
 
 

Delft University of Technology

Quantum Control Architecture
Bridging the Gap between Quantum Software and Hardware
Fu, Xiang

DOI
10.4233/uuid:8205cc34-30df-45f0-b6eb-8081bdb765b8
Publication date
2018
Document Version
Final published version
Citation (APA)
Fu, X. (2018). Quantum Control Architecture: Bridging the Gap between Quantum Software and Hardware.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:8205cc34-30df-45f0-
b6eb-8081bdb765b8

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:8205cc34-30df-45f0-b6eb-8081bdb765b8
https://doi.org/10.4233/uuid:8205cc34-30df-45f0-b6eb-8081bdb765b8
https://doi.org/10.4233/uuid:8205cc34-30df-45f0-b6eb-8081bdb765b8


Quantum Control Architecture:
Bridging the Gap between Quantum

Software and Hardware

Dissertation

for the purpose of obtaining the degree of doctor
at Delft University of Technology

by the authority of the Rector Magnificus prof.dr.ir. T.H.J.J. van der Hagen
chair of the Board for Doctorates

to be defended publicly on
Tuesday 11 December 2018 at 15:00 o’clock

by

Xiang FU

Master of Engineering in Computer Science and Technology,
National University of Defense Technology, China

born in Yueyang, China



This dissertation has been approved by the promotors:
Prof.dr.ir. K. L. M. Bertels
Prof.dr. L. DiCarlo

Composition of the doctoral committee:

Rector Magnificus chairperson
Prof.dr.ir. K. L. M. Bertels Delft University of Technology, promotor
Prof.dr. L. DiCarlo Delft University of Technology, promotor

Independent members:
Dr. M. Luján University of Manchester, United Kingdom
Prof.dr. R. Wille Johannes Kepler University Linz, Austria
Prof.dr. L. M. K. Vandersypen Delft University of Technology
Dr. F. Sebastiano Delft University of Technology
Prof.dr. S. Hamdioui Delft University of Technology (reserve member)

Non-independent member:
Dr. C. G. Almudever Delft University of Technology

Keywords: Quantum Instruction Set Architecture, Quantum Control Microarchi-
tecture, Quantum Architecture Simulator

Printed by: Ipskamp Printing, Enschede

Front & Back: Designed with help from Dr. Yu Xin, Lin Chen, and Tiantian Du.
The front cover is inspired by Michelangelo’s painting the Creation
of Adam: a fully programmable quantum computer requires collabo-
ration of quantum software and hardware. The left hand is filled with
the picture of the first waveforms measured from CBox v3, which
work forms the foundation of this thesis. The back cover is the pic-
ture (photographer: Jacob de Sterke) of one printed circuit board
of QuTech Waveform Generator designed by Wouter J. Vlothuizen
(TNO/QuTech), which implements the codeword-triggered pulse
generation mechanism of QuMA.

Copyright c© 2018 by X. Fu

ISBN 978-94-028-1305-0
An electronic version of this dissertation is available at
http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Dedicated to

Hua Xia Civilization
华夏文明





Acknowledgments

In the enormous space and long-lasting time, this thesis would be a trivial
thing. However, treating this thesis as the most important fruit I harvested
from my four-year work in TU Delft, I cannot easily get calm while seeing its
birth. With great joy in my heart, I cannot forget you, who appear in my life
and help me reach this achievement. At this moment, I realize how pale my
words are when compared to my sincere gratitude to you.

My deepest thanks go to my promotors Prof. Koen Bertels and Prof.
Leonardo DiCarlo. Thank you for providing me the golden opportunity to
study quantum computer architecture in a “heterogeneous” environment com-
posed of people from both the quantum computer architecture lab (QCAL) and
the DiCarlo lab (DCL) with different working style, which enables me to grasp
a lot of both hard and soft skills and produce considerable outcomes with the
uncommon collaboration. Koen, thank you for letting me know how important
it is to share a comfortable working environment and how to contribute to such
an environment, for supporting me to develop my ideas, and for your delicious
spaghetti dinners and a lot of fun parties at your place. Leo, thank you for
teaching me to become a better collaborator, for teaching me to be strict in
research, for your high standard which drove me to release my potential, and
for your confidence in me and the support in turning my idea into real projects.
Also, you set up a standard in my mind of a good teacher, like which I wish I
could be in the future when teaching my students.

Carmina, thank you, thank you for your warmhearted greetings in every cold
morning and your consideration in our daily life which made me feel QCAL
was my second home outside China. I will never forget it. Thank you for
your encouragement which strengthens my confidence in developing our ar-
chitecture, and for allocating various resource required without condition in
the CC-Light project which enables me focusing on the research work.

Grandpa Jacob, Mr. the Strong1, you taught me so much, varying from the
1This is a joke by Leo: The surname of Jacob is de Sterke, which means the Strong in

English.

i



basic VHDL programming, project quality control, project management, team
dynamics, and so on. You are my mentor in engineering. Without you, I cannot
develop the timing tape in CBox v2 and later finish the QuMA processor in
CBox v3. Without you, the CC-Light project would be in a mess and cannot
be controlled. I can still remember the moment that you are in such a hurry
before the QuMA paper submission deadline to tell me that the description
of the module frequencies is imprecise, which made me believe that our team
together can do the best job in the world. Your jokes and ‘dangerous’ activities
relaxed me so much in a high-stress working environment. I wish I could still
play with you and hear you calling me “Processor Fu” even ten or twenty years
later. But, could you please stop kicking my ass!?

Adriaan, you are more an engineer than a physicist to my understanding. You
taught me how to write good code and ensure the code quality. You may not
know what a treasure your analysis on my situation is when I was frustrated by
other colleagues during the collaboration. You taught me always to think about
things with a positive altitude, which helps me a lot. What enjoyable moments
they were when we had beer together in the de Oude Jan after working for ten
hours in the lab. I wish we could drink together more.

Leon, we have been working together for more than three years and produced
interesting results. Thank you for teaching me various programming skills.
We had so much fun together, and I wish we could still do it, no matter where
you and I are. I wish you could enjoy your work in a satisfactory position in
the future. Imran, you are always humble and productive. It is indeed a joy
to work with you. Thank you for that. Hans, the discussion with you always
challenged my understanding, which led us to the correct path to quantum
computer architecture and quantum compiler. Jeroen, thank you for the clas-
sical pipeline of CC-Light you created in an amazing way. It was a supreme
experience to work you and I learned a lot from it. Wish we could have more
collaboration in the future. Mengyu（孟禹）, it was an enjoyable time that
we created QuMAsim together. Thank you for providing me the opportunity
to work with you. Wish you have a cozy life with Xiaoxiao （笑笑）in
Shenzhen. Miguel, you are a gifted student. Without you, maybe we cannot
finish the QCC project. Wish you can learn more and become an independent
researcher in the future. My colleagues in QCAL, Savvas, Dan, Andreas,
Vieri, Nader, Aritra, Abid, Daniel, Amitab thank you for your interesting
discussions and a lot of fun we had together.

Niels, you always present a delighted face and cares about the feeling of
colleagues in the lab. Thank you for bringing the relaxation in a relatively

ii



mentally-tense group. Please do not forget our mission to write the book Niels
and Xiang2. Ale, can you be crazier regarding your ideas about the work we
are doing? Thank you for inviting me to your parties. Thank you for making
me feel being loved. Enjoy your happy moments with your family with Nolan!
Chris, thank you for sharing the moment we imagine the future of quantum
computing and discuss Go and The Three-body Problem together! Thank you
for the music parties, where you make me envy you so much to play instru-
ments wonderfully! Ramiro, it was a nice experience that we are getting more
and more smooth and mature when working together. Thank you! Stefano,
thank you for answering our entry-level questions in detail and patiently when
we first stepped into the quantum computing field. It made us feel that peo-
ple in the quantum computing field are always welcoming newcomers. Flo,
Brian, Tom, Thijs, Nadini, Xavi, though I most of the time I cannot keep
track of what you are talking about, I do enjoy seeing you treating the ideas
seriously, which opens a window for me to see a new world. It is always a lot
of fun to be with you. Thank you!

Raymond V. and Raymond S., you are one of my most-important supporting
force in my Ph.D. work. Without you, we cannot have the reliable hardware for
CBox and CC-light, and I cannot learn so much about circuit design and test.
Thank you for your generous contribution. Wouter, the discussion with you
regarding distributed or centralized quantum architecture always remind me
that my design might not be the right way. Without you, CC-Light can hardly
have such a robust architecture and cannot work with other devices. Thank
you for all of this. Kelvin and Vincent, it was an amazing experience that we
work together in the CC-Light project. I wish we could have a chance to work
together again. Jules, thank you for moment we imagine what electronics
device should be in the future for quantum computing. Gerco, you maintains
the embedded software and make it easy to use and stable in the DiCarlo lab.
Thank you! Stan, thank you for making a fantastic theme (the cover of this
book is developed based on this theme) and robust and flexible framework for
Quantum Infinity, which we are all proud of. Jordy, you taught me how to use
the Xilinx toolchain. Thank you. Duije, Tessel, Jeremy, Garrelt, Nadia, do
you know how much I enjoy working with you? Thank you for all of this!

Lidwina and Joyce, every time I went to the sectary office, I can always get
the required help from you. Your smiling faces form one of the most beautiful
pictures of TU Delft. Thank you!

2Another joke by Leo: Quantum Computation and Quantum Information by Nielsen and
Chuang is a Bible-like book in the quantum computing field. Leo said that: they have Nielsen
and Chuang, but we have Niels and Xiang!

iii



Anh, thank you for help revising my paper. More than ten pages of comments
for the QuMA paper are what I will never forget. Without this, the QuMA
paper can hardly reach such a neat structure and won the best paper award of
MICRO-50. I learned so much about scientific writing from you. Wish you
could get the expected experiment results and graduate soon. Vlad, Mafalda,
Giacomo, thank you for inviting me to various activities (birthday party, Salsa
party, Sushi dinner, etc.) when I first came to Delft. Nelly （惠莹）, Hao
（浩哥）, Jie （美女师姐）, Xiao （薛潇），Guanzhong （贯中）,
Xiaotong （孝通）, Roy, it is so enjoyable that we could chat leisurely in
Chinese in the lab. The QuTech Uitje organizers, Leon, Sophia, Daniel, Udit,
Marta, Christian, Victoria, Maarten and Sjaak, thank you for creating such
wonderful events. Though I only attend the one of 2018, it belongs to part of
my best memory in the Netherlands.

Jian（总工）and Yue（越越）, thanks for your accompanying. We three
came to TU Delft from China at the same time and enjoyed so much wonderful
time. Cooking, skiing, digging oysters, swimming, jogging, and traveling,
without you, my casual life could be a pale paper instead of a colorful page
with a lot of memorable points. Tiantian （甜甜）, thank you for help me
photoshop the system cube and improve the cover design. I wish you and Jian
could lead a life with eternal happiness in the future. Xing （李星）, thank
you for always counting me when cooking the rice when we stay in the same
house. I wish you have a happy with Yue, and I am looking forward to seeing
your shining moments at your wedding. Xin （郭昕）, thank you for your
encouragements when sharing your experience with me. Our leisure chatting
at the party house is one of my nice memory. Those words and encouragement
helped me to better understand what I should puruse and how to puruse them.
Lingling（玲玲）, being elegant, you are a rose in our lab. You are not only
a colleague but also a best friend of mine. You are so clever and talented in
cooking, which impressed me so much. Thank you for treating me with so
much delicious food and sharing with me enjoyable moments. I wish we could
continue our friendship and collaboration in the rest of our lives. Zixuan（子
轩），Yu （叔叔）, Zhijie （嫂嫂）, drinking, eating, and playing board
games with the Werewolf group belongs to my best memory in Delft. I wish
we could play these games and have more fun in China again in the future. Yu,
I wish you could always enjoy more and more fun from painting!

Shanshan （珊珊姐）, thank you for your care during our time in Delft.
Jintao （锦涛）and Shi （小胖）, thank you for your accompany with an
optimistic attitude and humor. There has been a lot of fun with you. Shengzhi
（小许）, my housemate, thank you for your delicious dishes. Jiakun（琨

iv



哥）and Xiaoyan （赵晓燕，燕姐）, thank you for various help in the
Warmoezierstraat house. 大佬们– Qiang （老刘）, Xin （小杜）, Jian
（总工）, and Yue（越越）– thank you for the chatting and barbecue, which
enriched my weekends time. 大佬们，华哥再也受不了你们的高级黑了，
我先走一步了！Byebye. My friends, Yande （艳德）, Na （陈娜）, He
（王贺）, Lizhou （利舟）, Baozhou （保周）, Rong （张荣）, Shuai
（袁帅）, YaZhou（亚洲）, Pengling（鹏玲）, Hai（才子）, Zhi（洪
智）, Xiao （林霄）, Peiyao （佩瑶）, Yueting （跃庭）, and my other
Chinese friends, thanks to all of you, having dinners and chatting together
exerts the loneliness from my life in Delft. Zhijie（嫂嫂）, Xinyuan（少
将）, Qile （其乐）, Dong （李栋）, what a wonderful time we played
and watched dota2 offline together! Thank you for that! My dota2 teammates,
Siyuan（思远）, Jin（常进）, Xueliang（雪亮）, Lin（琳哥）, Xiawei
（薇姐）, Kefei（克非）, thank you for your accompany helped me to spent
countless boring nights. The hostess and host of Eastern Snack house, thank
you for providing me so many delicious dinners. Wish your business gets
larger and larger.

Xing（苏醒）, my faithful friend for more than ten years, thank you so much
for helping me deal with various issues in China when I am in the Netherlands.
Your integrity always reminds what a good man can be. I wish you can find a
nice job in the future. I am also looking forward to the moment that we could
work together again to create something changing the world. Hongbo （波
波）, Xiaoyan（刘晓燕，燕姐）, and Zhongyi（大胡子）, you welcome
me so warmly every time I returned to Changsha that I feel being missed by
you. Thank you!

Yao （王耀）and Sorin, thank you for recommending me and enrolling me
as a Ph.D. student to TU Delft. Without you, I will have no chance to study
quantum computing in TU Delft. My supervisors and mentors in China, Dr.
Yue Wang（王老师）, thank you for guiding me to lead a research career;
Prof. Zhengxiang Wei （韦老师）, thank you for teaching me philosophy,
which became the most powerful tool in my life; Prof. Weixia Xu （徐老
师）and Prof. Minxuan Zhang（张老师）, thank you for supporting me all
the time. Without you, I can hardly reach such a happy state by the end of my
Ph.D.

“Tomato fried with onion can generate magical fragrance.” Jiayi （佳艺）,
thank you for leaving the most colorful stroke in the paper of my life. You
showed me the dimension of life about consideration and love with your touch-
ing activities, taught me how to respect and care about the feeling of others,

v



and how to become a better man. Wish you could have a better life with a
better partner.

Zhaokun（坤坤）, thank you for your accompany and bringing me so much
happiness. Being as one of the three best chiefs in Delft (at least in my opin-
ion), you cooked so much delicious food, which largely enriched my dining
table. I wish you could have a happy life.

Finally, my deepest gratitude goes to my family. Papa and Mama, thank you
for giving me so much. My sister, Juan（老姐）and my brother in law, Liu
（姐夫）, thank you for taking care of our parents when I am not with them.
You are the last pillars of my life in this world, anywhere anytime. I love you.

Xiang

Delft, November, 2018

vi



Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

List of Acronyms and Symbols . . . . . . . . . . . . . . . . . . . . . . xvii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Computation Power Requirement . . . . . . . . . . . . . . . . 1
1.2 Towards Useful Quantum Computing . . . . . . . . . . . . . 2

1.2.1 Theoretical Challenge . . . . . . . . . . . . . . . . . 2
1.2.2 The Implementation Challenge . . . . . . . . . . . . . 3
1.2.3 Error Correction Challenge . . . . . . . . . . . . . . . 3
1.2.4 Control Challenge . . . . . . . . . . . . . . . . . . . 4

1.3 Contribution and Thesis Organization . . . . . . . . . . . . . 6

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Quantum Computing Basics . . . . . . . . . . . . . . . . . . 9

2.1.1 Quantum Bit . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Quantum Gate . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Quantum Circuit . . . . . . . . . . . . . . . . . . . . 15
2.1.4 Universal Quantum Gate Set . . . . . . . . . . . . . . 17

2.2 Quantum Algorithms . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Bernstein-Vazirani Problem . . . . . . . . . . . . . . 19
2.2.2 Characteristics Analysis . . . . . . . . . . . . . . . . 21

2.3 Hardware Implementation . . . . . . . . . . . . . . . . . . . 22
2.3.1 Superconducting Qubits . . . . . . . . . . . . . . . . 23

vii



2.3.2 Implication on the Control . . . . . . . . . . . . . . . 24
2.4 Quantum Error Correction . . . . . . . . . . . . . . . . . . . 28
2.5 Related Research . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 System Perspective . . . . . . . . . . . . . . . . . . . 31
2.5.2 Quantum Programming Languages . . . . . . . . . . 32
2.5.3 Quantum System Structure . . . . . . . . . . . . . . . 34
2.5.4 Efficiently Using Qubits . . . . . . . . . . . . . . . . 35
2.5.5 Quantum Control Microarchitecture . . . . . . . . . . 36

2.6 Quantum System Stack . . . . . . . . . . . . . . . . . . . . . 37
2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Experimental Quantum Microarchitecture . . . . . . . . . . . . . . . 41
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Microarchitectural Challenges . . . . . . . . . . . . . . . . . 44

3.3.1 Motivational Example . . . . . . . . . . . . . . . . . 44
3.3.2 Complex Analog Waveform Control . . . . . . . . . . 45
3.3.3 Instruction Definition . . . . . . . . . . . . . . . . . . 48

3.4 Quantum Microarchitecture . . . . . . . . . . . . . . . . . . . 48
3.4.1 Codeword-Based Event Control . . . . . . . . . . . . 49
3.4.2 Queue-Based Event Timing Control . . . . . . . . . . 52
3.4.3 Multilevel Instruction Decoding . . . . . . . . . . . . 55

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.1 Quantum Control Box . . . . . . . . . . . . . . . . . 60
3.6.2 QuMA Implementation . . . . . . . . . . . . . . . . . 62

3.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . 63
3.8 Potential Impact . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 eQASM: An Executable QISA . . . . . . . . . . . . . . . . . . . . . 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.1 Related Work and the Challenges . . . . . . . . . . . 71
4.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . 72

4.2 eQASM Overview . . . . . . . . . . . . . . . . . . . . . . . 73
4.2.1 Programming and Compilation Model . . . . . . . . . 74
4.2.2 Design Guidelines . . . . . . . . . . . . . . . . . . . 75
4.2.3 Architectural State . . . . . . . . . . . . . . . . . . . 76

viii



4.2.4 Instruction Overview . . . . . . . . . . . . . . . . . . 78
4.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3.1 Timing Model . . . . . . . . . . . . . . . . . . . . . 81
4.3.2 Quantum Operation Definition & Decoding . . . . . . 83
4.3.3 Address Mechanism . . . . . . . . . . . . . . . . . . 83
4.3.4 Very Long Instruction Word . . . . . . . . . . . . . . 85
4.3.5 Fast Conditional Execution . . . . . . . . . . . . . . . 87
4.3.6 Comprehensive Feedback Control . . . . . . . . . . . 88

4.4 Instantiation & Implementation . . . . . . . . . . . . . . . . . 88
4.4.1 Target Superconducting Quantum Chip . . . . . . . . 88
4.4.2 eQASM Instantiation Design Space Exploration . . . 89
4.4.3 Microarchitecture . . . . . . . . . . . . . . . . . . . . 93
4.4.4 Implementation . . . . . . . . . . . . . . . . . . . . . 97

4.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Fault-Tolerant Quantum Microarchitecture . . . . . . . . . . . . . . 103
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Fault-Tolerant quantum computing . . . . . . . . . . . . . . . 105

5.2.1 Quantum Error Correction . . . . . . . . . . . . . . . 105
5.2.2 Fault-tolerant Logical Operations . . . . . . . . . . . 106

5.3 Fault-Tolerant Control Microarchitecture . . . . . . . . . . . . 108
5.3.1 Qubit Addressing . . . . . . . . . . . . . . . . . . . . 109
5.3.2 Fault-Tolerant Logical Operations . . . . . . . . . . . 111
5.3.3 Quantum Error Decoding . . . . . . . . . . . . . . . . 115
5.3.4 Measurement Result Unit . . . . . . . . . . . . . . . 117
5.3.5 Pauli Frame . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 QUBE: The qubit plane . . . . . . . . . . . . . . . . . . . . . 118
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Quantum (Micro)architecture Simulator . . . . . . . . . . . . . . . . 121
6.1 Challenges in QuMA Development . . . . . . . . . . . . . . . 121
6.2 Quantum Microarchitecture Development Flow . . . . . . . . 122

6.2.1 QuMA Development Flow . . . . . . . . . . . . . . . 122
6.2.2 Drawbacks of the QuMA Development Flow . . . . . 123
6.2.3 Potential Improvements . . . . . . . . . . . . . . . . 123

6.3 Design of QuMAsim . . . . . . . . . . . . . . . . . . . . . . 124
6.3.1 Requirement of QuMAsim . . . . . . . . . . . . . . 124

ix



6.3.2 QuMAsim Implementation . . . . . . . . . . . . . . . 125
6.4 Potential Applications . . . . . . . . . . . . . . . . . . . . . . 128

6.4.1 Design Space Exploration . . . . . . . . . . . . . . . 128
6.4.2 RTL Verification . . . . . . . . . . . . . . . . . . . . 129
6.4.3 Full Stack Quantum Simulator . . . . . . . . . . . . . 130

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Conclusion & Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Samenvatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Curriculum Vitae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

x



List of Tables

2.1 Quantum circuit of some commonly-used multi-qubit gates. . 16

3.1 An example of the lookup table content of a codeword-
triggered pulse generation unit for single-qubit gates. . . . . . 51

3.2 Queue state of the AllXY experiment when TD = 0. . . . . . . 54

3.3 Queue state of the AllXY experiment when TD = 40000. . . . 54

3.4 Queue state of the AllXY experiment when TD = 40008. . . . 54

3.5 The format of QIS instructions, quantum microinstructions.
Taking the AllXY experiment as an example (Part I). . . . . . . 56

3.6 The format of micro-operations and codeword triggers. Tak-
ing the AllXY experiment as an example (Part II). . . . . . . . 57

3.7 QuMIS instructions. . . . . . . . . . . . . . . . . . . . . . . . 58

4.1 Overview of eQASM Instructions. . . . . . . . . . . . . . . . 80

4.2 Definition of the micro-operation selection signal. . . . . . . . 94

5.1 An example of the qubit symbol table, with the content record-
ing the status of logical qubits in Fig. 5.5. . . . . . . . . . . . 114

xi





List of Figures

2.1 Geometrical representation of one qubit state using the Bloch
sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Quantum circuit of applying a single-qubit gate Us on qubit q0. 15

2.3 Quantum circuit of a multi-qubit gate Um. . . . . . . . . . . . 16

2.4 Example of a quantum circuit, which is the decomposition of
the Toffoli gate as explained in Section 2.1.4. . . . . . . . . . 17

2.5 Quantum algorithm for Bernstein-Vazirani problem. . . . . . . 19

2.6 Oracle used in the Bernstein-Vazirani algorithm. . . . . . . . . 20

2.7 Images at various scales of a transmon qubit coupled to a
readout resonator in a planar circuit quantum electrodynam-
ics chip. (a) Qubit (Q), resonator (R), flux-bias line (PF),
feedline input (Pi), and feedline output (Po). (b) Zoom-in on
the two Josephson junctions of the qubit. The magnetic flux
threaded through the loop sets the qubit transition frequency
fQ. (c) Zoom-in on one of the two Josephson junctions. . . . . 23

2.8 In-phase and quadrature envelopes of Xπ and Yπ pulses, in-
cluding −50 MHz single-sideband modulation. . . . . . . . . 24

2.9 In classical execution, data travels undergoing operations one
by one. In quantum execution, operations travel applying on
qubits one by one. . . . . . . . . . . . . . . . . . . . . . . . . 25

2.10 Different to classical processors, a dedicated control unit is
required to constructed which is separated from the quantum
processor locating qubits. . . . . . . . . . . . . . . . . . . . . 26

2.11 Quantum controller based on AWGs and data collection cards.
Colored lines denote analog signals and black lines denote
digital signals. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xiii



2.12 All waveforms required by a T1 experiment, which consists of
multiple iteration with each iteration of a different idling time
(τ ) between the Xπ pulse and the measurement. . . . . . . . . 27

2.13 Implementation of a distance-3 surface code, which comprises
17 qubits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.14 ESM circuit for the (a) XXXX and (b) ZZZZ stabilizer
measurement, taking as example anX and Z ancilla as shown
in Figure 2.13. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.15 Overview of quantum computer system stack . . . . . . . . . 37

2.16 Compiler infrastructure . . . . . . . . . . . . . . . . . . . . . 38

3.1 Waveforms and timings for one round of theAllXY experiment. 45

3.2 Overview of the Quantum MicroArchitecture (QuMA). . . . . 50

3.3 Operations of the AllXY experiment in the timeline. Measure-
ment pulse generation and measurement result discrimination
overlap in time and are shown using the same meter box. . . . 52

3.4 Schematic of the CBox firmware architecture. The QuMA
core is implemented in the Master Controller. Dashed lines
indicate functionality to be added in the future. . . . . . . . . 61

3.5 Experimental setup used for validation of the microarchitec-
ture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Schematic of the implemented QuMA. The thick gray lines
are analog signals while the dark thin lines are digital signals.
Dashed lines indicate functionality to be added in the future. . 64

3.7 The AllXY result of qubit 2. In the label, each X/Y (x/y)
denotes a rotation by π (π/2) around the x/y axis of the Bloch
sphere. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.1 Heterogeneous quantum programming and compilation model. 74

4.2 Architectural state of eQASM. Arrows indicates the possible
information flow. The thick arrows represent quantum op-
erations, which reads information from the modules passed
through. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Part of the code for a two-qubit AllXY experiment, which is
used in validating eQASM in Section 4.5. . . . . . . . . . . . 86

xiv



4.4 eQASM program for active qubit reset. This experimental re-
sult is shown in Section 4.5. . . . . . . . . . . . . . . . . . . 87

4.5 eQASM program using CFC. . . . . . . . . . . . . . . . . . . 89

4.6 Quantum chip topology of the target seven-qubit supercon-
ducting quantum chip. Numbers in red are the physical ad-
dresses of qubits. The numbers along the direct edges are ad-
dresses of the allowed qubit pairs. . . . . . . . . . . . . . . . 90

4.7 Number of instructions for various architecture configurations
for randomized benchmarking, Ising model, and square root. . 91

4.8 Format of the SMIS and SMIT (top two), QWAIT and QWAITR

(middle two), and quantum bundle (bottom) instruction. . . . . 93

4.9 Quantum microarchitecture implementing the instantiated
eQASM for the seven-qubit superconducting quantum proces-
sor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.10 Hardware structure implementing the instantiated eQASM for
the seven-qubit superconducting quantum processor. Thin
(thick) lines represent digital (analog) signals. . . . . . . . . . 98

4.11 Two-qubit AllXY result, corrected for readout errors. . . . . . 100

4.12 Single-qubit randomized benchmarking results for different
intervals between gates. Dashed line indicates a 10% error
rate for visual reference. . . . . . . . . . . . . . . . . . . . . 101

5.1 (a) The qubit layout for performing a CNOT gate between two
logical qubits. Each logical qubit is encoded by a distance-3
rotated planar surface code where data qubits are on the ver-
tices (solid circles) and ancilla qubits are on the plaquettes
(open circles). The blue (red) squares and semi-circles rep-
resent stabilizers of the form X(Z)⊗4 and X(Z)⊗2, respec-
tively. ‘C’ is the control qubit, ‘T’ is the target qubit, and ‘A’
is the ancilla. The joint MZZ on qubit ‘A’ and ‘C’ is realized
by first performing ESM on the entire lattice in (b) for a merge
and then performing ESM separately on the two lattices in (c)
for splitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 The ESM circuits (a) and (b) for measuring X- and Z-
stabilizers (XD5,D2,D4,D1 and ZD6,D3,D5,D2). . . . . . . . . 106

5.3 The circuit to realize a measurement-based CNOT gate. . . . . 107

xv



5.4 Overview of the Envisioned Fault-Tolerant Quantum Control
Microarchitecture, FT QuMA. . . . . . . . . . . . . . . . . . 110

5.5 Virtual qubits mapped on physical qubits. Red is for the vir-
tual address space and black for the physical address space. . . 111

5.6 Four flavours of a distance-3 surface code logical qubit us-
ing the same data qubits. It is assumed that redundant an-
cilla qubits are not used. The chirality of the logical qubit
is left (right) when the physical qubit at (xL,0 + 1, yL,0 − 1)
((xL,0+3, yL,0−1)) is used as an ancilla qubit, where (xL,0+
1, yL,0−1) is the location of the logical qubit. The base ancilla
type is X (Z) when the ancilla qubit at (xL,0 + 1, yL,0− 1) or
(xL,0 + 1, yL,0 − 1) is an X (Z) ancilla. . . . . . . . . . . . . 113

5.7 The number of instructions for performing one round of ESM
on all alive logical qubits through compiler generation (top)
and hardware generation (bottom). . . . . . . . . . . . . . . . 116

5.8 Example QUBE architecture. . . . . . . . . . . . . . . . . . . 119

6.1 Quantum chip topology of the target 17-qubit superconduc-
ting quantum processor. . . . . . . . . . . . . . . . . . . . . . 128

6.2 Format of the SMIS and SMIT for the 17-qubit quantum pro-
cessor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.3 QuMAsim as used in a verification platform. . . . . . . . . . 130

6.4 QVM: a full stack quantum simulator. . . . . . . . . . . . . . 131

xvi



List of Acronyms and Symbols

2D Two-dimensional
3D Three-dimensional
ADI Analog-Digital Interface
AWG Arbitrary Wwaveform Generator
DDR Double Data Rate
eQASM executable Quantum Assembly
FPGA Field Programmable Gate Array
FT Fault Tolerant
GPU Graphical Processing Unit
HDL Hardware Description Language
ILP Instruction Level Parallelism
IO Input and/or Output
ISA Instruction Set Architecture
NISQ Noisy Intermediate-Scale Quantum
NN Nearest-Neighbour
PF Pauli Frame
QASM Quantum Assembly
QEC Quantum Error Correction
QECC Quantum Error Correction Code
QED Quantum Error Detection
QEX Quantum Execution
QISA Quantum Instruction Set Architecture
QuMIS Quantum MicroInstruction Set
QuMA Quantum MicroArchitecture
QuMAsim Quantum MicroArchitecture Simulator
QVM Quantum Virtual Machine
RTL Register-Transfer Level
SIMD Single Instruction Multiple Data
SOMQ Single Operation Multiple Qubit
TELF Timing Event Logging Format
VLIW Very Long Instruction Word
VSM Vector Switch Matrix

xvii





1
Introduction

1.1 Computation Power Requirement

There is a gap between understanding the principles of the world and full pre-
diction of movement based on these principles, where computation plays an
essential role. For example, Newton’s laws describe the behavior of macro-
scopic objects but a significant amount of computation is required to predict
the movement of them, for example in fluid dynamics. Besides, computation
is also a crucial method for human beings to reform the world. Computing is
the backbone of electronic devices in our daily life to provide various kinds
of services, such as intelligent furniture, smartphones, and network-based ser-
vices. New applications with higher computation power are continuously be-
ing developed to boost scientific research and improve our daily life, leading to
a growing computation power requirement which has never been thoroughly
satisfied.

