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OF LIQUID STORAGE TANKS INCLUDING SOIL-STRUCTURE
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Abstract. The paper establishes a computationally inexpensive method to deal with the dy-
namic response of liquid storage tanks subjected to seismic excitation including dynamic soil-
structure interaction. The tank is modelled as a thin shell, the stored liquid is described as
an inviscid and incompressible fluid and the soil medium is modelled as an elastic continuum.
The dynamic response of the tank-liquid-soil system is derived in the frequency domain using
dynamic substructuring and mode matching. The tank vibrations are first expressed in terms of
the in-vacuo shell modes while the liquid motion is described as a superposition of linear po-
tentials. The soil reaction to the plate of the tank is derived on the basis of a boundary integral
formulation with the excitation field being the seismic free-field ground motion. Due to its high
computational efficiency, the proposed method is suitable when a large number of simulations is
required as is the case in seismic risk analysis. It overcomes the limitations of most mechanical
analogues used nowadays, while at the same time maintains an accuracy comparable to that of
finite element models within a fraction of the computation time of the latter.
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1 INTRODUCTION

The dynamic response of liquid storage tanks subjected to ground excitation has been a

subject of continuous research over the past decades [1]. Despite the many modelling techniques

available, most models can be classified into two broad categories: Finite Element (FE) models

[2] and simplified mechanical analogues with a few degrees of freedom [3, 4].

In a simplified model, the various components of the tank-liquid system are described by

point masses, springs and dashpots at certain locations [5]. Such models are useful for engi-

neering purposes since they can prognosticate the base shear force and the overturning moment

[6], however, they have certain limitations. First, they provide estimations of the design stresses

at the base of the tank alone. Second, when they need to consider shells of non-uniform thick-

ness or dynamic soil-structure interaction, they become needlessly complex, and even though

procedures are described in the design codes to incorporate some of these effects [7], these pro-

cedures are approximate and cannot always guarantee accurate solutions. On the contrary, when

a detailed dynamic analyis is required, FE modelling is often considered. Detailed FE models

can overcome most of the limitations of the simpler models described earlier, however, they

are computationally expensive and require experienced end users. In addition, the modelling of

the unbounded soil domain and the proper inclusion of the seismic excitation remain always a

challenge.

To overcome the disadvantages of the aforementioned modelling methods, this paper intro-

duces an alternative method of numerical analysis of the tank-liquid-soil system. By doing so,

one can overcome the main disadvantage of the FE models while, at the same time, compu-

tational accuracy stays uncompromised. The linear dynamic response of the tank-liquid-soil

system is derived in the frequency domain using a mode-matching, dynamic substructuring

technique. The substructuring technique, together with the Rayleigh-Ritz method, have been

previously employed in [8, 9] for the solution of tank-liquid dynamic problems albeit in the ab-

sence of dynamic soil-structure interaction (SSI). In contrast to these earlier works, in this paper

the eigenvalue problems are first formulated to obtain the modes of vibration of the tank and the

liquid satisfying a set of predefined boundary conditions in an exact manner. Once the vibration

modes of the tank and the liquid are determined to within a set of unknown complex-valued

coefficients, the latter are obtained by ensuring the kinematic compatibility at the tank-liquid

interface and by satisfying the equations of motion of the shell structure subjected to seismic

motion. In addition to that, the dynamic reaction of the soil at the bottom side of the plate is

considered through a boundary integral formulation in line with Lin et al. [10], thus coupling

the tank-liquid system to the soil modelled as a three-dimensional continuum.

The main novelty of the paper lies in the establishment of a computationally inexpensive

method to obtain the solution of the fully coupled tank-liquid-soil system subjected to seismic

excitation. The computational efficiency stems from the adoption of the dynamic substructuring

technique and the fact that for each substructure a standard eigenvalue problem is first solved

before the forced response is treated. As will be shown, for low frequency seismic excitations,

a few modes usually suffice to reach satisfactory convergence which adds to the computational

speed. Furthermore, the solution technique proposed is very efficient and does not require the

treatment of the whole coupled problem anew every time one of the substructures alters, i.e.

varying liquid volume in the tank or soil composition. Given that, the authors believe that the

proposed method is especially useful when a large number of simulations are required as, for

example, is the case in seismic risk analyses and probabilistic assessments; cases in which the

engineer is usually restricted to the use of simplistic models not capable of capturing all possible
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Figure 1: Definition of the displacement components and of the local coordinate system of the tank-

liquid-soil system.

failure mechanisms.

