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Abstract

This thesis focuses on a problem formulated by Claude Shannon named the Shannon
capacity. This problem is about information rate per time unit over a noisy channel. The
noisy channel is here represented by a graph. We specifically focus on a class of circulant
graphs that are denoted by Cn,k with vertex set Z/nZ, where all vertices are connected
with the k− 1 vertices before and after it. We will discuss upper bounds that were found
for the Shannon capacity and how Cn,k behaves with these upper bounds. After that we
will focus on multiple ways to calculate lower bounds for the Shannon capacity of Cn,k.
For these three search methods will be used. These are exhaustive searching for optimal
values, optimal ways to make packagings and solutions created by using a special form.
As last the answers will be discussed by combining the upper and lower bounds for Cn,k.
From this conclusions are drawn after which some possibilities will be given for further
research.
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Chapter 1

Introduction

Imagine someone left you a handwritten note with a password consisting of numbers and
capital letters. But after using the password we get a message that we used the wrong
password. What might have happened is that we interpreted certain characters wrongly.
For example a 4 and 9 can be confused with each other if the upper part of the 9 is not
a fully closed circle. Furthermore we might also confuse a 0 and O or 7 and 1. There are
actually a lot more possible characters that can be confused as shown here in Table 1.1.

Table 1.1: A table with all possible misinterpretations between numbers and letters [7].
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For simplification assume the password consisted of the characters {1,4,7,9,T}. Now we
get 3 possible wrong interpretations. Firstly 4 and 9, secondly 1 and 7 and as last 7 and
T. This problem is shown graphically in Figure 1.1.

Figure 1.1: Possible misinterpretations with the chances that they happen.

The figure shows the assumed chances that we get a misinterpretation, but sometimes we
want certainty that we got the correct password and thus zero possibility of getting the
wrong one. To achieve this we can remove a set of code words from the total set of all
possible code words. Assume there are code words of length 1, this gives a total of 5 code
words namely {1,4,7,9,T}. Instead of this it is possible to take the set of 3 code words
namely {1,4,T}. For this set we achieved zero possibility of using the wrong password
since none of these code words can be confused with each other.

Now assume code words of length 2, this gives us a total set of 25 code words since there
are 5 possibilities for position 1 and also 5 for position 2 in the code words. Now a possible
set with code words that gives us certainty is given by.

{(1,1),(1,4),(1,T),(4,1),(4,4),(4,T),(T,1),(T,4),(T,T)}

This is a set of 9 code words simply created by using all combinations with elements of
the zero error set of code words of length 1 {1,4,T}. For this specific problem with code
words of length n it is possible to create a zero error set of size 3 to the power n created
by the set {1,4,T} at n positions.

Instead of the visualization in Figure 1.1 we can also show our problem as a graph.
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Definition 1.1. (graph) A graph is a pair G = (V,E). Where V is a set of elements in
the graph and E is a set of unordered pairs of elements from V .

Definition 1.2. (independent set) Given a graph G = (V,E). A set S ⊆ V is independent
in G if ∀x, y ∈ S {x, y} /∈ E.

Now it is possible to change the problem with code words of length 1 into a graph. This
is done by making every possible symbol a vertex and if symbols can be confused with
each other then an edge is added between those two vertices. Then the problem with
{1,4,7,9,T} can be changed into the graph shown in Figure 1.2.

Figure 1.2: Graph G with the code words {1,4,7,9,T} and their edges.

In this graph every possible set with zero error for code words of length 1 is given by a
independent set in the graph. From this follows that a biggest set with zero error for code
words of length 1 is given by a biggest independent set in G. As said before {1,4,T} is
such a set, but now by simple observation of the graph this is a biggest independent set.
For the code words of length 2, the graph is given by the largest independent set in the
strong product of G with itself.

Definition 1.3. (Strong product of graphs) Given the graphs G = (V,E), H = (W,F ).
the strong product of G and H is given as G ⊠ H = (V × W,D). here V × W is the
Cartesian product and

∀(u,w), (v, x) ∈ V ×W : {(u,w)(v, x)} ∈ D ⇐⇒


{u, v} ∈ E, {w, x} ∈ F or

{u, v} ∈ E and w = x or

u = v and {w, x} ∈ F

Figure 1.3: The strong product of G with itself.
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After observation of G ⊠ G it can be found that we can take respectively at most 4,2,2
and 1 points from the 4 parts of the graph shown in figure 1.3. As said before there is a
biggest independent set of G given by

{(1,1),(1,4),(1,T),(4,1),(4,4),(4,T),(T,1),(T,4),(T,T)}

This is thus actually a biggest independent set in G⊠G.

1.1 The Shannon capacity of a graph

Based on this problem Claude Shannon defined the Shannon capacity[1]. For this he
viewed the problem in another way. Namely the information rate per time unit over a
noisy channel. The noisy channel mentioned is actually the graph we presented with its
edges as noise. Shannon used symbols per time unit since writing a code word of length
2 costs the same amount of time as writing 2 code words of length 1.

Definition 1.4. (Shannon capacity) Given α(H) as the size of a biggest independent set
in H and Gn as the strong product of G with itself n times then the Shannon capacity is
given as:

Θ(G) = sup
d∈N

d
√
α(Gd).

Here the root follows from that we are interested in the information rate per single char-
acter instead of per n characters. It actually is so that we also have

Θ(G) = sup
d∈N

d
√
α(Gd) = lim

d→∞

d
√

α(Gd).

This is proven by the following 2 lemmas.

Lemma 1.5. For all graphs G and H, the following is true

α(G)α(H) ≤ α(G⊠H).

Proof. Let S be a largest independent set of vertices inG and let T be a largest independent
set of vertices in H. Then by definition |S| = α(G) and |T | = α(H). Let S × T be the
Cartesian product. It is simple to observe that S×T ⊆ V (G⊠H) and |S×T | = α(G)α(H).
Let (v1, w1) and (v2, w2) be two vertices in S × T . Then these vertices are for sure not
adjacent since v1 and v2 are not adjacent and w1 and w2 are not adjacent. Thus by
definition of the strong product (v1, w1) and (v2, w2) are not adjacent in G ⊠ H. From
this it follows that S × T is an independent set in G⊠H of size |S| × |T | = α(G)α(H) so
α(G)α(H) ≤ α(G⊠H).

This is used in the following lemma.
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Lemma 1.6. (Fekete’s lemma) Let f : N → N be a function with f(m + n) ≥ f(m)f(n)
for all m,n ∈ N. Then limn→∞

n
√
f(n) exist and

sup
n∈N

d
√
f(n)) = lim

n→∞
d
√
f(n).

Proof. Let n = mq+r with m, q.r ∈ N . Then by our assumptions f(mq+r) ≥ f(m)qf(r).
Now we get for fixed m and r < m

lim
q→∞

inf f(mq + r)
1

mq+r ≥ lim
q→∞

inf(f(m)qf(r))
1

mq+r

= lim
q→∞

inf(f(m)
q

mq+r f(r)
1

mq+r )

= lim
q→∞

inf((f(m)
1
m )

mq
mq+r f(r)

1
mq+r )

= (f(m)
1
m )1f(r)0

=
m
√
f(m)).

