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Abstract

To keep pace with increasing renewable energy penetration and consequent increase in inverter-
based resources in the power grid, it is pertinent for present-day research to address the re-
sulting drop in system inertia levels and its impact on frequency stability. With decreasing
levels of inherent rotational inertia present in the system, any sudden disturbance causing an
energy imbalance in the grid could lead to more drastic excursions of system frequency than
those experienced hitherto. To ensure the resilience of the grid in such scenarios, advanced
and competent frequency stability assessment and control methods are required. This thesis
presents Neural Ordinary Differential Equations (NODE), a recently introduced family of neu-
ral networks, as an effective tool to achieve fast, real time estimates of the expected frequency
response trajectory during an energy imbalance event.

Since high-impact frequency instability events are sparse in reality, both real-world grid
data and synthetically generated data corresponding to different inertial conditions are used to
train predictive NODE models. Firstly, NODE is adapted to frequency prediction applications
through relevant data processing steps, and modification of network parameters and algorith-
mic aspects pertaining to the predictive model definition. Secondly, patterns corresponding
to specific sections of the frequency response curve are used to selectively train NODE mod-
els. Pattern-specific training methods exhibit better prediction performance when the NODE
model encounters frequency behaviour similar to the one it initially trained on. Thirdly, a
pre-training approach to cut short on the real-time training time required by NODE models to
achieve desired levels of prediction performance is presented. Fast estimates of critical fre-
quency stability parameters like nadir could act as potential triggers for early stability control
actions to achieve a more controlled frequency response.

Application of predictive NODE models for different frequency scenarios are presented
using three test-cases: normal operating scenario, restoration post-system split scenario and
synthetically generated high-impact frequency disturbance scenarios. Model tuning and train-
ing methods specific to each test-case are described, and prediction results are evaluated with
relevant performance metrics. Finally, a comparison is made between the implementation of
NODE among different test-cases and real-world implications of the frequency prediction out-
comes from the test-cases are further discussed.
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Introduction & Literature Review

1.1. Background and Motivation

As electrical power systems continuously evolve and adapt to keep up with the increasing
demands placed upon electricity grids, state-of-art dynamic security assessment systems be-
come indispensable. Higher penetration of renewable energy sources (RES) and developing
futuristic grids that can support Electric Vehicles (EVs) or flexible energy consumption lead
to significant variations in the dynamic behaviour and stability of power systems. This conse-
quently calls for advancements in real-time monitoring and control of power system dynamics
[1], both in terms of accuracy in event predictions and speed of control actions.

50 g
499 -

498

f(Hz)

49.71

49.6

49.5
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Figure 1.1: Impact of inertia levels on system frequency response, figure retrieved from [2]

Amongst the classification of types of power system stability [3], increasing integration of
renewable energy with conventional power grids would have a profound impact on frequency
stability. The rising levels of RES penetration and the consequent presence of non-traditional
power electronics (PE) - interfaces for distributed energy sources would have an impact on
the system frequency response that follows a power system disturbance. Unlike the innate ro-
tational inertia present in traditional synchronous generators, PE-interfaced machines cannot
provide sufficient inertia or damping response. The impact of different inertia levels on post-
disturbance frequency response is represented in Figure 1.1. Hence, the frequency fluctuations
might have a tendency to shoot to relatively higher/lower values than before; insufficient damp-
ing of the instability-induced frequency oscillations could lead to larger frequency nadirs and
higher rate-of-change-of-frequency (RoCoF) values.
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With the higher inter-dependencies and interconnections of power system networks across
countries, a large-scale power system disturbance like a sudden loss of a major generation unit
or disconnection of a critical area that supplies power to the network could have high impact
consequences. These could potentially have a cascading effect across networks, leading to a
large scale power outage or a blackout. Some of these low frequency, high impact situations
have led to major economic and social losses for the affected areas and its consumers in dif-
ferent parts of the world [4]. There is also the added threat of cybersecurity-related attacks on
power grids in the recent times. In order to improve the power systems to be more resilient to
such disturbances, a superior dynamic security assessment and control system is required [5].
Faster assessment of such events, combined with timely control actions can help prevent high
impact losses; it would pave way for implementation of data-informed and improved stability
restoration methods.

1.2. Literature Review

1.2.1. Data-driven Methods in Power System Security Assessment
With respect to high impact disturbances, the instability in the system dynamics cascades to a
larger area of the network in a very short period of time. In such situations, the conventional
real-time Root Mean Squared (RMS) simulation and processing of Phasor Measurement Unit
(PMU) grid measurements might not be fast enough to trigger/implement the required control
actions in time. Integrating data-driven methods into these assessment methods can enhance
the performance of stability control by faster prediction of the resulting dynamic response
or the extent of expected overshoot/drop/oscillations in the suitable power system quantities
(for instance, voltage or frequency). If these predictions are to be used to trigger major control
actions across the grid, it is critical that the data-driven method provides an adequately accurate
estimation.