In chapter 2, the model is described including the governing equations. The solution method

for each subsystem is covered in detail in chapter 3, while chapter 4 establishes the algebraic

system of equations that yields the solution to the coupled tank-liquid-soil problem subjected to

a seismic excitation. In chapter 5, a convergence analysis is performed and model predictions

are compared with FE simulations. Finally, chapter 6, summarises the main results of the paper.

2 MODEL DESCRIPTION

A typical liquid storage tank is shown in Fig.1. The shell structure consists of a circular plate

and a cylindrical wall with the parameters E, ν, h and ρ corresponding to the Young’s modulus,

the Poisson’s ratio, the thickness, and the density of the various parts of the shell, respectively.

A cylindrical global coordinate system is adopted (r, θ, z) in which r is the radial coordinate, θ
is the circumferential coordinate and z is the vertical coordinate. The tank is filled with liquid

up to a height of Hl ≤ H with H being the height of the wall of the tank. The liquid is assumed

inviscid and incompressible with a density ρl. The soil column of depth d that supports the

tank is modelled as a linear elastic continuum with material parameters ρs, λ, μ corresponding

to the density and the two Lamè constants of the elastic continuum, respectively. The seismic

excitation is included through the free-field ground motion.

The governing equations describing the tank dynamic response read:

Lpwp(r, θ, t) + ρphpẅp(r, θ, t) = σs(r, θ, t) + pp(r, θ, t) (1)

Lwuw(θ, z, t) + ρwhwüw(θ, z, t) = pw(θ, z, t) (2)

in which wp = [wr, wθ, wz]
T

is the displacement vector of the mid-surface of the plate, Lp

is the stiffness operator of the plate [11], σs = [τrz, τrθ, σz]
T

represents the boundary stress

vector induced by the interaction with the soil (including the seismic excitation), and pp =

[0, 0, pliq]
T

accounts for the pressure of the stored liquid. Next to that, uw = [ur, uθ, uz]
T denote
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the displacement of the mid-surface of the wall along the radial, circumferential and vertical

directions, respectively. The operator Lw accounts for the stiffness of the cylindrical shell [12]

and the force vector pw = [pliq, 0, 0]
T includes the pressure exerted by the motion of the stored

liquid normal to the shell surface. In Eqs.(1–2), the overdot represents a derivative with respect

to the time variable.

Supplementary to the equations of motion, a set of boundary and interface conditions need

to be formulated to complete the statement of the problem shown in Fig.1:

uw|z=0 − up|r=R = 0 , φw,z|z=0 − φp,r|r=R = 0 , fw|z=0 − fp|r=R = 0 , fw|z=H = 0 (3)

In Eqs.(3), φw,z = −∂ur/∂z and φp,r = −∂wz/∂r and fw = [Mzz, Nzz, Vzr, Tzθ]
T is the gen-

eralised force vector of the wall segment which includes the moment Mzz, the membrane force

Nzz and the shear forces Vzr and Tzθ [12]. Similarly, fp = [Mrr, Vr, Nrr, Nrθ]
T corresponds to

the generalised force vector of the plate at the connection with the wall.

Considering a liquid that is inviscid and incompressible, and limiting the scope to linear

vibrations, the governing equation for the liquid reads:

∇2φ(r, θ, z, t) = 0 (4)

in which φ(r, θ, z, t) denotes the velocity potential. The interface and boundary conditions for

the liquid region read:

∂φ(r, θ, z, t)

∂r

∣∣∣∣
r=R

= u̇r(θ, z, t) ,
∂φ(r, θ, z, t)

∂z

∣∣∣∣
z=0

= ẇz(r, θ, t) (5)

(
1

g
φ̈(r, θ, z, t)− ∂φ(r, θ, z, t)

∂z

)∣∣∣∣
z=Hl

= 0 (6)

A single soil layer is considered and the local coordinate system is employed with the z-

coordinate pointing downwards, such that the soil surface is at z = 0 and the bedrock at z = d.

