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SUMMARY

In this thesis & procedure is developed for estimating
parameters of linear systems from noise corrupted responses
to periodic test signals. The class of linear systems is
restricted to linear systems describable by an ordinary
linear differential equation. The parameters to be estimated
are the coefficients of the differential equation and a time
delay in series with the system. The proposed procedure is
a weighted least squares procedure operating on the estimates
of the Fourier coefficients of the test signal and those
of the response. The estimator of the coefficients
of the differential equation is a simple closed form
expression in the estimator of the Fourier coefficients. The
estimates are obtained in a single computational step. No
iterations are required. The time delay is estimated by
repeating the procedure for a number of values of time delay
and selecting the best fitting solution. The proposed
procedure is consistent if the following conditions are
both satisfied: 1) the number of unknown parameters may not
exceed twice the number of harmonics taken into consideration
and 2) the covariance function of the noise is absolutely
integrable. The procedure is applicable to systems under
closed loop control.

An expression is derived for the covariance matrix of
the proposed estimator. This expression shows how the
weights of the least squares procedure must be chosen in
order to minimize the variance. These particular weights
will be referred to as optimal weights. It is shown that
the minimum variance coincides with the minimum variance
bound (Cramér-Rao lower bound) if the noise is normally
distributed. The optimal weights are functions of the

properties of system and noise and are therefore not known
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a priori. In order to obtain an estimator having approxi=-
mately the minimum variance a second computational step can
be added to the proposed procedure. In the first step the
parameters are estimated using uniform weights. Using the
results of the first step the optimal weights are estimated.
These estimated weights are used as weights in the second
step. Numerical results obtained from computer generated
data show the close agreement of the variance of the two-
step procedure with the minimum variance bound in the cases
considered.

It is shown that the elements of the minimum variance
bound can be expressed as functions of the power spectrum
of the test signal and of the dynamics of system and noise.
So for given system and noise these elements can be manipu-
lated by selecting the power spectrum of the test signal.
Numerically a number of test signal power spectra have been
computed which minimize the trace of the minimum variance
bound. The aim is to obtain a reference to which the minimum
variance bound computed for the usual test signals can be
compared. A further aim is to investigate how a priori
knowledge about system and noise may be utilized for selec-
tion of appropriate test signals.

Finally, a numerical procedure is developed for ap-
proximate design of periodic two-level test signals having
specified spectra. Numerical examples of signals computed

using this procedure are described.
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SAMENVATTING

Dit proefschrift beschrijft het ontwerp van een
schattingsprocedure met behulp waarvan parameters van
lineaire systemen kunnen worden bepaald uit door ruis
verstoorde responsies op periodieke testsignalen. De be-
schouwde klasse lineaire systemen omvat uitsluitend die
lineaire systemen die kunnen worden beschreven met behulp
van een gewone lineaire differentiaaslvergelijking. De te
schatten parameters zijn de coefficienten van de differenti-
aalvergelijking en een voortplantingstijd in serie met het
systeem. De schattingsprocedure is een gewogen kleinste-
kwadratenmethode die wordt toegepast op de geschatte
fouriercoefficienten van het testsignaal en die van de res-
ponsie. De schatter van de coefficienten van de differenti-
aalvergelijking is een eenvoudige expliciete uitdrukking in
de schatter van de fouriercoefficienten. De schatting wordt
verkregen in één enkele stap. Er behoeft niet te worden
geitereerd. De voortplantingstijd wordt geschat door de
procedure te herhalen voor een aantal waarden van de voort=-
plantingstijd en vervolgens de best passende oplossing te
bepalen. De schattingsprocedure is asymptotisch raak als
aan de volgende voorwaarden is voldaan: 1) het aantal te
schatten parameters mag niet groter zijn dan tweemaal het
esantal harmonischen dat bij de schatting in aanmerking wordt
genomen en 2) de covariantiefunctie van de ruis is absoluut
integreerbaar. De schattingsprocedure mag ook worden toege-
past op systemen opgenomen in een regellus.

Een uitdrukking voor de covariantiematrix van de schat-
ter wordt afgeleid. Uit deze uitdrukking blijkt hoe de weeg-
factoren van de kleinste-kwadratenmethode gekozen moeten
worden om de variantie te minimaliseren. Deze weegfactoren

worden in het volgende optimale weegfactoren genoemd. Aan-
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getoond wordt dat de minimale variantie samenvalt met de
cramér-raobenedengrens als de ruls normaal verdeeld is. De
optimale weegfactoren zijn een functie van de eigenschappen
van het systeem en de ruis en zijn dan ook niet a priori
bekend. Om een schatter te verkrijgen waarvan de variantie
de minimale variantie benadert kan de schattingsprocedure
worden uitgebreid met een tweede stap. In de eerste stap
worden de systeemparameters geschat waarbij de gewichts-
factoren van de kleinste-kwadraten procedure onderling
gelijk gekozen zijn. Vervolgens worden de optimale gewichts-
factoren geschat met behulp van de uitkomsten van de eerste
stap. Deze geschatte gewichtsfactoren worden als gewichts-
factoren gebruikt in de tweede stap. Deze twee-stappen pro=
cedure is toegepast op gegevens die werden gegenereerd met
behulp van een digitale rekenautomaat. De variantie van de
twee-stappen procedure blijkt in de beschouwde gevallen met
de cramér-raobenedengrens overeen te komen.

De elementen van de cramér-raobenedengrens blijken te
kunnen worden geschreven als functies van het vermogens-
dichtheidsspectrum van het testsignaal en de dynamische
eigenschappen van het systeem en de ruis. Bij een gegeven
systeem en ruis kan dan de grootte van deze elementen worden
beinvloed door de keuze van het vermogensdichtheidsspectrum
van het testsignaal. Numeriek zijn een aantal spectra bere-
kend die het spoor van de cramér-raobenedengrens minimali-
seren. Het doel van deze berekeningen is een referentie te
verkrijgen waarmee de cramér-raobenedengrens berekend voor
de gebruikelijke testsignalen kan worden vergeleken. Verder
hebben de berekeningen tot doel na te gaan hoe a priori
kennis van het systeem en de ruis kan worden benut bij de
keuze van een testsignaal.

Tenslotte wordt een numerieke procedure beschreven met




behulp waarvan twee-standensignalen kunnen worden ontworpen
die bij benadering een voorgeschreven vermogensdichtheids-
spectrum bezitten. Numerieke voorbeelden worden gegeven van

signalen die zijn berekend met behulp van deze procedure.
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INTRODUCTION
The subject of this thesis belongs to the field of
identification and system parameter estimation. Identifica-
tion and system parameter estimation techniques are employed
in many areas of research. Tmportant applications are:
- Estimation of parameters of dynamical systems for
improved controlj;
- Investigation of dynamical properties of mechanical
systems for design purposes;
- Estimation of physical properties of materials using
dynamical methods;
- Study of dynamical relations in biological systems.
For a survey of identification and system parameter estima-
tion techniques the reader is referred to Zstrdm and Eykhoff
(1971). In what follows only a few of these methods will

briefly be discussed for comparison purposes.

The main topic discussed in this thesis is a method
developed by the author for estimating the parameters of a
particular class of linear dynamical systems from noise
corrupted observations of periodic input-output pairs. A
convenient method to characterize identification and system
parameter estimation problems is to specify the class of
models, the class of inputs and the criterion of equivalence
of the system under test and the elements of the class of
models. This classification was first introduced by Zadeh
(1962) and is also discussed by Bstrdm and Eykhoff (1971).
Using this method the identification problem discussed in
this thesis may be characterized as follows.

The class of models is restricted to models describable
by an ordinary linear scalar differential equation with

constant coefficients. Within this class models having an




unknown, time invariant time delay in series are also
allowed. So the class of models is a parametric class, the
parameters being the coefficients of the differential
equation and the time delay. For simplicity the coefficients
of the differential equation will be referred to as the ‘
system coefficients. ‘
The most important restriction on the class of inputs
is the assumption that the test signal is periodic. More
precisely, it is assumed that the input of the system has a
periodic component of given fundamental period. Two distinct
cases will be considered. In Case 1 the system input has a
completely known periodic component. This component may be
the test signal itself or it is a signal having a known
linear, dynamic or static relation with the test signal. For
example, the latter situation occurs if the test signal is
transformed by a linear transducer having known linear
dynamics. In Case 2 the system input has a periodic component
which is only partly known. The periodic component has an
unknown linear, static or dynamic relation with the test
signal. This is the case of the test signal is applied to
the system through a linear transducer having unknown linear
dynamics. Case 2 also includes the important case that the
system is under closed loop control. For example, if the
test signal is introduced at the set point, the periodic
signal entering the system is not the test signal itself. It
is a signal having an unknown dynamic relation with the test
signal. The most important difference between Case 1 and
Case 2 is that, although in both cases the period is given,
in the latter case the periodic component of the input must
be measured. It will be assumed that these measurements are
corrupted by additive noise. For example, if the system is

under closed loop control the noise may represent normal




operating signals. Both in Case 1 and Case 2 it will be
assumed that the observations at the output are additive
noise corrupted observations of the steady state response

to the periodic component of the input. Finally, it is
assumed that both in Case 1 and Case 2 the periodic component
of the input contains a sufficiently large number of non-zero
harmonics. This number will be specified later.

From the gbove specification of the input it is clear
that in this thesis the use of spontaneous statistical fluc-
tuations for identification purposer will not be considered.
An advantage of the use of spontaneous fluctuations is that
one needs not to disturb the normal operation of the system.
A disadvantage of spontaneous fluctuations is that their
power spectrum cannot be selected and may be inappropriate
for identification purposes. Generally the properties of the
power spectrum of the input have a substantial influence on
the accuracy in estimating the dynamical properties of the
system. Furthermore input output observations made on
spontaneous fluctuations may have covariant components which
are not causally related by the system. For example, these
components may be related through a, possibly hidden, feed-
back path. In the case of non-causal covariation of input
and output some identification methods produce wrong results,
since these methods interpret all covariation as causal. A
further disadvantage of spontaneous fluctuations is that
they are often nonstationary. Nonstationarity precludes the
use of most identification methods. Finally, many spontane-
ous processes have limited power. Consequently observations
are subject to relatively large measuring errors. In conclu-
sion, it is preferable to employ external, artificial test
signals whenever this is allowed and possible.

The restriction of the class of inputs to periodic ones




also excludes external transient test signals such as
pulses. In practice transient test signals are very useful
for pilot estimation or for estimation in situations where
noise is virtually absent. For estimation in the presence
of noise, however, transient test signals are less suitable,
since they make a very uneconomic use of the allowable input
amplitude range. In practice the input amplitude is always
restricted. Too large an amplitude may drive the system into
non-linearity; usually a linear model is a small signal
model. Moreover, too large an amplitude may disturb the
normal operation too much. Furthermore the allowable ampli-
tude range of the input transducer is usually limited. It
is true that the signal-to-noise ratio in the observations
of the response can be inproved by average response tech-
niques. But this is equivalent to employing a periodic test
signal. In that case, however, alternative periodic test
signals of the same maximum amplitude are available which
yield results having higher statistical accuracy. Particular
examples of such signals discussed in this thesis are
maximum length binary sequences and multifrequency binary
signals. Maximum length binary sequences have their power
evenly distributed over many harmonics. As opposed to
maximun length binary sequences multifrequency binary
signals have the major part of their power concentrated in
a limited number of relatively widely spaced harmonics. The
design of multifrequency binary signals is discussed in
Section 2.3 of this thesis. For a discussion of maximum
length binary sequences the reader is referred to Hoffmann
de Visme (1971).

Finally, the above characterisation of the identifica-
tion problem requires the definition of a criterion of

equivalence of the system under test and the elements of the




class of models. This criterion is defined as follows. The
periodic component of the input and the corresponding
periodic steady state response component of the output
satisfy the differential equation of the system. So the
Fourier coefficients of these components satisfy the Fourier
transform of the differential equation. For each harmonic
this yields two linear algebraic equations in the system
coefficients. These algebraic equations will be referred

to as the system equations. In the case considered in this
thesis the observations of the periodic input component and
those of the corresponding response component are corrupted
by noise. The Fourier coefficients of these components can
therefore only be estimated. Now suppose that estimates of
a number of Fourier coefficients of the periodic components
of input and output are available. Define the residual of

a system equation as the difference between the left hand
and the right hand member of the equation after replacing
the Fourier coefficients by their estimates. Then the
criterion of equivalence chosen in this research is a posi-
tive quadratic form in the residuals of all harmonics taken
into consideration. The selection of the weighting matrix
corresponding to this quadratic form will be discussed later.
This definition of the criterion of equivalence of the
system under test and the elements of the class of models
completes the characterization of the identification problem

studied in this thesis.

From the above considerations it is clear that for
known order of the differential equation the problem is to
minimize the criterion with respect to the unknown para-
meters. First consider the case that the time delay is

known. Since the residuals are linear in the unknown system




coefficients, the criterion is quadratic in these coeffi-
cients. The minimization of the criterion therefore only
requires the solution of a set of linear algebraic equa-
tions. This is a closed form, one step solution. No itera-
tions are required. The minimum is always achieved and this
minimum is unique, provided that the normal equations are
linearly independent. In Section 3.2 it is shown that this
is always the case if the number of unknown system coeffi-
cients does not exceed twice the number of non-zero har-
monics taken into consideration. In the case of unknown
time delay the procedure is repeated for a number of
selected values of time delay and the optimal value of
time delay and the corresponding solution for the system
coefficients are selected. Since the test signal is periodic,
time delay can only be estimated modulo the period of the
fundamental of the test signal. It is therefore assumed
that the time delay consists of the sum of a known integral
multiple of periods of the fundamental and an unknown
fraction of this period. For unknown system order the

above procedure is repeated for different orders in order

to find the optimal solution.

In Section 3.2 it is shown that the estimation proce-
dure described above is consistent if the following condi-
tions are both satisfied: 1) the estimator of the Fourier
coefficients is consistent and 2) the number of unknown
system parameters does not exceed twice the number of har-
monics taken into consideration.

The estimator of the Fourier coefficients chosen in
this research is the least squares estimator. The main
motives for this choice are that this estimator is computa-

tionally convenient and that it requires little a priori




knowledge about the noise. Relevant statistical properties
of this estimator are discussed in Section 3.1. Sufficient
conditions for its mean square convergence are: 1) the noise
is a stationary stochastic process and 2) the covariance
function of this process is absolutely integrable. The former
condition requires that non-stationarities are removed. An
example of a non-stationarity frequently encountered in
practice is a trend. Schemes for elimination of trends are
discussed in Section 1.1. The latter condition is met by

all processes having rational power spectra. No assumptions
are made with respect to the amplitude distribution of the
noise.

The second condition for the consistency of the esti=-
mator of the system parameters answers the question how
many harmonics are required. The problem which harmonics
and what fundamental frequency must be chosen will be dis~-

cussed below.

A substantial part of this thesis is devoted to an
approximate computation of the covariance matrix of the
proposed estimator. See Section 3.L4. This computation is
motivated by the following questions: 1) how should the
weights in the criterion be chosen for minimum variance?, 2)
how large is the variance of the proposed estimator compared
to the minimum variance bound? and 3) what is the influence
of the spectrum of the test signal upon the elements of the
covariance matrix of the proposed estimator? These questions
will now first be discussed.

Since the estimator of the system parameters is non=-
linear in the estimators of the Fourier coefficients, closed
form expressions for its small sample covariance matrix

are hard to obtain. The asymptotic expression for this



covariance matrix is, however, relatively easy to compute,
provided that for orders higher than two the central moments
of the estimators of the Fourier coefficients are more than
inversely proportional to the observation time. The expres-
sion for the asymptotic covariance matrix shows that this
matrix is smallest if the weighting matrix in the criterion
is the inverse of the asymptotic covariance matrix of the
residuals. It is shown in Section 3.4 that the latter covari-
ance matrix is diagonal. The estimator of the system para-
meters corresponding to the optimal weighting matrix will be
referred to as the minimum variance least squares estimator.
In practice the variances of the residuals are not known and
must therefore be estimated from the observations. A two-
step procedure, described in Section 1.3, computes in the
first step the system parameters using the identity matrix
as weighting matrix and next estimates the variances of the
residuals. The reciprocal values of the estimated vari-
ances are used as weights in the second step. This estimator
will be referred to as the two-step least squares estimator.
Numerical examples described in Section 1.4 show that at
least in the cases considered the two-step procedure
achieves the variance of the minimum variance least squares
estimator. For what follows it is important to note that in
these examples the open loop case is considered and that the
noise has a normal distribution.

The minimum variance bound for the estimation of the
system parameters is computed in Section 3.5. The case con-
sidered is the open loop case. The noise obeys the normal
distribution. The expression for the minimum variance bound
is identical to the expression for the asymptotic covariance
matrix of the minimum variance least squares estimator. The

important conclusion to be drawn from this identity is that

10




asymptotically the minimum variance least squares estimator
achieves the minimum variance bound if the noise is normal.
So in the above-mentioned numerical examples of the two-step
procedure, the minimum variance bound is actually achieved.
The expression for the minimum variance bound shows
that the only property of the test signal affecting the
elements of this bound is the power density spectrum of the
test signal. The elements of the inverse of the minimum
variance bound are relatively simple linear expressions in
the power of the harmonics. The coefficients of these ex-
pressions are functions of the dynamic properties of the
system and those of the noise. Observing that in practice
input power or output power is always restricted, the
question then arises which spectrum gives the most accurate
results under this constraint. As a measure of accuracy the
weighted sum of the diagonal elements of the minimum variance
bound is chosen. The spectrum and the corresponding test
signals which minimize this measure are defined as optimal.
Section 2.1 describes the numerical procedure for mimimi-
mization of the measure. In Section 2.2 some numerically
computed optimal spectra are presented. It is striking that
these spectra consist of a very limited number of harmonics
only. For comparison purposes Section 2.2 also computes
the minimum variance bound for a maximum length binary
sequence and for an arbitrarily chosen multifrequency binary
signal. These computations show that in a limited range of
the fundamental frequency the variances with the maximum
length binary sequence and the multifrequency binary signal
are comparable to the variances with the optimal signals.
This indicates that in the cases considered an appropriate
bandwidth is more important than the specific shape of the

spectrun within this bandwidth. The bandwidth of a particular

1"




maximum length binary sequence or a multifrequency binary
signal is determined by its fundamental frequency. In order
to find an appropriate fundamental frequency for an experi-
ment it seems worthwhile to carry out a priori computations
of the minimum variance bound for a number of different
fundamental frequencies. These computations may be based on
a priori knowledge about system and noise obtained from
mathematico-physical analysis or from pilot experiments. As
an interesting side product of the numerical computations of
the minimum variance bound it was found that estimation of
time delay influences the variances corresponding to the
remegining unknown parameters unfavourably. This effect is
usually overlooked in accuracy considerations found in the
literature.

The procedure for synthesis of optimal test signals can
only be carried out if the dynamical properties of system
and noise are exactly known. In that case, however, there is
no estimation problem at all. It is therefore emphasized that
here the principal aim of designing optimal test signals is
to obtain a reference for comparison of the performance of
the usual test signals. A further aim is to derive simple
rules of thumb for the selection of suitable test signals. In

the latter respect this research has not yet been succesful.