Research on both software and hardware is being conducted to alleviate this
problem. New algorithms and compilation techniques are being developed
to reduce the computation required for given applications, and new architec-
ture and new implementation technologies for computation and storage are
being exploited to provide better performance. Domain-specific architectures
to accelerate particular computing tasks [1] have gained increasing research
attention since around 2000, including Graphical Processing Unit (GPU) [2]
and Field Programmable Gate Array (FPGA) [3] for parallel computing or
low power computing, Neural or Tensor Processing Unit (NPU/TPU) [4, 5]
for machine learning, and so on. Novel device technologies are continuously
being proposed to improve the performance of computation and storage, in-
cluding memristors [6], carbon nanotubes [7], superconducting devices [8],
phase change memory [9], etc.

1
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However, these improvements are insufficient for particular types of problems
such as simulating quantum chemical systems [10]. The limitation lies in the
underlying computation model, the Turing machine [11] which is based on
classical mechanics. Here, no efficient algorithms have been found to solve
these problems. In this thesis, computers based on the Turing machine are
called classical computers or conventional computers.

Addressing the inefficiency of using classical computers to simulate quantum
systems, Richard Feynman proposed to utilize one quantum system to simulate
another quantum systems in 1982 [10]. This idea was mathematically formu-
lated by David Deutsch into the quantum Turing machine based on quantum
mechanics in 1985 [12]. Later, the quantum Turing machine was theoretically
demonstrated to be more efficient than the Turing machine [13]. Computers
based on the quantum Turing machine are called quantum computers. Ever
since then, research in quantum computing started to flourish.

1.2 Towards Useful Quantum Computing

1.2.1 Theoretical Challenge

The quantum Turing machine is a mathematical model. To make it more oper-
able regarding algorithm design and physical implementation, David Deutsch
proposed a mathematically equivalent model, called the circuit model [12].
A quantum computer built based on the circuit model is called the standard
quantum computer, which is the focus of this thesis.

Since any quantum computer is difficult and expensive to build, a valid quan-
tum algorithm is required to be faster (i.e., with a lower computational com-
plexity) than any classical algorithm solving the same problem achieving the
so-called quantum speedup. Ethan Bernstein and Umesh Vazirani demon-
strated in theory that a quantum computer could be faster than any classical
computer for some problem in 1996 [13]. Peter W. Shor proposed a quantum
algorithm for prime factoring which can crack the widely-used Rivest-Shamir-
Adleman (RSA) public key cryptosystem. Shor’s factoring achieved exponen-
tial speedup over its best classical counterpart, firmly showing that quantum
computers can solve real-world problems that are intractable by classical com-
puters. Ever since then, more quantum algorithms have been designed for var-
ious applications, such as quantum simulation [14, 15], search [16], machine
learning [17], and solving graph and algebraic problems [18, 19], etc.



1.2. TOWARDS USEFUL QUANTUM COMPUTING 3

1.2.2 The Implementation Challenge

Quantum computing should be performed on a physical system satisfying par-
ticular conditions. Some work has tried to summarize the required conditions
for such physical systems, among them the most well-known is the DiVincenzo
criteria [20], which are:

1. A scalable physical system with well-characterized qubits;
2. The ability to initialize the state of the qubits to a simple fiducial state,

such as |000 · · ·〉;
3. Long relevant coherence times, much longer than the gate operation

time;
4. A “universal” set of quantum gates; and
5. A qubit-specific measurement capability.

Since Serge Haroche and David J. Wineland demonstrated the measurement
and manipulation of individual quantum systems in 1980s [21], multiple quan-
tum technologies have been investigated to implement qubits, such as nuclear
magnetic resonance [22, 23], trapped ions [24, 25], quantum state in super-
conducting circuits [26–28], nuclear spins or electron spins in silicon [29–31],
nitrogen-vacancy centers [32, 33], and photon polarization modes [34]. Some
technologies have been demonstrated to have inherent scalability issues, such
as nuclear magnetic resonance [35]. Some technologies are still in the early
stage, such as spins in silicon and topological quantum computing based on
Majorana. At the time of writing, the most promising technologies are trapped
ions and superconducting qubits, both of which have demonstrated to satisfy
the DiVincenzo criteria [25–27, 36].

Different from classical bits, qubits usually suffer from a short decoherence
time. It implies that only a limited number of operations can be applied on the
qubits before significant errors accumulate overriding the computation result.
This forms a challenge for quantum computing since most quantum algorithms
require an execution time much longer than the available qubit decoherence
time.

1.2.3 Error Correction Challenge

In 1995, Peter W. Shor [37] proposed to encode quantum information into a
logical qubit using a group of physical qubits according to some encoding
scheme called quantum error correction code (QECC), and continuously cor-
rect errors that occur during computing. It enables storing information in the
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qubits for a time longer than individual qubit, which makes it possible to ex-
ecute long quantum algorithms on imperfect qubits. This is the basic idea of
quantum error correction (QEC) and fault-tolerant quantum computing, which
forms an essential part of large-scale standard quantum computers.

Fault-tolerant quantum computing proposes much higher requirements on the
physical implementation of a quantum computing system. First, multiple
physical qubits are used to encode a logical qubit, which significantly in-
creases the number of qubits required (usually by one to four orders of mag-
nitude [38, 39]). Second, QECC can produce a logical qubit better than a
physical qubit only if the physical qubit has an error rate lower than a certain
threshold, called the fault-tolerance threshold. The threshold is usually very
low and difficult to achieve with current physical systems, which ranges from
10−2 to 10−6 depending on the error correction scheme [38, 40].

QECC proposes a set of conditions on the interaction among qubits and the
operation sequence applied on the qubits, and it can significantly affect the
quantum processor structure and the quantum compiler design. A lot of works
have provided proposals regarding how to organize qubits using given quan-
tum technology targeting a particular QECC to support universal fault-tolerant
quantum computing [41–46, 46–49]. Quantum compilers [50–55] are incor-
porating more routines not only to free the programmers from highly pat-
terned tasks including reversible circuit synthesis, fault-tolerant implementa-
tion, qubit mapping and scheduling, but also to reduce the required number of
physical qubits and execution time.

Since the requirement for fault-tolerant quantum computing is too strict to be
satisfied in the near term, recent research suggests performing a computing task
that goes beyond the capability of state-of-the-art classical computers with so-
called near-term Noisy Intermediate-Scale Quantum (NISQ) technology [56,
57] without QEC. This is also termed quantum supremacy [58]. The promising
application candidates for quantum supremacy include quantum sampling [56,
59] and quantum simulation [15], etc.

1.2.4 Control Challenge

A workable quantum computer should comprise both software and hardware
working seamlessly. Quantum software describes the computation steps of
applications, which is converted and used to control the quantum hardware to
perform state evolution.

On the one hand, although high-level quantum programming languages have
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been developed to simplify the description of quantum algorithms, current
quantum compiler output is not directly executable on real qubits since it con-
siders little low-level constraints, such as precise timing control on nanosecond
scale.

On the other hand, in current experiments, quantum processors are controlled
with well-defined electrical signals, e.g., microwave-frequency and base-band
pulses, which require accurate parameters and timing. To satisfy the strict
requirements on control signals, dedicated electronic devices are typically used
to interface with the quantum processor. However, existing control methods
introduce high resource consumption, long configuration times, and control
complexity, all of which scale poorly with the number of qubits [60]. It is
another challenge to develop a control microarchitecture which can scale up to
control tens of qubits in the near term.

Similar to a classical instruction set architecture being the interface of classi-
cal software and hardware, a quantum instruction set architecture (QISA) sup-
ported by a quantum control microarchitecture is required to bridge the gap
between quantum software and hardware. Quantum computer architecture and
control microarchitecture are the research focus of this thesis.

In response to the trend of building a NISQ quantum computer targeting quan-
tum supremacy, the work of this thesis shifted the focus from supporting a
QECC, such as surface code, to supporting current quantum experiments and
small-scale quantum algorithms and to satisfying the requirement of near-term
QECC implementation as well.

In this thesis, we focus on transmon qubits [61] in planar circuit quantum elec-
trodynamics [62]. This is a promising architecture for solid-state quantum
computing where qubit measurement and a universal gate set [20], comprised
of single-qubit gates (mainly x and y rotations) and the Controlled-Z (CZ)
gate, have already achieved error rates lower than the fault-tolerance thresh-
old for surface code [39]. These physical error rates are limited by T1, whose
state-of-the-art in this architecture is 30 - 100 µs [26, 63, 64]. Recent experi-
ments have demonstrated basic quantum error correction for this architecture,
including the repetition code [26, 27] and elements of the surface code [65].
In addition, several cloud quantum computing platforms with tens of super-
conducting qubits are also available [64, 66, 67] at the time of writing. How-
ever, since it is still not clear which quantum technology would be the winner
quantum technology, we also keep in mind trying to make the QISA and con-
trol microarchitecture capable of controlling various quantum technologies as
much as possible.
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1.3 Contribution and Thesis Organization

We start by introducing the background of this work and reviewing the related
research in Chapter 2. To construct a fully programmable circuit-model-based
quantum computer, our research started by clarifying all layers of a quantum
computer from an architectural point of view as presented at the end of this
chapter.

As explained in Section 1.2.4, existing control methods are insufficient regard-
ing scalability and flexibility. To address this issue as well as to provide a pro-
grammable interface to quantum software, we propose an experimental control
microarchitecture, QuMA, for superconducting quantum processors in Chap-
ter 3. QuMA is highlighted by codeword-based event control, queue-based
precise timing control, and multilevel instruction decoding. QuMA can exe-
cute a low-level quantum microinstruction set named QuMIS. We demonstrate
QuMA and QuMIS by performing a standard gate-characterization experiment
on a transmon qubit.

However, QuMIS suffers from no feedback, limited scalability due to low in-
struction information density, and limited flexibility due to being tightly bound
to the electronic hardware implementation. To address these issues, we pro-
pose in Chapter 4 an executable QISA, eQASM (short for executable QASM).
eQASM can be translated from the quantum assembly language (QASM), sup-
ports feedback, and is executed on an upgraded version of QuMA, QuMA v2.
eQASM alleviates the quantum operation issue rate problem by efficient tim-
ing specification, single-operation-multiple-qubit execution, and a very-long-
instruction-word architecture. The definition of eQASM focuses on the assem-
bly level to be expressive. Quantum operations are configured at compile time
instead of being defined at QISA design time. We instantiate eQASM into a
32-bit instruction set targeting a seven-qubit superconducting quantum proces-
sor. We validate our design by performing several experiments on a two-qubit
quantum processor.

Both QuMA and QuMA v2 targets controlling NISQ devices without QEC.
QEC is essential for large-scale quantum computing, which requires highly
patterned control over a large number of qubits. Addressing this issue, we
envisioned a heterogeneous microarchitecture, FT QuMA, targeting quantum
computing in the long term. Since QEC is essential for fault-tolerance imple-
mentation and surface code has a relatively high error threshold, we choose
planar surface code as the underlying QECC. FT QuMA supports runtime
virtual-physical address translation, introduces a microarchitectural scheme
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for quantum error correction and detection, and a hardware mechanism that
substantially reduces the codesize of the executable and reduces the execution
overhead. This work is introduced in Chapter 5.

As the quantum control microarchitecture incorporates more functionality and
controls more qubits, the hardware complexity grows correspondingly. It poses
more challenge in the design, implementation, and verification of the control
microarchitecture. To enable efficient design, development, and verification
of the quantum (micro)architecture, we propose QuMAsim, a cycle-accurate
(micro)architecture simulator based on SystemC, which can simulate the elec-
tronic part of the microarchitecture. By connecting QuMAsim with a qubit
state simulator with a precise error model, such as QuantumSim [68], we can
construct a full-stack simulator for NISQ technology, that we call Quantum
Virtual Machine (QVM). Apart from the correctness of quantum program se-
mantics at various levels, QVM can also verify low-level hardware constraints,
including electronic control constraints and timing. This work is introduced in
Chapter 6.

Chapter 7 is a conclusion and an outlook of the future work.
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2
Background

This chapter starts with introducing quantum computing basics in Section 2.1.
Section 2.2 performs an analysis of an example quantum algorithm, which
reveals some features of quantum algorithms and gives an impression of the
source of quantum speedup. In Section 2.3 we present the hardware implemen-
tation of superconducting qubits and the prevailing control methods, based on
which our control architecture is built. Since quantum computing suffer from
short coherence time of qubits and erroneous quantum operations, QECC is re-
quired for large-scale quantum computing, which is introduced in Section 2.4.
Section 2.5 briefly reviews previous work related to this thesis. As a con-
clusion, Section 2.6 presents our proposed full stack of multiple layers for a
quantum computer.

2.1 Quantum Computing Basics

2.1.1 Quantum Bit

Superposition

A classical bit has two exclusive states, 0 or 1, and can only be in one of them
at any instant. In contrast, the elementary unit of quantum computing, the
quantum bit or qubit, can exist in a superposition of its two basis states, |0〉
and |1〉, which is mathematically described by

|ψ〉 = α |0〉+ β |1〉 , (2.1)

where

α, β ∈ C and |α|2 + |β|2 = 1. (2.2)

9
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Using the logical states as a basis, this superposition state can be represented
by a complex-valued two-vector

|ψ〉 =

[
α
β

]
. (2.3)

As constrained by Eq. 2.2, α and β can be rewritten as

α = |α| eiγ , β = |β| ei(γ+ϕ).

Let

θ = 2 arctan

∣∣∣∣βα
∣∣∣∣ ,

then we get

|ψ〉 = eiγ
(

cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉
)

Since the global phase eiγ has no observable effects in quantum mechanics, it
can be ignored and the qubit state can be further simplified into

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 , (2.4)

with ϕ, θ satisfying

ϕ ∈ [0, 2π) and θ ∈ [0, π]. (2.5)

The state of a single qubit can be intuitively visualized as a unique unit vector
on the Bloch sphere as shown in Figure 2.1. The Bloch sphere is a unit sphere.

z

y

x

0

1

Figure 2.1: Geometrical representation of one qubit state using the Bloch sphere.
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The basis state |0〉 (|1〉) corresponds to the intersection of the positive (nega-
tive) z-axis and the sphere, and any superposition state corresponds to a point
on the sphere. For example, 1√

2
(|0〉 + |1〉) and 1√

2
(|0〉 − |1〉) are represented

by the intersections of the positive and negative x-axis and the Bloch sphere,
respectively. 1√

2
(|0〉 + i |1〉) and 1√

2
(|0〉 − i |1〉) are represented by the inter-

sections of the positive and negative y-axis and the Bloch sphere, respectively.

In classical computers, the value read from a memory is identical to the in-
formation stored. This readout process is deterministic and no information is
lost. In stark contrast, reading a qubit can only return one bit information even
though the qubit can be in a superposed state where the coefficients can be
continuous. This is done by a measurement of the qubit. During measurement,
the qubit is projected onto |0〉 or |1〉 with probabilities |α|2 and |β|2, respec-
tively, and a corresponding bit of classical information is returned. Since the
original state cannot be constructed based on the single measurement result,
the information originally stored in the qubit is lost. Addressing destructive
quantum measurement, quantum algorithms usually contain a stage before the
final measurement to convert the computation result into a format represented
in the basis state.

Entanglement

In classical computers, n bits can only be in one of the 2n possible states at a
time. As a consequence, the entire system can only process this one state at
one time. In a quantum system, each qubit of n independent qubits can be in
superposition, with the entire system state described by the tensor product of
each qubit state:

|ψ〉 = (an−1 |0n−1〉+ bn−1 |1n−1〉)⊗
(an−2 |0n−2〉+ bn−2 |1n−2〉)⊗ · · · ⊗ (a0 |00〉+ b0 |10〉)

(2.6)

This is also called product state. Expand this product state, we can get a super-
position of 2n states:

|ψ〉 = α1···11 |1 · · · 11〉+ α1···10 |1 · · · 10〉+ · · ·+ α0···00 |0 · · · 00〉 , (2.7)

where

αin−1···i1i0 =
n−1∏
k=0

[(1− ik) · ak + ik · bk] , ik ∈ {0, 1}, (2.8)
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and the subscription of the bits in all kets (|· · ·〉) is omitted with the convention
that each bit from left to right corresponds to the state of one qubit from n− 1
to 0.

It can be easily verified that the state |ψ〉 is also normalized:

1∑
in−1=0

· · ·
1∑

i1=0

1∑
i0=0

|αin−1···i1i0 |2 = 1. (2.9)

Taking the logical states {|00 · · · 0〉 , |00 · · · 1〉 , · · · , |11 · · · 1〉} as the basis, we
can also express |ψ〉 using the vector

|ψ〉 =


α0

α1
...

α2n−1

 . (2.10)

The product state in Equation 2.6 can always be expanded to the addition for-
mat in Equation 2.7. But, the reverse is not always possible, especially when
qubits are not independent of each other, which phenomenon is called entan-
glement. For example, any one of the four Bell states cannot be represented as
the product of two individual qubit states:∣∣Φ+

〉
=

1√
2

(|00〉+ |11〉) , (2.11)∣∣Φ−〉 =
1√
2

(|00〉 − |11〉) , (2.12)∣∣Ψ+
〉

=
1√
2

(|01〉+ |10〉) , (2.13)∣∣Ψ−〉 =
1√
2

(|01〉 − |10〉) . (2.14)

2.1.2 Quantum Gate

On the one hand, superposition and entanglement provide an exponential state
space as shown in Section 2.1.1. On the other hand, quantum operations are
intrinsic parallel by the linearity of quantum mechanics. Both facts form the
foundation for quantum computers to achieve speedup over classical compu-
ters. We briefly introduce the notion of quantum gates.
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Single-qubit Gate

A qubit state can be modified by applying quantum gates on qubits. Every
single-qubit gate is a rotation Rn̂(θ) on the Bloch sphere along an axis n̂ =
(nx, ny, nz) ( |n̂|2 = 1) by an angle θ. In the logical basis, such a quantum
gate can be represented by the unitary matrix

Rn̂(θ) = cos

(
θ

2

)
I − i sin

(
θ

2

)
(nxX + nyY + nzZ),

where

I =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
(2.15)

are the standard Pauli gates. For example, Rx(π), Ry(π), andRz(π) rotate the
qubit by π along the x, y, and z axis, respectively. The effect of Rx(π) is to
exchange |0〉 and |1〉 of the target qubit, which is called bit-flipping. The effect
of Rz(π) is to negate the coefficient of |1〉 of the target qubit, i.e., change the
phase of the qubit, which is called phase-flipping.

A quantum gate U updates the qubit state from |ψi〉 to |ψo〉. This process can
be mathematically described using the matrix-vector multiplication

|ψo〉 = U |ψi〉 .

Take the Rx(π) gate applied on the qubit with the state |ψi〉 as an example.
Since

Rx(π) = −i
[
0 1
1 0

]
, and |ψi〉 =

[
α
β

]
,

The output state |ψo〉 will be:

|ψo〉 = Rx(π) |ψi〉 = −i
[
0 1
1 0

]
·
[
α
β

]
= −i

[
β
α

]
=

[
β
α

]
. (2.16)

As shown in Eq. 2.16, the global phase of a quantum gate turns into that of the
qubit state, which has no observable effects either. Hence, we can also ignore
the global phase of a quantum gate and write

Rx(π) = −i
[
0 1
1 0

]
=

[
0 1
1 0

]
.
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Multi-qubit Gate

Apart from quantum gates operating only a single qubit, there are also gates
operating more than one qubit. The two most common two-qubit gates are the
controlled-not (CNOT) gate and the controlled-phase (CPhase) gate with the
corresponding matrices in the two-qubit logical basis {|00〉 , |01〉 , |10〉 , |11〉}:

CNOT ≡


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , CZ ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 .
The effect of a two-qubit gate applied on two qubits is also described by
matrix-vector multiplication. For example, two qubits with the original state
|ψi〉 with

|ψi〉 =


α0

α1

α2

α3


will be transformed to the state |ψo〉 by a CNOT gate:

|ψo〉 = CNOT · |ψi〉 =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ·

α0

α1

α2

α3

 =


α0

α1

α3

α2

 .
This process can be understood intuitively using the following mapping:

|00〉 → |00〉 ;
|01〉 → |01〉 ;
|10〉 → |11〉 ;
|11〉 → |10〉 .

In other words, the value of qubit q0 in the basis is flipped if the state of qubit
q1 in the same basis is 1 (the so called controlled-not). Note, if the initial state
is a superposition of the four states, the CNOT gate performs this mapping for
all four states simultaneously, which is some intrinsic parallelism provided by
quantum mechanics. CPhase gate is also called CZ gate because it can also be
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understood as applying a Z gate on qubit q0 (or phase-flipping q0) if the state
of qubit q1 in the same basis is 1:

|00〉 → |00〉 ;
|01〉 → |01〉 ;
|10〉 → |10〉 ;
|11〉 → − |11〉 .

Both the CNOT gate and the CZ gate can map certain product states onto
entangled states. In general, Two- or more-qubit gates are essential to create
entanglement among qubits for quantum computing.

Extending the previous understanding, we can define an n-qubit gate, which
is described by a 2n × 2n matrix. For example, the Toffoli gate, which is also
called the Controlled-Controlled NOT (CCNOT) gate, applies on three qubits
with the behavior described by a 8× 8 matrix:

Toffoli ≡



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


(2.17)

2.1.3 Quantum Circuit

Analog to classical circuit which describes how operations are done over clas-
sical bits, a quantum circuit can be used to illustrate the process of applying
quantum gates on qubits. In the quantum circuit, every qubit is represented by
a horizontal line, and one operation by a block on the qubits. For example, ap-
plying a single-qubit gate Us on qubit q0 can be represented using the quantum
circuit shown in Figure 2.2. If the qubit state before the gate Us is |ψi〉, then
the qubit state after the gate is |ψo〉 = Us |ψi〉.

q0 Us

Figure 2.2: Quantum circuit of applying a single-qubit gate Us on qubit q0.
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We can also use a quantum circuit to describe the m-qubit gate Um as shown
in Figure 2.3.

q0

Um
q1

...
qm−1

Figure 2.3: Quantum circuit of a multi-qubit gate Um.

Some quantum circuit symbols are defined to intuitively represent the
commonly-used quantum gates, as shown in the Table 2.1.

Table 2.1: Quantum circuit of some commonly-used multi-qubit gates.

Gate Name Gate notation Matrix representation

CNOT
•


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


CZ •

•


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



Toffoli

•
•



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


A quantum circuit can describe multiple quantum gates applied on multiple
qubits. An example is shown in Figure 2.4, with the H , T , T †, and S gates
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q0 • • • • T

q1 • • T † T † S

q2 H T † T T † T H

Figure 2.4: Example of a quantum circuit, which is the decomposition of the Toffoli
gate as explained in Section 2.1.4.

defined as following:

H ≡ 1√
2

[
1 1
1 −1

]
, T ≡

[
1 0

0 eiπ/4

]
,

T † ≡ 1√
2

[
1 0

0 e−iπ/4

]
, S ≡

[
1 0

0 eiπ/2

]
.

(2.18)

Quantum operations applied on the qubits earlier are placed on the left side to
the operations applied later. Hence, the quantum circuit in Figure 2.4 describes
the following operation sequence:

Tq0 · Sq1 · CNOTq0,q1 · T †q1 · CNOTq0,q1 ·Hq2 · T †q1 · Tq2 ·
CNOTq0,q2 · T †q2 · CNOTq1,q2 · Tq2 · CNOTq0,q2 · T †q2 ·
CNOTq1,q2 ·Hq2

(2.19)

Note, the order of gates in the mathematical expression is inverse to that in the
quantum circuit as shown in Figure 2.4, which is consistent with the order of
multiply multiple consecutive matrices with an input vector.

2.1.4 Universal Quantum Gate Set

A classical computing process can be generally treated as a mapping from n-
bit value x to m-bit value y:

f : x→ y (2.20)

According to Boolean algebra, we can represent any given function f with
a set of three gates SUC = {AND,OR,NOT} using some methods such as
Karnaugh Mapping [69]. Hence, SUC is universal in classical computation.
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In analogy, a set of quantum gates is called universal [40] if it can be used to
approximate any m-qubit operation Um to arbitrary precision, where m ≥ 1.
A commonly-used universal quantum gate set is {H,T,CNOT}.
For example, a Toffoli gate can be decomposed using {H,T,CNOT} with
the quantum circuit as shown in Figure 2.4, the mathematical expression as
shown in Eq. 2.19, or a quantum assembly language (QASM) description [50]
as shown in Listing 2.1. Note, the T † and S gates can be implemented using
seven and two concatenated T gates, respectively.� �

1 H q2

2 CNOT q1, q2

3 TDAGGER q2

4 CNOT q0, q2

5 T q2

6 CNOT q1, q2

7 T q2

8 CNOT q0, q2

9 TDAGGER q1

10 T q2

11 CNOT q0, q1

12 H q2

13 TDAGGER q1

14 CNOT q0, q1

15 T q0

16 S q1� �
Listing 2.1: QASM code for the decomposition of the Toffoli gate.

As shown in Listing 2.1, the quantum operation is written down in the order
that they appear in the quantum circuit from left to right. Every quantum oper-
ation occupies a line in QASM. One quantum operation contains one operation
name and a list of parameters consisting of the target qubits.

2.2 Quantum Algorithms

In this section, we illustrate how to design an algorithm to solve a problem
using the mechanisms as explained in the previous section. We take Deutsch’s
algorithm [12] as the example to illustrate this process because it is simple to
understand and complex enough to reveal the features of a quantum algorithm.
Later, we summarize some features of quantum algorithms.
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2.2.1 Bernstein-Vazirani Problem

To illustrate the power of quantum computing, Bernstein and Vazirani pro-
posed the following problem in 1993 [13]. Given is the function f which takes
an n-bit value x as input:

f(x) = x · s =

(
n−1∑
i=0

xi · si
)

mod 2 (2.21)

where xi (si) is the i-th bit of x (s). The problem is to find out the n-bit
value of s. It is assumed that a black box (or Oracle) O is given which has
implemented the function f . During a query, the oracle O returns the result of
f(x) when fed with an input x.

A classical implementation of O can only return one-bit information in each
query. Hence a classical algorithm needs to query O for n times to determine
all n bits of s. As shown in [13], it is possible to design a quantum algorithm
which can determine s by a single query to a quantum implementation of O
using n + 1 qubits. Figure 2.5 illustrates this quantum algorithm for the case
n = 8.

x7 |0〉
x6 |0〉
x5 |0〉
x4 |0〉
x3 |0〉
x2 |0〉
x1 |0〉
x0 |0〉
y |1〉

H

H

H

H

H

H

H

H

H

O

H

H

H

H

H

H

H

H m7

m6

m5

m4

m3

m2

m1

m0

Figure 2.5: Quantum algorithm for Bernstein-Vazirani problem.

As shown in Figure 2.5, a quantum algorithm typically consists of four stages:

1. initializing qubits to some state easy to prepare, which is usually the
computational basis;

2. preparing the superposition of the input data by superposing the qubits;
3. process all input data in parallel using entanglement; and
4. computational result extraction.
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In the Bernstein-Vazirani algorithm, the top n qubits are prepared into the |0〉
state and the bottom qubit the |1〉 state during initialization. The overall state
of n+ 1 qubits can be written as:

|ψ0〉 = |0〉 |0〉 · · · |0〉 |1〉 (2.22)

The second step, preparing superposition is achieved by applying transversal
H gates on every qubit, resulting in the following state:

|ψ1〉 =H |0〉 ·H |0〉 · · ·H |0〉 ·H |1〉

=
1√
2

(|0〉+ |1〉) · 1√
2

(|0〉+ |1〉) · · · · · 1√
2

(|0〉+ |1〉) · 1√
2

(|0〉 − |1〉)

=
1√

2n+1

n−1∑
x=0

|x〉 (|0〉 − |1〉) .

The oracle O implements a function g based on f :

g : (x, y)→ (x, [y + f(x)] mod M), (2.23)

where M = 2m and m is the number of qubits used by y. As an example,
using reversible circuit synthesis, we can implement the oracle for function g
with s = 10110010 using the circuit as shown in Figure 2.6. Oracle for other
value of s can be implemented in a similar way.

|x7〉
|x6〉
|x5〉
|x4〉
|x3〉
|x2〉
|x1〉
|x0〉
|y〉

|x7〉
|x6〉
|x5〉
|x4〉
|x3〉
|x2〉
|x1〉
|x0〉
|f(x7x6 · · ·x1x0)⊕ y〉

Figure 2.6: Oracle used in the Bernstein-Vazirani algorithm.

Ruled by the linearity of quantum mechanics, if the input data to a quantum
oracle is superposed, the output of the oracle is the superposition of the result
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for each input data. In other words, the oracleO applies the function g on each
input data |x〉 |j〉 (j ∈ {0, 1}) simultaneously:

|0〉 |j〉 → |0〉 |f(0)⊕ j〉 ,
|1〉 |j〉 → |1〉 |f(1)⊕ j〉 ,

...

|n− 1〉 |j〉 → |n− 1〉 |f(n− 1)⊕ j〉 .

The resultant state after the oracle O can be written as:

|ψ2〉 =
1√

2n+1

n−1∑
x=0

|x〉 (|f(x)〉 − |f(x)⊕ 1〉)

=
|0〉+ (−1)sn−1 |1〉√

2
⊗ · · · ⊗ |0〉+ (−1)s1 |1〉√

2
⊗

|0〉+ (−1)s0 |1〉√
2

⊗ |0〉 − |1〉√
2

(2.24)

For brevity, the deduction procedure which converts the addition format of the
state |ψ2〉 into the product format is shown in Section 2.7.

After the oracle, the result s has been encoded into the phase of one qubit
of x. The last stage, computation result extraction, is done by a smart post-
processing and measurements. The goal of the post-process is to convert the
result encoded in the phase of each qubits into encoded in the basis state. It is
done by applying transversal H gates on qubits of x. It can be easily verified
that

H
|0〉+ |1〉√

2
= |0〉 and H

|0〉 − |1〉√
2

= |1〉 ,

so we can get:

|ψ3〉 = |sn−1〉 ⊗ · · · ⊗ |s1〉 ⊗ |s0〉
|0〉 − |1〉√

2
(2.25)

So the final measurement on qubits {xi} can return the unknown value s.

2.2.2 Characteristics Analysis

From the Bernstein-Vazirani algorithm, we could analyze some characteristics
of quantum algorithms.
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• Different to classical computers where data is stored and processed in
different units, qubits are the place where data is both stored and pro-
cessed in quantum computing. In other words, quantum computing is
a kind of computation in memory. It hints that the conventional von
Neumann architecture might not be the most suitable architecture for
quantum computing.
• A quantum algorithm usually contains four stages: initialization, prepar-

ing superposition, data processing using entanglement, and computation
result extraction.
• In classical computation, initialization data is copied to a memory which

can be used later. In quantum computing, there is no clear definition of
initialization data because qubits are usually prepared to the basis state
during initialization. If there is any data used during the computation, it
is input by applying corresponding quantum operations on qubits.
• The measurement can only reveal a small amount of data. This fact

means that quantum computers are usually more suitable for problems
of which both the input and output are short, but the computation process
is complex [70].
• Quantum speedup comes from: 1) the exponential big state space al-

lowed provided by superposition as shown by |ψ1〉, and 2) every sin-
gle quantum operation applied on entangled qubits can affects all super-
posed states simultaneously as shown by the oracle applied on |ψ1〉.
• Unlike classical computation, where any data can be processed individ-

ually if not made in parallel intentionally, the parallelism of quantum
operations is mandatory. This is the source of quantum speedup as well
as a difficulty for designing new quantum algorithms.
• Since quantum computing is still much more expensive than classical

computing, a valid quantum algorithm is required to have a lower com-
plexity than its best classical counterparts [40]. This forms another chal-
lenge in designing quantum algorithms and one of the reasons why there
are only a limited number of quantum algorithms till now [71].

