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1
Introduction

Planar (2D) flexure elements fulfil a pivotal role in the field of precision positioning systems as they
do not suffer from backlash, friction or play and exhibit highly repeatable behaviour. However, planar
building blocks are characterized by a limited design space as the majority of the flexure elements
are flat and straight. In this thesis, it is proposed to investigate another type of flexure element that
features spatial (3D) properties. This relatively new group of compliant shell mechanisms provide, in
contrast to planar elementary flexures, much more geometric diversity. Furthermore, due to the re­
cent improvements in fabrication possibilities (i.e. 3D steel printing) the usage of spatial compliant
mechanisms are becoming a realistic and attractive alternative. Compliant shell mechanisms show
promising indications that they may be used on an equal level with conventional flexure geometries.
However, many shell surfaces remain to be studied and validated before they can be used to gener­
ate mulit­degree of freedom flexure systems.

In this exploratory study a choice has been made to investigate helical flexure geometries. Looking
into this particular group of surfaces is a logical step consistent with past research. Helical geome­
tries show indications of potentially interesting properties. Additionally, these helical surfaces are
elegantly expressed in terms of parametric equations that conveniently can be used to change the
geometrical properties. Considering the lack of literature and the nature of complexity a decision was
made to focus on linear small­displacement kinematic behaviour.

1.1. Research objectives

The main research objective of this paper focusses on the implementation of spatial flexures in mo­
tion stages. This main objective is split into two parts:

• Understanding of helical flexure geometries with varying curvature

• Use a helical flexure element to synthesize a compliant motion stage

1.2. Thesis outline

The main body of this thesis consists of one independent paper and serves as the key contribution
of this master thesis. There are also recommendations for further research and a general outlook
followed by conclusions. This paper is supplemented with an appendix providing insight into the work
that was not included in the scientific paper.
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Paper

A new approach: using helical flexure geometries in a
3DoF compliant motion stage
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A new approach: using helical flexure geometries in a 3DoF

compliant motion stage

Thomas Soek1, Jelle Rommers1, Just Herder1

1Department of Precision and Microsystems Engineering, Delft University of Technology

Abstract 2D flexure elements fulfil a pivotal
role in the field of precision positioning systems
as they do not suffer from backlash, friction or
play and exhibit highly repeatable behaviour.
However, planar building blocks are character-
ized by a limited design space as the majority
of the flexure elements are flat and straight. In
this paper, it is proposed to investigate another
type of flexure element that features spatial (3D)
properties. More specifically, it considers the use
of helical flexure geometries in motion stages. In-
sight into the linear kinematic behaviour of vari-
ous helical surfaces with varying curvature is pro-
vided with the usage of parametric optimization,
screw theory, unified stiffness method and a per-
formance metric. The newly acquired insights
served as a prerequisite for selecting a suitable
topology capable of guiding a stage. For demon-
stration purposes, a motion stage prototype was
fabricated consisting of three helical flexure el-
ements. Additionally, an eigenfrequency analy-
sis was performed and experimentally validated
with a model vibration test. This has led to the
successful realization of a helical based compliant
motion stage.

1 Introduction

In order to achieve precision, repeatability
and predictability in precision engineering,
compliant mechanisms play a important role.
Their ability to transmit or guide spatial loads
[1], while elastically deforming without the
problems such as backlash, friction or play
[2, 3]; justifies their popularity, particularly in
precision positioning systems.

To date, the majority of stage designs are
guided by planar (2D) mechanisms. These
systems consist of one or a combination of serial
and/or parallel elementary building blocks.
Each element has clear constraints and freedom
topologies. Examples include the wire flexure,
leaf spring and folded leaf spring [2, 3]. Using
methods such as the Freedom And Constraint

Topology (FACT) allows one to diagnose and
synthesize multi-Degree of Freedom (DoF)
flexure system concepts [4]. Literature hosts a
variety of stage designs including, for instance,
the double parallelogram and the cross pivot
flexure [2, 3, 5]. Additionally, different mod-
elling approaches have been employed. This has
led, for example, to the design of the Infinity
hinge by Brouwer et al [6] or a re-designed
folded leaf spring using inverse finite element
formulation by Rommers et al [7]. Although 2D
flexure elements seem advantagous, they also
have their limitations i.e. nonlinear kinematics
(force-deflection) behaviour for a large Range
of Motion (RoM) [8], non-constant support
stiffness descending over a RoM [6] and parasitic
error [5]. Additionally, 2D flexure elements are
characterized by a limited design space. This
space restriction is highlighted when defining
a three-dimensional box geometry via a two
dimensional rectangle with the third dimension
normal to the sketch plane as a pre-defined con-
stant. A constant out-of-plane third dimension
is not desirable. To overcome these limitations
it is necessary to look beyond the current use of
planar flexure elements.

There is also another family of elementary
flexures that exhibit spatial (3D) properties.
This relatively new group of compliant shell
mechanisms provide, in contrast to planar
elementary flexures, much more geometric
diversity. Furthermore, due to the recent
improvements in fabrication possibilities (i.e.
3D steel printing) the usage of spatial compliant
mechanisms are becoming a realistic and attrac-
tive alternative. Given that the vast majority
of flexure elements are flat and straight it
seems only logical to pursue this direction. The
number of truly 3D elementary building blocks,
however, remain scarce. In literature a few do
occur, Hopkins et al [4] used spatial flexures
to create a screw system. Rommers et al [8]
introduced the so called ’Triflex’ mechanism to
create a linear guide. Nijssen et al [9] synthe-
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sized a characterization method to explore the
different types of compliant shell mechanisms.
Additionally, the folded tape spring has been
studied extensively [10, 11, 12, 13]. Herder and
Radaelli also investigated the large-displacement
behaviour of a spiral spring with variations of
cross-section, orthotropy and pre-stress [14].
Compliant shell mechanisms exhibit encourag-
ing indications that they may be used on an
equal level with conventional flexure geometries.
However, many shell surfaces remain to be
studied and validated before they can be used
to generate mulit-DoF flexure systems.

In this exploratory study a choice has been
made to investigate helical flexure geometries.
Looking into this particular group of surfaces
is a logical step consistent with past research
[15]. Helical geometries show indications of
potentially interesting properties. It would
also be a sensible continuation of the work
already done by Leemans [16] and Nijssen et
al [9]. Additionally, these helical surfaces are
elegantly expressed in terms of parametric
equations that conveniently can be used to
change the geometrical properties. Considering
the lack of literature and the nature of com-
plexity a decision was made to focus on linear
small-displacement kinematic behaviour. The
main research objective of this paper focusses
on the implementation of spatial flexures in
motion stages. This main objective is split
into two parts. The first one looks into the
understanding of helical flexure geometries with
varying curvature. The second part highlights
the more specific use of a helical flexure element
and to generate, using such an element, a 3DoF
compliant motion stage.

After the introduction this paper has four sec-
tions. The method in section 2 is split into
three parts. The first part introduces the dif-
ferent families of helical surfaces along with the
general equations and provides an explanation
and overview of the chosen starting point. It
also describes the basic helix, as well as the
manual parametric optimization process towards
the finalized version of the innovative Spatially
Curved Helix - (SCH) flexure. In the second
part a description is given on how by using eigen-
screw decomposition and the already existing
unified stiffness method it is possible to com-
pare the principle directions of each helical sur-
face. This unification method is a prerequisite
for the compliance metric comparing the differ-
ent geometries. Then the concept of the second
moment of area will be used to explain how stiff-

ness properties change due to the introduction of
curvature. The third and last part of the method
section uses the knowledge gained in the form of
an application by synthesising a 3DoF compli-
ant motion stage. An eigenfrequency analysis
was performed using Comsol, followed by an ex-
periment to validate the numerical model. The
results in section 3 summarize the findings of this
study. Lastly, section 4 will be a discussion fol-
lowed by the conclusions in section 5.