(1.1)

Thus for any m

lim
n→∞

inf
n
√
f(n) = inf

0≤r<m
lim
q→∞

inf f(mq + r)
1

mq+r ≥ m
√

f(m)).

now by taking the supremum over m the lemma is proven.

Take for a graphG now f(n) = a(Gn) then by Lemma 1.4 we got that f(m+n) ≥ f(m)f(n)
and thus by Lemma 1.5 we got that the limit exist and is equal to the supremum.

Now it is thus shown that the Shannon capacity can always be found by letting the lengths
of the code words go to infinity. But the problem for finding a biggest independent set
grows exponentially with lengths. Thus instead of this we search for possible upper and
lower bounds for the Shannon capacity of a graph. With this we can find a certain interval
for the Shannon capacity on a graph and it might even give the exact answer when the
upper and lower bound coincide.

1.2 The circulant graph Cn,k

Instead of the confusion between written text, there is a problem that is even more inter-
esting. When we send a message over the internet, then this message changes into code
words that your computer or telephone understands. For this problem the message changes
into code words consisting of the n numbers created by working over Z/nZ. The problem
is that there is a possibility that while sending this message these numbers change. So we
might say that a number after sending can differ from its original value by a value ϵ with
ϵ ∈ [0, a). Thus a number b can change into a value in the interval(b− a, b+ a) mod n.

When translating this problem to a graph we get a special variant of the circulant graphs.
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Definition 1.7. (Circulant graph CS
n ) A circulant graph CS

n = (V,E) is a graph on
V = Z/nZ with S ⊆ Z/nZ such that

u, v ∈ E ⇐⇒ u− v ∈ S or v − u ∈ S

The special thing about the problem is that when ϵ ∈ [0, a) we got S = {1, . . . , a}. The
notation that will be used for the special circulant graph will be Cn,k which is equal to CS

n

where S = {1, . . . , k − 1}. That k /∈ S is because of a special characteristic of Cn,k that
later will be shown.

As example C5,2 and C8,3 are shown in figure 1.4

Figure 1.4: (left):C5,2 (right): C8,3

For many Cn,k is the Shannon capacity not given by a biggest independent set of length 1.
For example α(C5,2) = 2 formed by{0,2}, but α(C2

5,2) = 5 formed by {(0,0),(1,2),(2,4),(3,1),(4,3)}.
The former example shows that the capacity can increase for higher lengths since 2 <

√
5.
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Chapter 2

Upper bounds on the shannon
capacity of Cn,k

There are multiple known ways for finding upper bounds on the Shannon capacity of a
graph. In this chapter well known upper bounds are given with their corresponding values
for Cn,k.

Definition 2.1. (Clique) Given a graph G = (V,E). A clique in G is a set C ⊆ V such
that for all v, w ∈ C with v ̸= w we got {v, w} ∈ E.

Definition 2.2. (Clique cover number) Given a graph G = (V,E). The clique cover
number of G noted as χ(G) is the minimum numbers of cliques such that the union is V .

Figure 2.1: C5,2 covered in the three cliques formed by the red edges.

For the graph Cn,k a clique of maximum size contains k vertices. This clique is formed by
the k consecutive vertices {a, a+ 1, . . . , a+ k − 1} mod n with a ∈ Z/nZ. When covering
Cn,k with cliques then at least ⌈n/k⌉ cliques are needed, since a clique can not be bigger
than a clique of maximum size. It is also possible to construct a clique cover of size ⌈n/k⌉.
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This is done by taking the first ⌊n/k⌋ cliques containing {ak, ak+1, . . . , ak+ k− 1} with
a ∈ 0, 1, . . . , ⌊n/k⌋ − 1. If ⌊n/k⌋ = ⌈n/k⌉ then all v ∈ V (G) are in the cliques otherwise
we can add the clique {⌊n/k⌋k, ⌊n/k⌋k+1, . . . , ⌊n/k⌋k+k−1}. Since ⌊n/k⌋k+k−1 ≥ n,
it follows that all v ∈ V (G) are in the clique cover of size ⌈n/k⌉.

When an independent set is constructed then it contains at most a single vertex from
every clique, since every two vertices in a clique are connected by an edge. This means
that α(Cn,k) ≤ ⌈n/k⌉. It is also known that the strong product of two cliques is a clique
and by using this a cover for the strong product can be created. A clique cover for α(Cd

n,k)
can be constructed by taking all the cliques formed by the Cartesian products of d cliques
of Cn,k, here a clique can be used multiple times. Then the number of cliques for this
clique cover is ⌈n/k⌉d, since ⌈n/k⌉ cliques can be chosen d times. Now it follows that
α(Cd

n,k) ≤ ⌈n/k⌉d for all d and thus Θ(Cn,k) ≤ ⌈n/k⌉.

For Cn,k the clique cover number is a very easy upper bound to calculate, for which is
known that χ(Cn,k) = ⌈n/k⌉.

2.1 Fractional clique cover number

Shannon [1] gave in his own article an upper bound for the Shannon capacity, that is now
known as the fractional clique cover number.

Definition 2.3. (Fractional clique cover number) Given a graph G = (V,E) and the set
C containing all cliques of G. The fractional clique cover number of G noted as α∗(G) is
given by:

α∗(G) = max
x

∑
v∈V

xv

where
x ∈ RV

∀c ∈ C :
∑
v∈c

xv ≤ 1

∀v ∈ V : xv ≥ 0.

Assume α(G) = a, then there exists an independent set S ⊆ V of size a. Now take if
v ∈ S then xv = 1 and else xv = 0. All xv are positive and every clique contains at most
1 element from S thus the sums over the cliques are either 1 or 0. So this x is a feasible
solution and since we are searching for a maximum, this will result in a lower bound for
α∗(G) of 1|S| = a. Thus α∗(G) ≥ α(G).

What actually is wanted is an upper bound for the Shannon capacity and thus for
d
√

α(Gd).
This is achieved when α∗(G⊠H) ≤ α∗(G)α∗(H), since then

d
√
α(Gd) ≤ d

√
α∗(Gd) ≤ d

√
(α∗(G))d = α∗(G).

By the duality theorem of linear programming we got for a graph G = (V,E) and the set
C containing all cliques of G:

α∗(G) = min
y

∑
c∈C

yc
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where

y ∈ RC

∀v ∈ V :
∑
c∋v

yc ≥ 1

∀c ∈ C : yc ≥ 0.

This dual version is the motivation for the name ‘fractional clique cover number’. Using
the dual version consider that for G we achieve α∗(G) with y ∈ RC and for H we achieve
α∗(H) with y′ ∈ RC ′

. Then take the vector:

Y = {Y(i,j) = yi ∗ y′j : yi ∈ y and y′j ∈ y′}.

