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SUMI4ARY 

In this thesis a procedure is developed for estimating 

parameters of linear systems from noise corrupted responses 

to periodic test signals. The class of linear systems is 

restricted to linear systems describable by an ordinary 

linear differential equation. The parameters to be estimated 

are the coefficients of the differential equation and a time 

delay in series with the system. The proposed procedure is 

a weighted least squares procedure operating on the estimates 

of the Fourier coefficients of the test signal and those 

of the response. The estimator of the coefficients 

of the differential equation is a simple closed form 

expression in the estimator of the Fourier coefficients. The 

estimates are obtained in a single computational step. No 

iterations are required. The time delay is estimated by 

repeating the procedure for a number of values of time delay 

and selecting the best fitting solution. The proposed 

procedure is consistent if the following conditions are 

both satisfied: 1) the number of unknown parameters may not 

exceed twice the number of harmonics taken into consideration 

and 2) the covariance function of the noise is absolutely 

integrable. The procedure is applicable to systems under 

closed loop control. 

An expression is derived for the covariance matrix of 

the proposed estimator. This expression shows how the 

weights of the least squares procedure must be chosen in 

order to minimize the variance. These particular weights 

will be referred to as optimal weights. It is shown that 

the minimum variance coincides with the minimum variance 

bound (Cramer-Rao lower bound) if the noise is normally 

distributed. The optimal weights are functions of the 

properties of system and noise and are therefore not known 
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a priori. In order to obtain an estimator having approxi

mately the minimum variance a second computational step can 

be added to the proposed procedure. In the first step the 

parameters are estimated using uniform weights. Using the 

results of the first step the optimal weights are estimated. 

These estimated weights are used as weights in the second 

step. Numerical results obtained from computer generated 

data show the close agreement of the variance of the two-

step procedure with the minimum variance bound in the cases 

considered. 

It is shown that the elements of the minimum variance 

bound can be expressed as functions of the power spectrum 

of the test signal and of the dynamics of system and noise. 

So for given system and noise these elements can be manipu

lated by selecting the power spectrum of the test signal. 

Numerically a number of test signal power spectra have been 

computed which minimize the trace of the minimum variance 

bound. The aim is to obtain a reference to which the minimum 

variance bound computed for the usual test signals can be 

compared. A further aim is to investigate how a priori 

knowledge about system and noise may be utilized for selec

tion of appropriate test signals. 

Finally, a numerical procedure is developed for ap

proximate design of periodic two-level test signals having 

specified spectra. Numerical examples of signals computed 

using this procedure are described. 
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SAMENVATTING 

Dit proefschrift beschrijft het ontwerp van een 

schattingsprocedure met behulp waarvan parameters van 

lineaire systemen kunnen worden bepaald uit door ruis 

verstoorde responsies op periodieke testsignalen. De be

schouwde klasse lineaire systemen omvat uitsluitend die 

lineaire systemen die kunnen worden beschreven met behulp 

van een gewone lineaire differentiaalvergelijking. De te 

schatten parameters zijn de coëfficiënten van de differenti

aalvergelijking en een voortplantingstijd in serie met het 

systeem. De schattingsprocedure is een gewogen kleinste-

kwadratenmethode die wordt toegepast op de geschatte 

fouriercoefficienten van het testsignaal en die van de res

ponsie. De schatter van de coëfficiënten van de differenti

aalvergelijking is een eenvoudige expliciete uitdrukking in 

de schatter van de fouriercoefficienten. De schatting wordt 

verkregen in êên enkele stap. Er behoeft niet te worden 

geitereerd. De voortplantingstijd wordt geschat door de 

procedure te herhalen voor een aantal waarden van de voort

plantingstijd en vervolgens de best passende oplossing te 

bepalen. De schattingsprocedure is asymptotisch raak als 

aan de volgende voorwaarden is voldaan: 1) het aantal te 

schatten parameters mag niet groter zijn dan tweemaal het 

aantal harmonischen dat bij de schatting in aanmerking wordt 

genomen en 2) de covariantiefunctie van de ruis is absoluut 

integreerbaar. De schattingsprocedure mag ook worden toege

past op systemen opgenomen in een regellus. 

Een uitdrukking voor de covariantieraatrix van de schat

ter wordt afgeleid. Uit deze uitdrukking blijkt hoe de weeg

factoren van de kleinste-kwadratenmethode gekozen moeten 

worden om de variant ie te minimaliseren. Deze weegfactoren 

worden in het volgende optimale weegfactoren genoemd. Aan-
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getoond wordt dat de minimale variant ie samenvalt met de 

cramêr-raobenedengrens als de ruis normaal verdeeld is. De 

optimale weegfactoren zijn een functie van de eigenschappen 

van het systeem en de ruis en zijn dan ook niet a priori 

bekend. Om een schatter te verkrijgen waarvan de variantie 

de minimale variantie benadert kan de schattingsprocedure 

worden uitgebreid met een tweede stap. In de eerste stap 

worden de systeemparameters geschat waarbij de gewichts

factoren van de kleinste-kwadraten procedure onderling 

gelijk gekozen zijn. Vervolgens worden de optimale gewichts-

factoren geschat met behulp van de uitkomsten van de eerste 

stap. Deze geschatte gewichtsfactoren worden als gewichts

factoren gebruikt in de tweede stap. Deze twee-stappen pro

cedure is toegepast op gegevens die werden gegenereerd met 

behulp van een digitale rekenautomaat. De variantie van de 

twee-stappen procedure blijkt in de beschouwde gevallen met 

de cramér-raobenedengrens overeen te komen. 

De elementen van de cramér-raobenedengrens blijken te 

kunnen worden geschreven als functies van het vermogens

dichtheidsspectrum van het testsignaal en de dynamische 

eigenschappen van het systeem en de ruis. Bij een gegeven 

systeem en ruis kan dan de grootte van deze elementen worden 

beinvloed door de keuze van het vermogensdichtheidsspectrum 

van het testsignaal. Numeriek zijn een aantal spectra bere

kend die het spoor van de cramér-raobenedengrens minimali

seren. Het doel van deze berekeningen is een referentie te 

verkrijgen waarmee de cramêr-raobenedengrens berekend voor 

de gebruikelijke testsignalen kan worden vergeleken. Verder 

hebben de berekeningen tot doel na te gaan hoe a priori 

kennis van het systeem en de ruis kan worden benut bij de 

keuze van een testsignaal. 

Tenslotte wordt een numerieke procedure beschreven met 
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behulp waarvan twee-standensignalen kunnen worden ontworpen 

die bij benadering een voorgeschreven vermogensdichtheids

spectrum bezitten. Numerieke voorbeelden worden gegeven van 

signalen die zijn berekend met behulp van deze procedure. 
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(Number in parentheses refers to page where the 

quantity is defined or first introduced) 

a coefficient of nth order derivative m left-hand n 
member of system differential equation (21) 

b coefficient of mth order derivative in rieht-hand 
m ° 

member of system differential equation (21) 

c vector of a and b coefficients (22) 
n m 

c least squares estimator of c (25) 

d vector (22) 
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w 
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A(ja)) denominator polynomial of system transfer 
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B^(jw) B(jw)exp(-juT) (95) 

D weighted sum of diagonal elements of Z^^ (57) 
Do 

matrix (96) 

polynomial in ju (85) 

expectation operator 

polynomial in jw (85) 

transfer function (I07) 

\ 

D(jw 

E 

E( j ( . 

F ( j a 

) 

) 

) 
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3 

J integer denoting number of observed periods (2i+) 

L number of harmonics taken into consideration (22) 

(in Section 3.5) likelihood function (lOU) 

M order of right-hand member of system differential 

equation (21) 
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T period of periodic (test) signal (21) 
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INTRODUCTION 

The subject of this thesis belongs to the field of 

identification and system parameter estimation. Identifica

tion and system parameter estimation techniques are employed 

in many areas of research. Important applications are: 

- Estimation of parameters of dynamical systems for 

improved control; 

- Investigation of dynamical properties of mechanical 

systems for design purposes; 

- Estimation of physical properties of materials using 

dynamical methods; 

- Study of dynamical relations in biological systems. 

For a survey of identification and system parameter estima

tion techniques the reader is referred to SstrSm and Eykhoff 

(1971)' In what follows only a few of these methods will 

briefly be discussed for comparison purposes. 

The main topic discussed in this thesis is a method 

developed by the author for estimating the parameters of a 

particular class of linear dynamical systems from noise 

corrupted observations of periodic input-output pairs. A 

convenient method to characterize identification and system 

parameter estimation problems is to specify the class of 

models, the class of inputs and the criterion of equivalence 

of the system under test and the elements of the class of 

models. This classification was first introduced by Zadeh 

(1962) and is also discussed by Sstrom and Eykhoff (1971). 

Using this method the identification problem discussed in 

this thesis may be characterized as follows. 

The class of models is restricted to models describable 

by an ordinary linear scalar differential equation with 

constant coefficients. Within this class models having an 
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unknown, time invariant time delay in series are also 

allowed. So the class of models is a parametric class, the 

parameters being the coefficients of the differential 

equation and the time delay. For simplicity the coefficients 

of the differential equation will be referred to as the 

system coefficients. 

The most important restriction on the class of inputs 

is the assumption that the test signal is periodic. More 

precisely, it is assumed that the input of the system has a 

periodic component of given fundamental period. Two distinct 

cases will be considered. In Case 1 the system input has a 

completely known periodic component. This component may be 

the test signal itself or it is a signal having a known 

linear, dynamic or static relation with the test signal. For 

example, the latter situation occurs if the test signal is 

transformed by a linear transducer having known linear 

dynamics. In Case 2 the system input has a periodic component 

which is only partly known. The periodic component has an 

tmknown linear, static or dynamic relation with the test 

signal. This is the case of the test signal is applied to 

the system through a linear transducer having unknown linear 

dynamics. Case 2 also includes the important case that the 

system is under closed loop control. For example, if the 

test signal is introduced at the set point, the periodic 

signal entering the system is not the test signal itself. It 

is a signal having an unknown dynamic relation with the test 

signal. The most important difference between Case 1 and 

Case 2 is that, although in both cases the period is given, 

in the latter case the periodic component of the input must 

be measured. It will be assumed that these measurements are 

corrupted by additive noise. For example, if the system is 

under closed loop control the noise may represent normal 
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operating signals. Both in Case 1 and Case 2 it will be 

assumed that the observations at the output are additive 

noise corrupted observations of the steady state response 

to the periodic component of the input. Finally, it is 

assumed that both in Case 1 and Case 2 the periodic component 

of the input contains a sufficiently large number of non-zero 

harmonics. This number will be specified later. 

From the above specification of the input it is clear 

that in this thesis the use of spontaneous statistical fluc

tuations for identification purposer will not be considered. 

An advantage of the use of spontaneous fluctuations is that 

one needs not to disturb the normal operation of the system. 

A disadvantage of spontaneous fluctuations is that their 

power spectrum cannot be selected and may be inappropriate 

for identification purposes. Generally the properties of the 

power spectrum of the input have a substantial influence on 

the accuracy in estimating the dynamical properties of the 

system. Furthermore input output observations made on 

spontaneous fluctuations may have covariant components which 

are not causally related by the system. For example, these 

components may be related through a, possibly hidden, feed

back path. In the case of non-causal covariation of input 

and output some identification methods produce wrong results, 

since these methods interpret all covariation as causal. A 

further disadvantage of spontaneous fluctuations is that 

they are often nonstationary. Nonstationarity precludes the 

use of most identification methods. Finally, many spontane

ous processes have limited power. Consequently observations 

are subject to relatively large measuring errors. In conclu

sion, it is preferable to employ external, artificial test 

signals whenever this is allowed and possible. 

The restriction of the class of inputs to periodic ones 
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also excludes external transient test signals such as 

pulses. In practice transient test signals are very useful 

for pilot estimation or for estimation in situations where 

noise is virtually absent. For estimation in the presence 

of noise, however, transient test signals are less suitable, 

since they make a very uneconomic use of the allowable input 

amplitude range. In practice the input amplitude is always 

restricted. Too large an amplitude may drive the system into 

non-linearity; usually a linear model is a small signal 

model. Moreover, too large an amplitude may disturb the 

normal operation too much. Furthermore the allowable ampli

tude range of the input transducer is usually limited. It 

is true that the signal-to-noise ratio in the observations 

of the response can be inproved by average response tech

niques. But this is equivalent to employing a periodic test 

signal. In that case, however, alternative periodic test 

signals of the same maximum amplitude are available which 

yield results having higher statistical accuracy. Particular 

examples of such signals discussed in this thesis are 

maximum length binary sequences and multifrequency binary 

signals. Maximum length binary sequences have their power 

evenly distributed over many harmonics. As opposed to 

maximum length binary sequences multifrequency binary 

signals have the major part of their power concentrated in 

a limited number of relatively widely spaced harmonics. The 

design of multifrequency binary signals is discussed in 

Section 2.3 of this thesis. For a discussion of maximum 

length binary sequences the reader is referred to Hoffmann 

de Visme (1971 ). 

Finally, the above characterisation of the identifica

tion problem requires the definition of a criterion of 

equivalence of the system under test and the elements of the 
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class of models. This criterion is defined as follows. The 

periodic component of the input and the corresponding 

periodic steady state response component of the output 

satisfy the differential equation of the system. So the 

Fourier coefficients of these components satisfy the Fourier 

transform of the differential equation. For each harmonic 

this yields two linear algebraic equations in the system 

coefficients. These algebraic equations will be referred 

to as the system equations. In the case considered in this 

thesis the observations of the periodic input component and 

those of the corresponding response component are corrupted 

by noise. The Fourier coefficients of these components can 

therefore only be estimated. Now suppose that estimates of 

a number of Fourier coefficients of the periodic components 

of input and output are available. Define the residual of 

a system equation as the difference between the left hand 

and the right hand member of the equation after replacing 

the Fourier coefficients by their estimates. Then the 

criterion of equivalence chosen in this research is a posi

tive quadratic form in the residuals of all harmonics taken 

into consideration. The selection of the weighting' matrix 

corresponding to this quadratic form will be discussed later. 

This definition of the criterion of equivalence of the 

system under test and the elements of the class of models 

completes the characterization of the identification problem 

studied in this thesis. 

From the above considerations it is clear that for 

known order of the differential equation the problem is to 

minimize the criterion with respect to the unknown para

meters. First consider the case that the time delay is 

known. Since the residuals are linear in the unknown system 
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coefficients, the criterion is quadratic in these coeffi

cients. The minimization of the criterion therefore only 

requires the solution of a set of linear algebraic equa

tions. This is a closed fonn, one step solution. No itera

tions are required. The minimum is always achieved and this 

minim\mi is unique, provided that the normal equations are 

linearly independent. In Section 3.2 it is shown that this 

is always the case if the number of unknown system coeffi

cients does not exceed twice the number of non-zero har

monics taken into consideration. In the case of unknown 

time delay the procedure is repeated for a number of 

selected values of time delay and the optimal value of 

time delay and the corresponding solution for the system 

coefficients are selected. Since the test signal is periodic, 

time delay can only be estimated modulo the period of the 

fundamental of the test signal. It is therefore assumed 

that the time delay consists of the sum of a known integral 

multiple of periods of the fundamental and an unknown 

fraction of this period. For unknown system order the 

above procedure is repeated for different orders in order 

to find the optimal solution. 

In Section 3.2 it is shown that the estimation proce

dure described above is consistent if the following condi

tions are both satisfied: 1) the estimator of the Fourier 

coefficients is consistent and 2) the number of unknown 

system parameters does not exceed twice the number of har

monics taken into consideration. 

The estimator of the Fourier coefficients chosen in 

this research is the least squares estimator. The main 

motives for this choice are that this estimator is computa

tionally convenient and that it requires little a priori 
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knowledge about the noise. Relevant statistical properties 

of this estimator are discussed in Section 3.1. Sufficient 

conditions for its mean square convergence are: l) the noise 

is a stationary stochastic process and 2) the covariance 

function of this process is absolutely integrable. The former 

condition requires that non-stationarities are removed. An 

example of a non-stationarity frequently encountered in 

practice is a trend. Schemes for elimination of trends are 

discussed in Section 1.1. The latter condition is met by 

all processes having rational power spectra. No assumptions 

are made with respect to the amplitude distribution of the 

noise. 

The second condition for the consistency of the esti

mator of the system parameters answers the question how 

many harmonics are required. The problem which harmonics 

and what fundamental frequency must be chosen will be dis

cussed below. 

A substantial part of this thesis is devoted to an 

approximate computation of the covariance matrix of the 

proposed estimator. See Section 3.1+. This computation is 

motivated by the following questions: l) how should the 

weights in the criterion be chosen for minimum variance?, 2) 

how large is the variance of the proposed estimator compared 

to the minimum variance bound? and 3) what is the influence 

of the spectrum of the test signal upon the elements of the 

covariance matrix of the proposed estimator? These questions 

will now first be discussed. 

Since the estimator of the system parameters is non

linear in the estimators of the Fourier coefficients, closed 

form expressions for its small sample covariance matrix 

are hard to obtain. The asymptotic expression for this 
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covariance matrix is, however, relatively easy to compute, 

provided that for orders higher than two the central moments 

of the estimators of the Fourier coefficients are more than 

inversely proportional to the observation time. The expres

sion for the asymptotic covariance matrix shows that this 

matrix is smallest if the weighting matrix in the criterion 

is the inverse of the asymptotic covariance matrix of the 

residuals. It is shown in Section 3.1+ that the latter covari

ance matrix is diagonal. The estimator of the system para

meters corresponding to the optimal weighting matrix will be 

referred to as the minimum variance least squares estimator. 

In practice the variances of the residuals are not known and 

must therefore be estimated from the observations. A two-

step procedure, described in Section 1.3, computes in the 

first step the system parameters using the identity matrix 

as weighting matrix and next estimates the variances of the 

residuals. The reciprocal values of the estimated vari

ances are used as weights in the second step. This estimator 

will be referred to as the two-step least squares estimator. 

Numerical examples described in Section 1.1+ show that at 

least in the cases considered the two-step procedure 

achieves the variance of the minimum variance least squares 

estimator. For what follows it is important to note that in 

these examples the open loop case is considered and that the 

noise has a normal distribution. 

The minimum variance bound for the estimation of the 

system parameters is computed in Section 3.5. The case con

sidered is the open loop case. The noise obeys the normal 

distribution. The expression for the minimum variance bound 

is identical to the expression for the asymptotic covariance 

matrix of the minimum variance least squares estimator. The 

important conclusion to be drawn from this identity is that 
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asymptotically the minimum variance least squares estimator 

achieves the minimum variance bound if the noise is normal. 

So in the above-mentioned nimierical examples of the two-step 

procedure, the minimum variance bound is actually achieved. 

The expression for the minimum variance bound shows 

that the only property of the test signal affecting the 

elements of this bound is the power density spectrum of the 

test signal. The elements of the inverse of the minimum 

variance bound are relatively simple linear expressions in 

the power of the harmonics. The coefficients of these ex

pressions are functions of the dynamic properties of the 

system and those of the noise. Observing that in practice 

input power or output power is always restricted, the 

question then arises which spectrimi gives the most accurate 

results under this constraint. As a measure of accuracy the 

weighted sum of the diagonal elements of the minimimi variance 

bound is chosen. The spectrum and the corresponding test 

signals which minimize this measure are defined as optimal. 

Section 2.1 describes the numerical procedure for mimimi-

mization of the measure. In Section 2.2 some numerically 

computed optimal spectra are presented. It is striking that 

these spectra consist of a very limited number of hannonics 

only. For comparison purposes Section 2.2 also computes 

the minimum variance bound for a maximum length binary 

sequence and for an arbitrarily chosen multifrequency binary 

signal. These computations show that in a limited range of 

the fundamental frequency the variances with the maximum 

length binary sequence and the multifrequency binary signal 

are comparable to the variances with the optimal signals. 

This indicates that in the cases considered an appropriate 

bandwidth is more important than the specific shape of the 

spectrum within this bandwidth. The bandwidth of a particular 
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maximum length binary sequence or a multifrequency binary 

signal is determined by its fundamental frequency. In order 

to find an appropriate fundamental frequency for an experi

ment it seems worthwhile to carry out a priori computations 

of the minimum variance bound for a number of different 

fundamental frequencies. These computations may be based on 

a priori knowledge about system and noise obtained from 

mathematico-physical analysis or from pilot experiments. As 

an interesting side product of the numerical computations of 

the minimum variance bound it was found that estimation of 

time delay influences the variances corresponding to the 

remaining unknown parameters unfavourably. This effect is 

usually overlooked in accuracy considerations found in the 

literature. 

The procedure for synthesis of optimal test signals can 

only be carried out if the dynamical properties of system 

and noise are exactly known. In that case, however, there is 

no estimation problem at all. It is therefore emphasized that 

here the principal aim of designing optimal test signals is 

to obtain a reference for comparison of the performance of 

the usual test signals. A further aim is to derive simple 

rules of thumb for the selection of suitable test signals. In 

the latter respect this research has not yet been succesful. 

In the control field the most important methods for the 

estimation of parameters of linear dynamic systems from 

additive noise corrupted responses to known inputs are the 

maximum likelihood (ML) method due to fiström (I965), the 

generalized least squares (GLS) method due to Clarke (I967) 

and the instrumental variable (IV) method due to Joseph, 

Lewis and Tou (1961). An advantage of all these methods is 

that the class of allowable inputs is only mildly restricted 
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and includes spontaneous fluctuations and other statistical 

inputs as well. However, in most applications of the ML 

method and the GLS method discussed in the literature the 

inputs are maximum length binary sequences. The ML method 

and the GLS method iteratively compute both the coefficients 

of the discrete time system transfer function and those of the 

discrete time transfer function describing the noise. Further

more, if the noise is normally distributed, the ML and GLS 

estimators are asymptotically efficient. A disadvantage of 

the ML and GLS method is that they require a relatively 

long computing time and a substantial amount of memory. 

Furthermore the iterative procedure may give rise to con

vergence problems. A long computation time is especially 

undesirable if the order and/or the time delay is not known. 

In that case the estimation procedure has to be repeated 

for increasing orders and for a number of values of time 

delay in order to find the best fitting solution. The im

portance of a short computation time for on line purposes 

is obvious. The IV method is computationally very simple, 

produces closed form solutions and requires only little 

computation time. On the other hand the efficiency of the 

IV method is hard to determine. For what follows it is im

portant to note that the IV method requires the selection 

or construction of a so-called instrumental time series. The 

instrumental time series is correlated with causally related 

components of the observations of input and output, but it is 

independent of all non-causally related components of these 

observations. 
« 

Comparing the ML method and the GLS method to the one-

step version of the proposed estimator, the following con

clusions may be drawn: 
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1. The one-step procedure is computationally much simpler 

and is less time consuming than the ML and the GLS method. 

The one-step procedure requires only the Fourier analysis 

of the input output observations for a small number of 

frequencies and the solution of a set of linear equations. 

The one-step procedure achieves the minimum of its 

criterion in one single computational step. Convergence 

problems are therefore avoided. The ML and the GLS 

method are iterative. The number of computational steps 

is unknown in advance, while their convergence cannot 

always be guaranteed. 