Online Implementation Procedure

|
: Frequency Dynamics Prediction Load Shedding Prediction

|
|
|
|
Physics based Module H Error Correction Module H Mapping Module |
|
|

e e e e S

Mathematical . . .
atiematica Machine Leamning Techniques
Description
Critical Critical
Physical Factors Input Characteristics
Mechanism Analysis Sample Generation/Collection

Foundation

Figure 1.2: An example of an integrated approach for power system frequency stability and control, figure
retrieved from [6]

Artificial Neural Networks (ANN) is a machine learning model that is capable of esti-
mating various power system quantities (for instance, dynamic state estimation [7], Loss-of-
Generation (LoG) size estimation [8]) using time-series measurement data, and by employing
suitable input data preprocessing techniques. Neural networks offer the flexibility of changing
their network definition or aspects like length of the input training data to achieve an improve-
ment in the performance of the prediction model. With several good examples of predictive
mathematical and ANN models in the literature [9, 10, 11], it could be observed that these
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models have an ability to work very fast with low computation times in real-time. However,
at the same time, it is important that the model is capable of providing estimates/information
capable of triggering suitable control actions to mitigate system instability events [12].

In some instances of power system assessment and control, integrating data-driven ap-
proaches to pre-existing model-based approaches could prove to improve the speed and ef-
ficiency of the model without adversely affecting its accuracy [6]. The approach in [6], for
example, achieves this improvement by enabling real-time error correction of system state es-
timates using a machine learning model that continuously trains in real time (see Figure 1.2).
Using error-corrected state estimates to trigger control actions early in time could result in a
more controlled dynamic response and faster restoration of the system (see Figure 1.5).

Model
validation &
maintaining

Data
pre-processing

Model
learning

Feature engineering DSA Adaptation to system changes
(Feature selection, Emergency DSC Missing/erroneous data
Simulations Feature extraction) Preventive DSC

Real data collection Class imbalance

Figure 1.3: Basic steps in using ML for Dynamic Security Assessment (DSA) and Dynamic Security Control
(DSC), figure retrieved from [13]

Consequently, an increasing application of data analytics and machine learning (ML) meth-
ods in ensuring the real-time dynamic security of power systems can be observed in the lit-
erature [13, 14]. The usual steps taken to implement DSA or DSC with ML are shown in
Figure 1.3. The initial step of data collection is often a critical step, for the data must be rep-
resentative of the security situation in concern. A common source for power system-related
ML databases are PMU measurements which could provide real-time, synchronised voltage
and current data in the system. ML methods could aid in tackling power system security prob-
lems through a range of approaches: from predicting possible security breaches expected in
the future to decision making for triggering early control and restoration processes. [13] ad-
dresses elaborately the exploitation of a variety of ML models in the literature (ranging from
deep learning algorithms to Decision Trees (DT)/Support Vector Machines (SVM) to ensemble
methods) in three areas of dynamic security, namely security assessment, emergency control
and preventive control.

Given the high stakes involved in power system security and operations, the challenges that
exist in data-driven approaches must also be taken into consideration. In order to be accepted
by the various stakeholders involved in electrical power systems (including system operators
and their planning teams), data-driven approaches should show the required level of reliability
and adaptability to keep up with the developments happening in power systems. These ap-
proaches should be easy to integrate with existing conventional approaches and support possi-
bilities for continuous assessment and improvement of their efficacy in practical power system
applications. The rising relevance of cybersecurity in electrical systems is another significant
aspect to consider while assessing the vulnerability of ML approaches [15]. The possibility of
false data injection can have far-reaching, adverse consequences on the power system [16]; un-
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derstanding the vulnerabilities of the system is key in designing a robust and secure data-driven
approach for power systems.

1.2.2. Frequency Security Assessment and Control

Primary Control |s

I
I | @ Nominal frequency @— Fault time
|
@ a4 o ‘ Fall frequency (nadir) @— Fall time
| @ Setting frequency @ Setting time

Figure 1.4: Typical frequency response curve, figure retrieved from [11]

Conventional frequency stability assessment methods use real-time measurements of fre-
quency and RoCoF to detect frequency instabilities in the system [17, 18, 19]. As is the norm,
the different frequency control schemes, namely primary control, secondary or load-frequency
control, and tertiary control are implemented sequentially to bring the system back from an
abnormal/unstable state to its stable operating state (see a typical post-disturbance frequency
response curve and key curve parameters in Figure 1.4). Since frequency instability is often
a direct consequence of active power (demand or supply) imbalance, the presence of genera-
tion reserves, flexible generator set points and ancillary services that enable control/regulation
of system frequency play a crucial role [20]. In case of large scale load-generation imbal-
ance, emergency control and protection schemes like Under-frequency Load Shedding (UFLS)
scheme [21] are in place to prevent possible cascading situations.