2.3 Hardware Implementation

The work of this thesis focuses on transmon qubits [61] in planar circuit quan-
tum electrodynamics [62].
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2.3.1 Superconducting Qubits

Figure 2.7 shows images at various length scales of a transmon (Q) [63]. The
transmon is a lumped-element nonlinear LC resonator consisting of an in-
terdigitated capacitor in parallel with a pair of Josephson junctions providing
nonlinear inductance. We use the ground state (first-excited state) of this cir-
cuit as the qubit |0〉 (|1〉) state. The transition frequency fQ between these
states can be tuned over several gigahertz on nanosecond timescales by con-
trolling the flux through the loop between the two Josephson junctions using
the proximal flux-bias line (port PF).

Q

PF
R

PoPi

(a)(b)(c)

500 μm

2 μm
300 nm

Figure 2.7: Images at various scales of a transmon qubit coupled to a readout res-
onator in a planar circuit quantum electrodynamics chip. (a) Qubit (Q), resonator (R),
flux-bias line (PF), feedline input (Pi), and feedline output (Po). (b) Zoom-in on the
two Josephson junctions of the qubit. The magnetic flux threaded through the loop sets
the qubit transition frequency fQ. (c) Zoom-in on one of the two Josephson junctions.

Qubit measurement exploits the qubit-state dependent fundamental frequency
fR of a coplanar waveguide resonator (R) which is capacitively coupled both
to the transmon and to a feedline. A pulsed measurement (typically 300 ns -
2 µs) of transmission through the feedline (from input port Pi to output port
Po) near the fundamental of R interrogates the qubit state, projecting it to |0〉
or |1〉. Demodulation, integration, and discrimination of the transmitted signal
is used to infer the measurement result.

Single-qubit gates are performed by applying calibrated microwave pulses
(with typical pulse length of 20 ns) at fQ to the feedline. These pulses are
commonly generated by single-sideband modulation of a carrier using an I-Q
mixer and envelope functions generated by an arbitrary waveform generator.
The in-phase (I) and quadrature (Q) components of the envelope functions of
x/y-rotations are shown in Figure 2.8. In this figure, the I and Q components
both contain a -50 MHz single-sideband (SSB) modulation. The envelopes
and the phase of the carrier determine the rotation axis along the equator of
the Bloch sphere, and the amplitude of the pulse determines the rotation an-
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gle. Standard calibration routines are employed to determine the amplitude of
specific pulses (e.g., π and π/2), and to correct for mixer imperfections. As
explained in Section 2.1.4, arbitrary single-qubit gates can be decomposed into
x- and y-axis rotations albeit at the cost of longer operation sequences.
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Quadrature
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Quadrature
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0                5               10              15              20
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Figure 2.8: In-phase and quadrature envelopes of Xπ and Yπ pulses, including
−50 MHz single-sideband modulation.

In circuit quantum electrodynamics, the most common two-qubit gate is the
CZ gate. Such a gate can be performed between qubits coupled to a common
resonator or capacitor. It is realized by applying suitably calibrated pulses
of typical duration ∼ 40 ns to the flux-bias line that move the frequencies
of qubits close to interact for a certain amount of time. We avoid going into
further detail on CZ gates here as these are not part of this thesis. Please
see [72–74] for details.

2.3.2 Implication on the Control

In classical processors, logical gates or functional units are implemented by
a circuit composed of electronic elements such as transistors, which locates
at a fixed position on the chip. To perform an operation, the operated data
travels from the registers to the input ports of the corresponding functional
unit implementing this operation, and the result is automatically generated by
the functional unit. We say data is travelling and operations are stationary for
classical computers (see the top half of Figure 2.9).

This is on the contrary for quantum computers where data is stored in qubits.
Since most kinds of qubits are stationary, data carried by the qubits is also
stationary1. To perform an operation, pulses are generated by an external con-

1Photon-based quantum computers are an exception, where data is encoded in photons
which travel through different lens for operation. Throughout this thesis, we exclude photon-
based quantum computers from our discussion.
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troller and then applied on qubits. As a consequence, data is transformed in
place. We say operations are travelling and data is stationary for quantum
computers (see the bottom half of Figure 2.9).

Figure 2.9: In classical execution, data travels undergoing operations one by one. In
quantum execution, operations travel applying on qubits one by one.

In classical digital processors, data is stored and processed in binary format,
which is represented by digital signals. The storage unit, registers or cache, and
the processing unit, arithmetic/logic unit, can be implemented using the same
basic elements, transistors. Apart from storage and processing, the control
signals of the storage and the processing unit are also digital signals. The
controller can be also implemented with transistors. The homogeneity among
the storage, processing and control enables an easy integration of the storage
unit, the processing unit and the control unit on a single chip.

In contrast, data is stored and processed in qubits which can be entangled. The
data evolves in a format encoded in superposed states. The control medium
over qubits are analog pulses, which are usually generated by arbitrary wave-
form generators. The heterogeneity between quantum data and quantum con-
trol leads to the requirement of separate design of the quantum controller to
the quantum processor allocating qubits as shown in Figure 2.10.

To satisfy this requirement and as shown in Figure 2.11, a prevailing quantum
controller is to use arbitrary waveform generators (AWG), such as Tektronix
AWG5000 series [75], to generate analog control signals, and data collections
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Figure 2.10: Different to classical processors, a dedicated control unit is required to
constructed which is separated from the quantum processor locating qubits.

cards, such as AlazarTech PCI Express digitizers [76], to digitize the readout
signals.

Qubits 

Readout Signal

Control Signal

Software
Stack

Quantum  
Controller

AWGs

Data
Collection
Cards

Digital 
Waveforms

Digitized
Signals

Quantum  
ProcessorPC

Figure 2.11: Quantum controller based on AWGs and data collection cards. Colored
lines denote analog signals and black lines denote digital signals.

On the one hand, with such kind of AWGs, pulses for quantum operations are
generated and combined by software on the PC into long waveforms according
to the timing of each pulse. These waveforms are uploaded to the memory of
the AWGs and later output by the AWGs autonomously. On the other hand,
software-based integration over the digitized data is required to determine the
measurement result. Both processes highly rely on the software running on the
PC.

We take the T1 experiment as an example to illustrate how to perform quantum
experiments or algorithms using the quantum controller based on AWGs and
data collection cards. The T1 experiment is used to calibrate the relaxation
time (T1) of a qubit. This experiment involves the following steps:

1. Initialize the qubit in |0〉 by waiting several times T1;
2. Excite the qubit to the |1〉 state by applying an Xπ pulse;
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3. Wait for a time τ ;
4. Measure the qubit state, get measurement reuslt R = 0 or 1;
5. Repeat steps 1 to 4 with τ varying from tmin to tmax in K steps;
6. Repeat the above steps N times;
7. Calculate the raw fidelity F|1〉|τ =

∑N−1
j=0 Rj/N for each interval τ .

8. Extract T1 by fitting the function ae−τ//T1 + b to the F|1〉|τ data, with a,
b, and T1 as fitting parameters.

Steps 1 through 4 (5) are seen as one iteration (round) of the experiment. The
required waveforms are shown in Figure 2.12.

Figure 2.12: All waveforms required by a T1 experiment, which consists of multiple
iteration with each iteration of a different idling time (τ ) between the Xπ pulse and
the measurement.

To use AWG5014 (one Tektronix AWG5000 series product) to perform this
experiment, a commonly-used method is to prepare all the K waveforms at
once, with each waveform corresponding to one τ . After all K waveforms are
uploaded to the memory of AWG5014, AWG5014 generates waveform 1 to K
consecutively and repeat this process until N rounds of waveforms have been
generated.

As discussed in Section 3.3, this method suffers from:

• Awkward pulse generation because slight change in the timing of oper-
ations would require a re-generation of the entire waveform;
• High memory consumption to store long waveforms required by long

experiments such as this T1 experiment or Randomized Benchmark-
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ing [77, 78]; and
• Difficult to implement feedback control because waveform uploading

would take a time longer than the qubit coherence time.

2.4 Quantum Error Correction

Quantum computing is error prone because of two reasons. First, physical
qubits have a very short coherence time, which means that qubits can loose
its state during computation. Second, imperfect quantum operations can in-
troduce errors when applied on qubits. Both facts calls for QEC to enable
fault-tolerant quantum computing.

However, QEC is more challenging than classical error correction because of
three reasons:

• According to the no-cloning theorem, an unknown quantum state cannot
be copied, which makes it impossible to implement error correction by
duplicating quantum states.
• Quantum errors are continuous, which cannot be corrected by directly

applying a fixed set of operations.
• Quantum measurement may destroy the information stored in qubits,

which means that error correction cannot utilize direct measurement on
qubits storing the information.

The basic idea of QEC [37] is to use several physical imperfect qubits to com-
pose more reliable units called logical qubits based on a specific QECC [79]
such as surface code [39]. Such encoding does not need to clone the qubit state,
as it is done by entangling several qubits called data qubits. Furthermore, pos-
sible errors in the logical qubit are detected by measuring some ‘helper’ qubits
called ancilla qubits. In this way, the information in data qubits can be pre-
served. Ancilla are used to measure the stabilizers of nearby data qubits, which
projects continuous errors into discrete errors. The stabilizer measurement re-
sults allow identifying whether there are errors, and if yes what kind (bit-flip,
phase-flip or both) and in which qubit(s) the error(s) are. This kind of mea-
surement is called error syndrome measurement (ESM). Since quantum errors
accumulate as time elapses, ESM has to be done repeatedly.

It is worth noting that errors do not need to be corrected immediately. Instead,
errors are tracked in classical logic using a technique called Pauli Frame [80].
Quantum operations and measurements are translated by the Pauli Frame, pre-
serving the correctness of quantum computation.
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Figure 2.13: Implementation of a distance-3 surface code, which comprises 17 qubits.

One of the most promising and currently very popular QECC is surface
code [39]. In surface code, qubits are arranged in a regular 2D lattice which
only enables nearest-neighbour (NN) interaction (Figure 2.13). The NN lat-
tice architecture is one of the most-promising structure both theoretically and
experimentally [36, 42, 43, 81]. Surface code has an error threshold of ∼ 1%
meaning that it can tolerate a physical error rate up to 0.01.

In Figure 2.13, open circles represent data qubits and green and red filled cir-
cles correspond to Z and X ancilla qubits, respectively. In surface code, two
kinds of stabilizers (XXXX and ZZZZ) are measured, with the correspond-
ing ESM circuits shown in Figure 2.14. TheXXXX (ZZZZ) stabilizer mea-
surement can be used to detect phase-flip (bit-flip) errors using X (Z) ancilla.
As we mentioned, these circuits will be repeatedly applied during computa-
tion. The interval between the starting point of two consecutive ESM is called
a Surface Code Cycle (SC cycle). In surface code, the measurement results
+1/− 1 coming from several rounds of ESM, are then forwarded into classi-
cal logic where errors are identified (quantum error detection, QED) by using
decoding algorithms, such as Blossom algorithm [82].

An important metric of a QECC is the code distance which is the minimum
number of physical operations required to perform a logical operation, or the
length of the shortest error chain that is undetectable [39]. For example, among
all logical operations, a logical X gate on a distance-3 surface code costs three
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Figure 2.14: ESM circuit for the (a)XXXX and (b) ZZZZ stabilizer measurement,
taking as example an X and Z ancilla as shown in Figure 2.13.

physical gates, which is the minimum number of physical gates required by
any logical operation. In addition, three errors on a distance-3 surface code
logical qubit can change the logical state without a detectable syndrome.

A set of logical operations are defined for surface code to enable fault-tolerant
quantum computing. The operations include initialization, measurement, X ,
Z, H , T , and CNOT.

The initialization into the logical |0〉 (|1〉) state is implemented by:

• Resetting all data qubits in the |0〉 (|1〉) state.
• Waiting for three Surface Code Cycle, in each cycle a round of ESM is

performed.
• The ESM result of the three Surface Code Cycle can help figure out

error(s) that may occur. After correcting these errors, the final result is
then a logical |0〉 (|1〉) state.

Measuring a logical qubit is implemented by measuring all data qubits
(transversal measurement) in the Z basis. The product of the data qubit mea-
surement outcomes (+1/−1) will yield the logical qubit measurement result.
Note, errors during physical measurement can be diagnosed by classically
checking the parity of the data qubits [83].

The logical X (Z) operations are implemented by applying a chain of X (Z)
operations on the data qubits [39]. Taking the surface code in Figure 2.13 as
an example, a logicalX (Z) operation is performed by applying three physical
X (Z) operations X2X4X6 (Z0Z4Z8).

The logical H gate is implemented by applying physical a H gate on every
data qubit transversely (H0H1H2 · · ·H8). It is worth noting, after a logical
H gate applied on the logical qubit, an X (Z) stabilizer will be turned into
a Z (X) stabilizer, and the implementation of the logical X (Z) gate will be
changed to X0X4X8 (Z2Z4Z6), taking the logical qubit in Figure 2.13 as an
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example.

The logical CNOT gate is implemented by performing pair-wise CNOT gates
between data qubits of the two logical qubits. However, due to 2D NN con-
straint, it cannot be directly implemented on the 2D square lattice due to the
NN constraint. A lattice-surgery-based approach can be used which is compli-
ant with the NN constraint and explained in Chapter 5.

The implementation of the logical T gate requires magic state injection, where
required are the states (|0〉 + eiπ/4 |1〉)/

√
2 and (|0〉 + i |1〉)/

√
2, and logi-

cal CNOT and H gates. This process introduces significant overhead and is
explained in detail in [39].

QEC allows fault-tolerant computation and is thus a fundamental part of large-
scale quantum computing system. The drawback is that it dramatically in-
creases the number of physical qubits. It also creates a large control overhead
and requires a continuous and close interaction between the quantum chip and
the classical platform that makes the quantum computing process more com-
plex.

2.5 Related Research

2.5.1 System Perspective

To construct a workable, fully programmable, universal, circuit-model-based
quantum computer, clarifying the required components of a quantum computer
is essential.

Jones et al. [84] defined a layered control stack that step-by-step maps quan-
tum applications into operations performed on physical two-level systems with
imperfections. Virtual qubits with a particular error rate, quantum error correc-
tion, and logical qubits are the three abstraction layers in the between to sup-
port standard fault-tolerant quantum computing. Like the Open Systems Inter-
connection model (OSI model) [85], it is a conceptual model which character-
izes and standardizes the communication functions of a fault-tolerant quantum
computer without regard to its underlying internal structure and technology.

Van Meter et al. [86] proposed a design that consists of research areas in-
cluding quantum complexity theory, quantum algorithms, QEC theory and im-
plementation, interconnections and qubit storage, etc. This design is more a
description of the research fields that are needed to address the quantum chal-
lenges rather than an implementable architecture.
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Recently, addressing the correct abstractions that expose key low-level details
to enable quantum software and hardware co-design, Chong, Franklin and
Martonosi [87] defined the design tool flows and abstraction stack for quan-
tum computing, which highlights the requirement of collaboration between
classical and quantum parts.

In these works, the term ‘architecture’ is used to refer a system-level pic-
ture that can help understand how to construct a workable quantum computer.
However, little attention has been paid in these works on translating the com-
putation process as described by the quantum software into signals generated
by the hardware to drive qubits, which drove us to propose our system stack
for quantum computing as shown in Section 2.6.

2.5.2 Quantum Programming Languages

The first step of quantum computing is the program written in high-level or
low-level quantum programming languages.

High-Level Languages

Various high-level quantum programming languages and quantum compil-
ers have been proposed or developed to enable efficient description of quan-
tum applications. Examples of imperative quantum programming languages
based on C/C++ include Quantum Computation Language (QCL) [88], Q Lan-
guage [89], and Scaffold [90], etc. Especially, Scaffold is supported by the
quantum compiler ScaffCC [53], which is based on the widely-used LLVM
infrastructure [91]. Another imperative language is the quantum while lan-
guage [92], which is based on the while language [93] and highlights a formal
specification of this language. Examples of functional quantum programming
languages are Quipper [52] embedded in Haskell, LIQUi |〉 [51] embedded in
F#, and ProjectQ [94] embedded in Python, etc. Treating the quantum com-
puter as an accelerator, the domain-specific programming language Q# [70]
defines a heterogeneous quantum computing model, in which a full quantum
program comprises a host program described by a conventional programming
language, like C#, and a quantum kernel described by Q#.

All these programming languages mostly aim at describing large-scale quan-
tum computation at a high level in an efficient way, which is later translated
by the compiler into a representation in a low-level quantum programming
language.
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Low-Level Languages

The development of low-level description of quantum applications started with
QASM [40, 50] to provide an intuitive representation of the quantum circuit.
As an interface to the quantum hardware, quantum physical operations lan-
guage (QPOL) [50] is suggested to describe the execution of quantum ap-
plications with technology-dependent properties. However, no clear format
or instructions are defined in QPOL. To enable hardware simulation that can
quantitatively evaluate quantum architectures, Balensiefer [49] proposed a vir-
tual instruction set architecture (virtual-ISA) based on the von-Neumann ar-
chitecture, which is high level and cannot be directly executed on any physical
machine. Also, branches are not allowed in the quantum program to enable
easy simulation.

Being preliminary, QASM, QPOL, and the virtual-ISA are limited in several
aspects, which attracts increasing attention of researchers in recent years. Ad-
dressing the exploded code size for large-scale quantum applications, Hierar-
chical QASM with Loops (QASM-HL) was proposed [53], which incorporates
classical constructs like loops and function definition to suppress the code size.
To enable analysis and optimization over programs with quantum-classical
mixed instructions, a quantum instruction language, Quil, was proposed to
describe programs that can run on the quantum abstract machine (QAM) [95].
QAM is similar to the hypothetical computer as used by Knuth Donald in his
book The Art of Computer Programming [96]. Quil is at a level higher than
normal QASM formats since it contains structured descriptions for both quan-
tum gates and program routines, which should be compiled into a lower-level
format for execution. OpenQASM [97] was proposed to support efficient de-
scription of quantum applications that can be executed by IBM cloud quantum
computing platform, Quantum Experience [64]. OpenQASM is an assembly
language that allows structured definitions of quantum gates based on a univer-
sal definition for single-qubit unitaries and the two-qubit CNOT gate. Open-
QASM has limited support for classical operations although the if statement is
allowed.

All these low-level languages target to be mathematically equivalent to the cir-
cuit model in an efficient way, with or without interacting with classical com-
puting resources. They cannot be translated into an executable binary format
that can be directly executed by a quantum control microarchitecture, which
leaves a gap between quantum software and hardware.
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2.5.3 Quantum System Structure

For every promising quantum technology, a scalable architecture has been pro-
posed to organize qubits in a quantum system. The first attempt was made by
Cirac and Zoller [98]. They suggested confining ion-based qubits in a linear
trap, which can be operated by laser beams. Addressing the scalability issues
raised by technical obstacles, Kielpinski, Monroe, and Wineland [99] proposed
to organize qubits into an array based on techniques already demonstrated,
which can support massive parallel gate operations for large-scale quantum
computers.

Due to the relatively high fault-tolerance threshold, the surface code became
a prevailing QECC to implement a fault-tolerant quantum computer. Surface
code requires operating a two-dimensional array of qubits synchronously and
in parallel. Comprehensive control over the qubits with sufficient operation
fidelity and parallelism is required to support surface code, including initial-
ization, quantum gates, and measurements.

DiVincenzo [42] proposed a two-dimensional (2D) array architecture with
nearest-neighbor coupling for superconducting qubits which can effectively
support surface code. As one step further, Versluis et al. [81] proposed to scale
up this architecture by repeating the quantum hardware and coherent control
of an eight-qubit unit cell. This architecture can execute the error correction
cycle of a monolithic surface code, which can be either planar or defect-based
surface code. The core trick for scaling up this architecture is to adopt the
selective-broadcasting scheme as proposed by Assad and Dickel et al. [100].
This scheme enables independent control over qubits of the same frequency,
which can reduce the electronic control resource, e.g., arbitrary waveform gen-
erator channels. Beside 2D architecture, Brecht et al. [101] proposed a three-
dimensional (3D) multilayer microwave integrated quantum circuit platform
for superconducting qubits to couple a large number of circuit components
through controllable channels while suppressing any other interactions.

Loss and DiVincenzo [102] proposed a scalable semiconductor-based archi-
tecture which supports a universal set of single- and two-qubit gates for
quantum computing. Kane [103] proposed an architecture based on nuclear
spins of donor atoms with logical operations on individual spins performed
by externally applied electric fields, and measurements by using currents of
spin-polarized electrons. Addressing the fidelity loss due to swaps opera-
tions required by non-local quantum operations, Hollenberg et al. [41] pro-
posed a quasi-2D architecture for nuclear spin qubits which enables subin-
terfacial transport of electron spins to support non-local qubit interactions.
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Hill et al. [43] proposed an architecture with a novel shared-control paradigm
to address the fabrication and control challenge in supporting surface code
using nuclear spin qubits. Targeting spin qubits based on single electrons in
gate-defined quantum dots, Li et al. [44] proposed a crossbar network archi-
tecture based on shared control and a scalable number of lines which enables
qubit coupling beyond nearest neighbors, providing prospects for non-planar
quantum error correction protocol.

In these words, the term ‘architecture’ is used to refer the structure in which
qubits are encoded, connected, controlled and measured and so on. These
works also define the the control over qubits, which requirement should be
satisfied by the quantum control microarchitecture. The quantum control mi-
croarchitecture we propose in this thesis is mostly based on the quantum chip
as proposed by [81].

2.5.4 Efficiently Using Qubits

On the one hand, researchers in the physics community mostly focus on how to
fabricate quantum chips with more qubits with well-defined control by adopt-
ing a bottom-up method. On the other hand, researchers in the computer ar-
chitecture community pay more attention to efficiently using qubits to flexibly
perform universal, fault-tolerance quantum computing by adopting a top-down
method [38, 45–48, 104–106]. Research on this topic is highlighted by the fol-
lowing observations:

• Thousands or millions of qubits are assumed to be available;
• The mapping of quantum computation or error correction tasks to differ-

ent qubits or qubit regions is highly investigated to improve performance
as well as reduce hardware resource consumption;
• The mapping process is largely inspired by the von-Neumann architec-

ture, where the computation region is usually separated from the mem-
ory region;
• Since ancilla factory used for quantum error correction can consume

more than half the qubits, with the percentage even reaching 93% [48]
in a particular situation, it fundamentally affects the way to organize
qubits and the computation process;
• Customizing the architecture for target quantum algorithms, e.g., Shor’s

factoring algorithm, can reduce the hardware resource requirement sub-
stantially.

Since millions of qubits are far beyond the reach of the NISQ technology,
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there has started research on efficiently mapping the qubits as used in small-
scale or intermediate-scale quantum programs to physical qubits with limited
interconnection on a quantum chip [107–109].

In these works, the terms ‘architecture’ and ‘microarchitecture’ are used to
refer the way how qubits are organize into regions for various purposes to im-
prove the efficiency or fidelity of the quantum algorithm. This is different to
this thesis where ‘architecture’ mainly refers the quantum instruction set archi-
tecture and ‘microarchitecture’ refers the quantum control microarchitecture
which applies physical control – e.g., microwaves – over qubits.

2.5.5 Quantum Control Microarchitecture

Limited previous work talked about the microarchitecture used to perform con-
trol over qubits. Oskin et al. [38] proposed an overall architecture for fault-
tolerant quantum computer implementation with concatenation code, which
mainly consists of three parts: quantum arithmetic logic unit (QALU) to per-
form operations, quantum memory to store information, and a dynamic sched-
uler to orchestrate the behavior of the previous two parts. This paper firstly
called for the interleaved execution of classical instructions and quantum in-
structions in the dynamical scheduler, which is simply assumed to be a clas-
sical microprocessor. Though maybe sufficient for qubits based on trapped
ions, a classical, general-purpose microprocessor is insufficient when precise
timing control at nanosecond scale is required, e.g., by superconducting qubits
(see Section 3.3.2).

Addressing the huge instruction bandwidth required to apply physical opera-
tions for quantum error correction, Tannu et al. [110] proposed an architecture
with a dedicated programmable microcode engine to continuously generate
instructions for quantum error correction, which can reduce the instruction
bandwidth between the instruction memory and the microarchitecture control-
ling qubits.

These works either focus on defining the general relationship between mod-
ules of the control microarchitecture or the design of one particular module
to improve the performance of the microarchitecture. However, the details of
some modules are usually incomplete and these works do not define a fully
functioning control microarchitecture for NISQ devices.
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Figure 2.15: Overview of quantum computer system stack

2.6 Quantum System Stack

To construct a fully programmable quantum computer, a key question is: what
layers are required to seamless connect quantum software and hardware which
enable quantum algorithms to be executed on the quantum processor? Defin-
ing a layered system stack allows developing the functionality of the quantum
computer as independently as possible from other layers and independent of
the underlying quantum technology.

We propose a high-level view of the quantum system stack consisting of mul-
tiple layers as shown in Figure 2.15. A quantum algorithm is designed to solve
particular problems with a performance that should surpass the best classi-
cal algorithm. To take advantage of both classical and quantum computing,
a quantum algorithm can be described as a quantum-classical hybrid program
which contains a host program and multiple quantum kernels. During execu-
tion, the host program invokes the quantum kernel(s) to accelerate a particular
part of the computation, and performs classical computation when no quantum
speedup exists.

A quantum programming paradigm is required to support flexible and efficient
description of quantum applications, which may contain one or multiple high-
level programming languages. The host program can written in a classical
programming language such as C++, and the quantum part is written in a high-
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Figure 2.16: Compiler infrastructure

level quantum programming language such as Scaffold [90] or Q# [70]. If QEC
is required, qubits (quantum operations) at this level are defined as logical
qubits (logical quantum operations).

As illustrated in Figure 2.16, the compiler infrastructure consists of a conven-
tional host compiler such as the GNU Compilation Collection (GCC) and a
quantum compiler such as ScaffCC [53]. The former compiles the classical
part into classical code that can be executed by a classical processor, like the
Intel Xeon processor. The latter works on the quantum part and generates
quantum code that can be executed by the quantum processor.

During compilation, the quantum compiler performs reversible logic synthe-
sis [111, 112], quantum gate decomposition and optimization [40, 113–115],
and circuit mapping and scheduling [107, 108, 116]. When QEC is used, log-
ical qubits and operations as used at the programming language level are also
translated in a fault-tolerant way into physical qubits and operations which
perform the same quantum computing tasks. As represented by the third di-
mension of the stack in Figure 2.15, the fault-tolerant implementation is guided
by the choice of QECC.

All instructions in the quantum code as generated by the quantum compiler
should belong to a Quantum Instruction Set Architecture (QISA), which is
the interface between quantum software and hardware. QISA should abstract
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away as much hardware details as possible but expose the necessary hard-
ware features to the algorithm designer and programmer to enable platform-
specific optimization. As stated above, when QEC is used, QISA should be
able to efficiently describe physical operations on physical qubits required by
the fault-tolerant implementation. Some architectural support might be re-
quired to achieve high efficiency for QEC. Since classical instructions can be
used to guide the program flow and enable a hierarchical description of the
program which can reduce the program code size, the quantum code should
allow interleaving quantum instructions and classical instructions as suggested
by [53, 70]. The classical instructions executed by the quantum processor are
called auxiliary classical instructions.

The quantum control microarchitecture executes instructions belonging to the
QISA. Apart from decoding the quantum instructions into required control
signals with precise timing, the control microarchitecture is also responsible
for real-time quantum error detection and correction when QEC is applied. It
processes error syndromes generated by the stabilizer measurement over the
data qubits to identify possible errors, based on which the required corrections
are made by updating the Pauli frame or by sending the appropriate corrective
operations when required.

Finally, based on the specific quantum technology – e.g., superconducting
qubits – control signals are translated into required pulses, and sent to the
quantum chip via the quantum-classical interface. The quantum-classical in-
terface is responsible for all the conversions between the analog qubit plane
and the digital layers in the system stack. The quantum-classical interface to-
gether with the quantum chip are technology dependent.

Adopting a bottom-up method, we analyzed the requirement of controlling
qubits using flexible high-level programming. Based on the requirement, a
quantum control microarchitecture is proposed. This work is introduced in the
next chapter.

2.7 Appendix

This appendix shows the deduction procedure in Eq. 2.24, which converts the summa-
tion format of the state |ψ2〉 into the product format.

After applying the oracle O, We have

|ψ2〉 =
1√

2n+1

n−1∑
x=0

|x〉 (|f(x)〉 − |f(x)⊕ 1〉)
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Since

|f(x)〉 − |f(x)⊕ 1〉 =

{
|0〉 − |1〉 , if f(x) = 0
|1〉 − |0〉 , if f(x) = 1

}
= (−1)f(x) (|0〉 − |1〉) ,

let M(j, b) = x & (b · 2j), where x has the binary format xn−1 · · ·x1x0 and the
operator ‘&’ means bit-wise AND. Then we can rewrite |ψ2〉 as

|ψ2〉 =
1√

2n+1

n−1∑
x=0

(−1)f(x) |x〉 (|0〉 − |1〉)

=
1√

2n+1

∑
xi∈{0,1}

|xn−1 · · ·x1x0〉 (−1)f(xn−1···x1x0) (|0〉 − |1〉)

=
1√

2n+1

∑
xi∈{0,1},i6=j

(
(−1)f(M(j,0)) |xn−1 · · ·xj+1〉 |0〉 |xj−1 · · ·x0〉+

(−1)f(M(j,1)) |xn−1 · · ·xj+1〉 |1〉 |xj−1 · · ·x0〉
)

(|0〉 − |1〉)

=
1√

2n+1

∑
xi∈{0,1},i6=j

|xn−1 · · ·xj+1〉
(

(−1)f(M(j,0)) |0〉+

(−1)f(M(j,1)) |1〉
)
|xj−1 · · ·x0〉 (|0〉 − |1〉)

According to Eq. 2.21, we have the following relationship:

f(M(j, 1)) =

{
f(M(j, 0)) when sj = 0,
1− f(M(j, 1)) when sj = 1.

Hence, ignore the global phase, we can further rewrite |ψ2〉 as:

|ψ2〉 =
1√

2n+1

∑
xi∈{0,1},i6=j

|xn−1 · · ·xj+1〉 (|0〉+ (−1)sj |1〉) |xj−1 · · ·x0〉 (|0〉 − |1〉)

=
|0〉+ (−1)sn−1 |1〉√

2
⊗ · · · ⊗ |0〉+ (−1)s1 |1〉√

2
⊗

|0〉+ (−1)s0 |1〉√
2

⊗ |0〉 − |1〉√
2

Note. Section 2.6 is based on the following paper:

X. Fu, L. Riesebos, L. Lao, C. G. Almudever, F. Sebastiano, R. Versluis, E. Charbon,
and K. Bertels, A Heterogeneous Quantum Computer Architecture, Proceedings
of the ACM International Conference on Computing Frontiers (CF’16), ACM, 2016,
pp. 323-330.
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3.1 Introduction

To construct a fully programmable quantum computer based on the circuit
model [40], a system stack [117] composed of several layers is required (Fig-
ure 2.15). Quantum algorithms are formulated and then described using a
high-level quantum programming language [51, 52, 88, 90, 94]. Depending on
the choice of quantum error correction code [79], such as surface code [39],
the compiler [50, 51, 53] takes that description as input, performs optimiza-
tion [51, 54, 55, 118, 119] and generates a fault-tolerant implementation of
the original quantum algorithm. Next, it realizes the algorithm using instruc-
tions [49, 50, 53, 95, 97] belonging to a quantum instruction set architecture
(QISA). Just like in classical architectures [120], the QISA is the interface
between software and hardware. A control microarchitecture is needed to de-
code the quantum instructions into required control signals with precise tim-
ing as well as real-time quantum error detection and correction [121, 122].
Finally, based on the specific quantum technology – e.g., superconducting
qubits [26–28], trapped ions [24, 25], spin qubits [29], nitrogen-vacancy cen-
ters [32, 33], etc. – control signals are translated into required pulses, and sent
to the quantum chip via the quantum-classical interface.