For this all Y(i,j) are non-negative and ∀(v, w) ∈ V (G)× V (H)

∑
(c1,c2):v∈c1,w∈c2

Yc1,c2 =
∑
c1∋v

yc1
∑
c2∋w

y′c2 ≥ 1 ∗ 1.

Thus this is a dual feasible solution for G⊠H and thus by the minimisation we got that
this is an upper bound for α∗(G⊠H) with

α∗(G⊠H) ≤
∑

Y(c1,c2)
∈Y

Yc1,c2 =
∑
yc1∈y

yc1
∑

y′c2∈y
′

y′c2 = α∗(G)α∗(H).

Thus

d
√
α(Gd) ≤ α∗(G) for all d.

From this follows

Θ(G) ≤ α∗(G).

Now for calculating α∗(Cn,k), it is possible to create a lower bound with the maximisation
problem and an upper bound with the minimisation problem.

For the maximisation take x = {1/k, 1/k, . . . , 1/k}. As said before the cliques are of
maximum size k thus all cliques have a value of at most 1. This gives the lower bound
α∗(Cn,k) ≥ n/k.

For the minimisation take y = {y0, y1, . . . , y|C|−1} where yi = 1/k if |i| = k and 0 otherwise.
Now the n cliques of maximum size k consisting of k consecutive vectors all have value 1/k
and all other cliques have value zero. Every vertex is now contained in k cliques of value
1/k and thus always bigger or equal to 1. This gives the lower bound α∗(Cn,k) ≤ n/k.
Thus α∗(Cn,k) = n/k.
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Figure 2.2: α∗(C5,2) with (left) maximum over vertices (right) minimum over cliques.

2.2 The Lovász theta function

Lovász [2] found an other upper bound for the Shannon capacity, that is known as the
Lovász theta function.

Definition 2.4. (Orthonormal representation of a graph) Given a graph G = (V,E). An
orthonormal representation of G is a map f : V → Rn where f(v) is a unit vector such
that for i ̸= j if {i, j} /∈ E then f(vi) and f(vj) are orthogonal.

Definition 2.5. (Lovász theta function) given a graph G = (V,E). Then the Lovász theta
function ϑ(G) is given by:

ϑ(G) = min
U,c

max
u∈U

1

⟨c, u⟩2
.

Where U is a orthonormal representation of G and c a unit vector.

When setting a orthonormal representation U fixed then the c which gives the lowest value
is called the handle.

Lemma 2.6.
α(G) ≤ ϑ(G).

Proof. Given a optimal orthonormal representation U of a graph G = (V,E), with handle
c. Let S ⊆ V be a largest independent set in G. It is known that since c is a unit vector
it follows that ⟨c, c⟩2 = 1. Since S creates orthogonal unit vectors, it follows that:

1 = ⟨c, c⟩2 ≥
∑
i∈S

⟨c, ui⟩2 ≥ α(G)/ϑ(G).

and thus α(G) ≤ ϑ(G).

Now it is proved that the Lovász theta function is an upper bound for α(G), but as
before we would like to have an upper bound for the Shannon capacity and thus that
ϑ(G⊠H) ≤ ϑ(G)ϑ(H), since then

d
√
α(Gd) ≤ d

√
ϑ(Gd) ≤ d

√
(ϑ(G))d = ϑ(G).
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Lemma 2.7.
ϑ(G⊠H) ≤ ϑ(G)ϑ(H).

Proof. Let s⊗ t be the tensor product of vector s with vector t. For this it is known that
(s⊗t)T (u⊗v) = ⟨s, u⟩⟨t, v⟩. Let v = {v0, v1, . . . , v|V (G)|−1} be an optimal orthonormal rep-
resentation for G with handle c and w = {w0, w1, . . . , w|V (H)|−1} an optimal orthonormal
representation for H with handle d. Now take for G⊠H the orthonormal representation
v ⊗w with handle c⊗ d. This is possible since the tensor product of unit vectors are still
unit vectors. Now by minimisation it follows that

ϑ(G⊠H) ≤ max
v∈U,w∈W

1

((c⊗ d)t(v ⊗ w))2
= max

v∈U,w∈W

1

⟨c, v⟩2
1

⟨d,w⟩2
= ϑ(G)ϑ(H).

Theorem 2.8.
Θ(G) ≤ ϑ(G).

Proof. This directly follows from Lemma 2.7 and Lemma 2.6.

For finding the Lovász theta function Lovász [2] created a semidefinite program.

Theorem 2.9. given a graph G = (V,E).

ϑ(G) = max
B

∑
i,j∈V

bi,j

were B is a symmetric positive semidefinite |V | × |V | matrix and∑
i∈V

bi,i = 1

bi,j = 0 for all {i, j} ∈ E.

Definition 2.10. (Eigenvectors/eigenvalues) Given a matrix A. A nonzero vector v is
an eigenvector of A with eigenvalue λ when.

Av = λv

A symmetric matrix is positive semidefinite when all eigenvalues are non-negative. With
this it is possible to calculate ϑ(G) for all graphs. From now on the focus will be again
on the graphs Cn,k. The structure of an optimal symmetric matrix to calculate ϑ(C5,2) is
given by: 

a 0 b c 0
0 d 0 e f
b 0 g 0 h
c e 0 i 0
0 f h 0 j


Now this matrix has a basis of 5 eigenvectors with there corresponding non-negative eigen-
values. Consider the eigenvector (A,B,C,D,E)T with eigenvalue λ ≥ 0. When the graph
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C5,2 gets rotated once, then the values in the matrix will rotate one to the right and one
down. This matrix now has the eigenvector (E,A,B,C,D)T with eigenvalue λ. From
this follows that all eigenvalues stay the same and thus that all possible rotations of C5,2

provide optimal solutions. Since the sum of positive semidefinite matrices are positive
semidefinite it follows that the average of these optimal solutions is an optimal solution.
So the next structure follows: 

a 0 b b 0
0 a 0 b b
b 0 a 0 b
b b 0 a 0
0 b b 0 a


Since the diagonal has to sum up to 1, it follows that 5a = 1. Thus a = 1/5 and only one
variable remains. 

1/5 0 b b 0
0 1/5 0 b b
b 0 1/5 0 b
b b 0 1/5 0
0 b b 0 1/5


For finding the optimal solution of this matrix and all other matrices for Cn,k a set of
matrices is created. Take An,k as the n by n matrix that is filled with 0’s and on all places
k and n− k from the diagonal 1 is added. For this it is known that for k ≤ n/2:

An,k = An,1An,k−1 −An,k−2

This is so since when placing 1’s one place further from the diagonal then An,k−1 gets
achieved by An,1An,k−1, but this also places 1’s one place closer to the diagonal. This
error is removed by −An,k−2. For k = n/2 one place further from the diagonal coincides
when going right or left from the diagonal thus it follows into 2’s, which works for An,k

since 1 is added for n/2 and n− n/2 from the diagonal.

Lemma 2.11. Given a symmetric matrix A with eigenvector v and corresponding eigen-
value λ then:

Adv = λdv.

Proof. For d = 1 follows directly from Definition 2.10 and thus:

λdv = λd−1λv = λdAv = Aλd−1v = · · · = Ad−1λv = Adv.