In the control field the most important methods for the
estimation of parameters of linear dynamic systems from
additive noise corrupted responses to known inputs are the
maximum likelihood (ML) method due to Bstrdm (1965), the
generalized least squares (GLS) method due to Clarke (1967)
and the instrumental variable (IV) method due to Joseph,
Lewis and Tou (1961). An advantage of all these methods is
that the class of allowable inputs is only mildly restricted

12




and includes spontaneous fluctuations and other statistical
inputs as well. However, in most applications of the ML
method and the GLS method discussed in the literature the
inputs are maximum length binary sequences. The ML method
and the GLS method iteratively compute both the coefficients
of the discrete time system transfer function and those of the
discrete time transfer function describing the noise. Further-
more, if the noise is normally distributed, the ML and GLS
estimators are asymptotically efficient. A disadvantage of
the ML and GLS method is that they require a relatively

long computing time and a substantial amount of memory.
Furthermore the iterative procedure may give rise to con-
vergence problems. A long computation time is especially
undesirable if the order and/or the time delay is not known.
In that case the estimation procedure has to be repeated

for increasing orders and for a number of values of time
delay in order to find the best fitting solution. The im-
portance of a short computation time for on line purposes

is obvious. The IV method is computationally very simple,
produces closed form solutions and requires only little
computation time. On the other hand the efficiency of the

IV method is hard to determine. For what follows it is im-
portant to note that the IV method requires the selection

or construction of a so-called instrumental time series. The
instrumental time series is correlated with causally related
components of the observations of input and output, but it is
independent of all non-causally related components of these

observations.
-

Comparing the ML method and the GLS method to the one-

step version of the proposed estimator, the following con-

clusions may be drawn:




1e
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The one-step procedure is computationally much simpler
and is less time consuming than the ML and the GLS method.
The one-step procedure requires only the Fourier analysis
of the input output observations for a small number of
frequencies and the solution of a set of linear equations.
The one-step procedure achieves the minimum of its
criterion in one single computational step. Convergence
problems are therefore avoided. The ML and the GLS
method are iterative. The number of computational steps
is unknown in advance, while their convergence cannot
always be guaranteed.

Using the one-step procedure a considerable data reduction
can be achieved if the test signal employed either con-
sists of a few harmonics only or has the major part of
its power concentrated in a small number of dominant har-
monics. The input output observations are first reduced
to the Fourier coefficient estimates corresponding to the
dominant harmonics. All subsequent operations are carried
out on these estimates only. Binary multifrequency sig-
nals are more suitable for this procedure than sums of
sinusoidal waves, since for the same harmonic content

the latter signals have a larger peak factor. As opposed
to the one-step procedure the ML and the GLS method
operate in each step of the iteration on all points of
the input output observations.

The one-step estimator is less accurate than the ML and
the GLS method, the latter methods being efficient.
Section 1.4 applies the one-step estimator to computer
generated date and compares the standard deviations of
the estimates so obtained to the standard deviations
corresponding to the minimum variance bound. In these

nunerical examples the least accurate results have a




standard deviation which is about one and a half times

as large as the minimum standard deviation. The most

accurete results in these examples are efficient.

Next comparing the ML method and the GLS method to the
proposed two-step procedure the following conclusions may be

drawn:

1. The two-step procedure is still computationally simpler
than the ML method and the GLS method. However, it is
shown in Section 1.3 that for estimation of the variances
of the residuals of the system equations, Fourier analysis
of the input output observations must be carried out for
a number of additional frequencies. Furthermore, in either
step of the procedure a set of linear equations must be
solved. These are, however, straightforward operations
which require a short computation time only. Moreover, in
either step of the two-step procedure convergence is
achieved in ons single computational step.

2. As compared to the ML method and the GLS method the data
reduction using the two-step procedure is still consider-
able. Due to the additional Fourier coefficients required
for the estimation of the variance of the residuals the
reduction is less outspoken than in the case of the one-
step procedure.

3. In the numerical examples of Section 1.4 the two-step

procedure achieves the minimum variance bound, as may be

expected on theoretical grounds.

Finally, comparing a number of common features of the

one-step and the two-step method to the properties of the

ML and the GLS method, the following observations may be

made:



1+ The one step method and the two-step method are less

3.

general, since they are restricted to periodic inputs as
opposed to the ML and the GLS method, which only require
that the input is persistently exciting. A discussion of
this concept will not be given here. The reader is
referred to Ljung (1971), where it is shown that the class
of persistently exciting inputs includes certain types of
signals having continuous spectra as well as periodic
inputs having sufficiently many harmonics.

A further difference between the one-step and the two-step
estimator on one hand and the ML and the GLS method on the
other is that the latter methods estimate the noise dynam-
iecs along with those of the system. The estimation of the
noise dynamics is an essential part of the ML and the GLS
procedure. The one-step estimator does not estimate the
noise dynamics at all. The two-step estimator only
estimates the spectral properties of the noise at the
frequencies of the harmonics taken into account in the
first step of the procedure. If, using the one-step or
the two-step procedure, in addition to the system para-
meters the spectral properties of the noise have to be
estimated, this can be done afterwards by subtracting the
response of the estimated model from the observations and
subsequent spectral analysis of the difference signal.
Alternatively, the noise dynamics may be estimated along
with those of the system by spectral analysis of the
observations for frequencies corresponding to zero-valued
harmonics of the test signal. Also the spectral analysis
may be carried out for frequencies in between the harmonic
frequencies if the observation time comprises several
periods of the fundamental.

The ML method as well as the one-step and the two-step




procedure may be applied to systems under closed loop
control. Conditions for applicability of the ML method to
systems under closed loop control are discussed by
Gustavsson (1974). Conditions for applicability of the

GLS method in this case are not known to the author.

From a comparison of the one-step and the two-step
estimator to the IV method it follows that a common charac-
teristic of these three methods is their computational sim-
plicity. Furthermore, the one-step method and two-step
method as well as the IV method are applicable to systems
under closed loop control. Using IV the test signal may be
employed as instrumental time series both in the open loop
and in the closed loop case. A disadvantage of the IV method
is that its efficiency is hard to establish. Wong and Polak
(1967) developed schemes for the construction of instrumental
time series having optimal properties. Unfortunately, due to
the fact that these optimal schemes are iterative, the IV
method using these schemes looses much of its computational
simplicity which is its most attractive property. Moreover,
it is not clear how efficient these optimal schemes are,
what the conditions for convergence are aﬁd whether or not
these schemes can be employed if the system under investi-
gation is under closed loop control. Furthermore, it is
observed that the IV method is in general not suitable for
estimation of the parameters of systems having unknown time
delay, since the IV method does not employ a criterion of

goodness of fit.
The estimator proposed in this thesis estimates the

parameters of the differential equation of the system under

test. It can, however, be shown that the procedure can
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easily be reformulated into an estimator of the parameters
of difference equation models. In the literature virtually
all schemes for estimation of parameters of linear dynamical
systems apply to difference equation models. Difference
equation models are extremely suitable for the digital
computer, while difficulties in handling derivatives with
respect to time are avoided. Moreover, from a statistical
standpoint of view difference equation models may be less
problematic than differential equation models. The choice
of a continuous time model in this thesis is motivated as
follows. First it is observed that most practical systems
are continuous time. Furthermore, the proposed estimator
operates on the estimates of the Fourier coefficients, not
on the input output observations themselves. So frequency
multiplication replaces the differentiation with respect to
time. A further motivation for the choice of a continuous
time model is the possibility to compute for this case an
approximate expression for the covariance matrix of the
estimator of both the system coefficients and the time
delay. For discrete time models this problem is difficult
to solve since in this case the time delay assumes discrete

values only.

The outline of this thesis is as follows. Chapter 1
describes the one-step estimator and the two-step estimator
and their covariance matrices. Chapter 1 also discusses
numerical results of these estimators using computer
generated input output observations. In order to improve
the comprehensibility of Chapter 1 all proofs and mathemati-
cal details have been brought together in Chapter 3. Chapter
2 is exclusively devoted to selection and synthesis of

suitable periodic inputs.
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CHAPTER 1

Estimation of system parameters.

In this chapter the design of a procedure for estimating
the parameters of linear, time invariant systems from noise
corrupted periodic input output records is described. The
parameters to be estimated are the coefficients of the
differential equation and a time delay in series with the
system. In what follows the coefficients of the differential
equation will be referred to as system coefficients.

In the noiseless case the compl * Fourier coefficient
of a harmonic of a periodic input and the corresponding
coefficient of the steady state response satisfy the Fourier
transform of the differential equation of the system. For
each harmonic this results in two linear algebraic equations
in the system coefficients. These algebraic equations will
be referred to as system equations. If the number of har-
monics is sufficiently large an appropriate number of
system equations can be selected and solved for the system
coefficients.

If the observations of the periocdic input and the
corresponding response are corrupted by noise the Fourier
coefficients of input and output can only be estimated.
Generally these estimates do not satisfy the system
equations. The estimator for the system coefficients
proposed in this research minimizes the residuals of any
number of system equations in a weighted least squares sense.
This estimator is discussed in Section 1.1. With respect to
the system coefficients the estimator is a closed form
expression. The time delay is estimated by repeating the
procedure for a number of values of time delay and selecting
the optimal solution. The estimator is consistent if the

following conditions are both satisfied: 1) the estimator
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of the Fourier coefficients is consistent and 2) the total
number of unknown parameters is smaller than or equal to
twice the number of harmonics taken into consideration. Since
these conditions do not require input and output noises to

be independent, the estimator is also suitable for the case
that the system is under closed loop control.

In Section 1.2 the asymptotic covariance matrix of the
estimator is discussed. From this covariance matrix it
follows how the weights of the least squares estimator must
be chosen in order to minimize the variance. Section 1.3
describes a two-step procedure for estimating these optimum
weights along with the parameters.

Finally, in Section 1.4 some numerical results computed
from computer generated data are described.

In order to improve the readability of this chapter
proofs and mathematical details have been omitted. These

are discussed in Chapter 3.
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1.1 The least squares estimator.

The applicability of the parameter estimation procedure
proposed in this research is restricted to time-invariant
systems describable by the following scalar differential

difference equation

N
ay(t) dy(t) _
ay(t) + L' L.+ a, —= =
0 1 dt N dtN
= u(t - 1) +b du(t - T), oy
M 1 dt
5 % d_%(t-T) {111
dt

where u(t) is the input signal, y(t) is the response to

u(t) and 1 denotes time delay. For simplicity the arguments
in (1.1.1) will be referred to as time. However, these
arguments may denote some other variable such as distance.
Furthermore it is assumed that the system is stable and that
bM = 1.

Now let u(t) be a periodic test signal with period T
and let y(t) be the steady state response to u(t). Define
the complex Fourier coefficient of the kth harmonic of u(t)
by

Yew = %u = 9By = %-‘/.u Jexp(-jomkt/T)at  (1.1.2)

o}

and define ka, Q. and Bky correspondingly. For the moment

ky
let 1 be known and for simplicity assume T = 0. Then

(ao tas v toas, )ka =
M
—(bO +hus, ot s )qu (1.1.3)
where s, = j2mk/T. The complex equation (1.1.3) is equivalent
to the real equations.
N
R + c PP +
e{(ao 8,8, ey, )ka
M-1
i + i =
(by + by, + MILVIPL DA,
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= Re(s i ) (1.1.4)

k Yku
and
Im{(ao tas ... + aNskN)ka +
e R bM—1SkM—1)qu} -
= Im(skMqu> (1.1.5)

These are two simultaneous, inhomogeneous, linear algebraic
equations in the system coefficients. The coefficient matrix

of these equations is

0 1
\ R o608
B Re Sy ka e Sy ka Re Sy ka
P =
k Im sO Im s1 Im sN
k ka k ka o k ka
0 1 M-1
- Re sk qu - Re Sk qu ... - Re sk qu 61,183
- Im sO - Im s1 - Im sM_1 o
x Yku k Yku " x  Tku

Consequently if L harmonics of u(t) and y(t) with harmonic

numbers k1, o A kL are taken into consideration, 2L

equations result with coefficient matrix

P=(p' P' ...P' ) (1.1.7)
£y Bg R,
where the prime denotes transposition. Defining
M M
d = (Re s, ¥y Im s, ¥y .... Re s, ¥
k] k1u k1 k1u kL kLu
M
Ims, v, )' (1.1.8)
kL kLu
and
= ]
c (ao By wevnn ay bO e bM—1) (1.1.9)

the 2L equations may thus be written in vector notation

Pc = q (1.1.10)

Now first suppose that u(t) and y(t) can exactly be
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measured. Then akiy, B and Bkiu can exactly be

computed. Consequently the elements of P and 4 in (1.1.10)

o
3
kiy kiu

are known. If it is assumed that N+M+1 < 2L, N+M+1

equations can be selected from (1.1.10) and solved for c.
In the noiseless case with unknown time delay the

procedure is as follows. Assume that 2L = N+M+2. First

exp -5,

N+M+1 equations are selected from (1.1.10) and solved for

Tk u T 1is substituted for all Y.y iD (1.1.10). Next
o i

for ¢ for a number of selected values of T« The value of Tt

and the corresponding solution for c¢ which satisfy the

remaining equation(s) of (1.1.10) are selected.

From the above considerations it is clear that the

parameters
= '
6 = (ay «vv 8y Dy v Dy 4 T) (1.1.11)

of the model (1.1.1) can easily be computed if it is assumed
that u(t) and y(t) can exactly be measured. In practice this
assumption is unrealistic. For example, under normal
operating conditions responses to additional system inputs
are superimposed on the response to the test signal. Further-
more the observations made on the response may be corrupted
by measurement errors or internal system noise.

If the system is under closed loop control the test
signal is usually introduced at the set point. Consequently
the input of the system is not the test signal itself and
has to be measured. Therefore in this case the observations
of both input and output are subject to disturbances. The
same situation occurs if the test signal is applied to the
system using a transducer with unknown dynamic characte-
ristics.

In what follows it will be assumed that the distur-
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bances are adequately described by additive stationary
stochastic processes. So the observations at the output
and input are described by

z(t) = y(t) + h(t) (1.1.12)
and

v(t) = u(t) + g(t) (1.1.13)
respectively, where g(t) and h(t) are stationary stochastic
processes. Furthermore it is assumed that the observation
time is an integral number J of periods of the input signal

u(t). Now, define

(). A(3) _ .2(3)

JT
= 29) ) oL
Yku - %%ku T Fku JT

0

v(t)exp (=j2mkt /T)dt

(1.1.14)
(7)) +(J) 2(7)

and define ¥ , O and B correspondingly. In Section
L B R gy R () .
3.1 1t 1s shown that qu and ka are conslstent least

sqares estimators of Yieu and ka respectively if

+00 +o
fleg(t)ldt <« and /|th(t)ldt < w (1.1.15)

-0

where Rgg(T) and R . (1) denote the autocovariance functions

of g(t) and h(t) r::pectively. The condition (1.1.15) is a
sufficient condition, not a necessary one. For example,
(1.1.15) is not satisfied if g(t) and h(t) have periodic
components. Nevertheless it is shown in Section 3.1 that

?ii) and ?ii) are consistent in this case provided that the

frequencies of the periodic components do not coincide with
2rk/T.

It is important to note that the stationarity assumption
requires that trends in the mean of v(t) and z(t) are
removed. Schemes for the elimination of trends will be

discussed in the last part of this section.
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Now, consider equation (1.1.10

which is obtained by substituting ¥ for all Yk & and

d correspondingly. Then generally
§(J)c - a(J) # 0

The vector

2(3) _ ]';;(J)c _30)

(1.1.16)
will be referred to as the vector of residuals. From
(1.1.4) - (1.1.9) it follows that the elements of E(J) are

of the form

Re{A(jwk_) ?ﬁJ) - B(jwk )exp(—Jw r) (J)} (1.1.17)
- iy i ks
and
iAoy )7 ff; - Blduy Jexp(~juy < )?ff&} (1.1.18)
-1

Furthermore let @  be a symmetric, positive definite

matrix. Then

21 (T) =1 4(3) (1.1.19)

is a positive quadratic form in the residuals. In this

research the estimator of the coefficients is taken as

that solution E(J)
Q_1 is included in this expression to allow for weighting

for ¢ which minimizes (1.1.19). The matrix

schemes which take a priori knowledge about system and noise

~(J)

into account. It is shown in Section 3.2 that ¢C satisfies

(7)o ($:(9) g 18(3))=1 5,(9) 1309 (1.1.20)
In what follows this estimator will be referred to as
weighted least squares estimator or simply least squares
estimator of the system coefficients. If no a priori know-

ledge about the system and noise characteristics is avail-

able 9_1 will be taken as the identity matrix. A more refined




choice is discussed in Section 1.3.

(1)

It 1s shown in Section 3.2 that €

Consistency of €

(J

is a consistent

estimator of ¢ if the following conditions are both satis-

fied:

1) the estimator of the Fourier coefficients is consistent

and

2) the number of unknown system coefficients is smaller than
or equal to twice the number of non-zero harmonics taken
into consideration.

It should be noted that these conditions are very gene-
ral. For instance, no assumptions are made with respect to
the amplitude distributions of g(t) and h(t). Furthermore
the inequalities (1.1.15) constitute the only restrictions
on the class of allowable power density spectra of g(t) and
h(t).

Estimation of the order.

In order to determine the order N of the left-hand
member and the order M of the right-hand member of (1.1.1),
(1.1.20) is solved for increasing M and N. The optimal M

(J)

and N and the corresponding solution for € are selected.

Estimation of time delay.

Time delay is estimated by substituting ?k LOXP=S, T
i i

ﬁJi in (1.1.20) and solving (1.1.20) for E(J) for a

number of Selected values of 1. The value ?(J)

(7)

(1.1.19) are selected. In Section 3.2 it is shown that this

for all ¥
of 1 and the

corresponding solution for @€ which minimize the criterion

procedure estimates the parameters 6 consistently if the
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following conditions are both satisfied: 1) the estimator
of the Fourier coefficients is consistent and 2) the number
of unknown parameters is smaller than or equal to twice the
number of non-zero harmonics taken into consideration.

In the case of all-pole models the elements of the

(J)

coefficients ?iJ
i

matrix P in (1.1.20) are independent of the Fourier

) . . ~
a Therefore substitution of Yk.uexP_Sk.

1 1

T

J)
.U
i

for ?i in (1.1.20) only changes the vector a(J). So if

(1.1.20) is solved for E(J) for a number of values of T,
(ﬁ'(J)Q_1§(J))_1 §| (J)Q—1

only once. It should be noted that as a result of the

the matrix has to be computed

periodicity of the test signal the time delay can only be

estimated modulo the period of the fundamental.

Estimation in closed loop.

If the system is under closed loop control the noise
at the input and the noise at the output are correlated
through the feedback path. As a result a number of con-
ventional open loop estimation schemes are generally no
longer consistent in the closed loop situation. For a
discussion the reader is referred to Gustavsson, Ljung
and S8derstrdm (19T74). Irrespective as to whether the
noises at the input and output are correlated or not, the
estimator proposed in this research is consistent if the ~
estimator of the Fourier coefficients is consistent and e
if, in addition, the number of harmonics taken into con-
sideration is sufficiently large. Therefore this esti-
mator is equally well applicable to open loop systems as

to systems under closed loop control.
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Computational aspects.

The numerical procedure for computation of the
estimates involves Fourier analysis of v(t) and z(t) and
subsequent solution of the set of linear equations (1.1.20).
In the case of unknown time delay or unknown order of the
system only the second step of this procedure has to be
repeated for a number of values of time delay or for various
orders in order to find the best fit. The Fourier analysis
needs to be carried out only once.

The Fourier analysis may be carried out directly or
by means of the fast Fourier transform (FFT). The FFT is a
relatively fast and accurate algorithm for computing
discrete Fourier transforms (DFT). For a discussion of the
FFT see Gentleman (1966). Now suppose that a record consists
of n samples, where n is a power of two. The FFT requires
for the DFT of the record n logen complex multiplications,
whereas a direct approach requires n2 complex multipli-
cations. However, it should be noted that using the direct
approach the DFT can be computed for each harmonic indivi-
dually whereas the FFT computes the DFT for all harmonics
simultaneously. So if L harmonics are taken into consider-
ation the ratio of the number of multiplications using the
direct approach to the number of multiplications required
by the FFT is given by L/logzn.