2 Method

2.1 Starting point

2.1.1 Helix families

It is important to understand what exactly a he-
lical surface is. Generally, there are 3 cases of
uniform motion: (1) uniform translations, (2)
uniform rotations with nonzero angular veloc-
ity about a fixed axis and (3) uniform helical
motion that are the superposition of a uniform
translation and uniform rotation parallel to the
rotation’s axis [17]. Commonly a line represents
the path of a moving point, along similar anal-
ogy a surface represents the path of a moving
line called a generatrix [17]. A generatrix can
either be curved or a straight line. The genera-
trix curve or line L is revolved uniformly around
an axis of revolution while translating along that
direction of the axis. This axis is called a helical
axis. Helical surfaces with a variable pitch have a
non-constant relation of the translational speed
to angular velocity. A choice was made not to
consider helical surfaces with a variable pitch as
it results in the addition of unwanted complexity.
On the other hand, if the ratio of speed along the
straight line to the value of the angular velocity
is constant then this trajectory is known as an
ordinary helical motion. This in turn produces
an ordinary helical surface. Furthermore, every
line projected on a helical surface can be taken as
a generating line L. It is always possible to find
a plane curve/lying in the plane of the axis of ro-
tation [17]. If the generatix is a straight line, it
is called a ruled helical surface. If the generatrix
is round or curved, it is known as a circular heli-
cal surface. Lastly, any surface formed by some
curve profile, is called a helical surface with ar-
bitrary plane generatrix curve. Figures 1, 2 and
3 show selected helical surfaces from each family
and serve as an visual impression.

Figure 4 represents the different categories of
helical surface geometries [17]. Within ordinary
helical geometries, ruled helical surfaces contain



Figure 1: Ruled helical surface
The cylindrical helical strip

Figure 2: Circular Helical surface
The tubular helical surface

Figure 3: Helical surface with
arbitrary plane generatrix curves

The helical sinusoidal strip

Helical
surfaces
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Figure 4: Helix families

too few parametric variables and therefore were
not selected. Circular helical surfaces were not
suitable as they are too rigid as well as mostly
consisting of closed surfaces. Finally, this leaves
the helical surfaces with an arbitrary plane gen-
eratrix plane as the most suitable option to pur-
sue further.

2.1.2 General equations

Within the family of ordinary helical surfaces
with arbitrary plane generatrix there are also
many different curve profiles. Another choice is
made to further investigate helical surfaces with
a sinusoidal generatrix. Equation 1, 2 and 3 be-
low fully describe the mathematical surface of
this particular helix.

x = x(u, v) =
(
a+ c cos

nπv

d

)
cos (u) (1)

y = y(u, v) =
(
a+ c cos

nπv

d

)
sin (u) (2)

z = z(u, v) = b u+ v (3)

The following will expand on the meaning of
these parameters.

� a : affects the radius of the helix



� c : determines amplitude of the sinusoid

� n : number of semi-whole waves of a sinu-
soid located on a length d, where d is the
corrugation curvature explained further be-
low

� b : influences width of the helix

� u : [0, 2πk] - a linearly spaced vector, where
k is the number of revolutions

� v : [0, d] - a linearly spaced vector

� d : corrugation curvature = 2 b sb π , where
sb is the pitch height multiplier

Parameters a, c, n, b, and k are basic con-
stants. Furthermore, u and v are vectors that
together produce a two dimensional grid of coor-
dinates. The last variable d benefits from some
further explanation. The pitch multiplier sb al-
lows one to change the pitch height. Hence, tak-
ing d = 2 b sb π, where sb = 1, it is possible to
create a continuous helical surface with the strips
just touching each other. If d > 2 b sb π the strips
will overlap and vice versa when d < 2 b sb π the
strips will move further away and underlap. By
setting c = 0 simplifies the parametric equations
as they become representative for a cylindrical
helical strip. More on this shall be discussed
later in 2.1.3.

2.1.3 Backward iteration: complex helix
towards basic helix

In this section the so-called most ’basic’ helix will
be introduced. By setting the amplitude of the
sinusoid to c = 0 equations 1, 2, 3 reduce to equa-
tions 4, 5, 6. The result shows a simplified ver-
sion leaving only 3 equations that describe this
surface, as can be seen in figure 5. These equa-
tions cannot be reduced further without losing
the essential properties of a helical surface. This
leads to the following definition:

x = x(u, v) = a cos (u) (4)

y = y(u, v) = a sin (u) (5)

z = z(u, v) = b u+ v (6)

Definition: the most basic helical surface is
essentially a flat plate wrapped around a tin can,
making it a short hollow cylinder with a small

Figure 5: Basic helix
width = 0.02 m and diameter = 0.08 m

partition generating an open surface. Further-
more, the height along the revolutions remains
constant.

Argumentation of this definition:

It is obvious that the maximum revolution of the
basic helix lies just under 2π in order for it to re-
main an open surface. The minimum length is
still open for interpretation. It can be argued
that the minimum length could be anywhere be-
tween just below the maximum and zero. How-
ever, by choosing to reduce the revolution to any-
thing less than just below 2π questions whether
it can be considered a helical surface at all.

2.2 Manual parametric
optimization

This section will look into how the compliance
properties change of the basic helix due to the
introduction of curvature. However, before do-
ing so, one first needs to have a method that
breaks down translational and rotational com-
pliance into comparable units. Here the Unified
stiffness method by Leemans will be utilized. Af-
ter this unification a metric is introduced to com-
pare the change in compliance properties due to
the changed geometry. In addition to this the
second moment of area will be used to explain
the reasoning behind the introduction of curva-
ture and an overview of the iteration process will
presented. For clarification purposes the follow-
ing table is presented providing an outline of the
contribution for each section.

Section Contribution
2.2.2 Leemans [16]
2.2.3 Author and Leemans [16]
2.2.4 Author
2.2.5 Author
2.3 Author

Table 1: Contribution overview

In order to preserve consistency and to have
similar order of magnitude all of the helical ge-
ometries have a width equal to 0.02 m, a ra-
dius of 0.04 m and a thickness of 0.002 m. The



material model will be the same for all flex-
ure mechanisms, namely a linear elastic isotropic
PolyLactic Acid (PLA).

2.2.1 Eigenscrew decompostion

Using Plücker coordinates, a displacement in
three-dimensional space can be expressed in
terms of linear and angular displacements in the
form of a twist vector ~T .

~T =

[
~δi
~γi

]
=

[
(~ri × ~γi) + hi~γi

~γi

]
, i = 1, 2, 3 (7)

Here the upper half of the 6×1 vector in
equation 7 can be split into two parts. The first
part consisting of a multiplication of angular
displacement with the location vector ~ri while
also being perpendicular to the direction of
rotation ~γi. The second part is parallel to the
rotation and is depended on the scalar pitch hi.

Along similar analogy, forces and moments can
be expressed as a wrench vector ~w.

~w =

[
~fi
~τi

]
=

[
~fi(

~bi × ~fi

)
+ di~fi

]
, i = 1, 2, 3 (8)

In this case the lower half of the 6×1 vector
in equation 8 i.e. the moment couples can
be split into two parts. The first part being
a multiplication of the linear force with the
location vector ~bi and is perpendicular to the
direction of the force ~fi. The second part is
parallel to the force and is depended on the
ratio of angular torque to linear force di.

The compliance matrix (C) of a specific Point
Of Interest (POI) expresses the constitutive re-
lationship between the forces and displacement
whereas the stiffness matrix (K) does it the
other way around i.e. between displacements
and forces:

~T = C~w (9)

~w = K~T (10)

C and K are the 6×6 compliance and stiff-
ness matrices. Note, that in a linear analysis
the secant and tangent stiffness matrices are
equivalent; hence from this point onwards these
shall be referred to as the general compliance

and stiffness matrices.

Both C and K matrices can be transformed
into an eigen-system described by Lipkin & Pat-
terson [18] and shown below.

C =
[
T̂ f T̂ γ

] [af 0
0 aγ

] [
T̂ f
T̂ γ

]
(11)

K =
[
ŵf ŵγ

] [kf 0
0 kγ

] [
ŵf
ŵγ

]
(12)

The eigenscrew decomposition describes both
the three translational as well as the three ro-
tational principle axes. In addition to direction,
this decomposition also provides stationary mul-
tiplier values for each of these directions. Here
the multipliers kfi are the translational stiff-
nesses in the directions of the fi and kγi are the
angular stiffnesses in the directions of γi. The
translational compliance is the inverse of kfi and
in a similar manner the rotational compliance is
the inverse of kγi, see equations 13 and 14 below.

afi =
1

kfi
(13)

aγi =
1

kγi
(14)

Equation 15 respresents the eigenwrenches as
well as the directional axis of these wrenches.

wfi =

[
~fi
~τi

]
, i = 1, 2, 3 (15)

Applying an eigenwrench wfi leads to an in-
duced twist Tfi. The induced twists are pure
translational and parallel to the eigenwrench.