Lemma 2.12. Given two symmetric matrices A and B with eigenvector v such that

Av = λ1v and Bv = λ2v

then

(A+B)v = (λ1 + λ2)v
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Proof.
(A+B)v = Av +Bv = λ1v + λ2v = (λ1 + λ2)v

By induction on An,k it is possible to write it as a sum over the powers of An,1, with
A0

n,1 = An,0. From Lemma 2.11 and Lemma 2.12 it follows that the sum of powers of An,1

has the same eigenvectors as An,1 with corresponding eigenvalues, which can be calculated
by using the lemmas. Thus now the eigenvalues of An,k can be calculated, which will be
noted as λi(An,k) corresponding to the eigenvector vi. By using this the problem for C5,2

can be written as a sum of A5,k, from which the following maximisation problem follows.

max(1 + 10b).

Such that for all eigenvectors vi with corresponding eigenvalues λi(A5,k)

0 ≤ 1 + bλi(A5,2).

For this it clearly follows that we want b as big as possible thus only the smallest λi(A5,2)

matters. This eigenvalue is −1+
√
5

2 , which results in b = 2
5(1+

√
5
and thus

ϑ(C5,2) = 1 + 10
2

5(1 +
√
5)

= 1 +
4

1 +
√
5
=

5 +
√
5

1 +
√
5
=

√
5
1 +

√
5

1 +
√
5
=

√
5.

In Chapter 1.2 was shown that Θ(C5,2) ≥
√
5, thus it actually is so that Θ(Cn,k) =

√
5.

Using the method shown before with the known eigenvalues it follows that for Cn,k, there
are ⌊n/2⌋ − k + 1 unknown values with n eigenvalues to check. Not all eigenvalues need
to be checked, since for odd n there is always one eigenvalue equal to 2n and can be
ignored since that eigenvalue is always positive. All other eigenvalues exist 2 times for
these matrices and thus only ⌊n/2⌋ need to be checked. From this follows the maximisation
problem:

ϑ(Cn,k) = max(1 + 2n
∑

j∈{0,1,...,⌊n/2⌋−k}

aj)

Such that for all eigenvectors vi with corresponding eigenvalues λi(An,k)

0 ≤ 1 +
∑

j∈{0,1,...,⌊n/2⌋−k}

ajλi(An,k+j).

With this it is possible to calculate ϑ(Cn,k) for all n and k, but Bachoc et al.[9] found a
formula for ϑ(Cn,k) which computes the answers really fast.

Theorem 2.13. for k ≥ 2, n ≥ 2k and 0 ≤ i ≤ d− 1, let

ci = cos
2iπ

k
and ai = cos

⌊
ni

k

⌋
2π

n
.

Then

ϑ(Cn,k) =
n

k

k−1∑
i=0

k−1∏
j=1

(
ci − aj
1− aj

)
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Chapter 3

Lower bounds on the shannon
capacity of Cn,k

There are multiple ways to find lower bounds on the Shannon capacity, but they all have
something in common. All these lower bounds are created by finding a lower bound for
a(Gd) which is better than the last known lower bound. The problem of finding a new
lower bound can be divided into three possibilities. First straightforward by testing all or
a lot of possible solutions. Secondly searching for optimal solutions by solving packaging
problems. As last using a specific characteristic such that the number of options that need
to be checked are limited.

3.1 Exhaustive searching

By using exhaustive searching, there are 2 different possibilities. Namely by checking a lot
of combinations or by removing points from a working independent set to try to recreate
a bigger independent set.

For these the order of the vertices in the independent set does not matter. Since the
solution of two vertices {0,1} is equal to {1,0}. By ordering all vertices it is possible to
solve this double checking, by assuming that the elements in the independent set also need
to be added in this order.

There is also a possibility that there are vertices that should be in a largest independent
set. For example a vertex with zero edges will for sure be part of all largest independent
sets. It is also so that if a vertex has 1 edge then it is part of a largest independent
set. This is so since a largest independent set has for sure either that one vertex or its
neighbour. Now it is certain that a set created with that vertex is at least of the same
size as when using its neighbour. By using that vertex it is still possible to use the other
neighbours of the neighbour for a largest independent set. This is something that can be
done before checking all possible combinations such that the problem is faster to solve.

This can also be applied during the search for independent sets. Assume we have an
independent set and there exists a vertex, which is not in the set that is part of a largest
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independent set, consisting of at least the current set. Then it is known that we need
to add this vertex. However, it is possible that this vertex has a lower order than the
last vertex in the set and thus can not be added anymore. Thus this independent set can
never create a larger independent set then the independent set where the vertex was added
with correct ordering. It is known that a vertex had to be added when it has at most 1
neighbour in the vertices that still have to be checked. Only the ones that still have to be
checked matter since otherwise it still follows that a vertex was missed.

In the appendix a code is given and for this code it was not possible to simply order the
vertices. Since the strong product gives every vertex multiple values, but networkx in
python does not accept this. To solve this problem we gave every vertex a unique value
and sorted by that corresponding value. For example the vertex (3,4,5) is given the value
345 if we work over (Z/8Z)3. For this we need to consider over which Z/nZ we work, since
for n ∈ {11, . . . , 100} (10,4) should get the value 1004. Otherwise, vertex (1,11) would
have the same value as vertex (11,1). By using this order double checking possibilities is
excluded in the code.

3.2 Packaging problem

Baumert et al. [3] did research on the problem for α(Cd
n,2) using a d-dimensional packaging

problem of the n × n × · · · × n torus with d-dimensional packages with sides of length 2.
Now finding the maximum number of packages that can be placed gives the same problem
as finding α(Cd

n,2). This is so since the set consisting of the same corner of every package

forms an independent set in Cd
n,2. Also the other way around every independent set in

Cd
n,2 is changed by making every vertex in the set into a package by expanding in every

direction by 2.

Figure 3.1: A packaging for the torus created by C2
9,2 [3].

Baumert showed that we can expand a packaging in Cd
n,2 to a packaging in Cd

n+2,2. The
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process for this is shown in Figure 3.2. For this a cell in the nd-torus is taken with coor-
dinate (a1, . . . , ad). Now first take the hyperplane of the torus where the first coordinate
is set to a1 and replace this hyperplane by 3 times itself on top of each other. This hyper-
plane contains packages which are split in half. When replacing this hyperplane by 3 times
itself then 1 of these halved packages is attached to the other halved package from which it
was detached. The other two halved packages form a new package together. This process
will be done for every coordinate and this will provide a packaging in the (n+ 2)d-torus.

Figure 3.2: expansion of C2
5,2 to C2

7,2 by expanding a point u [3].

Theorem 3.1. given a packaging of size Nn in the nd-torus. Then there exists a packaging
of size Nn+2 in the (n+ 2)d-torus, where

Nn+2 ≥ Nn((n+ 2)/n)d.