The requirement that the number of unknown parameters
must be smaller than or equal to twice the number of
harmonics taken into consideration constitutes the lower
bound on L. It is clear that for systems of low order L may
be quite small. For example for a second order all-pole
model with time delay L = 2 is sufficient. So in this case
the direct approach will be much faster since it is

reasonable to assume that n >> L.
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Suitable test signals for testing at a limited number
of frequencies are binary multifrequency test signals.
These are periodic two-level signals that have the major
part of their power concentrated in a limited number of
relatively widely spaced harmonics. The construction of
binary multifrequency signals is discussed in Section 2.3
and Section 2.4. A number of computer experiments using
binary multifrequency test signals is described in

Section 1.k4.

Removal of trends.

In practice the input observations v(t) and the output
observations z(t) may exhibit trends in their mean values.
This means that the mean value of the input noise g(t) and
that of the output noise h(t) are nonstationary. In Section
3.1 the unbiasedness and mean square convergence of the
estimators of the Fourier coefficients are proved under
stationarity assumptions. In order to illustrate the
effect of trends on the estimators of the Fourier
coefficients consider the following example. Let the mean
of h(t) be a trend described by the second degree poly-
nomial

E n(t) = th + p2t2
where ey and p, are constant coefficients. Then it is
straightforward to show that

(3)

E[aky - aky =

I

)
n

ol

and

(J) 1 JT
E[B_ 1l -8B =-p, —=-p, —
ky ky 1 Wy & Wy
From these expressions it is clear that as a result of the

trend &éi) and Eﬁi) may seriously be biased. So the
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question is how to remove the trend. This problem can be
solved employing techniques used in econometry for
decomposing a time series into a trend and a periodic
seasonal component. From the literature two major approaches
for this decomposition are available. These are polynomial
curve fitting and moving average procedures. See Wonnacott
and Wonnacott (1970), page 68.

Polynomial curve fitting is not very suitable for the
detrending of signals of the type considered in this thesis.
The reason is that both the Fourier coefficients of the
periodic component and the coefficients of the trend poly-
nomial have to be estimated simultaneously in the same
least squares procedure. Estimation of the polynomial
coefficients prior to estimation of the Fourier coefficients
gives rise to wrong results. The simultaneous estimation
procedure requires the solving of a set of linear equations
both for all Fourier coefficients of the periodic component
and the coefficients of the trend polynomial. The
computation of the coefficients of this set of equations
and the subsequent solution constitute a substantial
computational effort and become prohibitive with many
harmonics.

The moving average procedure for removal or reduction
of the trend is computationally much simpler. This
procedure may be described as follows. Let again z(t) be the
observations to be detrended. Then z(t) is transformed into
3 T
z(tl)dt

z(t) as follows t +
-3

2(t) = 2(t) _%f
t

Since the average of y(t) over the fundamental period T is

.

zero this expression may be written




t -

Note that with this transformation of z(t) into z(t) the
first and the last half period of the observations are lost.
Also note that this procedure leaves the amplitude and phase
of the harmonics of y(t) unchanged. Now let again

E h(t) = Pyt + p2t2
Then t+ 3T

E[h(t) - (

and hence
E z(t) = y(t) + constant
Therefore, if the Fourier coefficients of y(t) are estimated

from z(t) instead of from z(t), it follows that

~(J) _

Eak = aky
and

~(J) _

By T Py

This example shows that by simply subtracting the moving
average the effect of linear and quadratic trend terms is

completely eliminated.




1.2. The asymptotic covariance matrix of the least squares

estimator.

This section discusses the asymptotic covariance matrix

of the estimator 5(J) e (§éJ), agJ), ces ﬁéJ), géJ), i i g
5&{3, ?(J))'. Recall that the superscript J in this

expression refers to the observation time JT. For finite J

(7)

the expression for the covariance matrix of 8 is very
difficult to obtain. However, it will be shown in Section
3.4 that the computation of the asymptotic covariance matrix

of é(J) is straightforward. The asymptotic covariance

(7)

matrix of 6 is defined as follows. Let

Vss = linm E{ vazel) - sy ovamat) - g9y

d > w
and assume that Vgg is a matrix of finite constants. Then
the asymptotic covariance matrix 256 of 5(J)is defined by

Ipa = 4= Vas

66 JT 60
This asymptotic covariance matrix will be used as an approxi-
mation to the covariance matrix for finite J.

First a more specific model for the noise in the
observations of the input and in those of the output is set
up. The noise in the observations of the input is assumed
to be composed as follows

e(t) = g,(t) + g,(t) (1.2.1)

where gl(t) and g2(t) are stationary stochastic processes.
The process ge(t) represents measurement noise. For example
gg(t) may be quantization noise. The process g1(t) is an
additional input to the system and may represent the normal
operating input signal.

The noise in the observations of the output is described

by

(122}




where h1(t), he(t) and h3(t) are stationary stochastic
processes. The process h1(t) is the steady state response
to the process g1(t) and is therefore correlated with gT(t).

The process h_(t) is an equivalent disturbance at the output

3
representing internal noises in the system. In order to
include the case that the system is under closed loop control

it is assumed that the processes g1(t), h1(t) and h_(t) are

mutually correlated. The process h2(t) represents mzasurement
noise in the observations of the output and is assumed to be
independent of all other processes. The same assumption is
made with respect to gz(t). Finally, it is assumed that g(t)
and h(t) are independent of u(t) and y(t).

In what follows it is supposed that the conditions for

(J)

consistency of 6 are satisfied and that in addition

JT
lim / (1 - It[/JT)Rgg(t)exp(—jZTrkt/T)dt

JT»e =JT
B Sgs(jZﬂk/T) {1.8.3)
JT
lim (1 - [t]/3T)R, (t)exp(-jorkt/T)at =
JTe =JT )
= shh(Jznk/T) (1.2.4)
and JT

lim / (1 - |t|/JT)Rgh(t)exp(—j2ﬂkt/T)d‘c
S gl = 8,,(J2mk/T) (1.2.5)

where Sgg(jw) and Shh(jw) denote the power density spectra
of g(t) and h(t) respectively and Sgh(jw) and Rgh(T) are the
cross power density spectrum and cross covariance function
of these processes respectively. The assumptions (1.2.3) -
(1.2.5) are discussed in Section 3.1 and Section 3.3.
Furthermore it is assumed that the higher-than-two order

central moments of the estimator of the Fourier coefficients
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are of order of magnitude lower than 1/JT. Now, define

o= (o' o' .,..90' ... ) (1.2.6)
k k ki kL
her Re s1 Re sN
where ( K Ve,y tt k. k.y
i1 i~i
1
y Im s, ¥y oo Im s7Y
k. ¥ k: k.y ks kiy
_ Re &° vy, _exp(-s. 1)
k."'k.u k.
i1 i
- Im a? Y, _exp(-s, T)
k. 'k.u k.
i1 i
- Re s; Yy exp(—sk ) ... -Re s§~1yk exp(-sy T)
i~ i R i
_ Im s v. exp( T) -Im sM_1Y exp(-s, 1)
k. ks k. v k. 'k k.
T "1 i a3 i
-Re - skiB(ski)exp(-skiT)
(1.2.7)
-Im - sk-B(sk_)exp(—sk'T)
i i i
where S, = j2ﬂki/T. Furthermore let
i
A= aiag(huy )y Mg Dy eer s Ay )y Aluyg )y eee s
1 1 1 i
AMa, )y Mwy, ) (1.2.8)
kL kL
where
AMw, ) = 3[]|a )| “{s (s, ) +8 (s )} +
kl kl 272 By h3h3 kl
2
+ |B(s, )|“s (s, )] (1.2.9)
ki' g8, kg
Then it is shown in Section 3.4 that the asymptotic
covariance matrix 255 of §(J) may be written
SRR B PACe. TR UL N SR Bpee,
I3 = T (e'@  "0)” 0'Q 'AQ” o(0'Q @) (1.2.10)
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Tana = — A (1.2.11)

represents the asymptotic covariance matrix of the

residuals.

Discussion.

The equations (1.2.8), (1.2.9) and (1.2.10) show that
the processes gT(t) and hT(t) do not contribute to the
elements of 265' Intuitively this may be explained as
follows. First it is observed that g1(t) and h1(t) satisfy
the differential equation of the system, since h1(t) is

the response to g.(t). The contribution of g1(t) to the

1

error in §ki) and the contribution of h1(t) to the error
in ?ij) are finite Fourier transforms of 51(t) and h](t)

respectively. These finite Fourier transforms approximately
satisfy the equations Pc - d = 0. Clearly this results in

a contribution to the elements of the covariance matrix of
the residuals, and therefore to the elements of the

(7)

to the definition of the asymptotic covariance matrix

covariance matrix of 8 , of order lower than J_1. According

contributions of order lower than J_1 are neglected. So the

fact that 266 = 0 for h2(t) = h3(t) = gz(t) = 0 only

indicates that in this particular case the elements of the
asymptotic covariance matrix are of order lower than J-1.
The expression for 255 is similar to the expression
for the covariance matrix of the estimator of the
coefficients of the generalized linear regression model. See
Eykhoff (1974), Section 6.1. Now let g(J) be the weighted
least squares estimator for the case that @ = A. It is known
from regression theory that Z@E is smaller than 255 for any
other choice of Q. See Goldberger (1964), page 233. From

(1.2.10) it follows that the asymptotic covariance matrix
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()

Iyy of ] may be written

Lo = }—T (o4~ Vo)~ (1.2.12)
(3)

least squares estimator.

The estimator 6 will be referred to as minimum variance
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1.3. Two-step ieast squares estimation of the system

parameters.
It is clear that the minimum variance property of the

5(J)

able one. In practice, however, A is not known since its

estimator © described in the preceding section is a desir-
computation requires detailed knowledge about the dynamic
characteristics of system and noise. In this section a
two-step algorithm is described for estimating the elements
of A along with the parameters. The aim is to obtain an
estimator whose properties are comparable to those of the

minimum variance estimator discussed in the preceding

section.
Define JT
V(k)= / v(t)exp(-jorkt/JT)dt (1.3.1)
0
and JT
Z(k)= /z Jexp(-j2rk/JT)dt (1.3.2)

respectively. In the first step of the procedure V(k) and

Z(k) are computed for k = k.J = K, ...., kK.J=-1, k.J, k.J+1,
i W i i 3

evvey kK.J + k , where 1 =1, ...., L and k_ is a fixed
: Y rote ahms 5(9) ~(J)
integer. Note that Yeu = V(kiJ) and v, v = Z(kiJ). Next the
parameters 6(J) are eStimated from the Fourier coefficient
estimates corresponding to the harmonic numbers Koy vvns kL
using the least-squares estimator

" - c -1 = -

This is the weighted least squares estimator with weighting
matrix 9-1 = I, where I is the identity matrix. In the case
of unknown time delay the parameters are estimated by

(J)
selecting the velue 7

(7) which minimize

3 _ 3y (309)

for a number of selected values of T and

(J)

computing ¢€
and the corresponding solution

for ¢

¢ - aldh (1.3.4)
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These estimates are denoted by 6 (7) where the subscript I

I
refers to a weighting matrix Q_T = I.

In the second step first the elements A(w, ) of A are

k.
i !

estimated. According to (1.2.8) A is diagonal. Furthermore
it follows from (1.2.11) that

AN =JT Zaa
€€

where I.. is the asymptotic covariance matrix of the

residuals E(J . According to (1.1.17) and (1.1.18) the

(7)

elements of € are of the form

RetA(im )717) - Blw Jex(-iu, 7D (1.3.5)
1 1 & 1 b 8
and
Ao, )77) - Blju Jexp(-ju, DR (1.3.6)
e 1 14 & 1

The expectation of the residuals (1.3.5) and (1.3.6) is zero

(3) yng 309

are unbiased estimators of the Fourier
kiy kiu

since ¥

coefficients i - and - respectively. Furthermore,
1 i

according to (1.2.8), (1.2.9) and (1.2.11) the asymptotic
variance of the residual (1.3.5) and that of the residual

(1.3.6) are both equal to

1 1 : 2 . .

— Mo, ) = == [ |AGGe, )|“{s ( ) +8 ( )}
JT wki 2JT | ky hoh, kai hh, kai

+ lB(jwk_)[2 s (Ju, ) (1.3.7)

i €80 N

The residuals (1.3.5) and (1.3.6) can not exactly be

(J)
kiy
since the system parameters are not known. However,

computed from the estimated Fourier coefficients ¥ and

5(J)
Yk.u
using the system parameter estimates obtained in the first

step it is proposed here to estimate these residuals by

means of the estimators




! ~(J) . ~(J
Re{A(ka_)\(k.y - B(ka_)exp(—awk_r) Yo ule = §09)
1 1 i 1 1 I
and
. ~(3) . . ={d) \
Im{A(Jw, )y o = B(Jwy Jexp(=ju, 1) v i1 o 5(9)
1 1 1 1 1 I

respectively. These gquantities will be referred to as the
measured residuals. Then one might think of estimating the
variance of the true residuals from the measured residuals

using the following estimator

%[ReE{A(jwk.)§£?; B(ka_)exp(—jwk_r)?ifi}e = 5la) +
1 L e 1 3

+ w20, 7] - By Jern(-iu, 7N _ 50
1 i 1 i i I

However, selecting (1.3.8) as an estimator of the variance
of the residual (1.3.5) and that of the residual (1.3.6) is
equivalent to estimating the variance of a zero mean random
variable from only two observations on that variable. In
that case the standard deviation and the expectation of the
estimator are of the same order of magnitude. So it is
concluded that (1.3.8) is a very inaccurate estimator. In
view of (1.3.7) the quantities to be estimated, that is the
asymptotic variances of the residuals, are power spectral
density functions. In spectral analysis the procedure for
reducing the variance of a spectral estimator is to
introduce a window. See Blackman and Tukey (1958). This
implies that the spectral estimator for a particular
frequency is replaced by a weighted average of estimators
over neighbouring frequencies, the weights being determined
by the spectral window. For reducing the variance of the
estimator (1.3.8) of the asymptotic variance of the

residuals, this estimator is changed into the uniformly
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weighted sum i iw(mk ) defined by
i

JT

k.J+k
L3 ! 7’8 (A(jome/an)z(x)
— A (0w, ) = === ) Re {A(jerk/JIT)z(k) +
JT “w ki 2(2kw + 1) k=kiJ_kW

-B(j2rk/JT)exp(=jorkt/JT)V(k)}

+Im2{A(j2wk/JT)Z(k) +

(J) (1.3.9)
I ~
where i = 1, ..., L. Note that the estimates Xw(w

-B(jenk/JT)exp(-jznkr/JT)v(k)}e B

k.) can
i
be computed from the results of the first step of the
(J) -
1 end V(k), Z(k) for k = LIRS SN
cony kiJ + kw and 1 = 1, +es, L. According to the theory

procedure, that is from )

of spectral analysis kw must be small in order to keep the

bias of iw(wk ) small. On the other hand in order to keep

i
the variance small, kw must be large. Roughly speaking the
ratio of the variance of Aw(wk ) to the square of A(wk ) is
i i

1/(1+kw + 2). So one is forced to compromise between the

variance and the bias of the estimator iw(m ). For a

k.
1

detailed discussion of spectral windows see Jenkins and
Watts (1967).

From the estimator Aw(w ) the estimator A of the matrix

k.
A is constructed as follows

A = diag (Aw(w Vs Aw(wk1), ey A (w

X

(1.3.10)

ES
Next the solution © for 6 is computed which minimizes
(§(J)C_E(J))'K‘1(§(J)C_E(J))

This estimator will be referred to as the two-step least

(7)
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squares estimator.

Discussion.

From the above considerations concerning the bias and

(7)

. However, numerical

-~ E3
variance of the elements of A it is clear that 6 is not

(7)

examples in the next section illustrate the close

the minimum variance estimator §

approximation of minimum variance in practice. The improve-
ment over the one-step procedure is due to the appropriate
choice of the elements of the weighting matrix Q_W. On the
other hand the two-step procedure increases the computational
effort since a larger number of finite Fourier transforms
has to be computed, the least squares procedure needs to be
carried out twice and in addition the covariance matrix of
the residuals has to be estimated. This increase in
computation time is not dramatic. Moreover, as the number
of Fourier transforms to be computed for the two-step
procedure increases, the use of FFT becomes progressively
advantageous.

A careful reconsideration reveals that the above
procedure for estimating the elements of A is partly based
on intuitive arguments. In fact the tacit assumption has
been made that half the sum of the squares of the measured
residuals for a particular frequency is asymptotically an
unbiased estimator of the asymptotic variance of the
corresponding true residuals. In Section 3.6 it is shown
that this is only true for those residuals which do not
correspond to frequencies of non-zero harmonics of the test
signal. Although the residuals corresponding to non-zero
harmonics form a minority among the total number of residu-

als used for the computation of Xw(m ) they give rise to a

k,
1
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certain bias in Xw(wk ). Therefore in Section 3.6 a slightly
1

modified estimator Aw,(w ) is proposed defined by

k.
2

k.J+k_,
. ) JT 1 W
Aw’(wki - 2(2kw,—kh)z ReQ{A(ank/JT)Z(k) -
k=k.J-k_,
1 w
k/J # harmonic numbers

of non-zero harmonics

-B(j2mk/JT)exp(=j2rkt/IT)V(k)}, _ 5(J)

+Im2{A(j2ﬂk/JT)Z(k) -

6 = 5§J)

-B(jank/JT)exp(=jorkt/JT)V(k)}
where kh denotes the number of non-zero harmonics of the
test signal in the frequency interval [(kiJ - kw') 2n/JT,
(kiJ + kw,)2n/JT]. Note that the only difference between
xw(wki) as defined by (1.3.9) and xw,(wki)

expression for the latter the terms corresponding to non-

is that in the

zero harmonics of the test signal are not present. Two of
the numerical examples in the next section are concerned
with the two-step least squares estimator. In both cases the

unmodified estimator Xw(wk ) has been used. The modified

estimator AW,(wk ) was developed later.

1
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1.4, Numerical examples.

In this section the estimators discussed in the
preceding sections are applied to computer generated data.

The system used in all experiments is described by

2
025 d—g(t) + 1.25 %%(t) + y(t) = u(t-1) (1.4.1) ‘\
dt

The time constants of this system are 0.25 s and 1 s
respectively. For comparison purposes the case of known
and unknown time delay will be considered separately.

The test signals used are multifrequency binary
signals (MFBS). These are periodic two-level signals which
have the major part of their power concentrated in a
relatively small number of widely spaced harmonics. Con-
struction and properties of MFBS are discussed in Chapter 2.
Two different MFBS are used in the experiments described
below. The power of both signals is chosen equal to one.
The first signal (MFBS1) has three dominant harmonics with
harmonic numbers 1, 15 and 31. The power of these harmonics ‘
is suu(i jem/T) = 0.124, Suu(i jem 15/T) = 0.134 and
Suu(i jem 31/T) = 0.118 respectively. The sum equals 75%
of the total power. The second signal (MFBS2) has five
dominant harmonics with harmonic numbers 1, T, 15, 23 and
31. The power of these harmonics is suu(i jew/T) = 0.059,
Suu(i jem T/T) = 0.090, Suu(i jem 15/T) = 0.076,
Suu(i jem 23/T) = 0.08L4 and Suu<i jem 31/T) = 0.073
respectively. The sum equals T6% of the total power.

MFBS are not to be confused with maximum length
binary sequences (MLBS). As opposed to MFBS the power of
MLBS is distributed over a large number of closely spaced
harmonics. Moreover, since the envelope of the power density
)2

spectrum of MLBS is a (sinx/x)° curve, it is more or less

flat for low frequencies. For comparison purposes an MLBS
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is used in the numerical examples described below. It
contains 63 steps in a period and its first 63 harmonics,
representing 90% of its total power are taken into

consideration. The total power is also chosen egual to one.

