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Abstract—Uncaught exceptions, and in particular null
pointer exceptions (NPEs), constitute a major cause of crashes
for software systems. Although tools for the static i ation
of potential NPEs exist, there is need for proper approaches
able to identify system execution scenarios causing NPEs.
This paper proposes a search-based test data generation

approach aimed at automatically identify NPEs. The approach
consists of two steps: (i) an inter-procedural data and control
ow analysis—relying on existing technology—that identi es
paths between input parameters and potential NPEs, and (ii)
a genetic algorithm that evolves a population of test data with
the aim of covering such paths. The algorithm is able to deal
with complex inputs containing arbitrary data structures.
The approach has been evaluated on to test class clusters

from six Java open source systems, where NPE bugs have
been ar cially introduced. Results show that the approach
is, indeed, able to identify the NPE bugs, and it outperforms
random testing. Also, we show how the approach is able to
identify real NPE bugs some of which are posted in the bug-
tracking system of the Apache libraries.

Keywords-Null pointer exceptions; Search-based testing.

I. INTRODUCTION
Uncaught exceptions are, very often, the cause of crucial

problems for the security, safety and reliability of software
systems. y, the presence of such exceptions can
cause system crashes, unintended behavior or, in some case,
possibly lead an intruder to gaining unauthorized access to
the system. In many critical software applications such as
medical, aerospace, l or high dependable software,
uncaught exceptions may cause severe threats to human
beings, as well as data or economic losses. A noticeable
example of uncaught exception is the Null Pointer Exception
(NPE), raised by the unexpected de-referencing of pointer
variables not yet properly initialized. van Hoff [1] pointed
out that the introduction of NPE problems is quite a typical
mistake for Java developers, while Dobolyi and Weimer [2]
proposed an approach to remove such a kind of problem
from Java programs by transforming them to introduce error-
handling code.
In the past, several approaches have been developed to

statically analyze exception-related code [3], [4], [5], [6],
[7]. In particular, Nanda and Sinha [4] proposed a context

sensitive, scalable, accurate interprocedural null dereference
analysis for Java systems. The static analysis is based on
a backward path-sensitive algorithm that, starting from a
variable use, backward traverses the interprocedural control
ow graph, identifying paths possibly propagating to the use
node a null pointer value. While static analysis techniques
are often very thorough in identifying code likely raising an
exception, to be conservative, they almost always produce as
output a superset of likely dangerous paths. For this reason,
testing activities are needed (i) to identify whether there are
execution conditions actually raising such exceptions, and
(ii) to better understand the context in which the exception
is raised and thus easily x it.
In this paper we propose to leverage the Nanda and Sinha

analysis coupled with metaheuristic-based search to generate
test input data leading to NPE. In a nutshell, our approach
starts from the reduced set of paths d by Nanda and
Sinha analysis, possibly containing false positives, and uses
a genetic algorithm to generate test input data causing a
NPE in the unit under test. The algorithm is able to handle
complex input data types (e.g., strings and data structures).
It is the authors opinion that, even though the identi ca-

tion of potential NPEs using a static analysis approach would
be 100% accurate (i.e., no false positives), developers will
in any case bene t from approaches that produce input data
and scenarios leading to a program failure caused by the
NPE. In fact, such input data would at minimum ease the
cognitive burden and program understanding effort required
to identify the conditions causing the NPE, and also facilitate
the bug removal.
Our main contributions can be summarized as follows:
we propose a novel approach to leverage accurate
interprocedural null-dereference analysis and genetic
algorithms to generate test input data leading to NPEs;
we report empirical evidence—across 27 cases from
6 Java open source systems—of the capability of the
proposed approach to detect ar cially injected NPEs,
as well as real NPEs documented in bug tracking
systems. Also, we show that the approach is able
to identify NPEs where a random testing fails, or at
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Figure 1. Overview of the proposed testing approach.

least requires to produce a sign cantly higher number
of solutions (one order of magnitude higher, or even
more).

The remainder of this paper is organized as follows. Sec-
tion II describes the various steps of the proposed approach.
The empirical study aimed at evaluating the approach perfor-
mances is de ned in Section III, while results are reported
in Section IV, and Section V discusses the study threats to
validity. After a discussion of the related literature (Section
VI), Section VII concludes the paper and outlines directions
for future work.