In current experiments, quantum processors are controlled with well-defined
electrical signals, e.g., microwave-frequency and baseband pulses, which re-
quire accurate parameters and timing. To satisfy the strict requirements on
control signals, dedicated electronic devices are typically used to interface with
the quantum processor. However, existing control methods introduce high re-
source consumption, long configuration times, and control complexity, all of

41
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which scale poorly with the number of qubits [60]. Although high-level lan-
guages offer flexibility, quantum compilers typically generate instructions that
are not directly executable on a quantum processor. It is a challenge to design a
control microarchitecture that accepts a set of instructions output by a compiler
and translates them into the interface required by a quantum processor.

Motivated by heterogeneous computing, we propose a control microarchitec-
ture, named QuMA, for a superconducting quantum processor based on the
circuit model. QuMA accepts quantum-classical mixed code and enables flex-
ible and precise-timing control over a quantum processor. The four concepts
at the core of QuMA are:

• Codeword-based event control scheme: every event including pulse gen-
eration and measurement is assigned with an index, which is called a
codeword. These events are triggered by corresponding codewords at
runtime. This scheme abstracts the control of quantum processors using
complex analog pulses into a simple interface consisting of only handy
binary signals, providing the foundation for flexible control via instruc-
tions.
• Queue-based event timing control: in this scheme, events with precise

timing decoded from instruction execution are first buffered in a group
of queues and then triggered at expected timing. It allows that events are
triggered at deterministic and precise timing while the instructions are
executed with non-deterministic timing.
• Multilevel instruction decoding: quantum instructions are successively

translated into microinstructions, micro-operations, and finally code-
words with accurate timing. It enables using technology-independent
instructions to control operations on qubits.
• Quantum microinstruction set: we design and implement a low-level

quantum microinstruction set (QuMIS) which enables flexible control
of quantum operations.

In addition, we implement QuMA on a field-programmable gate array
(FPGA). We experimentally validate QuMA by conducting a standard gate-
characterization experiment on a superconducting qubit, which is called Al-
lXY [123, 124]. The control, initially specified in a high-level programming
language, is converted to our proposed instructions by a quantum compiler.

The chapter is structured as follows. Section 3.2 presents previous work re-
lated to quantum control microarchitecture. After stating the challenges of
controlling quantum processors using instructions in Section 3.3, Section 3.4
details how QuMA addresses these challenges in a systematic way with three
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proposed mechanisms. Section 3.5 discusses the advantages and scalability
of QuMA. The implementation and experimental validation of QuMA and
QuMIS are shown in Sections 3.6 and 3.7, respectively. Before the conclu-
sion in Section 3.9, Section 3.8 discusses the potential impact of QuMA.

3.2 Related Work

Several quantum programming languages [51, 52, 88, 89, 94] and compil-
ers [50, 51, 53] exist in which quantum algorithms can be written and com-
piled into a series of instructions. These quantum compilers [50, 90, 125]
all generate a variant of quantum assembly language (QASM)-based instruc-
tions that belong to the quantum instruction set. Although several quantum in-
struction sets have been proposed, such as a von Neumann architecture-based
virtual-instruction set architecture [49], quantum physical operations language
(QPOL) [50], Hierarchical QASM with Loops (QASM-HL) [53], Quil [95],
and OpenQASM [97], they are intermediate representations of quantum ap-
plications without considering the low-level constraints to interface with the
quantum processor. They all lack an explicit control microarchitecture that
implements the instructions set and allows the execution of such instructions
on a real quantum processor.

Previous papers discussing quantum (micro-) architecture can be roughly di-
vided into three groups. The first group discusses how to physically design and
fabricate a quantum processor based on a specific technology, such as trapped
ions [25, 47, 49, 99], superconducting qubits [42, 101], spin qubits [43], etc.
The second group [38, 45–47, 54, 105] studies how to organize qubits into mul-
tiple regions for different computational purposes to reduce the required hard-
ware resources and communication overhead, and to maximize parallelism.
The third group takes a high-level view to discuss research domains [86] and
quantum abstraction [84]. All of these works use the term microarchitecture
differently from this thesis.

An example of control microarchitecture as viewed in this thesis is [117],
where emphasis is placed on the definition of technology-independent and
technology-dependent functions in which the microcode unit plays an essential
role. The microcode approach was first introduced by Wilkes [126] to emulate
a relatively complex machine instruction as a sequence of micro-operations,
called a microprogram. The microprogram can be permanently stored or
cached in a control store. It enables flexible complex instruction definition
using the same hardware implementation. Vassiliadis et al. [127] extended
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the microcode method to a three-level translation from machine instructions to
microinstructions and finally to micro-operations. A microinstruction decoded
into one (multiple) micro-operation(s) is called vertical (horizontal).

The microcode method is a computational model that also maps quite well onto
quantum computing because: (1) there are frequently-used routines in quan-
tum computing, such as error correction, which impact system performance
significantly but can be well optimized via carefully tuning the microcode for
these routines, as proposed by [46]; (2) most quantum algorithms frequently
use more complex operations which cannot, at least in the foreseeable future,
be directly implemented by a quantum processor. In this thesis, we adopt
the microcode approach in the proposed microarchitecture to enable flexible
technology-independent instruction definition.

3.3 Microarchitectural Challenges

3.3.1 Motivational Example

We use the AllXY experiment [124] as an example to illustrate the microarchi-
tectural challenges when controlling superconducting qubits. This experiment,
although simple, requires flexible control over the qubit and is sensitive to con-
trol errors such as timing inaccuracy. Hence, it can reveal some of the essential
features of a microarchitecture to control a superconducting quantum proces-
sor.

The AllXY experiment is a simple test of the calibration of single-qubit gates,
which are realized by microwave pulses. Different pulse errors (amplitude,
frequency, etc.) produce distinct signatures that are easily recognized. The
qubit (initialized in the |0〉 state) is subjected to two back-to-back single-
qubit gates and measured (Figure 3.1). In each round, we run 21 different
gate pairs: ideally, the first 5 return the qubit to |0〉, the next 12 drive it to
1√
2

(
|0〉+ einπ/2 |1〉

)
with n ∈ {0, 1, 2, 3}, and the final 4 drive it to |1〉.

By averaging the measurements results for each pair over N rounds (we take
N = 25600 in experiment), we can extract the fidelity of the qubit to the |1〉
state, and compare to the ideal staircase signature. Algorithm 1 shows the
required procedure to perform the AllXY experiment.
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Algorithm 1: Pseudo code of the AllXY experiment.
Data: gate[21][2] = {{I , I}, {Rx(π), Rx(π)},
{Ry(π), Ry(π)}, {Rx(π), Ry(π)}, {Ry(π), Rx(π)},
{Rx(π/2), I}, {Ry(π/2), I}, {Rx(π/2), Ry(π/2)},
{Rx(π/2), Ry(π/2)}, {Rx(π/2), Ry(π)},
{Ry(π/2), Rx(π)}, { Rx(π), Ry(π/2)},
{Ry(π), Rx(π/2)}, {Rx(π/2), Rx(π)},
{Rx(π), Rx(π/2)}, {Ry(π/2), Ry(π)},
{Ry(π), Ry(π/2)},{Rx(π), I}, {Ry(π), I},
{Rx(π/2), Rx(π/2)}, {Ry(π/2), Ry(π/2)}};

for (j = 0; j < N ; j + +) do
for (i = 0; i < 21; i+ +) do

Init the qubit; // by waiting multiple T1 (tInit).
Apply gate[i][0] on the qubit;
Apply gate[i][1] on the qubit;
Sj,i = measure(qubit);

end
end
F|1〉|meas,i ←

∑N−1
j=0 Sj,i/N ;

Figure 3.1: Waveforms and timings for one round of the AllXY experiment.

3.3.2 Complex Analog Waveform Control

In classical computers, data and control signals are both binaries. In contrast,
the input and output signals of quantum processors are both complex analog
signals. The measurement outcome of qubits resides in the output analog sig-
nals from the quantum processor, while quantum operations on qubits (input
signals) are performed by sending analog pulses that have well-defined but
variable envelope, frequency, duration, timing, etc. For example, the X gate
on a transmon qubit can be implemented using a 20 ns Gaussian pulse modu-
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lated to the frequency of the qubit with a particular phase.

A popular method to produce the required pulses uses arbitrary waveform
generators. Before executing quantum algorithms, the pulses are calibrated
and placed in the memory of these generators as arrays of amplitude values
for each sample. A pulse lasting for a time Td requires the memory to store
Ns = 2 ·Td ·Rs samples for both in-phase (I) and quadrature (Q) components,
where Rs is the sampling rate, typically ∼ 1 GSample/s. Each sample can
consist of ∼ 12 bits, representing the vertical resolution of the amplitude.

Measurement Result Discrimination

As described in Section 2.3.1, measurement results are contained in an analog
signal Va(t). To discriminate the result for a qubit q, dedicated data-acquisition
boards are commonly used to digitize Va(t) and perform integration and dis-
crimination in software as follows:

Sq =

∫
Va(t)Wq(t)dt, and Mq =

{
1 if Sq > Tq;

0 otherwise.

Here, Wq(t) and Tq are a calibrated weightfunction and threshold for q, re-
spectively. Sq is the integration result and Mq the final binary measurement
result. The software-based method is disadvantageous because of two reasons.
First, the long latency of the software-based method (hundreds of microsec-
onds) makes real-time feedback control for superconducting qubits impossi-
ble, since latency well below the typical qubit coherence time (< 100 µs)
is required. The feedback control determines the next operations based on
the result of measurements and is critical in many quantum algorithms, e.g.,
a specific implementation [128] of Shor’s factoring algorithm [129]. Second,
the implied hardware resource consumption cannot scale up to a large number
of qubits. A scalable measurement discrimination method with short latency
constitutes a challenge.

Flexible Combination of Operations

Quantum algorithms and even basic quantum experiments, such as AllXY, re-
quire combining multiple quantum operations. To generate the required op-
eration combinations, current arbitrary waveform generators first upload long
waveforms combining different pulses with appropriate timing and later play
them. A drawback of this method is that even a small change to the operations
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requires a new upload of the entire waveform which costs significant memory
and upload time. To generate the 21 combinations in the AllXY experiment,
21 different waveforms must be uploaded. With more qubits and more com-
plex algorithms, the combination of operations can be more, which asks for
more waveforms, leading to more memory consumption and larger uploading
latency. Therefore, this method does not easily scale to a large number of
qubits.

Furthermore, the execution of quantum programs requires more flexible feed-
back control, which cannot be supported by the autonomous arbitrary wave-
form generators as these devices cannot change a waveform to incorporate
dynamically determined operations. Therefore, it is a requirement to define
a flexible and scalable way to combine multiple smaller pulses, such that any
sequence can be easily programmed, changed and executed when necessary.

Accurate Timing Control

Instructions in classical processors are usually executed with non-deterministic
timing on a nanosecond timescale due to (1) process switching and system calls
in the software layer, (2) indefinite communication latency including memory
access, (3) static and dynamical instruction reorder, (4) pipeline stall and flush-
ing, etc. However, the non-deterministic timing typically does not matter and
the program can run correctly as long as the relative order of inter-dependent
instructions is preserved.

In contrast, precise timing on nanosecond timescales is critical to quantum
operations. As discussed in Section 2.3.1, when a fixed single-sideband mod-
ulation is used, the timing of pulses must be accurate to maintain the carrier
phase, which sets the rotation axis of single-qubit gates. For example, given a
fixed 50 MHz single-sideband modulation in the AllXY experiment, applying
the modulation envelope of an x rotation 5 ns later will produce a y rotation
instead. Besides, some quantum experiments require operations to be applied
at a particular point in time. For example, the pulses implementing the two
single-qubit gates and the measurement must be applied on the qubit back-
to-back. To provide the appropriate timing precision, dedicated hardware is
needed where again scalability in terms of the number of qubits is an addi-
tional requirement.

Using instructions to specify the timing of operations is more promising. How-
ever, it is challenging to use non-deterministic instruction execution to generate
pulses with deterministic and precise timing.
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3.3.3 Instruction Definition

The instruction set architecture is the interface between hardware and software
and is essential in a fully programmable classical computer. So is QISA in a
programmable quantum computer.

As explained in Section 3.2, existing instruction set architecture definitions for
quantum computing mostly focus on the usage of the description and optimiza-
tion of quantum applications without considering the low-level constraints of
the interface to the quantum processor. It is challenging to design an instruc-
tion set that suffices to represent the semantics of quantum applications and to
incorporate the quantum execution requirements, e.g., timing constraints.

It is a prevailing idea that quantum compilers generate technology-dependent
instructions [50, 90, 125]. However, not all technology-dependent information
can be determined at compile time because some information can only be gen-
erated at runtime due to hardware limitations. An example is the presence of
defects on a quantum processor affecting the layout of qubits used in the algo-
rithm. In addition, the following observations hold: (1) quantum technology
is rapidly evolving, and more optimized ways of implementing the quantum
gates are continuously explored and proposed; a way to easily introduce those
changes, without impacting the rest of the architecture, is important. (2) de-
pending on the qubit technology, the kind, number and sequence of the pulses
can vary. Hence, it forms another challenge to microarchitecturally support a
set of quantum instructions which is as independent as possible of a particular
technology and its current state of the art.

3.4 Quantum Microarchitecture

In this section, we describe the Quantum MicroArchitecture (QuMA) as shown
in Figure 3.2. QuMA is a heterogeneous architecture which includes a classical
CPU as a host and a quantum coprocessor as an accelerator.

As proposed in [117], the input of QuMA is a binary file generated by a com-
piler infrastructure where classical code and quantum code are combined. The
classical code is produced by a conventional compiler such as GCC and ex-
ecuted by the classical host CPU. Quantum code is generated by a quantum
compiler and executed by the quantum coprocessor.

As shown in Figure 3.2, the host CPU fetches quantum code from the memory
and forwards it to the quantum coprocessor. In the quantum coprocessor, exe-
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cuted instructions in general flow through modules from left to right. The ex-
ecution controller performs register update, program flow control and streams
quantum instructions to the physical execution layer. The physical microcode
unit translates quantum instructions into microinstructions using the Q control
store. These are further decomposed into micro-operations by the quantum
microinstruction buffer (QMB). The timing of each micro-operation is also
determined by the physical microcode unit. Based on the output of quantum
microinstruction buffer, the timing control unit triggers micro-operations at
a deterministic timing. The analog-digital interface converts digitally repre-
sented micro-operations into corresponding analog pulses with precise timing
that perform quantum operations on qubits, as well as analog signals contain-
ing measurement information of qubits into binary signals. Required modula-
tion and demodulation with radio-frequency carrier waves are also carried out
in the quantum-classical interface.

In order to address the challenges described in the previous section, three
schemes are introduced in QuMA. (i) The codeword-based event control
scheme is implemented by the codeword-triggered pulse generation unit
(CTPG), which produces analog input to the quantum processor based on the
received codeword triggers, and the measurement discrimination unit (MDU)
converting the analog output from the quantum processor into binary results.
(ii) The queue-based event timing control scheme is implemented by the tim-
ing control unit, which issues event triggers with precise timing to the mea-
surement discrimination unit and the micro-operation unit (u-op unit). (iii) A
multilevel instruction decoding scheme, which successively decodes a quan-
tum instruction into microinstructions at the Q Control Store, micro-operations
at the quantum microinstruction buffer, and finally codeword triggers at the
micro-operation unit. The complex analog waveform control challenge is ad-
dressed by (i) and (ii) whereas the instruction definition is addressed by (iii).

3.4.1 Codeword-Based Event Control

The analog-digital interface (Figure 3.2) is at the boundary of analog signals
and digital signals in QuMA, which is technology-dependent. As shown in
Figure 3.2, from left to right , the micro-operation unit and the codeword-
triggered pulse generation unit translate codeword triggers into pulses repre-
senting quantum operations on the qubits with a fixed latency. From right to
left, analog measurement waveforms from the quantum processor are discrim-
inated into binary results by the measurement discrimination unit. In this way,
the analog-digital interface abstracts the complex analog waveform generation
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and puts forward the responsibility of codeword control with precise timing
to the upper digital layers. Therefore, it enables controlling analog pulse gen-
eration using instructions. Fast and flexible feedback control is also possible
in principle because the codeword-triggered pulse generation scheme does not
require the waveform to be uploaded at runtime and codeword triggers with
precise timing can be efficiently generated dynamically.

Codeword-Triggered Pulse Generation

From experiments, we observe that the pulses for a fixed and small set of quan-
tum operations can be well defined and used after calibration. They are also
called primitive operations because they are sufficient for many quantum com-
puting experiments. Based on this, we introduce the codeword-triggered pulse
generation scheme in QuMA to generate pulses corresponding to primitive
operations. In codeword-triggered pulse generation, well-defined primitive
pulses instead of entire waveforms are uploaded to the memory. The mem-
ory is organized as a lookup table and each entry in the lookup table, indexed
by means of a codeword, contains the sample amplitudes corresponding to a
single pulse. The codeword-triggered pulse generation unit converts a digitally
stored pulse into an analog one only when it receives a codeword trigger. An
example of the lookup table content for single-qubit operations is shown in
Table 3.1.

Table 3.1: An example of the lookup table content of a codeword-triggered pulse
generation unit for single-qubit gates.

Codeword 0 1 2 3
Pulse I Rx(π) Rx(π2 ) Rx(−π2 )

Codeword 4 5 6 · · ·
Pulse Ry(π) Ry(π2 ) Ry(−π2 ) · · ·

The codeword-triggered pulse generation scheme has a modest memory re-
quirement since it only needs to store a small number of pulses for the
well-defined primitive operations. In the AllXY experiment, only the pulses
for 7 operations need to be stored, which only consumes the memory for
7 × 2 × 20 ns × Rs samples (in total 420 Bytes), instead of 21 waveforms
each containing two operations, that are 21× 2× 2× 20 ns×Rs samples (in
total 2520 Bytes). When more complex combination of operations is required,
the memory consumption will remain the same and the memory saving will
be more significant. The small memory footprint provides a scalable path for
controlling a larger number of qubits.
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Figure 3.3: Operations of the AllXY experiment in the timeline. Measurement pulse
generation and measurement result discrimination overlap in time and are shown using
the same meter box.

The delay between the codeword trigger and the pulse generation is required to
be fixed and short in the codeword-triggered pulse generation unit. The fixed
delay ensures that the flexible combination of the pulses with precise timing
can be achieved by flexibly generating the corresponding codeword triggers at
precise timing. In the AllXY experiment, by issuing the codeword triggers for
the two gates with an interval of 20 ns, the pulses for the two gates can be
played out exactly back to back.

Measurement Discrimination

Recent experiments have demonstrated measurement discrimination using a
customized FPGA [63], achieving a short latency < 1 µs which enables real-
time feedback control. This method also costs modest hardware exhibiting
better scalability. Adopting this idea, we introduce hardware-based measure-
ment discrimination units in the analog-digital interface. The measurement
discrimination unit translates the analog signal containing measurement infor-
mation of a single qubit into a binary measurement result. Once the measure-
ment discrimination unit for qubit q receives a codeword trigger, it starts the
measurement discrimination process and generates a binary result Rq. Rq can
be subsequently forwarded to the quantum control unit for feedback control or
reading back.

Recent experiments have also demonstrated combining the measurement result
of multiple qubits into one analog signal [27, 130]. This can reduce the number
of required measurement discrimination units and exhibits better scalability.

3.4.2 Queue-Based Event Timing Control

The timing control unit divides the microarchitecture into two timing domains:
the non-deterministic timing domain and the deterministic timing domain,
which are on the left and right side of the timing control unit in Figure 3.2,
respectively. In the non-deterministic timing domain, the quantum control unit
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and physical execution layer execute instructions and feed quantum operations
to the queues in an as-fast-as-possible fashion. In the deterministic timing
domain, quantum operations in the queue are emitted to the analog-digital in-
terface with deterministic and precise timing. To this end, queue-based event
timing control is introduced.

To illustrate the working principle of queue-based event timing control, the
operations of the AllXY experiment with corresponding timing are shown in
Figure 3.3. The horizontal axis labels mark the time points in microseconds
when a corresponding operation takes place. Each time point is assigned a
timing label, which is the number in brackets on the top. The bold numbers
above the double-arrow lines indicate intervals between two time points in
cycles. Here and throughout the rest of this chapter, a cycle time of 5 ns is
used.

The timing control unit implements queue-based event timing control in
QuMA. It consists of a timing queue, multiple event queues, and a timing
controller. The timing queue buffers the time points with corresponding tim-
ing labels. The location of the time points can be designated in the timeline,
e.g., by specifying the intervals between consecutive time points as shown in
Figure 3.3 and the first column of Table 3.2. Each event queue buffers a se-
quence of events with a time point at which the event is expected to take place.
The time point is indicated by the aforementioned timing label. An event can
be a quantum gate, measurement, or any other operation. The timing con-
troller maintains the clock of the deterministic timing domain (TD), which can
be started by an instruction or another source, e.g., an external trigger. When
TD reaches the assigned time point, the timing controller signals the queues to
fire the events matching that time point and emits them to the analog-digital
interface.

In order to better illustrate how queue-based event timing control works, we
use the AllXY experiment. Three event queues are used in this experiment (see
Table [2-4]): the Pulse Queue for single-qubit operations, the MPG Queue for
measurement pulse generation, and the MD Queue for measurement discrim-
ination. Besides the timing label for each event, the pulse queue contains the
single-qubit operations, e.g., the I or Xπ operation, to be triggered, and the
MD queue contains the destination register, e.g., r7, to write back the mea-
surement result. After executing a couple of instructions in the program and
before TD is started, the state of the queues is as shown in Table 3.2. The bot-
tom of the table corresponds to the front of the queues. After TD is started, a
counter in the timing controller starts counting. When the counter reaches the
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Table 3.2: Queue state of the AllXY experiment when TD = 0.

Timing Queue Pulse Queue MPG Queue MD Queue
...

... ...
...

(4, 6)
(4, 5)

(40000, 4) (Xπ , 5)
(4 , 3) (Xπ , 4)
(4, 2) (I , 2) (6) (r7, 6)

(40000, 1) (I , 1) (3) (r7, 3)

Table 3.3: Queue state of the AllXY experiment when TD = 40000.

Timing Queue Pulse Queue MPG Queue MD Queue
...

... ...
...

(4, 6)
(4, 5)

(40000, 4) (Xπ , 5)
(4, 3) (Xπ , 4) (6) (r7, 6)
(4, 2) (I , 2) (3) (r7, 3)

Table 3.4: Queue state of the AllXY experiment when TD = 40008.

Timing Queue Pulse Queue MPG Queue MD Queue
... ... ...

...(4, 6)
(4, 5) (Xπ , 5)

(40000, 4) (Xπ , 4) (6) (r7, 6)

first interval value in the timing queue, i.e., 40000, the corresponding timing
label, i.e., 1, is broadcast to all event queues. At the same time, the counter re-
sets and restarts. Since the pulse queue contains that same label, 1, at the front
of the queue, the operation I is fired to the analog-digital interface. The queue
state then turns into Table 3.3. The second I operation is issued in the same
way when the counter reaches the next interval value, 4. After the counter
reaches the third interval value, 4, the timing label 3 is broadcast and the MG
Queue triggers the measurement pulse generation and the MD queue triggers
a measurement discrimination process of which both associated timing labels
are 3. The queue state then turns into Table 3.4. The rest can be done in the
same manner.
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3.4.3 Multilevel Instruction Decoding

Combining the codeword-based event control scheme and queue-based event
timing control enables other stages in QuMA to focus on flexibly decoding the
quantum instructions and filling the queues as fast as possible without worrying
about complex analog waveform control with rigid timing constraints. In this
subsection, we first give an overview of the instruction definition and then
discuss the multilevel decoding scheme for the quantum instructions.

Instruction Definition

The quantum code is written with instructions in the Quantum Instruction Set
(QIS). An example of QIS instructions is shown in Table 3.6. QIS contains
auxiliary classical instructions and quantum instructions. Auxiliary classical
instructions are used for basic arithmetic and logic operations and program
flow control. Quantum instructions describe which and when quantum opera-
tions will be applied on qubits. By including auxiliary classical instructions,
QIS can support feedback control based on measurement results and a hier-
archical description of quantum algorithms which can significantly reduce the
program code size [55].

Instruction Decoding

To support a technology-independent quantum instruction set definition, we
adopt a multilevel instruction decoding approach in which quantum instruc-
tions, especially that for quantum gates, are successively decoded into quan-
tum microinstructions, micro-operations and finally codeword triggers to con-
trol codeword-triggered pulse generation to generate pulses. For example, Ta-
ble 3.6 shows four decoding steps for the instructions of the AllXY experiment.
From the QIS on, time is calculated in cycles. Due to the simplicity of the
AllXY experiment and for the sake of code efficiency, the inner loop as shown
in Algorithm 1 is unrolled. The execution of quantum instructions starts from
the execution controller.

Execution Controller This unit executes the auxiliary classical instructions
in the QIS and streams quantum instructions to the physical microcode unit.
By executing the auxiliary classical instructions in the execution controller,
the same quantum instruction can be issued to the physical microcode unit
multiple times and each time with expected parameters computed at runtime.
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Table 3.5: The format of QIS instructions, quantum microinstructions. Taking the
AllXY experiment as an example (Part I).

QIS QuMIS
# Input to the execution controller

mov r1, 0
mov r2, 25600
mov r3, ResultMemAddr
mov r15, 40000

Outer Loop:
QNopReg r15
Apply I, q0
Apply I, q0
Measure q0, r7
Load r9, r3[0]
Add r9, r9, r7
Store r9, r3[0]

QNopReg r15
Apply X180, q0
Apply X180, q0
Measure q0, r7
Load r9, r3[1]
Add r9, r9, r7
Store r9, r3[1]
...
add r1, r1, 1
bne r1, r2, Outer Loop

# Input to the QMB
# round 0:

Wait 40000
Pulse {q0}, I
Wait 4
Pulse {q0}, I
Wait 4
MPG {q0}, 300
MD {q0}, r7

# round 1:
Wait 40000
Pulse {q0}, X180
Wait 4
Pulse {q0}, X180
Wait 4
MPG {q0}, 300
MD {q0}, r7

. . .

For example, the QNopReg r15 instruction in the QIS is used to specify the
initialization time. Each of the 21 QNopReg r15 instructions will be issued
once per round. Every time it is issued, it reads a waiting time from the register
r15, which results in a Wait 40000 instruction. If the register value is updated
using auxiliary classical instructions, the waiting time specified in the Wait
instruction can be calculated at runtime. In this way, it enables a compact and
flexible description of quantum algorithms.

Physical Microcode Unit Quantum instructions are translated into a se-
quence of microinstructions in the physical microcode unit based on the mi-
croprograms uploaded into the Q control store. The timing for each quantum
operation is also determined at this stage. For now and as shown in Table 3.7,
the microinstruction set, QuMIS, consists of the following instructions: i) the
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Table 3.6: The format of micro-operations and codeword triggers. Taking the AllXY
experiment as an example (Part II).

Micro-operations Codeword Triggers
# Input to the u-op units

TD = 40000:
I sent to u-op unit0

TD = 40004:
I sent to u-op unit0

TD = 40008:
# MPG and MD bypass this stage

TD = 80008:
Xπ sent to u-op unit0

TD = 80012:
Xπ sent to u-op unit0

TD = 80016:
# MPG and MD bypass this stage
. . .

# Input to the MDU or CPTG
# ∆ is the delay of the u-op unit
TD = 40000 + ∆:

CW 0 sent to CTPG0
TD = 40004 + ∆:

CW 0 sent to CTPG0
TD = 40008:

CW 7 sent to CTPG5 # Msmt
MD(r7) sent to MDU0

TD = 80008 + ∆:
CW 1 sent to CTPG0

TD = 80012 + ∆:
CW 1 sent to CTPG0

TD = 80016:
CW 7 sent to CTPG5 # Msmt
MD(r7) sent to MDU0

. . .

Wait instruction used to specify the interval between consecutive time points,
ii) the Pulse instruction used to apply quantum gates on qubits; iii) the MPG
instruction used to generate the measurement pulse; iv) the MD instruction
used to trigger the measurement discrimination process.

In the quantum microinstruction buffer (QMB), quantum microinstructions for
quantum gates are decomposed into separate micro-operations with timing la-
bels and push them into the queues in the timing control unit as shown in Ta-
ble 3.2. Due to the simplicity of measurements in terms of instruction control,
quantum microinstructions for measurement pulse generation or measurement
discrimination can be directly translated into codeword triggers to control the
codeword-triggered pulse generation unit or the measurement discrimination
unit bypassing the micro-operation unit. The timing control unit then emits
the micro-operations at the expected timing. The Pulse and MPG instructions
are both horizontal instructions, which can trigger the operation on multiple
qubits at the same time.

Let us illustrate these concepts using the CNOT gate. A CNOT gate with a con-
trol qubit c and a target qubit t can be decomposed in the following way [40]:

CNOTc,t = Ry(π/2)t · CZ ·Ry(−π/2)t.
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Table 3.7: QuMIS instructions.

Assembly Format Description

Wait Interval
Wait for the number of cycles indicated
by the immediate value Interval.

Pulse (QAddr0, uOp0)[ ,
(QAddr1, uOp1), . . . ]

Apply the micro-operation uOpi on each
of the qubit(s) specified by the address
QAddri.

MPG QAddr, D

Generate the measurement pulse for
the qubits specified by the address QAddr.
D indicates the duration of the
measurement pulse in number of cycles.

MD QAddr, $rd
Discriminate the measurement results of
the qubits specified by QAddr and store
the result into register $rd.

Adopting the microcoded approach for the instruction CNOT qc, qt applying
on superconducting qubits results in Listing 3.1.� �

1 Pulse {qt}, Ym90

2 Wait 4

3 Pulse {qt, qc}, CZ

4 Wait 8

5 Pulse {qt}, Y90

6 Wait 4� �
Listing 3.1: Microprogram for the physical instruction CNOT qc, qt.

By utilizing horizontal microcode, one quantum instruction can be trans-
lated into multiple microinstructions and one microinstruction into multiple
micro-operations. This allows flexible emulation of complex, technology-
independent instructions using technology-dependent primitives.

Micro-Operation Unit At the micro-operation unit, each micro-operation is
translated into a sequence of codeword triggers with predefined latency, which
further makes associated codeword-triggered pulse generation units generate
primitive operation pulses. For each predefined micro-operation uOpi, the
micro-operation unit stores a sequence Seqi comprising of codewords and tim-
ing. Seqi has the following format:

Seqi : ([0, cw0]; [∆t1, cw1]; [∆t2, cw2]; . . .),

where ∆tj represents the interval between codeword triggers cwj−1 and cwj .
Once the micro-operation uOpi is triggered, the micro-operation unit starts to
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output codeword cwj after waiting for ∆tj cycles sequentially as defined in the
sequence Seqi. Since the timing controller fires the micro-operation at precise
timing, the codeword triggers are also generated at precise timing.