First experiment.

The system is described by (1.4.1). The time delay is
assumed to be known and to be equal to zero. The input
signal u(t) is MFBS1. The frequency of u(t) is 0.25 rad ¥,
The observations are

z(t) = y(t) + h(t)

The noise h\t) is generated by
a“n(t) d n(t)

+ 1.25 = + h(t) = e(t)
a2 dt

0.25

where e(t) is a zero-mean Gaussian process having power

density spectrum
. _ ,sin 0.0245 w.\2
See(Jw) k' 0.0?HS w)

S (jw) is flat within 99% over the frequency range of the

ee(
test signal. The signal-to-noise power ratio at the output
with respect to the dominant harmonics is 0.61. Hundred
independent records were generated consisting of four
periods each. From these records the system coefficients
were estimated for a record length of two and four periods
respectively. The estimator was the weighted least squares
estimator with weighting matrix 9_1 = I. The first column
of Table 1 shows the average and the standard error of the
estimates. For comparison purposes the second column shows
the asymptotic standard deviation of the minimum variance
least squares estimator in parentheses. The third column

shows in parentheses the standard deviation of the minimum

variance least squares estimator for the MLBS under the




same conditions.
Table 1

a, = 1.00 &, = 1.25 a, = 0.25

Record length: two periods
0 1.02 + 0.32 (0.29) (0.k0)

&, 1.17 #0.32 (0.32) (0.23)

52 0.228 + 0.065 (0.065) (0.066)

o)

Record length: four periods

8, 1.00 #* 0.27 (0.20) (0.29)
a, 1.22 + 0.24 (0.22) (0.17)
g, 0.241 + 0.0k1  (0.046)  (0.0kT)

Discussion of the results of the first experiment.

According to (1.2.9) the elements of A are given by
2
AMs, ) = 3 |A(s, )|“(s (s, ) +8 (s, )} +
ki ki h2h2 ki h3h3 i
2
)| s

i

(s, ).
88, Ky
(s, ) =58 (s, ) =0 and
e 5 B8y Kj
) =8 (s )/lA(s )] . Since S (s, ) = 1 over
5 ki ee ki ki ee ki

In this experiment S

S (s
h2h
the frequency range of the test signal it follows that

s, ) w-%. Thus A(:)diag (1, 1, 1, 1, 1, 1) = I. Therefore

in this particular case the weighted least squares estimator

k.
1

with weighting matrix 9-1 = I and the minimum variance least
squares estimator coincide. Table 1 shows that even for a
record length of two or four periods the standard error
agrees with the asymptotic standard deviation of the minimum
variance estimator.

The estimates of Table 1 are biased to some extent.

However, the bias is small as compared to the standard error.
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Furthermore it is observed that the bias is of first order.
First order bias is bias inversely proportional to the
observation time. First order bias may easily be removed
using a bias elimination scheme due to Quenouille. See
Kendall and Stuart (1967), page 5. Unfortunately this
scheme involves an increase of the variance to first order
and is therefore not suitable for records consisting of a
small number of periods. On the other hand the bias of
estimates obtained from records consisting of a large
number of periods is small in comparison with the standard
deviation and may therefore be neglected. Therefore
application of the Quenouille scheme is advisable only if
unbiasedness is essential and if many periods are available.
Finally, it is observed that in the case considered
here the asymptotic standard deviations of the minimum
variance least squares estimators for the MLBS and the MFBS

are of the same order of magnitude.

Second experiment.

The system is described by (1.4.1). The time delay is
assumed to be known and to be equal to zero. The input
signal u(t) is MFBS1. The frequency of u(t) is 0.125 rad.s_1.
The observations are

z(t) = y(t) + n(t)

The noise h(t) is a zero-mean Gaussian process having pover

density spectrum

. _ sin 0.0490 w,2
(Ju) = 0.036 ( 0.0590 ot

Shh .
Shh(jw) is flat within 99% over the frequency range of the
test signal. The signal-to-noise power ratio at the output
with respect to the dominant harmonics is 0.90. Hundred

independent records were generated, each consisting of

four periods. From these records the system coefficients
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were estimated for a record length of two and four periods

respectively. The estimator was the weighted least squares

estimator with weighting matrix 9_1 = I. The first column

of Table 2 shows the average and standard error of the
estimates. The second and third column show in parentheses
the asymptotic standard deviation of the minimum variance
least squares estimator for MFBS1 and the MLBS respectively

under the same conditions.
Table 2

&, = 1.00 a; = 1.25 = B
Record length: two periods

0.997 + 0.0L7 (0.038) (0.050)
1.226 + 0.131 (0.095) (0.061)

0.24L + 0.060 (0.047) (0.055)

0
1
%2
Record length: four periods
0.998 + 0.035 (0.027) (0.035)
1.237 + 0.091 (0.067) (0.043)

0.246 + 0.043 (0.033) (0.039)

Discussion of the results of the second experiment.

As compared with the standard deviation of the minimum
variance estimators, the estimates of Table 2 are less
accurate than those of Table 1. This may be explained as
follows. Recall that A is the weighting matrix of the
minimum variance estimator. In this experiment A(:)diag (1,
1, 6, 6, 32, 32). The estimates of Table 2, however, have
been computed using the least squares estimator with
weighting matrix 9—1 = I. Note that in spite of the
differences between the elements of Q and A the estimates

of Table 2 are still reasonably accurate.




Third experiment.

In this experiment the system coefficients are computed
using the two-step procedure. The system and the test signal
are the same as those of the preceding experiment. The half-
width of the spectral window kw, used in the second step,
is equal to 6. The noise h(t) is & zero-mean Gaussian

‘process having power density spectrum

o8 = sin 0.0490 w,2
8,5, (Jw) = 0.033( RER w)

Shh(jw) is flat within 99% over the frequency range of the
test signal. Fourty independent records were generated
consisting of two periods each. The first column of Table 3
shows the average and standard error of the coefficient
estimates computed in the first step. The second column
shows the corresponding quantities computed in the second
step. The third column shows in parentheses the asymptotic

standard deviation of the minimum variance least squares

estimator.
Table 3
ao = 1.00 a1 = 1.25 a, = 0.25
8, 1.00 + 0.05 & 1.00 + 0.0k (0.0k)
8, 1.21%0.12 &, 1.23%0.10 (0.09)
8, 0.25 % 0.06 &, 0.2k + 0.0k (0.05)

Discussion of the results of the third experiment.

The results of Table 3 show that the two-step procedure
reduces the standard error of the estimates. Moreover, it is
seen that in the case considered the standard error of the
two-step estimates is comparable to the asymptotic standard

deviation of the minimum variance least squares estimator.




Fourth experiment.

In this experiment both the system coefficients and the
time delay are estimated using the two-step procedure. The
system is described by (1.4.1) with © = 0.7854 s. For
comparison purposes the noise and test signal characteris-
tics are the same as those of the third experiment. The
half-width of the spectral window kw’ used in the second
step, is equal to 6. Fourty independent records were
generated consisting of two periods each. The parameters
were estimated by computing the system coefficients for
T = 0.7854 + k 0.0100, where k = 1, ..., 20, and selecting
the optimal solution. The first column of Table L shows
the average and standard error of the parameter estimates
computed in the first step. The second column shows the
corresponding quantities computed in the second step.
Finally, the third column shows in parentheses the
asymptotic standard deviation of the minimum variance least

squares estimator.

Table 4
a, = 1.00 a, = 1.25 a, = 0.25 1 = 0.785k
8, 1.00#0.05 & 1.00#0.0b  (0.04)
& 1.20+0.10 & 1.20*0.10  (0.09)
8, 0.20 + 0.16 &, 0.23+0.12 (0.13)
Ty 0.83+0.11 %, 0.81+0.10 (0.10)

Discussion of the results of the fourth experiment.

Again it is concluded that the two-step procedure
improves the accuracy of the estimates and that the standard
error of the two-step estimates is comparable with the
asymptotic standard deviation of the minimum variance least

squares estimator.
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Finally, comparing the results of Table 3 and Table k
it is important to note that the simultaneous estimation of
the time delay causes a substantial increase of the standard
error of the estimate of ase

Fifth experiment.

This experiment is an example of estimation in closed

loop. The system is described by

2
0.25 d—%(ﬂ + 1.25 %E(t) + y(t) = u(t - 0.982)
dt

The system is controlled by a three-term controller
2 2
d” u(t) , 45,1 Lult), 1.185 £E(8) 30.5 %%(t) &

dt2 = dt

+ 11.1 £(t)
where f(t) and u(t) are the input and output of the control-
ler respectively. The controller input is

f(t) = s(t) - z(t)
where s(t) is the set point signal and z(t) is the measured
system output defined by

z(t) = y(t) + h(t)
The disturbance h(t) is generated by

d n(t)

e + h(t) = e(t)

where e(t) is a zero-mean Gaussian process having power

density spectrum

sin 0.0245 w)2

Seeldw) = 0.0L9 ( 0.0245 w

See(jm) is flat within 99% over the frequency range of the

test signal. The set point signal s(t) is BMFS2. The
frequency of s(t) is 0.25 rad 5_1.

Seventeen independent records were generated consisting

of four periods each. The columns of Table 5 show the




average and the standard error for a record length of two
and a record length of four periods respectively. The

estimates were computed using the weighted least squares

estimator with weighting matrix @ = I.
Table 5
&y = 1.0 &y = 1.25 a, = 0.25 T = 0.982

Record length: two periods Record length:four periods

&, 1.00 + 0.07 0.99 + 0.06
&, 1.30 + 0.1k 1.27 + 0.07
8, 0.23 + 0.02 0.24 + 0.01
T 0.99 + 0.02 0.99 + 0.01

Discussion of the results of the fifth experiment.

The results of Table 5 indicate that for increasing
sample size the estimates converge to the actual values

of the corresponding parameters. However, in view of the

small sample size no far-reaching conclusions may be drawn.

The estimates do not exhibit serious systematic deviations

from the true values of the parameters.
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1.5. Concluding remarks.

In the numerical examples of Section 1.4 the asymptotic
standard deviation of the minimum variance least squares
estimator has been adopted as a measure of accuracy of the
estimates. In order to investigate as to in how far this is
a sensible measure, it has to be compared with the minimum
variance bound on the covariance of the estimator. In
Section 3.5 1t 1s shown that for Gaussian noise this bound
is easily computed and coincides with the asymptotic
covariance matrix of the minimum variance least squares
estimator.

Other important problems not considered in Chapter 1
are the influence of the spectrum of the test signal on the
accuracy of the estimator and the construction of test
signals with specified spectral properties. These problems

are discussed in Chapter 2.
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CHAPTER 2

Selection and synthesis of periodic test signals.

The covariance matrix of the weighted least squares
estimator of the system parameters proposed in this
research was discussed in the previous chapter. The elements
of this covariance matrix are functions of the weighting
factors, the system parameters, the spectrum of the noise
and the spectrum of the test signal. So for known system and
noise characteristics the covariance matrix can be
manipulated by selection of the test signal. The question
then arises which test signal spectrum gives the most
accurate estimates. Here the measure of error in estimation
is taken as the weighted sum of the variances of the mini-
mum variance least squares estimator. The particular
spectrum and the corresponding test signals which minimize
this measure are optimal in the defined sense. The
particular choice of covariance matrix is motivated by the
fact that it forms a lower bound for the covariance matrix
of the weighted least squares estimator. Moreover, it is
shown in Chapter 3 that this lower bound coincides with the
minimum variance bound if the noise in the observations at
the output obeys the normal distribution. Section 2.1 de-
scribes the functional relationship between the measure of
estimation error and the spectrum of the test signal. This
section also discusses the numerical procedure for the
minimization of the measure. Section 2.2 computes
numerically a number of optimal spectra and compares the
corresponding covariance matrices with those for a
maximum length binary sequence as well as for a particular
multifrequency binary signal for the same system and noise.

The second part of this chapter is devoted to a search

procedure for approximate synthesis of discrete interval

53




binary multifrequency signals having specified spectra.
Binary multifrequency signals are periodic two-level signals
that have the major part of their power concentrated in a
limited number of relatively widely spaced harmonics. The
numerical synthesis procedure is described in Section 2.3.
In Section 2.4 examples of signals computed using this pro-

cedure are given.
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2.1 Computation of optimal test signal spectra.

According to (1.2.12) the asymptotic covariance matrix
s ; . J) .
me of the minimum variance least squares estimator 3( ) 1s

dggcribed by

. =—J—1§ (8127 '8)™" (2.1.1)
606
where J is the number of periods taken into consideration,
T is the period of the periodic test signal u(t), while ¢
is defined by (1.2.6) and (1.2.7) and A is defined by
(1.2.8) and (1.2.9).
Now consider the particular case that u(t) is known.

Let the observations at the output be
z(t) = y(t) + h(t)

where y(t) is the response to u(t) and where h(t) is a
stationary stochastic process having power spectrum Shh<jm)'

. . § 2 .
Define Suu(ka) = lykul where v, is the complex Fourier
coefficient of the kth harmonic of u(t). Furthermore denote
by Hs(jw) the transfer function of the system and let

Hg(Juw) = Blw)

= 1050) exp(-Jwt)

Then it is shown in Section (3.4) that (2.1.1) may be

written
g o=x (2.1.2)
nny ==
66
where
© 8 (jw )
_ uu k : 2 ; Iy
Xoq " JT ké_m W lHS(ka)[ Re{Hp(ka)Hq(ka)}
k#0

(2.1.3)
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where

H. (ju) = 5 — =1, vu., N+1 (2.1.4)

B, (o) = - W) 7 i=N+2, ..., N#M#1  (2.1.5)

and

Hi(jw) = Jw i = N+M+2 (2:1:6)

where w, = 2nk/T

It follows from (2.1.3) - (2.1.6) that for known
system and noise characteristics the elements of X are known

linear functions of the S (jw ), k =+ 1, + 2, ... So the

uu “ k

elements of X and therefore those of I = can be manipulated
60

by selection of the Suu(jwk). Consegquently, if some function

of the elements of L Nis taken as a measure of the error in
6
estimation of the parameters, this measure can in principle

be minimized with respect to the Suu(jwk).

Several measures of the error in multivariate estima-
tion are known from the literature. A wellknown measure is
the trace of the covariance matrix of the estimator
involved. The determinant of the covariance matrix is also
used. For a discussion of these measures and several others
see Fedorov and Pazman (1968). Here the measure is taken as
the weighted sum of the diagonal elements of the covariance
matrix. This choice 1s motivated by the fact that it enables
one to weight the various diagonal elements according to a
desired accuracy. Furthermore, it is observed that in
practice input power or output power is always restricted.

The power constraint chosen in this research has the
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following form

xk suu(ka) = ] (2.1.7)
k=wcx
where Ak > 0. Note that this is an input power constraint if
A, = 1 for all k. Alternatively it is an output power

k
L ~ .
constraint if A = lHS(ka)]

Summarizing, the problem considered in this section 1s
to minimize the weighted sum of the diagonal elements of

ZEB with respect to Suu(jwk), k=+1,+2, ..., subject to
)

the constraint (2.1.7). The particular spectrum §uu(jwk

which corresponds to the minimum is defined as optimal.
Test signals corresponding to the optimal spectrum will be
referred to as optimal test signals.

It is observed that the weighted sum of the diagonal

elements of £  is nonlinear in the S (jw, ). As a result
ny uu

66
even in simple cases closed form expressions for the ootimal

k

spectrum are difficult to obtain. The computation of ine

gradient of the sum with respect to Suu(jw is, however,

»
relatively simple as 1s shown below. This offers the
opportunity to apply powerful numerical optimization

techniques.

Numerical computation of optimal spectra.

The weighted sum of the diagonal elements of I is

L

described by

N+M+2
D= ] 0
1=1

where Oij denotes the ij element of Z . Now the problem is
60
to minimize D subject to the constraint (2.1.7) and the

constraint




S )20 k=+1,+2, ... (2.1.8)

uu(ka -

First the constraints (2.1.7) and (2.1.8) are both

removed by substituting

yz
. B k
Suu(ka) = E ; (2.1.9)
AsY
P
L#0

and minimizing D with respect to y = (...,y_k,..,y_1,y1,
...,yk,...)'. The remainder of this section will be devoted
to the derivation of a closed form expression for the
gradient of D with respect to y. Once this expression has
been obtained the application of numerical gradient
techniques like the steepest descent method or the conjugate
gradient method is straightforward.

First it is observed that in view of (2.1.9)

3D _y__2D 350y )
W,  § aSuu(JwQ) 3y
2y
K 3D 3D
= - -2
2 (BS (jJuw, ) 'k 2 . Suu(le))
) Agyz u'v'"k % uu(le)
’ (2.1.10)
Furthermore, since I = x~!
66

] N+M+2

b= iz1 u; det X, (2.1.11)

where XpG is the matrix obtained by eliminating the pth row

and gth column from X. It follows from (2.1.11) that

58




oD _ _ _ 1 ddetX % 3

aSuu(ka) detX asuu(ka)

N+M+2 odetX. .
1 17

g H, (2.1.12)
detX . i BSuu(ka)

The derivatives in this expression may be written

ddetX N+M+2 N+M+2 — 9x o
ER T (=17 det¥y, 55 _Cha
uu 9% p=1 g=1 Pd 9Suutd%
(2.1.13)
and
odetX. . M+N+1 M+N+1 0X. .
—_— (-1)™™ getx, . —L1i,Mn
asuu(ka) m=1 n=1 11,0 asuu(ka)

(2.1.14)
where X - is the matrix obtained by eliminating the mth

row and nth column from X  while x is the mn element
oo » N

of X . Note that the elements x are a subset of the

ra q,mn
elements x

Now in order to obtain the gradient of D with respect
to y at some point yo the procedure is as follows. First the
values of Suu(jwk) are computed for y° using (2.1.9). Then
the elements of X are computed according to (2.1.3)-(2.1.6).
Subsequent inversion of X using the Gauss elimination method

. ag . .
ylelds detX and the cofactors (—1)p qdetXpP. The derivatives
3% =

———%ﬁ——— also follow from {(2.1.3)-(2.1.6). Furthermore
0S. (Juw, )
uu k 9x

since the X,q 8Te linear in the Suu(ka), the 9Suu(jwk are

independent of Suu(jwk) and need to be computed only
once. Now using (2.1.13) the first term of (2.1.12) is

calculated. The second term of (2.1.12) is evaluated
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using (2.1.14). Inversion of the X yields the

3
+q . . *ii,mn
cofactors (—1) *detX. . . The derivatives —————4———-are
il,mn 38 ( )

9% s
ot Then using
(Jw, )

known since these are a subset of the 53
“u
etX

{2.1.14) the derivatives and hence the second

term can be computed. This completes the computation of the

gradient of D with respect to the Suu(jw )« Finally, using

k
(2.1.10) the gradient of D with respect to y is obtained.
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2.2 Numerical examples.

ay(t) |
dt2

+a1§%%£l + aoy(t) = u(t-t) where the values of the

parameters are a

The system considered is described by a,

o = 8425, a, = 1.25, a, = 1 and T 1s

arbitrary. The observations at the output are

z(t) = y(t) + n(t)
where y(t) is the steady state reponse to the periodic test
signal u(t) and h(t) is a stationary stochastic process
having power spectral density

Sypldw) = 8,

where SO is a constant. In what follows it is assumed that
the observation time is an integral number of periods The
power of all inputs is equal to one. Furthermore all weights
in the measure of the estimation error are equal. So the
measure is the trace of the covariance matrix Zgg.

Since u(t) is periodic, time delay can only be
estimated modulo the period of the fundamental. Therefore
it is adsumed that the time delay consists of the sum of a
known integral multiple of the period of the fundamental and
an unknown fraction of this period. Ambiguity in the inter-
pretation of the estimates of this fraction may still arise
if their standard deviation is comparable to the period of
the fundamental. Therefore it is assumed that the standard
deviation of the time delay estimates is small compared to
the period of the fundamental Asymptotically this condition
is always met.