II. APPROACH
The test data generator we propose consists of four build-

ing blocks, shown in Figure 1: a program analyzer, a path
selector, a program instrumentor and a test data generator.
Although most of the testing approach is automated, its
startup requires a manual intervention. This step consists in
de ning properly the boundaries of the System Under Test
(SUT)—i.e., in identifying the class cluster to be tested—
and in identifying the the variable to be analyzed. Our
testing process tests one variable at a time, with the aim
of identifying NPEs that this variable can cause.
The rst step of the process consists in building the

interprocedural Control Flow Graph (CFG) of the SUT.
This is accomplished by a program analyzer that receives
as input the set of class es and generates as output the
interprocedural CFG. Once obtained the CFG, the path
selector s the set of null-paths, i.e., paths that can
dereference a null value and that can therefore cause a
NPE. This is done by relying on an approach previously
proposed by Nanda and Sinha [4]. After null paths have been
identi ed, the objective of the test data generation process is
the following: given a program P and a null-path u, generate
a set of input parameter values x , such that u is traversed.

Figure 2. Example of null-path detection in a simple interprocedural
control ow graph.

Test data generation is performed using a Genetic Algorithm
(GA), inspired by the structural coverage approach proposed
by Baresel et al. [8] and also used by by Tracey et al.

[9], [10]. Before executing the GA, the program is properly
instrumented to allow the GA observing how far the inputs
are from causing the execution of the target statement.

A. Interprocedural control and data ow analysis

The rst step consists in constructing the interprocedural
control ow graph of the SUT. This goal is achieved using
the T.J. Watson Libraries for Analysis (WALA)1. WALA
produces a supergraph of the SUT, which is a directed graph
that connects CFGs of callers and callees. The supergraph
is modi ed avoiding to expand exception related edges. This
is to say, the interprocedural CFG does not expand the CFG
of methods invoked in the catch statements.

B. Identi tion of null paths

This step aims at identifying all paths in the CFG that may
dereference the variable of interest with a null value. To this
aim, we used an approach previously proposed by Nanda and
Sinha [4], which de ned an algorithm for interprocedural
null-dereference analysis for Java systems. Their approach
consists of backward path-sensitive analysis, that starting at
a dereference statement, where the variable of interest is
dereferenced, propagates a set of abstract state predicates
backward in the CFG.
Let us consider the example in Figure 2. The tester could

be interested in analyzing the variable x used at node 1. The
analysis starts at node 1 with the sole predicate< x=null> .
When entering the procedure bar at node 2 of foo, a map-
ping between formal and actual parameters is performed,
transforming the predicate in < ad=null> . When traversing
node 4, the analysis detects an inconsistency among the
predicates since the predicate < ad= null> is added to the

1http://wala.sourceforge.net

Romano, Di Penta and Antoniol – An Approach for Search Based Testing of Null Pointer Exceptions SERG

2 TUD-SERG-2011-028



set. Because of that, the path is marked as non-null-path and
thus discarded. Instead, when traversing the node 5 through
the false branch, the algorithm adds the predicate < z≥ 3>
to the set. When the analysis returns to the procedure
foo, it updates the predicates in < x=null> and < y≥ 3> .
The analysis marks the path as null-path when node 6 is
traversed, since the predicate < x=null> is added one more
time to the set of abstract state predicates.
Even though this approach is accurate and reduces the

number of false positives, it presents some approximations at
program points where the source code is not available, e.g.,
calls to external libraries. At such points the analysis applies
the null-check rule that states: a reference r is assumed
potentially null if it receives its value from outside the
system boundary, and is checked against a null value.

public void foo(){

String name=Library.bar();

//code using name here

…

}

(a) Without null-check rule

public void foo(){

String name=Library.bar();

if(name!=null){
//code using name here

}

…

}

(b) With null-check rule

Figure 3. Detecting null paths when invoking libraries using null check
rules.

Let us consider the method foo() shown in Figure 3-a.
If the method Library.bar() returns a null value, its de-
referencing will cause a NPE. To detect it, we transform
the foo() code as shown in Figure 3-a, i.e., applying a
null-check rule—after the library invocation—to the variable
name, which contains the return value of the library method
bar().
The use of this null-check rules could introduce a signif-

icant limitation in the detection of null-paths. To overcome
such a limitation, we propose to transform the problem of
letting a method invocation causing a NPE in a coverage
problem. If we can derive from the library documenta-
tion/sp s the input conditions under which the
method returns null value, the method invocation can be
transformed into the following code:

Object x;

if(y.equals(criticalInputs))

x=null;

else;

x=foo(y);

where the method foo is the method under test, and critical-
Inputs are the inputs for which foo returns a null value.