For example, a Z gate can be decomposed into a Y gate followed by an X
gate since Z = X · Y (up to an irrelevant global phase). The micro-operation
unit can perform the translation for superconducting qubits using the following
sequence given the lookup table content as listed in Table 3.1:

SeqZ : ([0, 1]; [4, 4]).

The micro-operation unit allows the emulation of commonly-used quantum
operations which are not directly implementable using primitive operations.
Moreover, it reduces the communication between the timing control unit and
the analog-digital interface. This is especially helpful when the timing control
unit and the analog-digital interface are implemented in different electronic
devices for performance and scalability.

3.5 Evaluation

To evaluate QuMA, we make a comparison between QuMA and the architec-
ture of the Raytheon BBN APS2 system, which is a commercial device that
has been recently demonstrated [130, 131] for superconducting qubits. Then
we discuss the scalability limitation of QuMA.

The APS2 system has a distributed architecture consisting of nine individual
APS2 modules and a trigger distribution module (TDM) that can fully control
up to eight qubits. A quantum application is translated into multiple binary
executables running in parallel on each of the APS2 modules. A binary is
composed of separated program flow control instructions and output instruc-
tions. Instead of instructions with explicit quantum semantics, low-level out-
put instructions are used, such as waveform with a physical memory address.
Idle waveforms are used to implement precise timing between operations, and
the TDM distributes trigger signals to perform parallelism/synchronization of
multiple outputs via an interconnect network. The main disadvantage are that
no output instructions can be processed when synchronization is required, and
the interconnect network is cumbersome and fragile when scaling up to tens of
qubits where multiple APS2 systems are required [130].

In contrast, QuMA employs a centralized architecture, in which: (i) only one
binary executable is required for controlling multiple qubits, (ii) quantum se-
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mantics and timing of operations are explicitly defined at the instruction level,
(iii) parallelism/synchronization of outputs is achieved by triggering events at
specific timing points, which is neither dependent on another module nor lim-
ited by the interconnect network. These three points contribute to a relatively
simple compilation model for QuMA. As explained in Section 3.4.2, QuMA
decouples the timing of executing instructions and performing output. So it
can maintain fully deterministic timing of the output and maximally process
instructions during waiting. Since data is gathered in a single place (the regis-
ter file), it is natural to extend QuMA to a heterogeneous computing platform
by adding extra data exchange instructions to interact with the host CPU and
the main memory.

Regarding scalability, QuMA is not limited by the analog-digital interface and
the timing control unit, as their size scales linearly to the number of qubits and
can be implemented in a distributed way. However, the limited time for execut-
ing instructions in quantum computers may form a challenge in QuMA when
more qubits ask for a higher operation output rate while only a single instruc-
tion stream is used. A Very-Long-Instruction-Word (VLIW) architecture [120]
can be adopted to provide much larger instruction issue rate. In addition, by
optimizing the microcode unit and the micro-operation unit, it is possible to
use less quantum instructions to describe more quantum operations, which can
relax the instruction issue rate requirement.

3.6 Implementation

In this section, we discuss the quantum control box, where the aforementioned
mechanisms have been implemented.

3.6.1 Quantum Control Box

The quantum control box, as shown schematically in Figure 3.4, consists of
four FPGA boards. One board implements the Master Controller and the other
three boards implement a two-channel arbitrary waveform generator (AWG)
each.

The master controller is implemented using an Arrow BeMicro CV A9 board
holding an Altera Cyclone V 5CEFA9 FPGA chip. It connects to two 8-bit res-
olution analog-to-digital converters (ADC) that digitize analog measurement
signals from the quantum chip. The master controller has eight digital outputs
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Figure 3.4: Schematic of the CBox firmware architecture. The QuMA core is imple-
mented in the Master Controller. Dashed lines indicate functionality to be added in
the future.

used for triggering measurement pulse generation and triggers the pulse gen-
eration of each AWG via a pair of Low-Voltage-Differential-Signaling wires.

Inside the MC, the QuMA core implements the quantum control unit and
the physical execution layer of QuMA. The digital output unit converts the
measurement operation tuple (QAddr, D) received from the QuMA core into
‘1’ state with a duration of D cycles for the eight digital outputs masked by
QAddr. The measurement discrimination unit (MDU) can discriminate the
measurement result of a single qubit. The data collection unit can collect K
consecutive integration results of a single qubit for N rounds, calculate and
store the average of K integration results across the N rounds:

S̄i =

N−1∑
j=0

Si,j

 /N , i ∈ {0, 1, · · · ,K − 1}.

After the data collection process is done, the PC can retrieve the averaging
integration results {S̄i}.
Each AWG is implemented using a Terasic DE0-Nano board holding an Al-
tera Cyclone IV EP4CE22F FPGA chip and uses two 14-bit resolution digital-
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to-analog converters (DAC) to generate the in-phase and quadrature compo-
nents of qubit control pulses. Each AWG includes a micro-operation unit
and a codeword-triggered pulse generation unit. The implemented codeword-
triggered pulse generation unit has a fixed delay of 80 ns from the codeword
trigger to the output pulse.

All FPGAs, ADCs, and DACs are clocked at 200 MHz, except for commu-
nication and data collection, which run at 50 MHz. The MC communicates
with the PC via USB. The MC communicates to the AWGs, e.g., uploading
the lookup table content of the codeword-triggered pulse generation unit.

3.6.2 QuMA Implementation

The QuMA implementation in the control box in shown in Figure 3.6. In view
of the running physics experiments, it slightly differs from the microarchi-
tecture presented in Section 3.4. We have partially implemented the system
including the quantum instruction cache, the execution controller, part of the
physical microcode unit, the timing control unit and the quantum classical in-
terface. The rest is planned for future release. Due to the absence of a fully
functioning physical microcode unit, the high-level quantum instructions of
the QIS are not implemented yet. A combination of the auxiliary classical in-
structions in the QIS and QuMIS (see Table 3.7) is loaded into the quantum
instruction cache.

We have designed a quantum programming language OpenQL based on C++
with a compiler that can translate the OpenQL description into the auxiliary
classical instructions and QuMIS instructions.

The execution controller incorporates a classical pipeline to execute auxil-
iary classical instructions. The register file in this pipeline contains runtime
information related to quantum program execution. QuMIS instructions are
dispatched to the physical microcode unit after reading register values. The
physical microcode unit can determine the timing of QuMIS instructions and
decompose QuMIS instructions into micro-operations. A full implementation
of the physical microcode unit is still under development. The timing control
unit implements the queue-based event timing control scheme (as described in
Section 3.4.2). The measurement pulse triggers pulse modulated microwave
carrier generators in the other devices block to produce the measurement pulse
for qubits.



3.7. EXPERIMENTAL RESULTS 63

3.7 Experimental Results

We have performed various quantum experiments on a qubit to validate and
verify the design of QuMA and QuMIS, including T1, T2 Ramsey, T2 Echo,
AllXY, and randomized benchmarking [78] experiments. Considering the read-
ability and page limitation, we only show the AllXY experiment in the thesis.
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Figure 3.5: Experimental setup used for validation of the microarchitecture.

Figure 3.5 shows the experimental setup. All classical electronics are at room
temperature. The quantum chip, operating at 20 mK, contains 10 transmon
qubits with dedicated readout resonators all coupled to a common feedline.
The measured qubit (labeled 2) has transition frequency fQ = 6.466 GHz,
and the coupled resonator has fundamental fR = 6.850 GHz (for qubit in |0〉)
(further detailed in [63]). To perform single-qubit gates, we use one micro-
wave source [Rohde & Schwarz (R&S) SGS100A] to generate a 6.516 GHz
carrier and control box AWG 2 to produce the in-phase and quadrature compo-
nents (including −50 MHz single-sideband modulation) that define the pulse
envelope. To generate the measurement pulse, we trigger a 6.849 GHz car-
rier (generated by a R&S SMB100A) using the control box digital output 1.
The transmitted feedline signal is demodulated to an intermediate frequency
of 40 MHz using a 6.809 GHz local oscillator (another R&S SGS100A).
Prior to the experiment, the qubit pulses are calibrated and uploaded into con-
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trol box AWG 2. Since the operations in the AllXY experiment are primitive,
the micro-operation unit simply forwards the codewords to the wave memory
without translation.� �

1 MOV r15, 40000 # 200 us

2 MOV r1, 0 # loop counter

3 MOV r2, 25600 # number of averages

4
5 Outer_Loop:

6 QNOPREG r15 # Identity, Identity

7 Pulse {q2}, I

8 Wait 4

9 Pulse {q2}, I

10 Wait 4

11 MPG {q2}, 300

12 MD {q2}

13 (repeat the previous 7 instructions once again)

14
15 QNOPREG r15 # X180, X180

16 Pulse {q2}, X180

17 Wait 4

18 Pulse {q2}, X180

19 Wait 4

20 MPG {q2}, 300

21 MD {q2}

22 (repeat the previous 7 instructions once again)

23
24 QNOPREG r15 # Y180, Y180

25 Pulse {q2}, Y180

26 Wait 4

27 Pulse {q2}, Y180

28 Wait 4

29 MPG {q2}, 300

30 MD {q2}

31 (repeat the previous 7 instructions once again)

32
33 ...

34
35 ADDI r1, r1, 1

36 BNE r1, r2, Outer_Loop� �
Listing 3.2: QuMIS Program to perform AllXY experiment.

The QuMIS program used to perform the AllXY experiment is generated from
a OpenQL description and is shown in Listing 3.2. In this experiment, each
of the 21 combinations is measured twice to make a direct visual distinction
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between systematic errors and low signal-to-noise ratio. Figure 3.7 shows the
measurement results. The red staircase shows the ideal signature of perfect
pulsing. The results of the 0-th (18-th and 19-th) combination are taken as
the calibration point S̄|0〉,r (S̄|1〉,r). Using the calibration points to rescale the
signal, we obtain the fidelity F|1〉|i corrected for readout error:

F|1〉|meas,i =
(
S̄i − S̄|0〉,r

)
/
(
S̄|1〉,r − S̄|0〉,r

)
.

We loop over these K = 42 pulse combinations over N = 25600 rounds. The
data acquisition unit performs the required averaging of measurement results
for each K.

This experiment uses the instructions generated from the high-level language
OpenQL description to control the operations on the qubit. Only 7 pulses
including the Identity operation are stored in the lookup table of the codeword-
triggered pulse generation unit, regardless of the number of combinations of
operations. It has a moderate memory consumption to store 140 ns×Rs sam-
ples exhibiting a better scalability compared to the conventional method. From
the experiment result, we can see that the measured fidelity for each combina-
tion matches well with the ideal readout fidelity. Since the AllXY experiment
is sensitive to imperfection of the pulses and the timing, it demonstrates that
the right pulses are generated and the precise timing of operations is well pre-
served.

Deviation: 0.012

 II  

Reference Line

XX YY XY YX xI   yI   xy   yx  xY  yX Xy Yx xX Xx yY  Yy  XI YI  xx yy

Data

Figure 3.7: The AllXY result of qubit 2. In the label, each X/Y (x/y) denotes a
rotation by π (π/2) around the x/y axis of the Bloch sphere.
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3.8 Potential Impact

QuMA fills the gap between quantum compilers and quantum hardware by
providing a control system that translates quantum code into low-level analog
signals that operate on the qubits. In addition, QuMA makes a move towards
the first definition of an executable QISA. As shown in the next chapter, we
improved the microcode unit by enabling the translation from a single instruc-
tion to multiple operations on different qubits. An executable QISA, named
eQASM, is also defined on top of QuMIS. With certain low-level informa-
tion exposed in eQASM, such as timing, the quantum compiler can generate
executable instructions for real devices.

Some quantum algorithms for near-term devices ask for quantum-classical
mixed computation, such as a variational eigenvalue solver [15]. Because data
can be gathered into the register file in QuMA, it is natural to construct a het-
erogeneous computing platform with a classical host and a quantum coproces-
sor by adding extra data exchange instructions to interact with the host CPU
and the main memory.

The verification of quantum software design creates a challenge. QuMA can
assist the verification of quantum software and the estimation of their perfor-
mance by simulating the generated instructions targeting QuMA. To this end,
an architecture simulator for QuMA is required, which can simulate the execu-
tion of the instructions respecting hardware constraints and generate operations
for each qubit with timing information. These timed operations can then be fed
to a qubit state evolution simulator, such as QX [132] or QuantumSim [68]. In
this way, the correctness of quantum software can be checked at both the ar-
chitecture level and the qubit state level. Our previous work on the Quantum
Platform Development framework (QPDO) [133] is a step towards building
the required architecture simulator.

Programmable AWGs became available recently in industry [131, 134]. In
these devices, the analog channels are coupled to a processor with a large
memory. Instead of instructions with explicit quantum semantics, low-level
instructions are used to generate the output, such as the waveform instruction,
which takes a physical memory address as parameter. A distributed architec-
ture with a synchronization mechanism is assumed to provide more analog
channels. The required hardware resources go up almost linearly to the num-
ber of qubits. In contrast, QuMA is a centralized architecture with quantum
semantics and timing of operations explicitly defined at the instruction level.
It does not depend on an external synchronization mechanism and can scale up
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to control tens of qubits. By adopting the codeword-triggered pulse generation
scheme, the AWG complexity can be reduced, which costs modest hardware.
Also, the requirement for multiple control processors can be eliminated, mak-
ing a simple compilation model and again asking for less hardware resources.

In recent years, quantum processors with more qubits are being produced.
More qubits, in general, ask for more operations per unit time on average,
which requires more operations to be fed into the queues. Only one instruction
stream in QuMA results in a limited instruction issue rate, just as in classical
processors. The limited instruction issue rate might be insufficient to issue all
instructions in time that describe the required operations, which forms a bot-
tleneck of QuMA. It is possible to make use of conventional processor design
methods to optimize the non-deterministic timing do-main without affecting
the deterministic timing of the output. Inspired by conventional processor
design techniques, such as the Intel Streaming SIMD Extensions (SSE), we
proposed a Single-Operation-Multiple-Qubit (SOMQ) execution fashion for
QuMA in our recent research. Together with a very-long-instruction-word ar-
chitecture (VLIW) update, we implemented the digital part of the improved
QuMA in a device capable of controlling seven qubits. With a slight change
to the configuration, such as VLIW width, the device can be, in principle, ex-
tended to control at least 49 qubits, which can form a distance-5 surface code
logical qubit [39].

3.9 Conclusion

We have proposed and developed QuMA, a microarchitecture that takes the
compiler generated instructions as input to flexibly control a superconducting
quantum processor. Three mechanisms are introduced in QuMA to enable
flexible control over quantum processors: i) codeword-based event control, ii)
precise queue-based event timing control, and iii) multilevel instruction de-
coding pulse control mechanism. We have also designed and implemented
the quantum microinstructions set QuMIS which can well describe quantum
operations on qubits with precise timing.

We implemented a QuMA processor prototype on a FPGA. We have validated
this microarchitecture by performing a successful AllXY experiment on a su-
perconducting qubit, using a combination of the auxiliary classical instructions
and QuMIS instructions which are generated by OpenQL. QuMA enables flex-
ible definition of quantum experiments by a straightforward change in the input
program.
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We expect QuMA to spark a new line of research on a flexible and scalable
approach to control near-term and future quantum chips. Building a quantum
control microarchitecture and defining the required QISA can help the design
of the control hardware, as well as the quantum software.

Note. The content of this chapter is based on the following papers:
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conducting Quantum Processor, Proceedings of the 50th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO-50). IEEE/ACM, 2017, pp. 813-
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4
eQASM: An Executable QISA

4.1 Introduction

Quantum computing can accelerate solving some problems which are inef-
ficiently solved by classical computers, such as quantum chemistry simu-
lation [10, 14]. The goal is to develop a quantum computer with Noisy
Intermediate-Scale Quantum (NISQ) technology [57] (without quantum error
correction [79]), whose capability goes beyond that of state-of-the-art classical
computers [56]. This capability is also termed quantum supremacy [58]. To
this end, a fully programmable quantum computer based on the circuit model
should be constructed of several layers [87, 117]. These layers form the full
stack, which includes the quantum algorithm, quantum language, quantum
compiler, quantum instruction set architecture (QISA), quantum control mi-
croarchitecture, quantum-classical interface, and quantum chip. Compared to
the flourishing of research at the opposite ends of the stack, relatively less re-
search has been dedicated to the low-level description of quantum applications
with the required control microarchitecture for NISQ technology.

4.1.1 Related Work and the Challenges

To address the poor scalability of previous quantum control paradigms based
on directly operating on waveforms and the problem that no control microar-
chitecture supports the execution of existing quantum assembly languages on
real hardware (including QASM [50], a virtual instruction set [49], QASM-
HL [53], Quil [95], OpenQASM [97], f-QASM [92], and cQASM [135]), we
proposed the quantum control microarchitecture QuMA implementing a quan-
tum microinstruction set QuMIS to bridge the gap between quantum software
and hardware.

71
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However, QuMIS is unsatisfactory for three reasons. First, instructions in
QuMIS do not support feedback based on qubit measurement results, which
is vital for circuit-model-based quantum computing applications such as ac-
tive qubit reset [136], teleportation [137], quantum gate decomposition [119],
and Shor’s factoring [128]. For example, active qubit reset requires measur-
ing the qubit followed by an X gate if the qubit measurement result is |1〉
(this process is also called binary control). Teleportation requires performing
a subprogram (containing an X and Z gate) conditioned on the result of mea-
surements on two qubits. In addition, feedback is necessary for fault-tolerant
quantum computing where a key application is the implementation of non-
Clifford gates (e.g., the T gate [79]). Feedback has been demonstrated in mul-
tiple experiments [63, 138–140] using customized hardware, but not yet using
a (micro)architectural solution.

A second drawback of QuMIS is limited scalability. A QuMIS program has a
relatively low instruction information density because (1) an explicit waiting
instruction is required to separate any two consecutive timing points; (2) each
target qubit of a quantum operation occupies a field in the instruction, making
the instruction width a limitation for the number of target qubits in a single
instruction; (3) two parallel and different operations cannot be combined into
a single instruction. The required number of quantum operations per cycle in
general increases as the number of qubits grows; fetching all instructions for
an increasing number of quantum operations from memory and applying them
on qubits on time forms a challenge given the limited instruction issue rate (the
quantum operation issue rate problem) [110, 141, 142].

Third, QuMIS is limited in flexibility because QuMIS instructions are low level
and tightly bound to the electronic hardware implementation. Compared to ex-
isting quantum assembly languages, QuMIS instructions are microinstructions
without explicit quantum semantics. Thus, QuMIS does not qualify as a QISA,
and it remains an open challenge to design an executable QISA with quantum
semantics which is scalable and supports runtime feedback.

4.1.2 Contributions

In this chapter, we propose an executable QISA based on QASM, named exe-
cutable QASM (eQASM). eQASM can be generated by the compiler backend
from a higher-level representation, like OpenQASM or cQASM. eQASM con-
tains both quantum instructions and auxiliary classical instructions to support
quantum program flow control. eQASM supports a set of discrete quantum
operations. The contributions of the chapter are the following:
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• Runtime Feedback: eQASM proposes two kinds of feedback with re-
quired microarchitectural mechanisms to implement them: fast condi-
tional execution for simple but fast feedback, and comprehensive feed-
back control (CFC) for arbitrary user-definable feedback;
• Operational implementation: eQASM is a QISA framework with the

definition focusing on the assembly level and the basic rules of mapping
assembly to binary. It requires customized instantiation for the binary
format targeting a particular platform, which allows the pursuit of flexi-
bility and practicability;
• Increased quantum operation issue rate: eQASM adopts Single-

Operation-Multiple-Qubit (SOMQ) execution, Very-Long-Instruction-
Word (VLIW) architecture and a more efficient method for explicit tim-
ing specification, which can considerably alleviate the quantum opera-
tion issue rate problem when compared to QuMIS;
• Configurable QISA at compile time: As opposed to the classical in-

struction set architecture (ISA) whose operations are defined at ISA de-
sign time, eQASM enables the programmer to configure allowed quan-
tum operations at compile time, leaving ample space for compiler-based
optimization.

We instantiate eQASM into a 32-bit instruction set targeting a seven-qubit su-
perconducting quantum processor and implement it using a control microar-
chitecture derived from QuMA as proposed in [141]. We validated eQASM
by performing several experiments over a two-qubit superconducting quantum
processor using the implemented microarchitecture.

This chapter is organized as follows. Section 4.2 introduces the heteroge-
neous quantum programming model adopted by eQASM and an overview of
eQASM. The quantum instructions of eQASM with related mechanisms are
explained in Section 4.3. Section 4.4 describes the instantiation of eQASM
targeting a seven-qubit quantum processor as well as its microarchitecture and
implementation. Section 4.5 shows the experiments, and Section 4.6 con-
cludes.

4.2 eQASM Overview

To our understanding, it is viable to integrate quantum computing in a similar
way as a GPU or an FPGA in a heterogeneous architecture. The quantum
part can be seen as a coprocessor used to accelerate particular classically-
hard tasks. This section introduces the eQASM programming and compila-
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Figure 4.1: Heterogeneous quantum programming and compilation model.

tion model, the design guidelines for eQASM, the architectural state, and an
overview of instructions.

4.2.1 Programming and Compilation Model

OpenCL [1] is an open industry standard for classical heterogeneous parallel
computing which served as the basis for defining eQASM, of which the pro-
gramming and compilation model is shown in Fig. 4.1.

A quantum-classical hybrid program contains a host program and one or more
quantum kernels with the quantum kernel(s) accelerating particular parts of the
computation. The host program is described using a classical programming
language, such as Python or C++, and the quantum kernels are described using
a quantum programming language, such as Scaffold [90] or Q# [70]. A hybrid
compilation infrastructure compiles the host program into classical code using
a conventional compiler such as GCC, which is later executed by the classical
host CPU.

The quantum compiler, such as OpenQL [141], compiles the quantum kernels
in two steps. First, quantum kernels are compiled into QASM, or a similar for-
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mat mathematically equivalent to the circuit model. This format is hardware
independent and can be ported across different platforms for quantum algo-
rithms. Most of the hardware constraints are taken into account in the second
step, where the compiler performs scheduling and low-level optimization. The
output is the quantum code consisting of eQASM instructions. The quantum
code contains quantum instructions as well as auxiliary classical instructions
to support comprehensive quantum program flow control including runtime
feedback [136, 143]. After the host CPU has loaded the quantum code into the
quantum processor, the quantum code can be directly executed. In the rest of
this paper, we focus on the quantum processor, i.e., the microarchitecture in
charge of controlling qubits. The interaction between the classical processor
and the quantum processor a research topic outside the scope of this paper.

4.2.2 Design Guidelines

The design of eQASM focuses on being executable on real hardware providing
user-definable feedback. It should be capable of describing quantum applica-
tions for various quantum technologies and not bound to particular electronic
control setup. Calibration experiments usually occupy a considerable ratio
of the time using qubits in the NISQ era. Examples include measuring the
relaxation time of qubits (T1 experiment) and calibrating the parameters (am-
plitude, phase, frequency, etc.) of pulses for quantum operations, and so on.
They need to use uncalibrated or uncommon quantum operations and explic-
itly change the timing of operations. eQASM is also expected to help quantum
experiments required to calibrate qubits and quantum operations. The design
of eQASM is guided by five main principles:

1. eQASM should include classical instructions to support quantum pro-
gram flow control including runtime feedback;

2. eQASM should contain well-defined methods to specify the timing of
quantum operations;

3. Low-level hardware information should be abstracted away from the
eQASM assembly as much as possible to avoid eQASM being stuck
to a particular hardware implementation;

4. The quantum operation issue rate is a potential bottleneck of the quan-
tum microarchitecture, and should be addressed, e.g., by densely encod-
ing the instructions such as done with SIMD and VLIW for classical
architectures;

5. Different experiments and radical compiler-based optimization tech-
niques such as quantum optimal control [144, 145] may use a differ-
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Figure 4.2: Architectural state of eQASM. Arrows indicates the possible information
flow. The thick arrows represent quantum operations, which reads information from
the modules passed through.

ent set of quantum operations, which can be uncalibrated or uncommon.
eQASM should be flexible to allow different quantum operations via
configuration.

4.2.3 Architectural State

As shown in Fig. 4.2, the architectural state of the quantum processor includes:
a data memory, an instruction memory, a program counter (PC), a general pur-
pose register (GPR) file, comparison flags, a quantum operation target register
file, timing and event queues, a qubit measurement result register file, an exe-
cution flag register file, and a quantum register file.

Data Memory

The data memory can buffer intermediate computation results and serve as the
communication channel between the host CPU and the quantum processor.
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Instruction Memory & Program Counter

The eQASM instructions are stored in the instruction memory, and the Pro-
gram Counter (PC) contains the address of the next eQASM instruction to
fetch.

General Purpose Registers

The general purpose register (GPR) file is a set of 32-bit registers, labeled as
Ri, where i is the register address.

Comparison Flags

The comparison flags store the comparison result of two general purpose reg-
isters which are used by comparison and branch related instructions (see Ta-
ble 4.1).

Quantum Operation Target Registers

Each quantum operation target register can be used as an operand of a quan-
tum operation. Since most quantum technologies support physical operations
applied on up to two qubits, there are two types of quantum operation target
registers: single-qubit target registers for single-qubit operations [including
measurement (MEASZ)], and two-qubit target registers for two-qubit opera-
tions.

Each single- (two-)qubit target register can store the physical addresses of a
set of qubits (allowed qubit pairs). An allowed qubit pair is a pair of qubits
on which we can directly apply a physical two-qubit gate. A single- (two-
)qubit target register is labelled as Si (Ti), with i being the register address.
eQASM does not define the format of target registers (see Section 4.3.3 for a
discussion).

Timing and Event Queues

To support explicit timing specification of quantum operations, eQASM adopts
a queue-based timing control scheme [141]. The timing and event queues are
used to buffer timing points and operations generated from the execution of
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quantum instructions (see Section 4.3.1). Together with the qubit measure-
ment result registers, it separates the processor into two timing domains, the
deterministic one and the non-deterministic one.

Qubit Measurement Result Registers

Each qubit measurement result register is 1-bit wide, and stores the result of
the last finished measurement instruction on the corresponding qubit when it
is valid (see Section 4.3.6). It is labeled as Qi, where i is the physical address
of the qubit.

Execution Flag Registers

Sometimes, the execution of a quantum operation depends on a simple com-
bination of previous measurement results of this qubit [63, 138]. To this end,
each qubit is associated with an execution flag register, which contains mul-
tiple flags derived automatically by the microarchitecture from the last mea-
surement results of this qubit. The execution flag register file is used for fast
conditional execution (see Section 4.3.5).

Quantum Register

The quantum register is the collection of all physical qubits inside the quantum
processor. Each qubit is assigned a unique index, known as the physical ad-
dress. Since data in qubits can be superposed, eQASM does not allow direct
access to the quantum data at the instruction level. Instead, users can measure
qubits using measurement instructions and later access the results in the qubit
measurement result registers.

4.2.4 Instruction Overview

Quantum technology is evolving rapidly and is still far away from a stable
state. To avoid the format of eQASM being stuck to a specific quantum tech-
nology implementation with particular properties, the definition of eQASM fo-
cuses on the assembly level and introduces basic rules of mapping the assembly
code to binary instructions. The binary format is defined during the instanti-
ation of eQASM targeting a concrete control electronic setup and quantum
chip. This fact enables the eQASM assembly to be expressive while leaving
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considerable freedom to the (micro)architecture designer to pursue microar-
chitectural practicability and performance.

An eQASM program can consist of interleaved quantum instructions and aux-
iliary classical instructions. An overview of the eQASM instructions is shown
in Table 4.1. Since the host CPU can provide classical computation power,
auxiliary classical instructions are simple instructions to support the execution
of quantum instructions. Complex instructions (e.g., floating-point instruc-
tions) are not included.

The top part of Table 4.1 contains the auxiliary classical instructions. There are
four types: control, data transfer, logical, and arithmetic instructions. These
are all scalar instructions. The function sign ext(Imm, 32) sign extends
the immediate value Imm to 32 bits. The operator :: concatenates the two bit
strings. The CMP instruction sets all comparison flags based on the compari-
son result of GPR Rs and Rt. The BR instruction changes the PC to PC +

Offset if the specified comparison flag is ‘1’. To enable arithmetic or logical
operations on the comparison result, the FBR instruction fetches the specified
comparison flag into GPR Rd. The FMR instruction supports comprehensive
feedback control and is explained in Section 4.3.6.

The bottom part of Table 4.1 contains the quantum instructions. There are
three types of instructions:

• Waiting instructions used to specify timing points (QWAIT, QWAITR),
• Quantum operation target register setting instructions (SMIS, SMIT), and
• Quantum bundle instructions, which consist of the specification of a

small waiting time and multiple quantum operations.

These quantum instructions have several features based on the following four
observations:

� Many quantum experiments, such as the T1 experiment, require chang-
ing the timing of operations explicitly. Also, the timing of operations
can significantly impact the fidelity of the final result as quantum errors
accumulate during computation (see Section 4.5). eQASM can explic-
itly specify the timing of quantum operations to support quantum ex-
periments and compiler-based timing optimization. The timing model is
explained in Section 4.3.1.

� Different quantum experiments or algorithms may require a different
set of physical quantum operations. To allow using different sets of
quantum operations, quantum operations are specified by programmers
at compile time via configuration (see Section 4.3.2) instead of being
defined at QISA design time. This flexibility reserves ample space for
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compiler-based optimization. Only single- and two-qubit operations are
allowed, and more-qubit operations should be decomposed into single-
and two-qubit operations by the compiler [51, 55, 113–115].

� To alleviate the quantum operation issue rate problem, eQASM adopts
SOMQ execution, which supports applying a single quantum operation
on multiple qubits (see Section 4.3.3), and a VLIW architecture which
can combine multiple different quantum operations into a quantum bun-
dle (see Section 4.3.4).

� Two kinds of feedback are supported. Fast conditional execution per-
forms a Go/No-go decision for every single-qubit operation based on a
execution flag of the target qubit (see Section 4.3.5). To be more flexible,
CFC allows programmers to define arbitrary feedback by redirecting the
program flow based on the measurement results (see Section 4.3.6).

4.3 Architecture

In this section, we construct the assembly syntax of quantum operations by
introducing the aforementioned mechanisms.

4.3.1 Timing Model

Queue-based Timing Control

eQASM adopts the queue-based timing control scheme proposed in [141] since
it can support explicit timing specification. We briefly introduce this scheme
and refer readers to the original paper for a detailed discussion.

In the queue-based timing control scheme, the execution of quantum instruc-
tions can be divided into a reserve phase in the non-deterministic timing do-
main and a trigger phase in the deterministic timing domain. A timeline is
constructed by the reserve phase and consumed by the trigger phase: the re-
sult of executing quantum instructions in the reserve phase is consecutively
creating new timing points on the timeline and associating events to them; the
deterministic timing domain maintains a timer, and triggers all quantum opera-
tions associated with the timing point on the timeline that it reaches. Auxiliary
classical instructions and mask setting instructions are not directly associated
with timing points. The trigger phase is handled by the microarchitecture; we
introduce the reserve phase in the following.
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Timeline Construction

Quantum instructions fetched from the instruction memory form a quantum
instruction stream. Instructions in the stream are executed in order; this con-
structs a timeline by generating consecutive timing points and assigning oper-
ations to them.