Proof. The expansion from figure 3.2 can be applied for every cell in the nd-torus. For these
nd possible expansions every cell is copied the same amount of times, since the process is
completely symmetric. From this follows that every cell is now (n + 2)d times in the nd

packagings of the (n + 2)d-tori. From this directly follows that for every package we got
(n+2)d packages. There are now Nn(n+2)d packages in the nd packagings thus on average
there are Nn((n+2)/n)d packages, which means that there has to be a (n+2)d-torus with
at least this amount of packages.

Baumert also showed that this bound could be improved by a small value. When using
this expansion seen from a empty cell then this expansion forms a empty 3d − cube which
can be filled with an extra package. The number of empty cells in a package is equal
to nd − 2dNn which can be added to the known packagings from Theorem 3.1 and thus
follows:

Nn+2 ≥ (nd − 2dNn +Nn(n+ 2)d)/nd

= 1 +Nn(((n+ 2)d − 2d)/nd).

Since this lower bound can be applied for every packaging it surely works also for an
optimal packaging. It thus follows that there is a lower bound for α(Cd

n,2) given by:

α(Cd
n,2) ≥ 1 + α(Cd

n−2,2)((n
d − 2d)/(n− 2)d).

19



Lemma 3.2.
α(Cd

n,2) ≤ (n/2)α(Cd−1
n,2 ).

Proof. This follows from the fact that the percentage of empty cells can not decrease when
adding a dimension. This is since adding a dimension can be seen as adding hyperplanes
on top of each other. Now this will give maximally the same percentage if we use for every
hyperplane an optimal packaging of the nd−1 − torus. Now such an optimal packaging of
a higher dimension has n hyperplanes but every package for the nd − torus is contained
in 2 hyperplanes thus n/2 more packages at most.

For all n uneven it is known that α(Cn,2) = (n− 1)/2 and thus by induction follows that:

α(Cd
n,2) ≤ (nd − nd−1)/2d.

This upper bound assumes that for every multiplication with n/2 the answer is a whole
integer. It is possible that this is not true, but every solution has to be integer. It follows
that we can create a better upper bound by using Lemma 3.2 step by step. For example
for n = 7 with d = 3 we get by induction α(C3

7,2) ≤ (73 − 72)/23 = 36.75. But if it is done
step by step then we get with α(C7,2) = (7− 1)/2 = 3.

α(C2
7,2) ≤ (7/2) ∗ 3 = 10.5

α(C3
7,2) ≤ (7/2) ∗ 10 = 35.

Theorem 3.3. α(Cd
n,2) = (nd − nd−1)/2d when n = ℓ2d + 1

Proof. the upper bound follows directly by induction on Lemma 3.2. The lower bound is
proven by showing a packaging that works, which is given for ℓ = 1 by:

{(v1, v2, . . . , vd) ∈ (Z/nZ)d : vd = 2v1 + 4v2 + · · ·+ 2d−1vd−1}.

packages are here the expansion of the coordinates in every direction by 2. Consider that 2
packages v and w coincide at a cell then (v1−w1, v2−w2, . . . , vd−1−wd−1) ∈ {−1, 0, 1}d−1.
When all are 1 then vd −wd = 2d − 2 < 2d − 1 and thus there is no need to calculate with
modulo. This instantly gives us that vd − wd /∈ {−1, 1} since all values are even. Also
it can only be 0 when all values are zero since for p ∈ N we got 2p >

∑
i<p 2

i. Thus all
packages are independent. For ℓ > 1 a packaging is given by:

{(v1 + 2j, v2, . . . , vd) ∈ (Z/nZ)d : vd = 2v1 + 4v2 + · · ·+ 2d−1vd−1, j ∈ {0, ℓ− 1}.

The number of packages that are given by this are ℓnd−1. Now by rewriting n = ℓ2d+1 we
get ℓ = (n− 1)/2d. Thus the number of packages is nd−1(n− 1)/2d = (nd − nd−1)/2d

With this Baumert proved that for n = ℓ2d + 1 we got a known maximum packaging. A
package created by the last theorem is created in such a way that expanding it is made
much easier. For now consider packages as the coordinates as seen in Theorem 3.3. For
this every slice of the same dimension contains the exact same amount of packages. This
follows directly from that in the construction every slice of dimension 1 contains exactly
ℓ packages. Thus every slice of dimension p ≤ d contains ℓnp−1 packages. By using this
Codenotti et al. [5] found how to create a expansion packaging for n = ℓ2d + 1.

20



Figure 3.3: expansion of a square [5].

Theorem 3.4. α(Cd
n+i,2) ≥ (i/2)d + ℓ (n+i)d−id

n when n = ℓ2d + 1 and i even.

Proof. Packages are here seen as the cells and not the 2d cubes. As starting package take
the set of coordinates provided by Theorem 3.3. Take Ci as the cut of the torus created
by the slices were coordinate i is 0 or 1. In Figure 3.3 a way of expending is shown,
which works for expending every direction step for step with Ci. 2 times Ci after each
other works since the slices were coordinate i is 0 and 1 can be next to each other thus
directly follows that 0,1,0,1 after each other also works. Now instead of expending the
torus step for step, we will expend every direction at the same time. First add Ci in every
direction i, which only adds the places where 1 direction is expended. Now we still need to
consider the places were more directions are expended simultaneously. These expansions
in q directions are filled by the intersection of q different Ci where i are the directions. It is
known that the expansion in 1 direction had 2 options namely coordinate i is 0 or 1, Thus
for the expansion in q directions there are 2q options by setting all these q coordinates
to 0 or 1. Since all slices of the same dimension contain the same amount of packages
it is possible to consider the packages for every expansion in q directions together. The
amount of expansions in q directions is then given by

(
d
q

)
. Now it follows that we add

2q
(
d
q

)
slices were q coordinates are set. Thus a slice of dimension p = d− q gets replicated

2d−p
(
d
p

)
times. As said before every slice of dimension p ≥ 1 has ℓnp−1 = np(ℓ/n) packages.

Furthermore, the start packaging had ℓnd−1 packages and we can add 1 package in the
cube created by the expansion in all directions with the intersection of all Ci. This then
gives:

α(Cd
n+2,2) ≥ 1 + ℓnd−1 + ℓ/n(21

(
d

1

)
nd−1 + 22

(
d

2

)
nd−2 + · · ·+ 2d−1

(
d

d− 1

)
n1)

= 1 + ℓnd−1 + ℓ/n((n+ 2)d − nd − 2d)

= 1 + ℓ/n((n+ 2)d − 2d).

When this expansion has been done for i/2 times then two things change. A slice of
dimension p now gets replicated id−p

(
d
p

)
times. Also we can add (i/2)d more package in

the cube created by the intersection of all Ci Thus now we get for i is even:

α(Cd
n+i,2) ≥ (i/2)d + ℓ/n((n+ i)d − id).

Codenotti et al. [5] also found a packaging for a higher dimension when using the packages
created by n = ℓ2d + 1.
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Theorem 3.5.

α(Cd+1
n,2 ) ≥ (nd+1 − nd)/2d+1 − nd−1/2.