2. Using the one-step procedure a considerable data reduction 

can be achieved if the test signal employed either con

sists of a few harmonics only or has the major part of 

its power concentrated in a small number of dominant har

monics. The input output observations are first reduced 

to the Fourier coefficient estimates corresponding to the 

dominant harmonics. All subsequent operations are carried 

out on these estimates only. Binary multifrequency sig

nals are more suitable for this procedure than sums of 

sinusoidal waves, since for the same harmonic content 

the latter signals have a larger peak factor. As opposed 

to the one-step procedure the ML and the GLS method 

operate in each step of the iteration on all points of 

the input output observations. 

3. The one-step estimator is less accurate than the ML and 

the GLS method, the latter methods being efficient. 

Section 1.1+ applies the one-step estimator to computer 

generated data and compares the standard deviations of 

the estimates so obtained to the standard deviations 

corresponding to the minimum variance bound. In these 

numerical examples the least accurate results have a 
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Standard d e v i a t i o n which i s about one and a h a l f t imes 

as la rge as t h e minimum standard dev ia t i on . The most 

accurate r e s u l t s in t he se examples are e f f i c i e n t . 

Next comparing t h e ML method and t h e GLS method t o t h e 
proposed two-s tep procedure the following conclusions may be 

drawn: 

1. The two-step procedure is still computationally simpler 

than the ML method and the GLS method. However, it is 

shown in Section 1.3 that for estimation of the variances 

of the residuals of the system equations, Fourier analysis 

of the input output observations must be carried out for 

a number of additional frequencies. Furthermore, in either 

step of the procedure a set of linear equations must be 

solved. These are, however, straightforward operations 

which require a short computation time only. Moreover, in 

either step of the two-step procedure convergence is 

achieved in ons single computational step. 

2. As compared to the ML method and the GLS method the data 

reduction using the two-step procedure is still consider

able. Due to the additional Fourier coefficients required 

for the estimation of the variance of the residuals the 

reduction is less outspoken than in the case of the one-

step procedure. 

3. In the numerical examples of Section 1.1+ the two-step 

procedure achieves the minimum variance bound, as may be 

expected on theoretical grounds. 

Finally, comparing a number of common features of the 

one-step and the two-step method to the properties of the 

ML and the GLS method, the following observations may be 

made: 
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1. The one step method and the two-step method are less 

general, since they are res t r ic ted to periodic inputs as 

opposed to the ML and the GLS method, which only require 

that the input is pers is tent ly excit ing. A discussion of 

th i s concept wi l l not be given here. The reader is 

referred to Ljung (1971), where i t is shown that the class 

of pers is tent ly exciting inputs includes certain types of 

signals having continuous spectra as well as periodic 

inputs having sufficiently many harmonics. 

2. A further difference between the one-step and the two-step 

estimator on one hand and the ML and the GLS method on the 

other is that the l a t t e r methods estimate the noise dynam

ics along with those of the system. The estimation of the 

noise dynamics is an essent ial part of the ML and the GLS 

procedure. The one-step estimator does not estimate the 

noise dynamics at a l l . The two-step estimator only 

estimates the spectral properties of the noise at the 

frequencies of the harmonics taken into account in the 

f i r s t step of the procedure. If , using the one-step or 

the two-step procedure, in addition to the system para

meters the spectral properties of the noise have to be 

estimated, th i s can be done afterwards by subtracting the 

response of the estimated model from the observations and 

subsequent spectral analysis of the difference s ignal . 

Alternatively, the noise dynamics may be estimated along 

with those of the system by spectral analysis of the 

observations for frequencies corresponding to zero-valued 

harmonics of the tes t s ignal . Also the spectral analysis 

may be carried out for frequencies in between the harmonic 

frequencies i f the observation time comprises several 

periods of the fundamental. 

3. The ML method as well as the one-step and the two-step 
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procedure may be applied to systems under closed loop 

control. Conditions for applicability of the ML method to 

systems under closed loop control are discussed by 

Gustavsson (l97l*). Conditions for applicability of the 

GLS method in this case are not known to the author. 

From a comparison of the one-step and the two-step 

estimator to the IV method it follows that a common charac

teristic of these three methods is their computational sim

plicity. Furthermore, the one-step method and two-step 

method as well as the IV method are applicable to systems 

under closed loop control. Using IV the test signal may be 

employed as instrumental time series both in the open loop 

and in the closed loop case. A disadvantage of the IV method 

is that its efficiency is hard to establish. Wong and Polak 

(1967) developed schemes for the construction of instrumental 

time series having optimal properties. Unfortunately, due to 

the fact that these optimal schemes are iterative, the IV 

method using these schemes looses much of its computational 

simplicity which is its most attractive property. Moreover, 

it is not clear how efficient these optimal schemes are, 

what the conditions for convergence are and whether or not 

these schemes can be employed if the system under investi

gation is under closed loop control. Furthermore, it is 

observed that the IV method is in general not suitable for 

estimation of the parameters of systems having unknown time 

delay, since the IV method does not employ a criterion of 

goodness of fit. 

The estimator proposed in this thesis estimates the 

parameters of the differential equation of the system under 

test. It can, however, be shown that the procedure can 
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easily be reformulated into an estimator of the parameters 

of difference equation models. In the literature virtually 

all schemes for estimation of parameters of linear dynamical 

systems apply to difference equation models. Difference 

equation models are extremely suitable for the digital 

computer, while difficulties in handling derivatives with 

respect to time are avoided. Moreover, from a statistical 

standpoint of view difference equation models may be less 

problematic than differential equation models. The choice 

of a continuous time model in this thesis is motivated as 

follows. First it is observed that most practical systems 

are continuous time. Furthermore, the proposed estimator 

operates on the estimates of the Fourier coefficients, not 

on the input output observations themselves. So frequency 

multiplication replaces the differentiation with respect to 

time. A further motivation for the choice of a continuous 

time model is the possibility to compute for this case an 

approximate expression for the covariance matrix of the 

estimator of both the system coefficients and the time 

delay. For discrete time models this problem is difficult 

to solve since in this case the time delay assumes discrete 

values only. 

The outline of this thesis is as follows. Chapter 1 

describes the one-step estimator and the two-step estimator 

and their covariance matrices. Chapter 1 also discusses 

numerical results of these estimators using computer 

generated input output observations. In order to improve 

the comprehensibility of Chapter 1 all proofs and mathemati

cal details have been brought together in Chapter 3. Chapter 

2 is exclusively devoted to selection and synthesis of 

suitable periodic inputs. 
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CHAPTER 1 

Estimation of system parameters. 

In this chapter the design of a procedure for estimating 

the parameters of linear, time invariant systems from noise 

corrupted periodic input output records is described. The 

parameters to be estimated are the coefficients of the 

differential equation and a time delay in series with the 

system. In what follows the coefficients of the differential 

equation will be referred to as system coefficients. 

In the noiseless case the compl • Fourier coefficient 

of a harmonic of a periodic input and the corresponding 

coefficient of the steady state response satisfy the Fourier 

transform of the differential equation of the system. For 

each harmonic this results in two linear algebraic equations 

in the system coefficients. These algebraic equations will 

be referred to as system equations. If the number of har

monics is sufficiently large an appropriate number of 

system equations can be selected and solved for the system 

coefficients. 

If the observations of the periodic input and the 

corresponding response are corrupted by noise the Fourier 

coefficients of input and output can only be estimated. 

Generally these estimates do not satisfy the system 

equations. The estimator for the system coefficients 

proposed in this research minimizes the residuals of any 

number of system equations in a weighted least squares sense. 

This estimator is discussed in Section 1.1. With respect to 

the system coefficients the estimator is a closed form 

expression. The time delay is estimated by repeating the 

procedure for a number of values of time delay and selecting 

the optimal solution. The estimator is consistent if the 

following conditions are both satisfied: l) the estimator 
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of the Fourier coefficients is consistent and 2) the total 

number of unknown parameters is smaller than or equal to 

twice the number of harmonics taken into consideration. Since 

these conditions do not require input and output noises to 

be independent, the estimator is also suitable for the case 

that the system is under closed loop control. 

In Section 1.2 the asymptotic covariance matrix of the 

estimator is discussed. From this covariance matrix it 

follows how the weights of the least squares estimator must 

be chosen in order to minimize the variance. Section 1.3 

describes a two-step procedure for estimating these optimum 

weights along with the parameters. 

Finally, in Section 1.1+ some numerical results computed 

from computer generated data are described. 

In order to improve the readability of this chapter 

proofs and mathematical details have been omitted. These 

are discussed in Chapter 3. 
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1 . 1 The least squares estimator. 

The applicability of the parameter estimation procedure 

proposed in this research is restricted to time-invariant 

systems describable by the following scalar differential 

difference equation 

l^^ ^ 'iy(t)̂  , ̂  d\{t) _ 

dt 

•u I^ ^ j_ 1. du(t - x), . 

= b u ( t - x ) + b , —^ + ... + 
° M 

+ b ^ ^ ( * - ^ ) (1.1.1) 

where u(t) is the input signal, y(t) is the response to 

u(t) and X denotes time delay. For simplicity the arguments 

in (1.1.1) will be referred to as time. However, these 

arguments may denote some other variable such as distance. 

Furthermore it is assumed that the system is stable and that 

M 

Now let u(t) be a periodic test signal with period T 

and let y(t) be the steady state response to u(t). Define 

the complex Fourier coefficient of the kth harmonic of u(t) 

by T 

\ u " \ u ~ J\u " i f u(t)exp(-j2^kt/T)dt (1.1.2) 

o 
and define Y, , oi, and g, correspondingly. For ihe moment 

ky' ky ky -̂  ^ '' 
let X be known and for simplicity assume x = 0. Then 

(a^ + â Sĵ  + ... + a^s/)Yj^y = 

M 
=(bQ+b^s^. ... . s ^ )y^^ (1.1.3) 

where s = j2nk/T. The complex equation (1.1.3) is equivalent 

to the real equations. 

Re{(ao.a^s^+ .... a^s/)Yj^^-

-(b^.b^s^. ... - Vl\''"'^W = 
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= R e ( s ^ \ j (1.1.^) 

and 

Im{(aQ + a^Sĵ  + . . . + V k ' ^ ^ V ^ 
M—1 

- (%^^\^ ••• ^ V i \ KJ = 
= l m ( s ^ \ ^ ) (1.1.5) 

These are two simultaneous, inhomogeneous, linear algebraic 

equations in the system coefficients. The coefficient matrix 

of these equations is 

0 „ 1 TD N 
Re s, Y, Re s, Y, ... Re s, Y, 

p ^ I k 'ky k 'ky k 'ky 
k U 0 _ 1 , N 

Im s^ Yĵ y Im s^ y^^ . . . Im ŝ ^ Ŷ ^̂  

0 D 1 D M-1 
- Re s, Y, - Re s, Y, ... - Re s, Y, 

k 'ku k ku k 'ku 
0 , 1 , M-1 

- Im s^ y ^ ^ - Im Sj^ Yj^^ . . . - Im ŝ ^ y^^ 

(1.1.6) 

Consequently if L harmonics of u(t) and y(t) with harmonic 

numbers k., ..., k are taken into consideration, 2L 
1 L 

equations result with coefficient matrix 

p = (p; p ' . . . p ' ) ' ( 1 . 1 . 7 ) 
1̂ ^2 \ 

where the prime denotes transposition. Defining 

/ M M M 
^ = ^̂ ^ \ / k u ^ " ^ \ / k n •••• «^ \ V u 

1 1 I I I J i j 

ImsN )• (1.1.8) 
XJ IJ 

and 

= = ̂ ^0^1 ^ \ •••• Vi^' î-̂ -̂ ) 

the 2L equations may thus be written in vector notation 

Pc = d (1.1.10) 

Now first suppose that u(t) and y(t) can exactly be 
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measured. Then a, ,6, , a, and g, can exactly be 
k.y' k.y' k.u k.u •' 
1'' 1 1 1 

computed. Consequently the elements of P and d in (l.l.lO) 

are known. If it is assumed that N+M+1 < 2L, N+M+1 

equations can be selected from (1.1.10) and solved for c. 

In the noiseless case with unknown time delay the 

procedure is as follows. Assume that 2L > N+M+2. First 

Y, exp -s X is substituted for all Y,, in (1.1.10). Next 
k.u k k.u 
1 1 

N+M+1 equations are selected from (1.1.10) and solved for 

for c for a n\imber of selected values of x. The value of x 

and the corresponding solution for c which satisfy the 

remaining equation(s) of (1.1.10) are selected. 

From the above considerations it is clear that the 

parameters 

9 = (a^ ... a^b^ ... bj^_^ x)' (1.1.11) 

of the model (l.l.l) can easily be computed if it is assumed 

that u(t) and y(t) can exactly be measured. In practice this 

assumption is unrealistic. For example, under norm.al 

operating conditions responses to additional system inputs 

are superimposed on the response to the test signal. Further

more the observations made on the response may be corrupted 

by measurement errors or internal system noise. 

If the system is under closed loop control the test 

signal is usually introduced at the set point. Consequently 

the input of the system is not the test signal itself and 

has to be measured. Therefore in this case the observations 

of both input and output are subject to disturbances. The 

same situation occurs if the test signal is applied to the 

system using a transducer with unknown dynamic characte

ristics . 

In what follows it will be assumed that the distur-
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bances are adequately described by additive stationary 

stochastic processes. So the observations at the output 

and input are described by 

z(t) = y(t) + h(t) (1.1.12) 

and 

v(t) = u(t) + g(t) (1.1.13) 

respectively, where g(t) and h(t) are stationary stochastic 

processes. Furthermore it is assumed that the observation 

time is an integral number J of periods of the input signal 

u(t). Now, define 

.(J)_ .(J) -(J) - 1 "̂^ 
^ku \ u - J C = JT ƒ ^(t)exp(-j2m/T)dt 

0 
(1.1.11+) 

and define Yil > ̂i and ^}_ correspondingly. In Section 
ky y _ (J ) ^ ^ (J) 

3.1 it is shown that 9, and Y, are consistent least 
ku ky 

sqares estimators of Y, and Y, respectively if 
ku ky ^ 

+ 00 +00 

ƒ |Rgg(t)ldt < 00 and ƒ |R^^(t){dt < - (1.1.15) 

_0O —CO 

where R (x) and R, , (x) denote the autocovariance functions 
gg hh 

of g(t) and h(t) respectively. The condition (I.I.I5) is a 

sufficient condition, not a necessary one. For example» 

(1.1.15) is not satisfied if g(t) and h(t) have periodic 

components. Nevertheless it is shown in Section 3.1 that 
Y, and Y, are consistent in this case provided that the 
ky ku 

frequencies of the periodic components do not coincide with 

2T:k/T. 

It is important to note that the stationarity assumption 

requires that trends in the mean of v(t) and z(t) are 

removed. Schemes for the elimination of trends will be 

discussed in the last part of this section. 
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Now, consider equation (l.l.lO). Let P be the matrix 

which is obtained by substituting Y, for all Y, and 
k.u k.u 
1 1 

Y, for all Y, respectively in P. Define the vector 
'k.y 'k.y 

d correspondingly. Then generally 

P^^)c 

The v e c t o r 

, ( J ) = 

- d^^) ^ 0 

?(j)c-a^^^ (1.1.16) 

will be referred to as the vector of residuals. From 

(1.1.1+) _ (1.1.9) it follows that the elements of V ' are 

of the form 

Re{A(j(.ĵ  ) Ŷ "̂ ] - B(ja) )exp(-j(. ^^i^h (1.1.17) 
i l̂ î  ^i ^i k^u 

and 

Im{A(j(. )yl^l - B(jwi^_)exp(-ja)j^ ^^^[^^ (1-1-18) 

i i^ i i i 

Furthermore let n be a symmetric, positive definite 

matrix. Then 

s'^J^-^ ê^J^ (1.1.19) 

is a positive quadratic form in the residuals. In this 

research the estimator of the coefficients is taken as 

that solution c for c which minimizes (1.1.19). The matrix 

n is included in this expression to allow for weighting 

schemes which take a priori knowledge about system and noise 

into account. It is shown in Section 3.2 that c satisfies 

^(J ) = ( ? . ( j ) « - ^ p ( j ) ) - i p . ( j ) fi-^a^j) (1 .1 .20) 

In what follows this estimator will be referred to as 

weighted least squares estimator or simply least squares 

estimator of the system coefficients. If no a priori know

ledge about the system and noise characteristics is avail

able Q, will be taken as the identity matrix. A more refined 
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choice is discussed in Section 1.3. 

Consistency of c^ . 

It is shown in Section 3.2 that c is a consistent 

estimator of c if the following conditions are both satis

fied: 

1) the estimator of the Fourier coefficients is consistent 

and 

2) the number of unknown system coefficients is smaller than 

or equal to twice the number of non-zero harmonics taken 

into consideration. 

It should be noted that these conditions are very gene

ral. For instance, no assumptions are made with respect to 

the amplitude distributions of g(t) and h(t). Furthermore 

the inequalities (1.1.15) constitute the only restrictions 

on the class of allowable power density spectra of g(t) and 

h(t). 

Estimation of the order. 

In order to determine the order N of the left-hand 

member and the order M of the right-hand member of (l.l.l), 

(1.1.20) is solved for increasing M and N. The optimal M 

and N and the corresponding solution for c are selected. 

Estimation of time delay. 

Time delay is estimated by substituting Y, exp-s x 
k.u K. 

1 1 

for all Y, in (1.1.20) and solving (1.1.20) for ĉ "̂ ^ for a 

number of selected values of x. The value x of x and the 

corresponding solution for c which minimize the criterion 

(1.1.19) are selected. In Section 3.2 it is shown that this 

procedure estimates the parameters 6 consistently if the 
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following conditions are both satisfied: 1) the estimator 

of the Fourier coefficients is consistent and 2) the number 

of unknown parameters is smaller than or equal to twice the 

number of non-zero harmonics taken into consideration. 

In the case of all-pole models the elements of the 

matrix P in (1.1.20) are independent of the Fourier 

coefficients Y, . Therefore substitution of v, exp-s, x 
k.u k.u ^ k. 
1 1 1 

for Y! in (1.1.20) only changes the vector d . So if 
K • U 
1 

(1.1.20) is solved for c for a number of values of x, 

the matrix (P' ̂ "̂ f̂i~̂ p "̂ ^ )~^ p'̂ '̂ f̂i"̂  has to be computed 

only once. It should be noted that as a result of the 

periodicity of the test signal the time delay can only be 

estimated modulo the period of the fundamental. 

Estimation in closed loop. 

If the system is under closed loop control the noise 

at the input and the noise at the output are correlated 

through the feedback path. As a result a number of con

ventional open loop estimation schemes are generally no 

longer consistent in the closed loop situation. For a 

discussion the reader is referred to Gustavsson, Ljung 

and SöderstrSm (I97lt)' Irrespective as to whether the 

noises at the input and output are correlated or not, the 

estimator proposed in this research is consistent if the 

estimator of the Fourier coefficients is consistent and 

if, in addition, the number of harmonics taken into con

sideration is sufficiently large. Therefore this esti

mator is equally well applicable to open loop systems as 

to systems under closed loop control. 

^^ 
;̂̂  
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Computational aspects. 

The numerical procedure for computation of the 

estimates involves Fourier analysis of v(t) and z(t) and 

subsequent solution of the set of linear equations (1.1.20). 

In the case of unknown time delay or unknown order of the 

system only the second step of this procedure has to be 

repeated for a ntmiber of values of time delay or for various 

orders in order to find the best fit. The Fourier analysis 

needs to be carried out only once. 

The Fourier analysis may be carried out directly or 

by means of the fast Fourier transform (FFT). The FFT is a 

relatively fast and accurate algorithm for computing 

discrete Fourier transforms (DFT). For a discussion of the 

FFT see Gentleman (I966). Now suppose that a record consists 

of n samples, where n is a power of two. The FFT requires 

for the DFT of the record n log^n complex multiplications, 
. 2 . . 

whereas a direct approach requires n complex multipli

cations. However, it should be noted that using the direct 

approach the DFT can be computed for each harmonic indivi

dually whereas the FFT computes the DFT for all harmonics 

simultaneously. So if L harmonics are taken into consider

ation the ratio of the number of multiplications using the 

direct approach to the number of multiplications required 

by the FFT is given by L/log n. 

The requirement that the number of unknown parameters 

must be smaller than or equal to twice the number of 

harmonics taken into consideration constitutes the lower 

bound on L. It is clear that for systems of low order L may 

be quite small. For example for a second order all-pole 

model with time delay L = 2 is sufficient. So in this case 

the direct approach will be much faster since it is 

reasonable to assume that n >> 1+. 
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Suitable test signals for testing at a limited number 

of frequencies are binary multifrequency test signals. 

These are periodic two-level signals that have the major 

part of their power concentrated in a limited number of 

relatively widely spaced harmonics. The construction of 

binary multifrequency signals is discussed in Section 2.3 

and Section 2.1+. A number of computer experiments using 

binary multifrequency test signals is described in 

Section 1 .1+. 

Removal of trends. 

In practice the input observations v(t) and the output 

observations z(t) may exhibit trends in their mean values. 

This means that the mean value of the input noise g(t) and 

that of the output noise h(t) are nonstationary. In Section 

3.1 the unbiasedness and mean square convergence of the 

estimators of the Fourier coefficients are proved under 

stationarity assumptions. In order to illustrate the 

effect of trends on the estimator.s of the Fourier 

coefficients consider the following example. Let the mean 

of h(t) be a trend described by the second degree poly-

nomi al 

E h(t) = p^t + pgt^ 

where p and p are constant coefficients. Then it is 

straightforward to show that 

<y' - \y = ̂2 T 
\ 

and 

^^^l^)] _ e = _ p 1 - _ p J Ï 
ky ky ^ u^ 2 w^ 

From these expressions it is clear that as a result of the 

trend a, and g, may seriously be biased. So the 
ky ky "' '' 
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question is how to remove the trend. This problem can be 

solved employing techniques used in econometry for 

decomposing a time series into a trend and a periodic 

seasonal component. From the literature two major approaches 

for this decomposition are available. These are polynomial 

curve fitting and moving average procedures. See V/onnacott 

and Wonnacott (1970), page 68. 

Polynomial curve fitting is not very suitable for the 

detrending of signals of the type considered in this thesis. 

The reason is that both the Fourier coefficients of the 

periodic component and the coefficients of the trend poly

nomial have to be estimated simultaneously in the same 

least squares procedure. Estimation of the polynomial 

coefficients prior to estimation of the Fourier coefficients 

gives rise to wrong results. The simultaneous estimation 

procedure requires the solving of a set of linear equations 

both for all Fourier coefficients of the periodic component 

and the coefficients of the trend polynomial. The 

computation of the coefficients of this set of equations 

and the subsequent solution constitute a substantial 

computational effort and become prohibitive with many 

harmonics. 