The equations of motion read [13]:

(λ+ μ)∇∇us(r, θ, z, t) + μ∇×∇× us(r, θ, z, t) = ρsüs(r, θ, z, t) (7)

in which us = [us,r, us,θ, us,z]
T. The boundary conditions and interface conditions of the soil

domain at z = 0 and z = d read:

us(r, θ, d, t) = 0
us(r, θ, 0, t) = up(r, θ, t) r ≤ R

σs
s(r, θ, 0, t) =

{
0

−Ks(r, θ, t) ∗
(
uf

s (r, θ, 0, t)− up(r, θ, t)
) r > R

r ≤ R

(8)

in which σs
s is the surface traction acting on the plate along the r-, θ- and z-coordinate at z = 0

and the asterisk denotes a convolution operation. The term Ks(r, θ, t) denotes the dynamic

stiffness of the soil column evaluated at the surface of the ground as explained in section 3.3

and uf
s (r, θ, 0, t) is the free-field ground motion which defines here the excitation mechanism.

Equations (1–8) govern the dynamics of the tank-soil-liquid system in the time domain.
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3 SOLUTION APPROACH PER SUBSTRUCTURE

The governing equations (1–8) are first transformed to the frequency domain by introducing

the Fourier transform pair with respect to time as follows:

G̃(ω) =

∫ ∞

−∞
g(t)e−iωt dt and g(t) =

1

2π

∫ ∞

−∞
G̃(ω)eiωtdω, (9)

in which g(t) is understood here as the examined quantity. Complex-valued variables in the

frequency domain are indicated with a tilde over the variable.

The resulting set of coupled partial differential equations need to be solved for each exci-

tation frequency. The solution approach is based on the following steps: (i) Solution to the

eigenvalue problem of the tank in-vacuo (section 3.1); (ii) Eigensolutions of the liquid domain

(section 3.2); (iii) Derivation of the dynamic stiffness matrix of the soil at the interface with the

tank in the frequency domain (section 3.3); (iv) Solution to the coupled tank-liquid-soil system

by making use of the steps (i–iii) as described further in section 4.

3.1 Eigenvalue problem of the tank in-vacuo

The equations of motion, boundary and interface conditions for the plate and wall of the tank,

neglecting the presence of the water and the soil, are transformed into the frequency domain by

means of Eq.(9). The solution is found via separation of variables [14]. A set of algebraic

equations is found for the in-vacuo shell modes after substituting the assumed solutions for the

plate and the wall into the boundary and interface conditions.

Gn · a = 0 (10)

Gn denotes the coefficient matrix and a is a vector composed of the unknown constants. For

a non-trivial solution, the determinant of the coefficient matrix Gn is set equal to zero, i.e.

det (Gn) = 0. This results at a transcendental equation which yields an infinite set of eigen-

values ωnm with m = 0, 1, 2, 3, ... for each circumferential order n. A numerical algorithm is

developed with the frequency ω (for every circumferential order n) defined as the running vari-

able which is then iterated numerically to find the zeroes of the determinant. Once the values of

ωnm are obtained, the tank motion can be expressed as a summation of modes in the frequency

domain:

w̃p(r, θ, ω) =
∞∑
n=0

∞∑
m=0

X̃nmD
t
n(θ)Wnm(r) (11)

ũw(θ, z, ω) =
∞∑
n=0

∞∑
m=0

X̃nmD
t
n(θ)Unm(z) (12)

Dt
n(θ) = diag [cos(nθ), sin(nθ), cos(nθ)] contains the circumferential dependency of the tank

modes and Wnm = [Wz,nm,Wθ,nm,Wr,nm]
T and Unm = [Uz,nm, Uθ,nm, Ur,nm]

T are the eigen-

vectors of the plate and the wall, respectively. The indices n, m define the circumferential

and axial mode numbers, respectively. The unknown complex-valued amplitudes X̃nm can be

obtained by satisfying the forced vibration problem. The eigenvectors satisfy the following

orthogonality condition:

ρphp

∫∫
S

Dt
qU

T
qlD

t
nUnmdS + ρwhw

∫∫
S0

Dt
qW

T
qlD

t
nWnmdS0 = anΓnmδqnδlm , (13)
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in which δnp and δml are the Kronecker deltas and S, S0 denote the surface of integration for

the wall and the plate of the tank, respectively. The scalar quantity an denotes an integration

constant related to the circumference, i.e.
∫ 2π

0
Dt

qD
t
ndθ = anδqn; an equals π for n = 0 and 2π

otherwise.