By using the last 2 theorems Codenotti also found a possible packaging for the combination
of a higher dimension with expansion. For this he found:

α(Cd+1
n+i,2) ≥ (

n+ i

2
)d+1n− 1

n
+

1

n
(
i

2
)d+1 + 2d−1id − n+ 1d

2
.

By using all information mentioned combined with some known lower bounds the lower
bounds in Table 3.1 were found for α(Cd

n,2)

n\d 3 4 5 6 Θ(Cn,2)

5 10 25 50 125 2.2361

7 33 108 343 1101 3.2237

9 81 324 1458 6561 4.3267

11 148 761 3996 21904 5.2896

13 247 1531 9633 61009 6.2743

15 382 2770 19864 145924 7.2558

17 578 4913 39304 334084 8.3721

19 807 7666 68994 651610 9.3571

21 1092 11441 114660 1201305 10.3423

Table 3.1: Lower bounds that are found for α(Cd
n,2), with a lower bound for the Shannon

capacity found by taking the best d for every n [5].

This packaging problem can easily be changed such that it works for α(Cd
n,k). This is done

by using packages of size kd instead of the 2d packages. Some of the earlier mentioned
theorems and lemmas are easily changed into versions such that answers are found for
α(Cd

n,k). Theorem 3.1 and Lemma 3.2 still work when changing the 2 by a k. For Theorem
3.1, instead of replacing hyperplanes by 3 times itself change this into k + 1 times itself.
Now it follows that

Nn+k ≥ Nn((n+ k)/n)d

and

α(Cd
n,k) ≤ (n/k)α(Cd−1

n,k ).

Theorem 3.6. α(Cd
n,k) = (nd − and−1)/kd when n = ℓkd + a, with a ∈ 1, 2, . . . , k − 1.

Proof. The upper bound follows directly by α(Cd
n,k) ≤ (n/k)α(Cd−1

n,k ) where α(Cn,k) =
(n− a)/k. The lower bound is proven by the following package

{(v1, v2, . . . , vd) ∈ (Z/nZ)d : vd = kv1 + k2v2 + · · ·+ kd−1vd−1}.

consider that 2 packages v and w coincide at a cell then for sure
(v1 − w1, v2 − w2, . . . , vd−1 − wd−1) ∈ {−k + 1, . . . , 0, . . . , k − 1}d−1. When all are k − 1
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then vd − wd = kd − k < kd − k + 1 and thus there is no need to calculate with modulo.
This instantly gives that vd−wd /∈ {−k+1, . . . ,−1, 1, . . . , k− 1} since all are multiples of
k. Since kp >

∑
i<p(k − 1)ki it can only be 0 when all values are zero, thus all packages

are independent. For ℓ > 1 a packaging is given by:

{(v1 + kj, v2, . . . , vd) ∈ (Z/nZ)d : vd = kv1 + k2v2 + · · ·+ kd−1vd−1, j ∈ {0, ℓ− 1}.

The number of packages that are given by this are ℓnd−1. Now by rewriting n = ℓkd+a we
get ℓ = (n−a)/kd and Thus the number of packages is nd−1(n−a)/kd = (nd−and−1)/kd.

Theorem 3.7. α(Cd
n+i,k) ≥ (i/k)d + ℓ (n+i)d−id

n when n = ℓkd + a and i a multiple of k.

Proof. The same as Theorem 3.4, but now the cuts Ci contain the coordinates 0 to k − 1
and we do i/k expansions.

With these functions there is a problem, since we need that n = ℓkd+ a. This means that
if k = 3 then for dimension 3 we already got at least n = 33 + 1 = 28. However, by also
using already known values Jurkiewicz et al. [6] found the values in Table 3.2

n\k 2 3 4 5 6 7 8

4 8 1 1 1 1 1 1

5 10 1 1 1 1 1 1

6 27 8 1 1 1 1 1

7 33 8 1 1 1 1 1

8 64 12 8 1 1 1 1

9 81 27 8 1 1 1 1

10 125 30 10 8 1 1 1

11 148 36 13 8 1 1 1

12 216 64 27 8 8 1 1

13 247 69 27 10 8 1 1

14 343 79 33 14 8 8 1

15 382 125 36 27 10 8 1

16 512 133 64 27 12 8 8

17 578 149 64 30 14 9 8

18 729 216 81 36 27 10 8

19 807 224 82 36 27 10 9

20 1000 247 125 64 30 14 10

Table 3.2: Lower bounds that are found for α(C3
n,k) [6].

3.3 Solutions with a special characteristic

Definition 3.8. (Graph homomorphism) Let G,H be graphs. A graph homomorphism
f from G to H written as f : G → H, is a function from V (G) to V (H) such that if
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(u, v) ∈ E(G) then (f(u), f(v)) ∈ E(H). If there exists such a function then we write
G → H.

Theorem 3.9. Let G,H be graphs such that G → H. Then α(Gd) ≤ α(Hd) for all d ∈ N.

Theorem 3.9 was proven by Bondy & Hell [8] and they showed that Cn1,k1 → Cn2,k2 if
and only if n1/k1 ≤ n2/k2. Thus it follows that for n1/k1 ≤ n2/k2 we got α(Cd

n1,k1
) ≤

α(Cd
n2,k2

). Thus it is possible to make a figure with lower bounds for the Shannon capacity
against their known n/k values as a step function.

Polak & Schrijver[4] created a special set on the values q,d and n with q < n:

S(n, d, q) = {t(1, q, . . . , qd−1) mod n : t ∈ Z/nZ}.

The set will be used as S when no value is fixed. This set has a special characteristic that
it almost uses every value the same amount of times. This is something nice to have since
we want optimal use of the whole space and thus also optimal usage of all numbers. This
can be seen in the optimal solution for C2

5,2 where all numbers are used twice. In the set
S we use all numbers exactly the same amount of times when gcd(q, n) = 1. However, we
also accept gcd(q, n) > 1 since this also produced many answers.

Lemma 3.10. given the set S is independent in Cd
n,k then

Θ(Cn,k) ≥ d√
n.

Proof. Since S is an independent set in Cd
n,k it directly follows that Θ(Cn,k) ≥ d

√
|S|. Here

we got that |S| = n when every t ∈ Z/nZ creates a unique vertex. This directly follows
from the first coordinate of the vertex which is equal to t and thus |S| = n.

Lemma 3.11. The set S is independent in Cd
n,k when for all t ∈ Z/nZ

∃i ∈ {0, 1, . . . , d− 1} : k ≤ tqi mod n ≤ n− k

Proof. It is known that a set A is independent in Cd
n,k when for all v, w ∈ A

∃i ∈ {0, 1, . . . , d− 1} : k ≤ (vi − wi) mod n ≤ n− k

Given 2 vertices v, w ∈ S such that v is constructed with t = a and w is constructed with
t = b. Now the difference of these 2 vertices is given by the vertex u constructed with
t = (a− b) mod n and thus u ∈ S. Now follows that (vi−wi) mod n = ui and thus follows
the theorem by the construction of the set S.