C. Test data generation

The goal of the test data generator is to nd input values
that execute a null-path under test, and hence raise the
NPE. The search process performed by the generator is
accomplished through the execution of a GA. GAs are
among several kinds of optimization methods, including
Simulated Annealing, Tabu search, and several variations of
them. Since the time GAs was proposed by Holland in the
early 1970s [11], these algorithms have been used in a wide
range of applications where optimization is required. The
key idea of GAs is the analogy between the encoding of
candidate solutions as a sequence of simple components,
and the genetic structure of a chromosome.
Differently from other heuristics, instead of considering

one solution at a time, a GA starts with a set of solutions,
often referred to as individuals of a population. Since the
search is based upon many starting points, the likelihood
to sample more of the search space is higher than local
searches. Solutions from one population are taken and used
to form new populations, also known as generations. This is
achieved using the evolutionary operators, and the process is
repeated until some condition (e.g., achievement of the goal)
is satis ed. A GA is de ned in terms of: (i) the encoding of
candidate solutions, (iii) the d nition of the ness function,
and (ii) the d nition of the evolutionary operators.
Our GA implementation relies on the freely available

GA framework JMetal2. In our approach the GA candidate
solutions are inputs for the software under test (SUT). While
most of the previous approaches for search based test data
generation dealt with simple inputs, most of the existing
programs have inputs consisting in complex data types. To
deal with these inputs we decided to encode the data types
with an XSD (XML Schema nition) schema similarly to
what previously done by Di Penta et al. [12] in an approach
for service testing, where the inputs were encoded using
the XSD contained in the service WSDL (Web Service
Description Language) interface. Therefore, the solutions
produced by the GA will be instances of XML es—
represented as trees as shown in Figure 4—conform to an
XSD document.
The second step de ning the GA is the choice of the t-

ness function and of the selection operator, which determines
the selection of the individuals to be reproduced.
The tness function measures how close a solution is—

i.e., a set of inputs—to traverse the desired null-path and
thus to reach the target statement and raise an exception.
Our ness function is inspired from the one adopted by
Tracey et al. [9], [10] based on two distinct contributions: the

2http://jmetal.sourceforge.net/
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Figure 4. Tree-based genome representing complex inputs.

approaching level and the branch distance. The approaching
level counts the number of critical nodes—i.e., of predicate
nodes that branches in the null path—successfully traversed
by the solution, while the branch distance is the distance
to satisfy a predicate in a critical node where an undesired
branch is taken.
While Tracey et al. aggregated the two contributions

in a unique ness function, by weighting and summing
them, we preferred to keep them separate and thus d
a comparison operator, for pairs (ai ,bi ), where ai is the
approaching level for solution i and bi its branch distance.
The comparison operator is de ned as follows:

(a1 , b1 ) > (a2 , b2) =
true if a 1 > a 2 or

(a1 = a2 and b1 < b2 )
false otherwise

In other words, a tness function pair is ter than a second
one if it has a bigger approaching level or, for an equal
approaching level, it has a smaller branch distance.

Table I
BRANCH DISTANCES FOR PREDICATES AS DEFINED BY KOREL [13].

Predicate Value
a> b b-a-1
a≥ b b-a
a< b a-b+1
a≤ b a-b
a=b abs(a-b)

The branch distance computation strongly depends on the
predicate to be satis . If the predicate is between numeric
values we use the objective function for relational predicate
de ned by Korel [13], illustrated in Table I. If the predicate
is expressed in terms of string comparison, the branch dis-
tance is computed following the character distance de ned
by Alshraideh and Bottaci [14]. They d e the character
distance as the sum of the absolute differences between
the ordinal character values—in their representation, e.g.,
ASCII—of corresponding character pairs. More precisely,
given a pair of strings s and t, the Character Distance (CD )
is de ned as follows:

CD (s, t ) =

i= k− 1

i=0

|s i − ti | + 128 · ( l − k)

where x i is the i − th character of the string x , while l and
k are the length of the two strings.
The selection operator selects two parent chromosomes

from a population according to their ness. We use a
modi ed roulette wheel selection algorithm as proposed by
Al Jadaan et al. [15], named Ranked Based Roulette Wheel
(RBRW). It assigns to each individual a ness value equal
to its rank in the population: the highest rank has the highest
likelihood to be selected. The probability a solution has to
be selected is then computed as follows:

P i =
2 · Rank

N Pop · (N Pop 1)

where N Pop is the population size and Rank is the rank
of the individual in the population according to its tness
function.
Once the GA has selected the parents needed for gen-

erating the offspring, the crossover operator is applied to
them with a probability Pc . We de ned two different kinds
of crossover operators:
1) a leave crossover, which selects leaves at the same
level in two parents, applies one-point crossover
to the leaves (which can be strings, integer or
real numbers) and produces the offspring. One-
point crossover between two strings s1 , s2 is per-
formed by cutting both strings at a random position
p < min ( length(s1) , length (s2)) and exchanging the
sub-strings after the cut-point. One-point crossover
for numeric values is performed over their binary
representations, using the default crossover operators
de ned in JMetal.