The moving average procedure for removal or reduction 

of the trend is computationally much simpler. This 

procedure may be described as follows. Let again z(t) be the 

observations to be detrended. Then z(t) is transformed into 

z(t) as follows t + s T 

z(t) = z(t) - ̂  ƒ z(t^)dt^ 

t - g T 

Since the average of y(t) over the fundamental period T is 

zero this expression may be written 
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4- J. 1 rp 

z(t) = y(t) + h(t) - ̂  ƒ h(t^)dt^ 

t - s T 

Note that with this transformation of z(t) into z(t) the 

first and the last half period of the observations are lost. 

Also note that this procedure leaves the amplitude and phase 

of the harmonics of y(t) unchanged. Now let again 

E h(t) = p.jt + Pgt^ 

Then t + g T 

E[h(t) - ^J h(t )dt ] = P, 73" 
^ t - ^ T ^ 1 2 12 

and hence 

E z(t) = y(t) + constant 

Therefore, if the Fourier coefficients of y(t) are estimated 

from z(t) instead of from z(t), it follows that 

ky ky 

and 

^^y - ^ky 

This example shows that by simply subtracting the moving 

average the effect of linear and quadratic trend terms is 

completely eliminated. 
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1.2. The asymptotic covariance matrix of the least squares 

estimator. 

This section discusses the asymptotic covariance matrix 

of the estimator 9̂ "̂ ^ = (a^"^\ é/K ..., a.[f\ b J."̂  ̂  ..., 
-(j) -"(J) u I i\ u 

hw -, X )'. Recall that the superscript J in this 

expression refers to the observation time JT. For finite J 

the expression for the covariance matrix of 9 is very 

difficult to obtain. However, it will be shown in Section 

3.k that the computation of the asymptotic covariance matrix 

of 9 is straightforward. The asymptotic covariance 

matrix of 9 is defined as follows. Let 

V-s = lim E{ 1^(9^'^^ - E9^'^^)}{V<JT(9^'^^ - EQ^^h)' 
J -»- 00 

and assume that V^^ is a matrix of finite constants. Then 
. . --(J). 

the asymptotic covariance matrix Z^^ of 9 is defined by 

Z — = — V — 
99 JT 99 

This asymptotic covariance matrix will be used as an approxi

mation to the covariance matrix for finite J. 

First a more specific model for the noise in the 

observations of the input and in those of the output is set 

up. The noise in the observations of the input is assumed 

to be composed as follows 

g(t) = g^(t) + g2(t) (1.2.1) 

where g.,(t) and gp(t) are stationary stochastic processes. 

The process gp(t) represents measurement noise. For example 

g_(t) may be quantization noise. The process g-(t) is an 

additional input to the system and may represent the normal 

operating input signal. 

The noise in the observations of the output is described 

by 

h(t) = h^(t) + h2(t) + h3(t) (1.2.2) 
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where h^(t), hp(t) and ho(t) are stationary stochastic 

processes. The process h..(t) is the steady state response 

to the process g-(t) and is therefore correlated with g..(t). 

The process h_(t) is an equivalent disturbance at the output 

representing internal noises in the system. In order to 

include the case that the system is under closed loop control 

it is assumed that the processes g.,(t), h.(t) and h_(t) are 

mutually correlated. The process hp(t) represents measurement 

noise in the observations of the output and is assximed to be 

independent of all other processes. The same assumption is 

made with respect to gp(t). Finally, it is assumed that g(t) 

and h(t) are independent of u(t) and y(t). 

In what follows it is supposed that the conditions for 

consistency of 9 are satisfied and that in addition 
JT 

lim /('' - |t|/JT)R^^(t)exp(-j2Tikt/T)dt = 
gg 

= Sgg(j2-rTk/T) (1.2.3) 

lim /• (1 - |t|/JT)Rj^j^(t)exp(-j2TTkt/T)dt = 

jT-w _JT 

JT 

f 
jT-w _'JT 

S^^(j2TTk/T) (1.2.1+) 

and JT 
lim /" (1 - |t|/JT)R^^(t)exp(-j27rkt/T)dt 

gh^ 

JT->« -JT = s ^(j2Trk/T) (1.2.5) 

gh 

where S (jto) and S,, (ju) denote the power density spectra 

of g(t) and h(t) respectively and S , (jw) and R , (x) are the 
gh gn 

cross power density spectrum and cross covariance function 

of these processes respectively. The assumptions (1.2.3) -

(1.2.5) are discussed in Section 3.1 and Section 3.3. 

Furthermore it is assumed that the higher-than-two order 

central moments of the estimator of the Fourier coefficients 
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are of order of magnitude lower than 1/JT. Now, define 

$ = ($; *; ••• ^l . . . $ ' ) ' (1.2.6) 
^1 ^2 ^i ^L 
/D 0 „ 1 D K 

where /Re SJ^_YI, Re Sĵ _Yĵ  ... Re s Yĵ  
1 1 ^ 1 1 ^ 1 1 ^ 

1 \ Im s, Y, I'll s, Yi • • • Im s, Yi 
\ k ^ ' k ^ y k ^ ' k ^ y k ^ ' k . y 

- Re s, Y, e x p ( - s , x) 
k . k . u "^ k . 

1 1 1 

- "̂̂  \ . \ . u ^ ^ P ( - \ . ^ ^ 
1 1 1 

^^ \ . Y k . u ^ ^ P ^ - \ . ' ' ^ ••• -^^ V ^ Y j ^ . u ^ ^ P ^ - ^ ' ^ 
1 1 1 1 1 1 

T 1 f \ , M-1 , . 
Im s, Y, e x p ( - s , x) . . . -Im s, Y, e x p ( - s , x) 

k . ' k . u k . k . k . u ^^ k . 
1 1 1 1 1 1 

-Re - Sj^ B(Sj^ )exp(-Sj^ x) 

' ' ' ' ( 1 . 2 . 7 ) 
-Im - s B ( S , ) e x p ( - s , x) 

k . k . k . 
1 1 1 

where s, = j2TTk./T. Furthermore let 
k. '^ 1 
1 

A = diag(A(cü ) , X(a)ĵ  ) , . . . , A(wĵ  ) , X{u^ ) , . . . , 
1 1 i i 

A(cOĵ  ) , A(tüĵ  ) ) ( 1 . 2 . 8 ) 
L L 

where 

X(.^.) = ^ H A ( s , _ ) l X h ( ^ k . ) ^ V h , ^ \ . ) > -
1 1 2 2 i 3 3 i 

+ | B ( s )fs ( s )] ( 1 . 2 . 9 ) 
k . gggg k . 

Then it is shown in Section 3.1+ that the asymptotic 

covariance matrix Z^^ of 9 may be written 
bo 

Zgg = j ^ ($'fi~''*)"''$'n"''AS2"''*(*'Ĵ ~''*)~'' (1.2.10) 

34 



and that 

h t ^ h ' (1.2.11) 

represents the asymptotic covariance matrix of the 

residuals. 

Discussion. 

The equations (1.2.8), (1.2.9) and (1.2.10) show that 

the processes g,(t) and h..(t) do not contribute to the 

elements of Zjj. Intuitively this may be explained as 
DO 

follows. First it is observed that g,(t) and h-(t) satisfy 

the differential equation of the system, since h (t) is 

the response to g^(t). The contribution of g.,(t) to the 
-(j) 

error in Y^ ^nd the contribution of h-(t) to the error 
-(J) 

in Y,̂  are finite Fourier transforms of gi(t) and hi(t) 
K.y I 

respectively. These finite Fourier transforms approximately 

satisfy the equations Pc - d = 0. Clearly this results in 

a contribution to the elements of the covariance matrix of 

the residuals, and therefore to the elements of the 

covariance matrix of 9 , of order lower than J . According 

to the definition of the asymptotic covariance matrix 
-1 

contributions of order lower than J are neglected. So the 
fact that Zsj = 0 for h^(t) = h,(t) = g„(t) = 0 only 

bo d :5 el 
indicates that in this particular case the elements of the 

asymptotic covariance matrix are of order lower than J 

The expression for Z^~ is similar to the expression 
Ö b 

for the covariance matrix of the estimator of the 

coefficients of the generalized linear regression model. See 

Eykhoff (I97I+), Section 6.1. Now let ÏÏ^"^^ be the weighted 

least squares estimator for the case that fi = A. It is known 

from regression theory that Z-g-s- is smaller than Zjj for any 
bo DO 

other choice of Ü. See Goldberger (1961+), page 233. From 

(1.2 .10) i t follows t h a t t he asymptotic covariance matr ix 

35 



Z ^ of ÏÏ^'^'' may be written 

The estimator 9̂  ' will be referred to as minimum variance 

least squares estimator. 
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1,3. Two-step least squares estimation of the s.ystem 

parameters. 

It is clear that the minimum variance property of the 

estimator 9 described in the preceding section is a desir

able one. In practice, however, A is not known since its 

computation requires detailed knowledge about the dynamic 

characteristics of system and noise. In this section a 

two-step algorithm is described for estimating the elements 

of A along with the parameters. The aim is to obtain an 

estimator whose properties are comparable to those of the 

minim-um variance estimator discussed in the preceding 

section. 

Define JT 

V(k) = -^ J v(t)exp(-j2TTkt/JT)dt (1.3.1) 

and JT 

Z(k) = 4;̂  J z(t)exp(-j27rk/JT)dt (1.3.2) 

respectively. In the first step of the procedure V(k) and 

Z(k) are computed for k = k.J - k , k.J-1, k.J, k.J+1, 
•̂  1 W ' ' I ' l ' l ' 

...., k.J + k , where i = 1 , L and k is a fixed 
^ "" ~(J) -fT) "̂  

integer. Note that Y, = V(k.J) and Y, = Z(k.J). Next the ^,j-, 'k^u 1 k.y 1 

parameters 9 are estimated from the Fourier coefficient 

estimates corresponding to the harmonic numbers k,, ...., k 
1 L 

using the least-squares estimator 
S(J) ._ (p,(J)p(J))-l ?.(J)d(J) (1.3.3) 

This is the weighted least squares estimator with weighting 

matrix n = 1 , where I is the identity matrix. In the case 

of unknown time delay the parameters are estimated by 

computing c for a number of selected values of x and 

selecting the value x and the corresponding solution 

for c which minimize 

(p(j), .a(J))> (?(J)c-S(J)) (1.3.1+) 
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These estimates are denoted by 9 ' where the subscript I 
-1 

refers to a weighting matrix Ü = 1 . 

In the second step first the elements A(to, ) of A are 
i 

estimated. According to (1.2.8) A is diagonal. Furthermore 

it follows from (1.2.11) that 

A = JT Ẑ -, 
ee 

where Z«^ is the asymptotic covariance matrix of the 
^^ (j) 

residuals V ' . According to (1.1.17) and (1.1.18) the 

elements of z are of the form 

Re{A(ja3^ )y\^\ - B(jcOĵ  )exp(-ja)ĵ  x)y\^h (1.3.5) 
i i^ i i i 

and 

Im{A(JM )y\^\ - B(jc. )exp(-j<.ĵ  x)?^'^^} (1.3.6) 
i i'̂  i i i 

The expectation of the residuals (1.3-5) and (1.3.6) is zero 

since Y, and y) are unbiased estimators of the Fourier 
k.y k.u 
1"' 1 

coefficients Y, and Y, respectively. Furthermore, 
k.y k.u ^ •' ' 
1 1 

according to (1.2.8), (1.2.9) and (1.2.11) the asymptotic 

variance of the residual (1.3.5) and that of the residual 

(1.3.6) are both equal to 

j^X(.^_) =^[|A(J.i,.)l2{S (j.^_) - S (jt.̂ _)} 
1 1 2 2 i 3 3 1 

+ |B(ja) )|2 S (JÜ3 )] (1.3.7) 
k. gggg k. 

The residuals (1.3.5) and (1.3.6) can not exactly be 

computed from the estimated Fourier coefficients 9, and 
^(j) . k^y 

Y, since the system parameters are not known. However, 

using the system parameter estimates obtained in the first 

step it is proposed here to estimate these residuals by 

means of the estimators 
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«^^^^J\.)^S - B(>i,.)exp(-jt.̂ _x) yl'h^ ^ g(j) 
1 1 1 1 1 I 

and 

^^^^^i\.^i'l - B(ju.^.)exp(-j.^ X) 9̂ '̂ }̂̂  = ^,iJ) 
1 1 1 1 1 I 

respectively. These quantities will be referred to as the 

measured residuals. Then one might think of estimating the 

variance of the true residuals from the measured residuals 

using the following estimator 

h^e^iA{i^^ryl'l - B(J^.)exp(-j.^,x)9(Ji}e . g(J) + 
1 1 1 1 1 I 

+ Im2(A(j.^_)9['^^ - B(>,.)exp(-j.^,x)9[^hg __ g(j)] 
1 1 1 1 1 I 

(1.3.8) 

However, selecting (1.3.8) as an estimator of the variance 

of the residual (1.3.5) and that of the residual (1.3.6) is 

equivalent to estimating the variance of a zero mean random 

variable from only two observations on that variable. In 

that case the standard deviation and the expectation of the 

estimator are of the same order of magnitude. So it is 

concluded that (1.3.8) is a very inaccurate estimator. In 

view of (1.3.7) the quantities to be estimated, that is the 

asymptotic variances of the residuals, are power spectral 

density functions. In spectral analysis the procedure for 

reducing the variance of a spectral estimator is to 

introduce a window. See Blackman and Tukey (1958). This 

implies that the spectral estimator for a particular 

frequency is replaced by a weighted average of estimators 

over neighbouring frequencies, the weights being determined 

by the spectral window. For reducing the variance of the 

estimator (1.3.8) of the asymptotic variance of the 

residuals, this estimator is chejiged into the uniformly 
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weighted sum =r X (u, ) defined by 
J 1 W ri. 

1 

k.J+k 

h K\.^ = 2(2k' + i)f;eTA(J2WJT)Z(k) + 
1 w k = k . J - k 

1 w 

-B(j2TTk/JT)exp(-j27rkx/JT)V(k)}g ^ ^ ( j ) ^ 

+Im2{A(j2TTk/JT)Z(k) + 

-B(j27rk/JT)exp(-j2Trkx/JT)V(k)}„ _ ; ( j ) (1 .3 .9) 

where i = 1, . . . , L. Note t h a t the es t ima tes X (w, ) can • ' w k. 
1 

be computed from the results of the first step of the 

procedure, that is from 6 and V(k) , Z(k) for k = k.J - k , 

..., k.J + k and i = 1, ..., L. According to the theory 
' 1 w ' 

of spectral analysis k must be small in order to keep the 

bias of X (w ) small. On the other hand in order to keep 
w k. 

1 

the variance small, k must be large. Roughly speaking the 
w 

ratio of the variance of X (o), ) to the square of X(a), ) is 
w k . k. 

1 1 
1/(l+k + 2 ) . So one i s forced t o compromise between the 

var iance and the b i a s of t he estim^ator X (o), ) . For a 
w k. 

1 

detailed discussion of spectral windows see Jenkins and 

Watts (1967). 

From t h e es t imator X (u, ) t h e es t imator A of the ma t r i x 
w k. 

A i s cons t ruc ted as follows 

A= diag (A^(oJĵ  ) . ^ ^ ( V ) . . . . . ^ ^ ( V ) . ^ ^ ^ V ^ ^ 
I T L L 

(1 .3 .10) 
*(j) 

Next the solution 9 for 9 is computed which minimizes 

(?^"^c-a^j ) ) . A - \ p ( J ) c - d ( J b 
This es t imator w i l l be r e f e r r e d t o as t he two-s tep leas t 
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squares estimator. 

Discussion. 

From the above considerations concerning the bias and 
" • *(J) 

variance of the elements of A it is clear that 9 is not 

the minimum variance estimator 9" . However, numerical 

examples in the next section illustrate the close 

approximation of minimum variance in practice. The improve

ment over the one-step procedure is due to the appropriate 

choice of the elements of the weighting matrix Ü . On the 

other hand the two-step procedure increases the computational 

effort since a larger number of finite Fourier transforms 

has to be computed, the least squares procedure needs to be 

carried out twice and in addition the covariance matrix of 

the residuals has to be estimated. This increase in 

computation time is not dramatic. Moreover, as the number 

of Fourier transforms to be computed for the two-step 

procedure increases , the use of FFT becomes progressively 

advantageous. 

A careful reconsideration reveals that the above 

procedure for estimating the elements of A is partly based 

on intuitive arguments. In fact the tacit assumption has 

been made that half the sum of the squares of the measured 

residuals for a particular frequency is asymptotically an 

unbiased estimator of the asymptotic variance of the 

corresponding true residuals. In Section 3.6 it is shown 

that this is only true for those residuals which do not 

correspond to frequencies of non-zero harmonics of the test 

signal. Although the residuals corresponding to non-zero 

harmonics form a minority among the total number of residu

als used for the computation of X (u ) they give rise to a 
i 
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certain bias in X (u ). Therefore in Section 3.6 a slightly 
w k. 

1 

modified estimator X ,(u ) is proposed defined by 
1 

k.J+k , 
JT ^ ^ 

K'^\.^ " 2(2k ,-k )^ Re2{A(j2Trk/JT)Z(k) + 
^ ^ ^ k=k.J-k , 

1 w' 

k / J ^ harmonic numbers 

of non-zero harmonics 

-B(j2Trk/JT)exp(-j2ïïkx/JT)V(k)}g ^ - ( j ) ^ 

+Im2{A(j2Trk/JT)z(k) + 

-B(j2Trk/JT)exp(-j27rkx/JT)V(k)}. _ - ( j ) 
9 - 9 j 

where k, denotes t he number of non-zero harmonics of t h e h 
t e s t s i g n a l in t h e frequency i n t e r v a l [ ( k . J - k , ) 2TT/JT, 

( k . J + k , )2 i r / JT] . Note t h a t the only d i f ference between 
1 w 

X (w, ) as defined by (1.3.9) and X ,(a) ) is that in the 
i i 

expression for the latter the terms corresponding to non

zero harmonics of the test signal are not present. Two of 

the numerical examples in the next section are concerned 

with the two-step least squares estimator. In both cases the 

unmodified estimator X (u, ) has been used. The modified 
w k . 

1 es t imator X ,(u, ) was developed l a t e r . w' k. ^ 
1 
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1.1+. Numerical examples. 

In this section the estimators discussed in the 

preceding sections are applied to computer generated data. 

The system used in all experiments is described by 
2 

0.25 ^ ^ * ^ + 1.25 ^^*^ + y(t) = u(t-x) (l.U.1) 
dt 

The time constants of this system are 0.25 s and 1 s 

respectively. For comparison purposes the case of known 

and unknown time delay will be considered separately. 

The test signals used are multifrequency binary 

signals (MFBS). These are periodic two-level signals which 

have the major part of their power concentrated in a 

relatively small number of widely spaced harmonics. Con

struction and properties of MFBS are discussed in Chapter 2. 

Two different MFBS are used in the experiments described 

below. The power of both signals is chosen equal to one. 

The first signal (MFBSl) has three dominant harmonics with 

harmonic numbers 1, 15 and 31. The power of these harmonics 

is S (+ j2Tr/T) = 0.121+, S (+ J27T 15/T) = 0.131+ and uu — «J ' ' ' uu — 

S (+ J2TT. 31/T) = 0.118 respectively. The sum equals 75f» 

of the total power. The second signal (MFBS2) has five 

dominant harmonics with harmonic numbers 1, 7, 15, 23 and 

31. The power of these harmonics is S (+ J2TT/T) = 0.059, 

S (+ j2iT T/T) = 0.090, S (+ j27r 15/T) = 0.076, 

S (+ j27T 23/T) = 0.081+ and S (+ j27r 31/T) = 0.073 

respectively. The sum equals 76^ of the total power. 

MFBS are not to be confused with maximum length 

binary sequences (MLBS). As opposed to MFBS the power of 

MLBS is distributed over a large number of closely spaced 

harmonics. Moreover, since the envelope of the power density 
p 

spectrum of MLBS is a (sinx/x) curve, it is more or less 

flat for low frequencies. For comparison purposes an MLBS 
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is used in the numerical examples described below. It 

contains 63 steps in a period and its first 63 harmonics, 

representing 90^ of its total power are taken into 

consideration. The total power is also chosen equal to one. 

First experiment. 

The system is described by ( 1 .1+. 1). The time delay is 

assumed to be known and to be equal to zero. The input 

signal u(t) is MFBSl. The frequency of u(t) is 0.25 rad s~ 

The observations are 

z(t) = y(t) + h(t) 

The noise h^t) is generated by 

0 . 2 5 ^ ^ * ^ + 1.25 1^^*^ + h(t) = e(t) 
dt^ "̂^ 

where e(t) is a zero-mean Gaussian process having power 

density spectrum 
^ , . s , s i n 0.021+5 01x2 
^ee^J'^) = ^ 0.021+5 J ' 

S (jw) is flat within 99^ over the frequency range of the 

test signal. The signal-to-noise power ratio at the output 

with respect to the dominant harmonics is 0.6l. Hundred 

independent records were generated consisting of four 

periods each. From these records the system coefficients 

were estimated for a record length of two and four periods 

respectively. The estimator was the weighted least squares 

estimator with weighting matrix U = 1 . The first column 

of Table 1 shows the average and the standard error of the 

estimates. For comparison purposes the second column shows 

the asymptotic standard deviation of the minimum variance 

least squares estimator in parentheses. The third column 

shows in parentheses the standard deviation of the minimum 

variance least squares estimator for the MLBS under the 
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same conditions. 

Table 1 

a^ = 1.00 a^ = 1.25 a^ = 0.25 

Record length: two periods 

a^ 1.02 + 0 . 3 2 ( 0 . 2 9 ) (0.1+0) 

a 1.17 + 0.32 (0 .32) (0 .23) 

Sg 0 .228 + O-O65 (O-O65) ( 0 . 0 6 6 ) 

Record l e n g t h : f o u r p e r i o d s 

a 1.00 + 0.21 ( 0 . 2 0 ) ( 0 . 2 9 ) 

a 1.22 + O.2I+ ( 0 . 2 2 ) ( 0 . 1 7 ) 

a O.2I+I + O.OI+I (O.OI+6) (O.Ol+T) 

D i s c u s s i o n of t h e r e s u l t s of t h e f i r s t e x p e r i m e n t . 

Accord ing t o ( 1 . 2 . 9 ) t h e e l e m e n t s of A a r e g i v e n by 

A ( s ^ . ) = ^ [ l A ( s ^ . ) l 2 { S ( s ^ _ ) + S ( s ) } + 
1 1 2 2 1 3 3 1 

k . gggg k . 

In this experiment S, , (s, ) = S (s, ) = 0 and 
h^h^ k^ gggg k^ 

the frequency range of the test signal it follows that 

X(s, ) =*^. Thus A(:)diag (l, 1, 1, 1, 1, l) = I. Therefore 
k. 2 
1 

in this particular case the weighted least squares estimator 

with weighting matrix fi = 1 and the minimum variance least 

squares estimator coincide. Table 1 shows that even for a 

record length of two or four periods the standard error 

agrees with the asymptotic standard deviation of the minimum 

variance estimator. 

The estimates of Table 1 are biased to some extent. 