If the fetched instruction is a waiting instruction, QWAIT Imm or QWAITR Rs,
a new timing point in the timeline is generated. The position of the new timing
point is determined by the specification of the interval since the last generated
timing point. The interval length comes from the immediate value Imm or GPR
Rs. The first timing point of the timeline can be set by a dedicated instruction,
or by an external trigger to the microarchitecture. Both waiting instructions
use the unit cycle for the interval length.

If the fetched instruction is a quantum bundle instruction, the quantum opera-
tion(s) specified in the bundle instruction is associated with the last generated
timing point. If multiple quantum operations are associated to the same tim-
ing point, these quantum operations will all start execution at that same timing
point.

Based on our observation over some testbenches (see Section 3.6), short inter-
vals between timing points are a common case. To improve the quantum oper-
ation issue rate, eQASM allows merging a QWAIT PI instruction followed by
a quantum operation <Quantum Operation>

QWAIT PI

<Quantum Operation>

into a single instruction

[PI,] <Quantum Operation>.

Square brackets [. . .] indicate that the content inside is optional. PI is short for
pre interval, which specifies a short interval between last generated timing
point and the one when the operations in this instruction are to be triggered.
It defaults to 1 if not specified. Value 0 is acceptable to both the PI and the
waiting instructions, which means that the following timing point is identical
to the last timing point.
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Example

Assuming the durations of quantum operations q_op0, q_op1, q_op2, and
q_op3 all equal one-cycle time, the following code triggers these four opera-
tions back-to-back.� �

1 LDI r0, 1 # r0 <- 1

2 q_op0

3 q_op1 # Default PI = 1

4 QWAITR r0 # Register-valued waiting

5 0, q_op2

6 QWAIT 0 # Equivalent to NOP

7 1, q_op3 # Explicity PI = 1� �
4.3.2 Quantum Operation Definition & Decoding

Depending on the qubit technology and the algorithm to run, different quan-
tum operations can be used. eQASM does not define a fixed set of quantum
operations at QISA design time, such as {H , T , CNOT, · · · }. Instead, the
available quantum operations can be configured by the programmer at compile
time.

Flexible quantum operation configuration is achieved through the configura-
tion of the assembler, the microcode unit and the pulse generator of the mi-
croarchitecture: on the one hand, the assembler is configured to translate a
quantum operation, e.g., the X gate, to the expected opcode, e.g., 0x01; on
the other hand, the microcode unit translates the quantum opcodes into the
expected microinstruction(s) using a microcode-based instruction decoding
scheme [127]. Each microinstruction represents one or more micro-operations,
which are finally converted into pulses by the pulse generator with precise tim-
ing applying operations on qubits. The assembler, the microcode unit, and the
pulse generator should be configured consistently at compile time.

4.3.3 Address Mechanism

A quantum operation applied on multiple qubits is a common case. For exam-
ple, quantum computation usually starts by preparing the superposition state
from initialized qubits, which requires applying Hadamard gates on multiple
qubits. eQASM uses SOMQ execution, which can apply a single quantum
operation on multiple qubits at the same time. SOMQ is similar to classical
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single-instruction-multiple-data (SIMD) execution [146], with the operation
target replaced by qubits. An instantiated eQASM can also be treated as an
implementation of the previously proposed Multi-SIMD(k, d) architecture [54]
but removing the assumption of SIMD regions that in each region only a single
quantum operation can be applied.

SOMQ is based on an indirect qubit addressing mechanism. The SMIS or
SMIT instruction first defines a set of quantum operation target(s) in a quantum
operation target register. Then a quantum operation can use the target register
as the operand:

<Operation Name> <Target Register>.

Address of Allowed Qubit Pairs

Since a two-qubit operation, such as a CNOT gate, can operate on its qubits
differently, two qubits with different orders, i.e., (Qubit A,Qubit B) and
(Qubit B,Qubit A), are treated as different allowed qubit pairs. The term
quantum chip topology indicates the available qubits and allowed qubit pairs
of a quantum chip (see Fig. 4.6 for an example). The quantum chip topology
can be represented as a graph where each available qubit can be denoted as a
vertex, and an allowed qubit pair as a directed edge. In the directed edge (

Qubit A, Qubit B), Qubit A is called the source qubit and Qubit B the
target qubit of the pair.

Translation from Assembly to Binary

Since the efficiency of encoding the qubit list (qubit pair list) may depend on
the target quantum chip topology, the designer can choose different binary en-
coding schemes for different target quantum processors during eQASM instan-
tiation. In general, it is more efficient to put the address pairs in the instruction
for a highly-connected quantum processor, while a mask format could be more
efficient when the qubit connectivity is limited. For example, since at most two
two-qubit gates can be applied and each qubit can be addressed with 3 bits in a
fully connected 5-qubit trapped ion processor [25], only 2×2×3 bits = 12 bits
are required to specify the target of a two-qubit gate. This is more efficient than
a mask of 20 bits with each bit in the mask indicating one of all 20 different
allowed qubit pairs selected or not. In contrast, a mask of 6 bits is more effi-
cient for the IBM QX2 [147], which also contains five qubits but has only six
allowed qubit pairs.
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Example

The following code sets the single-qubit target register S7 to contain two qubits
(0 and 1), and then applies an X gate on both qubits simultaneously.� �

1 SMIS S7, {0, 1}

2 Y S7� �
The following code sets the two-qubit target register T3 to contain two pairs of
qubits (1, 3) and (2, 4), and then applies a CNOT gate on them.� �

1 SMIT T3, {(1, 3), (2, 4)}

2 CNOT T3� �
4.3.4 Very Long Instruction Word

Quantum Bundle Format

Apart from SOMQ, different operations are also allowed to be applied on dif-
ferent qubits in parallel. eQASM can combine parallel quantum operations
into a quantum bundle in a VLIW format. We define parallel quantum opera-
tions as operations starting at the same timing point, regardless of the duration
of each operation. The format of a quantum bundle is:

[PI,] <Quantum Operation> [| <Quantum Operation>]*

The vertical bar | is used to separate different quantum operations in the same
bundle. The asterisk * means the item in square brackets can repeat for n ≥ 0
times.

Translation from Assembly to Binary

In the assembly code, an arbitrary number of quantum operations can be com-
bined into a single quantum bundle. However, a single instruction can ac-
commodate only a few quantum operations because of the limited instruction
width. The VLIW width of eQASM characterizes the number of quantum op-
erations that can be put in a single instruction word, which is defined during
eQASM instantiation. Matching this, a single quantum bundle can be broken
into multiple quantum bundle instructions with PI being 0. If the number
of operations is not a multiple of the VLIW width, quantum no-operations
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(QNOP) fill up the last instruction. For example, given a VLIW width of 2, the
bundle

PI, X S5 | H S7 | CNOT T3

can be decomposed by the assembler to two consecutive quantum bundle in-
structions

PI, X S5 | H S7

0, CNOT T3 | QNOP.

Example

In the code as shown in Fig. 4.3, the instruction QWAIT 10000 initializes both
qubits by idling them for 200 µs (assuming a cycle time of 20 ns). Line 6
applies a Y gate on both qubits using SOMQ. Line 7 is a VLIW instruction,
which applies an X90 and X gate on each qubit. In this paper, X90 (Y90)
denotes the gate rotating the quantum state along the x- (y-)axis by a π/2
angle. Xm90 (Ym90) denotes similar gates but with the rotation angle of−π/2.
Line 8 measures both qubits using SOMQ. According to the PI value, the Y
gate happens immediately after the initialization, followed by the X90 and X
gates 20 ns later and the measurement 40 ns later. The 1 µs waiting time (line
9) ensures no operations happening during the measurement.� �

1 SMIS S0, {0}

2 SMIS S2, {2}

3 SMIS S7, {0, 2}

4 ...

5 QWAIT 10000

6 0, Y S7

7 1, X90 S0 | X S2

8 1, MEASZ S7

9 QWAIT 50

10 ...� �
Figure 4.3: Part of the code for a two-qubit AllXY experiment, which is used in
validating eQASM in Section 4.5.
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4.3.5 Fast Conditional Execution

Fast conditional execution allows executing or canceling a single-qubit opera-
tion when the micro-operation is triggered. The decision is made based on the
value of a selected flag in the execution flag register corresponding to the target
qubit. The value of the execution flag is derived by the microarchitecture using
predefined combinatorial logic from the last measurement results of the same
qubit. Once there returns a measurement result for a qubit, the corresponding
execution flags are updated automatically. If the execution flag is ‘1’, then the
operation executes; otherwise, it is canceled. A selection signal is required for
each micro-operation to select which execution flag to use, which can be gen-
erated by the microcode unit, or specified by an instruction field [49]. Except
for the default execution flag that should always be ‘1’, which and how many
execution flags there are, should be defined during eQASM instantiation (see
Section 3.4 for an example).

Example

In one instantiation of eQASM, the quantum operation C_X uses the execution
flag which is ‘1’ if and only if (iff) the last measurement result of the qubit
is |1〉. Figure 4.4 shows the code for the active qubit reset experiment, where
qubit 2 is put in an equal superposition using an X90 gate after initializing it
in the |0〉 state by idling it for 200 µs. After a measurement, a conditional C_X
gate is applied to reset the qubit. Qubit 2 is measured again to read out the
final state for verification.

� �
1 SMIS S2, {2}

2 QWAIT 10000

3 X90 S2

4 MEASZ S2

5 QWAIT 50

6 C_X S2

7 MEASZ S2� �
Figure 4.4: eQASM program for active qubit reset. This experimental result is shown
in Section 4.5.
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4.3.6 Comprehensive Feedback Control

CFC allows adjusting the program flow based on measurement results of any
qubits to enable arbitrary user-defined feedback. This flexibility comes at the
cost of longer feedback latency. We propose a three-step mechanism to imple-
ment CFC:

1. A measurement instruction is applied on the condition qubit i. At the
moment that this measurement instruction is issued, Qi is invalidated.
At the moment the measurement result is available, it is written in Qi.
Qi turns back to valid if there are no more pending measurement instruc-
tions on qubit i.

2. The FMR Rd, Qi instruction fetches the value of the quantum measure-
ment result register Qi into GPR Rd. If Qi is invalid, FMR should wait
until Qi gets valid again. Thereafter, the value of Qi can be fetched into
Rd. Qi remains valid until qubit i is measured again.

3. GPR Rd is then used in a BR instruction to select the program flow to fol-
low. Note, multiple FMR and BR instructions can be combined to support
more complex feedback logic.

Example

The eQASM program shown in Fig. 4.5 first measures qubit 1. If the mea-
surement result is 1, a Y gate is applied on qubit 0, otherwise, an X gate is
applied.

4.4 Instantiation & Implementation

This section introduces an instantiation, microarchitecture, and implementa-
tion of eQASM.

4.4.1 Target Superconducting Quantum Chip

The quantum chip topology of the target seven-qubit superconducting quantum
chip is shown in Fig. 4.6. It is part of a two-dimensional square lattice as
proposed in [81]. It can implement a distance-2 surface code [39], which can
detect one physical error. In this figure, a vertex represents a qubit, and a
directed edge represents an allowed qubit pair. Numbers besides the vertex
(edge) are the addresses of qubits (allowed qubit pairs). For example, allowed
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� �
1 SMIS S0, {0}

2 SMIS S1, {1}

3 LDI R0, 1

4 MEASZ S1

5 QWAIT 30

6 FMR R1, Q1 # fetch msmt result

7 CMP R1, R0 # compare

8 BR EQ, eq_path # jump if R0 == R1

9 ne_path:

10 X S0 # happen if msmt result is 0

11 BR ALWAYS, next # this flag is always ‘1’

12 eq_path:

13 Y S0 # happen if msmt result is 1

14 next:

15 ...� �
Figure 4.5: eQASM program using CFC.

qubit pair 0 has qubit 2 as the source qubit and qubit 0 as the target qubit. The
feedlines are used to measure the nearby coupled qubits. Qubit 0, 2, 3, 5, and
6 (1 and 4) are coupled to feedline 0 (1). Each feedline has an input port and
an output port. Besides, each qubit is connected to a microwave port and a flux
port, which are not shown in Fig. 4.6.

Operations supported by this quantum processor include measurements,
single-qubit x- or y-axis rotations, and a two-qubit controlled-phase (CZ) gate.
A typical gate time is 20 ns for single-qubit gates and ∼ 40 ns for two-qubit
gates. The duration of a measurement is typically 300 ns - 1 µs. A cycle time
of 20 ns is used in this instantiation.

4.4.2 eQASM Instantiation Design Space Exploration

To determine a suitable eQASM instantiation configuration for the target quan-
tum processor [a single- (two-)qubit gate time of 1 (2) cycle(s), and a mea-
surement time of 15 cycles], we perform analysis over three benchmarks us-
ing a quantum control architecture simulator derived from the previously pro-
posed QPDO [133]. Because substantial time is spent on calibrating qubits
before running applications with NISQ technology, the first benchmark we
select is the widely-used calibration experiment randomized benchmarking
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Figure 4.6: Quantum chip topology of the target seven-qubit superconducting quan-
tum chip. Numbers in red are the physical addresses of qubits. The numbers along the
direct edges are addresses of the allowed qubit pairs.

(RB) [77, 78], which might be limited by the high memory consumption when
the required waveform for control is plainly stored in memory. Each qubit is
subject to 4096 single-qubit Clifford gates which have been decomposed into
x and y rotations. Because every gate happens immediately following the pre-
vious one, randomized benchmarking cannot reveal timing patterns of quan-
tum operations in real quantum algorithms, where the parallelism is limited by
two-qubit gates. Addressing this, we also select two benchmarks from Scaf-
fCC [53] as the representatives of small-scale quantum algorithms that might
be executed with NISQ technology: a parallel algorithm (Ising model using 7
qubits, IM) which has < 1% two-qubit gates, and a relatively sequential al-
gorithm (Grover’s algorithm to calculate the square root using 8 qubits, which
is the minimum number of qubits required, SR), which has ∼ 39% two-qubit
gates. The evaluation metric is the total number of instructions.

We investigate the impact of the VLIW width (w), three timing-specification
methods, and SOMQ on the number of instructions. The three timing-
specification methods include: the QuMIS fashion (specifying every timing
point using separate QWAIT instructions, ts1); including QWAIT in the quan-
tum bundle instruction at the place of a quantum operation (ts2); and using PI
with various bit widths (wPI) to specify a small waiting time and using sepa-
rate QWAIT instructions to specify longer waiting times (ts3). The simulation
results are shown in Fig. 4.7.



4.4. INSTANTIATION & IMPLEMENTATION 91

Figure 4.7: Number of instructions for various architecture configurations for ran-
domized benchmarking, Ising model, and square root.

Config 1 is (ts1, no PI, no SOMQ), and Config 1 with w = 1 is chosen as the
baseline. By increasing w from 1 to 4, the number of instructions can be re-
duced up to 62% (RB). Benchmarks with substantial parallelism (RB and IM)
benefit more from a big w. The instruction reduction in SR (∼ 8%) indicates
that large w slightly improves quantum applications with limited parallelism.

Config 2 is (ts2, no PI, no SOMQ). A minimum w of 2 is required by ts2
to distinguish it from ts1. Compared with Config 1, by including the QWAIT

operation as part of a quantum bundle instruction, Config 2 can reduce the
number of instructions by 20 - 33% (RB), 24 - 45% (IM), 43 - 50% (SR) by
varying w from 2 to 4. SR benefits most because of two reasons. First, due to
its sequential nature, it has relatively more QWAIT instructions. Second, limited
parallelism in this algorithm leaves potential VLIW slots unused, which can be
filled by QWAIT instructions.

Config 3/4/5/6 is (ts3, wPI = 1/2/3/4, no SOMQ). Config 3 can reduce the
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number of instructions by 13 - 33% for RB and 28 - 44% for IM withw varying
from 1 to 4 compared with Config 1. Since the intervals between operations in
RB and IM are mostly close to 1, further increasingwPI up to 4 bits introduces
marginal benefit. Config 3 reduces the number of instructions of SR by∼ 17%
regardless of w. Further increasing wPI to 3 or 4 bits can reduce the number of
instructions of SR by up to 48%. Like SR, quantum algorithms are scheduled
to be executed in a time as short as possible. This result of Config 3-6 suggests
that most of the waiting time is short and can be encoded in a 3-bit PI field.
Note that Config 3/4/5 is also more beneficial than Config 2 when w = 1 or
w = 2.

Config 7/8/9/10 is (ts3, wPI = 1/2/3/4, SOMQ). Our analysis assumes that
the target registers can always provide the required qubit (pair) list, and there-
fore shows the theoretical maximum benefit that can be obtained by SOMQ.
Compared to Config 3/4/5/6, SOMQ can introduce a maximum reduction of
42% (Config 8, w = 2) in the number of instructions for RB, while it can
only reduce at most 4% instructions for SR (Config 8, w = 1). Regardless of
wPI, SOMQ can help reduce the number of instructions of IM by ∼ 24, 19,
9, and 2% for different w. This fact suggests that SOMQ is more effective for
highly parallel applications, especially when w is small. An application that
would benefit significantly from SOMQ is quantum error correction, which
requires performing well-patterned error syndrome measurements repeatedly
presenting high parallelism. As not shown in the figure, we also analyzed the
number of effective quantum operations in each quantum bundle for Config 9,
which is 1.795, 2.296, and 3.144 for RB, 1.485, 1.622, and 1.623 for IM, and
1.118, 1.147, and 1.147 for SR with w varying from 2 to 4, respectively. It
indicates that with the existence of SOMQ, w > 2 is not highly required for
many quantum applications (RB is a special case with extreme parallelism).

As a result of the analysis, our eQASM instantiation adopts Config 9 (ts3,
wPI = 3, SOMQ) with w = 2. A width of 32 bits is used by all instructions
for the memory alignment. Two instruction formats are used: the single format
with the highest bit being ‘0’ and the bundle format with the highest bit being
‘1’. Single format instructions use the other 31 bits to encode a single instruc-
tion, including all auxiliary classical instructions, and SMIS, SMIT, QWAIT(R)
instructions. For brevity, we only present the format of quantum instructions
as shown in Fig. 4.8.

There are 32 single- (two-)qubit target registers, and the target register address
width is 5 bits. The target registers use a mask format. The mask is 7- (16-)bit
wide in the single- (two-)qubit target register. Each bit in the mask of the value



4.4. INSTANTIATION & IMPLEMENTATION 93

1 6 5 13 7
0 opcode Sd Imm

SMIS Dst SReg Qubit Mask

1 6 5 4 16
0 opcode Td Imm

SMIT Dst TReg Qubit Pair Mask

1 6 5 20
0 opcode Imm

QWAIT Wait time

1 6 5 5 15
0 opcode Rs

QWAITR Src GPR

1 9 5 9 5 3
1 q opcode Si/Ti q opcode Si/Ti PI

quantum operation 0 quantum operation 1

Figure 4.8: Format of the SMIS and SMIT (top two), QWAIT and QWAITR (middle
two), and quantum bundle (bottom) instruction.

‘1’ indicates that the corresponding qubit (allowed qubit pair) is selected. In
the QWAIT(R) instruction, only the least significant 20 bits of the Imm field or
GPR Rs are used to specify the waiting time. In the quantum bundle instruc-
tion, each quantum operation occupies 14 bits and the q opcode is 9 bits.

4.4.3 Microarchitecture

QuMIS is implemented by the control microarchitecture QuMA with
codeword-based event control, queue-based event timing control and multi-
level instruction decoding [141]. Adopting these three mechanisms, we re-
design a quantum control microarchitecture, QuMA v2, implementing the in-
stantiated eQASM as shown in Fig. 4.9. It supports all features of eQASM.
The classical pipeline maintains the PC and implements the GPR file and the
comparison flags. The execution flag register is maintained by the fast con-
ditional execution module. The classical pipeline fetches and processes in-
structions one by one from the instruction memory. All auxiliary classical
instructions are processed by the classical pipeline while quantum instructions
are forwarded to the quantum pipeline for further processing.

The timestamp manager processes the QWAIT(R) instructions and the PI field
to generate timing points. The quantum pipeline contains a VLIW front end
with two VLIW lanes, each lane processing one quantum operation. The SMIS
(SMIT) instructions update the corresponding target registers in each VLIW
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Table 4.2: Definition of the micro-operation selection signal.

Value Operation to Select Value Operation to Select
‘00’ None ‘10’ µ optgt
‘01’ µ opsrc ‘11’ µ ops

lane. Inside each VLIW lane, the q opcode is translated by the microcode unit
into one micro-operation (labeled as µ ops) for a single-qubit operation or two
micro-operations (labeled as µ opsrc and µ optgt) for a two-qubit operation.
µ opsrc (µ optgt) will be applied on the source (target) qubit of the target qubit
pair. The configuration of the microcode unit is stored in the Q control store,
which is implemented using a lookup table. The target register Si (Ti) is read
for a single- (two-)qubit operation.

The quantum microinstruction buffer resolves the mask-based qubit address
and associates the quantum operations to the last generated timing point. It
resolves the qubit address in two steps.

First, the mask stored in Si (Ti) is translated into seven two-bit micro-
operation selection signals OpSeli, where i = 0, 1, · · · , 6, with each signal
for one qubit. Table 4.2 lists the meaning of every case of the micro-operation
selection signal. For single-qubit operations, OpSeli is set to ‘11’ (‘00’) if
the i-th bit in the mask is ‘1’ (‘0’). For a two-qubit operation, OpSeli is set to
‘00’ if qubit i is not contained in any selected allowed qubit pair. Otherwise,
OpSeli is ‘01’ (‘10’) if the target qubit pair contains qubit i as the source (tar-
get) qubit. Take qubit 0 as an example. It is connected to edges 0, 1, 8, and 9.
When edge 0 or 9 (1 or 8) is selected in the mask, qubit 0 is the target (source)
qubit and should be applied with µ optgt (µ opsrc). In other words, OpSel0
should be ‘10’ (‘01’), and can be generated using a simple OR (_) logic:

OpSel0 = (Ti[0] _ Ti[9]) :: (Ti[1] _ Ti[8]).

The assembler should check the validity of two-qubit target register values. For
example, it is invalid if two edges connecting to the same qubit are selected in
the same T register.

Second, based on OpSeli, either none or one micro-operation is output for
qubit i. This step is fully parallel.

The operation combination module also works in a two-step fashion. First,
since each VLIW lane outputs none or one micro-operation for each qubit,
the operation combination module merges both micro-operations from both
VLIW lanes. If both VLIW lanes output one micro-operation on the same
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qubit, an error is raised, and the quantum processor stops. Second, as ex-
plained in Section 4.3.4, a long quantum bundle requires multiple quantum
bundle instructions to describe it. The operation combination module buffers
all micro-operations associated with the same timing point. Only when it de-
tects that all quantum operations in the same quantum bundle have been col-
lected, the operation combination module sends the buffered micro-operations
to the device event distributor. This detection can be done, e.g., by recogniz-
ing a new timing point generated by the timestamp manager which is different
to the one associated to the buffered micro-operations. Also, if two different
quantum bundle instructions specify a quantum operation on the same qubit,
an error is raised, and the quantum processor stops.

As shown in Section 3.6, operating a qubit may require the collaboration of
multiple electronic devices in the analog-digital-interface, and a single device
may also control multiple qubits. Hence, the micro-operations should be re-
organized into device operations to trigger the corresponding devices. The
device event distributor reorganizes multiple micro-operations associated with
the same timing label into different device operations. After that, each de-
vice operation with the associated timing label is buffered at an event queue of
the timing control unit awaiting execution. The timing controller then triggers
every device operation at its expected timing point.

After the device operations have been triggered by the timing controller, fast
conditional execution is performed based on the selected execution flags of the
target qubits. The execution flag selection signal comes from the microcode
unit configured by the programmer. Only device operations for qubits of which
the selected execution flag is ‘1’ are released to the analog-digital interface
(ADI). In this eQASM instantiation, four types of combinatorial logic are used
to define the execution flags:

1. ‘1’ (the default for unconditional execution);
2. ‘1’ iff the last finished measurement result is |1〉;
3. ‘1’ iff the last finished measurement result is |0〉;
4. ‘1’ iff the last two finished measurements get the same result.

Note, the last finished measurement result refers to the result of the last finished
measurement instruction on this qubit when these flags are used. It is irrelevant
to the validity of the quantum measurement result register. Once there returns
a measurement result for a qubit from the analog-digital interface, the fast con-
ditional execution unit immediately update the execution flags corresponding
to that qubit.

To support CFC, a counter Ci is attached to each qubit measurement result
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register Qi, with an initial value of 0. Once a measurement instruction acting
on qubit i is issued from the classical pipeline to the quantum pipeline, Ci
increments by 1. If the measurement discrimination unit writes back a mea-
surement result for qubit i, Ci decrements by 1. Qi is valid only when Ci is
0. If Ci is not 0 when the instruction FMR Rd, Qi is issued, the pipeline is
stalled until Ci is 0. In this way, it is ensured that the instruction FMR Rd, Qi

always fetches the result of the last measurement instruction acting on qubit i.

4.4.4 Implementation

The hardware structure implementing the microarchitecture (Fig. 4.10) con-
sists of a Central Controller responsible for orchestrating three modules con-
taining slave devices for microwave control, flux control, and measurement.

The Central Controller is a digital device built with an Intel Altera Cyclone V
SOC 5CSTFD6D5F31I7N Field Programmable Gate Array (FPGA) chip. The
Central Controller implements the digital part of the microarchitecture (left
to the ADI in Fig. 4.9). The timing controller and fast conditional execution
module work at 50 MHz to get a cycle time of 20 ns. The other parts work at
100 MHz.

Single-qubit x and y rotations are performed by applying microwave pulses
to the qubits. The pulses are generated by Zurich Instruments High Density
Arbitrary Waveform Generators (HDAWG) and modulated using a Rohde &
Schwarz (R&S) SGS100A microwave source. A custom-built vector switch
matrix (VSM) is responsible for duplicating and routing the pulses to the re-
spective qubits as well as tailoring the waveforms to the individual qubits [100]
using a qubit-frequency reuse scheme that allows for efficient scaling of the
microwave control module [81].

Flux pulses that implement two-qubit CZ gates and single-qubit z rotations are
performed by applying pulses generated by an HDAWG on the dedicated flux
lines for each qubit.

The measurement discrimination unit is implemented using two Zurich Instru-
ments Ultra-High-Frequency Quantum Controllers (UHFQC) connected to the
two feedlines shown in Fig. 4.6. The UHFQC has two analog outputs that can
be used to generate the measurement pulses and two analog inputs to sam-
ple the transmitted signals from which the UHFQC can infer the measurement
result. The measurement pulses going to (coming from) the qubits are mod-
ulated (demodulated) using a single R&S SGS100A. All analog ports operate
at 1.8 GSa/s allowing for simultaneous measurement of up to 9 qubits per
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Figure 4.10: Hardware structure implementing the instantiated eQASM for the seven-
qubit superconducting quantum processor. Thin (thick) lines represent digital (analog)
signals.

feedline using frequency multiplexing techniques [148].

The Central Controller connects to the UHFQCs and HDAWGs via a 32-bit
digital interface working at 50 MHz. Since measurement results are sent from
the UHFQC to the Central Controller, 16 bits of the connection are sent from
the Central Controller to the UHFQC and the other 16 bits the other way
around. All operations on UHFQCs and HDAWGs are codeword triggered.
The routing of microwave pulses by the VSM is controlled through seven dig-
ital signals with a sampling rate of 400 MSa/s.

4.5 Experiment

Since the target seven-qubit quantum chip is still under test at the time of writ-
ing, we replaced the quantum chip of this microarchitecture with a two-qubit
superconducting quantum processor to validate the eQASM design. The two
qubits are interconnected and coupled to a single feedline. A configuration file
is used to specify the quantum chip topology with the two qubits renamed as
qubit 0 and 2. It is used by the quantum compiler and the assembler. eQASM
programs used to perform the experiments as described below are all compiled
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from OpenQL descriptions with corresponding quantum operation configura-
tion.

We first used eQASM to perform some single-qubit calibration experiments
which utilize uncalibrated operations. For example, the Rabi oscillation [124]
applies an x-rotation pulse on the qubit after initialization and then measures it.
A sequence of fixed-length x-rotation pulses with variable amplitudes are used.
Each pulse in the sequence is uploaded to the codeword triggered pulse gener-
ation unit of the microarchitecture and configured to be an operation X_Amp_i
in eQASM. As a result, this experiment calibrated the amplitude of the X gate
pulse. Together with other experiments, the fidelity of single-qubit quantum
operations used later reached 99.90% as measured in the following RB ex-
periment. It is worth mentioning that we observed considerable speedup in
performing these experiments with the eQASM control paradigm in practice.

eQASM is then configured to include single-qubit gates {I,X, Y,X90, Y90,
Xm90, Ym90} and a two-qubit CZ gate for the following experiments. The Al-
lXY experiment is typically used to calibrate single-qubit gates. In AllXY, pairs
of single-qubit gates are chosen from the set {I,X, Y,X90, Y90} and applied in
such a way that the expected measurement outcomes produce a characteristic
staircase pattern that is highly sensitive to gate errors (red line in Fig. 4.3). In
the two-qubit AllXY experiment, the control pulses are applied on each qubit
simultaneously. The sequence is modified to distinguish the qubits on which
it is applied: each gate pair in the sequence is repeated on the first qubit while
the entire sequence is repeated on the second qubit. The fidelity of qubit to the
|1〉 state can be extracted by averaging the measurement results for each gate
pair over N rounds and correcting for readout errors. The eQASM program
for one routine of this experiment is shown in Fig. 4.3. Figure 4.11 shows the
final measurement result of the entire experiment (blue dots), which matches
well with the expectation (red line). This demonstrates that the timing control,
SOMQ, and VLIW of eQASM work properly in the experiment.

To evaluate the impact of the timing of operations on the error rate, we use
single-qubit randomized benchmarking, a technique that can estimate the aver-
age error rate for a set of operations under a very general noise model [77, 78].
In this experiment, a sequence of k random Clifford gates are applied on a
qubit initialized in the |0〉 state. Before measurement, a Clifford is chosen that
inverts all preceding operations so that the qubit should end up in the |0〉 state
with survival probability p(k). By performing this experiment for different k
and averaging over many randomizations, the Clifford fidelity FCl can be ex-
tracted from the exponential decay. Because each Clifford gate is decomposed
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Figure 4.11: Two-qubit AllXY result, corrected for readout errors.

into primitive x- and y-rotations the gate count is increased by 1.875 on aver-
age. The average error rate per gate, ε, is then calculated as ε = 1− F 1/1.875

Cl .

Single-qubit randomized benchmarking was performed for different intervals
between the starting points of consecutive gates (320, 160, 80, 40, and 20 ns).
As shown in Fig. 4.12, the average error per gate decreases by a factor of ∼ 7,
from 0.71% to 0.10% when decreasing the interval from 320 ns to 20 ns. This
demonstrates the significant impact of timing on the fidelity of the final com-
putation result, which substantiates the requirement of explicit specification of
timing at QISA level to enable platform-specific optimization and especially
scheduling by the compiler.

Fast conditional execution is verified by the active qubit reset experiment with
qubit 2 using the code as shown in Fig. 4.4. We find the probability of mea-
suring the qubit in the |0〉 state after conditionally applying the C_X gate to
be 82.7%, limited by the readout fidelity. We verified CFC by connecting
the Central Controller and the UHFQC. The eQASM program used is shown
in Fig. 4.5. The UHFQC is programmed to generate alternative mock mea-
surement results for qubit 0. The alternation between X and Y operations is
verified by detecting the output digital signals using an oscilloscope. We also
measured the feedback latency of fast conditional execution and CFC, which
are∼ 92 ns and ∼ 316 ns, respectively. The feedback latency is defined as the
time between sending the measurement result into the Central Controller and
receiving the digital output based on the feedback from the Central Controller.