With the influx of RES, the power supply becomes more variable and intermittent. This,
in turn, requires more flexible reserves and ancillary services to mitigate possible instabilities
in the system. The new assessment and control methods have to additionally compensate for
the low levels of inertia available from the non-synchronous generating units. One possible
approach for integrating capable flexibility services is to integrate power-electronics interfaced
technologies, for instance say, Energy Storage Systems (ESS) that could induce virtual inertia
in the system [22]. There also exist other suggested solutions such as having an inertia floor
or compensating generators to supply the required inertia.

To further facilitate the integration of large shares of variable RES with their limited inertia
capacity, demand-side flexibility and response [23] can prove to be helpful in providing ancil-
lary services for effective frequency stability control. If there is higher centralisation in the
control/switching of demand-side elements, it could aid in faster regulation of frequency in un-
stable situations involving a large or interconnected power network. A difference to be noted
among the mentioned frequency response approaches is that UFLS is often employed in critical
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situations whereas demand-side response could be employed on a continuous basis for normal
operating conditions to improve the grid stability and resilience to potential disturbances.

1.2.3. Neural Networks in Predictive Analysis of Frequency
Exploitation of Neural Networks for time-series prediction in energy systems has been preva-
lent in the literature over the last few decades [24]. The predictive applications of ANN range
from load/energy forecasting to stability analysis, security assessment and a few more areas
in power system studies. The ability of ANN to fast process data, deal with non-linear rela-
tionships in the system and the available variability in terms of types (for instance, multi-layer
perceptron (MLP), recurrent-neural network (RNN), convolutional-neural network (CNN) and
long-short-term memory (LSTM) models), make them applicable for predictive analysis in
power system problems.

A '”.‘:v"ﬁ'ﬂ'i"'l-'-Vgr)érr"ieridi)'z'!tu Collection (Time Interval:5 cycles)
o | Long-period Data Collection (Time Interval: S minutes)
. L P Controlled Frequency
72 Preset Activation Response Curve
Threshold . . ORI S S U oY
9 Value Af/ At Calculation :
E 3 1 J —"-"- =g
g l-rcqucm,}_ l?}“dlnlﬁi.-' Initial Frequency
é Prediction .~ Response Curve
4 ;
2
g Load Shedding
g | Prediction
-
m
Load Shedding
Implementation

Time

Figure 1.5: An example of achieving a controlled frequency response using a hybrid-model based frequency
dynamics prediction approach, figure retrieved from [6]

As far as frequency prediction and analysis is concerned, there are a few examples of inte-
grating machine learning methods to enhance the performance of conventional methods in the
literature. In Figure 1.5, results from a hybrid approach (more information on the implemen-
tation procedure is shown in Figure 1.2) wherein conventional frequency dynamics prediction
is supported by an extreme learning-based real-time error correction to achieve an improved
frequency dynamics prediction is shown. It has been described in [6] about how this approach
could lead to a more controlled frequency response. Similarly, utilising ANNSs trained with
time-series data in a purely data-informed model with high predictive capabilities (in terms of
speed and accuracy) to predict future dynamic frequency response could help in implementing
an early and controlled frequency restoration in the system.

Training ANNS to learn the dynamic behaviour of a system using representative input data
could enable the system to predict future dynamic behaviour of the system for data from an
unobserved system. [25] discusses two categories in frequency dynamics prediction, namely
estimation of frequency characteristics (like RoCoF, nadir, breach of stability margins) and
frequency curve prediction. In frequency analysis and security assessment, the focus of many
ANN-based works is on the prediction of frequency nadir after a generation loss or disconnec-
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tion in the system [26, 27]. As an example for short-term frequency forecasting, [28] proposes
an LSTM model to predict the power system frequency trajectory for the subsequent minute.

1.3. Research Direction and Contribution

Developing advanced frequency security assessment methods that can keep up with the changes
introduced to electrical power systems require new methods that are highly reliable, fast and
accurate. In this thesis, Neural Ordinary Differential Equations (NODE) are introduced as a
suitable family of neural networks that could be applied to predictive analysis of power system
frequency to achieve an improved security assessment procedure. The suitability and the ratio-
nale behind choosing this specific type of ANN are discussed elaborately in the next chapter.