However, the bias is small as compared to the standard error. 
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Furthermore it is observed that the bias is of first order. 

First order bias is bias inversely proportional to the 

observation time. First order bias may easily be removed 

using a bias elimination scheme due to Quenouille. See 

Kendall and Stuart (I967), page 5. Unfortunately this 

scheme involves an increase of the variance to first order 

and is therefore not suitable for records consisting of a 

small number of periods. On the other hand the bias of 

estimates obtained from records consisting of a large 

number of periods is small in comparison with the standard 

deviation and may therefore be neglected. Therefore 

application of the Quenouille scheme is advisable only if 

unbiasedness is essential and if many periods are available. 

Finally, it is observed that in the case considered 

here the asymptotic standard deviations of the minimum 

variance least squares estimators for the MLBS and the MFBS 

are of the same order of magnitude. 

Second experiment. 

The system is described by (1.1+. 1 ). The time delay is 

assumed to be known and to be equal to zero. The input 

signal u(t) is MFBSl. The frequency of u(t) is 0.125 rad s~ 

The observations are 

z(t) = y(t) + h(t) 

The noise h(t) is a zero-mean Gaussian process having power 

density spectrum 

Q r • 1 - n n-3̂  rsin O.OI+9O ajx2 
b^^(jc.) - 0.036 ( 0.01+90 J • 

S-uv̂ (jw) is flat within ^3% over the frequency range of the 

test signal. The signal-to-noise power ratio at the output 

with respect to the dominant harmonics is O.9O. Hundred 

independent records were generated, each consisting of 

four periods. From these records the system coefficients 
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were estimated for a record length of two and four periods 

respectively. The estimator was the weighted least squares 

estimator with weighting matrix fi = 1 . The first column 

of Table 2 shows the average and standard error of the 

estimates. The second and third column show in parentheses 

the asymptotic standard deviation of the minimum variance 

least squares estimator for MFBSl and the MLBS respectively 

under the same conditions. 

Table 2 

a^ = 1.00 a^ = 1.25 a^ = 0.25 

Record length: two periods 

SQ 0.997 1 O.Ol+T (0.038) (0.050) 

a.| 1.226 + 0.131 (0.095) (0.061) 

a 0.2I+I+ + 0.060 (O.OI+7) (0.055) 

Record length: four periods 

^0 0.998 + 0.035 (0.027) (0.035) 

a 1.237 ±0.091 (0.067) (O.OI+3) 

a O.2I+6 + O.0I+3 (0.033) (0.039) 

Discussion of the results of the second experiment. 

As compared with the standard deviation of the minimum 

variance estimators, the estimates of Table 2 are less 

accurate than those of Table 1. This may be explained as 

follows. Recall that A is the weighting matrix of the 

minimum variance estimator. In this experiment A(:)diag (l, 

1, 6, 6, 32, 32). The estimates of Table 2, however, have 

been computed using the least squares estimator with 

weighting matrix fi = 1 . Note that in spite of the 

differences between the elements of fi and A the estimates 

of Table 2 are still reasonably accurate. 
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Third experiment. 

In this experiment the system coefficients are computed 

using the two-step procedure. The system and the test signal 

are the same as those of the preceding experiment. The half-

width of the spectral window k , used in the second step, 

is equal to 6. The noise h(t) is a zero-mean Gaussian 

process having power density spectrum 

c I • \ - n n-^-^f^^^ 0.01+90 01x2 

Ŝ ĵ (jt.) - 0.033( 0.0^90 01̂  

Sŷ ŷ (jw) is flat within 99^ over the frequency range of the 

test signal. Fourty independent records were generated 

consisting of two periods each. The first column of Table 3 

shows the average and standard error of the coefficient 

estimates computed in the first step. The second column 

shows the corresponding quantities computed in the second 

step. The third column shows in parentheses the asymptotic 

standard deviation of the minimum variance least squares 

estimator. 

^0 

^0 

^1 

h 

= 1 . 0 0 a = 

1.00 + 0.05 

1.21 + 0.12 

0.25 + 0.06 

Table 3 

= 1.25 

!o 
^1 

^2 

ag = 0.25 

1.00 + 0.01+ 

1-23 + 0.10 

0.21+ + 0.01+ 

(0.01+) 

Discussion of the results of the third experiment. 

The results of Table 3 show that the two-step procedure 

reduces the standard error of the estimates. Moreover, it is 

seen that in the case considered the standard error of the 

two-step estimates is comparable to the asymptotic standard 

deviation of the minimum variance least squares estimator. 
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Fourth experiment. 

In this experiment both the system coefficients and the 

time delay are estimated using the two-step procedure. The 

system is described by (1.1+. 1 ) with x = O.785I+ s. For 

comparison purposes the noise and test signal characteris

tics are the same as those of the third experiment. The 

half-width of the spectral window k , used in the second 

step, is equal to 6. Fourty independent records were 

generated consisting of two periods each. The parameters 

were estimated by computing the system coefficients for 

X = O.785I+ + k 0.0100, where k = 1, ..., 20, and selecting 

the optimal solution. The first column of Table k shows 

the average and standard error of the parameter estimates 

computed in the first step. The second column shows the 

corresponding quantities computed in the second step. 

Finally, the third column shows in parentheses the 

asymptotic standard deviation of the minimum variance least 

squares estimator. 

Table k 

O.785I+ ^0 

^0 

^1 

'a 

= 1.00 a.^ 

1.00 + 0.05 

1.20 + 0.10 

0.20 + 0.16 

0.83 + 0 . 1 1 

= 1. 

^0 
s 

^2 

^d 

25 . , = 

1.00 + 0.01+ 

1.20 + 0.10 

0.23 + 0.12 

0.81 + 0.10 

0.25 

(0.01+) 

(0 .09) 

(0 .13) 

(0 .10) 

Discussion of the results of the fourth experiment. 

Again it is concluded that the two-step procedure 

improves the accuracy of the estimates and that the standard 

error of the two-step estimates is comparable with the 

asymptotic standard deviation of the minimum variance least 

squares estimator. 
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Finally, comparing the results of Table 3 and Table 1+ 

it is important to note that the simiiltaneous estimation of 

the time delay causes a substantial increase of the standard 

error of the estimate of a . 

Fifth experiment. 

This experiment is an example of estimation in closed 

loop. The system is described by 

0.25 ^ ^ ^ ^ + 1.25 f^^^^ + y(t) = u(t - 0.982) 
dt 

The system is controlled by a three-term controller 

É L U Ü ) + 18.1 §-i(*̂ = 1.1+85 ̂ ( ^ ^ + 30.5 If^*^ + 
dt'^ '^^ dt^ ^^ 

+ 11.1 f(t) 

where f(t) and u(t) are the input and output of the control

ler respectively. The controller input is 

f(t) = s(t) - z(t) 

where s(t) is the set point signal and z(t) is the measured 

system output defined by 

z(t) = y(t) + h(t) 

The disturbance h(t) is generated by 

|^^'^+h(t) = e(t) 

where e(t) is a zero-mean Gaussian process having power 

density spectrum 

S (ju) is flat within 99^ over the frequency range of the 

test signal. The set point signal s(t) is BMFS2. The 

frequency of s(t) is 0.25 rad s 

Seventeen independent records were generated consisting 

of fo\ir periods each. The columns of Table 5 show the 
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average and the standard error for a record length of two 

and a record length of four periods respectively. The 

estimates were computed using the weighted least squares 

estimator with weighting matrix fi = I. 

Table 5 

a^ = 1.0 a.j = 1.25 ag = 0.25 T = O.982 

Record length: two periods Record length:four periods 

a^ 1.00 + 0.07 0.99 + 0.06 

a.^ 1.30 + O.II+ 1.27 + 0 . 0 7 

ag 0 . 2 3 + 0 . 0 2 O.2I+ + 0 .01 

X 0 .99 1 0 .02 0 .99 + 0 .01 

Discussion of the results of the fifth experiment. 

The results of Table 5 indicate that for increasing 

sample size the estimates converge to the actual values 

of the corresponding parameters. However, in view of the 

small sample size no far-reaching conclusions may be drawn. 

The estimates do not exhibit serious systematic deviations 

from the true values of the parameters. 
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1.5. Concluding remarks. 

In the numerical examples of Section 1.1+ the asymptotic 

standard deviation of the minimum variance least squares 

estimator has been adopted as a measure of accuracy of the 

estimates. In order to investigate as to in how far this is 

a sensible measure, it has to be compared with the minimum 

variance bound on the covariance of the estimator. In 

Section 3.5 it is shown that for Gaussian noise this bound 

is easily computed and coincides with the asymptotic 

covariance matrix of the minimum variance least squares 

estimator. 

Other important problems not considered in Chapter 1 

are the influence of the spectrum of the test signal on the 

accuracy of the estimator and the construction of test 

signals with specified spectral properties. These problems 

are discussed in Chapter 2. 

52 



CHAPTER 2 

Selection and synthesis of periodic test signals. 

The covariance matrix of the weighted least squares 

estimator of the system parameters proposed in this 

research was discussed in the previous chapter- The elements 

of this covariance matrix are functions of the weighting 

factors, the system parameters, the spectrum of the noise 

and the spectrum of the test signal. So for known system and 

noise characteristics the covariance matrix can be 

manipulated by selection of the test signal. The question 

then arises which test signal spectrum gives the most 

accurate estimates. Here the measure of error in estimation 

is taken as the weighted sum of the variances of the mini

mum variance least squares estimator. The particular 

spectrum and the corresponding test signals which minimize 

this measure are optimal in the defined sense. The 

particular choice of covariance matrix is motivated by the 

fact that it forms a lower bound for the covariance matrix 

of the weighted least squares estimator. Moreover, it is 

shown in Chapter 3 that this lower bound coincides with the 

minimum variance bound if the noise in the observations at 

the output obeys the normal distribution. Section 2.1 de

scribes the functional relationship between the measure of 

estimation error and the spectrum of the test signal. This 

section also discusses the numerical procedure for the 

minimization of the measure. Section 2.2 computes 

numerically a number of optimal spectra and compares the 

corresponding covariance matrices with those for a 

maximum length binary sequence as well as for a particular 

multifrequency binary signal for the same system and noise. 

The second part of this chapter is devoted to a search 

procedure for approximate synthesis of discrete interval 
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binary multifrequency signals having specified spectra. 

Binary multifrequency signals are periodic two-level signals 

that have the major part of their power concentrated in a 

limited number of relatively widely spaced harmonics. The 

numerical synthesis procedure is described in Section 2.3. 

In Section 2.k examples of signals computed using this pro

cedure are given. 
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2. 1 Computation of optimal test signal spectra. 

According to (1.2.12) the asymptotic covariance matrix 
. . . . ^(J) . 

Z of the minimum variance least squares estimator ff is 
described by 

Z^^ =-j^ ($'A-U)-^ (2.1.1) 

99 

where J is the niomber of periods taken into consideration, 

Ï is the period of the periodic test signal u(t), while $ 

is defined by (1.2.6) and (1.2.7) and A is defined by 

(1 .2.8) and (1.2.9). 

How consider the particular case that u(t) is known. 

Let the observations at the output be 

z(t) = y(t) + h(t) 

where y(t) is the response to u(t) and where h(t) is a 

stationary stochastic process having power spectrum S, , (ju). 

Define S (jw, ) = IY, I where Y, is the complex Fourier uu k ''ku' ku 

coefficient of the kth harmonic of u(t). Furthermore denote 

by H (ju) the transfer function of the system and let 
O 

Tj / • \ B( jü)) , . , 

Then i t i s shown in Section (3.1+) t h a t (2 .1 .1 ) may be 

w r i t t e n 

Z„ = X"'' (2 .1 .2) 
'\i'\, 

where 

k=_oo h h k 

k?SO 

( 2 .1 .3 ) 
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where 

»i^^")=^iTÉr i = i , . . . .N+ i (2.1.1+; 

, . xi-N-2 

H.(jai) = - ^B(jco) i = N+2, ..., N+M+1 (2.1.5) 

and 

H.(ju) = jw i = N+M+2 (2.1.6) 

where w = 2Trk/T 

It follows from (2.1.3) - (2.1.6) that for known 

system and noise characteristics the elements of X are known 

linear functions of the £ (joi, ), k = + 1, + 2, ... So the 
uu k — ' — ' 

elements of X and therefore those of I can be manipulated 
66 

by selection of the S (jto ). Consequently, if some function 
of the elements of Z is taken as a measure of the error in 

estimation of the parameters, this measure can in principle 

be minimized with respect to the S (jto, ). 
uu k 

Several measures of the error in multivariate estima

tion are known from the literature. A wellknown measure is 

the trace of the covariance matrix of the estimator 

involved. The determinant of the covariance matrix is also 

used. For a discussion of these measures and several others 

see Fedorov and Pazman (1968). Here the measure is taken as 

the weighted sum of the diagonal elements of the covariance 

matrix. This choice is motivated by the fact that it enables 

one to weight the various diagonal elements according to a 

desired accuracy. Furthermore, it is observed that in 

practice input power or output power is always restricted. 

The power constraint chosen in this research has the 
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following form 

, I \\J^\^ = ' (2 .1 .7 ) 

where A >̂  0. Note that this is an input power constraint if 

X = 1 for all k. Alternatively it is an output power 
• I . i2 

constraint if X, = H„(jto, ) 
k ' S k ' 

Summarizing, the problem considered in this section is 

to minimize the weighted sum of the diagonal elements of 

Z„ with respect to S (jw, ), k = + 1, + 2, .... subject to 
1^,% ĵ  uu ^ k ' — ' — ' ' '̂  
DO 

the c o n s t r a i n t ( 2 . 1 . 7 ) . The p a r t i c u l a r spectrum S (jio, ) 
uu k 

which corresponds to the minimum is defined as optimal. 

Test signals corresponding to the optimal spectrum will be 

referred to as optimal test signals. 

It is observed that the weighted sum of the diagonal 

elements of Z is nonlinear in the S (jto, ). As a result 
6 6 "^ ^ 

even in simple cases closed form expressions for the oytimal 

spectrum are difficult to obtain. The computation of tae 

gradient of the sum with respect to S (J'̂'i.) is, however, 

relatively simple as is shown below. This offers the 

opportunity to apply powerful numerical optimization 

techniques. 

Numerical computation of optimal spectra. 

The weighted sum of the diagonal elements of Z is 

described by 

N+M+2 
D = Y y.a.. 

.i, 1 11 
1 = 1 

where a.. denotes the ij element of Z . Now the problem is 
•^ 69 

to minimize D subject to the constraint (2.1.7) and the 

constraint 
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S (joi )^0 k = + 1 , + 2 , ... (2.1.8) 
TJ.U. K 

First the constraints (2.1.7) and (2.1.8) are both 

removed by substituting 
2 

S u u ( J \ ) = - ^ ^ ^ (2.1.9) 

£ = _oo 

«.#0 

and minimizing D with respect to y = (...,y , ,•• ,y .,y,, 
—k — 1 1 

.,.,y , . . . ) ' . The remainder of this section will be devoted 

to the derivation of a closed form expression for the 

gradient of D with respect to y. Once this expression has 

been obtained the application of numerical gradient 

techniques like the steepest descent method or the conjugate 

gradient method is straightforward. 

First it is observed that in view of (2.1.9) 

^̂ k" I ̂ \JK^ ^̂k 

2^k / 3D , V 9D 
las (joij \ { r , 2 I as (jto, ) " k ^ 3S , . 

I ^oVo u^ ^ "̂  uu(ja) 
i ' ' 

-1 
Furthermore, since Z = X 

96 

N+M+2 
D = 

^uu^j^)) 

(2.1.10) 

I ^ J Ui detX.. (2.1.11) 
1=1 

where X is the matrix obtained by eliminating the pth row pq 
and qth column from X. It follows from (2.1.11) that 
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3D 1_ 3detX 
detX 3S (joj, ) 

uu '̂  k 
D + 

, N+M+2 3detX.. 
1 Y 11 

detX l , ^i 3S (joj, ) 
1=1 uu '̂  k 

(2.1.12) 

The derivatives in this expression may be written 

and 

3detX 

3detX.. 

N+M+2 N+M+2 

p=1 q=l 

3x 
(-1)^ detX 

pq 3S. 

M+N+1 M+N+1 
I I (-1) 

m= 1 n= 1 

m+n 

uu •" k 

(2.1.13) 

3x. . 
detX.. . 

ii,mn 3S^^(j<o^) 

(2.1.11+) 

where X is the matrix obtained by eliminating the mth 
pq,mn 

row and nth column from X while x is the mn element 
pq pq,mn 

of X . Note that the elements x are a subset of the 
pq pq,ran 

elements x 
_pa 

Now in order to obtain the gradient of D with respect 

to y at some point y the procedure is as follows. First the 

values of S (jw, ) are computed for y using (2.1.9). Then 
uu xi 

the elements of X are computed according to (2.1.3)-(2.1.6). 

Subsequent inversion of X using the Gauss elimination method 
yields detX and the cofactors (-1) • 

3x 
E3.—- also follow from (2.1.3)-(2.1.6). Furthermore 

detX . The derivatives 
PI 

'\u^^\' 
3x 

since the x are linear in the S (jto, ) , the rr 
pq uu '̂  k 3S 

-E£_ 

uu-J\' 
are 

independent of S (joi, ) and need to be computed only 
uu k 

once. Now using (2.1.13) the first term of (2.1.12) is 

calculated. The second term of (2.1.12) is evaluated 

59 



using (2.I.1I+). Inversion of the X.. yields the 

3x. . 
cofactors (-1) detX. . . The derivatives -77: r^ r are 

11 ,mn 3S (Jul, ) 
~ uu k 
3x. . 

known since these are a subset of the 77; 7-. r. Then using 
3S (ju ) 

. -, , „ uu k 
3detX.. 

(2.1.11+) the derivatives r— r~- TJ and hence the second 

term can be computed. This completes the computation of the 

gradient of D with respect to the S (jco ). Finally, using 

(2.1.10) the gradient of D with respect to y is obtained. 
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2 .2 Numerical examples. 

The system considered i s described by a — ' ^ — + 

d (t) ^^ +a,'-^, + a y ( t ) = u ( t - x ) where the values of the 1 dt o 

parameters are a = 0 .25 , a = 1 . 25 , a = 1 and x i s 

a r b i t r a r y . The observat ions a t the output are 

z( t ) = y ( t ) + h ( t ) 

where y(t) is the steady state reponse to the periodic test 

signal u(t) and h(t) is a stationary stochastic process 

having power spectral density 

^hh^j^) = ^o 

where S is a constant. In what follows it is assumed that 
o 

the observation time is an integral number of periods The 

power of all inputs is equal to one. Furthermore all weights 

in the measure of the estimation error are equal. So the 

measure is the trace of the covariance matrix Z"̂"̂  • 
6 9 

Since u(t) is periodic, time delay can only be 

estimated modulo the period of the fundamental. Therefore 

it is aësumed that the time delay consists of the sum of a 

known integral multiple of the period of the fundamental and 

an unknown fraction of this period. Ambiguity in the inter

pretation of the estimates of this fraction may still arise 

if their standard deviation is comparable to the period of 

the fundamental. Therefore it is assumed that the standard 

deviation of the time delay estimates is sr.all compared to 

the period of the fundamental Asymptotically this condition 

is always met. 

In order to investigate the effect of estimation of 

time delay upon the variance of the estimator of the 

coefficients all computations were carried out both for 
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(a) 

(b) 
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.03125 .0625 .125 .25 .5 
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.015 
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S u u ( j w ) -100 
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-
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MFBS 

1 W c / ' - N ^ Ü J c j 

.25 .5 1 8 16 32 

Oü [rad s- i ] 

Figure 2 . 1 . ( a ) The t r a c e of t he asymptotic covariance matrix 
of the minimum var iance l e a s t squares es t imator as a function 
of fundamental frequency for unknown t ime delay; (b) The 
optimal spectrum, the spectrum of t he maximum length binary 
sequence, the spectrum of the mult i f requency binary s igna l 
for a fundamental frequency of 0.5 rad s-1 and the square of 
the modulus of t he system t r a n s f e r func t ion . 
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unknown and for known time delay. First the minimum values 

of the trace of Z and the corresponding input spectra are 
99 

determined for a number of fundamental frequencies of the 

input. For the same set of frequencies the trace of Z is 

computed for a maximum length binary sequence (MLBS)and the 

multifrequency binary signal MFBSl described in Section ^.k. 

The MLBS considered here has 63 steps in a period and only 

its first 63 harmonics, representing nearly 90% of its total 

power, are taken into consideration. The computations for 

the MFBS are based on its dominant harmonics only. 

Figure 2.1 shows the results for joint estimation of 

coefficients and time delay. In figure 2.1(a) the trace of 

Z , normalized with respect to observation time Ï , and 
'\j'\j ob s 
69 

intensity of the noise, is plotted as a function of funda

mental frequency. In what follows fundamental frequency will 

be denoted by 10..Figure 2.1(b) shows respectively the optimal 

spectrum, the spectrum of the MLBS, the spectrum of the 

MFBS for (0., = O.5 rad s and the square of the modulus of 

the system transfer function. The corner frequencies of the 

system are indicated by to and to . Note that the 

1̂ ^2 
bandwidth of the system and that of the optimal spectrum 

are approximately equal. Also note that the optimal 

test signal has four harmonics only. These are the funda

mental, the second, the seventh and the eighth harmonic. 

V/ith respect to the MLBS and the MFBS it follows from 

Figure 2.1(a) that these signals give results comparable to 

the optimum only for fundamental frequencies of about 0.2 

rad s . As an illustration the standard deviations of the 

minimum variance least squares estimator with the optimal 

input, the MLBS and the MFBS respectively are given in 
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Figure 2.2.(a) The trace of the asymptotic covariance matrix 
of the minimum variance least squares estimator as a function 
of fundamental frequency for known time delay; (b) The opti
mal spectrum, the spectrum of the maximum-length binary se
quence, the spectrui.-i of the multifrequency binary signal for 
a fundamental frequency of 0.5 rad s-l and the square of the 
modulus of the system transfer function. 
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Table 2.1 for to 

Note t h a t for üi 

0.125 rad s and for oi 
• 1 

0.5 rad s 

0.5 rad s the deviations with the MLBS 

and MFBS from the optimum are quite serious. 