In order to investigate the effect of estimation of
time delay upon the variance of the estimator of the

coefficients all computations were carried out both for
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Figure 2.1.(a)
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The trace of the asymptotic covariance matrix
of the minimum variance least squares estimator as a function
of fundamental frequency for unknown time delay; (b) The
optimal spectrum, the spectrum of the maximum length binary
sequence, the spectrum of the multifrequency binary signal
for a fundamental frequency of 0.5 rad s=1 and the square of
the modulus of the system transfer function.




unknown and for known time delay. First the minimum values

of the trace of wa and the corresponding input spectra are
86
determined for a number of fundamental frequencies of the

input. For the same set of frequencies the trace of I is

computed for a maximum length binary sequence (MLBS)and the
multifrequency binary signal MFBS1 described in Section 1.h4.
The MLBS considered here has 63 steps in a period and only
its first 63 harmonics, representing nearly 90% of its total
power, are taken into consideration. The computations for
the MFBS are based on its dominant harmeonics only.

Figure 2.1 shows the results for joint estimation of
coefficients and time delay. In figure 2.1(a) the trace of

DR normalized with respect to observation time Tobs and
66

intensity of the noise, is plotted as a function of funda-
mental frequency. In what follows fundamental frequency will
be denoted by m1.Figure 2.1(b) shows respectively the optimal
spectrum, the spectrum of the MLBS, the spectrum of the
MFBS for w1 = 0.5 rad 5—1 and the square of the modulus of
the system transfer function. The corner frequencies of the
system are indicated by wc1 and wce. Note that the

bandwidth of the system and that of the optimal spectrum

are approximately equal. Also note that the optimal

test signal has four harmonics only. These are the funda-
mental, the second, the seventh and the eighth harmonic.
With respect to the MLBS and the MFBS it follows from

Figure 2.1(a) that these signals give results comparable to
the optimum only for fundamental frequencies of about 0.2
rad 5_1. As an illustration the standard deviations of the

minimum variance least squares estimator with the optimal

input, the MLBS and the MFBS respectively are given in
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Figure 2.2.(a) The trace of the asymptotic covariance matrix
of the minimum variance least sguares estimator as a function
of fundemental frequency for known time delay; (b) The opti-
mal spectrum, the spectrum of the maximum-length binary se-
quence, the spectrum of the multifrequency binary signal for
a fundamental frequency of 0.5 rad s—! and the square of the
modulus of the system transfer function.
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0.125 rad s-1 and for w1 = 0.5 rad 5-1.

0.5 rad o fbe Getiabions with the MLBS

Table 2.1 for w1

Note that for w1

and MFBS from the optimum are quite serious.

Table 2.1

obs
S
o)

w, = 0.125 rad g

o)

PARAMETER OPTIMAL MLBS MFBS
a_ 2.50 2.75 2.0k
a, 3.88 3.71 5.12
a, k.50 Sl 7. hb
T 2.93 L1k 5.60

w, = 0.5 rad g

PARAMETER OPTIMAL MLBS MFBS
a 2.43 6.45 3.35
a, 3.96 6.25 6.20
2, 4.51 5.64 10.08
T 2.93 344 .17

Figure 2.2 and Table 2.2 representing the case of known
time delay show corresponding results for Joint estimation
of the coefficients. Once more it i1s observed that MLBS and
MFBS yield results comparable to the optimum only in a
limited frequency range. Again the optimal spectrum, the
spectrum of the MLBS, the spectrum of the MFBS and the

square of the modulus of the system transfer function are

shown for w1 = 0.5 rad 5-1. Note that the bandwidth of the

optimal spectrum is less than the system bandwidth.




Table 2.2

Tobs

S

(e}

w, = 0.0625 rad ul

PARAMETER OPTIMAL MLBS MFBS
&, 1.89 2.0k 1.92
a, 2T 2.84 3.40
a, 2.26 270 2.82
w, = 0.5 rad et
PARAMETER OPTIMAL MLBS MFBS
a, 2.06 6.45 3.35
a, 2,75 6.25 5.08
2, 2.43 3.64 8.83

Comparing the results of Table 2.1 with those of
Table 2.2 it is clear that the estimation of time delay
causes an increase of the variance of some of the estimators
of the remaining parameters. In particular this applies to
the estimator of a.. This is equivalent to the observation

2

that the estimator of a, and that of T are strongly

covariant. For example,gfor wy = 0.125 rad s the
correlation coefficient of these estimators is as high as
-0.81, =0.94 and -0.91 for respectively the optimal signal,
the MFBS and the MLBS. This means that overestimation of =
usually yields underestimation of &, and vice versa. Although
this may not be surprising it may easily give rise to an in-

correct interpretation of the measurement results.




Concluding remarks

A practical conclusion to be drawn from the numerical

examples is that in order to find an appropriate fundamental

frequency it seems worthwile to carry out a priori
computations of the minimum variance bound for a number of
different fundamental frequencies of the input. These

computations may be based on a priori knowledge about the

system and noise obtained from mathematico-physical analysis

or from previous experiments. In addition to information
about the appropriate fundamental fr--uency such
computations also provide information about possibly strong

covariances between the estimators of the parameters.
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2.3 Approximate synthesis of periodic binary signals having

specified power spectra.

This section i1s concerned with the synthesis of
discrete interval, binary multifrequency signals. These are
discrete interval, two-level signals which have the major
part of their power concentrated in a limited number of
relatively widely spaced, selected harmonics. Since the
signals are binary and discrete time they can be generated
using simple digital circuitry and can easily be
synchronized. A further advantage of these signals is that
their peak factor, computed relative to the rms value of the
selected harmonics, is relatively low as compared with that
of signals obtained by adding a number of appropriate
sinusoidal signals. The peak factor is defined as the ratio
of the peak value to the rms value. The peak factor of a
test signal should preferably be small since the range of
linearity of the input transducer is usually limited.

Jensen (1959) constructed binary multifrequency signals
by clipping the sum of a number of selected harmonics of
appropriate amplitudes. It can be shown that this procedure
maximizes the weighted sum of the Fourier coefficients of
the resulting clipped signal, where the weighting factors
are the corresponding Fourier coefficients of the original
signal. See Van den Bos (1967). A disadvantage of this
clipping procedure is that is not clear how the phases of
the harmonics of the original signal should be chosen in
order to obtain a clipped signal having the minimal peak
factor relative to the selected harmonics. This difficulty
is avoided by constructing binary signals which optimize a
function of the power of the selected harmonics instead of a

function of their Fourier coefficients. The remainder of

this section discusses such a procedure.




In what follows the amplitude values of the discrete
interval periodic binary signal u(t) are +1 and -1. So the

power is equal to one. The number of steps in a period 1is

I, The period is denoted by T. Zero crossings only occur at

t = iT/IS where 1 = 0y ..., IS-T. The value of u(t) on

iT/Is <t < (i+1)1‘/1S is denoted by u(i). Now let

S(jw+k ) (— S(jw+k ) denote the specified values cf the
—1 -L
power of the harmonics i_k1, s i_kL respectively and let
L
S(jwk ) = 1. The criterion to be minimized with respect
=T 2
2#0
to u(i), i=0, ..., I~ is taken as
L
. 2.2
Y {S(ka e |yk |} (2.3.1)
==L 2 2
L#0
Since the u(i) can only assume the values +1 and -1 and

since (2.3.1) is nonlinear in the u(i), the minimization of

(2.3.1) is a zero one integer nonlinear programming problem.

Is is clear that minimization of (2.3.1) via explicit
enumeration of all possible combinations of values of the
IS variables u(i) is unattractive since for the signals
considered here IS is 64 or more. More efficient general
procedures for the solution of zero one integer nonlinear
programming are described in the literature. Plane and
McMillan (1971) first reformulate the unconstrained
nonlinear problem into a linear one by introducing a number
of constraints and new variables and then compute the
solution by a standard implicit enumeration algorithm. See
Plane and McMillan (1971), Chapters 3 and 5. The main
disadvantage of the method is that the size of the problem
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grows considerably. Using this method the problem at hand

is transformed from an unconstrained nonlinear problem
having IS variables into a linear one having a numbei of
constraints and a number of variables of the order IS.
Section 10.3 of Garfinkel and Nemhauser (1972) describes a
method for solution of unconstrained zero one integer
nonlinear programming problems. It can be shown that for the
particular problem considered this method hardly reduces

the computational effort as compared with explicit

enumeration of all possible combinations of values.

Since no more suitable algorithm for minimization of
(2.3.1) was known to the author, a computationally simple,
heuristic procedure was developed. This procedure is
extensively described in Van den Bos (1967) and may be
summarized as follows. First an initial configuration is
generated by assigning at random the value +1 or -1 to each
u(i). This is done for each u(i) independently. Next the
Fourier ccefficients and the corresponding criterion are
computed. Now, using a uniform random number generator a
number between 0 and IS—1 is produced. Let this number be
io. Then u(io) is converted into —u(io) and next the Fourier
coefficients and the corresponding criterion are computed
for this new configuration. If the inversion of u(io) is an
improvement in the sense of the criterion it is maintained,
if not the original situation is restored. Next the same
computations are carried out for u(io+1) and so on up to
u(iO+IS—1)where the argument should be taken modulo IS. Now
using the uniform random number generator a new starting

point i, is generated and a second run is made. This process

1
is continued until a complete run without further
improvement occurs. This procedure does not necessarily

yield the optimal solution, but by repeating it the
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probability of finding the optimal solution or a suffiently
good suboptimal solution, greatly increases. Therefore the
procedure is repeated a number of times and the best

solution 1s selected.

A number of signals computed using this procedure is

given in the next section.
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2.4 Numerical examples

In all numerical examples described in this section the
specified values of the power of the L selected harmon

e ) = 0.5/L where & = +1, ...,
)

the signals is illustrated by the following examples. A

are S(Juw +L. The notation of

signal that is +1 on two consecutive intervals and -1 on

: . + - . N . .
the next five 1s denoted 2 5 . The efficiency of a signal 1s
defined as the ratio of the power concentrated in the

selected harmonics to the total power.

Signal 1
= 512, L=6 . k=1, k=2, k3=u, kh=8, x5=16 and k =32.

The signal is symmetric about t=C
The efficiency is 0.702. For 0 < t < T/2 the signal is

described by 237579 37 hs5 o575 0773 07T 11 3o oL 12

Selected harmonics o 8
k k
2 2
1 +0.241 -
2 +0.239 -
Y -0.251 -
8 +0.239 .
16 -0.241 -
32 +0.247 _
Signal 2
I, = 6L, L=2 . k,=1 and k,=6. The signal is symmetric about

t=0. The efficiency is 0.645. For 0 < t < T/2 the signal is

+ - +‘_1 +
described by 9 L'5 827 4

Selected harmonics o B,
2 R

1 -0.398 -

6 +0.L0¢ &=
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Signal 3
L= 512 he % k; =1, X, 3
is skew symmetric about t = 0 and symmetric about T/L. The

= 15 and k., = 31. The signal

efficiency is 0.751. For 0 < t < T/4 the signal is described
o=, = -+ -+
by 114 81025 726 727 3.

Selected harmonics oy Bk
2 2
1 - -0.352
15 - -0.366
31 - -0.343
Signal L
I =256. L=5.k =1,k =7, ky=15 k =23and
k5 = 31,

The signal is skew symmetric about t = 0 and symmetric

about T/4. The efficiency is 0.760. For O < t < T/k the
PO e

signal is described by 5—12+h 16 6+h—19+h_3+.

Selected harmonics oy Bk
L 3
1 - +0.243
T - +0.299
15 - -0.276
53 - -0.289
31 - -0.270
Signal 5
I, =25. L=5.k, =2, k, =8, ky=16, k), =2} and
k5 = 32,

The signal is symmetric about t = 0 and about T/L4. The
efficiency is 0.697. For 0 < t < T/4 the signal is
described by 27573 117574 572 778 127,
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jo~)

Selected harmonics a

k, k,
2 0.246 -
8 0.29k =
16 0.263 -
2l 0.269 -
32 -0.272 ~

Concluding remarks

In the above numerical examples only signals having
special symmetry properties have been computed. These
symmetry properties result in considerable savings in
computation time. For example, for the signals 1 and 2 the
search procedure needs to be carried out for the first half
of the period only. In the case of the signals 3, 4 and 5
only the first quarter of the period needs to be taken into
consideration. On the other hand the introduction of
symmetry properties restricts the class of possible phases
of the selected harmonics considerably. This implies that
possibly a number of signals which are better in the sense
of the criterion is precluded.

Since the signals are binary, their peak factor
relative to the rms value of the selected harmonics is
equal to the square root of the reciprocal of the
efficiency. For example, the peak factor of signal 2 is
1.24. Now for comparison purposes consider the signal
cos(2m/T) + cos(2m6/T +¢). The peak factor of this signal
can be minimized by adjusting the phase angle ¢. The
minimum value is 1.97. So in spite of the fact that signal
2 has only 64.5% of its power concentrated in the selected
harmonics, its peak factor, computed relative to the rms

factor of the selected harmonics, is relatively small.
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Finally observe that signal 4 contains only odd
harmonics. Signal 5, however, is composed of even harmonics
only. So these signals have no common harmonics and are
therefore suitable for application to systems having more

than one input.
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CHAPTER 3

Proofs and mathematical details

This chapter contains proofs and mathematical details
of some results discussed in the previous chapters.

The estimator of the system parameters proposed in
Chapter 1 is a function of the estimator of the Fourier
coefficients of input and output. The estimator of the
Fourier coefficients is taken as the least squares estimator.
This choice is motivated by the fact that this estimator
requires little a priori knowledge about the noise. Detailed
a priori knowledge about the noise required for more
sophisticated estimators is usually not available. Moreover,
the least squares estimator is computationally convenient.
Section 3.1 discusses this estimator and establishes suffi-
cient conditions for its consistency.

The results of Section 3.1 are used in Section 3.2
where the expression for the least squares estimator of the
system parameters is derived. This section also discusses
the conditions for the consistency of the estimator of the
system parameters.

Since the estimator of the system parameters is a
differentiable function of the estimator of the Fourier
coefficients, its asymptotic covariance matrix can be com-
puted from the asymptotic covariance matrix of the Fourier
coefficients using a theorem due to Goldberger. For that
purpose first the asymptotic covariance matrix of the

estimator of the Fourier coefficients is computed in Section

3.3. Then using the results of Section 3.3, Section 3.k

derives the expression for the asymptotic covariance of the
estimator of the system parameters. Section 3.4 also com-
putes the asymptotic covariance matrix of the residuals.

Section 3.5 computes the minimum variance bound for the




estimation of the system parameters. This section also
shows that the minimum variance least squares estimator
discussed in Section 1.2 achieves the minimum variance
bound asymptotically if the noise in the observations at
the output is normally distributed.

Finally, in Section 3.6 the asymptotic expectation
of the estimator of the weighting matrix used in the two-
step least squares procedure is computed. It turns out that
this estimator, which was selected on intuitive grounds, is
slightly biased. It is shown that by a minor modification

of the estimator the bias is easily removed.
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3.1. Least squares estimation of Fourier coefficients

This section discusses the least squares estimation of
the Fourier coefficients of a periodic function disturbed
by additive noise. Sufficient conditions for the consistency
of this estimator are given.

Let f(t) be periodic with period T. Define the complex
Fourier coefficient of the kth harmonic of f(t) by

Y 17

s B é’ f(t)exp(-j2rkt/T)dt
and denote
Yee = %s T Ifgs
= £(t) + n(t)
be observed, where n(t) is a stationary stochastic process
having an autocovariance function Rnn(t1)' Furthermore let

w(t) be observed for 0 € t < JT where J is an integer. The
(J)

least squares estimator ka

of Vg is that value of YVier

which minimizes

JT ® 5
/. {w(t) - Z Tsp exp(jemit/T)} dt
o

1 ==

JT

1 s
Tr ™ 3 5[ w(t)exp(-jankt /T)dt

or, equivalently

JT

5(J) w(t)cos 2rkt/T dt (3.1.3)

Ser T JT
(o]

JT
= Eo w(t)sin 2rkt/T dt (3.1.4)

estimators (3.1.2)- (3.1.4) are unbiased since




JT
) o p ] ,
R e o/'W(t)exp(-Jznkt/T)dt

&3]
s
b~
H o

4l

Ew(t)exp(=jorkt/T)dt
(£(t) + u )exp(=jorkt/T)dt

f£(t)exp(=jorkt/T)dt = Yy r

4 Al
O““g o,\\‘E Ok\‘ﬁ

where u = En(t).

In order to investigate the consistency of ?ﬁg) first

(7)

K The variance of this

consider the random variasble VJT &

random variable is

£(J) T) 2 (T 2
E(VaT & e = EVJT AN )S = E JT(akf - akf)
1 i 2
= 35 E( d/ n(t)cos 2mkt/T dt)
1 JT JT
= = o_[ at, d/ dt, R (t, = t,)cos 2nkt, /T cos 2mkt,/T
1 JT JT-t
oF O_[ at R (t) O/'dt1 cos 2mkt, /T cos 2k(t, + t)/T+
o JT
L f
+ = at R__(t) ,/ dt, cos 2mkt,/T cos 2mk(t, + t)/T
JT _JT nn It 1 1 1

JT
= é’ SR (6)(1 = [t]/9T)cos 2mkt/T at +

’ JT
= 8mkdJ ;4; R ,(t) sin ok [t |/T at (34145)

Now assume that Rnn(t) is absolutely integrable. This implies

that

‘C R (£)] &t < = (3.1.6)




JT
SR (6)(1 = |t]/90)cos 2mkt/T at

JT
< f [Rnn(t)(1 - |t]/JT)cos 2mkt/T|dt
-JT

oo

< [ IR, (6)] at <= (3.1.7)

and

<_Z!Rnn(t)|dt < w® (3.1.8)
It then follows from (3.1.5), (3.1.7) and (3.1.8) that

(d) 2
B JT(8,5" - opp)” <

and hence
. () 2 _
1lim E(onkf - akf) =0
J =00

It is concluded that al(cg)

A(J)
Wep Consequently a p

converges in the mean square to

converges in probability to o pe

Therefore the condition that Rnn(t) is absolutely integrable

(J)
kf

is a sufficient condition for the consistency of & '.'. If in

addition it is assumed that
(o)

[t R (t)] at <«

—CO




it follows from (3.1.5) that

1in & (15T a7 -5 vaT 509))2
P kf kf

(=]

=1 - :
=% {Rnn(t) cos 2nkt/T at = 5 S (jemk/T) (3.1.10)

1
2
where Snn(jw) denotes the power density spectrum of n(t).

In the same way it can be shown that (3.1.6) is a sufficient

8(9) and thet if both

condition for the consistency of ka

(3.1.6) and (3+1.9) are met

Lin 2 (VAT 820 - & VAT 3{0)2 =

J-0

(JEﬂk/T) (3.1.11)

(J)
kf
is a sufficient condition. The following example shows

1ls
2

The condition (3.1.6) for the consistency of & and

~(J)
ka
that it 1s not a necessary condition. For example, consider

the case that n(t) is a periodic process. A periodic process
is a process having a periodic autocovariance function. See
Van Trees (1968), page 209. An example of a periodic auto=-
covariance function is

Rnn(t) = cos(2mt/T") (3.1.12)

where T' denotes the period. Clearly this autocovariance
function is not absolutely integrable. Substituting (3.1.12)
in (3.1.5) yields

(VAT 80 - & 16T 3(2)2

—;- /cos (2mt/T')(1 = |t|/JT) cos 2mkt/T dt
-JT
. Jr
- 5T J{ cos (2mt/T') sin 2mk|t|/T at
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g% [sin{n(k/T + 1/T'")JT}/{mk/T + 1/T')JT}]2+

+ Qg [sin{m(k/T - 1/T")JT}/{n(k/T - 1/T’)JT}]2

JT
8mkJ d/ sin {2n(k/T + 1/T')t}dt

1 JT
- /’sin {on(k/T - 1/7'")t}dt
(o]
Hence
o for 1/T' = k/T
1m (Vﬁaf{f,) - E Vﬁag))e y|
T+ lo for 1/1" # x/T

So in spite of the fact that the autocovariance function

of the periodic process n(t) is not absolutely integrable,

atd)

a p' converges in the mean square to % p provided that the

frequency 271k/T does not coincide with the frequency
2n/T' of the process n(t). Correspondingly,

w for 1/T' = k/T
lim (V3T é(g) -EVIT Eég))g =[

Bt k 0 for 1/T' # k/T




3.2+ The estimator of the system parameters and its

consistency

In this section first the expression for the least

squares estimator of the system parameters is derived. The
conditions for its consistency are derived next.