For the set S independent in Cd
n,k only the largest k is needed. This is so since then n/k

is as small as possible and by Theorem 3.9 all larger values for n/k follow with the same
lower bound.

For t and −t the same maximum value for k follows since only the distance matters. Now
by counting modn it follows that t and n − t give the same k. Thus instead of checking
all n− 1 elements (S without 0 element), it is possible to check half of the elements. Also
when searching for a largest value k only t ∈ [1, k − 1] has to be checked, since the first
value is equal to t and thus larger or equal to k for t ≥ k .
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Polak & Schrijver [4] used this set S to search for lower bounds of α(Cd
n,2). For this the

set S(n′, d, q) was used to find independent sets for α(Cd
n′,k). Here n′ = |S| is chosen

between the best upper and lower bound of α(Cd
n,2) since n′ will become the new lower

bound. Before was said that α(Cd
n,2) ≥ α(Cd

n′,k) when n′/k ≤ n/2 and thus follows that

k ≥ 2n′

n is needed to find a new lower bound for α(Cd
n,2). Since for k the lowest value

has the highest chance of working, it follows that only k = ⌈2n2
n1
⌉ has to be checked. By

checking all possibilities for n ≤ 15 and d ≤ 5 Polak & Schrijver found the new lower
bound α(C5

11,2) ≥ 4009. However this is not a new lower bound for Θ(C11,2) since there is
a better lower bound for d = 3.

Instead of using k ≥ 2n′

n Polak & Schrijver decided to also allow values a bit smaller. This
would then give a set which is not independent in Cd

n,2, but by removing a few points it

could become independent. By searching for this, Polak & Schrijver [4] found for C5
7,2 the

feasible set S(382, 5, 7) for C5
382,108. Since 382/108 > 7/2 this will not directly result in a

lower bound of 382 for α(C5
7,2). However, Polak & Schrijver used the following steps to

create a lower bound.

1. Add the value (40, 123, 40, 123, 40) to all elements of S(382, 5, 7). This is a optimized
value, which gives the best result.

2. Take S′ = {⌊i/54.5⌋ : i ∈ S}. Now for v ∈ S′ then v ∈ [0, 6]5 and thus S′ ⊆ V (C5
7,2).

3. Remove all elements, for which k = 2 does not work. This will result into a inde-
pendent set of size 327 in C5

7,2.

4. Add new points by exhaustive searching, From which 40 vertices can be added. Now
a independent set of size 367 in C5

7,2 is found.

For finding solutions using the set S for α(Cd
n,k) a code was written. This code searches

for solutions in dimension d with n ∈ [2d, pd]. Here p ≤ 10 is chosen such that the code
generates answers quite fast with at most n/k = 10. Using these limitations the code
follows the next steps, where x[−1] means the last added x value in the x, y coordinates.

1. Add the value (⌈p⌉, ⌈p⌉) to x, y coordinates and set n as ⌈pd⌉.

2. Decrease n by 1 and set k as ⌊n/x[−1] + 1⌋. Make the set of integers
Q = {2, 3, . . . , ⌊n/2⌋} and set q as the first element in Q.

3. Create the set S(n, d, q) and check if k works for this set, if it doesn’t remove q from
Q. If Q is empty go to step 5.

4. Set q as the next element in Q and repeat step 3. If there is no next number in Q
then increase k by 1, set q as the first element in Q and return to step 3

5. If k > ⌊n/x[−1] + 1⌋ then add (n/(k − 1), d√n) to x, y coordinates.

6. If n > 2d return to step 2. Otherwise, print the x, y coordinates in a step plot.

In step 1 we add the point (⌈p⌉, ⌈p⌉). This is a optimal reference point that has k = ⌈p⌉d−1

as feasible solution for the set S(⌈p⌉d, d, ⌈p⌉)
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In step 2 we decrease n by 1 and k is chosen in such a way that n/k is smaller than x[−1].
A set Q is made so that it contains all viable values for q. It contains only the first ⌊n/2⌋
since (−q)i has the same distance from 0 as qi. 0 and 1 are excluded since ∀i, j ∈ N with
q ∈ 0, 1 we got qi = qj .

In step 3 the set S(n, d, q) is created and we remove the value q from Q if it doesn’t work
for the given k. Since this means that q will also not work for k + 1 and higher.

In Step 4 we switch to the next value in Q. If there is no next value then we switch back
to the first value in Q, which exists since we checked if Q was empty in step 3. It is known
that all these values in Q work for k, thus now we check if some of these also work for
k + 1 by going back to step 3.

After some time Q is empty which means there is no q such that S works with k. Then we
go to step 5, where we check if k− 1 is a value that was checked. If this is true then there
was a q such that S worked with k−1 and thus adds a new coordinate at (n/(k−1), d√n).

In step 6 we return to step 2 and check the next value for n as long as n ≥ 2d. If this is
not true then it would only be interesting if a k value is found such that n/k < 2. But for
this a largest independent set is known to be of size 1.

Using this code, data sets were created for fixed values d with corresponding maximum
values for n such that n/k ≤ 10 and such that the calculation time isn’t too long. These
data sets are plotted in figure 3.4 with intervals of 2. By observing Figure 3.4a it can be
seen that d = 6 and higher almost do not provide any new information for lower bounds
on the Shannon capacity. This might be different for higher n/k, but then the calculation
time gets too long.

After this it was decided that maybe restricting to a single value q was too extreme thus
the next set was created, with ∀qi ∈ q we got 1 < qi < ⌊n/2⌋.

T (n, d, q) = {t(1, q1, q2, . . . , qd−1) mod n : t ∈ Z/nZ}.

The code for this problem runs in basically the same way as for the set S, but now the
set Q exists of combinations of i elements instead of a single element q. This resulted in
the plots shown in Figure 3.5.

In figure 3.5 it is clear that for these data plots the value d influences the number of effective
results. It can be seen that the values for d = 4 are always equal or higher to the values for
d = 2. Assume T (n, d) as a working set for k created by using n and d. Then a working set
T (n2, 2d) exists for knew = nk. If T (n, d) worked for k with (q1, q2, . . . , qd−1) then T (n2, 2d)
works for knew = nk with the 2d− 1 q-values (q1, q2, . . . , qd− 1, n, nq1, nq2, . . . , nqd−1).

In figure 3.6 it can be seen that by using the set T much better results are obtained. It
can be seen that for n/k ∈ [2, 6] the set T is most of the time above the set S, while for
n/k ∈ [6, 10] the set T creates almost only better independent sets than set S, when set
S doesn’t increase in size for a while.

Polak & Schrijver’s tactic of also accepting higher values of n/k to find values for lower
n/k has been tried. However, for this exhaustive searching is needed and thus only low
values for n and k can be used. It follows that only k is small works (2,3 or 4). Sadly
except for the already known C5

7,2 ≥ 367 there was no new lower bound found for this.
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(a) interval [2,4] (b) interval [4,6]

(c) interval [6,8] (d) interval [8,10]

Figure 3.4: Subplots for n/k ∈ [2, 10] against new lower bounds for Θ(Cn,k), with lines
corresponding to fixed value for d with the set S.