3.2 Eigensolutions of the liquid domain

The liquid potential function is separated into three scalar functions, each one satisfying

a subset of the imposed boundary and interface conditions. This allows an analytical treat-

ment of the problem [15]. The total liquid potential is decomposed into three velocity poten-

tials, namely: (i) φ(1)(r, θ, z, t) which satisfies the homogeneous boundary conditions at z = 0
and z = Hl as well as the imposed kinematic constraint at the interface with the wall; (ii)

φ(2)(r, θ, z, t) which satisfies the homogeneous boundary conditions at r = R and z = Hl, and

the imposed kinematic constraint at the interface with the plate; and (iii) φ(3)(r, θ, z, t) which

does not alter the conditions satisfied already at z = 0 and r = R but allows exact satisfaction

of the boundary condition at z = Hl.

The superposition of the three scalar functions provides the total solution which can be ex-

pressed as follows [8]:

φ̃(r, θ, z) =
∞∑
n=0

∞∑
a=1

φ̃(1)
na + φ̃

(2)
00 +

∞∑
n=0

∞∑
b=1

φ̃
(2)
nb + φ̃

(3)
00 +

∞∑
n=0

∞∑
c=1

φ̃(3)
nc , (14)

in which the following definitions hold:

φ̃(1)
na (r, θ, z) = P̃naφ

(1)
z,na(z)φ

(1)
r,na(r) cos(nθ) (15)

φ̃
(2)
00 (r, θ, z) = Q̃00(z −Hl) (16)

φ̃
(2)
nb (r, θ, z) = Q̃nbφ

(2)
z,nb(z)φ

(2)
r,nb(r) cos(nθ) (17)

φ̃
(3)
00 (r, θ, z) = S̃00 (18)

φ̃(3)
nc (r, θ, z) = S̃ncφ

(3)
z,nc(z)φ

(3)
r,nc(r) cos(nθ) (19)

The modal amplitudes P̃na, Q̃nb, and S̃nc are the unknown complex constants for the liquid

domain which will be determined together with the modal amplitudes of the structure by satis-

fying the forced equations of motion and the kinematic conditions at the tank-liquid interfaces

described previously. The index n denotes the circumferential mode number of each potential.

The indices a, b and c denote the axial mode numbers. The terms εnb and εnc are the roots

obtained by setting J ′
n(ε) = 0.

3.3 Dynamic stiffness of the soil

To obtain the dynamic stiffness of the soil, the equations are first transformed into the

frequency-Hankel domain by means of a Fourier-Hankel transform. In this transformed do-

main, the dynamic stiffness matrix of a single soil layer reads [13]:[
p̄(k, 0)
p̄(k, d)

]
=

[
S̄11 S̄12

S̄21 S̄22

] [
ū(k, 0)
ū(k, d)

]
, (20)

in which p̄(k, 0; d), ū(k, 0; d) correspond to the boundary stress and displacement vectors, re-

spectively, and the bar denotes functions in the frequency-wavenumber domain. The matrix S̄

6
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Figure 2: Vertical and horizontal loads distributed evenly over a circular subdisk.

is the dynamic stiffness matrix in the wavenumber-frequency domain. The only terms of inter-

est in S̄ are S̄11, since the stiffness is needed only at the ground surface. For the sake of brevity

of the notations hereafter, we adopt ū(k) = ū(k, 0), p̄(k) = p̄(k, 0) and p̄(k) = S̄11ū(k). The

inverse of the dynamic stiffness matrix of the ground surface, i.e. the flexibility matrix, is of the

form:

S̄−1
11 = F̄ =

⎡⎣F̄11 0 F̄13

0 F̄22 0
F̄31 0 F̄33

⎤⎦ (21)

Having established a relation between the stresses and displacements at the surface of the

ground, one can derive the dynamic stiffness in a straightforward manner. The plate of the

tank is assumed to contact the ground surface through circular areas referred to as subdiscs.

The loads over a circular subdisk are expanded in Fourier series in the circumferential direc-

tion, where n = 0 relates to an axisymmetric load and n = 1 to an antisymmetric load. The

complex amplitudes of the load are related by the following Fourier-Hankel transform pair [13]:

p̄n(k) = an

∫ ∞

r=0

rCn(kr)

∫ 2π

θ=0

Dn(θ)p̃(r, θ)dθdr

p̃(r, θ) =
∞∑
n=0

Dn(θ)

∫ ∞

k=0

kCn(kr)p̄n(k)dk

(22)

In Eq.(22), an is a normalization factor that is equal to 1/2π or 1/π for n = 0 and n �= 0
respectively. Dn is a diagonal matrix with trigonometric functions, describing the circumferen-

tial dependency and Cn contains Bessel functions. Three load cases are considered. A vertical

load case and two horizontal load cases; one symmetric and one anti-symmetric with respect to

θ = 0. The derivation of the latter two cases is identical but for the trigonometric functions in

Dn.