As a proof of concept of performing quantum algorithms using eQASM, we
executed a two-qubit Grover’s search algorithm [16, 72]. The algorithmic fi-
delity, i.e., correcting for readout infidelity, is found to be 85.6% using quan-
tum tomography with maximum likelihood estimation. This fidelity is limited
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Figure 4.12: Single-qubit randomized benchmarking results for different intervals
between gates. Dashed line indicates a 10% error rate for visual reference.

by the CZ gate.

4.6 Conclusion

In this chapter, we have proposed eQASM, a QISA that can be directly
executed on a control microarchitecture after instantiation. With runtime
feedback, eQASM supports full quantum program flow control at the (mi-
cro)architecture level [136, 143]. With efficient timing specification, SOMQ
execution, and VLIW architecture, eQASM alleviates the quantum operation
issue rate problem, presenting better scalability than QuMIS. Quantum oper-
ations in eQASM can be configured at compile time instead of QISA design
time, which can support uncalibrated or uncommon operations, leaving am-
ple space for compiler-based optimization. Low-level hardware information
mainly appears in the binary of a particular eQASM instantiation, which makes
eQASM assembly expressive. It is worth noting that by removing the timing
information in the eQASM description, the quantum semantics of the program
can be kept and further converted into another executable format targeting an-
other hardware platform.

As validation, eQASM was instantiated into a 32-bit instruction set targeting
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a seven-qubit superconducting quantum chip, and implemented using a quan-
tum microarchitecture. eQASM was verified by several experiments with this
microarchitecture performed on a two-qubit chip. The efficiency improvement
observed in using eQASM to control quantum experiments broadens the scope
of application of quantum assemblies.

Future work will include performing verifying comprehensive feedback con-
trol with qubits and controlling the originally targeted seven-qubit supercon-
ducting quantum processor with the implemented microarchitecture. Also, it
will be interesting to instantiate eQASM to control other quantum processors,
including superconducting quantum processors with a different quantum chip
topology, and altogether different quantum hardware, such as spins in quantum
dots [31], nitrogen vacancy centers [33].

Note. The content of this chapter is based on the following paper:

X. Fu, L. Riesebos, M. A. Rol, J. van Straten, J. van Someren, N. Khammassi,
I. Ashraf, R. F. L. Vermeulen, V. Newsum, K. K. L. Loh, J. C. de Sterke,
W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and
K. Bertels, eQASM: An Executable Quantum Instruction Set Architecture,
arXiv:1808.02449, 2018. [To appear on HPCA’19]



5
Fault-Tolerant Quantum

Microarchitecture

5.1 Introduction

Due to the short decoherence time of qubits and the erroneous quantum opera-
tions, fault-tolerant quantum computing (FTQC) based on quantum error cor-
rection (QEC) is essential to implement large-scale quantum algorithms. The
basic idea of QEC is to encode quantum information into a logical qubit using
a group of physical qubits according to some encoding scheme called quantum
error correction code (QECC). To achieve fault-tolerance, it requires periodi-
cally detecting and (if necessary) correcting possible quantum errors through
a highly patterned process called error syndrome measurement (ESM). In ad-
dition, quantum operations on such logical qubits should be implemented by
a series of physical operations in such a way that individual errors of phys-
ical operations will not ruin the information stored in the logical qubits. As
a consequence, FTQC dramatically increases the number of required physical
qubits and the number of physical operations.

However, quantum control microarchitectures and QISAs proposed by re-
cent research [141, 149] mainly target to control the Noisy Intermediate-Scale
Quantum (NISQ) devices with around fifty to hundreds of qubits [57], where
quantum error correction is not applied. The QISA required by FTQC can be
different to that required by NISQ technology because of the following rea-
sons.

• Quantum algorithms targeting NISQ technology directly operate on in-
dividual physical qubits without QEC. In contrast, quantum algorithms
operates on logical qubits in FTQC. The microarchitecture should sup-
port not only logical operations but also individual physical operations

103
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which are required to implement some logical operations such as initial-
ization [39].
• QEC introduces more complex classical computational tasks at run-

time, such as quantum error decoding and error tracking using Pauli
frame [133], which require the support of new instructions in the QISA
and the control microarchitecture.
• The quantum error correction process requires repeated operations on

qubits, which significantly increase the number of quantum operations
on qubits per unit time, which aggravates the quantum operation issue
rate problem [141, 142] confronting the control microarchitecture.

It is an open challenge to develop a scalable and flexible control microarchi-
tecture which can satisfy the requirement of quantum error correction, and
fault-tolerant logical operations. This chapter envisions a fault-tolerant mi-
croarchitecture, FT QuMA, for planar surface code with logical operations
implemented by lattice surgery [150]. The main contributions of this chapter
are the following:

• We introduce the concept virtual memory into quantum computing with
microarchitectural support, which contributes to a clean compilation
model independent of the actual physical addresses of qubits that can
vary from device to device;
• We propose a scheme to support quantum error detection and correc-

tion at the microarchitecture level, which can enable flexible planar-
surface-code-based fault-tolerant logical operations implemented by lat-
tice surgery;
• We propose a hardware mechanism that substantially reduces the code-

size of the executable to enable efficient execution of quantum instruc-
tions.

This chapter is organized as follows. Section 5.2 introduces the basics of
FTQC and planar surface code with logical operations implemented by lat-
tice surgery. The envisioned fault-tolerant quantum control microarchitecture,
FT QuMA, which supports the execution of quantum instructions with error
correction, is described in Section 5.3. We discuss the architectural design
choices needed for the quantum plane in Section 5.4 and conclude in Sec-
tion 5.5.



5.2. FAULT-TOLERANT QUANTUM COMPUTING 105

5.2 Fault-Tolerant quantum computing

5.2.1 Quantum Error Correction

Qubits are fragile and quantum operations are erroneous. For example, the
state-of-the-art superconducting qubits have a coherence time of around one
hundred microseconds [151] and gate fidelity ranging from 99.5 - 99.9% [26].
QEC can protect quantum states against errors by encoding one logical qubit
into several physical qubits, called data qubits. Logical operations can be im-
plemented by a series of physical operations on the physical qubits in such a
way so that individual errors can be detected and corrected to achieve fault-
tolerance. Non-destructive ESM is periodically performed with the assistance
of ancillary qubits, called ancilla qubits, to discretize quantum error and ex-
tract the error syndromes. Afterwards, quantum error decoding is applied to
find the likely errors leading to the observed syndromes. The capability of a
QECC to detect and correct errors is characterized by the distance d of this
QECC. The distance d is defined as the minimum number of physical opera-
tions required to implement a logical operation.

Surface code [152, 153] is a 2D topological stabilizer code of which ESM
is realized by measuring low-weight stabilizers, which is applicable on near-
term quantum devices with limited connectivity. Moreover, surface code has
high tolerance to errors with error threshold ∼ 1%, which can be achieved
by several quantum technologies such as superconducting qubits. This paper
focuses on planar surface code and investigate its implications on a quantum
microarchitecture.

The qubit layout of a distance-3 planar surface code is shown in Fig. 5.1a
(Lattice ‘C’). It consists of two types of qubits, data qubits (solid circles) for
storing computational information, and ancilla qubits (open circles) used to
detect errors. Each ancilla qubit is coupled to 2 or 4 data qubits, depending
on position of the ancilla qubit in the logical qubit lattice. Each data qubit is
connected with two differently colored ancillas, with each corresponding to
one type of stabilizers: X-stabilizers for detecting Z errors, and Z-stabilizers
for detecting X errors. The circuits for performing X- and Z-stabilizer mea-
surement are shown on Fig. 5.2, in which the operations for performing ESM
are highly patterned. Decoding algorithms such as minimum weight perfect
matching [154–156] will be used to identify the possible errors with high like-
lihood [121]. Rather than physically performing these corrections which will
introduce more errors to the quantum system, errors can be tracked by classi-
cal control logic using the technique called Pauli frame [80] that can be imple-
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mented in the microarchitecture [133].
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Figure 5.1: (a) The qubit layout for performing a CNOT gate between two logical
qubits. Each logical qubit is encoded by a distance-3 rotated planar surface code where
data qubits are on the vertices (solid circles) and ancilla qubits are on the plaquettes
(open circles). The blue (red) squares and semi-circles represent stabilizers of the
form X(Z)⊗4 and X(Z)⊗2, respectively. ‘C’ is the control qubit, ‘T’ is the target
qubit, and ‘A’ is the ancilla. The joint MZZ on qubit ‘A’ and ‘C’ is realized by first
performing ESM on the entire lattice in (b) for a merge and then performing ESM
separately on the two lattices in (c) for splitting.

(a) (b)

Figure 5.2: The ESM circuits (a) and (b) for measuring X- and Z-stabilizers
(XD5,D2,D4,D1 and ZD6,D3,D5,D2).

5.2.2 Fault-tolerant Logical Operations

For surface codes, an implementable universal set of logical operations include
the preparation, measurement, Pauli, CNOT, H , S and T gates. In planar
surface code, logical Pauli gates, preparation and measurement can be imple-
mented transversally [39], i.e. applying bitwise operations to data qubits in the
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code and then performing 0−d rounds of ESM to decode errors. For example,
the logical X and Z on a distance-3 surface code (e.g., lattice ‘C’ in Fig. 5.1a)
can be realized by performing XD1XD2XD3 and ZD1ZD4ZD7 followed by 3
rounds of ESM, respectively.

In order to be able to perform logical CNOT gates in a 2D layout with only
nearest-neighbour (NN) interactions, [157] proposes a measurement-based
procedure which can be implemented by the circuit shown in Fig. 5.3 [158].
The qubit layout for performing such a logical CNOT gate on distance-3 pla-
nar surface code is shown in Fig. 5.1. The joint measurementMXX orMZZ is
realized by first performing a merge operation and then a split operation using
a technique called lattice surgery [150, 159]. For example, the merge operation
for MZZ in Fig. 5.3 is realized by performing d rounds of ESM on the merged
lattice in Fig. 5.1b. This means the two lattices ‘A’ and ‘C’ are integrated into
one single lattice. Similarly, the split operation is implemented by performing
d rounds of ESM individually on each lattice ‘A’ and ‘C’ in Fig. 5.1c. The
splitting procedure divides the merged lattice back into two lattices. In addi-
tion, one needs to read out the result of each joint measurement by multiplying
the outcomes of all new stabilizers during its merge, which will be used for fur-
ther logical Pauli corrections (Fig. 5.3). For instance, the measurement result
of MZZ is the multiplication of the outcomes of the two blocked Z stabiliz-
ers in Figure 5.1b. In total, ∼ 3d rounds of ESM are performed to realize a
lattice-surgery-based CNOT gate.

It is worth to mention that the decoding for lattice-surgery-based operations
may differ from the decoding for the standard error correction cycles (we refer
interested readers to [160] for more technical details). For the merge operation
in Figure 5.1b, the decoding for detectingZ errors is based on the measurement
outcomes of all theX-stabilizers on the entire merged lattice, but the decoding
for detecting X errors is only based on the measurement outcomes of all the
Z-stabilizers on the original two separate lattices.

|C〉

|0〉

|T 〉

(−1)a

MXX

(−1)b

MZZ
(−1)c
MX

Za+c

Zc

Xb

Figure 5.3: The circuit to realize a measurement-based CNOT gate.

The logical H gates on planar surface code in principle can be implemented
transversally. Afterwards, the X- and Z-stabilizers will be exchanged, that is,
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the lattice is rotated by 90 degrees. One needs to keep track of the orientation
of each lattice for generating the correct ESM circuits. In addition, a rotation
procedure is required if a logical CNOT will be performed between two lattices
which are not in the same orientation (The ‘C’ and ‘T’ qubits have the same
lattice orientation in Fig. 5.1a). Several papers have proposed lattice-surgery-
based procedures to rotate a planar surface code [121, 159]. However, different
approaches have different latency and use different types of lattices (shapes and
sizes), it is not clear which one has better performance. Investigating rotation
procedures is beyond the scope of this paper, we will ignore this operation in
this work. The last element for implementing a fault-tolerant universal gate set
on planar surface code is magic state preparation using lattice surgery [159],
which is used to realize the logical S and T gates [153].

Summary: The transversal logical preparation, measurement, Pauli, H gates,
and magic state preparation on planar surface code are implemented by first
performing some physical operations and then performing 0 − d rounds of
ESM on the lattice of objective qubit. The lattice-surgery-based logical CNOT
and rotation procedure are both realized by consecutively performing d rounds
of ESM on several different lattices. It means the most frequent operation unit
of surface-code-based quantum computing is a full round of ESM on a specific
lattice. In the following sections, we will discuss how to efficiently support the
execution of ESM and fault-tolerant operations in the control microarchitec-
ture.

5.3 Fault-Tolerant Control Microarchitecture

Figure 5.4 gives an overview of the proposed fault-tolerant control microar-
chitecture FT QuMA. It is updated from QuMA v2 with the dashed blocks
highlighting the modules and mechanisms introduced to support large-scale
FTQC. The QECC chosen is planar surface code with logical operations im-
plemented with lattice surgery. The same as QuMA v2, instructions accepted
by FT QuMA describe quantum operations at the physical level. Logical oper-
ations should be translated by the compiler into a fault-tolerant implementation
consisting of instructions describing physical operations.

To support large-scale quantum computing, FT QuMA adopts virtual memory
as used by classical computers to enable a clear compilation model. FT QuMA
supports fault-tolerant quantum computing by providing essential features for
flexible logical operation description at the physical level, efficient ESM cir-
cuit generation, QED, and Pauli frame, etc. Note, the user can turn off all
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modules related to QEC, and FT QuMA can work properly as well, but at the
physical level without fault-tolerance support. Modules shared by QuMA v2
and FT QuMA work in the same way unless otherwise specified.

5.3.1 Qubit Addressing

Virtual Address and Physical Address

To enable a simple compilation model for large-scale fault-tolerant quantum
computing, two kinds of addresses are used: the virtual address and the phys-
ical address. It is assumed that the quantum compiler works with qubits on a
virtual 2D array with NN interaction among qubits. The virtual address has
the format qv = (i, x, y), where i is the index address of the qubit and (x, y) is
the Cartesian coordinates of the qubit on the virtual array. The index address
can be calculated from the Cartesian coordinates and vice versa, or a look-
up table can be used to store the mapping between each other. The Cartesian
coordinates are included as part of the address because they are important in
determining the qubit type (data qubit, X ancilla, or Z ancilla) and the opera-
tions required by QEC, which will be discussed in Section 5.3.2.

As shown in Fig. 5.5, the virtual qubit array (red frame) is mapped to a lattice
of the same size on the physical qubit array during the initialization before exe-
cution. Every qubit also gets a physical qubit address qp = (̂i, x̂, ŷ) at this step.
Assuming the mapping process keeps the orientation of the axes of the qubit
plane, then the mapping can be determined by, e.g., recording the physical co-
ordinates qp = (x̂0, ŷ0) of the virtual qubit (0, 0, 0). The Cartesian coordinates
between the virtual address and the physical address can be translated using
the relationship:

(x̂, ŷ) = (x, y) + (x̂0, ŷ0)

The physical address of qubits may vary when executing the program on dif-
ferent platforms. By using the virtual address, the compilation process can be
independent of the actual physical qubit address, which contributes to a cleaner
compilation model.

Microarchitectural Support

The quantum instructions input to FT QuMA are physical instructions with
virtual addresses. As shown in Fig. 5.4, modules in the virtual address do-
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Figure 5.5: Virtual qubits mapped on physical qubits. Red is for the virtual address
space and black for the physical address space.

main works in the same way as explained in Chapter 4.4. They are rela-
tively technology-independent and work with the virtual address. The virtual-
physical address translation module translates the virtual address into the phys-
ical address according to the mapping in the initialization. In the physical ad-
dress domain, the modules are mostly technology-dependent and work with
the physical address. The measurement discrimination unit returns measure-
ment results associated with physical address, which will be translated by the
virtual-physical address translation module into virtual address and later sent
to the classical pipeline for further process. In this way, the virtual address
domain is clearly separated from the physical address domain.

Note, the virtual address and physical address are only used by the physical
qubits, and each logical qubit uses only one but unique logical address through-
out the microarchitecture, which will be explained in the next subsection.

5.3.2 Fault-Tolerant Logical Operations

As explained in Section 5.2.2, logical operations can be either implemented by
applying transversal physical quantum operations on the qubits or by lattice
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surgery. In both operations, the keys to achieve fault-tolerance is to 1) perform
ESM on the active stabilizers, and 2) decode and correct the errors at runtime.
Since lattice surgery needs to turn on and off some stabilizers at different QEC
cycles, which should be supported by the control microarchitecture. Besides,
the microarchitecture should be able to decode quantum errors at real-time as
well, which is required by QEC.

Targeting these goals, FT QuMA maintains a qubit symbol table (Q symbol ta-
ble), which keeps track of the status of all logical qubits which is used to deter-
mine active stabilizers. The qubit symbol table is introduced in Section 5.3.2.
Section 5.3.2 explains the working principle of the QEC cycle generator to effi-
ciently generate quantum operations used for ESM. The quantum error decoder
module of FT QuMA is used to decode quantum errors at runtime, which is ex-
plained in Section 5.3.3. FT QuMA also contains a logical measurement unit
used to deduce the measurement result of logical qubits, which is explained
in Section 5.3.4. The Pauli frame unit tracks quantum errors of data qubits at
runtime, which is explained in 5.3.5.

Qubit Symbol Table

The microarchitecture should be able to know what logical qubits are alive,
where they are, and the type of each physical qubit. The qubit symbol table
tracks which logical qubits are alive (info1). As shown in Fig. 5.5, there are
three alive logical qubits, L1, L2, and L3.

To generate the instructions for ESM, the following configuration of logical
qubits should be updated at runtime:

• Since a logical qubit can vary its size during lattice surgery, the size (d1×d2)
(info2) of each logical qubit should be recorded, where d1 and d2 are the
number of data qubits of this logical qubit along x- and y-axis, respectively.
As shown in Fig. 5.5, logical qubit L1 has a size of 3× 3 while logical qubit
L3 has a size of 3× 6.
• The location of each logical qubit (info3) is essential to determine which

physical qubits are used to implement this logical qubit. The location of
each logical qubit can be determined by recording the virtual coordinates
(xL,0, yL,0) of the data qubit at the bottom left corner of this logical qubit.
For example, the location of logical qubit L1 is (2, 2).
• A logical qubit with the same data qubits can use different ancilla qubits for

different purposes in lattice surgery. Take the distance-3 surface code as an
example and as shown in Fig. 5.6, there are in total four different flavours



5.3. FAULT-TOLERANT CONTROL MICROARCHITECTURE 113

for the same qubit, which can be distinguished using two flags: the base
ancilla type and the chirality (info4). Info4 is required to determine which
physical qubits are used as ancilla and what types they are.

Chirality Left Right
Base Type

X

Z

Figure 5.6: Four flavours of a distance-3 surface code logical qubit using the same
data qubits. It is assumed that redundant ancilla qubits are not used. The chirality
of the logical qubit is left (right) when the physical qubit at (xL,0 + 1, yL,0 − 1)
((xL,0 + 3, yL,0 − 1)) is used as an ancilla qubit, where (xL,0 + 1, yL,0 − 1) is the
location of the logical qubit. The base ancilla type is X (Z) when the ancilla qubit at
(xL,0 + 1, yL,0 − 1) or (xL,0 + 1, yL,0 − 1) is an X (Z) ancilla.

Note, some logical operation implementation may rotate the lattice (Sec-
tion 5.2.2), which procedure would require more information. Since it is not
yet clear if the lattice rotation is essential or which rotation scheme should be
used, the microarchitectural support for the lattice rotation will be included in
the future work. The qubit symbol table should contain all info1 to info4, with
an example qubit symbol table shown in Table 5.1. When necessary, another
table could be provided to inversely map the physical or virtual qubit address
to logical qubit address.

Based on the qubit symbol table, the hardware can deduct which physical
qubits are used by each logical qubit, and the type of each physical qubit.
Furthermore, all operations required by ESM can be determined according to
the ESM circuits as shown in Fig. 5.2.
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Table 5.1: An example of the qubit symbol table, with the content recording the status
of logical qubits in Fig. 5.5.

valid Logical QID Location Size Base Ancilla Type Chirality
1 1 (2, 2) (3, 3) Z Left
0 2 (2, 8) (3, 3) X Right
1 3 (10, 2) (3, 6) Z Right

QEC Cycle Generator

As explained in Section 5.2, most of the physical operations are used to per-
form ESM, which is required by QEC and fault-tolerant logical operations. We
perform a simple investigation in the number of physical operations for ESM,
followed by the introduction to the QEC cycle generator.

In the following estimation, it is assumed that there are NL logical qubits en-
coded in planar surface code, each with a distance of d. A logical qubit with
a distance of d consists of d × d data qubits and d2 − 1 X- or Z-stabilizers.
As d increase, the weight-2 stabilizers only occupies around 2/d of all sta-
bilizers, and most stabilizers are weight-4 stabilizers, with the corresponding
ESM circuit realized by applying eight or six physical operations (Fig. 5.2).
During lattice surgery, some stabilizers on the edge of logical qubits can be
turned on or off, which may slight increase or decrease the number of physical
operations required by ESM. For simplicity, it is assumed the total number of
physical operations for ESM is not affected by lattice surgery. ESM should be
performed with the active stabilizers of logical qubits repeatedly at every cycle,
no matter a logical operation is being performed or not. Hence, it suffices for
us to roughly estimate the physical operations required to perform one round
of ESM:

N c
ins ≈ 7×NL × d2. (5.1)

N c
ins can explode as the d and/or NL increase. Though the quantum compiler

can generate the instructions for these physical operations, it cannot scale up
because the quantum operation issue rate is a bottleneck for the QuMA mi-
croarchitecture [141, 142]. In other words, the required instructions are too
many to be fetched from the instruction memory for processing due to a lim-
ited instruction bandwidth. It highly requires the microarchitecture to gener-
ate physical operations for ESM to alleviate the quantum operation issue rate
problem.

FT QuMA introduces a special instruction, Gen_ESM L_i, which triggers the
hardware to generate all operations to perform ESM over the logical qubit Li.
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This method is feasible based on the following observation. Given the location
and size of a logical qubit in the qubit symbol table, the data qubits of this
logical qubit can be determined. Based on the base ancilla type and chirality,
the ancilla qubits and their type (hence the stabilizers) can be determined. It
is then possible for the microarchitecture to automatically generate the quan-
tum operations with expected timing to implement the ESM circuit for each
stabilizer according to Fig. 5.2.

During the fault-tolerant implementation of the original quantum algorithm,
the compiler generates a Gen_ESM L_i instruction for every round of ESM
on every alive logical qubit in the binary. Once Gen_ESM L_i instruction is
fetched during execution, this instructions triggers the QEC cycle generator
after instruction decoding. The QEC cycle generator reads the location, size,
base ancilla type, and the chirality of the target logical qubit Li, based on
which the physical operations with precise timing for ESM can be generated
and sent to the timing control unit awaiting execution. By using the proposed
method, the required number of instructions (Nh

ins) used for one round of ESM
is substantially reduced to

Nh
ins = NL. (5.2)

The comparison between these two methods are shown in Fig. 5.7. When
d = 30, Nh

ins is four orders of magnitude less than N c
ins.

It is worth mentioning, Tannu et al. [110] also proposed a similar idea indepen-
dently, which adopts a microcode-based method to generate the instructions
for ESM in the hardware. The microcode-based method can support not only
planar surface code but also defect-based surface code.

5.3.3 Quantum Error Decoding

After a particular number of rounds of ESM have been applied on a logical
qubit, the quantum error decoder should performs decoding algorithm to infer
the possible errors based on the syndromes, i.e, the stabilizer measurement re-
sults. Although the Pauli frame can keep track of the identified errors, errors
should be still identified as soon as possible. The qubit measurement results
stored in the measurement result unit should contain the correct values after
error correction to support runtime feedback. For example, in an implementa-
tion of the Shor’s algorithm [128], someX gates are conditioned on the results
of previous measurements to reduce the number of required qubits. Therefore,
the error decoding process is required to be fast enough so that the computation
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Figure 5.7: The number of instructions for performing one round of ESM on all alive
logical qubits through compiler generation (top) and hardware generation (bottom).

will not be delayed, leading to more accumulated errors or even a failure of the
computation. Ideally, the quantum error decoder decodes the error syndromes
generated by d rounds of ESM using less time than the duration of these ESM
circuits. To achieve such high speed, the decoding unit can decode errors based
on, e.g., Blossom algorithm [82] or neural network [161, 162].

Microarchitectural Support

FT QuMA introduces another special instruction, Decode_ESM L_i to trig-
ger the QED unit to perform decoding over the error syndromes of the last
rounds of ESM for the logical qubit Li. Once the Decode_ESM L_i instruc-
tion is fetched during execution, the QEC cycle generator reads the entry of
the logical qubit Li in the qubit symbol table, which information is finally sent
to trigger the QED unit at the expected timing point by the timing control unit.
The quantum error decoding unit contains multiple instances of the decoding
unit. Each decoding instance is triggered by one Decode_ESM L_i instruction
with the logical qubit information. Based on this information, the decoding in-
stance can determine which physical qubits are used as X or Z ancilla qubits,
and detect the errors that may happen in that logical qubit. Note, a distributed
implementation of the QED unit can be easily parallelized which presents bet-
ter scalability.
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5.3.4 Measurement Result Unit

There are two kinds of logical measurements used by planar surface code based
on lattice surgery: the measurement of a single logical qubit and the joint
measurement of two logical qubits. The measurement of a single logical qubit
is realized by first measuring all the data qubits and later classically checking
the parity of these data qubits to perform error decoding. After removing the
detected errors, the logical measurement result is calculated by multiplying
the measurement outcomes of all data qubits of this logical qubit. The joint
measurement of two logical qubits is realized by a merge operation followed
by a split operation using lattice surgery (Section 5.2.2). After error correction,
the joint measurement outcome is calculated by multiplying the outcomes of
the new measured stabilizers.

Microarchitectural Support

The Desc_Result L_i instruction is used to trigger the measurement result
discrimination for a single logical qubit Li. After decoding, address trans-
lation and awaiting execution, every Desc_Result L_i instruction fetched
from the instruction memory finally triggers the measurement result unit at a
precise timing to detect and remove errors, and calculate the logical measure-
ment result for logical qubit Li. Note, the entry of this logical qubit in the
qubit symbol table is also sent to the measurement result unit.

The measurement result can be read by the classical pipeline for feedback, e.g.,
directing the following program flow. The result can also be sent to the host
CPU via the data memory. Note that, the logical measurement unit also stores
the latest measurement result of each physical qubit to enable feedback at the
physical level.

5.3.5 Pauli Frame

The Pauli frame mechanism [80] allows tracking Pauli errors of qubits in the
classical logic without physically correcting them.

As described in [133], the Pauli frame unit only need to work for the data qubit.
To distinguish data qubits and ancilla qubits, the Pauli frame unit maintains a
qubit symbol table without virtual address in the deterministic-timing domain,
which records the real-time logical qubit information. Whenever the qubit
symbol table in the virtual address domain gets updated, then same update
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information is send to the timing control unit, and later updates the Pauli frame
unit at a precise timing.

The Pauli frame unit stores a record for every data qubit. The record is the
Pauli operators (X , Z, or X and Z) that should have been applied on the
corresponding qubit, which can come from the quantum program or quantum
error correction. The Pauli frame unit contains an arbiter, which directs the
quantum operations released by the fast conditional execution unit.

All quantum operations on the ancilla qubits are ignored by the arbiter, which
directly triggers the codeword triggered pulse generation unit (CTPG) to apply
corresponding pulses on the qubit. Quantum operations on data qubits are
processed as follows based on the type of this operation:

• Pauli gate: The arbiter redirect this operation to update the Pauli record
of the target qubit. No operation is sent to the quantum-classical inter-
face (QCI).
• Clifford gate but not Pauli: The arbiter sends this operation to the QCI.

In addition, the Pauli record of the target qubit should be updated corre-
spondingly.
• Non-Clifford gate: Since Pauli gates does not commute with non-

Clifford gates, two steps are required. First, The Pauli record(s) of the
target qubit(s) are flushed, i.e., the Pauli operators in the record are re-
leased to the QCI to apply corresponding pulses on the qubit(s). Sec-
ond, the non-Clifford gate is released to the QCI and applied on the
target qubit(s). To ensure the timing of the following operations is not
interrupt, FT QuMA requires reserving an extra time slot before every
non-Clifford gate to allocate up to two single-qubit gates (X and Z).
• Measurement: The arbiter sends this operation to the QCI to trig-

ger physical qubit measurements. After the measurement finishes, the
measurement result generated by the measurement discrimination unit
(MDU) are inverted if there is an X operation in the Pauli record for
the target qubit. The final result is then sent to the logical measurement
for further processing. Finally, the Pauli record for the target qubit is
removed.

5.4 QUBE: The qubit plane

Finally, we discuss the way the quantum plane can be organized and what in-
frastructure is necessary for fast execution and error correction. A first point
that needs to be addressed is whether or not a von-Neumann-like architec-



5.4. QUBE: THE QUBIT PLANE 119

Figure 5.8: Example QUBE architecture.

ture should be implemented in the quantum plane as advanced by many pa-
pers [38, 45–47, 54, 99, 105, 106]. Just like with classical von Neumann ar-
chitectures, the quantum plane is then split into specialized regions for pro-
cessing and communication and others to store quantum states. There are two
main arguments to not go in that direction: first, the computational paradigm
of quantum logic can be seen as the dual of the classical one. The qubit states
represent the information as it has been computed up to now and all future
operations are applied on these qubits. In principle, there is no movement re-
quired of the qubit states to an ALU like component as the quantum gates are
directly applied on the qubits. So the logic is streaming through the qubits
rather than the opposite. A second reason is that by introducing a von Neu-
mann architecture, we also introduce may the parallelization challenges, such
as the memory wall issue, that have proven to be very difficult to solve for
conventional architectures.

However, as shown in Figure 5.8, it may still be useful to create specialized
regions, for instance to transport qubit states to different parts of the quantum
plane. Ancilla factories may also be necessary to create, e.g. EPR pair used
for teleporting states [104] and special ancilla states used for implementing
fault-tolerant T and S gates [48].

What functional specialization of the qubit is necessary and how rigid or flex-
ible that should be is still an open issue. The two extreme views are that the
qubit plane can be seen as completely undefined for which an ad-hoc infras-
tructure will be generated, or that the architecture is completely pre-defined
as proposed in [54, 106]. In this sense, it is important to investigate what the
trade-offs are for both choices given different benchmarks or applications.



120 CHAPTER 5. FAULT-TOLERANT QUANTUM MICROARCHITECTURE

5.5 Conclusion

In this chapter, we envisioned a control microarchitecture that can support
FTQC based on planar surface code with logical operations implemented by
lattice surgery. We ported the concept virtual memory from classical comput-
ing to the quantum computing to provide a clean compilation model, which
is independent of the actual physical addresses of qubits that can vary from
device to device. With the support of ESM circuit generation and QED at run-
time, the codesize of the fault-tolerant implementation of the quantum program
can be significantly reduced.

Future work will involve the development of the hardware blocks in FT QuMA
that support the virtual memory and fault-tolerant quantum computing, and
verify FT QuMA on our developing full-stack simulator, called quantum vir-
tual machine, which can simulate not only the qubit state evolution but also the
execution of quantum instructions on the microarchitecture.

Note. The content of this chapter is based on the following papers:

X. Fu, L. Lao, C. G. Almudever, and K. Bertels, A Control Microarchitecture for
Fault-Tolerant Quantum Computing. [In preparation.]