2) a tree crossover, which randomly exchanges sub-trees
in two parents to produce the offspring.

After obtaining the offspring population though the
crossover operator, the offspring is mutated through the
mutation operator in order to ensure genetic diversity from
one generation to the next ones. In particular, each individual
is mutated with a probability Pm . For each individual to be
selected for mutation, nodes can be mutated following three
different strategies:
1) AllNodes, i.e., all nodes are mutated;
2) Random[1, nodes-ApproachLevel], the mutation is ap-
plied to a random set of nodes chosen in the interval
[1, nodes − ApproachLevel ]; where nodes is the
total number of nodes and ApproachLevel is the ap-
proaching level currently reached. The rationale is that,
when the approaching level increases, the mutation
probability decreases, thus decreasing the probability
of mutating inputs that help to branch in critical nodes
of the null-path.
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Table II
MUTATION OPERATORS.

Operator Data Type Description
Insertion String Inserts a random character into a given

string. The insertion position is ran-
domly chosen.

Deletion String Deletes a random character from a given
string.

N-Substitution String Randomly replaces N contiguous char-
acters in a string.

Swap String Randomly swaps two characters in a
string.

Scramble String Scramble the position of the characters
belonging to the whole string, or to one
of its substrings.

Inversion String Reverses the order of characters be-
tween two random positions in the
string.

Replace Contiguous String Replaces a randomly chosen character
with a contiguous one in the ASCII
table.

Jump Numeric Replaces a randomly selected digit with
a new random digit.

Creep Numeric Adding a random (positive or negative)
value.

Boundary Numeric Replaces the numeric value with either
the upper or lower bound of the numeric
eld.

3) 1Node, i.e., only one randomly selected node is mu-
tated.

Once a node is selected, the mutation is performed by ran-
domly selecting a mutation operator—among those d ned
for the node type—from a pool, as shown in Table II.

D. Program instrumentation

As explained above, the program instrumentation block is
needed to properly compute the ness function value. This
step is achieved instrumenting—in the Java byte code—all
predicates belonging to the selected null-path. The instru-
mentor is based on the open source library Shrike part of
the WALA framework.

III. EMPIRICAL STUDY

The goal of this empirical study is to evaluate the ef-
fectiveness of our approach against real software systems
with complex input data. The quality focus are the ability
of our approach to detect NPEs in real systems, and the
ability of the developed metaheuristic search to d input
data adequate to arise the NPEs. The perspective is that
of researchers, interested in the integration of a static code
analyzer with a search module able to nd input data relevant
to manifest the bugs iden d by the analyzer. The results
of our study could be of interest also for test and quality
engineers who want to fortify the system under test remov-
ing, or at least narrowing, the likelihood of NPEs occurrence
after the deployment of the SUT. The context of this study
consists in six open-source systems, widely used in both
academic and industrial community, that are: DNSJava, Gnu

Crypto, Apache TagLibs, Apache Batik, Apache Ant and
Apache CommonsIO.
Table III lists the class clusters under test derived from the

six analyzed systems, where className is the class used as
driver of the analysis, and Method signature is the signature
of the method under test. The column Artif. mutant indicates
if the code has been ar y mutated in order to generate
the exception. Mutation was performed using a combination
of the Kim et al. mutants for Java [16], with the aim of
arti cially introducing null pointer exception problems. In
the other cases—i.e., where no mutation was performed—
we tested the program with the aim of nding documented
NPEs already present in the source code.
The research question this paper aims at addressing is the

following:
To what extent is the proposed approach capable

of identifying NPEs in the programs under test?

To address such a research question, we analyzed the
capability of the proposed approach to identify NPEs in
the 27 analyzed cases, within a xed, maximum number
of GA tness evaluations. Also, we compare the proposed
approach with a random testing one, which uses the same
mutation operator used by the GA to randomly generate test
data (without however using the ness function to guide
the evolution). For cases where both GA and random testing
converge, we compared the results of multiple runs of both
algorithms by using a non-parametric test, namely the Mann-
Whitney (unpaired) test.
Besides testing the presence of a signi cant difference

between the two techniques, we also evaluated the magni-
tude of the difference using the Cohen d effect size [17]. For
independent samples (as in our case) the effect size is de ned
as the difference between the means (M 1 and M 2), divided
by the pooled standard deviation (σ = (σ2