(a) interval [2,4] (b) interval [4,6]

(c) interval [6,8] (d) interval [8,10]

Figure 3.5: Subplots for n/k ∈ [2, 10] against new lower bounds for Θ(Cn,k), with lines
corresponding to fixed value for d with the set T .
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(a) interval [2,4] (b) interval [4,6]

(c) interval [6,8] (d) interval [8,10]

Figure 3.6: subplots for n/k ∈ [2, 10] against new lower bounds for Θ(Cn,k), with lines
corresponding to fixed value for d and their version with a single element q and multiple

q-values.
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Chapter 4

Findings and conclusions

In Chapter 2 some upper bounds for the Shannon capacity on a graph were given and
proven. Also for these upper bounds the exact values for Cn,k were given. In Chapter 3
we showed multiple ways to calculate lower bounds for the Shannon capacity by searching
for solutions for α(Cd

n,k). All these upper and lower bounds are combined in Figure 4.1.

For the upper bounds it is clear that the Lovász theta function always gives a closer upper
bound. However, for high n/k the difference between the Fractional clique cover and the
Lovász Theta function, seems to become very small.

For the lower bounds created by the set S and set T from Chapter 3.3 only the best values
are taken from every checked value d. The lower bound named packagings in the figure is
created by known solutions combined with Theorem 3.7. The values on the halves are all
known solutions and almost all other values follow from Theorem 3.7. When comparing
the sets S and T , it is found that for some n/k the set S is better while for other values
the set T is better. The set T is an expansion of the set S so the answers should always be
better. This is not so since for the set S more d values can be checked, because it computes
answers much faster. When comparing the answers created by the sets S and T and the
answers from the packaging problem there is a clear difference. For n/k ∈ [a, a+0.5] with
a ∈ N we find mostly better answers by using the packagings, while for n/k ∈ (a+0.5, a+1]
with a ∈ N the answers created by the sets are almost always better.

If we consider the difference between the best upper and lower bounds, it is noticed that
the smallest differences can be found at n/k ∈ {21

2 , 3
1
3 , . . . , p

1
p} with p ∈ N. All these

points are found for d = 2 with Theorem 3.6 and are all optimal solutions for d = 2. In
addition to these points the other optimal points created by Theorem 3.6 with n = ℓkd+a
decrease fast in effectiveness for higher values for a. From this can be concluded that these
points must be observed for higher dimensions to obtain better results or that the Lovász
theta function gets worse for these n/k. Using the two sets it can be seen that for higher
dimensions much better sets can be created, but these are not optimal. Thus it seems that
higher dimensions have more impact for n/k values the closer they get to a next integer.
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(a) interval [2,4] (b) interval [4,6]

(c) interval [6,8] (d) interval [8,10]

Figure 4.1: Subplots for n/k ∈ [2, 10] against lower and upper bounds for the Shannon
capacity of Cn,k. The Fractional clique and Lovász as upper bounds of the Shannon

capacity. The answers provided by the set S and newly created set T from Chapter 3.3
as lower bounds. Packagings contains known solutions combined with answers provided

by Chapter 3.2 as lower bounds.

For the sets created in Chapter 3.3 there can still be done research on the correlation
between good results and their corresponding q, k and n values. If a correlation can
be found then it would be possible to exclude a lot of possibilities, since the biggest
disadvantage from these sets is that the time for finding answers increases fast for higher
n values.

For the packaging problem it would be interesting if Theorem 3.5 could be recreated for
k values with n = ℓkd + a. Since the biggest disadvantage from the packaging problem is
that higher dimensions give answer for higher n/k values. For the interval [2,10] we can
at most search dimension 3 for k is 2 or 3.
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Appendix A

Python code

Python code for solving the set S in Chapter 3.3

import numpy as np

import math

xy=np.array ([[6,6]])#start coordinate

d=4#dimension

working =[]

test =[]

test1=[]

for n in range(1296,15,-1):#range of n values

for p in range(2,int(n/2+1)):

for q in range(p+1,int(n/2+1)):

for r in range(q+1,int(n/2+1)):

test.append ([p,q,r]) #set of all possibilities

for k in range(math.floor(n/xy[-1][0]+1),4000):

for q in test:

f=0

for i in range(1,k):

working =[(i*q[0])%n,(i*q[1])%n,(i*q[2])%n]

#working needs to be changed for more q’s

true=0

for a in working:

if a>=k and n-k>=a:

true=1

if true==0:

f=1

break

if f==0:

k1=k

n1=n

test1.append(q)

if test1==[]:

if k>math.floor(n/xy[-1][0]+1):

xy=np.append(xy ,[[n1/k1,n1**(1/d)]],axis=0)

break

test=list(test1)

test1=[]

test =[]

xy=np.flip(xy ,0)
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Code for finding solutions by exhaustive searching

import networkx as nx

def neighbours(n,k): # gives neighbours for vertex of dimension 1

tot =[]

for i in range(n):

neigh =[]

for i in range(i-k+1,i+k):

neigh.append(i%n)

tot.append(neigh)

return tot

def network(vertices ,edges): #makes the graph

G = nx.Graph ()

for i in range(len(vertices )):

a=0

for j in range(len(vertices[i])):

a+= vertices[i][j]*10**j

G.add_node(a)

for i in range(len(vertices )):

a=0

for j in range(len(vertices[i])):

a+= vertices[i][j]*10**j

for j in range(len(edges[i])):

b=0

for k in range(len(edges[i][j])):

b+=edges[i][j][k]*10**k

G.add_edge(a, b)

return G

def full(n,d):#gives all vertices

tot =[]

for a in range(n**d):

b=[]

for i in range(d):

b.append(a//(n**i)%n)

tot.append(b)

return tot

def edges(n,tot):#gives all edges of vertices

edg =[]

for a in tot:

edg1=[]

for b in tot:

true=0

for i in range(len(a)):

if b[i] not in n[a[i]]:

true=1

if true==0 and a not in edg1 and a!=b:

edg1.append(b)

edg.append(edg1)

return edg

def deep(G,b,se ,final ,k,d):#exhaustive searching
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if len(list(G.nodes ))==0:

if len(se)>=len(final):

final=list(se)

return(final)

for a in G.nodes:

if a<=b:

nodes=list(G.neighbors(a))

d=0

for i in nodes:

if i>=b:

break

d+=1

if nx.density(G.subgraph(nodes[d:]))==1:

break

if a>b:

se.append(a)

G1=nx.Graph(G)

e=list(G.neighbors(a))

e.append(a)

G1.remove_nodes_from(e)

final=deep(G1,a,se ,final ,k,d)

se.pop ()

return(final)

n=10# set for C(n,k)^d

d=2

k=3

tot=full(n,d)

neigh=neighbours(n,k)

edg=edges(neigh ,tot)

G=network(tot ,edg)

e=[0]

for i in G.neighbors(0):

e.append(i)

G.remove_nodes_from(e)

final=deep(G,0 ,[0],[],k,d) # set counting largest independent set
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