Table 2. 1 

obs 

01̂  = 0. 125 rad s 

PARAMETER 

a 0 

^1 

^2 
T 

PARAMETER 

a 
0 

^1 

^2 
X 

OPTIMAL 

2 . 5 0 

3.88 

I+.50 

2 . 9 3 

tô  = 0 .5 

OPTIMAL 

2.1+3 

3.96 

^ . 5 1 

2 . 9 3 

MLBS 

2 .75 

3.71 

5.71 

I+.II+ 

rad s 

MLBS 

6.1+5 

6 .25 

5.61+ 

3.1+1+ 

MFBS 

2.0I+ 

5 .12 

7.1|1+ 

5 .60 

MFBS 

3.35 

6 .20 

10 .08 

I+.I7 

Figure 2.2 and Table 2.2 representing the case of known 

time delay show corresponding results for joint estimation 

of the coefficients. Once more it is observed that MLBS and 

MFBS yield results comparable to the optimum only in a 

limited frequency range. Again the optimal spectrum, the 

spectrum of the MLBS, the spectrum of the t4FBS and the 

square of the modulus of the system transfer function are 

shown for to = 0.5 rad s . Note that the bandwidth of the 

optimal spectrum is less than the system bandwidth. 
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Table 2.2 

obs 

0.0625 rad s -1 

PARAMETER 

a 
0 

^1 

\ 

"1 

OPTIMAL 

1.89 

2 . 7 7 

2 .26 

= 0 .5 r a d s"'' 

MLBS 

2.0I+ 

2.81+ 

2 . 7 1 

MFBS 

1 .92 

3.1+0 

2 . 8 2 

PARAMETER OPTIMAL 

2.05 

2.75 

2.1+3 

MLBS 

6.1+5 

6.25 

3.6U 

t-lFBS 

3.35 

5-08 

8.83 

Comparing the results of Table 2.1 with those of 

Table 2.2 it is clear that the estimation of time delay 

causes an increase of the variance of some of the estimators 

of the remaining parameters. In particular this applies to 

the estimator of a . This is equivalent to the observation 

that the estimator of a and that of x are strongly 
"̂  -1 

covariant. For example, for to. = 0.125 rad s the 

correlation coefficient of these estimators is as high as 

-O.8I, -O.9U and -O.9I for respectively the optimal signal, 

the MFBS and the MLBS. This means that overestimation of x 

usually yields underestimation of a and vice versa. Although 

this may not be surprising it may easily give rise to an in

correct interpretation of the measurement results. 
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Concluding remarks 

A practical conclusion to be drawn from the numerical 

examples is that in order to find an appropriate fundamental 

frequency it seems worthwile to carry out a priori 

computations of the minimum variance bound for a number of 

different fundamental frequencies of the input. These 

computations may be based on a priori knowledge about the 

system and noise obtained from mathematico-physical analysis 

or from previous experiments. In addition to information 

about the appropriate fundamental fr- luency such 

computations also provide information about possibly strong 

covariances between the estimators of the parameters. 
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2.3 Approximate synthesis of periodic binary signals having 

specified power spectra. 

This section is concerned with the synthesis of 

discrete interval, binary multifrequency signals. These are 

discrete interval, two-level signals which have the major 

part of their power concentrated in a limited number of 

relatively widely spaced, selected harmonics, "ince the 

signals are binary and discrete time they can be generated 

using simple digital circuitry and can easily be 

synchronized. A further advantage of these signals is that 

their peak factor, computed relative to the rms value of the 

selected harmonics, is relatively low as compared with that 

of signals obtained by adding a number of appropriate 

sinusoidal signals. The peak factor is defined as the ratio 

of the peak value to the rms value. The peak factor of a 

test signal should preferably be small since the range of 

linearity of the input transducer is usually limited. 

Jensen (1959) constructed binary multifrequenc;/ signals 

by clipping the sum of a number of selected harmonics of 

appropriate amplitudes. It can be shown that this procedure 

maximizes the weighted sum of the Fourier coefficients of 

the resulting clipped signal, where the weighting factors 

are the corresponding Fourier coefficients of the original 

signal. See Van den Bos (1967). A disadvantage of this 

clipping procedure is that is not clear how the phases of 

the harmonics of the original signal should be chosen in 

order to obtain a clipped signal having the minimal peak 

factor relative to the selected harmonics. This difficulty 

is avoided by constructing binary signals which optimize a 

function of the power of the selected harmonics instead of a 

function of their Fourier coefficients. The remainder of 

this section discusses such a procedure. 
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In what follows the amplitude values of the discrete 

interval periodic binary signal u(t) are +1 and -1. So the 

power is equal to one. The number of steps in a period is 

I . The period is denoted by T. Zero crossings only occur at 

t = iT/I where i = 0, ..., I -1- The value of u(t) on 

iT/I < t < (i+l)T/l is denoted bv u(i)- Now let 
s s 

S(jijo ),..., S(jto ) denote the specified values of the 
- 1 - L 

power of the harmonics + k , . . . , JH k r e s p e c t i v e l y and l e t 
1 L 

L 
^ S(jw^ ) = 1. The criterion to be minimized with respect 

i=-L i 
?̂̂ 0 
to u(i), i=0, ..., 1-1 is taken as 

^ 1? ? 

I {S(jto ) - IY, r i ^ (2.3.1) 
2, = -L I i 
1^0 

Since the u(i) can only assume the values +1 and -1 and 

since (2.3.1) is nonlinear in the u(i), the minimization of 

(2.3.1) is a zero one integer nonlinear programming problem. 

Is is clear that minimization of (2.3.1) via explicit 

enumeration of all possible combinations of values of the 

I variables u(i) is unattractive since for the signals 

considered here I is 61+ or more. More efficient general 
s 

procedures for the solution of zero one integer nonlinear 

programming are described in the literature. Plane and 

McMillan (l97l) first reformulate the unconstrained 

nonlinear problem into a linear one by introducing a number 

of constraints and new variables and then compute the 

solution by a standard implicit enumeration algorithm. See 

Plane and McMillan (l97l), Chapters 3 and 5. The main 

disadvantage of the method is that the size of the problem 
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grows considerably. Using this method the problem at hand 

is transformed from an unconstrained nonlinear problem 

having I variables into a linear one having a number of 
."" . 1+ 

constraints and a number of variables of the order I . 
s 

Section 10.3 of Garfinkel and Nemhauser (1972) describes a 

method for solution of unconstrained zero one integer 

nonlinear programming problems. It can be shown that for the 

particular problem considered this method hardly reduces 

the computational effort as compared with explicit 

enumeration of all possible combinations of values. 

Since no more suitable algorithm for minimization of 

(2.3.1) was known to the author, a computationally simcle, 

heuristic procedure was developed. This procedure is 

extensively described in Van den Bos (I967) and may be 

summarized as follows. First an initial configuration is 

generated by assigning at random the value +1 or -1 to each 

u(i). This is done for each u(i) independently. Next the 

Fourier coefficients and the corresponding criterion are 

computed. Now, using a uniform random number generator a 

number between 0 and I -1 is produced. Let this number be 

i . Then u(i ) is converted into -u(i ) and next the Fourier 
0 0 o 

coefficients and the corresponding criterion are computed 

for this new configuration. If the inversion of u(i ) is an 

improvement in the sense of the criterion it is maintained, 

if not the original situation is restored. Next the same 

computations are carried out for u(i +l) and so on up to 

u(i +1 -1 )where the argument should be taken modulo I . Now 
O S s 

using the uniform random number generator a new starting 

point i. is generated and a second run is made. This process 

is continued until a complete run without further 

improvement occurs. This procedure does not necessarily 

yield the optimal solution, but by repeating it the 
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probability of finding the optimal solution or a suffiently 

good suboptimal solution, greatly increases. Therefore the 

procedure is repeated a number of times and the best 

solution is selected. 

A number of signals computed using this procedure is 

given in the next section. 
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2.1+ Numerical examples 

In all numerical examples described in this section the 

specified values of the power of the L selected harmonics 

are S(jtü ) = 0.5/L where il = +1 , .,., +L. The notation of 

the signals is illustrated by the following examples. A 

signal that is +1 on two consecutive intervals and -1 on 

the next five is denoted 2 5 . The efficiency of a signal is 

defined as the ratio of the power concentrated in the 

selected harmonics to the total power. 

Signal 1 

I = 512. L=6 . k =1, k =2, k =1+, k^=8, k =l6 andkg=32. 

The signal is symmetric about t=0. 

The efficiency is 0.702. For 0 < t < T/2 the signal is 

described by 23"̂ 5"9"̂ 3~1+5"̂ 25~5"̂ 27~3"̂ 27~11*3~27"̂ 2l+~7"*'l2~ 

Selected harmonics 

1 

2 

1+ 

8 

16 

32 

Signal 2 

I = 61+. L=2 . k =1 and k =6. The signal is symmetric about 

t=0. The efficiency is 0.61+5. For 0 < t < T/2 the signal is 

described by 9~l+"̂ 5~8"*"2"''1+"̂ . 

Selected harmonics a, B, 

1 - 0 . 3 9 8 

6 +0.1+06 

+0.2I+1 

+0 .239 

- 0 . 2 5 1 

+0 .239 

-O.2I+I 

+O.2I+7 
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s i g n a l 3 

1 = b l 2 . L = 3- k = 1, k = 15 and k = 3 1 . The s i g n a l 

i s skew symmetric abou t t = 0 and symmetr ic abou t T/1+. The 

e f f i c i e n c y i s 0 . 7 5 1 . For 0 < t < T/1+ t h e s i g n a l i s d e s c r i b e d 

by iri+"^8"l0"^25"7'^26"7"^27"3"^. 

S e l e c t e d harmonics a, B, 

1 - -0 .352 

15 - -0 .366 

31 - -O.3I+3 

S i g n a l 1+ 

I^ = 2 5 6 . L = 5 . k^ = 1, kg = 7 , k^ = 15 , k^ = 23 and 

k^ = 3 1 . 

The s i g n a l i s skew symmetr ic about t = 0 and symmetr ic 

about T/1+. The e f f i c i e n c y i s O.760. For 0 < t < T/k t h e 

s i g n a l i s d e s c r i b e d by 5~12 1+~1 6~6 1+ 19 l+~3 . 

S e l e c t e d harmonics a, 
k a \ 

+0 

+0 

- 0 

-0 

- 0 

21+3 

299 

276 

289 

.270 

1 

T 

15 

23 

31 

S i g n a l 5 

I^ = 2 5 6 . L = 5 . k^ = 2 , k = 8 , k = 16 , kj^ = 2l+ and 

k^ = 3 2 . 

The s i g n a l i s symmet r i c abou t t = 0 and abou t T/1+. The 

e f f i c i e n c y i s O . 6 9 7 . For 0 < t < T/1+ t h e s i g n a l i s 

d e s c r i b e d by 2"5'*"3"l l"^5"l+"^5~2"^7"8"^12~. 
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Selected harmonics a, (3, 
k„ k„ i I 

2 0.21+6 

8 O.29I+ 

16 0.263 

2I+ 0.269 

32 -0.272 

Concluding remarks 

In the above numerical examples only signals having 

special symmetry properties have been computed. These 

symmetry properties result in considerable savings in 

computation time. For example, for the signals 1 and 2 the 

search procedure needs to be carried out for the first half 

of the period only. In the case of the signals 3, 1+ and 5 

only the first quarter of the period needs to be taken into 

consideration. On the other hand the introduction of 

symmetry properties restricts the class of possible phases 

of the selected harmonics considerably. This implies that 

possibly a number of signals which are better in the sense 

of the criterion is precluded. 

Since the signals are binary, their peak factor 

relative to the rms value of the selected harmonics is 

equal to the square root of the reciprocal of the 

efficiency. For example, the peak factor of signal 2 is 

I.2I+. Now for comparison purposes consider the signal 

cos (2''i't/T) + cos(2Tr6/T +f) . The peak factor of this signal 

can be minimized by adjusting the phase angle 'f . The 

minimum value is 1.97- So in spite of the fact that signal 

2 has only 61+,5/» of its power concentrated in the selected 

harmonics, its peak factor, computed relative to the rms 

factor of the selected harmonics, is relatively small. 
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Finally observe that signal 1+ contains only odd 

harmonics. Signal 5, however, is composed of even harmonics 

only. So these signals have no common harmonics and are 

therefore suitable for application to systems having more 

than one input. 

. 
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CHAPTER 3 

Proofs and mathematical d e t a i l s 

This chapter contains proofs and mathematical d e t a i l s 

of some re su l t s d i scussed in the previous chap t e r s . 

The est imator of t he system parameters proposed in 

Chapter 1 is a funct ion of the es t imator of the Four ie r 

coef f ic ien t s of input and ou tpu t . The es t imator of t he 

Fourier coef f i c ien t s i s taken as the l e a s t squares e s t ima to r . 

This choice is mot ivated by the fact t h a t t h i s es t imator 

r equ i r e s l i t t l e a p r i o r i knowledge about t he no i se . Deta i led 

a p r i o r i knowledge about the noise requi red for more 

soph i s t i ca t ed e s t ima to r s i s usua l ly not a v a i l a b l e . Moreover, 

the l e a s t squares es t imator i s computat ionally convenient . 

Sect ion 3.1 d i scusses t h i s es t imator and e s t a b l i s h e s s u f f i 

cient condit ions for i t s cons is tency . 

The r e su l t s of Sect ion 3-1 are used in Sect ion 3.2 

where t h e expression for t he l e a s t squares es t imator of the 

system parameters i s der ived. This s ec t ion a l so d iscusses 

the condit ions for t he consis tency of the es t imator of the 

system parameters . 

Since the e s t ima to r of t he system parameters i s a 

d i f f e r en t i ab l e funct ion of the es t imator of t he Four ie r 

c o e f f i c i e n t s , i t s asymptotic covariance matr ix can be com

puted from the asymptotic covariance mat r ix of t he Fourier 

coef f i c ien t s using a theorem due t o Goldberger. For t h a t 

purpose f i r s t t h e asymptotic covariance mat r ix of t he 

es t imator of t he Four ie r coe f f i c i en t s i s computed in Sect ion 

3 .3 . Then using t h e r e s u l t s of Section 3 . 3 , Sect ion 3.1+ 

derives the express ion for the asymptotic covariance of the 

es t imator of the system parameters . Sect ion 3.1+ a l so com

putes t h e asymptotic covariance matr ix of t he r e s i d u a l s . 

Section 3-5 computes the minimum var iance bound for the 
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estimation of the system parameters. This section also 

shows that the minimum variance least squares estimator 

discussed in Section 1.2 achieves the minimum variance 

bound asymptotically if the noise in the observations at 

the output is normally distributed. 

Finally, in Section 3.6 the asymptotic expectation 

of the estimator of the weighting matrix used in the two-

step least squares procedure is computed. It turns out that 

this estimator, which was selected on intuitive grounds, is 

slightly biased. It is shown that by a minor modification 

of the estimator the bias is easily removed. 
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3.1. Least squares estimation of Fourier coefficients 

This section discusses the least squares estimation of 

the Fourier coefficients of a periodic function disturbed 

by additive noise. Sufficient conditions for the consistency 

of this estimator are given. 

Let f(t) be periodic with period T. Define the complex 

Fourier coefficient of the kth harmonic of f(t) by 

1 ^ 
\ j . = — ƒ f(t)exp(-j2Trkt/T)dt (3.1.1) 

o 

and denote 

^kf "" \ f ~ "̂ k̂f 

Let 

w(t) = f(t) + n(t) 

be observed, where n(t) is a stationary stochastic process 

having an autocovariance function R (t,). Furthermore let 
nn 1 

w(t) be observed for 0 •$ t < JT where J i s an i n t e g e r . The 
l e a s t squares es t imator y, ^ of Y, ̂  i s t h a t value of Y, ̂  

kf kf kf 

which minimizes 

JT 
/ {w(t) - I Y f̂. exp(j2TTit/T)} dt Y^^ e x p i j i ; i T i t / T H 

o i=-oo 

Hence 
JT 

^kf^ " JT / ^ ( t )exp(- j27rk t /T)dt (3 .1 .2 ) 

o 

o r , equ iva len t ly 

JT 
kf JT a ,^ = — ƒ w(t )cos 2Trkt/T dt (3 .1 .3 ) 

and 

\ f " J T / •^(*)^i"^ 2TTkt/T dt (3.1.1+) 
o 

The es t imators ( 3 . 1 . 2 ) - (3.1.1+) are unbiased s ince 
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(j) 1 '̂ •̂  

EYJ^^^ = E JT / w ( t ) e x p ( - j 2 7 r k t / T ) d t 
o 

JT 
= j ^ ƒ Ew(t)exp(-j2TTkt/T)dt 

o 

1 "^ 
= j ^ ƒ ( f ( t ) + y )exp(-j27rkt/T)dt 

o 

= j ^ ƒ f ( t ) e x p ( - j 2 ^ k t / T ) d t = Yj,_f 
o 

where y = E n ( t ) . 

In order t o i n v e s t i g a t e the consis tency of y}J f i r s t 

consider t he random v a r i a b l e VJT ^v*. • The var iance of t h i s 

random v a r i a b l e i s 

E ( l / ^ a ^ j L E - K J Ï a [ j ^ ) 2 = E ^{a^f - a^^)^ 

1 '̂ '̂  
= j ^ E( ƒ n ( t ) c o s 2ïïkt/T d t ) 

o 
JT JT 

= j ^ f i-^.^ f dtg Rj^^(t2 - t J c o s 27rkt.j/T cos 2TTkt /T 
o o 

, JT JT- t 
= j ^ ƒ dt Rj^j^(t) ƒ dt.j cos 2TTkt.|/T cos 2TTk(t̂  + t ) /T+ 

o o 

1 r° '^ 
•=; y dt R ( t ) / d t , cos 2ïïkt,/T cos 2Trk(t, + t ) / T 
u 1 -rm I^n / ^ I [ 1 

O O 

JT 
+ ' 

.vv 
-JT 

1 "^ 
= — /" R ( t ) ( l - | t | / J T ) c o s 2ïïkt/T dt + 

1 " " 
" 8 ^ ^ / ^nn^*^ ^^"^ ^' '^1*1' ' '^ '̂ •̂  (3 .1 .5) 

Now assume t h a t R ( t ) i s abso lu te ly i n t e g r a b l e . This implies n n ^ o X-

t h a t 

00 

ƒ |R n^^ l̂ ^^ " " (3 .1 .6 ) nn 
—CO 
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Then 

JT 
/ R ( t ) ( 1 - | t | / J T ) c o s 2-iTkt/T dt 

- J T ^^ 

< / R ( t ) ( 1 - t / j r ) c o s 2ï ïkt /T dt 
J t -pi-, I I I -JT ^" 

+ 0 0 

< / l\n^^^l dt < «. (3.1.7; 

and 

JT 
/" R ( t ) s i n 2TTk|t | /T d t 

-A "̂  
JT 

< /" |R ( t ) s i n 2 T T k | t | / T | d t 
- J T nn ' ' 

00 

/ IR ( t ) Idt < <» (3 .1 .8 ) 
•̂  nn 

nn 
_ o o 

I t t h e n fol lows from ( 3 . 1 . 5 ) , ( 3 . 1 - 7 ) and ( 3 . 1 . 8 ) t h a t 

E JT(a(j) - ^ / < . 

and h e n c e 

J-x» 

It is concluded that 3 „ converges in the mean square to 
AX 

a . C o n s e q u e n t l y a „ c o n v e r g e s i n p r o b a b i l i t y t o a . 
i t i iiCl KX 

T h e r e f o r e t h e c o n d i t i o n t h a t R ( t ) i s a b s o l u t e l y i n t e g r a b l e 
nn J B 

i s a s u f f i c i e n t c o n d i t i o n f o r t h e c o n s i s t e n c y of a . I f i n 
k i 

a d d i t i o n i t i s assumed t h a t 

/" | t R ( t ) I d t < 00 ( 3 . 1 . 9 ) 
•^ nn 
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i t follows from (3 .1-5) t h a t 

lim E ( VJT ali^ - E 1 ^ «H^)^ 
-. k i k i 
J-KO 

= - / R ( t ) cos 2TTkt/T dt = TT S (j2TTk/T) (3 .1 .10) 
2 / nn 2 n n " 

»00 

where S (jto) denotes the power d e n s i t y spectrum of n ( t ) . 

In t he same way i t can be shown t h a t (3 .1 .6) i s a su f f i c i en t 

condi t ion for the consistenc 

(3 .1 .6 ) and (3 .1 .9 ) are met 

condi t ion for the consis tency of g and that i f both 

lim E ( V<ÏT êiJ^ - E 1 ^ êf i^)^ = 
j->co k l k l 

= ^ S ^ ^ ( j 2 w k / T ) (3 .1 .11) 

-K(J) 
The condition (3.1.6) for the consistency of a and 

"(J) • • . 

3/._ is a sufficient condition. The following example shows 

that it is not a necessary condition. For example, consider 

the case that n(t) is a periodic process. A periodic process 

is a process having a periodic autocovariance function. See 

Van Trees (I968), page 209. An example of a periodic auto

covariance function is 

R (t) = cos(2Trt/T') (3.1-12) 

where T' denotes the period. Clearly this autocovariance 

function is not absolutely integrable. Substituting (3.1-12) 

in (3.1-5) yields 

E( V ^ S^J^ - E VÏT S^J))2 

= - / c o s (2TTt/T')(1 - | t | / J T ) cos 2ïïkt/T dt 
-JT 

- Q^̂ ĵ / cos (2Trt/T') s in 2-iïk|t |/T dt 
-JT 
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TT ? 
= ^ [s in{Tr(k/T + l / T ' ) J T } / { ï ï U / T + 1 / T ' ) J T } ] + 

TT 9 
+ ^ [sin{TT(k/T - 1 /T ' )JT}/{Tr(k/T - 1 / T ' ) J T } ] 

JT 

8TTkJ J s i n {2Tr(k/T + 1 / T ' ) t } d t 
1 

1 
8ïïkJ 

Hence 

JT 
ƒ s i n {2ïï(k/T - 1 / T ' ) t } d t 

. ( j ) _ , ^ , W , a , ( " ' » ' " ' ^ " > ' / ^ 
l i m ( V J T a!.^'^ - E l / JT S^ , 
J-x» ^^ lo f o r 1/T' / k /T 

So i n s p i t e of t h e f a c t t h a t t h e a u t o c o v a r i a n c e f u n c t i o n 

of t h e p e r i o d i c p r o c e s s n ( t ) i s no t a b s o l u t e l y i n t e g r a b l e , 

a converges i n t h e mean s q u a r e t o a p r o v i d e d t h a t t h e 
k i kx 

f r e q u e n c y 2irk/T does not c o i n c i d e w i t h t h e f r e q u e n c y 
2'ir/T • of t h e p r o c e s s n ( t ) . C o r r e s p o n d i n g l y , 

CO f o r 1 / T ' = k / T 
lim ( 1/?T B Ĵ̂  - E 1/JT B Ĵ̂  )2 = 
J-w I 0 f o r 1/T' i^ k /T 
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3.2. The estimator of the system parameters and its 

consistency 

In this section first the expression for the least 

squares estimator of the system parameters is derived. The 

conditions for its consistency are derived next. 

According to Section 1.1 the least squares estimator 

c is that solution for c which minimizes 

(?(j)c-a(J)). Ü'' {^'^^K-l^'h (3.2.1) 
The gradient of (3.2.1) with respect to c is 

'-{v^'K-i^'h^ Ü-' {?^'K-^^'h 
dC 

= 2T^^'\-' T^'K - 2?'^'\-' d̂ J) (3.2.2) 

So c must satisfy 

^ , ( J ) , -1 p(J ) . ( J ) _ p . ( J ) , -1 g(J) __^ (3^2.3) 

and hence 

S(J) . (p . ( J ) , -1 p(J))-1 p . ( J V l liJ) (3.2.1,) 

where it is assumed that P' Q, P is nonsingular. In 

order to investigate the validity of this assumption first 

the rank of the matrix P is determined. 