1 + σ2
2 )/ 2) of

both groups: d = ( M 1− M 2)/σ . The effect size is considered
small for 0.2 ≤ d < 0.5, medium for 0.5 ≤ d < 0.8 and
large for d ≥ 0.8 [17]. We chose the Cohen d effect size as
it is appropriate for our variables (in ratio scale) and given
the different levels (small, medium, large) d ned for it, it
is quite easy to be interpreted.
Besides addressing the research question from a quanti-

tative point-of-view, as above described, we also report—in
Section IV-A—a complete example, related to g a real
NPE bug occurred in the Apache CommonsIO library (SUT
#27 in Table III). The aim of such example is to explain,
step by step, how a tester can set-up a testing activity with
the aim of nding such a kind of bugs.

A. Settings

We calibrated the GA and its operators as follows:
the GA population is composed by 100 individuals, or
candidate solutions. The initial population is randomly
generated using the mutation operator;
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Table III
DETAILS OF THE STUDIES CARRIED OUT.

ID System Class name Method signature Artif. mu-
tant

1 DnsJava Message sectionToString(int) Yes
2 DnsJava Address parseV4(String) No
3 DnsJava ExtendedResolver getResolver(int) No
4 DnsJava Record getbyteArrayFromString(String s) Yes
5 DnsJava Name fromDNAME(DNAMERecord) Yes
6 DnsJava CertRecord string(int) Yes
7 GNU Crypto KeyPairCodecFactory getInstance(int[5] buffer) No
8 GNU Crypto KeyPairCodecFactory getInstance(String) Yes
9 GNU Crypto KeyPairCodecFactory getInstance(Key) Yes
10 GNU Crypto KeyPairCodecFactory getInstance(Key) Yes
11 GNU Crypto KeyAgreementFactory getPartyAInstance(String) Yes
12 GNU Crypto KeyPairAgreementFactory getPartyBInstance(String) Yes
13 GNU Crypto KeyPairCodecFactory getInstance(Key) Yes
14 GNU Crypto KeyPairGeneratorFactory getInstance(String) Yes
15 GNU Crypto Properties remove(String) No
16 GNU Crypto SeverMechanism getNegotiatedProperty(String) Yes
17 Apache TagLibs Coercions coerceToObject(String) Yes
18 Apache TagLibs Util getScope(String) Yes
19 Apache TagLibs Util getContentTypeAttribute(String,String) Yes
20 Apache TagLibs Util getStyle(String,String) Yes
21 Apache Batik CSSUtilities convertPointerEvents(int) Yes
22 Apache Batik CSSUtilities convertShapeRendering(int) Yes
23 Apache Ant JspC execute(String) Yes
24 Apache Ant Javac getAltCompilerName(String) Yes
25 Apache Ant Javac getAltCompilerName(String) Yes
26 Apache Ant MimeMailer parseCharSetFromMimeType(String type) Yes
27 Apache CommonsIO FilenameUtils equalsNormalizedOnSystem(String,String) No

the crossover probability is 0.9, while the mutation
probability is 0.9/(size of the individual representation).
Such a size depends on the tree structure and leave
representation. These were default values for JMetal,
except for the default mutation probability that was
1/(size of the individual representation).
for string mutation the length of the randomly generated
strings is randomly chosen in the range [0,30];
for numeric mutation, the number of digits is randomly
chosen in the range [1,5];
the maximum number of ness evaluations before the
GA (or the random testing) terminates without nding
a NPE is 10,000. We actually tried for many of the
programs up to 100,000 evaluations, which however
did not produce better result in terms of random test
success nor of better results for GA.

Speci cally, GA population size, mutation and crossover
probability were chosen using a trial-and-error procedure
aimed at selecting values that, for our case studies, allowed
to obtain the best results. Mutation settings were chosen
to be acceptable for the inputs of the tested programs.
Finally, the maximum number of evaluations was chosen
high enough to avoid a ceiling effect, i.e., having a too low
value that could have led to results strongly dependent on the
convergence capability of the approach. Finally, to narrow
the natural randomness of GAs, every experimentation has
been repeated ten times, and the results of the different
instances have been analyzed through proper statistical pro-
cedures, as described above.