The radius of each subdisk equals r0 and the amplitudes of the vertical and horizontal loads

are denoted as pz and px, respectively, as shown in Fig.2. The vertical load, that is assumed

uniformly distributed over the subdisc, is transformed into the wavenumber domain by means

of Eq.(22):

p̄0(k) =
1

2π

∫ r0

r=0

rC0(kr)

∫ 2π

θ=0

[0, 0, pz]
Tdθdr = −r0

k
J1(kr0)[0, 0, pz]

T (23)

p̄0(k) relates to ū(k) through the flexibility matrix Eq.(21):

ū0(k) = −
pzr0
k

J1(kr0)[F̄13, 0, F̄33]
T (24)

7
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The displacements of the surface at any r and θ are found by:

ũz
s(r, θ) = −r0pz

∫ ∞

k=0

J1(kr0)C0(kr)
[
F̄13, 0, F̄33

]T
dk (25)

Following a similar procedure for the horizontal load one obtains:

ũx
s = r0pxD1(θ)

∫ ∞

k=0

J1(kr0)C1(kr)
[
F̄11, F̄22, F̄31

]T
dk (26)

Applying the load in y-direction (θ = π), via the same steps, an expression can be found similar

to Eq.(26).

The integrals in Eqs.(25–26) are evaluated by making use of contour integration. The solu-

tion derived holds both within and outside the subdisk. The resulting expressions for r ≤ r0
read:

ũz
s(r, θ) = p̃z

⎛⎝r0πi
∑
kr

H
(2)
1 (krr0)C0(krr)

[
F̄ n
13

F̃ d
p,k

, 0,
F̄ n
33

F̄ d
p,k

]T

+
[
0, 0, F̄33(0)

]T)
, (27)

ũx
s = −p̃xD1(θ)

⎛⎝r0πi
∑
kr

H
(2)
1 (krr0)C1(krr)

[
F̄ n
11

F̄ d
p,k

,
F̄ n
22

F̄ d
s,k

,
F̄ n
31

F̄ d
p,k

]T

−
[
F̄11(0), F̄11(0), 0

]T)
(28)

Similarly, the expressions for r ≥ r0 read:

ũz
s(r, θ) = r0p̃zπi

∑
kr

J1(krr0)C0(krr)

[
F̄ n
13

F̄ d
p,k

, 0,
F̄ n
33

F̄ d
p,k

]T

(29)

ũx
s = −r0p̃xπiD1(θ)

∑
kr

J1(krr0)C1(krr)

[
F̄ n
11

F̄ d
p,k

,
F̄ n
22

F̄ d
s,k

,
F̄ n
31

F̄ d
p,k

]T

(30)

Equations (27–30) define the frequency response functions (FRFs) for a constant distributed

force over a circular area with radius r0. The superscript n here denotes the numerator of the

flexibility functions and d the denominator of those; in all cases the derivative of the denomi-

nator is taken with respect to k, indicated with subscript k. The FRFs are derived for a single

subdisk around the origin. By normalizing the amplitude of the stresses (px, py, pz), the dy-

namic impedance R̃s(r, θ) is obtained which upon inversion yields the dynamic stiffness of the

soil K̃s(r, θ).

4 COUPLED TANK-LIQUID-SOIL SYSTEM

The motion of the liquid is described by Eqs.(14–19) and the motion of the tank by Eqs.(11–

12). Upon substitution of these expressions into the interface and boundary conditions given by

8
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Eqs.(5–6), and after the use of the orthogonality conditions, one obtains:

ΓnaP̃na = −iω
∞∑

m=0

X̃nm

∫ Hl

0

φ(1)
z,na(z)Ur,nm(z)dz (31)

ΓnbQ̃nb = −iω
∞∑

m=0

X̃nm

∫ R

0

φ
(2)
r,nb(r)Wz,nm(r)rdr (32)

