although
both methods pursue the same objective, as they do not use
equivalent information, methods based on feature descriptors
cannot be applied to objects. The only possible way to compare
these approaches is through the improvement in localization,
which is beyond the scope of this letter. Therefore, we give an
extensive discussion on how our method presents a contribution
in the light of these prior works.

Feature-based approaches [3]–[5] gather information from
the salient regions of images, scans or point clouds. Features
can be merged, removed or assigned a probability that could
be registered for dynamic environments, but the meaning of
these features is not easy to transfer to the real world. Features
represent an abstraction level that allows to know which regions
of the environment are prone to changes, but they need a second
step to determine which elements are located in that region
to gain environment understanding. In contrast, object-based
approaches implicitly provide environment understanding, as
changes are directly associated to objects. They also share the
advantages of feature-based approaches, as they determine the
regions of the environment that change more.

Although it was not possible to compare to any other spe-
cific method, the movability of objects can be calculated with
other well-known methods, such as Bayesian filtering. Here we
briefly discuss the comparison of our method with a standard
Kalman filter [27]. Kalman filters can estimate the belief of a
specific object remaining static or being movable. As proposed

Fig. 9. Comparison of object movability between the Kalman filter and our
method.

for our method, object class movability can be calculated by
grouping the objects probabilities (or beliefs) for each object
class. Kalman filter and our method can be compared through
the results obtained regarding object class movability as shown
in Fig. 9. Our method (red) and three instances of Kalman filter
(blue) are compared for a static object and a highly movable
object. The process model for the Kalman filter is initialized
with μ0 = 0.5 and Σ0 = 0.2, and it is assumed to be static if
measurements are not received (μt = μt−1 andΣt = Σt−1). The
measurement model is defined by each new observation and
the measurement noise covariance, Rt. The results show that
noisier measurements (higher Rt) lead to a slow evolution of
object movability, being more difficult to distinguish between
static and movable objects. On the contrary, more precise mea-
surements (lower Rt) lead to a more polarized estimation of
object movability, especially for movable objects. Our method
performs similarly to a Kalman filter of Rt = 0.2 for increasing
movability (bottle). However, our performance for static objects
is increased (sofa), as the system infers faster that the object is
static. For these reasons, we conclude that our method performs
better than Bayesian filtering for the task of object movability
estimation.

Some advantages can also be found regarding the resulting
map. In our method, object probability and active objects are
maintained through the different mapping sessions resulting in
an improvement compared to other works. Active elements for
each mapping session are included, as for [9], [10]. Also the
static and dynamic maps of the environment, as for [6], [7].
Comparing the different representations, we can say that the
resulting map for the proposed method gives more complete
and representative information of the environment than other
state-of-the-art methods.

VII. CONCLUSIONS AND FUTURE WORK

We have proposed a method for mapping and map adaptation
through object-based pose graphs for low dynamic indoor en-
vironments. This new method calculates and maintains object
probability depending on whether an object is seen again or
not and capturing whether it is static or movable. As shown in
the experimental results, including object probability improves
the resulting map. In addition, it provides the robot with a
realistic estimation of the movability of objects according to its
class gathered from its own experience that outperforms object
classification using a binary method.
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Overall, this letter strengthens the idea that real-world envi-
ronments have to be treated as dynamic environments consisting
of objects that may be more or less movable and important
information can be obtained from capturing their movability.
The method proposed in this letter allows for a straightforward
extension to improve other tasks such as localization or object
search. Therefore, future research includes developing a local-
ization algorithm that builds upon the method proposed in this
work and improves the localization of the robot thanks to the
individual object probabilities and object class movability. In
addition, improvements to this work include the recalculation
of the path (not only the objects), as the original path could
become impassable and new paths could be created to overcome
this situation.
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