Tfi =

[
afi~fi

0

]
, i = 1, 2, 3 (16)

Equation 17 respresents the eigentwist as well
as the directional axis of these twists.

Tγi =

[
~δi
~γi

]
, i = 1, 2, 3 (17)

Applying an eigentwist Tγi leads to an in-
duced wrench wγi. The induced wrenches are
pure couples parallel to the eigentwists.



wγi =

[
0

kγi ~γi

]
, i = 1, 2, 3 (18)

The eigentwists and eigenwreches in equa-
tions 11 and 12 are normalized such that the
linear force and angular displacement have unit
magnitude.

In summary, this eigenscrew decomposition
treats the kinematic information within the com-
pliance matrix as screws. Screw theory allows
one to differentiate between the lines along a
force that yield a parallel translation and a ro-
tation that yields a parallel moment [5]. These
lines are referred to as eigenwrenches and eigen-
twists.

2.2.2 Unification method

Screw theory so far has provided the means
to describe the principle axes of a compliant
mechanism. However, the diagonal matrices
in equations 11 and 12 do not have consistent
units. The stationary multipliers af in equation
11 have units of length per force parallel to the
wrench axis. On the other hand, the stationary
multipliers aγ serve as the rotational compliance
having units of angle divided by force multiplied
by a length, expressed as a rotation around the
twist axis. In order to solve this problem the
Rotation as an equivalent Translation (RasT)
approach by Leemans will be utilized [16].

Using virtual loads the RasT unification
approach expresses rotational compliance as
an equivalent translational compliance at the
point of interest using solely forces to create a
displacement. Furthermore, this approach is
intuitive and is responsible for the coupling of
the rotations and translations by including a
twist pitch. The following section will explain
the significance of the end result and how
it transforms the stationary multipliers in
comparable units. For further details of the ex-
act derivations consult the work of Leemans [16].

In order to express a rotation as an equivalent
translation, a unification length χi is required,
see equation 19 and 20.

ãfi = χ2
i aγi (19)

χi =
√
|ri|2 + h2i (20)

Using this unification variable one can ex-
press the rotational compliance as an transla-
tional equivalent ãfi.

ãfi =
(
|ri|2 + h2i

)
aγi (21)

Along similar but opposite analogy one can ex-
press the rotational stiffness as an translational
equivalent k̃fi.

k̃fi =
kγi

(|ri|2 + h2i )
(22)

The point has arrived where the diagonal ma-
trices in equation 11 and 12 containing the sta-
tionary multiplier values can be substituted with
ãf (equation 23) and k̃f (equation 24). One
should realise that now ãf has units of length per

force and no rotational compliance; k̃f solely has
units of force per length and also no rotational
stiffness.

ãf =

afi 0

0
(
|ri|2 + h2i

)
aγi

 (23)

k̃f =

kfi 0

0
kγi

(|ri|2+h2
i )

 (24)

The resulting equations for the compliance
(C) and stiffness (K) matrices using the unified
eigen-decompositions are described below.

C =
[
T̂ f T̂ γ

] I 0

0 1√
|ri|2+h2

i

 ãf

I 0

0 1√
|ri|2+h2

i

[T̂ f
T̂ γ

]
(25)

K =
[
ŵf ŵγ

] I 0

0
√
|ri|2 + h2i

 k̃f

I 0

0
√
|ri|2 + h2i

[ŵf
ŵγ

]
(26)

Now all of the terms in the 6×6 compliance
matrix have directly comparable units. This al-
lows one to easily determine the dominant princi-
ple compliance directions of a flexure mechanism.
This can also be done for the 6×6 stiffness ma-
trix since all of its components have equivalent
units.

2.2.3 Compliance metric

After consultation of the unified stiffness method
it is now possible to define a metric. This per-
formance measure provides meaningful insight



into the compliance characteristics of the se-
lected flexure mechanisms. This ratio is a di-
vision where the numerator represents the indi-
vidual 6 different compliance directions and the
denominator represents the smallest compliance
value of the 6 principle directions.

Cj =
Cdirectionj
Csmallest

, j = 1, 2.., 6 (27)

The different helical geometries will be com-
pared according to this assessment metric.

2.2.4 Adding curvature via
general equations

Taking the basic helix in section 2.1.3 as a start-
ing point we propose to change how material
is distributed w.r.t a particular axis. This is
achieved by using a geometric property known
as the second moment of area or area moment
of inertia [19].

Firstly, one requires to locate the centroid of
a shape using the first moment of area. The
centroid is important because it shows the
location of the neutral axis, a plane where no
strain upon bending exists [19]. For symmetrical
homogeneous bodies, the centroid is located at
the geometric center.

Secondly, curvature shall be introduced to the
cross-section of basic helix in the form where
c 6= 0, hence additional terms will be added re-
sulting in equations 28, 29 and 30 below. This
will change how material is distributed along the
orthogonal axis.

x = x(u, v) =
(
a+ c cos

nπv

d

)
cos (u) (28)

y = y(u, v) =
(
a+ c cos

nπv

d

)
sin (u) (29)

z = z(u, v) = b u+ v (30)

To start off, figure 6a represents the cross sec-
tion of a leaf spring. The YZ axis is fixed and the
centroidal axis is represented by yc and zc. Note,
that in this case the fixed coordinate system is
equivalent to the centroidal axis. Equations 31
and 32 show how the second moment of area (IY
and IZ) is calculated.

IY = Iyc =

w
2∫

−w2

t
2∫

− t2

y2 dy dz =
w t3

12
(31)

IZ = Izc =

w
2∫

−w2

t
2∫

− t2

z2 dy dz =
w3 t

12
(32)

Looking closer at these equations one can
observe that the thickness ’t’ affects the moment
area of inertia around the y-axis in a cubic
manner. Similarly, the width ’w’ dominates the
second moment of area around the z-axis in a
cubic fashion. In other words, when the leaf
flexure is wide and thin (w >> t) � IZ >> IY
and vice versa when the leaf flexure is narrow
and thick (w << t) � IZ << IY .

(a) Cross-section leaf
spring

(b) Cross-section ellipse

Figure 6: Cross-sections of rectangle and
hollow half ellipse

In order to explain what happens to the
area moment of inertia due to the introduc-
tion of curvature, the cross-sectional shape of
an hollow half ellipse was chosen (see figure
6b). Here the parameters a and b determine
the geometric properties of this half-hollow
ellipse. Note, that a1 and b1 were chosen such



that the thickness always remains equal to 2 mm.

The area moment of inertia of a hollow half
ellipse is calculated in a similar manner to the
cross-section of the leaf spring. It also consists
of first locating the centroid using the first mo-
ment of area. The centroid lies at the location
(Cy, Cz). However, for this geometry it is easier
to calculate the second moment of area around
the fixed YZ orthogonal axis (see equations 35
and 37) and not around the centroid as was done
for the leave spring calculations.

Area =
π

8
(ab− a1b1) (33)

Cy =
a+ a1

4
, Cz = 0 (34)

The parallel axis theorem can then be used to
correct the area moment of inertia such that it
only looks at the centroid. It does so by subtract-
ing the product of the shapes area and the square
of the perpendicular distance between these axes
[19]. Equations 36 and 38 make use of this the-
orem.

IY =
π
(
ab3 − a1b31

)
8

(35)

Iyc = IY −Area × Cz
2 (36)

IZ =
π
(
a3b− a31b1

)
8

(37)

Izc = IZ −Area × Cy
2 (38)

Similar to the moment area of inertia for
the leaf spring, when the half ellipse has a
relative large amplitude (a >> b) � Izc >>
Iyc and vice versa when the half ellipse has a
relative small amplitude and is wide (a << b)
� Izc << Iyc. Figure 7 shows a plot of the
second moment of area against the ellipse height.

For demonstration purposes a = b but it is
noticeable that the larger the ellipse height,
the larger the area moment of inertia for both
y and z directions. Area moment of inertia is
higher in the yc - direction due to the location
of the centroid not being the same as the fixed

Figure 7: Second moment of area
vs increasing height

coordinate system.

According to the theory of elastic bending,
second moment of area influences the stiffness.
Equations 39 and 40 state how the dimensions
are related to each other, with M - internal mo-
ment, I - second moment of area, E - Young mod-
ulus, R - radius, σ stress, y - linear distance from
neutral axis and κ - curvature.