L. Riesebos, X. Fu, S. Varsamopoulos, C. G. Almudever, and K. Bertels. Pauli
Frames for Quantum Computer Architectures, Proceedings of the 54th Annual
Design Automation Conference (DAC’17), ACM, 2017, p. 76.



6
Quantum (Micro)architecture Simulator

Both quantum software and electronic devices in our lab used to perform
quantum algorithms or experiments are far from mature and are still evolv-
ing rapidly. While developing the quantum software and electronic devices,
we are confronted with the challenges in the verification of the quantum soft-
ware stack, and the design, development, and verification of the microarchi-
tecture. The challenges ask for a quantum microarchitecture simulator to au-
tomate these processes.

6.1 Challenges in QuMA Development

QuTech Control Box (CBox) can control one or two qubits with the quan-
tum control microarchitecture QuMA, which can execute QuMIS instructions.
Since the number of QuMIS instructions is limited, which are low-level and
tightly bound to the hardware, the design of QuMA is relatively simple. To ad-
dress the challenges in controlling more qubits and the inherent quantum oper-
ation issue rate problem of QuMA (as discussed in Section 4.1), we designed
an executable QISA, eQASM, which is instantiated to a 32-bit instruction set
to control seven qubits and implemented by QuMA v2.

Compared to QuMA, QuMA v2 outputs a larger number of signals to orches-
trate the behavior of more analog devices. The VLIW architecture, SOMQ
execution, and microwave selective broadcasting, all ask for more complex
addressing and dynamic checking logic to avoid conflict operations. Com-
prehensive feedback control requires interaction between the classical pipeline
and the quantum pipeline, and between the non-deterministic timing domain
and the deterministic timing domain, which can stall the pipeline for an indefi-
nite number of cycles depending on the quantum program. All these contribute
to the higher complexity of control microarchitecture, which pose a big chal-
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lenge in its design, development, and verification.

These challenges drove us to develop a new method that can boost the design,
development, and verification of future quantum control microarchitectures.
Inspired by simulators for designing classical processors such as gem5 [163],
a cycle-accurate (micro)architecture simulator would also be required for the
quantum control microarchitecture.

This chapter is organized as follows. In Section 6.2, We introduce the quantum
microarchitecture development flow, analyze the drawbacks of this flow, and
show potential improvements over it. Section 6.3 introduces the design of
QuMAsim. The three potential applications of QuMAsim and how QuMAsim
supports them are shown in Section 6.4.

6.2 Quantum Microarchitecture Development Flow

This section starts by briefly introducing the microarchitecture development
procedure we adopt. After showing the drawbacks of this method, potential
improvements are introduced.

6.2.1 QuMA Development Flow

The quantum control microarchitecture is used to execute the instructions be-
longing to a given QISA and apply operations on the qubits performing the
described computation steps. While the underlying analog devices and quan-
tum chip are evolving, the quantum control microarchitecture would require
modification accordingly. To fit the requirement for fast modification and de-
ployment, the quantum control microarchitecture is implemented based on
Field Programmable Gate Array (FPGA), instead of the application-specific
integrated circuit (ASIC).

The development of QuMA targeting a particular eQASM instantiation is sim-
ilar to the development of classical processors targeting a given classical ISA.
It contains the following steps:

1. eQASM Instantiation: Instantiate eQASM into a concrete QISA tar-
geting the given quantum chip topology, and configure the assembler for
this concrete QISA;

2. Interface Requirement Specification: Specify the electronic devices
used to control the quantum chip, and the interface (digital signals) re-
quirement between the physical execution layer and the analog-digital
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interface;
3. Design: Design the microarchitecture which accepts this concrete QISA

and outputs required signals to control the analog-digital interface;
4. Development: Describe the designed microarchitecture at register-

transfer level (RTL) using a hardware description language (HDL), such
as VHDL;

5. Verification: Verify the correctness of the HDL description by running
a set of eQASM programs in simulation using tools like Mentor Graph-
ics QuestaSim [164]. Usually, a testbench is required. The correctness
is done by checking the output signals of the microarchitecture for the
given eQASM program.

6.2.2 Drawbacks of the QuMA Development Flow

Without the assistance of a quantum (micro)architecture simulator, the design,
development, and verification of QuMA can be inefficient and error-prone be-
cause:

• (Design) The design space exploration (DSE) can be limited by time
when only a diagram-based method is available, and the relationship
among modules might not be fully respected;
• (Development) it is usually time-consuming to write HDL to describe

the entire system directly; and
• (Verification) it requires the hardware programmer to check the correct-

ness of multiple signals in simulation for every eQASM program in the
benchmark.

6.2.3 Potential Improvements

Based on the experience with the design of classical processors, all the three
steps (DSE, development, and verification) can be boosted via automation.

The DSE can be performed via a configurable simulator for the quantum
control microarchitecture, like simulators for classical processors such as
gem5 [163]. QuMA differs from normal classical processors by separating the
non-deterministic timing domain and the deterministic timing domain. This
difference makes simulators for classical processors cannot directly simulate
the behavior of QuMA. A dedicated simulator for QuMA is required to per-
form design space exploration.

The HDL implementation can be boosted using high-level synthesis [165]. But
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the HDL code generated by high-level synthesis usually suffers from limited
performance. Since the implemented QuMA is supposed to run at a frequency
greater than 100 MHz on nowadays FPGA to satisfy the quantum operation
throughput requirement, the quality of the HDL code must be high.

The verification of the HDL implementation can be automated using the uni-
versal verification methodology (UVM) [166], which would require a simula-
tor to reference values for the checking points for each input program.

6.3 Design of QuMAsim

A simulator that describes the target system at a relatively low level (preferably
at the register-transfer level) can help the automation of the DSE, development,
and verification of QuMA. We call this simulator QuMAsim .

As shown in Figure 4.10, the analog part of QuMA uses commercial prod-
ucts, and our research pays more attention to the digital part of QuMA. Hence,
QuMAsim mostly simulates the behavior of the digital part of QuMA. Qubit
state evolution can be simulated via another simulator, like QX [132] or Quan-
tumSim [68].

In this section, we clarify the goal of QuMAsim and then briefly introduce the
implementation of QuMAsim.

6.3.1 Requirement of QuMAsim

Before developing QuMAsim, the simulation of the microarchitecture (using
QPDO or QUAPA) is independent of the microarchitecture implementation.

We have developed an architecture simulator based on Python, Quantum Plat-
form Development framewOrk (QPDO) [133]. QPDO has a layered structure
with each layer implementing a particular functionality, and different layers
can be combined to provide different control stack, e.g., with and without Pauli
frame to control a distance-3 logical qubit based on the planar surface code.
In the following development, L. Riesebos upgraded QPDO to the QUantum
µArchitecture Performance Analyzer (QUAPA) based on SystemC. QUAPA
models QuMA at the transaction level to enable flexible design space explo-
ration to optimize objective functions such as quantum operation issue rate.
It focuses on the relationship among different modules without regard to the
internal structure of each module. Both QPDO and QUAPA take as input a
stream of quantum operations in a format similar to cQASM [135] instead
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of binary instructions considering simulation flexibility. Neither QPDO nor
QUAPA is synthesizable. There leaves a wide gap between the microarchitec-
ture simulation and the HDL implementation.

QUAPA can perform DSE for QuMA implementation at a relatively high level
(transaction level). As a result, QUAPA generates a set of overall configura-
tions of QuMA satisfying the working requirement of given conditions. For
example and as shown in Section 4.4, what VLIW width and frequency of the
non-deterministic timing domain are required to achieve required quantum op-
eration issue rate for potential applications on given quantum chip topology.
This high-level information can guide the eQASM instantiation process and
help set the hardware implementation target.

QuMAsim contributes to the DSE in the second step. Given the configuration
of the entire architecture, QuMAsim can describe the concrete microarchitec-
ture at a relatively low level. To enable easy implementation and feasibility
verification of microarchitectural ideas, QuMAsim should be capable of mod-
eling the internal structure of modules of interest at the register-transfer level
to pursue accuracy while describing the function of modules of less interest at
a relatively high level to pursue fast implementation. (requirement 1).

QuMAsim should describe the microarchitecture at a low level (preferably
RTL). The code of QuMAsim by itself should be synthesizable, and the gener-
ated HDL code is of high quality, which can be fine-tuned manually to achieve
the required performance (requirement 2).

To enable verification over the HDL implementation, QuMAsim should ac-
cept the same input as the microarchitecture, i.e., binary instructions of the
instantiated eQASM (requirement 3). The checkpoints used for the verifica-
tion should cover related features of QuMA. In the non-deterministic timing
domain, QuMAsim should correctly reflect the architectural state update. In
the deterministic timing domain, QuMAsim should reflect not only the value
change but also the moment of the value change for each output signal since
timing is crucial (requirement 4).

6.3.2 QuMAsim Implementation

Overview

To satisfy the requirements as discussed in Section 6.3.1, we choose SystemC
to implement QuMAsim because:

• Compared to C/C++, SystemC supports a simpler simulator description
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for the target system;
• SystemC can describe the target system at various abstract levels, which

can support fast implementation as well as precise modeling;
• SystemC can describe the target system at the register-transfer level

which can help better HDL code generation;
• Translation from SystemC description to HDL description is well

supported by commercial products, such as Mentor Graphics Cata-
pult [167].

Modeling

As an initial step, QuMAsim models the digital part of QuMA v2 as shown in
Figure 4.9 at the register-transfer level.

To enable flexible DSE, we try to decouple different parts of the system from
each other as much as possible based on the functionality of each part. The
classical pipeline takes charge of fetching instructions, executing classical in-
structions, and issuing quantum instructions to the quantum pipeline. The clas-
sical pipeline issue quantum instructions (quantum waiting instructions and
quantum bundles) to the quantum pipeline as output, and reads the quantum
measurement result register as input. The classical pipeline is modeled as one
part in QuMAsim.

In QuMAsim, the quantum pipeline is divided into two parts: the technology-
dependent part and less-technology-dependent part. The less-technology-
dependent part contains modules between the classical pipeline and the device
event distributor. In this part, quantum instructions are decoded, and quantum
operations are routed to the target qubit. This part generates quantum micro-
operations for each qubit with precise timing as output.

The technology-dependent part contains all modules right to the operation
combination module. Because this part should be customized for the target
system. For example, the device event distributor and the number of queues
highly depends on what analog devices are used and how they interconnect in
the analog-digital interface. This part receives the measurement result from
the analog-digital-interface and outputs trigger signals (device operations as
explained in Section 4.4), which are the final output of QuMAsim.

QuMAsim is designed to be a QuMA instantiation framework. Most modules
are objects that are dynamically created in QuMAsim. During instantiation,
QuMAsim reads the required configuration from a file and then creates each
module with required size, structure, etc. The interface between modules can
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also be configured via a configuration file. Note, though this method can work
for a series of hardware structure, it requires further improvement because dif-
ferent quantum chip topology would require a rather different implementation
for the technology-dependent part and cannot be fully automatically generated
from the configuration file.

Logging

In classical processor verification, tracking register-content change is the ma-
jor method. However, tracking register-content change is insufficient to ver-
ify QuMA since the timing of output signals in the deterministic timing do-
main also matters. A new method that enables checking the timing of signals
is required. To this end, we define a format that can be used to log digital
events with timing information, which is called Timing Event Logging Format
(TELF) as shown in Listing 6.1.� �

1 [metadata]

2 cycle_time = 20 ns # supported unit: ps, ns, us, ms, s

3
4 [data]

5 "clock_cycle", <key0>, <key1>, ...

6 <number of cycle 0>, <value>, <value>, ...

7 <number of cycle 1>, <value>, <value>, ...

8 ...� �
Listing 6.1: Format of a TELF file.

A TELF file contains metadata and data two parts, which are indicated by
[metadata] and [data], respectively. The metadata part is used to specify
configuration information like the duration of one cycle, etc. Any characters
after the ‘#’ symbol in a line are treated as the comment. The data part records
the value of signals at a given cycle using the Comma-Separated Values (CSV)
format. The first non-comment line in the data part should be the header line
which defines the content of each column. The first key in the header line
must be clock cycle, which indicates that the first column contains the time
information. An indefinite number of keys are allowed in the header line, with
each key corresponding to one signal. From the second line on, every line
records the value of each signal at a particular time point. The time point
is specified by which cycle it is in. Multiple formats are supported for each
value, including four-value logic, numeric value, and string. A four-value logic
value can be ‘0’, ‘1’, ‘X’, or ‘Z’. Numeric value can be represented as binary
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(starting with 0b), decimal (default), or hexadecimal (starting with 0h). A
string should be put in a pair of quotation marks (").

6.4 Potential Applications

QuMAsim is still under development at the time of writing. Here, we show
the potential applications of QuMAsim .

6.4.1 Design Space Exploration

As explained in Section 6.3.1, after QUAPA determines some overall config-
uration of QuMA, e.g., the VLIW width, QuMAsim can help designing the
concrete quantum control microarchitecture. For example, to support control-
ling a quantum chip with 17 qubits that can form a distance-3 surface code as
shown in Figure 6.1, we need to upgrade QuMA v2.

Figure 6.1: Quantum chip topology of the target 17-qubit superconducting quantum
processor.

According to the analysis with QUAPA, a 32-bit eQASM instruction set with
a VLIW width of 2 is still workable. Since more qubits (17) and allowed qubit
pairs (48) are present in this quantum chip topology, the SMIS and SMIT in-
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1 6 5 3 17
0 opcode Sd Imm

SMIS Dst SReg Qubit Mask

1 6 5 2 2 16
0 opcode Td Pos Imm

SMIT Dst TReg Qubit Pair Mask

Figure 6.2: Format of the SMIS and SMIT for the 17-qubit quantum processor.

struction should be modified to support longer masks. In the SMIS instruction,
the 17-bit mask can be put in the lower 17 bits. But for SMIT instruction, it
is not possible to put the 48-bit mask into a single instruction. Hence, we use
three SMIT instructions to specify a single two-qubit mask, with each specify-
ing one-third of the mask. The new instruction format is shown in Figure 6.2.

Before implementing the entire new microarchitecture for the 17-qubit quan-
tum processor, we validate the microarchitecture by implementing it in
QuMAsim at first. This method is more advantageous than direct HDL im-
plementation since QuMAsim allows describing components of less interest
at a relatively high level. Even for modules that require to change, a functional
implementation considering latency can enable a fast validation, which can
be further converted into RTL description. According to the RTL description,
hardware resource required by the microarchitecture can be estimated.

Furthermore, QuMAsim can help estimate the frequency and power of the
QuMA processor at an early stage, which can save development time. This
functionality is still under development.

6.4.2 RTL Verification

As shown in Figure 6.3, QuMAsim can support the verification of QuMA
design automation by providing reference values for the checking points for
given programs.

The checking is done by comparing the value and timing information for sig-
nals of interest generated from both the HDL implementation and QuMAsim
in the TELF format. To enable easy recording of signals, we provide TELF
recording libraries in both VHDL and SystemC.

To perform easy comparison, we also provide a library in Python to check the
difference of two TELF input. For signals of which the timing is not impor-
tant, the comparison unit only checks the values of them. For signals of which
the timing is important, both value and timing are checked. Since the absolu-
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Figure 6.3: QuMAsim as used in a verification platform.

tion timing can vary in different simulation environments, the comparison unit
checks the relative timing of different events.

6.4.3 Full Stack Quantum Simulator

It is still an open challenge to verify quantum software, including quantum
algorithms, programming languages, and compilers etc. Though it is possible
to verify some quantum software over the quantum hardware as we have in
the lab, it is highly required to develop methods enabling verification over the
software independently of the hardware. There are two reasons:

• Most of the time, the hardware we use is still under development and
unreliable;
• It is inefficient or sometimes even impossible to test all newly-developed

quantum software on the hardware.

To this end, QuMAsim can be used to construct a full stack quantum simula-
tor for NISQ technology, called Quantum Virtual Machine (QVM), as shown
in Figure 6.4. The software layers in QVM are the same as those in a real
quantum computer: quantum applications (algorithms or experiments) are de-
scribed by a high-level language, which are compiled by the quantum compiler
into eQASM instructions. The hardware layers in QVM are made of various
simulators:

• QuMAsim simulates the execution of eQASM instructions and generate
timed device operations;
• The electronic simulator translates the device operations into pulses with

precise timing representing quantum operations;
• A qubit state simulator simulates qubit state evolution subject to the
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Python/C++

Electronics Simulator

eQASM Instructions

QuMA_Sim

Quantum Compiler: OpenQL 

QX QuantumSim

Figure 6.4: QVM: a full stack quantum simulator.

quantum operations generated by the electronic simulator. If the qubit
state simulator has an error model extracted from experiments, such as
QuantumSim [68], then it can simulate the execution of quantum appli-
cations under realistic noise.

Apart from checking the semantics of quantum applications are kept at various
levels from quantum programming language to quantum operations applied on
qubits, QVM can check: 1) if the microarchitectural constraints are respected
or not; 2) if the timing requirement is satisfied or not. With the assist of QVM,
the architectural constraints can be fully exposed to the algorithm designer and
compiler designer for NISQ technology.

QVM can model a real measurement process and how measurement results
affect the following program execution. This is especially useful for quan-
tum subroutines which take advantage of feedback, such as qubit initialization
based on feedback which is required by logical qubit initialization [39] and
quantum gate decomposition using Repeat-Until-Success [119].

The fidelity of quantum algorithms can be significantly different when taking
or not into account the timing of operations. By utilizing QVM, the timing of
operations can be simulated, which can help investigate the impact of timing on
the final fidelity of an algorithm and compiler-based optimization techniques.
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6.5 Conclusion

In this chapter, we propose QuMAsim for quantum control microarchitecture.
Based on SystemC, QuMAsim can simulate model the microarchitecture at
a low level, which helps automating the design space exploration. By intro-
ducing the TELF format, the HDL simulation result can be compared against
QuMAsim execution result, which enables using UVM to perform automatic
verification over the QuMA series quantum control microarchitecture. By con-
necting to the qubit state simulator, such as QuantumSim, the quantum virtual
machine is constructed, which enables verification over the quantum software
stack while considering constraints at various levels.

An on-going work is to use QuMAsim to verify the correctness of the HDL im-
plementation for further quantum control microarchitecture, e.g., QuMA v3 to
control the 17-qubit quantum processor which implements a distance-3 sur-
face code. While developing FT QuMA, QuMAsim can be a very useful tool
to perform design space exploration, which can check the feasibility of the pro-
posed mechanisms. Lastly, it would be interesting to use QVM to verify the
correctness of the software stack including small-scale quantum algorithms,
quantum programming languages, and quantum compilers.



7
Conclusion & Outlook

7.1 Conclusion

The gap between quantum software and hardware triggers the research of this
thesis. We start by proposing a quantum control microarchitecture, QuMA,
which is featured by codeword-based event control, queue-based precise tim-
ing control and multi-level instruction decoding. Apart from being scalable in
the hardware implementation, QuMA enables flexible definition of quantum
algorithms and experiments by a straightforward change in the input program
written in the quantum microinstruction set QuMIS.

Being a low-level instruction set, QuMIS has low information density, which
is disadvantageous regarding the quantum operation issue rate problem con-
fronting QuMA. Required is a QISA that can encode denser information. Also,
real-time feedback based on the measurement result of qubits is essential for
qubit initialization, quantum error correction, and many quantum algorithms,
which however cannot be supported in a programmable way. We propose an
executable QISA, eQASM, targeting the NISQ technology, which can not only
embed high-level quantum semantics but also be directly executed by a quan-
tum control microarchitecture. eQASM defines two kinds of feedback, fast
conditional execution, and comprehensive feedback control, which are sup-
ported by the microarchitectural mechanisms as implemented in QuMA v2.
As opposed to classical ISA where the allowed operations are defined at ISA
design time, eQASM is a framework for concrete QISAs, which requires in-
stantiation targeting a particular platform, and enables quantum operation defi-
nition at compile time. In this way, eQASM leaves great space for microarchi-
tecture implementation optimization and compiler-based program optimiza-
tion. Since it is not clear which quantum technology will be used to construct
future quantum computers, eQASM is not bound to specific quantum hardware

133
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and has the potential to support different quantum platforms.

Large-scale quantum computing proposes more challenge in the control mi-
croarchitecture, including complex qubit management, exploded number of
instructions required by QEC, and non-trivial fault-tolerant logical operation
implementation. To address these challenges, we propose FT QuMA, which is
a fault-tolerant quantum control microarchitecture targeting surface code with
logical operations using lattice surgery. The virtual-physical address transla-
tion at runtime enables a clean compilation model without worrying about the
physical address of qubits. Automatic operation generation for error syndrome
measurement in the hardware can significantly reduce the number of instruc-
tions. FT QuMA can support all operations at both the logical level and the
physical level. When necessary, the QEC-related features can be turned off to
get a microarchitecture working at the physical level.

To enable effective design space exploration and efficient verification of the
HDL implementation for the quantum control microarchitecture, we designed
and implemented a control (micro)architecture simulator QuMAsim at the
register-transfer level in SystemC. A dedicated format, timing event logging
format (TELF), has been defined to enable the logging and comparison of dig-
ital signals with precise timing. With the same quantum software used (quan-
tum algorithm, language, compiler), by connecting QuMAsim to an electronic
simulator which controls a qubit state simulator, such as QuantumSim [68],
we can get a full stack simulator, called the quantum virtual machine (QVM).
QVM can be used to verify the correctness of quantum software at various
levels. Constraints at the architecture and microarchitecture level can also be
simulated.

7.2 Outlook

We have developed QuMA v2 to control a seven-qubit superconducting quan-
tum processor, a direct follow-up step is to develop next generations of QuMA
to control the 17-qubit (distance-3 surface code) and 49-qubit (distance-5 sur-
face code) superconducting quantum processors. The 17-qubit version control
microarchitecture (QuMA v3) is currently under development.

Various quantum technologies are being developed for quantum computing,
including superconducting qubits and trapped ions. However, it is still un-
known which quantum technology will be used to build future quantum com-
puters. Though QuMA originally targets superconducting qubits, it can also
be adapted to operate on different quantum technologies; some changes are re-
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quired, including the microcode unit, the number and width of queues, and the
quantum-classical interface. So current QuMA implementations are based on
FPGAs to enable an easy adaption to different underlying hardware. Though
our recent experiment demonstrates that QuMA is capable of controlling spin
qubits, it would be interesting to make the digital part of QuMA as technology-
independent as possible. This technology-independence is beneficial for two
aspects. First, it helps the implementation of QuMA based on the application-
specific integrated circuit (ASIC), which in principle can achieve a higher fre-
quency for the non-deterministic timing domain and significantly alleviate the
quantum operation issue rate problem. Second, since the same device can be
used to control different hardware, it helps the commercialization of the digi-
tal part of QuMA because the same product can be easily duplicated to control
different analog devices and qubits without further modification.

To further scale up the system, a tiled architecture consisting of multiple
QuMA nodes with each node controlling tens of qubits would be a poten-
tial solution. In such a tiled architecture, the mechanisms in QuMA are still
valid, but a communication protocol among nodes and a compilation model
for a tiled system requires investigation.

For solid state quantum systems that require low temperature, current meth-
ods allocate most electronics at room temperature, and coaxial cables are used
to send analog signals to qubits that are in the cryogenic environment. The
number of cables grows roughly linearly to the number of qubits. The foot-
print and the thermal conductance of the cables form a challenge for a large
number of qubits [168]. Addressing this issue, some research [60] investigates
allocating part of the electronics, such as waveform generators, in the 4K en-
vironment. Whether a part of QuMA can be allocated in the 4K environment
highly depends on the available power budget and the power consumption of
each component of the QuMA implementation.

Further simulation based on QUAPA or QuMAsim could help us to deeper
understand the QuMA series microarchitecture. First, the quantum operation
issue rate is a potential bottleneck for the QuMA series microarchitecture. It
would be interesting to investigate the relationship between the configurations
of QuMA (VLIW width, instruction width, qubit address encoding, etc.) and
the maximum number of qubits that can be controlled with this QuMA. Sec-
ond, an interesting application of QuMAsim is to demonstrate the feasibility
of FT QuMA. Last, we can check how technology independent the quantum
compiler, the QISA, and the control microarchitecture are by replacing the
electronic simulator in QVM to target different qubit technologies.
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Summary

Quantum computers can accelerate solving some problems which are ineffi-
ciently solved by classical computers, such as quantum chemistry simulation.
To date, quantum computer engineering has focused primarily at opposite ends
of the required system stack: devising high-level programming languages and
compilers to describe and optimize quantum algorithms, and building reliable
low-level quantum hardware. Relatively little attention has been given to us-
ing the compiler output to fully control the operations on current experimental
quantum processors.

Bridging this gap, we propose and build a prototype of flexible control mi-
croarchitecture, named QuMA, supporting quantum-classical mixed code for
a superconducting quantum processor. The microarchitecture is based on three
core elements: (i) a codeword-based event control scheme, (ii) queue-based
precise event timing control, and (iii) a flexible multilevel instruction decod-
ing mechanism for control.

However, QuMIS does not offer feedback control, and is tightly bound to the
hardware implementation. Also, as the number of qubits grows, QuMA cannot
fetch and execute instructions fast enough to apply all operations on qubits on
time. Known as the quantum operation issue rate problem, this limitation is
aggravated by the low information density of QuMIS instructions. To address
these issues, we propose an executable quantum instruction set architecture
(QISA), called eQASM, that can be translated from quantum assembly lan-
guage (QASM), supports comprehensive quantum program flow control, and
is executed on a quantum control microarchitecture. eQASM alleviates the
quantum operation issue rate problem by efficient timing specification, single-
operation-multiple-qubit execution, and a very-long-instruction-word architec-
ture. The definition of eQASM focuses on the assembly level to be expressive.
Quantum operations are configured at compile time instead of being defined at
QISA design time.

Since qubits suffer from short decoherence time and quantum operations are
erroneous, quantum error correction (QEC) is essential for large-scale fault-
tolerant quantum computing, which requires highly patterned control over a
large number of qubits. We envisioned a control microarchitecture, FT QuMA,
that can efficiently support fault-tolerant quantum computing based on planar
surface code with logical operations implemented by lattice surgery. It high-
lights a two-level address mechanism which enables a clean compilation model
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for a large number of qubits, and microarchitectural support for quantum error
correction at runtime, which can significantly address the quantum program
codesize and present better scalability.

As the complexity of quantum control microarchitecture increases, the de-
sign, development, and verification of the quantum control microarchitecture
forms a challenge. Inspired by simulators as used in classical processor de-
sign, we propose and implemented a quantum (micro)architecture simulator
QuMAsim. QuMAsim is a cycle-accurate (micro)architecture simulator based
on SystemC, which can simulate the electronic part of the microarchitecture.
By connecting QuMAsim with a qubit state simulator with a precise error
model, such as QuantumSim [68], we can construct a full-stack simulator for
NISQ technology, called Quantum Virtual Machine (QVM). Apart from the
correctness of quantum program semantics at various levels, QVM can also
verify low-level hardware constraints, including electronic control constraints
and timing.



Samenvatting

Kwantumcomputers kunnen sommige problemen, die niet efficiënt opgelost
kunnen worden met klassieke computers, versneld oplossen. Bijvoorbeeld
kwantumchemie simulaties. Tot op heden heeft kwantumcomputertechnologie
zich primair gericht op tegenovergestelde uiteinden van de vereiste systeem-
stack: het ontwerpen van programmeertalen met een hoog abstractieniveau en
compilers om kwantumalgoritmen te beschrijven en te optimaliseren, en het
construeren van betrouwbare laag-niveau kwantum hardware. Relatief weinig
aandacht is besteed aan het gebruik van de compileruitvoer voor het volledig
besturen van de benodigde operaties voor experimentele kwantumprocessors.

Om deze kloof te overbruggen stellen we een prototype en flexibele besturing
microarchitectuur voor, genaamd QuMA, die een combinatie van kwantum en
klassieke code ondersteund voor supergeleidende kwantumprocessors. De mi-
croarchitectuur is gebaseerd op drie kernelementen: (i) een door code aanges-
tuurd en evenement gebaseerd besturingsschema, (ii) precieze en op wachtrij
gebaseerde evenementtiming besturing, en (iii) een flexibel en meervoudig-
niveau decoderingmechanisme voor instructies.

QuMIS biedt echter geen teruggekoppelde besturing en is nauw verbonden met
de hardware implementatie. Als het aantal qubits groter wordt kan QuMA niet
snel genoeg instructies ophalen en verwerken om alle operaties op qubits op
tijd uit te voeren. Dit probleem is bekend als het kwantumoperatie verwerk-
ingssnelheid probleem en deze beperking wordt veroorzaakt door de lage infor-
matiedichtheid van de QuMIS instructies. Om deze problemen aan te pakken
stellen wij een uitvoerbare kwantuminstructieset architectuur (QISA) voor,
genaamd eQASM, die van een kwantumassembleertaal vertaald kan worden,
complexe kwantumprogramma stroombesturing ondersteund, en uitgevoerd
kan worden op een kwantum besturing microarchitectuur. eQASM verlicht het
kwantumoperatie verwerkingssnelheid probleem door gebruik te maken van
een efficiënte tijdspecificatie, enkele-operatie-meerdere-qubits uitvoering, en
een heel-lang-instructie-woord (VLIW) architectuur. De definitie van eQASM
richt zich op het assembleertaalniveau om expressief te zijn. Kwantumoper-
aties worden tijdens het compileren geconfigureerd in plaats van tijdens de
QISA-ontwerptijd.

Omdat qubits lijden aan korte decoherentietijd en kwantumoperaties fouten
bevatten is kwantum foutcorrectie (QEC) essentieel voor grootschalige en
fouttolerante kwantumberekeningen. Kwantum foutcorrectie vereist gestruc-
tureerde en repetitieve besturing over een groot aantal qubits. Wij voorzien
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een besturing microarchitectuur, FT QuMA, die efficiënte ondersteuning biedt
voor fouttolerante kwantumberekeningen gebaseerd op plenaire surface code
met logische operaties gebaseerd op lattice surgery. De nadruk ligt op
het dubbel-niveau adresseringmechanisme wat ervoor zorgt dat het compi-
latiemodel voor een groot aantal qubits helder is en de ondersteuning vanuit
de microarchitectuur voor kwantum foutcorrectie tijdens het uitvoeren van
berekeningen. Deze technieken beperken de bestandgrootte van het kwan-
tumprogramma en zorgen voor een betere schaalbaarheid.

Naarmate de complexiteit van de kwantum besturing microarchitectuur toe-
neemt wordt het ontwerp, het construeren en de verificatie van een kwan-
tum besturing microarchitectuur een uitdaging. Geı̈nspireerd door simula-
toren zoals gebruikt voor klassieke processorontwerpen stellen we een kwan-
tum (micro)architectuur simulator voor. Deze simulator is geı̈mplementeerd
en staat bekend als QuMAsim. QuMAsim is een cyclus-accurate (mi-
cro)architectuur simulator gebaseerd op SystemC en is in staat het elektronis-
che deel van de microarchitectuur te simuleren. Door QuMAsim te verbinden
met een kwantumsimulator met een nauwkeurig foutmodel, zoals Quantum-
Sim, kunnen we een volledige systeemstack simulator construeren voor NISQ-
technologie, genaamd Quantum Virtual Machine (QVM). Los van de correc-
theid van de kwantumprogramma semantiek op verschillende niveaus kan de
QVM controleren of laag-niveau hardware beperkingen gehoorzaamd worden,
inclusief elektronische besturingsbeperkingen en timing.
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