According to Section 1.1 the least squares estimator

(J)

¢ is that solution for c¢ which minimizes
37 - 8Py g (390, L 39 (3.2.1)

The gradient of (3.2.1) with respect to c is

g_c 3T 2 3y gt 3, 309y

= o5 (Dgm1 (3 L o5 (D)1 5(9) (3.2.2)
So E(J) must satisfy

3r(3g=1 3(D)e(3) _ 5491 30 _ g (3.2.3)
and hence

() o (3 D=1 5(3)y=1 5, (3)g=1 3(I) (3.2.4)
shiare £t 48 aasaued whes POV BWI 1o ponstngniar. o

order to investigate the validity of this assumption first

the rank of the matrix P is determined.

The rank of P

The rank of a matrix is defined as the number of vectors
in the largest linearly independent set of vectors which can
be constructed from the columns of that matrix. The matrix
P is 2L x (N+M+1). Now assume that 2L > N+M+1. This implies
that the number of system coefficients is supposed to be
smaller than or equal to twice the number of harmonics
taken into consideration. So r(P) < N++1, where r(P) denotes

the rank of P. The matrix P is defined by (1.1.6) and (1.1.7).
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From these equations it follows that the columns of P are
linearly dependent if there exists a set of scalars Hos soes

Hye vo, seesy Yy 13 not all of which are zero, such that

N " M=1 o

Y u_ Res, ¥ -) Vv Res, ¥ =0 (3.2.5)
n=on kl kzy i m kQ klu

and
N % I\il-T "
Yu, Ims ¥y - v Ims, ¥ =0 (3.2.6)
n
n=0 ky BV peo B By B

for # = 1, vss, L. The real equations (3.2.5) and (3.2.6)

are equivalent to the complex equation

- E(SkZ)Yk u=0 (3.2.7)

D(sk ) g

Y
y EeY
where
N
= + s B
D(s) My * HgS ¥ S
and

M=1

E(s) = Vo * VeS8 + ees + V) s

1 M=1

for 4 = 1, «.oy L. Substituting v, " B(sk )/A(sk ) for
% ) 2

Ykgy in (3.2.7) yields
{D(s, ) B(s, ) = E(s, ) A(s. )}v =0 (3:2:8)
kg k2 kk kZ kgu
since A(s, ) # 0 for % =1, «uue, L. Now let ¥y # 0 for
k2 klu

2 =1, «es, L Then it follows from (3.2.8) that the columns
of P are linearly dependent if a set of scalars Hos oo
Hyps Voo *00s Vg can be found such that

Re{D(s, ) B(s, ) - E(s_ ) A(s, )} =0 {3.2,9)

kl k2 k2 k2

and
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Im{D(s, ) B(s, ) - E(s, ) A(s, )} =0 (3.2.10)
kQ kl k2 kz
for £ = 1y «ssy L. Now suppose that such a set of scalars
exists. Taking into account that S, = jwk it then follows
L 9

from (3.2+9) and (3.2.10) that

(3.2411)

W= W, oy W oy ssey W
kit oky Ey
satisfy
Re{D(jw) B(jw) = E(jw) A(Juw)} =0 (3.2.12)
and
Im{D(jw) B(jw) - E(jw) A(jw)} =0 (3.2.13)

The left-hand members of (3.2.12) and (3.2.13) are even

and odd polynomials in w respectively. Consequently

W = -y y = W y seey = W
k1 k2 kL

must also satisfy (3.2.12) and (3.2.13). So both (3.2.12)

and (3.2.13) have at least 2L roots. According to the

definition of the polynomials A(Jjw), B(jw), D(jw) and

E(jw) neither the degree of (3.2.12) nor that of (3.2.13)

can exceed N+1. Hence neither the number of roots of (3.2.12)

nor that of (3.2.13) can exceed N+M. So if the set of scalars

exists the inequality N+M > 2L holds. Since by assumption,

however, 2L » N+M+1 > N+M it is concluded that the required

set of scalars does not exist. Hence the columns of P are

linearly independent and r(P) = NHI+1 if N+M+1 < 2L.
Returning to (3.2.4) consider the matrix p1o”'p, Let

2L > N+M+1 and let Yy u # 0 for =1, «e.y, L. Then P is a
2

2L x (N4M+1) matrix having rank r(P) = N4#M+1. By definition
9-1 is a 2L x 2L positive definite matrix. Then P'Q_1P is

positive definite and therefore nonsingular. See Goldberger
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(1964), page 35. Consequently (1:"0_1}")-1 exists and there-

fore generally (§'(J)Q-1 §(J))-1 exists. Then the elements

of

(3) _ (310351 5(3)y1

g\ = (pr\pT P -1 gl

p1(9)g=1 3

P

are continuous functions of the estimators of the Fourier
£J>’ E(J) 5(9) o g(J)
3 ) 3 kyy

coefficients Q a k u %k y
Slutsky states that the probability limit of a continuous

» A theorem due to

function is the function of the probability limits of the
arguments. See Wilks (1962), page 102. Now assume that the
estimators of the Fourier coefficients are consistent. If
then follows from Slutsky's theorem that

A(J) =1 5(3)y=1 5,(3) =1 2

p lim &9/ = p 1lim (31T g=1 3(9)y=1 5,(3) =1 3(9)

1 1

(P'a” )"1 P'Q 'd (3.2.14)

where p lim E(J)

(J)

denotes the probability limit of the

sequence {&'°’}. According to (1.1.10)
Pc =4 (3.2:15)

Finally, substitution of (3.2.15) in (3.2.14) yields

p lim 6(J) = (P'Q'1 )~ P 'pe = ¢
From the above considerations it is concluded that
E(J is a consistent estimator of ¢ if the following

conditions are both met:

1) the estimator of the Fourier coefficients is consistent

2) the number of unknown system coefficients is smaller than
or equal to twice the number of non-zero harmonics taken

into consideration.

Consistency in the case of unknown time delay

As described in Section 1.1 the estimation procedure
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for the case of unknown time delay is as follows. The
coefficients of the differential equation are estimated for
a number of selected values of time delay. The optimal value
of the time delay and the corresponding solution for the
coefficients are selected.

It is observed that this estimation procedure can only
be consistent if the selected range of values of time delay
includes the true value. Furthermore as the test signal is
periodic with period T the time delay can only be computed
modulo T. Therefore in this research it is assumed that the
time delay consists of the sum of a known integral multiple
of T and an unknown fraction of T. For simplicity in what
follows this unknown fraction will be referred to as time
delay. Note that with this definition the value of the time
delay always lies within the interval [0, T). Consequently,
is a sufficiently large number of equidistant values of the
time delay is taken into consideration, these values always
include the true value or at least a value close to the true
value. In what follows it is supposed that this condition
is met.

First consider the case that the Fourier coefficients
of the test signal and those of the response are exactly
known. Now select from (3.2.15) N+HV+2 equations. These
equations constitute N+M+2 relations between N+M+2 unknowns.
So in general the coefficients and the delay can uniquely
be determined if N+M+2 < 2L, 2L being the number of equations
in (3.2.15). Note that for unambiguous determination of the
time delay the sum of the harmonics to which the N+M+2
selected equations correspond may not repeat itself within
one period of the fundemental. This difficulty is avoided
by including one or both equations corresponding to the

fundamental frequency.




Next consider the case that only estimates of the
Fourier coefficients of the test signal and the response
are available. First it is observed that the estimators of
the system coefficients and the time delay used in this
research are continuous functions of the estimators of the
Fourier coefficients. Now recall that Slutsky's theorem
states that the probability limit of a continuous function
is the function of the probability limits. So, if the
estimators of the Fourier coefficients are consistent, the
estimator of the system parameters converges in probability
to the solution for the system parameters in the noiseless
case. It has been shown above that this solution is in
general the true value of the parameters if 2L » N+M+2. Note,
however, that ambiguity in the interpretation of time delay
estimates may arise if the standard deviation of the time
delay estimates is comparable to T. Therefore it is assumed
that the standard deviation is small compared with T. Asymp-
totically this condition is always met.

It is concluded that the proposed least squares esti=-
mator for the system coefficients and the time delay is in
general consistent if the following conditions are both
satisfied:

1) the estimator of the Fourier coefficients is consistent
2) the number of unknown system parameters is smaller than
or equal to twice the number of non-zero harmonics taken

into consideration.
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3.3. The asymptotic covariance matrix of the estimator of

the Fourier coefficients of input and output

Let the input u(t) and the response y(t) be periodic
with period T. Assume that the observations are described
by

v(t) = u(t) + g(t) and =z(t) + y(t) + h(t)
where g(t) and h(t) are stationary stochastic processes. Let
the observation time be JT where J is an integer. Consider

the least squares estimator

) 6 80 40 ) s D D
S L 1 W W SRR
(3.3.7)
of the Fourier coefficients
n=(a B ¢} B s QO B Q. B )'
k1y k1y k1u kTu kLy kLy kLu kLu

where k1 sen kL are the harmonic numbers of the L harmonics

(7)

by (3.1.3) and (3.1.4). The asymptotic covariance matrix

of ﬁ(J) is defined as

=L

taken into consideration. The elements of 7 are defined

where Vﬁﬁ is defined by
V.. = 1in VG - ) vama?) sl
nn Fires
(3.3.3)
The 4L x UL matrix Vﬁﬁ is evaluated by computing all

)

covariances between the elements of VJT ﬁ(J + These com-
putations follow closely the procedure for computation of

1lim E( VJT &ii) - E WIT aﬁg))g described in Section 3.1.

J-ro
Therefore here only the results are given. These may be

sumarized as follows.
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Let S
g8
g(t) and h(t) respectively and let S

power density spectrum of these processes. Assume that the

integrals

=

00

o

00

/1%

are finite, where R

functions of g(t) and h(t) respectively and Rgh(t) is their

cross covariance function. Then it can be shown that

1lim

lim

U

The elements of Vﬁﬁ which are not described by (3.3.4) are

obtained by substituting u for y and g for h respectively or
by substituting y for u and h for g respectively in (3.3.4).

cov( VIT

cov( VIT

cov( VIT

(jw) and S

t) and R
g()n

hh

=]

-0

(jw) be the power density spectra of

gh

(t)ldt._mf\th(t)ldt. _wfleh“)ldt

[t R (t)]at, St R (®)]at, [t R, (8)]at

-C0

hh

1 . ~
a}iJ;) = ]5 Be Sgh(JQTrkl/T) ko=k
m 0 kl#km
1 3
e { =
E(J)) BE Re Sgh\32nk2/T) k2 k.
ky
m 0 kk#km
1 . -
~(a)y _ |2 T Sgnldemy /D) KTk,
k vy
m 0 szkm
1 . o
a(J)) ) -3 Im Sgh(JEWkQ/T)kQ—km
ky
m 0 ki#km
(3.3.4)

(jw) be the cross

©

(t) are the autocovariance
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It follows from the above considerations that

Vaa = diag (W, see W, oos W ) (343.5)
nn k1 kg kL
where
shh (jerk./T) 0
, 0 8 n (;cvki/i)
\]k _1—
12
e | (jemk. /T n S j /T
Re Sgh (] vkl, ) Im San (J2Wkl/l)

-Im S . (jemk./T) Re S_. (jork./T)
gh 1 gh 1

Re S i2tk./T) = S (jork.
e ah (3 ﬂkl/ ) Im S h \JEWKI/T)

n
—

Im 21k./T) Re S (j2nki/T)

gh i “gh
S (jemk./T) 0
ge 1
0 S (jemk./T)
gg 1

(3.3.6)

This completes the computation of the asymptotic covariance

(1),

matrix of H




3.4, The asymptotic covariance matrix of the estimator of the

system parameters

In this section the asymptotic covariance matrix of the
estimator of the system parameters is computed. The asymp-
totic covariance matrix of the residuals is also derived.

The asymptotic covariance matrix 295 of the estimator

a(3) _ a9) 4(9) A(J) 2(3)  ~(3) 2(J)
) . (ao 8, cor By bO v i bM_1 T )!' of the
system parameters 6 = (ao R T 1)' is defined
by
_ 1

259— = V§§ (3.4.1)
where

Vs = lin E v 2wy vt - s

J->o0

(7)

are functions of the estimator of the

. .. ~(J) _ a(3) ald) (7)) (J)
Fourier coefficients n = (akjy Bk1y ak1u Bkju

(J) E(J) ~(J) E(J))'

kY Ry o‘kLu K u

Zﬁﬁ was computed in Section 3.3. 266 1s computed from Zﬁﬁ

The elements of 5

a whose asymptotic covariance matrix

using a theorem due to Goldberger. See the Appendix. Accord-
ing to this theorem

- ‘ a(J)

25(9) 96

an = | S - 3.b2
58 7 | o) s, TR {530 ] qlar., (3heR)

z

where it i1s assumed that the derivatives exist and that the

~(J)

central moments of the elements of 7 of order higher than

two are of order of magnitude lower than l—.

JT
()

Now recall that the estimator 8 is that value of 6

which minimizes

E'(J) ! E(J) (3.4.3)
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where E(J) = ﬁ(J)c - E(J) denotes the vector of residuals.
Thus §(J) must satisfy
~(J)
9t =1a(T)y -
(_—ae >e=6(J) 2 (e7)g5(d) =0 (3ukak)

(J) (7)

e=§(J) = 0, it follows from (3.4.4) that

This is a set of N+M+2 equations in 8 and § . Since
IESIIRRE )

at 7 =n

3 -l
and hence
(aé‘(J))l _
TXLVNE
k) (TN =1 a{J) (TN
3 -1 (3 fag'"7 -1 (ag |
- { s % \as )}ﬁw): e ° (aﬁ(J)) fa(a)_ |
(3.4.5)
Defining
~(J)
(3
¢ (ag )A(J)_ (3.4.6)
n =n
and
()
3¢ \
el (3.4.7)
(@,

(3.4.5) may be written




Combining (3.4.2) and (3.4.8)

-1 =, = o i}
P 1 ¢'Q e~ ' ‘u s
55 (e'Q” o) GIAaG'R o(3'Q" 9) (3.4.9)

Now consider the matrix GZﬁﬁG‘ in this expression. Accord-

ing to (3.4.7)

<(T) (J)
0E 9E
GE~G! = Bak (3.4.10)
nn o) NE I o3¢ (1) .

So it follows from Goldberger's theorem that GzﬁﬁG' is the

asymptotic covariance matrix ZEE of the residuals E(J).

Therefore in what follows

z

= ' .
22 GZﬁﬁG (3.4.11)

Computation of EEE

In the case of unknown time delay the odd and the
(7)

even numbered elements of & are described by

; ~(J) . ~(J)
Re{A(Jjuw, )¥ - B_(Ju,_ )y, "} (3.4.12)
k2 kgy T k2 klu
and
Im{A(ie, )¥7) - B (juk ), )
K, k¥ T " 'k ,u {3:h.13)
respectively, where
BT(jw) = B(jw)exp(=jwt) (3.L4.14)
Then
O
1
N 0
~(J) N
G' = 3€(J) = N (3.4.15)
CLIN NCDI N
0 '\
Gl
kL
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where
Re A(jwk ) Im A(jw, )

Tm A(jw, ) =Re A(jwk'
Gi = . : (3.4.16)

i 2 . = o
Re B (jw, ) =Im BT(ka )

1 i
-Im B (jw, ) Re B (ju, )

T k. k.
1 1

The matrix Zﬁﬁ in (3.4.11) has been computed in Section

3.3 and is described by (3.3.2), (3.3.5) and (3.3.6). In-
serting (3.3.4) and (3.4.15) in (3.4.11) and multiplying

1 .
s = 37 dlag (Dk » Dy s eees D ) (2497
1 2 L
where the 2 x 2 matrices D2 are described by
D =G, W_ G (3.4.18)
g % B %

Then using (3.3.6) and (3.4.16) it is easily shown that the

off-diagonal elements of Dk are zero, while the diagonal
L

elements are described by

“r
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1 . 2 i 3 2 .
B Re{\A(kaz)l Shh(kaz) + [BT(kak) Sgg(kal) +

+ 2A(Jw (Ju, )} (3.4.19)

k

B, (Ju, )S
L

Kl 2

gh

Now let the processes g(t) and h(t) be composed as

described in Section 1.2, that is

h(t) = h1(t) + hz(t) + h3(t)

and

g(t) g1(t) + gg(t)

where h1(t) is the steady state response of the system to

g.(t), g.(t) and h.(t) are mutually independent and
1 2 2

independent of all other components of g(t) and h(t); h3(t)
is possibly correlated with both g1(t) and h1(t). Under these
assumptions Shh(Jw), Sgg(gw) and Sgh(Jw) may be decomposed

as follows

S, (jw) =8 (ju) + 8 (jw) + 8 (Jw) +
hh b b, hh, hih,

+ 2 Re Sh n (jw) (3.4.20)

173
ol . g . e
Sgg(Jm) Sg1g1(aw) + g2g2(Jw) (3.4.21)
and

S . (Gw) = ; j AP
gh(Jw) Sg1h1(Jw) + Sg1h3(Jw) (3 )

Furthermore, since h1(t) is the steady state response to
g, (t)

|aGi) %5, ) (G0 + 1B Ga)|%s, (o) +

19 181

- %(jw)Bj<jw>sg1h1<jw> -
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[A(jw)]28h1h1(jw) - |BT(jw)|28g1g1(jw) +

- 2A(j)B, (3020, (Ju) /(318 o (Ju)

1a(w)|%s

. .2 .
h1h1(Jw) - [3.(Ju) | Sg1g1(Jw) =0

(3.4.23)
and
) %, . *, .
8, p (Jw) = {B_(Ju)/A (Jw)}Sg p (Jw) (3.4.24)
173 13
Then using (3.4.19) and (3.4.20) = (3.4.24) it is easily

shown that the diagonal elements of Dk are described by

1
E[IA( | {s, , (Ju, ) +8

22 ) 33 2

1 »
Tan = = diag{i(w, )y Mw, )y eeey A(w, )yA(w, )}
ge JT k1 ¥ k1 kL kL
(3.L4.25)
where
A w =—[ [A |“{s (Ju,_ ) + 8 (Ju,_ )} +
Ky | gy " kg Rl Tk

+[8_(ju, )% (Ju )1 (3.4.26)

Ky 88 T Ky
This completes the computation of ZeE'
Finally, denoting
A = aiag{M(w, ), Aw ), » Moy )y Me, )} (3.k.27)




(3.4.,26) may ve written

1
ZEE = ﬁ/\ (3.4.28)
Hence it follows from (3.4.9) and (3.4.11) that
JRE APPRUES RVR SRURE U PRI o
Bam wer (¢'Q” 0)” 2'Q” AQ” o(0'Q” ') (3.4.29)

Computation of Zg@

If 2 = A the corresponding estimator is the minimum
variance least squares estimator B described in Section 1.2.
It follows from (3.4.29) that

1 y=1

Iy = o5 (0'A76) (3.4.30)

The elements of 263 are computed as follows. According
to (3.4.6)

A(J)
B - (:; )A(J)
n =n

(7)

where the elements of ¢ are defined by (3.4.12)=(3.k4.14).