B. Choosing the proper crossover and mutation operators

To evaluate the effectiveness of the different mutation and
crossover operators, we used a toy program, described in
the appendix of a longer technical report3. The rationale of
using an ar l program is to have an example with a high
number of parameters (i.e., input arguments) entailing a large
and complex search space. In fact, the program requires as
input a data structure of nine elements, including strings
and integers. To generate the NPE, a combination of seven
conditions imposed on six of the input parameters must be
met, meaning that, to reach the NPE, an approaching level
of seven must be reached.
From the results of the small calibration studies (see the

technical report) concerning the mutation operators we found
out:
1) The AllNodes operator applies the mutation to all
nodes in the tree and, despite being faster to satisfy
the rst predicate it encounters, it can block the search
when attempting to satisfy the subsequent predicates.
This is because if, every time, we mutate again all
nodes, this does not guarantee that previously satis ed
predicates will still be d.

2) The Random(1, nodes-approachLevel) applies the mu-
tation to a number of nodes randomly chosen in the
interval [1, nodes-ApproachLevel], where nodes is the
number of tree nodes for the individual being mutated,
and ApproachLevel is the number of s d predicate

3http://web.soccerlab.polymtl.ca/ser-repos/public/NPE-testing-tr.pdf
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nodes in the null-path being covered. Differently from
the previous mutation operator, this operator does not
block the search, and is therefore able to reach the
last predicate. However, the number of evaluations
required increases when increasing the approaching
level.

3) Finally, the 1node operator exhibit the best perfor-
mances, as (i) it is able to reach the last predicate
and (ii) the number of required evaluations does not
increase with the approaching level.

For what concerns the crossover operators, we found that
the tree crossover required a sign cantly lower number of
evaluations than the leave crossover, as it operates on the
entire tree instead of on a single leaf, thus producing a higher
genetic diversity than the leaves crossover.
In conclusion, the small calibration study suggests us to

use, for our empirical study, the 1node mutation operator
and the tree crossover operator.

IV. RESULTS
This section reports results of our empirical study. The

study raw data are available for replication purposes4.
Table IV reports the number of evaluations (averaged on

the 10 runs performed) required by GA and random search
respectively, to nd a NPE in the 27 analyzed cases. As
the table shows, in 21 out of 27 cases random search was
not able to nd any NPEs within the maximum number of
evaluations we considered. In 6 cases random search was
able to nd NPEs, however (i) only for some of the runs
(percentage indicated in parentheses, and ranging between
10% and 40% of the runs), and (ii) the number of evalu-
ations required by random search was about one order of
magnitude—or in some cases even more—higher than GA.
It is worth noting that random search suceeded only when
the input parameters are integer, while failed for complex
inputs, thus highlighting that, in many real cases—where
inputs parameters are strings or complex data structures,
random testing does not represent a viable solution.
Figure 5 shows boxplots comparing—for the cases where

random search succeeded—the distributions of number of
evaluations for both GA and random testing, and Table V
reports the results of the Mann-Whitney tests, as well as the
Cohen d effect size. The table shows that:
1) the p-values are sign cant for SUT #3, #6, #7, #21,
while they are not signi cant for SUT #1 and #22.
However, it should be noticed that the lack of signif-
icance in these cases mainly depends on the limited
number of cases for which random testing converged;

2) the effect sizes are high (> 1 for SUT #3, #6, #7, and
#21), and medium for SUT #1. Overall, both effect
sizes and the average number of evaluations shown in

4http://web.soccerlab.polymtl.ca/ser-repos/public/NPE-testing-
rawData.tgz

Table IV
NUMBER OF EVALUATIONS REQUIRED ON AVERAGE BY GA AND

RANDOM SEARCH TO FIND A NPE.

SUT ID System GA Random
1 DNSJava 198 853(40%)
2 DNSJava 422 –
3 DNSJava 206 1953 (20%)
4 DNSJava 458 –
5 DNSJava 562 –
6 DNSJava 384 3765 (30%)
7 GNU Crypto 216 2404 (30%)
8 GNU Crypto 408 –
9 GNU Crypto 609 –
10 GNU Crypto 880 –
11 GNU Crypto 374 –
12 GNU Crypto 564 –
13 GNU Crypto 384 –
14 GNU Crypto 432 –
15 GNU Crypto 571 –
16 GNU Crypto 6510 –
17 Apache TagLibs 240 –
18 Apache TagLibs 883 –
19 Apache TagLibs 4506 –
20 Apache TagLibs 1267 –
21 Apache Batik 286 4207 (20%)
22 Apache Batik 246 6114 (10%)
23 Ant 373 –
24 Ant 1299 –
25 Ant 2726 –
26 Ant 1076 –
27 CommonsIO 1940 –

Table V
GA VS RANDOM TESTING: RESULTS OF MANN-WHITNEY TEST AND

COHEN D EFFECT SIZE.