M

I
=
E

R
=
σ

y
(39)

M = EIκ (40)

Increasing the second moment of area requires
a larger bending moment to achieve the same
deflection. In other words, the stiffness increases.

2.2.5 Overview of iteration process

This section introduces the chosen helical flex-
ure geometries. A pictorial overview of helical
flexure shapes with key geometrical properties
has been provided in table 2. The first column
indicates the helix number. The second column
represents visual impressions of the helical
flexure models. The blue line Ω indicates where
the mechanism is fully constraint and the red
line P shows where the mechanism is actuated at
the POI. The third column provides information
regarding the geometric properties.

The last model geometry (Helix 6) of table 2
was selected for further investigation. In the next
section more details shall be provided involving
the principle directions allowing a deeper insight
into the kinematic capabilities of this complaint
mechanism.



Helix number Model Geometric properties

Helix 1

Basic helix

c = 0, d >> 2πb >> 1

Constant flat amplitude

Helix 2
c 6= 0, n = 2, d >> 2πb >> 1

Constant sinusoidal amplitude

Helix 3

c 6= 0, n = 2, d >> 2πb >> 1

Non-constant sinusoidal amplitude

Maximum at π

Minimum i.e. 0 amplitude at 0π
and 2π

Helix 4

c = 0, n = 2, d << 2πb << 1

Constant flat amplitude

Increasing height along revolution

Helix 5

c 6= 0, n = 2, d << 2πb << 1

Constant sinusoidal amplitude

Increasing height along revolution

Helix 6

c 6= 0, n = 2, d << 2πb << 1

Non-constant sinusoidal amplitude

Maximum at π

Minimum i.e. 0 amplitude at 0π
and 2π

Increasing height along revolution

Table 2: Pictorial overview of helical flexure elements with the key geometrical properties



SCH Flexure

Using screw theory it is possible to locate
the six principle axes and their corresponding
magnitudes. Some magnitudes are too small to
visualize. Therefore, the first set of figures will
show the principle directions without magni-
tude. This is followed by a more detailed zoom
in figure illustrating magnitude.

This shell mechanism is analysed as an
IsoGeometric Analysis (IGA) shell, a software
developed at the Delft University of Tech-
nology. It has the following dimensions and
material properties: thickness 0.002 m, Young
Modulus 3.5 GPa [23] and a Poisson ratio of
0.45 [23]. This geometry is described by a
Non-Uniform Rotational B-Splines (NURBS)
surface tool [20], a third polynomial following
a 3×10 grid. The values of this polynomial
take a special form tailored for the IGA software.

Figure 8: Twist axes with no stationary multipliers

Figure 9: Wrench axes with no stationary multipliers

Figure 10: Unified stiffness with stationary multipliers

Figure 8 shows the directions of the eigentwists
with no stationary multipliers. Similarly, figure
9 shows the directions of the eigenwrenches with
no stationary multipliers. Furthrmore, figure 10
shows the directions and magnitude of the uni-
fied stiffness. All of the stationary multipliers
have comparable units.

wf1 > wf2 > Tγ1 > Tγ2 > Tγ3 > wf3 (41)

Figure 10 and equation 41 show that the lowest
compliance vector, its inverse being the largest
stiffness, corresponds to wrench wf1.

2.3 Application: 3DoF stage

In this section the SCH flexure element (Helix
6) in figure 10 shall be used to synthesize a
complaint motion stage. The FACT method
[4] will be implemented. However, before doing
so an important assumption be will be made.
We propose to model the largest constraint
direction wf1 in the SCH flexure element (figure
10) as a single wrench constraint. This wrench
constraint also known as a Degree of Constraint
(DoC) is not pure i.e. there is coupling. The
other directions will be treated as degrees of
freedom essentially making the SCH flexure
a 5 DoF mechanism. The following provides
a visual representation of the constraint and
freedom space.

Here the orange line on the left side of figure
11 represents the constraint space as a single
wrench that is collinear with the desired screw
DoF. Its coupled moment to force ratio -q,
equals pitch p. The green line on the right side
of figure 11 corresponds to the screw motion.
This freedom space features (i) screws with a



Figure 11: Constraint and freedom space
SCH flexure element

pitch of p that lay on planes that intersect the
screw axis, (ii) rotations and screws that lay on
the surfaces of circular hyperboloids and (iii)
translations that are perpendicular to the screw
axis [21].

Now three elements will be used to generate a
flexure system consisting of three DoF: a screw
and two orthogonal translations. The freedom
space is made up of (i) a box of screws that are
parallel to the axis of the desired screw (ii) a
plane of translation arrows that are orthogonal
to the screw axis. Consequently, the freedoms
complementary constraint space exhibits (i)
a box of wrenches parallel to the screw axis
and (ii) a disk of pure moments normal to the
screw axis. Furthermore, two wrenches that are
co-planner constrain a rotation in that plane.
This results into the following constraint (figure
12) and freedom spaces (figure 14).

Figure 12: Constraint topology

Figure 13: Constraint topology top view

We are now in a position where the helical
motion stage can be assembled. The SCH flex-
ure in figure 10 is rotated such that its dominant
constraint points vertically upwards. Attaching
3 SCH flexures 120 degrees apart and equally

Figure 14: Freedom topology

spaced produces the previously mentioned free-
dom and constraint topologies. Hence, the fol-
lowing motion stage is presented:

Figure 15: Three DoF stage
with three SCH flexures

Figure 16: Three wrench constraints

3 Results

This section will present the compliance met-
ric of the different helical surfaces. This is fol-
lowed by performing an eigenfrequency analysis
of the helical motion stage using Comsol. Lastly,
this numerical modal is experimentally validated
with an eigenfrequency vibration test.



3.1 Metric

Tabel 3 provides a metric overview of the mod-
elled principle directions split by type of screw
for different helical flexure shapes.

Helical

Type of Screw

Flexure
Wrench Twist

Shape Principle Directions (Cj)
C1 C2 C3 C4 C5 C6

Helix 1 6.5 11 12 1.0 16 33
Helix 2 1.3 1.0 25 2.6 37 4.0
Helix 3 1.8 3.4 16 1.0 12 2.3
Helix 4 1.0 2.0 2.3 1.8 3.1 6.1
Helix 5 1.0 2.3 12 8.0 21 7.0
Helix 6 1.0 3.0 18 3.5 8.0 12

Table 3: Compliance metric

Each helix in every row has a ratio equal to
one. This represents the direction having the
lowest compliance. All the other values repre-
sent how much more complaint that particular
direction is w.r.t. the lowest compliance multi-
plier.

3.2 Numerical model

A Finite Element Model (FEM) analysis was
performed using Comsol Multi-physics. The
CAD model was constructed in SolidWorks and
imported into the Comsol platform. The helical
flexures were modelled using shell elements since
this reduces the required computational power.
Similar to what was used for dimensions and ma-
terial properties in the IGA software, the thick-
ness is 0.002 m, Youngs Modulus 3.5 GPa [23]
and a Poisson ratio of 0.45 [23]. The following
table shows the first 6 Comsol modelled eigenfre-
quencies and their corresponding mode shapes.

Eigenfrequency

Comsol
[Hz]

Mode shape
[Translation/

Rotation]

1st 26.5 Tx

2nd 26.5 Ty

3rd 40.0 Screw: Rz, Tz

4th 49.0 Rx

5th 49.0 Ry

6th 70.5 Screw: Rz, Tz

Table 4: Numerical eigenfrequencies and mode shapes

3.3 Experiment

To very the outcomes that resulted from FACT
and FEM analysis, the following experiment was
conducted. A prototype of the proposed 3DoF
motion stage has been made by additive man-
ufacturing of PLA. The individual parts have
been fabricated separately and joined together
using bolts and nuts. Rather than measuring
the motion and constraint directions with a
displacement inducer, the eigenfrequencies have
been measured with a modal vibration test.
Installing the stage on a vibration isolation
table and exciting it with an impact hammer
allows one to measure the vibrations present in
the flexure system. This was done using a single
laser Doppler sensor (Polytec OFV505), which
measures the velocity of the end-effector. The
velocity-time signal is read out by a controller
unit (OFV2200) and is then converted from
analog to digital using a NI USB-6006 DAQ
device. Furthermore, the digital velocity-time
signal is transformed to the frequency domain
using the Fast Fourier Transform (FFT)
function available in the Matlab software.
To make sure that all vibrational modes are
measured the end-effector is excited at multiple
positions. Additionally, the Doppler sensor has
been moved around such that the laser points at
different locations of the end-effector. See figure
17 below for the experimental set up.