(7)

—_
i bM_1T) yields

Differentiating € with respect to 8 = (ao, sy By D

N® "o’

= (o' o' .. ') (3, k4.32)
hy By o
where Re So y N &
k 'K,y +vv Re s ¥y -Re s v, _exp(=s, T)
@k ” 7. k2 kly k2 klu kg
. m sy In s:I Y Im s v exp(=s, T)
kl kzy kQ kly kk klu kz
«vv  =Re si-1yk " exp(-—sk ) -Re I uBT(Sk )
2 2 2 L 4 2
M-1
vee =Im sy exp(=s, 1) -Im =-s, y, B (s )
< d k
P,Q, kgu kS?. k!?, }'Qu T )

(3.4,33)




with s, = jw, . llow define
kg kl

s 2
S (Gw ) =ly. |
uu AQ kzu

Furthermore note that
)/ACJw, )1}y
) Ky Egh
Then using (3.4.27), (3.4.32) and (3.4.33) it is easily

= {3 (3
\3T(Jw

Y
kzy e

shown that the elements Wi of the matrix X = JT(@'A‘1¢) may

be written

S G
x_ = JT % — 8 Re{F_(ju, )F (ju, )}  (3.4.34)
rq 1= Mey ) Pk Tk
A
where
. . 1= " % " .
Fi(Jw) = (jw)? BT<Jw)/A(Jw) 1=1, ceny, N+ 1
F.(jw) = (Uw)l“j—zexp(—jwr) 1 =N+ 2y vouy HHM+1

N+1+2

He
I

Paot o @ om fa
F.(Ju) = ju B_ (Ju)

Next consider the special case that
- = ( =
e(t) = g (t) = g,(t) = 0.

This implies that h,(t) = 0 since h,(t) is the steady state

1 1
response to g1(t). llow from (3.4.20) and (3.4.21)
)

- /s = . + 9 [
uhh\Jw> LlTh,’(Jw) hghQ\Jw

and
S j = O.
Sgglde)
Hence in view of (3.Lk.26)
2 .
Mw) = 3|A(Jw)| Shh(Jw)

Inserting this in (3.4.3L4) gives
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9 . x.
: Re{F F
A hh(kapv)]A(kag)lz © p(‘wkz) q(kaz)}
1#0
(3.4.35)
Defining =
H.(jw) = (Ju) = 1 N+1
jraw A(jw) L B
5, (0] = (Jw)l—N—Z _
;(Juw) = = 3050) i=DN+2, vouy N#M+1  (3.4.36)
and
Hi(jw) = juw i = N+M+2

(3.4.35) may be written

p o Syuldey )

2 . 2 . %,
x_ =JT ) 7= |H(Ju, )|“Re{H_(Ju, )H (Jw_ )}
Pq l=-LShh(kaQ) 57k, PTkyA Tk,
1#0
(3.4.37)
where

Hs(jw) = BT(jw)/A(jw)-

So the asymptotic covariance matrix zgg of the minimum
variance least squares estimator § for the case that g(t) =0
is obtained by inverting the matrix X whose elements are
defined by (3.4.36) and (3.4.37). In Section 3.5 it will be
shown that in this particular case 253 is equal to the
minimum variance bound for the estimation of 6 if h(t) is

normally distributed.



3.5. The minimum variance bound

This section computes the minimum variance bound (MVB)
for the estimation of the coefficients of the differential
equation and the time delay of the syst. ..

Let the system be described by

N N-1
&y g"%<t)+ Byy-1 g’ﬁ:%(t) e raylt) =
dt T oat
M M1
- dltmr), & Tl ufeen) (30501)
dt ST at

where u(t) is the input, y(t) is the response to u(t) and t
denotes time delay. The transfer function of the system
(3.5.1) is given by

B(jw)

Hs(jw) = N exp(=-jut) (3.5.2)
with
Aljw) = - ('w)H + a (jw)N—1 + + a (3+5.3)
J N N-1 e o i
and
. M . \M=1
B(jo) = (ju) + by ,(5w)"" 4 4 b (3.5.4)

: i -1
where w 1s frequency in rad s .

The response y(t) may be expressed by the convolution

integral
. - dt ’Jqu
where hs(t) denotes the impulse response of the system.
Defining
= 1 -
O (ao ver By D By T) (3.5.6)
it then follows from (3.5.5) that
wy(t)_ 38 /. ¢
365 96 VASSHECE NS
© 3h.(t ?
- gk ¥y
W u(t-t, )t (3.5.7)
[e) S
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The changing of order of integrating and differentiating

is allowed if h (t1) is continuously differentiable with

S 3y (t)
« It is concluded from (3.5.7) that T
S

is the response to u(t) of a system having impulse response

ahs(t)

55— Also hs(t) and Hs(jw) form a Fourier transform pair.

respect to es

S
Therefore
/ h. (t)exp(=-jut)dt
and hence
aHS(Jw)_ e ahs(t) _
. ./f v exp(=jwt)dt
S —o S
5 ay(t) . .
o 56 is the response to u(t) of a system having
g .
aHS(Jw)
transfer function Y In what follows the expression
S
-1 s
y(t) = F7{H(Ju) Irult) (3.5.8)

will indicate that y(t) is the response of the system to
u(t); 5""1 and * refer to the inverse Fourier transform and
the convolution respectively. It then follows from the

above considerations that

(Jw)
32&0:.7'1{§g—;%i}*u(t)
S

ses
Now assume that
z(t) = y(t) + h(t) (3.5.9)

is observed at the output of the system. The disturbance
h(t) is assumed to be a stationary, normally iistributed

process described by

n(t) = F 7 {E (Ju)e(t) (3.5.10)
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vwhere HD(jw) is a transfer function and e(t) is a zero mean,

stationary, normally distributed process having autocovari-

ance function
E e(t) e(t") = &(t=t")

Furthermore it is assumed that u(t) and e(t) are independent
and that HD(jw) has all zero's in the upper half-plane.

Now let u(t) and z(t) be observed for 0 < t < Tobs
and let the vector 8 be defined by

= 1g 1)1
6 (eseD)
vhere 6 is defined by (3.5.6) and 6y is the vector of the
parameters of HD(jw). The elements of GD will be referred to

as noise parameters. Then using a procedure due to Bstrdm
(1967) the MVB for the estimation of 6 is computed as
follows. First it is observed that the logarithm of the
likelihood function L of the normally distributed e(t) for

g <% <7 may be written
obs

b
Tobs 2
fn L = -%/ e“(t)dt + constant (3.5.11)
o
See Bstrdm (1967). Generally the relation between the loga-
rithm of the likelihood function and the MVB of any unbiased

estimator 6 of the paremeters of the likelihood function is

- v _1

E(6 - 8)(8 -8)'>T

where Il = [ﬂpq]is the information matrix defined by
2
_ 0o an L
By = E 33 N (3.5.12)

<

See Kendell and Stuart (1967), page 53. Now it follows from
(3.5.11) and (3.5.12) that

104




7
_ obs de(t) e () obs a e(t)
=z / %, S E/ )55 530, a5

(3.5413)
Combining (3.5.8), (3.5.9) and (3.5.10) and rearranging

F N (Ju) re(t) = a(t) =5 {Hg(u) ult)

S
Hence (i)
dH, (Jw
7 E () 1 %l R e ) (3.5.14)
S
and ( )
dH_ (Jw
# oy e 22, - r 2 e (3.5.15)
D D
Furthermore
2 dH_ (jw)
-1 . 5%e(t) -11°"D de(t)
F T O{E (Ju) 28t F *
D 36408 {aeD }aes
dH_(Jw) dH (Jw)
_ a=1"D 1 S
ol {aeD H(Ju) 38 rate) L3530}

Since by assumption u(t) and e(t) are independent it follows
from (3.5.12) = (3.5.16) that
E e =0

BBSBGD

Hence II may be written

E 82!2,n L 0
36,2
_ S
i .- 2
9 &n L
0 E
aeDz

Consequently the MVB is
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0 &n L.-1
" (B sem=) 0
I = = S
Bgﬂn Ly=1
0 (E 36_5—-) (3.5.17)

D

From this expression it follows that, for the model of
system and noise assumed here, those elements of II'-1 which
represent the MVB of the system parameter estimates do not
depend on whether or not the noise parameters are known.
Furthermore it follows from (3.5.13) and (3.5.15) that those
elements of H-1 which represent the MVB of the noise para-
meter estimates do not depend on u(t).

In what follows only the MVB for the estimation of the
system parameters will be considered. The expression (3.5.17)

shows that this MVB is described by

1 320 )7
L (E 22 ) (3.5.18)
26

In view of (3.5.12) and (3.5.13)

v = Ev/:robs de(t) (Be(t))'dt .
o

aes aes
m 2
+ E./’°bs e(t) E—Eéil at (345.19)
(o] aes

Since by assumption e(t) and u(t) are independent it follows

from (3.5.14) that the second term of (3.5.19) is zero and

hence
T 1 1
vmn o 2l (Sl g g ) (22L0)
° s s oS s s
(3.5.20)
The elements of the vector gz( ) in this expression are
S
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computed from (3.5.14) and (3.5.2). These elements are

(Gw)* Ho(Gw)
de(t) _ -1 S
da, o {H (Ju)A(jw) }ﬁ“(t) (3.5.21)
i D
Gt B (5e)
de(t) _ oA LkiE  Bgrelieli
w7 {HD(jw)B(jw) feute) (3.5.22)
and :
se(t) _  —1(3% Hgldw
T {H.D(jw) }“'“(t) (3.5.23)

Periodic test signals

It is observed that (3.5.21) - (3.5.23) are of the

form Ef_1{F(jw)}ﬁu(t). Now assume that u(t) is periodic with

period T. Furthermore let T = JT where J is an integer.

obs

It is easily shown that for two periodic signals
Y_T{Fp(jw)}‘ﬁu(t) and .¢“T{Fq(jw)}ﬁu<t)

JT -1 -1
/ FTUF_(Ju)Iult) F THF (Ju)ru(t)at
A b o}

=

. Q . \ .
= JT 2 RE{FP(JwQ)Fq(JwQ)}Suu(sz) (3.5.24)

L=—x

_ Lo 2
where w, = 2n4/T and Suu(le) = |Y£ul . It then follows

from (3.5.21) = (3.5.24) that

w (Juw,)
& —_uu * 2 . 2 ; o,
i %=_“ hh(jwﬂ)’HS(le)I Re{Hp(le)Hq(sz)}

(3.5.25)

where S . (jw) = |H (jw)[2 denotes the power density spectrum

hh
of h(t) and
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H,(jw) = A—'z—j-j\ for 1 = 1, «usy N1 (3.5.26)

fa s
e
£
n
I
(=N
pl«:
= 3
n
H
o]
4 |
e

= N+2, +ov , N+M+1
(3+5.27)
and
B, (Ju) = Jju for i = N+M+2 (3.5.28)

This completes the computation of the elements of the
matrix y for the case of periodic inputs. The MVB for the
estimation of the system parameters is obtained by inversion
of Y.

A comparison of the elements wp defined by (3.5.25) -
(3.5.28) with the elements - defined by (3.4.36) and
(3.4,.37) shows that the matrix ¥ and the matrix X are iden-
tical. Hence W—1 and X-1 are identical. Since s is the
asymptotic covariance matrix of the minimum variance least
squares estimator §, it is concluded that § asymptotically

achieves the MVB if the noise is normally distributed.
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3.6. Estimation of the weighting matrix for the two-step

least squares procedure

In the two-step least squares procedure described in

Section 1.3 the diagonal elements of the matrix A are esti-

mated by
k.J+k

X TT__ 5 Re?{a( jome/TT)2 (k) +
A (w, )= Re jemk

LA TRl D

1"
- B(jonk/JT)exp(=jorkt/JT)V(k)} ~(J) +
6=6
I

+ ImP{A(52mk/IT) 2 () +

- B(jerk/JT)exp(-jorkt/JIT)V(k)} () (3.6.1)
6=0
i
The selection of this estimator was based on the assumptions
that asymptotically the square of the measured residual

Re{A(jenk/JT)2Z(k)- B(jenk/JT)exp(=-j2nkt/IT)V(k)}

o (T)

1

and the sguare of the measured residual

In{A(j2rk/JT)Z(k)- B(j2nk/JIT)exp(=jorkt/IT)V(k)}

p=57)

4

are unbiased estimators of the asymptotic variance of the
true residual

Re{A(j2nk/JT)Z(k) - B(j2mnk/JT)exp(=j2nkt/JT)V(k)}
and the asymptotic variance of the true residual

Im A(jark/JT)Z(k) - B(j2rk/JT)exp(=jenkt/JT)V(k)}
respectively and that these variances are equal. This section
investigates the conditions under which these assumptions
hold. First it is shown that the asymptotic expectation of
the measured residuals is zero. Next the asymptotic covari-

ance matrix of the measured residuals is computed. Since the
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asymptotic expectation of the measured residuals is zero, the
diagonal elements of this covariance matrix are the
asymptotic expectations of the squares of the measured
residuals. These diagonal elements are then compared to the
corresponding elements of the asymptotic covariance matrix
of the true residuals. From this comparison it follows that
the above assumption is valid only for those residuals which
do not correspond to frequencies of non-zero harmonics of

the test signal., This observation results in a proposal for

a slight modification of Xw(wk ).
i
In the remainder of this section it is assumed that in
(3.6.1) k. =k, since this simplifies the expressions to be
derived. This is no loss of generality since k, may refer

to any harmonie. Furthermore define

Sy /7 = jerk/JT and VT(k) = V(k)exp(—sk/JT)
and recall that according to (1.3.1) and (1.3.2)
JT
1 .
V(k) = EE.é/'v(t)exp(-JZﬂkt/JT)dt (1.3.1)
and 1 J7
Z(k) = ﬁ[ z(t)exp(=j2mkt /JT)dt (1.52)

5(J)

Define the matrix P by

k/Tyw *
R o) 1 N N
s e sk/J Z(k) Re sk/JZ(k) . Re Sk/JZ(k)
P =
k/3 o 1 N
Im Sy /7 Z(k) Im sk/JZ(k) eeo Im sk/JZ(k)
o 1 M=1
Re sk/J VT(k) - Re Sy /7 Vr(k) ¢ ws = BE sk/JVT(k)
o] 1 M=1.,
- Im Sy /7 VT(k) - Im Sy /g Vr(k) ver = Im sk/J\«T(k)
(346:24)
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and let

~(J) _ ,35,(3)
Pw - (P(R1J—k V/Tw
2, (J) 2, (J) 2,
* Pk 3-1)/3w Tk, 0/0 0 B
5, (J)
sov Bly Tok V109

while the vector &5J> is defined by

(7)

a =
w
e o V (k.J=k ) Im
€ Sk Jek )/T "t 1Ty
1 W
) M
Re S(k Jok +1)/3 V1<k1J—kw+1) Im Sy
1 W 1
He 8 vV (k,J=1) Im
et (k1J-1)/J 1
B B vV (k,J) I
* Sk1J/J T i
Re sM V (k. J+1) Im
(k1J+1)/J T
M M
Re siy g4k «1)/7 V (k T4k =1) In S(k
1 W 1
M )
Re S(k]J+kw)/J VT(k1J+kw Im

al\t

Then the vector of residuals €,

L9 _ 5l 5D
W W

while the vector of measured residuals

J=k +1)/J "t
w

J+kw—1)/J

J
1

(
k

)
J+1) /T W

(3.6.3)

M
S(k1J-kw)/J V. (k,J=k )

V (k,J=k _+1)
w

M
S(k1J-1)/J v (kJ-1)

M

Sk1J/J VT(k1J)

a eV (R, TH1) e e
(x,d+1)/5 "1* 1

VT(k1J+kw-1)

M

*(k, T4k ) /3 Vr(k1J+kw»

(3.6.4)

is defined by

(

W

g€ g) is defined by




(

w

€

J) _ “(J) ‘:(J)
8 (Pw ¢ -9 )6=§(J>
I

It is observed that the elements of E(g)

w6A<J)
the estimator of the system parameters SI

(1)

elements of the vector ﬁw defined by

(3.6.5)

are functions of

and of the

\'
(Re Z(k1J—kw) -Im Z(k1J-kw) Re V(k1J-kw) -Im V(k1J-kw)

+«ses Re Z(k1J-1) -Im Z(k1J-1) Re V(k1J-1) -Im V(kTJ—T)
Re Z(k1J+1) -Im Z(k1J+1) Re V(k1J+1) -Inm V(k1J+1)

+ns Re Z(k1J+kw) -In Z(k1J+kw) Re V(k1J+kw) -Im V(k1J+kw)
Re Z(k1J) ~-Inm Z(k1J) Re V(k1J) -In V(k1J) )!

Note that the last four elements of ﬁiJ) are identical to

L(T) a(T) () ~(J) . -

ak v ? Bk y? ak % and Bk 5 respectively. The elements of

1 1 1 1
~(J) : : () .
BI are functions of the estimator n of the Fourier

coefficients of input and output defined

expression is repeated here

(7)o (al3) (D) 4(9)

The elements of

fal
single vector ﬁiJ
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(3.3.1)




(7) _

e
0
I

(Re Z(k1J—kw) -Im Z(k.lJ—kw) Re V(k1J—k ) -Im V(k1J—kw)
«s»s Re Z(k1J-—1) -Im Z(k1J-1) Re V(k1J-1) -Im V(k1J-1)

Re Z(k,J+1) -Im Z(k1J+1) Re V(k,J+1) -Im V(k,J+1)
+ee Re Z(k,J+k ) -Im Z(k,J+k ) Re V(k J+k ) -Im (k1J+kw)

~(J) 2(3) £(J) =(J) (7)) 2(3) () 2(3) y,

a [ a R o B B )

K,y Ky ku KU oees Ky kiy "kpu "kpu

Summarizing, Eég) may simply be considered as a function of
B(J). The computation of the asymptotic expectation and the

A(J)

asymptotic covariance matrix of €5 will be based on the

asymptotic expectation and asymptotic covariance matrix of
ﬁiJ). Therefore the latter gquantities will first be computed.

According to (1.3.2)

JT
zZ(k) = ‘}—To/ Z(t)exp(=jemkt/JT)at
Hence
E(Z(k JT/ y(t)exp(-j2rkt/JT)dt (3.6.6)

y(t) is periodic with T. So y(t) is also periodic with JT.
If y(t) in

harmonics which are not necessarily zero are those corres-

(3.6.6) is considered periodic with JT, its only

ponding to harmonic numbers which are integer multiples of
J. It then follows from (3.6.6) that
oo if k = 1iJ, i integer

(3.6.7)

otherwise
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Similarly,

) Yiu 1if k = 1J, 1 integer

E V(k) = (3.6.8)

0 otherwise

Furthermore, according to Section 3.1 the expectation of the
~(J) (J)

L \ . - _
last 4L elements of e 1s described by Eakiy aky ’
~(J) _ (J) A(J) _ .