The rank of P 

The rank of a matrix is defined as the number of vectors 

in the largest linearly independent set of vectors which can 

be constructed from the columns of that matrix. The matrix 

P is 2L X (N+M+1). Now assume that 2L » N+M+1. This implies 

that the number of system coefficients is supposed to be 

smaller than or equal to twice the number of harmonics 

taken into consideration. So r(P) < N+M+1, where r(P) denotes 

the rank of P. The matrix P is defined by (1.1.6) and (1.1.7). 
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From these equations i t follows that the columns of P are 

l inear ly dependent i f there exists a set of scalars y , . . . , 

y , V , . . . , V , not a l l of which are zero, such that 

N M-1 

n=o a r m=0 i I 

and 

N M-1 

^ ^n "̂̂  \ \ y - l \ ^"^ % \ u = ° ^3.2-6) 
n=0 ^l \ y m=0 "" h h"^ 

for i = 1 L. The real equations (3.2-5) and (3.2.6) 

are equivalent to the complex equation 

° ^ \ ^ V " '^'^£^ V = ° ^3.2.7) 
where 

D(s) = y^ + y.|S + . . . + ŷ ŝ 

and 
M—1 

E(s) = v̂  + v.̂ s + . . . + Vĵ _.j s 

for Jl = 1 L. Substituting y B(s )/A(s ) for 
0 rt ft 

Y, in (3.2.7) yields sc z i 
^ / 

{D(s, ) B(s ) - E(s, ) A(s, )}Y, , = 0 (3.2.8) 

since A(s ) / 0 for i = 1 L. Now le t Y, / 0 for 
i a^ 

X = 1, . . . , L. Then i t follows from (3.2.8) that the columns 

of P are linearly dependent if a set of scalars y , . . • , 

y . , V , . . . , V,, - can be found such that 

Re{D(s, ) B(s, ) - E(s, ) A(s, )} = 0 (3.2.9) 

and 
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Im{D(s, ) B(s, ) - E(s, ) A(s, )} = O (3 .2 .10) 

for i = 1, . . . , L. Now suppose t h a t such a s e t of s ca l a r s 

e x i s t s . Taking i n to account t h a t s = jto i t t hen follows 
k * k „ 

from (3 .2 .9 ) and (3 .2 .10) t h a t 

^1 ^2 ^L 
[3 .2 .11) 

s a t i s f y 

Re{D(jto) B(jüi) - E(jto) A(jto)} = 0 (3 .2 .12) 

and 

Im{D(jtü) B(jto) - E(jto) A(jto)} = 0 (3 .2 .13) 

The l e f t -hand members of (3-2.12) and (3.2.13) are even 

and odd polynomials in to r e s p e c t i v e l y . Consequently 

^1 ^2 ^L 

must a l so s a t i s f y (3 .2 .12) and ( 3 . 2 . 1 3 ) . So b o t h (3 .2 .12) 

and (3 .2 .13) have at l e a s t 2L r o o t s . According t o the 

d e f i n i t i o n of t he polynomials A(jai) , B(jto), D(jto) and 

E(jto) n e i t h e r t he degree of (3-2 .12) nor t ha t of (3 .2 .13) 

can exceed N+M. Hence n e i t h e r t h e number of r o o t s of (3 .2 .12) 

nor t h a t of (3 .2 .13) can exceed N+M. So if t h e se t of s c a l a r s 

e x i s t s the i nequa l i t y N+M > 2L h o l d s . Since by assumption, 

however, 2L > N+M+1 > N+M i t i s concluded t h a t t he requ i red 

se t of s c a l a r s does not e x i s t . Hence the columns of P a re 

l i n e a r l y independent and r(P) = N+M+1 if N+M+1 < 2L. 

Returning t o (3.2.1+) consider t h e matrix P'Q~ P. Let 

2L > N+M+1 and l e t Y, T̂  0 for l = ̂  , . . . , L. Then P i s a k u i 

2L x (N+M+1) matr ix having rank r (P ) = N+M+1. By d e f i n i t i o n 

Ü i s a 2L X 2L p o s i t i v e d e f i n i t e mat r ix . Then P'a~ P i s 

p o s i t i v e d e f i n i t e and t h e r e f o r e nonsingular . See Goldberger 



-1 -1 
(196U), page 35. Consequently (P'n P) exists and there
fore generally (P' Q. P )~ exists. Then the elements 

are continuous functions of the estimators of the Fourier 

coefficients a, , 6 , » S, and B • A theorem due to 
^ j i ^ ^ < i ^ ^ j i ^ ^!>y 

Slutsky states that the probability limit of a continuous 

function is the function of the probability limits of the 

arguments. See Wilks (I962), page 102. Now assume that the 

estimators of the Fourier coefficients are consistent. If 

then follows from Slutsky's theorem that 

p lim c^J) = p lim (?'(j)n-^ T^'h-' ?'^'^^-' d^") 

= (P'n~''p)~'' P'n"''d (3.2.II+) 

where p lim c denotes the probability limit of the 

sequence {c }. According to (1.1.10) 

Pc = d (3.2.15) 

Finally, substitution of (3.2.15) in (3.2.11+) yields 

p lim ĉ "̂ ^ = (P'n~''p)~'' P'n~''pc = c 

From the above considerations it is concluded that 

c is a consistent estimator of c if the following 

conditions are both met; 

1) the estimator of the Fourier coefficients is consistent 

2) the number of unknown system coefficients is smaller than 

or equal to twice the number of non-zero harmonics taken 

into consideration. 

Consistency in the case of unknown time delay 

As described in Section 1.1 the estimation procedure 
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for the case of unknown time delay is as follows. The 

coefficients of the differential equation are estimated for 

a number of selected values of time delay. The optimal value 

of the time delay and the corresponding solution for the 

coefficients are selected. 

It is observed that this estimation procedure can only 

be consistent if the selected range of values of time delay 

includes the true value. Furthermore as the test signal is 

periodic with period T the time delay can only be computed 

modulo T. Therefore in this research it is assumed that the 

,time delay consists of the sum of a known integral multiple 

of T and an unknown fraction of T. For simplicity in what 

follows this unknown fraction will be referred to as time 

delay. Note that with this definition the value of the time 

delay always lies within the interval [0, T). Consequently, 

is a sufficiently large number of equidistant values of the 

time delay is taken into consideration, these values always 

include the true value or at least a value close to the true 

value. In what follows it is supposed that this condition 

is met. 

First consider the case that the Fourier coefficients 

of the test signal and those of the response are exactly 

known. Now select from (3-2.15) N+M+2 equations- These 

equations constitute N+M+2 relations between N+M+2 unknowns. 

So in general the coefficients and the delay can uniquely 

be determined if N+M+2 $ 2L, 2L being the number of equations 

in (3.2.15). Note that for unambiguous determination of the 

time delay the sum of the harmonics to which the N+M+2 

selected equations correspond may not repeat itself within 

one period of the fundamental. This difficulty is avoided 

by including one or both equations corresponding to the 

fundamental frequency. 
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Next consider the case that only estimates of the 

Fourier coefficients of the test signal and the response 

are available. First it is observed that the estimators of 

the system coefficients and the time delay used in this 

research are continuous functions of the estimators of the 

Fourier coefficients. Now recall that Slutsky's theorem 

states that the probability limit of a continuous function 

is the function of the probability limits. So, if the 

estimators of the Fourier coefficients are consistent, the 

estimator of the system parameters converges in probability 

to the solution for the system parameters in the noiseless 

case. It has been shown above that this solution is in 

general the true value of the parameters if 2L > N+M+2. Note, 

however, that ambiguity in the interpretation of time delay 

estimates may arise if the standard deviation of the time 

delay estimates is comparable to T. Therefore it is assumed 

that the standard deviation is small compared with T. Asymp

totically this condition is always met. 

It is concluded that the proposed least squares esti

mator for the system coefficients and the time delay is in 

general consistent if the following conditions are both 

satisfied: 

1) the estimator of the Fourier coefficients is consistent 

2) the number of unknown system parameters is smaller than 

or equal to twice the number of non-zero harmonics taken 

into consideration. 
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3.3. The asymptotic covariance matrix of the estimator of 

the Fourier coefficients of input and output 

Let the input u(t) and the response y(t) be periodic 

with period T. Assume that the observations are described 

by 

v(t) = u(t) + g(t) and z(t) + y(t) + h(t) 

where g(t) and h(t) are stationary stochastic processes. Let 

the observation time be JT where J is an integer. Consider 

the least squares estimator 

.(J) _ ,.(J) ̂ (J) AJ) -AJ) M) -(J) ^(J) g(J)^, 
k.,y k.jy k.jU k^u k̂ y k̂ y k̂ û k̂ û 

(3-3-1) 

of the Fourier coefficients 

n = (a, 6, a, B, .... a, B, o, B, )' k.jy k̂ y k.jU k.|U k̂ y k̂ y k̂ u "̂ k̂ u' 

where k- ... k are the harmonic numbers of the L harmonics 
. . . >.(J) 

taken into consideration. The elements of n are defined 

hy (3.1.3) and (3.1.1+). The asymptotic covariance matrix 

of n is defined as 

where V̂  . is defined by 
nn 

V... = lim E l ^ ( n ^ ' ^ ^ - En^'^^) VJT(n^'^^ - En^"^^)' 

(3-3.3) 
'̂̂  J ^ 

The 1+L X 1+L mat r ix V*^ i s evaluated by computing a l l 

covariances between the elements of 1/JT n . These com

pu ta t ions follow c lose ly the procedure for computation of 

lim E( VJT ci^^^ - E V<5T a^^ )^ descr ibed in Sect ion 3 . 1 . 
J-KO 

Therefore here only the results are given. These may be 

summarized as follows. 
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Let S (jto) and S, , (jto) be t h e power d e n s i t y s p e c t r a of 
gg hh 

g ( t ) and h ( t ) r e s p e c t i v e l y and l e t S , (jto) be t h e c r o s s 

power d e n s i t y spec t rum of t h e s e p r o c e s s e s . Assume t h a t t h e 

i n t e g r a l s 

/ | R ( t ) | d t , / | R j ^ ^ ( t ) | d t , ƒ |R ( t ) d t 

/ " i t R ( t ) | d t , /" I t R ^ ^ ( t ) | d t , / ' | t R ^ ( t ) | d t y ' gg I » y I hh I ' y I gh ' 
..00 ° " _oo _00 ° 

a r e f i n i t e , where R ( t ) and R,, ( t ) a r e t h e a u t o c o v a r i a n c e 
» g g ' h h ' 

f u n c t i o n s of g ( t ) and h ( t ) r e s p e c t i v e l y and R ( t ) i s t h e i r 

c r o s s c o v a r i a n c e f u n c t i o n . Then i t can be shown t h a t 

, , / = : ^ ( j ) - / = > . ( J ) s N - R e S ^(j2TTk„/T) k =k 
l im cov( 1/JT a, , VJT a, ) = ^̂  2 gh "̂  S, A m 
, k . u k y K, , /, 
J-+<» Z m*̂  0 k„fk 

^ I m 

/ .\ f T\ ["^Re S ^(j2Trk„/T) k =k 
limco.{V^^l'\l^li'^) =\^ eh^ ^ ^ ^ m 
J - '^a^ V 0 k,/k^ 

^ a m 

, , / = r <.(J) ^,.r^ f TT Im S ^(j2TTk„/T) k =k 
l im cov( VJT a ; ; - , / = r ; ( J ) s _ 2 g h ' ^ ;!, I m 
T.^ k „ u , Vol B,, „J - ] 

it, m 
J-«o i ' k y 

m 

fT\ f T\ ( - T Im S ^ ( j2TTk. /T)k =k 
l i m cov( VJ¥ l i ' \ VJT a ' h = ^'^ 
J-^ ' ^ i ^ V 0 k„^k 

* I m 

(3.3.1+) 

The e l e m e n t s of V which a r e no t d e s c r i b e d by (3.3.1+) a r e 
nn 

o b t a i n e d by s u b s t i t u t i n g u f o r y and g f o r h r e s p e c t i v e l y o r 

by s u b s t i t u t i n g y f o r u and h f o r g r e s p e c t i v e l y i n (3 .3 .1+) . 
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I t f o l l o w s from t h e above c o n s i d e r a t i o n s t h a t 

V^<. = d i a g (V;, . . . W, . . . W, ) 
nn k^ k^ k^ 

( 3 . 3 - 5 ) 

where 

/ \ h ^ -^^-^ i / " ) 

\ = ^ 
^ i 2 

\ h ^ J 2 ^ ^ i / ^ ) 

Re S ^ ( j27rk. /T) Im S , ( j 2 ï ï k . / T ) 
gh 1 gh 1 

-Im S ^ ( j 2 ï ï k . / T ) Re S ^ (j2TTk./T) 
gh ' 1 gh "" 1 

Re S (j2Trk /T) -Im S (j2TTk./T) 
gh 1 gh • 1 

Ira S , (j2TTk./T) Re S ( j 2 ï ï k . / T ) 
gh 1 gh 1 

S ( J2 ï ï k . /T ) 
gg 1 

Sgg ( J 2 . k . / T ) 

( 3 - 3 . 6 ) 

Th i s c o m p l e t e s t h e c o m p u t a t i o n of t h e a s y m p t o t i c c o v a r i a n c e 

m a t r i x of n ' . 
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3.1+. The asymptotic covariance matr ix of t he es t imator of t h e 

system parameters 

I n th i s s e c t i o n the asymptotic covariance mat r ix of t he 

es t imator of t he system parameters i s computed. The asymp

t o t i c covariance mat r ix of the r e s idua l s i s a l so der ived . 

The asymptotic covariance matr ix Zĵ g of t he es t imator 

- ( J ) _ ,JJ) AJ) AJ) - ( J ) - ( J ) ; ( J ) ^ , „ ,, 8 = (.a a. . . . a,, b . . . b,, , x j ' or t h e 
o 1 N o M-1 

system parameters 9 = (a . . . a., b . . . b . x ) ' i s defined 

by 

hrh^re (3.^.1) 
where 

V— = l im E 1/JT(6^"^^ - E9^'^^) V J T ( 9 ^ " ^ ^ - Eg^"^^)' 
99 ^ 

J-xa 

The elements of 6 are functions of t he es t imator of t he 

Four ie r coef f i c ien t s n̂ "̂ ^ = (a["^^ B̂ "̂ ^ é^^ BI"^^ . . . 
k^y k.jy k.jU k^u 

a, B, ct, B, )' whose asymptotic covariance matrix 
k^y k^y k^u k^u 

E.»-̂  was computed in Section 3-3. Es;̂  is computed from l^^ 
nn 99 -̂  nn 

using a theorem due to Goldberger. See the Appendix. Accord

ing to this theorem 

where it is assumed that the derivatives exist and that the 

central moments of the elements of n of order higher than 

two are of order of magnitude lower than r=. 
J1 

Now r e c a l l t h a t t h e es t imator 9 i s t h a t value of 9 

which minimizes 

. , ( J ) „-1 ^ ( J ) 
(3.1+.3) 
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where z = P c - d denotes the vector of residuals. 

Thus 9 must satisfy 

( ^ ) e = 9 ( J ) ^ " ' ^ ^ ^ ' \ = 9 ( ^ ) = ° (3.1..M 

This is a set of N+M+2 equations in 9̂  ' and n^ . Since 

at n̂  ^ = n {z )Q_S(J) = 0, it follows from (3.1+-1+) that 
D —D 

and hence 

r(j)x. 

- ( J ) 
n =n 

0'^).{ 
n 

\ se " 139 j K ( J ) = , I3e " Un^^V / , ^ ( J L , 
(3.1+.5) 

Defining 

.^ (JK 

" = « ' 
* ' = l § | — i,(j) (3.1i.6) 

and 

.(J)s 1. = (üii:\ '̂ ̂ • • ^ ^ ^ M J ) . (3.1+.7; 

(3.I+.5) may be written 

1 ^ ^ = - ($'n"^$)"\$'fi"^G) (3.U.8) 

' / n -n 
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Com.bining (3.1+.2) and (3.1+.8) 

zgg = ($'n~''$)~''$'n~''G2:.^G'n"^$($'n~^$)"'' (3.1*.9) 

Now consider the matrix GZ^^G' in this expression. Accord-

nn 
ing t o (3.I+.7) 

GE-̂ -̂ G' = ^ V ^ T Z . . P V ^ (3.1+.10) 

So i t follows from Goldberger 's theorem t h a t GZ^^G' i s t he 
nn 

asymptotic covariance mat r ix Z^^ of the r e s i d u a l s z . 

Therefore in what follows 

Z^^ = GZ...,G' (3.1t-1l ) 
ee nn 

Computation of Z'...̂» 
• e e 

In the case of unknown time delay the odd and the 

even numbered elements of z are described by 

Re{A(jai^^)Y[^^ - B^(Jai^^)Y[^h (3.I+.I2) 

and 

^^'^\^^^il|-^^^^\\u^ (3.U.13) 
respectively, where 

B^(jto) = B(jto)exp(-jtox) (3-1+.1U) 

Then P , 

/ ' 1 
I \ n 

g.(j) 
G' = ' -̂-

,.<^),-<.,,„ (3.1*.15) 

\ ° 

95 



where 
Re A(jtOĵ  ) Im A(jaiĵ  ) 

i i 

Im A(jtüĵ  ) -Re A(jtOĵ  ) 

Gĵ _ = ' ' I (3.It.16) 

^ -Re B (jto, ) -Im B̂ (jtü, ) 
1 1 

'-Im B̂ (jto, ) Re B (jto, )' 
X k. k. 

The matrix I. in (3.^-11) has been computed in Section 
nn 

3.3 and is described by (3-3.2), (3.3.5) and (3.3.6). In

serting (3.3.1+) and (3.1+.15) in (3.1+.11) and multiplying 

ht = h ^ ' - ^ \ ' \ \ ) (3.U-17) 

where the 2 x 2 matrices D are described by 
XJ 

\ = \ \ Gv (3.It.18) 

Then using (3-3.6) and (3-'+-l6) it is easily shown that the 

off-diagonal elements of D are zero, while the diagonal 
^L 

elements are descr ibed by 

l l A ( j c o ^ ^ ) | \ ^ ( j t o ^ ^ ) + i | B ( j t o ^ ^ ) | \ ^ ( j . ^ ^ ) + 

+{-Re A(jto, )Re B (jto, ) + 

- Im A(jto, )lm B (jto, ) }Re S , (jto, ) + 

+{-Im A(jai, )Re B (jto, ) + 

+ Re A(jw )lm B (jto. )}Im S (jco, ) = 
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^Kei\A{j.^n S^,(jto^^) + |B^(j.,^)| S^^{j.^^) + 

B + 2A(j(.0ĵ  )B^ (jüjĵ  )Sgh^J\ ^̂  (3.1t.l9) 

Now let the processes g(t) and h(t) be composed as 

described in Section 1-2, that is 

h(t) = h.j(t) + h2(t) + h3(t) 

and 

g(t) = g.|(t) + g2(t) 

where h , ( t ) i s t h e s t e a d y s t a t e r e s p o n s e of t h e sys t em t o 

g T ( t ) , g „ ( t ) and h ( t ) a r e m u t u a l l y i n d e p e n d e n t and 

independen t of a l l o t h e r components of g ( t ) and h ( t ) . h ( t ) 

i s p o s s i b l y c o r r e l a t e d w i t h b o t h g - ( t ) and h ( t ) . Under t h e s 

a s sumpt ions S (jtjo), S (jto) and S , (jto) may be decomposed 

as fo l lows 

^hh^j") = Sh^h/J") -̂  V 2 ^ j " ^ • ' ' V 3 ^ ' " ^ ' 

+ 2 Re S (jtAi) (3.1+.20) 
1 3 

and 

S (jto) = S^ , (jto) + S^ , ( j u ) (3.1+.22) 

F u r t h e r m o r e , s i n c e h ( t ) i s t h e s t e a d y s t a t e r e s p o n s e t o 

s / t ) 

| A ( j ( o ) | \ , (jco) + | B ( j to)I^S (jto) + 

- 2A(jto)B'*(joo)S (jtxi) = 

^ r i 

e 
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= | A ( j i o ) | \ . (jto) + | B ( j to) I^S (jto) + 
^1^1 ' s^g i 

- 2A(jai)B'^ (j(.ü){B (ji.ü)/A(jto)}S (jtxi) 
® 1 ^ 1 

= | A ( j t o ) | \ (jto) - | B ( j to ) I^S (jto) = O 
n^n^ T g^g^ 

(3 .1 t .23) 

and 

S (jto) = {B*(jto)/A*(jto)}S (jt^) (3.I+.2I+) 
1 3 ^ 1 3 

Then u s i n g (3.1+.19) and (3.1*.20) - (3.1+-21+) i t i s e a s i l y 

shown t h a t t h e d i a g o n a l e l e m e n t s of D a r e d e s c r i b e d by 

iMA(j.,^)iX2h^(^V^%h3(>k^)^^ 

+ |B (jto )fs (jto )1 
^ ^l ^2^2 ^Jt 

I t t h e n f o l l o w s from (3.1+.17) t h a t 

^tz "̂  JT ' i iS 'S{>^( \ )» ^ ( \ ) . . . . f ^ i \ ),>^i\ )> 
1 1 L L 

(3 . I t .25) 

where 

X(Uĵ  ) = i [ | A ( j t o )\^iS^^ (J^Oj, ) -̂  \ h ^ J \ )^ •" Kĵ  ^ k^ ngn^ kj^ n3n3 K^ 

+ |B (jo, )fs (jto, )] (3.^.26) 
T i^^ g g g g kj^ 

T h i s c o m p l e t e s t h e c o m p u t a t i o n of l^^. 

F i n a l l y , d e n o t i n g 

A = diag{X(to, ) , X(to, ) X(ÜI, ) , X((o, )} ( 3 . I t . 2 7 ) 
^1 ^1 ^L ^L 
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( 3 . I t . 2 6 ) may be w r i t t e n 

^^^ = ^ A (3 .1 t -23) 

Hence i t f o l l o w s from (3 - I t . 9 ) and ( 3 - l t - 1 l ) t h a t 

Z— =j^ {i'n~U)'U'Q~\ü~\{<t<n~U)~'^ (3.1t-29) 

Computation of Z.vy 

If Q = A the corresponding estimator is the minimum 

variance least squares estimator "g described in Section 1.2. 

It follows from (3.It.29) that 

(3.It.30) %=j?(^'^"'*)"' 
The e l emen t s of T.'^^ a r e con-nuted as f o l l o w s . A c c o r d i n g 

69 
to (3 . I t .6 ) m ( J ) 

n =n 

(3. I t .31) 

r ( j ) where the elements of z are defined by (3-lt. 12)-( 3.1t. lit). 