Figure 17: Experimental set up

Figure 18 shows the frequency response spec-
trum of the conducted experiment. The red dots
at the top of the peaks, which indicate the eigen-
frequencies, have been added for visual aid. The
eigenfrequencies have been record in table 5 be-
low. The third column of this table shows how
much the experimental and numerical eigenfre-
quencies differ from each other.



Figure 18: Frequency response spectrum

Eigenfrequency
Experiment

[Hz]
Difference
experiment

1st 20.4 29.0%

2nd - -

3rd 35.0 14.0%

4th 45.0 8.0%

5th - -

6th 65.0 8.0%

Table 5: Eigenfrequencies experiment

Note, that in the experiment it was not possi-
ble to differentiate between the 1st and 2nd eigen-
frequency. This was also the case for the 4th

and 5th eigenfrequency. This can be explained
due to the symmetrical design of the flexure sys-
tem leading to degeneracy of the eigenfrequen-
cies. The second part ’Motion stage’ in section
4 will provide further explanation.

4 Discussion

The main research objective of this paper fo-
cusses on the implementation of spatial flexures
in motion stages. This main objective is split
into two parts. The first one looks into the
understanding of helical flexure geometries with
varying curvature. The second part is to more
specifically use a helical flexure element and to
build, using such an element, a 3DoF compli-
ant motion stage. The results and outcomes of
each contribution will be discussed and analysed.

Flexure design

Using differential geometry it is possible to
describe the mathematical surface of a helical
geometry. The choice was made to further
pursue the family of helical surfaces with a
sinusoidal generatrix. Starting from the basic
helix, complexity was introduced via the ad-
dition of curvature. This was done with the
intent of changing the second moment of area
which influences the compliance properties of
the helical flexure. Then using screw theory
and the unified stiffness method a performance
metric was created. This provided insight
into the properties of various helical flexure
geometries. The metric shows how the most
dominant constraint changes after the intro-
duction of curvature. For instance, the most
basic helix (helix 1) is stiff along rotation Tγ1
but is relatively complaint around Tγ3. This is
explained by the fact that the width is orders
of magnitude larger than the thickness. After
introducing a sine-wave along the cross-section,
the compliance properties change. Helix 2 is
more stiff along wf1 and wf2, while wf3 has
become relatively more complaint. This helix
is also less rotationally compliant along the
direction of Tγ1. These observations can be
explained by the change of the area moment of
inertia, where both in plane stiffness directions
have increased. Furthermore, the SCH flexure
(helix 6) is stiff along the direction of wf1
but has relatively more compliance along the
direction of wf3. However, given the nature
of these spatial structures, where the stiffness
ratios have a similar order of magnitude, it can
be expected that the DoF and DoC lie close to
each other.

It has been demonstrated that adding curva-
ture to the cross-section of an helical surface in-
fluences its compliance characteristics. The ad-
dition of curvature is a possible explanation for
what is observed in the SCH flexure (helix 6 in
table 2). A high moment area of inertia around
the Y and Z axes creates additional stiffness in
those directions while one wrench remains rela-
tively more complaint. The fact that this flexure
is an open surface provides compliance that en-
ables it to move out of the YZ-plane.



Motion stage

Applying the acquired insights about helical
flexure geometries led to the design of a helical
complaint motion stage. An important assump-
tion was made, namely, that the most dominant
constraint is treated as a constraint direction
leaving 5 freedom directions. This assumption
allows the usage of FACT as a design method.
In order to validate the conceptual design
a FEM model was assembled using Comsol
multiphysics. An eigenfrequency analysis was
performed to get insight into the eigenfrequen-
cies and their corresponding mode shapes. The
first two modes shapes at roughly 26 [Hz] were
both translations: one in x and the other in
the y direction. The numerical eigenfrequencies
show that these two values are very close to each
other. This can be explained due to the ’perfect’
symmetrical design leading to degeneracy of
the eigenfrequencies [22]. The eigenmodes are
still unique and are rotated with respect to one
another. In theory, if one helical flexure has a
different thickness or length essentially making
the design less symmetrical, the eigenfrequen-
cies should shift further away from each other.
Furthermore, the third eigenfreqency at 40 [Hz]
resembled a mode shape indicating the desired
screw DoF. The mode shapes provide verifica-
tion that the proposed helical motion stage is
able to follow the intended freedom directions.
However, the eigenfrequency analysis indicates
that the two permitted translations are not
pure translations as they do not entirely remain
in plane. This is unwanted and considered as
parasitic error. However, we believe that, given
the symmetry in the system, the coupling is
minimized by reasoning that the individual
helical flexure elements, to some extent, cancel
each other out. Moreover, by only looking at
small-displacements the error is considered to
be minimal but still present. Further research
is required to determine the magnitude of this
error.

Verification of the numerical model was
obtained by experimentally measuring the
eigenfrequencies with a modal vibration test.
The data shows that the experimental eigenfre-
quencies are within a range of 8 to 29 percent
of the numerical eigenfrequencies. Although the
experiment match the data from the numerical
model, ideally one would like to see the first
parasitic eigenfrequencies to have a much higher
value. The higher value will help the parasitic
eigenfrequencies to be further apart and allow
for better distinction between motion and

constrain directions. Furthermore, the exper-
imental data cannot differentiate between the
2 eigenmodes sharing a similar eigenfrequency.
The frequency response plot will therefore show
one peak at similar eigenfrequency somewhat
limiting comparison with those obtained in the
numerical model.

There are also a number of other reasons for
the difference between the numerical model and
the experiment.

(i) The difference between numerical and ex-
perimental eigenfrequencies could be due to
inherent fabrication uncertainty of the 3D
printed flexures.

(ii) The FEM model of the helical flexure ge-
ometries also had a particular thickness.
The eigenfrequencies have shown to be sen-
sitive towards this thickness parameter as
the stiffness scales with the cubic power.

(iii) Error is introduced in assembling the helical
flexures and end-effector of the stage. This
results in possible miss-alignments of the
principle directions. Any miss-alignments
will lead to extra unwanted parasitic error.
A monolithic fabrication might solve this
challenge.

(iv) Nuts and bolts were used to connect the dif-
ferent components to each other. This adds
additional weight to the end-effector that
also influences the numerical eigenfrequen-
cies.

(v) Clamping also affects the eigenfrequencies of
the system. In the numerical model, these
constraints were treated as fixed and thus
are approximated as completely rigid. In
reality, the support clamps that connect the
ground with the helical flexure element has
some finite stiffness affecting the numerical
eigenfrequencies.

(vi) Literature shows that the Young modulus of
a printed material varies with printing di-
rection [23]. These variations occur due to
the presence of air gaps in the printed struc-
ture and stress concentration along filament
beads [24]. Hence, the material properties
of the printed helical flexures are far from
being ideally isotropic.



5 Conclusion

In this paper, a systematic approach was imple-
mented with the objective of guiding a stage us-
ing compliant helical flexure elements. Insight
into the linear kinematic behaviour of various
helical surfaces with varying curvature is pro-
vided with the usage of parametric optimization,
screw theory, unified stiffness method and a per-
formance metric. The newly acquired insights
served as a prerequisite for selecting a suitable
topology capable of guiding a stage. Addition-
ally, an eigenfrequency analysis was performed
and experimentally validated with a model vi-
bration test. This led to the successful realiza-
tion of a helical based compliant motion stage.
An outcome of this study provides evidence that
complex spatial flexure geometries can be uti-
lized in such a way that they become practically
relevant in the world of precision positioning sys-
tems.
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3
Discussion

This part provides recommendations and finishes with a general outlook highlighting the contribution
of this thesis.