E R e " Py v By S (WA ER 58y This

1 i 1 1 1 1

completes the computation of E ﬁéJ). Note that the only

(7)

elements of E ﬁc which are not necessarily zero are those

corresponding to non-zero harmonics of y(t) and u(t). In

what follows E ﬁ(J) = nc; note that nc is also the asymp-

c
totic expectation of ﬁiJ)

(J)

c

The asymptotic covariance matrix of 7 is defined as

1
z ~ = VA -~ 2O
n JT n.n (e6a)
c c cc

where Vﬁ a is defined by
ce

Vs 5= bm B VIRRT w7 VIR e a7

ncnc J-o

Since the computation of Zﬁ - is similar to the computation
c e
of Zﬁﬁ discussed in Section 3.1 and Section 3.3 it will not

be discussed in detail. Here, as an example, the computation
of the asymptotic variance of the elements 14;5 Re Z(k) and
V3T Im Z(k) of ﬁéJ) will be given. It follows from (3.1.5)
that
2

E {VJIT(Re z(k,J+2) - E Re Z(k,J+2))}° =

J7
=1 R, (t) (1 = |t|/JT)cos 2n(k, J+2)t/JIT dt +
2 _;p “hn 1
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JT

1
. ey R (t)sin 2n(k J+2)|t|/JT at (3.6.10)
81r(k1J+9.)_JT_[ hh 1

Correspondingly it can be shown that the variance of

VIT In Z(k1J+2) is obtained from (3.6.10) by replacing the
minus sign in front of the second term by a plus sign. Now
assume that th(t) is absolutely integrable. It has been
shown in Section 3.1 that this is a sufficient condition for
convergence of the integrals in (3.6.10). Hence (3.6.10)
is finite. If in addition it is assumed that Rgg(t) is
absolutely integrable it can be shown in the same way that

the variances of all other elements of V' JT ﬁ(J) are finite.
(

e

J)

Agein assuming that all central moments of A of order

c

higher than two are of order of magnitude lower than IT

it then follows from Goldberger's result that the asymptotic
(J)

expectation of any differentiable function of ﬁc is the
function at ﬁiJ) = Ngs Ny being the asymptotic expectation

of ﬁéJ). In view of (3.6.7) and (3.6.8) the elements of

n, ere either Fourier coefficients of u(t) and y(t) or zero.
It then follows from (3.6.2), (3.6.3) and (3.6.4) that N,

satisfies the set of equations

(3.6.11)

So it is concluded from (3.6.5) and (3.6.11) that the
(J)

asymptotic expectation of Ew§ is zero.

Returning to the computation of Zﬁ A it follows from
ce

(3.6.10) that for finite fixed kw
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lim E (VJT Re Z(k1J+2) - E 1T Re Z(k1J+Q))2

J>

JT
=1 R..(t) (1 = |t|/JT)cos 2m(k, J+2t/JT dt
2 o hh » 1

(3.6.12)

Under the additional assumption that t R, . (t) is absolutely

hh
integrable it follows from (3.6.12) that

1im E ( VJT Re Z(k1J+2) - E VJT Re Z(k1J+2))2
J=o0

1 .
= By (J2n(k1J+2)/JT)

Note that this result is very similar to (3.1.10) and
can be obtained by substituting j2n(k1J+2)/JT for j2rk/T in
(341.10), It can be shown that in the same way all elements
of V. ~ can be obtained from the results of Section 3.1

Nee
and Section 3.3. The results of these sections are summarized
in the expressions (3.3.4). Using these results V. . can be

NeMe

written

Va o~ = 41 W cee W
A A iag { (k

W
4 1 (k1J-1)/J (k1J+1)/J

J=k )/J
w

...W( W )

W crees
k1J+kw)/J k1 kL

where
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B85 ) g Re 5. (85/5) ~In 8, (s;,5)
0 shh(sl/J) Im sgh(si/J) Re S, ( i/J)
Re sgh(si/J) Im S h(sl/J) sgg( 1/J) 0
I Bl el B Bl ) ¢ BogtBs )
(3.6.13)
while according to (3.6.9)
A f = 755,

This completes the computation of I. . .
NeMe
Using the expression for Zﬁ A the asymptotic covariance
cc

matrix . . of E(g)

is computed as follows. According to
€.~ E =~ W
wb “wo

Goldberger's result

)
= DA R 0,
ZAw@ Awg aﬁ(J) nc c aﬁ(J) e i
¢ /a(J) c «(J)_ .
c e g ¢

The partial derivatives in this expression are computed as

follows. Since at ﬁiJ)= N, » §£J) = § and since at @éJ)=e,
A(2) _ 2(J)

€2 = E

wb W
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~(T) ~(J)
Bew‘é B BEW &
~(T) - ~(J)
Me |3 Me ] (3)_
e = Mg s L
2Ty aé’i‘”
4 2 A(J) (3.6.15) :
36 ﬁiJ)_ . 3, ﬁiJ)= n

Since EWJ) is a function of ﬁéJ) only &and §§J)

of ﬁ(J) only. (3.6.15) may be written

is a function

' dF
A(J)
agwe _ aA(lT) ﬁ(J)___ . .
a(J) B A W
an J
N
\J
OT
0} ;
2
|
aE(J)
% \
~(J)
36 A(J)_ 881
=
W W Bﬁ(J)
(J
(3,

(3.6.16)

where O; is a (LL=k) x (hkw+2) zero matrix, O; is a Bkw X

(N+M+2) zero matrix while n, cenotes the asymptotic

expectation of ﬁiJ>. Note that the elements of n, form a

subset of the elements of e Now define
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aE(J)

% = =@
of ald) _
W e = Ny (3.6.17)
v . erops o ald) «(J)

and note that Gw 15 obtained by substituting nw for 1

and EéJ) for E(J) respectively in (3.4.7). So analogous to

(3.4.15) and (3.4.16) G& is described by

G! =
Gl
(k1J-kw)/J
\\ 0
\\
N
Y
{ A
G(k1J—1)/J
1]
Sk, 341) /3
\\
N
0 g
(k1J+kw)/J
Gl
k1
(3.6.18)
where
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Re A(si/J) Im A(si/J)
Im A(s.,.) =Re A(s.,.)
Gl )5 Si/g "1/ (3.6.19)
-Re B‘r(si/J) -Im Bt(si/J)
-Im BT(si/J) Re Br(si/J)
Furthermore define
a.~(J)
0! = W (3.6.20)
v 136
~(J)_
gy = Ny
A(J) A(J)

Note that ¢; is obtained by substituting €, for € and

NE JNNE)
c

for # respectively in (3.4.6). So analogous to

(3.4.32) and (3.4.33) 8 is described by

™ (¢Ek1J—kw)/J e q’('k1J_1)/J ¢('k1J+1)/J e
e e ) /7 k)
where
LT
o N o
Re 85 /7 Z(si/J) +ss Re 51 /7 Z(si/J) -Re s% /7 Vt(si/J)
o) N o)
Im 53 /7 Z(si/J) eeo Im 53 /7 Z(Si/J) -Im 55/7 Vr(si/J)
-Re $-1y (s.,.) =Re - s vV (s.,.)B(s.,.)
ik i/J "t °i/d i/J "t Ti/d i/J
M-1
ver mImosyp Vo(sy)g) -Imo= sy g Vo (s;)5)B(s;)5) NE I
c ¢

It has been shown above that the only elements of Na which
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are not zero are those corresponding to the non-zero har-

J

matrices are those corresponding to the frequencies of these

monics of u(t) and y(t). So the only ®i/ which are not null

harmonics. Finally, according to (3.4.8)

aé(J)'
I -1
7 =< (0'0) o'G (3.6.21)
an -(J)_
n =n
Substituting (3.6.17), (3.6.20) and (3.6.21) in (3.6.16)
yields
() ' '
aE £ G' O'
wo w 2
= + ¢ (3.6.22)
aﬁm 0! Vol gre(ere)”!
¢ [a(J) 1
Tlc ="

Hence from (3.6.1L4) and (3.6.22)

™~
)
1]

¥ -1'
{(Gw 0,) + @w(o2 -(9'0) @G)}ZAC?]C{(G 0,) +

1
+ ¢ (0 —(®'®)—1<1>'G)} = (G 0,)fa ~ (G 0,)" +
w w1 w

=i
+ @w(og -(0'0) <1>'G)):ﬁ N (GW 01)' +
e ec
‘ "1|
+ (ow 01)2?] - (o2 -(0'9) @G)'@V’J +
c e
+ e (0, -(<1»'<z>)‘1<1>'c)zﬁ ~ (0, =(0'0)7hG) 10!
e C
(3+46423)
(J) ~(J)

and n, it follows that

From the definition of ﬁc
)

the (8k._ + 4) x 1 vector ﬁ(J is obtained from the (8k +4iL)
Vo) W v

x 1 vector fi," by leaving out the last LL-4 elements of ﬁc "
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Consequently I. . 1is the (8kw+b) x (8kw+h) matrix in the
W W

=3

upper left hand corner of the (8kw+hL) X (Skw+hL) matrix

Zﬁ ~ and may therefore be written

ce
1
Za a == V. o
nwnW L r]wnw
where
Vi o = diag (W cee W W
A A (k1J - kw)/J (k7J-1)/J (k1J+?)/J
s5a Wy W)
\k1J+kw)/J k,
where wi/J is defined by (3.6.13). From these considerations

and from the definition (3.6.17) of G' it follows that the

|l
W
first term of (3.6.23) may be written

(G 0,)n ~ (G 0.)'"=0CG L. . G'=
1°"n.7n w 1 W

" ce " BT
~(J &
Sew )\ 5 BEéJ)
~(J) Ny ~(J
anw ﬁ(J)z n 3T1§7 ) ﬁ(J)= n
W W W W

Hence in view of Goldberger's result

(G 0.)Z. ~ (G 0O.)' = 5. . (3.6.24)

w 1°°% w o1 & e
Ne"e Wow

It then follows from (3.6.23) and (3.6.24) that the
asymptotic covariance matrix of the measured residuals

is equal to the sum of the asymptotic covariance

matrix of the true residuals ZE 2 and a number of additional
wowW

terms. So it is concluded that the squares of the measured

(J)

residuals, that is the squares of the elements of E%@ , are
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generally biased estimators of the variances of the corres-
ponding residuals. On the other hand it has been shown above
that the only elements of ¢w which are not necessarily zero
are those in the rows corresponding to non-zero harmonics

of the test signal. So the only diagonal elements of

ZE 2 . differing from the corresponding diagonal elements
wb wbé

of EE : are those corresponding to the frequencies of the

woW

non-zero harmonics. This is equivalent with the observation

that the only asymptotic variances of the measured residuals

differing from the asymptotic variances of the true residuals

are those corresponding to the frequencies of the non=zero

harmonics. So for all other frequencies the square of the

measured residual is asymptotically an unbiased estimator

of the variance of the corresponding true residual. There=-

fore, instead of iw(wk ) & somewhat modified estimator

;w'(wk ) is proposed, defined by
1
k,J+k
-~ 1 |l
Aw' (mk ) = ETE%I_:E—T v Rg{A(jQHK/JT)Z(k) +
1 W' k=k,T-k

k/J# harmonic numbers
of non-zero harmonics

- B(jenk/JT)exp(-jemkt/JT)V(k)} _a(J)+

I
- Imz{A(j2nk/JT)Z(k) s

6=8

- B(jenk/JT)exp(=j2rkt/JT)V(k)}

where kh denotes the number of non-zero harmonics of the
test signal in the frequency interval [(k1J—kw,)2w/JT,
(k1J+kw,)2v/JT]. Note that the only difference between Aw,

described by (3.6.1), and Xw' is that in the expression
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for the latter the terms corresponding to non-zero harmonics
of the test signal are not present.

The computation of the asymptotic expectation of
% ()

p) (wk ) is straightforward. Define G

W'
. . (J)
obtained by eliminating from Ca

as the vector
all elements corresponding

to frequencies of non-zero harmonics of the test signal.

(JZ and ﬁé{)correspondingly. It then follows from

£ €
Define €8

the above considerations that asymptotically

JT

E[Ax ,(w )] = 750 ———tr 2. .
w' Kk, 2(¢kw,—kh) €588
JT
B e B w (3.6425)
2(2kw,—kh) € rEL
Using Goldberger's result
NEY e
I I b B8, 09 o
€. .+E .y A\J N ey (T
L ST NE DT Mot | (),
W Mt w! Tyt
=G ,Ia . G 3.6.26
w! nw’nw' w! ( )
where ~(J)
aew,
'o=
U DD
Mot ] L3
Mgt = N
while n,r denotes the asymptotic expectation of ﬁé{). Note

«(J)

that the elements of Al and n, ere a subset of the
(7)
w

obtained by eliminating from G, all Gi/J

frequencies of non-zero harmonics of the test signal. See

elements of 7 and n, respectively. Also note that Gw' is

corresponding to

(3.6.18) and (3.6.19). The computation of the product

(3.6.26) follows closely the procedure for computation of
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ZEE =G Eﬁﬁ G' discussed in Section 3.4 and will therefore

not be discussed here. The result of the matrix multiplica-
tion (3.6.26) corresponds to (3.4.26), (3.4.27) and (3.4.28)

and is described by

1 .
Zgw‘égw'g = 77 diag <A(w(k1J—kw)/J)’ W
A(
w(k1J“1>/J)' A(w(k,‘J'i"l)/J)‘ ey
A(w(k1J+kw)/J)) (3.6.27)

where wi/J = 211 /JT and

_ l' - 2 . s
1790 = 3 [aGey )] {Shzhg(‘mi/J) * Sh3h3(J°‘i/J)}+

" 2 .
+ |BT(Jwi/J)I Sgggg(ﬂmi/J)] (3.6.,28)

while i/J may not be equal to the hermonic number of a non=-
zero harmonic of the test signal. It then follows from
(3.6.25), (3.6.27) and (3.6.28) that asymptotically
k J+k_,
1 L 2
)] = s=——— [ |A(j2nk/JT)| (s

1 e k=k J=k_, Bk

(jomk/JT) +

k/J# harmonic numbers
of non-zero harmonics

1je

+ 8, . (jerk/JT)} + ]BT(ank/JT S (jenk/JT)]

23 €-8>

(3.6.29)
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CONCLUSIONS

In this research a procedure has been developed for
estimating parameters of linear systems from noise corrupted
responses to periodic test signals. The developed least
squares estimator is extremely simple from a computational
standpoint of view; it only involves Fourier analysis of
the input output observations and subsequent solution
of a set of linear equations for the unknown parameters. The
estimator is consistent under mild conditions. Without
additional assumptions the consistency is preserved if the
system to be investigated is under closed loop control.
Furthermore, the estimator offers the possibility to reduce
the amount of input output data substantially by using an
input consisting of a few harmonics only. The minimum allow-
able number of harmonics is determined by the requirement
that the number of unknown parameters may not exceed twice
the number of available harmonics.

In a number of experiments using computer generated
data the variance of the proposed estimator has been com-
pared to the minimum variance bound (Cramér-Rao lower bound)
on the variance. In the cases considered the efficiencies
are all between fifty and hundred percent. Although this may
be satisfactory in most cases a procedure has been developed
for reducing the variance in an additional step. Results of
numerical experiments indicate that this two-step procedure
actually achieves the minimum variance bound.

It has been shown how the minimum variance bound can be
manipulated by selection of the test signal.

A numerical procedure has been developed for approxi-
mate synthesis of periodic two-level signals having specified

power spectra.

127




In conclusion: the feasibility of the proposed proce-
dure has been proved theoretically. The given numerical
examples emphasize its usefulness for practical system
analysis. Therefore further investigations of the estimator
for increased sample sizes and a wider variety of systems
and noises, as well as applications to practical systems

seem fully Jjustified.
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APPENDIX

~(.J)

Let B 5(5(7)

= 6(n ) be a vector valued estimator whose
elements are functions of the vector valued estimator E(J).
The superscript J refers to the size of the sample from

(7) is computed. Denote the pth element of é(J) 8
the qth element of H(J) by 5;J) (7)
5(J) (J)

(J)

and N as

which n nd

and n respectively. Let
be I, x 1 and let n
B =(3)
expectation of ©
- . «(J) . . ~
6 = 1lim E © and n=1lim E n
Jereo J-ro0

be I x 1. Define the asymptotic
(3)

respectively and dencte the pth element of § by ép and the

qth element of 7 by ﬁq. Now suppose that the Taylor series

expansion of §p(B(J)) about E<J) = E converges to 5p(ﬁ<J)).
Then - (v( 1) - (v) ITI 36 (?](J)) ( (7) )
6 (n'"") =86 (n) + ——2—7——— nol-n )+
p'h ) P 2= (J q q
g=1\3n “(J)_ ~
q n = T
+—2 E "J ‘,J ( q)(nq "nq )+---
q.=1 g.=1\8n.""3 (J)_« ™ 1 2 2
1 1 9, =n
(A1)
Hence
3 =1imE 5_(R)) =5 (7) +
Jore p
LI L (G (7) ()
vz 1 1\ bm EGRS R (RS- T )
a.=1 g, =1\on "on " | «(J)_~vJ+e 2 1 2 2
1 2 q1 P n =n
+ . <A2)
Define the asymptotic covariance matrix ZEH of H(J) as
Ves
nn
Low = —
nn J
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where Vﬁﬁ is defined by

Vg = Lim VG2 g 5 vl g 5y (a3
J->e

Note that (A3) mey be written

Ver = 1im 8570 VT Ry (Ak)

J0

It is assumed that Vﬁﬁ is a matrix of finite constants.

Hence Vou
lim I, = —€¥L= 0 (A5)
Jesoo nn

Under the additional assumption that the moments of the
elements of (E(J)
it follows from (A2) - (A5) that

<(J)

- n) of order higher than two also vanish,

8 = 1lim E 6 (°7) = é (n) (A6)
P T
It then follows from (A1) and (A6) that
<(J) T () =
LT e =Y VVE(H -~ F) %
P o= b a q
i 32 (J
1©n n D %3 ol ) = «(J) ~
o P J - - +
22_12_ =t g 3G, R ME R )
q,= q2—1 an on ~“(J)_~ 1 1 2 2
Q.1 q2 n =n
Hence
( - il -
e VAT ) vaelIlE ) =
I 06 I 36
B[ Vil ot (22| v )
a.=1 ()] (T)_ N N gl LM T8) ., 2 9
1 on =n an =1
24 9
+ J E (terms of order higher than two) (AT)

Assuming that asymptotically the moment of the elements of




(5(7)

n - %) of order higher than two are of order of magnitude

lower than 1/J it follows from (A3), (A(4) and (A7) that

lim E 14?(9(J) -5 ) vﬁ]e(J) -3 )
T Py Py Po Po
11 [seld) 3507)
zn n P1 Py
- ) Ey Ya,q,,7H
= = “(J - «(J - 1=22°
q,=1 g =] anq1 +(7)_ & 8nq£ #(I)_ &

(A8)
where vq1q2,ﬁﬁ is the Q9 element of Vﬁﬁ' Now (A8) may be
rewritten

1im e VA5 ) valIll s ) -
Joo Py Py P Pp
1 ~
25(9) 55 (J) |
= v 2, (A9)
R P ES A ~(J) |
-(J ~ ) ~(dJ >
L ARG DI o =(3) o
~(J
aeE )
p:
where (3) is the In x 1 vector the qth element of which
an
50
is defined by (}>. It follows from (A9) that
Bﬁq

QL
=4
3
I
b= 1§
Qo Q
3¢

ral
1
x ~(J
- (ae Veu e( ) (A10)
nn

where ) is the In X Ie matrix the qp element of which
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=(J)

08
: : o) . A . .
1s defined as —IT Now define the asymptotic covariance
aﬁJ
a
: =(J)
matrix Zéé of © as
Vv
_ 66
Zéé =3 (A11)

where V§§ is defined bv

V~é~é=l

im E 1/3(5(‘” - E 'é(J)) VJ'(E(J) - E §<J)>’ (A12)
J>ee

Note that (A12) may be written

Vsr = lim Vi) L oansit) C g (A13)

J -0

It then follows from (A10) - (A13) that

V(J)' éé(J) T
pyr o= (= ver [ AT
66 a’a(J) E<J) ﬁ nn BH(J) F](J) 2

The derivaetion of this result closely follows the derivation
described by Goldberger (196L), pages 122-125. Therefore in

this thesis (A1L4) is referred to as Goldberger's theorem.
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