Differentiating E with respect to 9 = (a , ..., â  , b , 

13J^_^T) ' yields 

0 = ( $ • $ • .. 
^1 ^2 *kJ' (3-lt-32) 

where 
/ Be s, Yi o N D o / \ 

im s° Y^ ... im s'̂; Y^ -Im s° Y ,exp(-s x) 

... -Re s,~ y exp(-s x) -Re -s Y^ U^J'^K '> 

... -Im s," Y exp(-s x) -Im -s Y, ^ (S ) 

;3.!t.33) 
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with s, = jto, . Now define 
k„ k. 

uu k^ k^u' 

Furthermore note that 

Then using (3.It.27), (3.It.32) and (3.It.33) it is easily 

shown that the elements x of the matrix X = JT($'A~ $) may 
PI 

be w r i t t e n 

%^ ="' L x(to,.)" ^^^V'^"k.^ ^ ^ \ j ^ ^̂ -̂ -̂ ^̂  

where 

pq. 5;=i A(Wj, ) p ^ k„ q 

and 

F^(jtü) = (jüj)^~^B^(jto)/A(jto) i = 1, . . . , N + 1 

F . ( j to ) = -( j tü)^"-^~^exp(-j toT) i = :J + 2 , . . . . N+M+1 

F^(jüi) = jto B^ (jto) i = N+M+2 

Next c o n s i d e r t h e s p e c i a l c a s e t h a t 

g ( t ) = g ^ ( t ) = ^^{t) = 0 . 

Th i s i m p l i e s t h a t h ( t ) = 0 s i n c e h , ( t ) i s t h e s t e a d y s t a t e 

r e s p o n s e t o g. ( t ) . Now from ( 3 . I t . 2 0 ) and ( 3 . I t . 2 1 ) 

and 

\h^j"^ = \ h Ĵ"̂  ^ ĥ h Ĵ"̂  -iii 1 1 2 2 

S„„ ( j io ) = 0. 
eg 

Hence in view of (3.1+.26) 

X(w) = ^|A(jtü)|2 ^hh^J"^ 

Inserting this in (3-lt.3lt) gives 
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^- = ^M=i^V-k)l-(-k)l^'^V-k,)V>k,)> 

L %J^\ 

15^0 

* , JT l ^—n VüTl rr2"Re{F (jto, )F (jto, )} 
i = - L ^ h h ^ J \ „ ^ l ^ ^ J \ j l P ^ 2 <! ^ A 

(3.1t.35) 
Defining . . 

and 

/ - a - N - 2 

^i^*^"^ " " B l l i y i = N+2, . . . , N+M+1 (3.1t.36) 

H.(jto) = jto i = N+M+2 

(3.1t.35) may be w r i t t e n 

1?̂ 0 ^ 

where 

(3.1t.37) 

Hg(jto) = B^(jto)/A(jto). 

So the asymptotic covariance matrix Ẑ -̂ , of the minimum 

variance least squares estimator 9 for the case that g(t) = 0 

is obtained by inverting the matrix X whose elements are 

defined by (3.It.36) and (3-lt.37)- In Section 3-5 it will be 

shown that in this particular case Z-g^ is equal to the 
9 9 

minimum var iance bound for t he es t imat ion of 9 i f h ( t ) i s 

normally d i s t r i b u t e d . 
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3-5- The minimum variance bound 

This section computes the minimum variance bound (MVB) 

for the estimation of the coefficients of the differential 

equation and the time delay of the syst^ .. 

Let the system be described by 

a ^^^K a ^ ^ ' ^ + + ay(t) = 

N̂ ~N * V i -y^} + ••• + v ^ ^ ^ 
dt dt 

= ̂ ^'-^^-V/-M=T^'"^^^-^V(^-^ (-̂-̂^ 
dt dt 

where u(t) is the input, y(t) is the response to u(t) and x 

denotes time delay. The transfer function of the system 

(3.5.1) is given by 

Hg(jüi) = ||4^exp(-jtox) (3.5.2) 

with 

A(ju) = aĵ (jü)̂ ^ + aĵ _̂ (jto)̂ '"̂  + ... + a^ (3-5-3) 

and 

B(jto) = (jto)̂ '- + \j_/jw)""'' + + b^ (3.5-it) 

where to is frequency in rad s . 

The response y(t) may be expressed by the convolution 

integral 

y(t) = ƒ hg(t^)u(t-t^)dt^ (3.5.5) 

o 

where h (t) denotes the impulse response of the system. 

Defining 

ŝ = ^% '•• ^ : i \ ••• Vi ^)' (3.5.6) 

i t t h e n f o l l o w s from ( 3 . 5 - 5 ) t h a t 

Sy(t 
39 

u b o 

= / FT ^ ( t - t J t (3-5-7) 
o b 
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The changing of order of integrating and differentiating 

is allowed if h (t ) is continuously differentiable with 

respect to e„. It is concluded from (3.5.7) that ^̂ ^ ' 
S 89g 

is the response to u(t) of a system having impulse response 

3hg(t) 
— . Also h_(t) and H-(jto) form a Fourier transform pair. 
0 9-, b b 

b 

Therefore 

CO 

Hg(jto) =y hg(t)exp(-jtot)dt 

and hence 

3Hg(jto) " 3hg(t) 
TT = / rr exp(-jtot)dt 
^̂ S -» ®̂S 

So r| is the response to u(t) of a system having 
° q 

8Hg(jto) 
t r a n s f e r function r r . In what follows the expression 

^®S 

y(t) = •^"^{Hg(joi)}*u(t) (3-5.8) 

will indicate that y(t) is the response of the system to 

u(t); .^ ~ and '^ refer to the inverse Fourier transform and 

the convolution respectively. It then follows from the 

above considerations that 

3y(t)_ «--1 
r3H„(ju> 

= -^"' T ^ ^ *u(t) 
36^ ,..g 

Now assume t h a t 

z ( t ) = y ( t ) + h ( t ) (3 .5 .9 ) 

i s observed at t he output of t he system. The d is turbance 

h ( t ) i s assumed t o be a s t a t i o n a r y , normally i i s t r i b u t e d 

process described by 

h ( t ) = J^~''{Hj^(jto)}*e(t) (3 .5 .10) 
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where H (jto) is a transfer function and e(t) is a zero mean, 

stationary, normally distributed process having autocovari

ance function 

E e(t) e(t') = 6(t-t') 

Furthermore i t i s assumed t h a t u ( t ) and e ( t ) a re independent 

and t h a t H^(jto) has a l l z e r o ' s in the upper h a l f - p l a n e . 

Now l e t u ( t ) and z ( t ) be observed for 0 < t < T ^ 
obs 

and let the vector 8 be defined by 

6 = (9g'9^')' 

where 9 is defined by (3.5-6) and 9 is the vector of the 

b D 

parameters of H (jto). The elements of 9 will be referred to 

as noise parameters. Then using a procedure due to Sstrom 

(1967) the MVB for the estimation of 9 is computed as 

follows. First it is observed that the logarithm of the 

likelihood function L of the normally distributed e(t) for 
0 < t < T , may be written obs "' 

T 
in h = ~l f °^^ e^(t)dt + constant (3.5-11) 

See Sstrom (I967). Generally the relation between the loga

rithm of the likelihood function and the MVB of any unbiased 

estimator 9 of the parameters of the likelihood function is 

E(9 - e)(ê - 9)' > n"'' 

where II = [ IT ] i s the information mat r ix defined by pq 
2 

" p q = - = 3 F T r (3 .5 .12) 
P 1 

See Kendall and Stuart (I967), page 53. Now it follows from 

(3.5.11) and (3.5-12) that 
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T T 2 
_ „ / - obs 3 e ( t ) 3 e ( t ) 1?/'°^^ ^ + ^ L _ Ê 1 1 

' p q " V 39— 3ë— "̂^ •" 7 ^(^^sTig 

( 3 - 5 . 1 3 ) 

Combining ( 3 - 5 - 8 ) , ( 3 - 5 - 9 ) and ( 3 - 5 - 1 0 ) and r e a r r a n g i n g 

5 ^ " ^ H ^ ( j t o ) l * e ( t ) = z ( t ) - j r " ^ H g ( j w ) } * u ( t ) 

Hence 

^-^Hj^(jto)}* if^^= --^"^{s^^^W^*^ (3.5.lit) 

j r - l {Hj ja i ) }^ 3|it.)= _ jr-l{!!D_i!L}^e(t) (3.5.15) 
D - 39^ ^39^ 

F u r t h e r m o r e 

^ - I ^H (joi)}- ^ ^ i ^ = . j r - i r !VJ ! i ^ , 3e l t } 
y l i i j ^ i j t o ; ; 39^39,., 139^ ƒ 39„ 

r3H ( j u ) 3H ( j ( ; i ) 
^ j r - 1 ] ^ k—\ - ^ [*u(t) (3.5.16) 

he^ Hj^(j to) 39g ƒ '^^ ' '^ ^ ^ • ^ * '"•^ 

Since by a s sumpt ion u ( t ) and e ( t ) a r e i n d e p e n d e n t i t f o l l o w s 

from ( 3 . 5 . 1 2 ) - ( 3 . 5 . 1 6 ) t h a t 

Hence n may be w r i t t e n 

E ^ ^ ^ ^ • 0 
3e_2 

n = - 1 ^ „ 
0 E ^ ^" ^ 

39^2 

Consequen t ly t h e MVB i s 
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S^Jin L^-1 

(E l~r^ I (3.5.17) 
39p2 

From this expression it follows that , for the model of 

system and noise assumed here, those elements of II" which 

represent the MVB of the system parameter estimates do not 

depend on whether or not the noise parameters are known. 

Furthermore it follows from (3.5.13) and (3-5.15) that those 

elements of II which represent the MV3 of the noise para

meter estimates do not depend on u(t). 

In what follows only the MVB for the estimation of the 

system parameters will be considered. The expression (3.5.17) 

shows that this MVB is described by 
,2. \-1 

,-' _ / 3^r ( 3 ^ 5 ^ ^ g ) 

^-s 
In view of (3.5-12) and (3-5-13) 

, /obs 3e(t) /5e(t)y 

'I 3Ö„ V36, / 

;obs ^(^) i^elt) ̂ ^ (3^5_^^) 

S 

+ E 
•b 39 

Since by assumption e(t) and u(t) are independent it follows 

from (3.5.1^) that the second term of (3.5.19) is zero and 

hence 

_ /obs 3e(t) /'3o(t)\' _ 3e(t) /3e(t)y 

(3.5.20) 

The elements of the vector r-r in th i s expression are 
39g 
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computed from (3.5.llt) and (3.5.2). These elements are 

•(jio)^ H^(j<.o) 

~i ^^ 

• ( j t o ) ^ H „ ( j t o ) 

M t ) - i r ^ - ^ ^' ]'-Jl) (3 5 21) 
dl— ^ 1H^(JÜ.)A(JO.) P ^ * ^ 13.5.21) 

3e( t ) 

'h --D ^ {H,(jto)3(jto) H ^ ^ (3.5-22) 

and 

3e( t ) ^ ^ -1 
3x ^ \Hc(J") 

jto H (jto)^ 
J^~ ^ ^ T 7 ^ ^ u ( t ) (3 .5 .23) 

3e( t ) „ - l / J ^ ^ S ^ J " ^ ] 

k(j") 1 

Per iodic t e s t s i gna l s 

I t i s observed t h a t (3.5-21) - (3 .5 .23) are of the 

form ,ƒ '" {F( jto) }*u( t ) . Now assume t h a t u(t)^ i s pe r iod ic wi th 

per iod T. Furthermore l e t T , = JT where J i s an i n t e g e r . ^ obs 

I t i s e a s i l y shown t h a t for two pe r iod ic s igna l s 

J^"' '{F (jto)}*u(t) a n d . 3 ^ " ^ F (jto)}*u(t) 

JT 
ƒ J^~\F (jto)}<'u(t) J^"' '{F^(jtu)}i^u(t)dt 

= J T ^ Re{F ( j . ^ ) F ( j co^)}Sj j to^) (3.5.2lt) 
JJ,=_oo - ^ 

I 2 
where to„ = 2'!TJ,/T and S (juij = Y« • It then follows i uu "̂  Jl ' Au' 

from (3.5.21) - (3.5.2lt) that 

'̂pci = •'" I lT(Sjl"s(J".)l'«^^^p(J"A)<(J-il^^ 

o 
where S, .(jto) = |lL(jto) denotes the power density spectrum 

hh D 
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î('̂ ""̂  " MjtT for i = 1, .... N+1 (3.5.26) 

, . si-II-2 
H.(jtü) = - ;'̂ . N for i = N+2 N+M+1 
1 " B(jto) 

and 

(3.5.27) 

H.(jto) = jio for i = N+M+2 (3.5.28) 

This completes the computation of the elements of the 

matrix ^ for the case of periodic inputs. The MVB for the 

estimation of the system parameters is obtained by inversion 

of "i. 

A comparison of the elements ili defined by (3.5.25) -
pq 

(3.5.28) with the elements x defined by (3.It.36) and 
PI 

(3.It. 37) shows that the matrix V and the matrix X are iden-
-1 -1 . . . -1 . 

tical. Hence "i' and X are identical. Since X is the 

asymptotic covariance matrix of the minimum variance least 

squares estimator 6, it is concluded that 9 asymptotically 

achieves the MVB if the noise is normally distributed. 
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3.6. Estim.ation of the weighting matrix for the two-step 

least squares procedure 

In the two-step least squares procedure described in 

Section 1.3 the diagonal elements of the matrix A are esti

mated by 
k.J+k 

^(\.) = 2(2fTTTf^'f^^^^/^^)^(^)^ 
1 w k=k.J-k 

1 w 

- B(j2Trk/JT)exp(-j2Trkx/JT)V(k)} ^^j. + 

+ Im^{A(j27Tk/JT)Z(k) + 

- B(j2TTk/JT)erp(-j2TTkx/JT)V(k)} ^ ^ j ^ (3.6.1) 
9=9^ 

The selection of this estimator was based on the assumptions 

that asymptotically the square of the measured residual 

Re{A(j2Trk/JT)Z(k)- B( j2TTk/JT)exp(-j2nkx/JT)V(k) } , .,. 
9=8^'^^ 

and the square of t he measured r e s i d u a l 

Im{A(j2Trk/JT)Z(k)- B(j2TTk/JT)exp(-j2Tikx/JT)V(k)} , ^. 

are unbiased e s t ima to r s of the asymptotic var iance of the 

t rue r e s idua l 

Re{A(j2ïïk/JT)Z(k) - B( j2TTk/JT)exp(-j2iTkT/JT)V(k) } 

and t h e asymptotic var iance of t he t r u e r e s i d u a l 

Im A(j2Tik/JT)Z(k) - B(j2-iïk/JT)exp(-j2ïïkx/JT)V(k)} 

r e spec t ive ly and t h a t these var iances are equal . This sec t ion 

inves t iga t e s the condi t ions under which these assumptions 

hold. F i r s t i t i s shown t h a t the asymptotic expecta t ion of 

the measured r e s i d u a l s i s zero . Next the asymptotic c o v a r i 

ance matr ix of t h e measured r e s i d u a l s i s computed. Since the 
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asymptotic expectation of the measured residuals is zero, the 

diagonal elements of this covariance matrix are the 

asymptotic expectations of the squares of the measured 

residuals. These diagonal elements are then compared to the 

corresponding elements of the asymptotic covariance matrix 

of the true residuals. From this comparison it follows that 

the above assumption is valid only for those residuals which 

do not correspond to frequencies of non-zero harmonics of 

the test signal. This observation results in a proposal for 

a slight modification of X (to, ). 
w k. 

1 

In the remainder of this section it is assumed that in 

(3-6.1) k. = k since this simplifies the expressions to be 

derived. This is no loss of generality since k. may refer 

to any harmonic. Furthermore define 
Sĵ ĵ = j2TTk/JT and V^(k) = V(k)exp(-Sj^^jX) 

and recall that according to (1.3.1) and (1.3.2) 

1 ^^ 
V(k) = — y v(t)exp(-j27Tkt/JT)dt (1-3-1) 

o 

^"^ . JT 
Z(k) = 3^_/ z(t)exp(-j27Tkt/JT)dt (1.3.2) 

-'(J) Define the matr ix P, ' by lc/J,w 

p ( j ) 
k/J ,w 

R e s ° / j Z ( k ) R e s ^ / j Z ( k ) . . . Res^^/jZ(k) 

I m s ° ^ j Z ( k ) Im s^/ jZ(k) . . . Ims; ; / jZ(k) 

-«^ V J \ ( ^ ^ -^^ V J \ ( ^ ) ••• -«^ vX(^^ 

- I m s ^ / j V ^ ( k ) . l m s ^ / j V ^ ( k ) . . . - I m s ; ; ; X ( k ) 

( 3 . 6 . 2 . ) 
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and let 

p(j) - fp,(J) 
w ^'^(k^J-k^)/J,w •• 

p.(J) p,(J) p,(J) 
••• •̂ (k.jJ-1)/J,w k^J/J,w (k^J+l)/J,w •" 

•••^'V+k)/J,w)' (3.6.3) 
1 w 

while the vector d ' is defined bv 
w 

d(J) = 
w 

( M M 

Re sV, ,. , ^ ,., V (k,J-k ) Im sV, ., , , ,., V (k,J-k ) 
(k,J-k )/J X 1 w (k,J-k )/J X 1 
1 W 1 w 

w 

M , ^ M , ^ 
^^ ŝ v T u x1^/T V k,J-k +1 Im sV, ,. , ^,N ,, V k,J-k +1 

(k J-k +1)/J X 1 w (k.J-k +1)/J X 1 w 
1 w 1 w 

••• «^ <k^J-1)/J \(^'-^-^) "̂̂  ^(k^J-l)/J \^h'-'^ 

M M 
«^ ^ k ^ j / j \ ( " i ' ^ ^ "̂̂  \ ^ j / j ^ ( ^ 1 " ^ 

«^ ^ k ^ j + i ) / j \ ( ^ ' ^ - ^ ^ ) ^^ ^ ( k ^ j + i ) / j \ ( ^ j - ^ ) - - -

^^ ^k.j+k -DAT \ ( ^ j ^ v ^ ^ '̂̂  ^(k,j+k - i ) / j \ ( ^ J ^ v ^ ) 
I W I w 

M , ^ M 
Re s,, _̂̂, V ,., V k,J+k Im s,, ^_^, .,^ V k,J+k 

(k J+k )/J X 1 w (k J+k )/J T 1 w 
1 w 1 w >)' 

(3.6.1+) 

Then the vector of residuals ê ' is defined by 

a(J) = ?('^) c - d(-^) 
W W w 

while the vector of measured residuals Z 'j- is defined by 
WÖ 
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ê(^U(p(J) e-d(J)) ,,, (3.6.5) 
w9 V w w /Q^Q(J) 

It is observed that the elements of ê * are functions of 
-(J) the estimator of the system parameters 9 and of the 

-(J) • elements of the vector n defined by 
w 

n(^) = 
w 

(Re Z ( k , J - k ) -Im Z ( k , J - k ) Re V ( k , J - k ) - Im V ( k , J - k ) 
1 w 1 w 1 w 1 w 

. . . R e Z ( k J - l ) - l m Z ( k J - l ) R e V ( k J - l ) - I m V ( k . | J - l ) 

Re Z(k . j J+ l ) -Im Z ( k ^ J + l ) Re V(k. ,J+l) - Im V(k . | J+ l ) 

. . . Re Z(k .T+k ) -Im Z ( k , J + k ) Re V(k , J+k ) -Im V(k . J+k ) 
1 w 1 w 1 w 1 w 

Re Z(k J ) - Im Z(k. | J ) Re V(k^J) -Im V(k^ j ) ) ' 

Note t h a t t h e l a s t four e l e m e n t s of fi a r e i d e n t i c a l t o 
w 

S,('''̂  , S, , a,('̂^ and B, respectively. The elements of 
k.,y k^y' k.|U k.̂u 

Bj are functions of the estimator n of the Fourier 

coefficients of input and output defined by (3.3.1). This 

expression is repeated here 

.(J) _ ,.(J) -(j) .(J) -(J) 
n = (a, B, M, B, ... 

k.y k y k u k u 

.(J) r(J) -(J) s(J) w ,, ., .s 
... a, 6, a, B, ) 13.3.1) 

k̂ y k̂ y k̂ u k̂ u 

The elements of n and n can be combined into a w 

single vector n defined by 
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(Re Z(k,J-k ) -lm Z(k.J-k ) Re V(k,J-k ) -lm V(k,J-k ) 
I W I W I W 1 w 

... Re Z(k.jJ-l) -ImZ(k.,J-l) ReV(k^J-l) -ImV(k.|J-l) 

ReZ(k^J+l) -ImZ(k^J+l) Re V(k.jJ+1 ) -ImV(k.|J+l) 

... Re Z(k,J+k ) -lm Z(k,J+k ) Re V(k,J+k ) -lm (k,J+k ) 1 w 1 w 1 w 1 w 

.(J) ̂ (J) .(J) -(J) .(J) ̂ (J) ̂ (J) c(J) ̂ , 
\ y \ y \ . \ . . . . \ y \ y \ u \ u ^ 

Summarizing, z j- may simply be considered as a function of 
~(J) 
n . The computation of the asymptotic expectation and the 

asymptotic covariance matrix of z \ will be based on the 

w9 

asymptotic expectation and asymptotic covariance matrix of 

n . Therefore the latter quantities will first be computed. 
According to (1.3.2) 

Z(k) = -^ / Z(t)exp(-j2ïïkt/JT)dt 

o 

Hence 
JT 

E(Z(k) = 3^ / y(t)exp(-j2TTkt/JT)dt (3.6.6) 
"O 

y(t) is periodic with T. So y(t) is also periodic with JT. 