ΓncS̃nc =
∞∑
a=1

P̃na
∂φ

(1)
z,na(z)

∂z

∣∣∣∣∣
z=Hl

∫ R

0

φ(3)
r,nc(r)φ

(1)
r,na(r)rdr

+
∞∑
b=1

Q̃nb

∂φ
(2)
z,nb(z)

∂z

∣∣∣∣∣
z=Hl

∫ R

0

φ(3)
r,nc(r)φ

(2)
r,nb(r)rdr (33)

The integration constants derived directly from the orthogonality relations are omitted here

for the sake of brevity. Next to the satisfaction of the kinematic conditions at the tank-liquid

interface, the forced equations of motion of the structure need to be satisfied. Considering Eqs.

(11–12) and the fact that for every mode of vibration of the shell Lwunm = ω2
nmρwhwunm and

Lpwnm = ω2
nmρphpwnm, the stiffness terms can be replaced by the inertia ones, i.e.:

∞∑
n=0

∞∑
m=0

((
ω2
nm − ω2

)
ρphp + K̃s

)
X̃nmD

t
nWnm − p̃p,n cos(nθ) = K̃sũ

f
s (34)

∞∑
n=0

∞∑
m=0

(
ω2
nm − ω2

)
ρwhwX̃nmD

t
nUnm − p̃w,n cos(nθ) = 0 (35)

in which the liquid pressures are p̃n,p = [0, 0, p̃n,l|z=0]
T and p̃n,w = [p̃n,l|r=R, 0, 0]

T. Wnm and

Unm are the eigenvectors of the plate and wall respectively with respect to circumferential mode

number n and axial mode number m. By substituting Eqs.(15–19) into p̃n,p and p̃n,w one can

expand the liquid pressures in terms of the summation of the potential functions. By summing

up the components of Eqs.(34–35), one can make use of Eq.(13) to eliminate part of the modal

summations. By considering the above, the final set of infinite equations that needs to be solved

for every n-mode number reads:

∞∑
m=0

(
ω2
nm − ω2

)
Γnm −

∫ R

0

W T
nmp̃p,ndr −

∫ H

0

W T
nmp̃w,ndz

=
1

an

∫∫
S0

Dt
nW

T
nmK̃s

(
ũf

s − X̃nmD
t
nWnm

)
dS0 (36)

This approach is valid as shown in [16] for a pile foundation embedded into the soil. The final

matrix equation can be represented in a condensed form as follows:

Qn · cn = Fn (37)

Qn is the modal coefficient matrix of dimensions (a+b+c+m)×(a+b+c+m) which is fully-

populated, complex-valued, and gathers the multipliers of the amplitude coefficients resulting

from equations (31–33) and (36). Vector cn contains the liquid unknowns Pna, Qnb, Snc and

modal amplitude coefficients of the structure Xnm and is of size (a + b + c + m). Vector Fn

represents the modal projection of the dynamic loading. By following a straightforward matrix

operation, i.e. cn = Q-1
nFn, one can obtain both the liquid and the structure unknown constants

once a proper truncation scheme of the infinite system is established.

9
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Figure 3: Convergence of the solution for increasing number of axial mode numbers of the liquid domain

(a = b = c) for: (a) n = 0; and (b) n = 1.

5 MODEL VALIDATION

The tank-liquid system is validated with a FE model using a Kelvin-Voigt foundation with

frequency independent springs and dashpots to represent the SSI effects. The soil domain is

validated separately by comparing the results of a harmonically excited rigid massless plate

[17, 18].

5.1 Convergence criteria and eigenvalues of the liquid-tank system

The base case considered for validation is a tank with H/R = 0.71 and H = 22m. The

tank is composed of steel material (ν = 0.30 and ρ = 7850 kg m−3) with a plate thickness of

hw = 19mm and hw/hp = 1.267. The plate rests on elastic foundation with kv = 40MNm−2

and kv/kh = 16. The stored liquid has a density of 1000kgm−3 and a fill level ratio Hl/H = 1.0.