SUT ID M-W p-value Cohen d

1 0.45 0.72
3 0.030 2.01
6 0.0060 1.36
7 0.0060 1.66
21 0.040 1.78
22 0.13 –

Table IV clearly indicate the superiority of the GA-
based approach.

A. A complete example: nding an Apache CommonIO NPE

bug

This section describes, step by step, how the proposed
approach can be used to nd a NPE bug using the proposed
approach. Let us consider the bug of Apache CommonsIO
(1.2, 1.3, 1.3.1, 1.3.2) posted in the Apache Jira server with
id IO-128 (our SUT #27). According to the bug description,
the execution of the following statement:

FilenameUtils.equalsNormalizedOnSystem(

String a, String b);

could throw a NPE at line 970 when the following
statement—contained in in the equals method—is executed:

filename1.equalsIgnoreCase(filename2);

Manually nding input values raising this exception could be
quite dif cult. In fact, this remained in the Apache Common-
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Figure 5. Comparison between GA and random testing: boxplots.

sIO library for four releases without being discovered. Also,
it was reopened several times in the Apache bug tracking
system.
In order to apply our approach to nd the input value

necessary to throw that NPE, the rst step is to properly
mark the variable of interest, in this case the variable
lename1:

@check(filename1)

filename1.equalsIgnoreCase(filename2);

To understand how the NPE can be raised, let us consider
a s d call graph with the related code fragments as
shown in Figure 6. The null path identi er detects the null-
path that traverses the false branch in the predicate node
1, and the true branch in the predicate node 2. Let us
suppose such a null-path be composed by only these two
critical nodes (by ignoring all other statements that do not
have an e on these predicates). We instrument the
conditionals to compute the ss value for each candidate
solution of the GA, and then the GA can start. With the
aim of explaining how the ness function works to guide
the GA towards nding the inputs raising the NPE, Table
VI shows the ness values for some candidate solutions,
where a level is the approaching level and b distance is
the branch distance. As shown, for an empty input string
the approaching level is still 1, while it increases to 2
for a non-empty string. Then, as the ASCII code of the
character decreases—from lowercase to uppercase letters,
until reaching special characters and thus the colon “:”—
the branch distance decreases accordingly.
For this case the algorithm took, on average, 1,940 tness

evaluations and 329 seconds to nd the NPE (timing perfor-

equalsNormalizedOnSystem

equals

normalize

getPre xLength

a. Simpli ed Call Graph

char ch0 = lename.charAt(0);
if (ch0 == ':') { BranchNode2

return ‐1;
}

int size = lename.length();
if (size == 0) { BranchNode1

return lename;
}

b. Code fragment

Figure 6. BUG IO-128 in Apache Commons IO: sim d call graph of
the code under test.

mances have been evaluated on a MacBook 2,1, processor
2.0 GHz Intel Core 2 Duo, memory 2 GB 667 MHz DDR2
SDRAM, OS X leopard).

V. THREATS TO VALIDITY
This section discusses the threats to validity that can affect

the empirical study described in the previous sections.
Threats to construct validity concern the relationship

between theory and observation. In our study this threat can
be due to the fact that most of the bugs were ar
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Table VI
FITNESS VALUES FOR SAMPLE CANDIDATE SOLUTIONS FOR SIMPLIFIED

VERSION OF IO-128.

Individual Fitness (approaching level,
variable value branch distance)

1 ”” (1,1)
2 ”a” (2,39)
3 ”M” (2,19)
4 ”A” (2,7)
5 ”;” (2,1)
6 ”:” (2,0)

introduced in the system, and thus they might not properly
represent the reality. However, bugs were introduced using
combinations of well-known mutation operators for Java
de ned by Kim t . [16], that have been previously used
to evaluate the effectiveness of testing strategies for object-
oriented programs [18].
I v d threats concern external factors that may

affect an independent variable. We limited the bias of GA
(and random search) intrinsic randomness of our results
by repeating each experiment 10 times and using proper
statistics to compare the results. We have calibrated the GA
settings using a trial-and-error procedure, and chosen the
crossover and mutation operators by doing a small study
on a toy program: although we found evidence about the
superiority of speci c operators and were able to understand
the reasons of that, it can happen that (i) studies on different
programs could lead to a different choice of the crossover
and mutation operators, and (ii) the obtained calibration may
not be the most suitable for our subject programs.
Threats to c c u o v d concern the relationship

between the treatment and the outcome. Wherever possible,
we used proper statistical tests to support our conclusions
for the two research questions, in particular non-parametric
tests which do not make any assumption on the underlying
data distribution. It is important to note that, although we
perform multiple Mann-Whitney tests, p-value adjustment
( .g., Bonferroni) is not needed as we are performing the test
on independent, disjoint data sets. Finally, we also reported
the practical si e of the differences using the Cohen
d effect size.
Threats to x v d concerns the generalization of

our ndings. We evaluated the proposed approach over 27
cases coming from 6 different Java systems. Nevertheless, a
larger evaluation would be highly desirable.