Recommendations

We expect a growing demand for spatial compliant building blocks in the near future. It has yet to be
determined through what medium spatial flexure elements are deemed most adequate. This thesis
has provided insight and contribution by mapping out the linear kinematic behaviour of a sub­class
of ordinary helical flexure geometries. More importantly, it offers a basis in terms of simplifying the
complex nature as well as revealing fruitful future research directions paramount to the promotion
of helical flexure elements. An essential reoccurring theme in this thesis was the fact that the com­
pliance metric of the helical surfaces exhibited similar order of magnitude. This results in less­well
defined freedom and constraint directions in comparison with flat flexure geometries such as present
leaf springs. It is still uncertain whether it is mechanically possible to achieve similar stiffness ratios
for this group of shell mechanisms. At least for the helical flexure geometries that were considered
in this thesis it was not the case. However, there have been indications that helical surfaces might
have a larger operating range and that the support stiffness over a RoM does not diminish as ag­
gressively in comparison with 2D flexure elements. It must be stressed that this is a speculation and
hence could be further investigated. Besides this, there are other potential interesting research di­
rections. For instance, looking into the non­linear behaviour over a large RoM or performing a more
critical analysis of the induced parasitic error. Another interesting direction would be to primarily con­
sider helical elements that either alone or combined are able to follow a linear motion path i.e. a lin­
ear guide. Usually shell complaint mechanisms are not perfect translational or rotational systems and
a pitch can often be expected. This was also observed with the studied helical flexure geometries.
However, it might be possible, using symmetry or other smart solutions, to bypass these parasitic er­
rors. Further research must be done to find out whether this can be accomplished, especially for a
large RoM. Moreover, a large quantity of other helical surfaces exist. Each category may have inter­
esting properties and applications that might be worthwhile for further investigation.

The following list provides additional research directions that could also lead to potentially useful in­
sights.

1. Center­of­compliance: Actuation from the center of compliance of a flexure element results in
pure translations and rotations. Further work is required on how to accomplish this for more
complex shell elements.

2. Optimization: Some helical mechanisms may experience variations of the most dominant con­
straint due to large RoM. Optimization of these shell elements also requires further investiga­
tion.
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3. Spirals: these surfaces might have properties that helical flexure geometries do not have. A
direct comparison between the two in order to extract differences and similarities would be in­
teresting.

4. Hybrid topologies: Combining 2D and 3D flexure building blocks in serial or parallel requires
further investigation.

5. Stiffness­ratios: Further analysis on how to attain stiffness ratios for shell mechanisms that are
similar to that of 2D flexures.

6. Variable thickness and flexure width: Given that stress distributions are not the same every it
would be compelling to see the effect on, for instance, stiffness properties.

Outlook

A successful effort was made to model a helical flexure element such that it is compatible for synthe­
sizing multi­DoF fleuxre systems using FACT. In theory, this foundation building block can be used
for many more FACT freedom and constraint topologies. Additional research is required to show that
this is indeed the case. The addition of an elementary spatial building block that is also compatible
with planar synthesis methods opens the door to many solutions that previously were not possible.
Furthermore, the parametric equations describing these helical surfaces provides designers with
the tools to shape it to their own specific needs. This thesis focuses on the introduction of curvature
along the cross section, but this is just one aspect out of a very large pool of choices. Expanding this
into a more diverse and accessible geometry library reduces the design barriers that exist and will
promote the synthesis of using spatial elements in multi­DoF flexure systems.



4
Conclusion

This work has presented a systematic approach with the objective of guiding a stage using compli­
ant helical flexure elements. Merging the field of differential geometry with compliant mechanisms
enables one to use the abundant literature on surface equations. This has led to a new and wide va­
riety of spatial flexure elements that previously were not considered. Upon selection of a particular
sub­class of helical flexure geometries, insight into the linear kinematic behaviour of various helical
surfaces with varying curvature is provided. These insights served as a prerequisite for selecting a
suitable topology and led to the successful realization of a helical based compliant motion stage. This
thesis provides a basis for synthesising future motion stages using spatial elements as fundamental
building blocks. Furthermore, this study has demonstrated that complex spatial flexure geometries
can be utilized in such a way that they become practically relevant in the world of precision position­
ing systems.
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A Helix 3D printing

This appendix chapter provides a step-by-step method on how to create a helix using the para-
metric surface equations. It has been very time consuming to figure this out and 3D print a helix
with a desired thickness. It shows how one can make an equation driven surface in Comsol Multi
physics and import this geometry into a workable part that can be used in the SolidWorks part and
assembly arena.

• first in Comsol:

Name Expression value Description
a 0.04 0.04 Radius helix Factor
b 0.0125 0.0125 Width of the slab (factor)
c 0.008 0.008 Amplitude sin (factor)
k 1 1 Number of revolutions

NumRev 2πk 6.28 Number of rev multiples of 2π
n 2 2 Amount of semi-whole waves
sb 0.27 0.27 Pitch height multiplier
d 2 b sb π 0.02 Corrugation curvature

• The analytic functions are available in Comsol to create a triangle function. This allows one
to linearly alter the amplitude of the curvature along the corrugations.
• Using shell elements, it is possible to plug everything into the parametric surface equations, see

figure 2. Note, that the pw1(u) is the piecewise function (2) transforming the sinusoidal amplitude.

� Build the geometry and then select Geometry, right-mouse click and export

� Under ’File type’ select: Parasolid binary file (*.x b;*.xmt bin)

� Then select a place to save it under ’name.x b’

� Select entire finalized geometry.

� Uncheck split in manifolds

1



Figure 1: Piecewise continuous function

Figure 2: Parametric equations

� Select export

Then in SolidWorks:

� Go to File, select open. Then under quick filter select: Parasolid(*.x t,*.x b;*.xmt txt*,.xmt bin)

� Open the file with the name that was provided

Now the surface is in the SolidWorks area. Time to make it a 3 dimensional part.

� Insert → Boss/Base → Thicken

� Select the imported surface

� When choosing thickness play around with the 3 options: ticken above, below or both

� Using the ’both’ thicken seems to work best

2



� select 1 mm for both → hence thickness is 2 mm.

Sometimes the edges of the helical surface is are not flat. Hence, one needs to cut them via a
sketch plane. This is one way of doing it.

� Select a sketch plane at the beginning or end

� Draw a rectangular square

� Insert → surface → fill

� Insert → cut → thicken (this allows you to select the surface you just made and while also
selecting a cutting range)

� After pressing the green tickbox, you get a window bodies to keep

� Press selected bodies and only select the helix

� Done

B Helical flexure element design iterations

During the initial phase of the project there were some hand-on practical sessions where some
shapes were construed out of clay and plastic in order to get a feel of how a structure deforms when
subject to a load or displacement. These geometries looked interesting. Here are some images of
that process.

(a) Scallop Shell Norman (b) Scallop Shell Top

(c) Scallop Shell Side (d) Straight Corrugation

Figure 3: Design process 1

After the fabricating the scallop shell. It was proposed to further investigate how curvature
changed the properties of the structure. Rather than looking at multiple corrugations the focus
was directed at just one.
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(a) Curved Corrugation (b) Clay Model Front

Figure 4: Design process 2a

(a) Own Shape Back (b) Own Shape Side

Figure 5: Design process 2b

Although these shapes did show some interesting properties. This did not lead to any fruitful
results and was not investigated further. Another direction was chosen, namely helical surfaces.

(a) Helix flat top

(b) Helix flat side

Figure 6: Design process helix 2c

(a) Helix corrugated top

(b) Helix corrugated side

Figure 7: Design process helix 2d

First a helix with no sinusoidal amplitude was made (figure 6). From this curvature was intro-
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duced to see how it influences the kinematic behaviour, see figure 7.

(a) Helix corrugated flat top

(b) Helix corrugated flat side

Figure 8: Design process helix 2e

After using clay, also many flexure concepts were printed to explore its kinematics. As it was
difficult to visualize the kinematic behaviour. Many concepts were not used. For instance, the helix
geometries of half a revolution. The did not provide the kinematics that were suitable for a motion
stage design.

(a) Helical surfaces with curvature (b) Half helix curvature

Figure 9: Design process helical surfaces 3a

Figures 10 show different clamping possibilities. The orientation of the clamping influences the
overall stiffness characteristics. Eventually, it was chosen to clamp the final helical flexure in the
orientation shown in figure 10b.