If y(t) in (3-6,6) is considered periodic with JT, its only 

harmonics which are not necessarily zero are those corres

ponding to harmonic numbers which are integer multiples of 

J. It then follows from (3-6.6) that 

Ŷ.̂^ if k = iJ, i integer 

E Z( 
f 'ly 

(k) = 
^0 otherwise (3-6.7) 
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similarly, 

f Y- if k = iJ, i integer 

[ 0 otherwise (3-^-Ö) 

Furthermore, according to Section 3.1 the expectation of the 

last 1+L elements of n is described by Ea, = a, , 
c " k . y ky * 

E B, = 6 , , E a,('"̂ ^ = a, and E g,('^^ = 6, - Th i s 
k . y k . y ' k . u k . u k . u k . u 

1 1 1 1 1 1 

completes the computation of E n . Note that the only 
- (J) . ^ elements of E n which are not necessarily zero are those 

corresponding to non-zero harmonics of y(t) and u(t). In 

what follows E n = n ; note that n is also the asymp-
c c c 

totic expectation of n 
c 

The asymptotic covariance matrix of fi is defined as 
c 

^nn =J^ ^nn (3-̂ -9) 
c c c c 

where V,̂  « is defined by 
n n 
c c 

v.. ̂  lim E l/JT(n('^^ - E n('^^) Vj^{^^^^ - E n(^^)' 
n n T c c J-«» 

since the computation of Z^ ^ is similar to the computation 
n n c c 

of Ï. discussed in Section 3.1 and Section 3.3 it will not 
nn 

be discussed in detail. Here, as an example, the computation 
of the asymptotic variance of the elements KJT Re Z(k) and 

VjT Im Z(k) of fi(''̂' will be given. It follows from (3.1.5) 
c 

that 

E { l / j T ( R e Z(k.|J+J!,) - E Re Z(k.| J+Jl)) }^ = 

1 J^ 
= rr f R u v ( t ) (1 - l t | / J T ) c o s 27 i (k , J+A) t / JT dt + 

2 _j^J hh 1 
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1 "̂ ^ 
- 8.(k,J+0 , J V ^ ^ ^ ' ^ 2n(k^J+0|t|/JT dt (3.6.10) 

1 —JT -̂  

Correspondingly it can be shown that the variance of 

VjT Im Z(k.|J+^) is obtained from (3.6.10) by replacing the 

minus sign in front of the second term by a plus sign. Now 

assume that R (t) is absolutely integrable. It has been 

shown in Section 3.1 that this is a sufficient condition for 

convergence of the integrals in (3.6.10). Hence (3-6.10) 

is finite. If in addition it is assû .̂ed that R (t) is 
gg 

absolutely integrable it can be shown in the same way that 

the variances of all other elements of V j T n are finite. 
c 

Again assuming that all central moments of n of order 

higher than two are of order of magnitude lower than — , 

(J 1 

it then follows from Goldberger's result that the asymptotic 

expectation of any differentiable function of fi is the 
function at ff = n , n being the asymptotic expectation 

of n̂  . In view of (3-6-7) and (3.6.8) the elements of 
c 

n are either Fourier coefficients of u(t) and y(t) or zero. 
c 

It then follows from (3.6.2), (3.6.3) and (3.6.1+) that n 

satisfies the set of equations 

|(p(J)c - d(̂ ^̂ ) ,,s} , , , = 0 (3.6.11) 
\ w w e=6(Ĵ -'n("̂ ^ = n 

I c c 

So it is concluded from (3-6.5) and (3.6.11) that the 

asymptotic expectation of ê j is zero. 
W9 

Returning to the computation of Z-̂  -. it follows from 
n n c c 

(3 .6 .10) t ha t for f i n i t e fixed k 
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l i m E ( 1 / j T Re Z{k^J+l) - E I / J T Re Z ( k ^ J + ^ ) ) ' 
J-x» 

1 J^ 
rr /" Rvu(t) (1 - | t | / J T ) c o s 2ïï(k,J+Jlt/JT dt 
2 -JT./ ^^ ^ 

(3 .6 .12) 

, ( t ) i s abs 
ih 

integrable it follows from (3.6.12) that 

Under the additional assumption that t R (t) is absolutely 

lim E ( Vj?Re Z(k^J+Jl) - E VjT Re Z(k.jJ+£))^ 
J-**» 

" i %h (J2TT(k̂ J+£)/JT) 

Note that this result is very similar to (3.1.10) and 

can be obtained by substituting j2ïï(k J+Jl)/JT for j2nk/T in 

(3.1-10). It can be shown that in the same way all elements 

of V* ̂  can be obtained from the results of Section 3.1 
c o 

and Section 3.3. The results of these sections are summarized 

in the expressions (3.3.1+)- Using these results V^ ^ can be 
c c 

wr i t t en 

^fi n = ^^"« (' '(k^J-k ) /J • • • ^ k , J - l ) / J ^ k J+ l ) / J 
c c 1 w 1 1 

•••"(v-.'/^\ \ ' 
where 
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w. 1^ 
l/J 

^hh(^i/j) . ° ^ ^ V ( ^ i / j ^ -^"^V^'i/j^^ 

° Shh(^i/j) ^ - V ( ^ i / j ^ ^^^gh(^i/j) 

Re S , (s. ,J lm S As. ,A S (s , ) O 
gh l/J gh' i/j' gg^ i/J-̂  

\-ImS^(s.,J ReS,_(s.,.,) O S {s.,Aj 
* gh i/J gh l/J' gg' l/J" 

(3.6-13) 

while according to (3-6-9) 

This completes the computation of Z..̂  » . 
n n c c 

Using the express ion for Z-̂  ^ t he asymptotic covariance 
c c 

matrix Z-̂  .. of ê -• is computed as follows- According to 
e s e - w9 
w6 w9 

Goldberger's result 

c c c c 

The p a r t i a l d e r i v a t i v e s in t h i s expression are computed as 

fol lows. Since at n = n , 6.. = 9 and s ince at 9J. =9, c c 1 I 
^(J) _ . ( J ) 

we W 
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3|(f 
w9 

3n 
(J) 

-- J _ 
c c 

3ê (J) 

3n 
(J) 

4J) 
n = n„ 
c c 

.(J)\' /,s(J) 

pi 
39 / .(J)_ , 3n('̂ ^ / -.(J)_ „ 

:3.6.15) 

Since ê is a function of fi only and 9.̂  is a function 
w w '̂  I 

of fi " only. (3.6.15) may be written 

,,(i)\' 
w9 

an 
,(J) 

^(J) 
n = n„ c c 

3 ê ^ 

3n(^)/,(J)_, 

3ê ( J ) \ ' 

^ ( J ) . 

(3 .6 .16) 

where 0' is a (1+L-1+) x (1+k +2) zero matrix, 0' is a 8k x 
1 w 2 w 

(N+M+2) zero matrix while n denotes the asymptotic 
w 

expecta t ion of n̂  
:J) 

Note t h a t the elements of n form a 
w 

subset of the elements of n • Now define 
c 

118 



3e(J) 

G ; = | - ^ 

'^w / n(^) = n^ (3-6.17) 

and note that G' is obtained by substituting n for n 
w w 

and ê for ê respectively in (3.1+.7). So analogous to 

(3.1+.15) and (3-1+.16) G' is described by 

G' = 
w 

^(k^J-k^)/J 

^(kJj-D/J 

^(k^J+l)/J 

^(k.J+k )/J 
I w 

^k 
'^l 

;3.6.18) 

where 
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'i/J 

Re A(s. ,A lm A(s. .J 
l/J l/J 

ImA(s./j) -ReA(s./j) 

-Re B^(s./j) -lm B^(s./j) 

-ImB^(s./j) ReB^(s./j) 

Furthermore define 

$• = 
w 

LAJ)' 
3e 
w 

39 
^(J) 

(3.6.19) 

(3.6.20) 

Note that $' is obtained by substituting ê for z and 
W w 

n for n' respectively in (3.'t.6). So analogous to 

(3.It.32) and (3.1+.33) 't' is described by 

*w= (*(k,J-k )/J ••' *(k,J-1)/J *(k,J+l)/J 
1 W I I 

.. $ (k^J+k^)/J * k j 

where 

'i/J 

«̂  ^i/j 2(^i/j^ ••• ^̂  4/j '(^i/j^ -^^ 4 / j \ ( ^ / j ^ 

"̂̂  ^i/j 2(^/j) ••• "̂̂  4/j ^("i/j^ -̂ "̂  4 / j \ ( ^ / j ^ 

... -Re ŝ "l V (s. ,_) -Re - s. ,_ V (s. ,JB(S. ,Ĵ  

l/j X l/J l/J X l/J l/J 

... -Im s.̂ T 'V (s- /T) -Im - s- /r V (S.,T.)B(S.,T)/ ^T^ l/J X l/J l/J T l/J l/J /*(J)_ n = n c c 

It has been shown above that the only elements of n which 
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are not zero are those corresponding to the non-zero har

monics of u(t) and y(t). So the only $.,, which are not null 

l/J 

matrices are those corresponding to the frequencies of these 

harmonics. Finally, according to (3.It.8) 

3ê(J)" 

^ - ' - - (*'*)~''*'G "• (3.6.21) 
Sn(J> 
dn .(J)_ 

n = n 
Subs t i tu t ing ( 3 . 6 . 1 7 ) , (3-6-20) and (3-6.21) in (3 .6 .16) 

y ie lds 

^ T 1 (3 .6 .22 ) 
-G '$ ($ ' $ )~ 

Hence from (3.6.11+) and (3 .6 .22) 

^w6^wê 
{(^w°i) **w(°2 - ( * ' * )" ' * 'G)} \n j ("w° i 

+ * (0„ - ( $ ' $ ) ' ' ' $ ' G ) i = (G O j Z ^ .. (G 0 . ) ' + 
w 2 w 1 n n w 1 

•" c c 

+ $ (0^ - ( * ' $ ) ~ V G ) Z - . - (G O J ' + 
w 2 n n w 1 

c c 

+ (G 0,)Z-. ^ (0_ -(<i>'$)"^$'G)'$' + 
w 1 n n 2 w 

c c 

+ $ (0^ -(* '0)" ' ' ' I ' 'G)Z. . . (0^ - ( $ ' $ ) " ' ' $ ' G ) ' $ ' 
w 2 n n 2 w 

c c 

(3 .6 .23) 

From the d e f i n i t i o n of n and fi i t follows t h a t 
c w 

the (8k + It) X 1 vector fi i s obtained from the (8k +ltL) 
^ ^ ( j ) ^ ^ ( J ) 

X 1 vec tor n by leaving out the l a s t 1+L-lt elements of n . 
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C o n s e q u e n t l y Z^ ^ i s t h e (8k +k) x (8k +1+) m a t r i x m t h e 
n n w w 
w w 

upper l e f t hand c o r n e r of t h e (5k +1+L) x (Bk +1+L) m a t r i x 
w w 

T.^ ^ and may therefore be written w 
z . . = i - V. . 

where 

n n ( k . J - k ) / J ( k , J - l ) / J ( k , J + l ) / J 
W W 1 W I 1 

• • • " ( k , J + k ) / J \ , ^ 
I W I 

where W. , i s d e f i n e d by ( 3 . 6 . 1 3 ) - From t h e s e c o n s i d e r a t i o n s 
l / J 

and from t h e d e f i n i t i o n ( 3 - 6 . 1 7 ) of G' i t f o l l o w s t h a t t h e 
w 

f i r s t t e r m of ( 3 - 6 . 2 3 ) may be w r i t t e n 

(G 0 , )Z^ >. (G O j ' = G Z-, ^ G' 
w l n n w l w n n w 

c c WW 

^ / % \ \ w / n^ ' = n ^ 

Hence in view of Goldberger's result 

(G OJZ^ ^ (G O j ' = Z.. . (3.6.21+) 
w 1 n n w 1 e e 

cc W W 

I t t h e n f o l l o w s from ( 3 - 6 . 2 3 ) and (3.6.21+) t h a t t h e 

a s y m p t o t i c c o v a r i a n c e m a t r i x of t h e measured r e s i d u a l s 
Z.K ^ i s e q u a l t o t h e sum of t h e a s y m p t o t i c c o v a r i a n c e 

^wê^wê 
m a t r i x of t h e t r u e r e s i d u a l s 1^ ^ and a number of a d d i t i o n a l 

e £ 
w w 

terms. So it is concluded that the squares of the measured 

residuals, that is the sauares of the elements of 8 j , are 
wo 
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generally biased estimators of the variances of the corres

ponding residuals. On the other hand it has been shown above 

that the onlv elements of * which are not necessarily zero 
w 

are those in the rows corresponding to non-zero harmonics 

of the test signal. So the only diagonal elements of 

Z* ^ differing from the corresponding diagonal elements 
^wê^wB 

of Z... ̂  are those corresponding to the frequencies of the 
E C 

w w 

non-zero harmonics. This is equivalent with the observation 

that the only asymptotic variances of the measured residuals 

differing from the asymptotic variances of the true residuals 

are those corresponding to the frequencies of the non-zero 

harmonics. So for all other frequencies the square of the 

measured residual is asymptotically an unbiased estimator 

of the variance of the corresponding true residual. There

fore, instead of X (to, ) a somewhat modified estimator 

' w k. 
X ,((0, ) is proposed, defined by w' k. i- JT . 

k.J+k , 
K' ( V ) = 2(2k .-kj I , ; RiU(j2.k/JT)Z(k) + 

1 w' h k=k.J-k , 
1 w 

k/J^ harmonic numbers 
of non-zero harmonics 

- B(j2TTk/JT)exp(-j2Trkx/JT)V(k)}._-(j) + 
6-9^ 

+ Im^{A(j2iTk/JT)Z(k) + 

- B(j27rk/JT)exp(-j2TTkx/JT)V(k)}._-(j) 
e-9j 

where k, denotes the number of non-zero harmonics of the 
h 

test signal in the frequency interval [ (k,J-k ,)2Tr/JT, 
1 w ^ 

(k,J+k , )2TT/JT] . Note t ha t the only d i f fe rence between X , 1 w' •• w 
described by ( 3 . 6 . 1 ) , and X , i s t ha t in the expression 

w 
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for the latter the terms corresponding to non-zero harmonics 

of the test signal are not present. 

The computation of the asymptotic expectation of 

X ,(to, ) is straightforward. Define ê , as the vector 
w' k, w' 

~(J) obtained by eliminating from z all elements corresponding 

to frequencies of non-zero harmonics of the test signal. 

Define z ,j and fi , correspondingly. It then follows from 
w 6 w 

the above considerations that asymptotically 

». TT 
E [ ̂  ,(u, )] = ̂ /̂ , , str Z^ ^ 

w' k. ' 2 2k ,-k, e ,-e ,-
1 w' h w'9 w'9 

'̂^ t̂r Z. . (3.6.25) 2(2k ,-k, ) £ ,£ 
w' h w' w 

Using Goldberger's result 

z. - • ^ 

,-.(J)\. I^M) 
£ ,ê , ..(J) 
w' w' 1 3n , 

' w' 

W ' 

.(J) '̂'̂•'-' H'^IM) 
n , = n , "1 1 = n , w' w' w' w' 

= G , Z- ^ G', (3.6.26) 
V' \.n , w' 

where 

G', = 
w' 

/,^(J)' 

.-(J), 
\'^' / .(J) 

= n 

while n , denotes the asymptotic expectation of n , . Note 
W ' u i- J- ^ , 

that the elements of n ', and n , are a subset of the 
^(J) "" .'' 

elements of fi and n respectivelv. Also note that G , is 
W W w' 

obtained by eliminating from G all G. , corresponding to 

frequencies of non-zero harmonics of the test signal. See 

(3.6.18) and (3.6.19)- The computation of the product 

(3.6.26) follows closely the procedure for computation of 
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Z-.-. = G Z^.. G' d i s c u s s e d i n S e c t i o n 3.1+ and w i l l t h e r e f o r e 
EE nn 

not be d i s c u s s e d h e r e . The r e s u l t of t h e m a t r i x m u l t i p l i c a 

t i o n ( 3 . 6 . 2 6 ) c o r r e s p o n d s t o ( 3 - ' + - 2 6 ) , (3.1+-27) and (3.1+.28) 

and i s d e s c r i b e d by 

V 9 v r ^ ^̂ ^̂  (^(^(k,j-k^)/j^ 

' ^ " ( ^ j - ^ ) / j ) . ^ ( - ( k ^ j + i ) / j ) 

^ ( " ( k , J + k ) / j ) ) ( 3 - 6 . 2 7 ) 
I w 

where to. ,_ = S i r i / J T and 
l / J 

X ( . , / j ) = i [ | A ( J t o . / j ) | 2 ( S ^ ^ ^ ^ ( j . . / j ) . S ^ ^ ^ ^ ( j t o . / j ) } + 

+ | B , ( . i - / j ) | ' s ^ ^ ^ ^ ( j . . / j ) ] ( 3 . 6 . 2 8 ) 

while i/J may not be equal to the harmonic number of a non

zero harmonic of the test signal. It then follows from 

(3-6.25), (3-6.27) and (3.6.28) that asymptotically 

k,J+k , 
1 1 •̂  o 

E [>^^A\ )] = ĝ^ _^ li !A(j2TTk/JT)| {S^ ̂  (j2TTk/JT) + 
1 w '~ h k = k , J - k , 2 2 

1 w' 
k/J?^ ha rmonic numbers 

of n o n - z e r o ha rmon ic s 

+ S^ ^ ( j 2 ï ï k / J T ) } + IB ( j2 iTk / JT) | ^S (j2TTk/JT)] 
h3h3 X gggg 

( 3 . 6 . 2 9 ) 
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CONCLUSIONS 

In this research a procedure has been developed for 

estimating parameters of linear systems from noise corrupted 

responses to periodic test signals. The developed least 

squares estimator is extremely simple from a computational 

standpoint of view; it only involves Fourier analysis of 

the input output observations and subsequent solution 

of a set of linear equations for the unknown parameters. The 

estimator is consistent under mild conditions. Without 

additional assumptions the consistency is preserved if the 

system to be investigated is under closed loop control. 

Furthermore, the estimator offers the possibility to reduce 

the amount of input output data substantially by using an 

input consisting of a few harmonics only. The minimum allow

able number of harmonics is determined by the requirement 

that the number of unknown parameters may not exceed twice 

the number of available harmonics. 

In a number of experiments using computer generated 

data the variance of the proposed estimiator has been com

pared tp the minimum variance bound (Cramer-Rao lower bound) 

on the variance. In the cases considered the efficiencies 

are all between fifty and hundred percent. Although this may 

be satisfactory in most cases a procedure has been developed 

for reducing the variance in an additional step. Results of 

numerical experiments indicate that this two-step procedure 

actually achieves the minimum variance bound. 

It has been shown how the minimum variance bound can be 

manipulated by selection of the test signal. 

A numerical procedure has been developed for approxi

mate synthesis of periodic two-level signals having specified 

power spectra. 
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In conclusion: the feasibility of the proposed proce

dure has been proved theoretically. The given numerical 

examples emphasize its usefulness for practical system 

analysis. Therefore further investigations of the estimator 

for increased sample sizes and a wider variety of systems 

and noises, as well as applications to practical systems 

seem fully justified. 
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APPENDIX 

= 9(ri ' ) be a vector valued estimator wh 

(J) elements are functions of the vector valued estimator n 

The superscript J refers to the size of the sample from 

which n ' is computed- Denote the pth element of 5 ' and 

the qth element of n by 9 and n respectively. Let 

6 be I„ X 1 and let n be I x 1. Define the asymptotic 
-(J) -(J) ^ 

expectation of 9 and n as 

9 = lim E 9 '̂^ and n = lim E n 

respectively and denote the pth element of 9 by 9 and the 
IT 

qth element of n by n . Now suppose t h a t t h e Taylor s e r i e s 

expansion of 9 (n ) about n = n converges t o 9 (n ) . 
P P 

" " " fT) I /3ê„(n("^) 
e^{.^'h = ep(n) + r 

' ai=i v ^ 

, 1 r n vn p , - ( J ) - > , _ ( J ) v- •. 

(A l 

Hence 

9 = l im E 9 (n( '^^) = (5 (n) + 
P J ^ P P 

, I I /3^ü(n( '^^) \ ,,. , ,^ 
+ 7 r r l%\ h)\ IimE(n('^In ) ( n ' ' ^ - ^ ) 

2 q =1 q = l \ ^ ? J ^ ? J ^ K ( J ) ^ J - 1̂ 'li 2̂ 2̂ 
1 2 \ a . a^ / n =n 

q.1 qg 

Define t h e asymptotic covariance matr ix Z— of fi " as 

z = '̂ '̂  
nn J 

(A2) 
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where V̂— i s defined bv 

nn 

V _ = lim E V Ï ( n ( J L E n('^^) KF(iT(JL E n ( ' ^V (A3) 
J-KO 

Note t h a t (A3) may be w r i t t e n 
v . . = lim EVl(n( '^^-n) V<J(n('^^-n) ' (Al+) 

^^ J -

It is assumed that V is a matrix of finite constants. 
nn 

Hence 
lim Z,. = ^ = 0 (A5) 
T.^ nn J 

Under the additional assumption that the moments of the 

elements of (n - n) of order higher than two also vanish, 

it follows from (A2) - (A5) that 

6 = lim E 9 (n("̂ )̂ = 9 (n) (A6) 
P J-xc P P 

I t then follows from (Al) and (A6) t h a t 

^<''p"-V-t(S)-(.)-^'"t'-V^ 
q = 1 \ 3 n j r\ =n 

^jT r h r V m X?(n(̂ -̂n, )(n(̂ -̂n̂  )+ .. 
2 q ^ = 1q,= 1 ^ ^ 7 ^ / ^ ( j ) ^ ^ ^1 -1 ^2 ^2 

Hence 
E Vj{Q'''^^- 9 ) V<j"(9('^^- ë ) = 

Pi Pi P2 Pg 

E ̂ -̂  ^ l \ V<J(n(Jln ) r M ^ Vf(n(̂ -̂n ) + 
q =1 . . ( J ) L ( J ) _ ^1 'l l q =l l . ( J ) L ( J ) . ^2 '^2 

1 \ 3n / n =n 2 \ 3n / n =n 

+ J E (terms of order higher than two) (A7) 

Assuming t h a t asymptot ica l ly the moment of t he elements of 
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(n ' - n) of order higher than two are of order of magnitude 

lower than 1 /J it follows from (A3), (A(l+) and (A7) that 

lim E 
J-«o 

VJ(6('^^ - 9 ) V^(è('^^ - 9 ) 

'1 

I I /39('^ 
_n _n I p.| 

P2 P2 
,r(J) 

y y 
^=^ n =il3^(J)L(j) . l8n(J) I (J) 

' 2 \ q_.^ JT] = n ^ q^ / n 

0.10.2''^^ 

(AS; 

where v — is the q,q„ element of V^^. Now (A8) mav be 
q.|q2jnn 1 2 rin 

rewritten 

.(J) lim E Vj'(e^'^^- Ü ) Vj'(9^'J^- 9 ) 
J-«» '1 ^1 

39' 36 (J)' 

'] 
V^^ 

,,^'^1 .{J)__y-^- \3n(^^/^(J)., 
(A9) 

where — r ^ is the I x 1 vector the qth element of which 

'̂  39(^) 
P; 

is defined bv — T J T . It follows from (A9) that 
3n^^ 

1 

lim E 
J-KO 

v^(ë('^) 1<J( x(J) 

3n(^^h(^^ = n '' 
I ^ 
39 
(J) 

.,(j) U(j) _ ̂  
3n / n = n 

(A10) 

3g('T) 
where — T T T is the I x I matrix the qp element of which ^(J) n 6 ^ 

3n 
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39(J) 
i s defined as —7-fT' ' ' ° ^ define t he asvmptctic covariance 

matr ix Z-- of 9 as 
99 

^Z-. = - T - ( A l l ) 

where V-xj i s defined bv 

V^^ = lim E VJ{^^'^^ - E l^'^h Vf(9("^^ - E 9('^^)' (A12) 
J-x» 

Note that (A12) may be written 

V - = lim E VJ(9('^^ - 8)1^(9(^^^ - 9)' (AI3) 
DO T 

J-KO 

I t then follows from (AlO) - (AI3) t h a t 

39(J)\' LB^A 
'- = 'Nn('^)-n'- fe^K' '"''' , 3n / n - n \3n /n = n 

The derivation of this result closely follows the derivation 

described by Goldberger (1961+), pages 122-125- Therefore in 

this thesis (AII+) is referred to as Goldberger's theorem. 
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