The adopted computational method involves the truncation of the infinite set of algebraic equa-

tions to obtain the unknown modal coefficients. It has been found that the results are most

sensitive to the truncation limits of the liquid modes and rather insensitive to the number of

structural modes considered as long as a reasonable criterion is adopted for the latter. The num-

ber of structural modes to be considered can be estimated by examining the energy spectrum

of the dynamic excitation and choosing a truncation limit for the structural modes such that the

eigenfrequency of the upper limit in the summation is twice as high as the highest frequency of

interest-based on the energy spectrum [19]. Figure 3 depicts the average error at the shell-liquid

interface for varying number of liquid modes and for a range of frequencies for two cases of

circumferential mode numbers, i.e. n = 0 and n = 1. As can be seen, when the number of axial

modes increases for a given circumferential order, the error decreases monotonically. For the

case study considered here, about 30 modes suffice to reduce the error to below 5% for n = 0
and about 40 modes to stay within the same limit for n = 1.

The proposed model is validated against results obtained by FEM simulations in Comsol

Multiphysics R© COMSOL Multiphysics R© [20]. The validation is performed for several key

parameters; here results are shown for a varying liquid volume. As can be seen in Table 1, the

differences in the computed eigenvalues between the present model and the FEM are less than

10% in all cases and in most cases below 5%. In Fig. 4, a few mode shapes obtained with the

two models are shown. As can be seen, the modes are very similar which proves the validity of

the developed model.
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n = 1 Present model FEM [20] |δf | [%]
Hl/H f1,1(Hz) f1,2(Hz) f1,1 f1,2(Hz) δf1,1 δf1,2

0% 6.29 12.06 6.42 12.14 2.00 0.63

50% 2.65 6.35 2.39 6.07 9.97 4.55

100% 1.31 3.99 1.24 3.70 5.52 5.80

Table 1: Eigenvalues (in Hertz) obtained by using a FE model in COMSOL Multiphysics R© [20] and the

present model for the n = 1 family of modes and for varying fill height of the liquid.

Figure 4: Comparison of the modal shapes of the tank-liquid system obtained by using the FE model in

COMSOL Multiphysics R© [20] and the present model for a filled tank:(a) FE mode (1, 1); (b) FE mode

(1, 2) (c) present model mode (1, 1); (d) present model mode (1, 2).

5.2 Dynamic soil stiffness

The derivation of the dynamic stiffness is benchmarked against results presented in the liter-

ature for the case of a rigid plate. To facilitate a direct comparison with literature, a normalized

frequency is introduced as a0 = ωR/2πcs. The dynamic stiffness and damping coefficients in

the horizontal direction are defined as:

K̃xx = K0
xx

(
kxx + i

ωR

cs
cxx

)
(1 + 2iβ) (38)

in which K0
xx is the static stiffness and kxx, cxx denote the dynamic stiffness and damping

coefficients, respectively, and cs denotes the shear wave speed in the soil.

For the validation case the following values are chosen: d/R = 2; 4, ν = 1/3, damping ratio

β = 5%. The comparison is based on a discretisation of the plate surface in 15 rings yielding in

total 709 subdisks. Figure 5 shows that the dynamic stiffness kxx and damping coefficients cxx
are in very good agreement with literature [17, 18]. Moreover, the solution for the static case

converges relatively fast as shown in Fig.6. It is expected that this is an extreme case since peak

stresses are located at the edge of the plate. The subdisks have only one node; thus, the more

elements included, the better the stress representation at the edge. When travelling waves with

short wavelengths compared to the plate radius are excited, a higher number of elements might

be required, albeit in the field of earthquake engineering this is not expected.
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(a) Horizontal stiffness coefficient (b) Horizontal damping coefficient

Figure 5: Comparison of model results (solid lines) and references (dashed lines) [17, 18].

Figure 6: Convergence of the static stiffness for d/R = 2 and d/R = 4.

6 CONCLUSIONS

A computationally inexpensive method is developed for the prediction of the dynamic re-

sponse of a liquid storage tank subjected to seismic excitation. The model consists of three main

subsystems, namely: the shell structure representing the tank, the stored liquid and the soil do-

main. Emphasis is placed on the theoretical development of the model and the description of an

elegant method of solution to the final system of coupled differential equations. The strength of

the method is that it can cope with a full dynamic analysis of a coupled tank-liquid-soil system

and it can easily be expanded in cases of non-uniform shell thickness and multi-layered soils.

Next to that, due to the fact that substructuring forms the basis of the solution technique, the

model is suitable for a large number of computations in which some parts of the total system

are altered whereas others remain unchanged. The authors believe that the proposed model can

be especially useful when a large number of simulations is required as, for example, is the case

in seismic risk analyses.
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