(a) Helix iteration 1 (b) Final SCH helix with clamp

Figure 10: Design process helical surfaces 3b

C Stage design iterations

This section provides some preliminary concepts of a stage guided by helical flexures. In figure
11a different clamping orientations were explored. The second figure (11b represents a 3DoF pla-
nar compliant motion stage for the purpose of comparing with the helical motion stages in figure 12.
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(a) Stage set up iteration 1 (b) Stage end effector 3 folded leaf

Figure 11: Design process stage surfaces 1

Here are other concepts that also did not converge into a success. Changing the height of the
clamping of the helical stage (figure 12a), was intended to have the center of compliance of the
individual helical flexure and the end-effector more level to each other. It would be interesting to
look further into this. The second figure (12b) had the purpose of also changing the location of the
center of compliance. This was done to see if this would change the coupling between the rotations
and translations. However, this also did not lead to anything useful.

(a) helix stage higher clamps (b) helix 1.5 revolution stage

Figure 12: Design process stage surfaces 2
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D Comsol mesh sensitivity

Mesh size influences the accuracy of the simulations. This was important for both eigenfrequency
and displacement simulations. The table below shows how the mesh size influences the eigenfre-
quencies. Triangular mesh elements have been used.

Maximum
element size

[m]
0.119 0.0711 0.045 0.0237 0.019 0.013

Eigenfrequency
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]

1st 27.3 27.0 27.4 26.6 26.6 26.6

2nd 27.5 27.2 27.6 26.7 26.6 26.6

3rd 41.8 39.4 41.1 40.4 40.3 40.3

4th 51.8 47.7 48.9 49.2 49.1 49.1

5th 52.0 47.8 49.8 49.2 49.1 49.1

6th 72.5 71.9 72.3 70.8 70.6 70.6

Table 1: Eigenfrequencies Comsol model - maximum mesh element size

E Sensitivity analysis of Comsol models

Comsol Multiphysics software was used for various purposes. One of them was to perform an
eigenfrequency analysis of the helical flexure stage. It has been mentioned in the paper that the
eigenfrequencies were sensitive towards the thickness parameter. Here are some further calculations
giving insight into these sensitivities.

ω2
0 ∝

stiffness

inertia
(1)

Thickness [mm] 1 1.5 2 2.5 3 3.5

Eigenfrequency
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]

1st 12 19 26.5 32 37.5 42.8

2nd 12 19 26.5 32 37.5 42.8

3rd 23.5 32.7 40 46 51 56

4th 30.3 40.5 49 56 62.7 68.5

5th 30.3 40.5 49 56 62.7 68.5

6th 37 53.5 70.5 82.7 94.5 103

Table 2: Eigenfrequencies Comsol model changing thickness of helical flexures

Increasing the thickness of the helical flexures results in higher eigenfrequencies. This is ex-
pected and explained by the fact that stiffness scales cubically with thickness, see equation 1. The
eigenfrequencies are very sensitive to this parameter. Similar calculations were done with different
length. One would expect the frequencies to increase but not as aggressively as with the thickness.

Furthermore, the percentage of material infill of the end-effect also influences the eigenfrequecy
of the helical motion stage. It was difficult to accurately model the amount of infill and hence
there was some uncertainty about the weight of the end-effector. Furthermore, the end-effector also
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carried 3 nuts and 3 thorax M6 bolts. Also adding additional weight. Obviously these nuts and
bolts are solids and the model does not take that additional weight into account. In order to see
how additional weight affects the eigenfrequency two things were varied. The thickness of the bolts
and nuts were increased thereby raising the weight of the nuts and bolts.

Thickness steel
[mm]

0.0005 0.001 0.0015 0.002 0.003 0.004

Eigenfrequency
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]

1st 27.6 26.6 25.7 24.8 23.4 22.1

2nd 27.6 26.6 25.7 24.8 23.4 22.1

3rd 40.5 40.3 40.1 39.8 39.4 38.9

4th 49.3 49.1 48.9 48.8 48.6 48.4

5th 49.3 49.1 48.9 48.8 48.6 48.4

6th 71.9 70.6 69.0 67.1 63.3 59.6

Table 3: Eigenfrequencies Comsol model varying weight of thorax bolts and nuts

Table 4 indicates that the numerical frequencies become less and converge towards the experi-
mental obtained frequencies. This is expected since additional weight affects the inertia and overall
should decrease each eigenfrequency (see equation1).

F Eigenmodes of Comsol model

This section gives an visual overview of the eigenmodes for the first six eigenfrequencies. This
allows one to see how the kinematic behaviour of the flexure system.

(a) Top view (b) Side view

Figure 13: First eigenmode
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(a) Top view (b) Side view

Figure 14: Second eigenmode

(a) Top view (b) Side view

Figure 15: Third eigenmode

(a) Top view (b) Side view

Figure 16: Fourth eigenmode
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(a) Top view (b) Side view

Figure 17: Fifth eigenmode

(a) Top view (b) Side view

Figure 18: Sixth eigenmode
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G Comsol pitch calculations

The proposed helical compliant motion stage had 3 DoF. One screw and two orthogonal translations.
It was interesting to calculate the approximate value of the pitch value of that screw. Using Comsol
multi-physics, forces and moments of various magnitudes were imposed on the end-effector. The
displacements and rotations were calculated. One needed to apply small force and moments to
make sure that the response was well within the linear regime.

(a) Induced moment z - Pitch

(b) Induced force z - Pitch

Figure 19: Pitch calculations

Figure 19a shows a plot of stage displacement vs rotation when applying a moment ranging from
0 to 0.25 Nm. The slope is equal to the pitch of the desired screw and is equal to 15.2 mm/rad.
For demonstration purposes, applying a 1 degree (0.0175 rad) rotation will result the following
displacement:

Displacement = pitch× rotation angle = 15.2× 0.0175 = 0.265 mm (2)

In other words, a one degree rotation will cause a 0.265 translation in the z-direction.

Figure 19b shows a plot of stage displacement vs rotation when applying a force ranging from
0 to 0.25 N. The slope is equal to the pitch and is equal to 271.2 mm/rad. For demonstration
purposes, applying a 1 degree (0.0175 rad) rotation will result the following displacement:

Displacement = pitch× rotation angle = 271.2× 0.0175 = 4.7 mm (3)

In other words, a one degree rotation will cause a 4.7 mm translation in the z-direction.

The difference in pitch values is a finding that was not expected. Given that the compliance
and stiffness matrix is symmetric, one would assume that these values are equivalent. This finding
itself still remains uncertain and needs to be investigated further.
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H Symmetry of helical flexure stage

The first two numerical eigenfrequencies show that these two values are very close to each other.
This can be explained due to the ’perfect’ symmetrical design within this theoretical model. In
theory, if one helical flexure has a different thickness or length essentially making the design less
symmetrical. The eigenfrequencies should shift further away from each. The following table results
of changing one helical flexure while keeping the thickness of the other two constant at 2 mm.

Thickness [mm] 0.001 0.0015 0.002 0.0025 0.003 0.0035

Eigenfrequency
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]
Comsol

[Hz]

1st 18.1 22.5 26.6 27.6 28.9 30.6

2nd 25.5 25.9 26.6 29.6 31.6 33.2

3rd 30.4 37.5 40.3 42.4 44.5 46.2

4th 40.3 43.5 49.1 49.2 49.4 49.6

5th 47.4 48.8 49.1 53.4 56.6 59.3

6th 55.3 65.6 70.5 75.9 80.3 82.8

Table 4: Eigenfrequencies Comsol model varying weight of thorax bolts and nuts

Table 4 shows the trend that is expected. Most importantly, regardless of making a single helical
flexure more or less thick than the other two. A more asymmetrical design pushes the eigenfrequen-
cies to move further apart. A smaller thickness means less stiffness and hence a lower eigenfrequency.
Vice versa, a thicker flexure will have a larger stiffness and also an higher eigenfrequency.

I Second moment of area

This section provides notes and calculations of understanding the analytical stiffness of a cantilever
leaf spring. Furthermore, the derivation of second moment of area of an ellipse is shown. This was
used to analytically derive the area moment of inertia of an half-hollow-ellipse.

Figure 20: Cantilever leaf spring
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Figure 21: Principle stiffness table leaf

Here is an overview of the calculations required to calculate the second moment of area of an
ellipse.