VI. RELATED WORK

Our approach relies on the work of Nanda and Sinha
[4], that proposed an inter-procedural null dereference
analysis for Java systems, implemented in a tool called
XYLEM. Their work consists in an interprocedural, context-
sensitive and path-sensitive backward analysis, that start-
ing from dereferencing statements identi s true and false
null-propagation paths. The empirical studies conducted by

Nanda and Sinha demonstrated the effectiveness of their
approach in detecting bugs that many static analyzer tools
miss, at the same time reducing the false positive rate. While
we share with Nanda and Sinha the idea of identifying
potential null dereferencing paths through interprocedural
static analysis, our work is complementary to their one as we
aim at identify inputs that actually cover such null paths. In
fact, there may be cases where the null path is unfeasible or
protected by proper pre-conditions, thus the result of static
analysis may just reveal a warning of no particular interest.
In recent years, several researchers have analyzed the

effect of exception handling constructs in Java programs.
Ryder t . [19] proposed a tool named JESP, that is aimed
at examining the usage of user thrown exceptions in Java
source code. Sinha and Harrold [6] presented techniques
to construct representations for programs in presence of
exception handling constructs, focusing on the effects of
exceptions on program-analysis techniques, such as control
ow analysis, data ow analysis, and control dependence
analysis. Robillard and Murphy [5] and Jo t . [3] con-
ducted studies analyzing exception ows in Java. -
cally, Robillard and Murphy developed a tool named Jex
exception ow and to generate a view of the exception
structure, while Jo t . proposed a static analysis approach
taking into account the uncaught exceptions independently
of the programmer’s declarations. Sinha t . [7] proposed
an integrated approach for providing automated support for
the testing of programs that contain implicit control ow
caused by exception handling and polymorphism. All the
above mentioned works propose static analysis approaches,
while our work combines static analysis, previously pro-
posed by Nanda and Sinha [4] with a search-based testing
approach.
Several researchers have been focusing on the techniques

for testing exceptions and recovery code. Fu t . [20]
focused on the robustness testing of Java server-side ap-
plications. They proposed a white-box coverage testing
of exception handlers, that consists in the instrumentation
of code at compile-time to inject exceptions and in the
recording the handlers exercised.
The closest work to ours is the one of Tracey t . [9],

[10], who developed an automated test-data generator to
test exceptions handling code using Simulated Annealing
and Genetic Algorithms. While there are many similarity
between the the approach of Tracey t . [9], [10] and ours,
there are also noticeable differences:

our approach integrate the static interprocedural analy-
sis of Nanda and Sinha [4] with the testing approach,
with the aim of identifying the paths that could throw
a NPE. This allows for easily setting the testing target,
. ., the path to be traversed.
while the work of Tracey t . deals with testing
exception handling code, we focus on generating input
data that cause NPEs;
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our approach foresees the possibility of generating
input data for programs having as input parameters
complex data structures. This is achieved using a
tree-based representation of inputs, as well as proper
crossover and mutation operators for such a representa-
tion, and, nally, the operators suggested by Alshraideh
and Bottaci [14] to handle branch distance in terms of
string comparisons.

VII. CONCLUSION
This paper proposed a search-based approach aimed at

identifying uncaught null-pointer exceptions (NPEs) in Java
applications. The approach combines an interprocedural
analysis previously proposed by Nanda and Sinha [4], aimed
at identifying paths potentially dereferencing null pointers,
with a Genetic Algorithm (GA) that generates test data
with the aim of covering such paths. The GA allows for
generating test data for program requiring as inputs complex
data structures.
Results of the empirical study we performed on 27 cases

from six open source Java applications showed the capa-
bility of the proposed approach to identify both a
introduced and real NPE problems. Also, the empirical study
showed that the approach sign cantly outperforms a random
test data generation, which, in most cases, is not able to
identify the problem within a large number of evaluations
(10,000).
Future work aims at: (i) further validating the proposed

approach on a larger set of cases, including more real-world
bugs; (ii) better supporting cases where NPEs originate
from invocations of library class methods, by specifying
sets of pre and post conditions for such libraries; and (iii)
extending the approach to support the testing of other kinds
of exceptions, besides NPEs.
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