Second moment of area x-axis

1 =
x2

a2
+
y2

b2

x =
a

b

(√
b2 − y2

) (4)

Ix =

∫ b

−b

∫ x

0

y2dxdy =

∫ b

−b

[
y2x
]x
0
dy

Ix =

∫ b

−b
y2 (x− 0) dy =

∫ b

−b
y2xdy

(5)

Ix =

∫ b

−b
y2

a

b

(√
b2 − y2

)
dy (6)

y = b sin (θ)

dy = b cos (θ) dθ

y = [−b, b] θ =

[
−π
2
,
π

2

] (7)

Ix =

∫ π
2

−π2
(b sin (θ))

2 a

b

(√
b2 − (b sin (θ))

2

)
b cos (θ) dθ

√
b2 − (b2 sin2 (θ)) =

√
b2 (1− sin2 (θ)) =

√
b2cos2 (θ) = bcos (θ)

(8)
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Ix =

∫ π
2

−π2
b3 asin2 (θ) cos2 (θ) dθ

sin2 (θ) cos2 (θ) =
sin2 (θ)

4

Ix =

∫ π
2

−π2

b3 a

4
sin2 (θ) dθ

(9)

Ix =

∫ π
2

−π2

b3 a

4

1− cos (4θ)

2
dθ

Ix =

∫ π
2

−π2

b3 a

4

1− cos (4θ)

2× 4
d 4θ

(10)

Ix =
b3 a

32
[(4θ − sin (4θ)]

π
2

−π2
(11)

Ix =
b3 a

32

[(
4π

2
− sin

(
4π

2

))
−
(
−4π

2
− sin

(
−4π

2

))]

Ix =
b3 a

32

8π

2
=
π

8
b3 a

(12)

Second moment of area y-axis

1 =
x2

a2
+
y2

b2

y =
b

a

(√
a2 − x2

) (13)

Iy =

∫ a

0

∫ y

−y
x2dydx =

∫ 0

a

[
x2y
]x
0
dx

Iy =

∫ a

0

x2 (y − (−y)) dx =

∫ a

0

2x2ydx

(14)

Iy =

∫ a

0

2x2
b

a

(√
a2 − x2

)
dx (15)

x = a cos (θ)

dx = −a sin (θ) dθ

x = [0, a] θ =
[
0,
π

2

]
(16)
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Iy =

∫ π
2

0

2 (a cos (θ))
2 b

a

(√
a2 − (a cos (θ))

2

)
×−a sin (θ) dθ

√
a2 − (a2 cos2 (θ)) =

√
a2 (1− cos2 (θ)) =

√
a2sin2 (θ) = asin (θ)

(17)

Iy =

∫ π
2

0

−2a3 b sin2 (θ) cos2 (θ) dθ

sin2 (θ) cos2 (θ) =
sin2 (θ)

4

Iy =

∫ π
2

0

−2a3 b

4
sin2 (θ) dθ

(18)

Iy =

∫ π
2

0

2a3 b

4

(
−1 + cos (4θ)

−2

)
dθ

Iy =

∫ π
2

0

2a3 b

4

(
−1 + cos (4θ)

−2× 4

)
d 4θ

(19)

Iy = −2a3 b

32
[(−4θ + sin (4θ)]

π
2

0
(20)

Iy = −2a3 b

32

[(
−4π

2
+ sin

(
4π

2

))
− (0− 0)

]

Iy =
a3 b

16

4π

2
=
π

8
a3 b

(21)
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J Quantitative example - SCH flexure

This section will consist of a numerical example of the frequently used SCH (helix 6) flexure mech-
anism.

Figure 22: SCH flexure

This has the following tangent compliance matrix,

Ct =


0.0024 0.0005 −0.0013 −0.0124 0.0405 −0.0020
0.0005 0.0029 0.0023 −0.0451 −0.0021 0.0138
−0.0013 0.0023 0.0055 −0.0148 −0.0458 0.0144
−0.0124 −0.0451 −0.0148 1.2401 −0.0241 −0.0376
0.0405 −0.0021 −0.0458 −0.0241 1.0850 −0.2468
−0.0020 0.0138 0.0144 −0.0376 −0.2468 0.8310

 (22)

C =
[
T̂ f T̂ γ

] [af 0
0 aγ

] [
T̂ f
T̂ γ

]
(23)

The twist matrix,

[
T̂ f T̂ γ

]
=


0.1410 0.9875 0.0706 −0.0271 0.0146 −0.0273
0.8759 −0.1577 0.4560 −0.0105 0.0357 0.0117
−0.4615 0.0025 0.8872 0.0187 0.0066 0.0388

0 0 0 −0.0790 −0.9896 −0.1205
0 0 0 −0.5193 0.1440 −0.8424
0 0 0 −0.8510 0.0039 0.5252

 (24)

Compliance stationary multipliers,

[
af 0
0 aγ

]
=


0.0002 0 0 0 0 0

0 0.0007 0 0 0 0
0 0 0.0042 0 0 0
0 0 0 0.6769 0 0
0 0 0 0 1.2438 0
0 0 0 0 0 1.2354

 (25)

This has the following tangent stiffness matrix,
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Kt = 1× 103


1.4935 0.3154 −0.2622 0.0215 −0.0696 −0.0168
0.3154 3.3913 −1.6470 0.1037 −0.0830 −0.0469
−0.2622 −1.6470 1.1034 −0.0475 0.0572 0.0224
0.0215 0.1037 −0.0475 0.0041 −0.0029 −0.0015
−0.0696 −0.0830 0.0572 −0.0029 0.0061 0.0019
−0.0168 −0.0469 0.0224 −0.0015 0.0019 0.0021

 (26)

K =
[
ŵf ŵγ

] [kf 0
0 kγ

] [
ŵf
ŵγ

]
(27)

The wrench matrix,

[
ŵf ŵγ

]
=


0.1410 0.9875 0.0706 0 0 0
0.8759 −0.1577 0.4560 0 0 0
−0.4615 0.0025 0.8872 0 0 0
0.0269 0.0033 0.0282 −0.0790 −0.9896 −0.1205
−0.0253 −0.0385 0.0337 −0.5193 0.1440 −0.8424
−0.0125 −0.0063 −0.0115 −0.8510 0.0039 0.5252

 (28)

Stiffness stationary multipliers,

[
kf 0
0 kγ

]
= 1× 103


4.3098 0 0 0 0 0

0 1.4424 0 0 0 0
0 0 0.2359 0 0 0
0 0 0 0.0015 0 0
0 0 0 0 0.0008 0
0 0 0 0 0 0.0008

 (29)

Now the RasT unification approach will be implemented, transforming the rotation as an equiv-
alent translation. Hence, all the stationary multipliers will have units of N/m. This example will
only show the transformation of the compliance matrix as the stiffness is simply its inverse.

ãfi = χ2
i aγi (30)

ãfi =
(
|ri|2 + h2i

)
aγi (31)

Pitch values,

h1h2
h3

 =

−0.0083
−0.0093
0.0138

 (32)

Location vectors twist that are normalized,

|r1||r2|
|r3|

 =

0.0336
0.0380
0.0468

 (33)

Unification variable χ2
i ,

χ2
1

χ2
2

χ2
3

 =

(|r1|2 + h21
)(

|r2|2 + h22
)(

|r3|2 + h23
)
 =

0.0012
0.0015
0.0024

 (34)
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ãf =

afi 0

0
(
|ri|2 + h2i

)
aγi

 (35)

ãf represents the unified stationary compliance multipliers. Note, that its inverse is equivalent
to the stiffness unified stationary multipliers.

ãf =


0.0002 0 0 0 0 0

0 0.0007 0 0 0 0
0 0 0.0042 0 0 0
0 0 0 0.0008 0 0
0 0 0 0 0.0019 0
0 0 0 0 0 0.0029

 (36)

C =
[
T̂ f T̂ γ

] I 0

0 1√
|ri|2+h2

i

 ãf

I 0

0 1√
|ri|2+h2

i

[T̂ f
T̂ γ

]
(37)
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K Unified stiffness and compliance visualization

(a) Unified Compliance - Helix 1 (b) Unified stiffness - Helix 1

Figure 23: Unified eigen-system

(a) Unified Compliance - Helix 2 (b) Unified stiffness - Helix 2

Figure 24: Unified eigen-system
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(a) Unified Compliance - Helix 3 (b) Unified stiffness - Helix 3

Figure 25: Unified eigen-system

(a) Unified Compliance - Helix 4 (b) Unified stiffness - Helix 4

Figure 26: Unified eigen-system

(a) Unified Compliance - Helix 5 (b) Unified stiffness - Helix 5

Figure 27: Unified eigen-system
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