NODE can learn non-linear dynamic phenomenon by approximating differential equations
governing the relationship between different parameters in a physical system. With careful
processing and modelling of input data, tuning of model parameters and choosing relevant
performance metrics, it is possible to achieve a frequency prediction algorithm that is compu-
tationally fast with an acceptable level of accuracy for monitoring and assessing the status of
a system. Another aspect to consider is the ability of the algorithm to learn in real-time. Since
frequency response trajectories are highly event-dependent and are quite unique among differ-
ent events, the prediction algorithm should be able to learn in real-time post a disturbance/event
to continuously update and improve its performance.

This thesis approaches the application of NODE in frequency security assessment on the
basis of four aspects. The aspects and the contribution in each aspect are concisely stated
below.

1. Developing and tuning a NODE algorithm for different frequency prediction appli-
cations
A NODE model for frequency prediction must be able to take different power system
quantities (while including frequency) as input features, and churn out expected fre-
quency values in the near future. This requires an ANN that is capable of approximat-
ing the dynamics of frequency and related available system quantities. It is possible to
achieve the desired level of frequency prediction performance by developing a NODE
algorithm with proper model tuning (for example, the optimal number of hidden layers
in the ANN or a well-performing sequential combination of optimizers).

2. Approximation method of definite patterns observed in frequency behaviour using
NODE model
Using the ability of NODE to learn non-linear patterns, it is possible to train a model
to learn specific sections of a frequency response curve for a given test system. With
prior knowledge of how a system reacts to a similar kind of disturbance, it is possible
for the NODE model to enhance its prediction performance when an expected type of
disturbance occurs. This thesis attempts to use a real-time frequency restoration curve
after a major system-split event to train a model with the observed restoration pattern.

3. Pre-training approach to achieve fast real-time predictions using short-term online
retraining
It is required to cut short on the real-time training time if the NODE models are to be
used for forecasting fast characteristics of frequency dynamics. By pre-training a model
to learn a typical frequency response curve after a system disturbance, it is feasible to
quickly estimate key frequency instability parameters like frequency nadir in real-time
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after the detection of a frequency disturbance. This could help in relatively early trigger-
ing of frequency control actions to achieve a more controlled stability response in the
system.

4. Case studies to demonstrate differences in NODE performance when working with
real system data and synthetically generated data
With real system data corresponding to major frequency disturbance events being sparse,
it is necessary to work with both real system data and synthetically generated data. Work-
ing around the constraints posed by both the types of available data, NODE models are
implemented for a few test cases concerning different frequency situations observed in
power systems. With changing prediction requirements, these test cases illustrate the
differences in defining NODE models and obtaining relevant prediction results using
the two types of power system data.

1.4. Research Objective and Thesis Outline

The research objective of the thesis could be stated as:

“To use Neural Ordinary Differential Equations (NODE) for real-time frequency security
assessment and subsequently enable timely frequency stability control.”

In an attempt to reach the research objective, the following questions are sequentially ad-
dressed and discussed with relevant results over the course of this document.

1. How can Neural Ordinary Differential Equations be adapted to frequency dynamics pre-
dictions?

2. What are the challenges in obtaining relevant input data for training and testing NODE
models?

3. Which aspects of the NODE algorithms need to be tuned to address different frequency
security situations?

4. What are some possible real-world implications of the frequency prediction outcomes
from NODE models?

The outline of the thesis report and the structure of its chapters are as follows. An intro-
duction to the base theoretical knowledge required to carry out this thesis is discussed in the
second Chapter - “Theoretical Background”. Applying machine learning to physical systems,
an introduction to ANNs and NODE, relevant data processing principles and improving model
performance in ML algorithms are all encompassed in this chapter. The next chapter - “Predic-
tive NODE Algorithm - Methodology” focuses on the work flow observed, starting from the
data collection step to the code framework to the setting up of different case studies to obtain
a proof of concept and working results. The results, their analysis and discussion is carried
out with relevant plots and tables in the chapter - “Results & Discussion”. To conclude the
report, future scope, possible improvements and concluding remarks regarding the thesis work
are stated in the final chapter - “Future Scope & Conclusion™.



Theoretical Background

2.1. Machine Learning in Scientific Computing

Vast amounts of scientific computations in diverse fields ranging from aerospace to molecular
sciences to macroeconomics have been dependent on mechanistic models in the past. While
machine learning has managed to achieve great feats in areas like image recognition or natural
language processing using “big data”, many areas of computational science suffer from the
lack of the right quantity or right set of data to build an accurate machine learning model [29].
As an attempt to deal with complex problems in different domains with insufficient scientific
data, scientific machine learning (SciML) happens to be an emerging field in data science that
acts as a bridge between machine learning and computational science in areas that require
domain-specific knowledge.

As the name suggests, SciML is an interdisciplinary field that combines two hitherto inde-
pendently evolving research areas - namely, machine learning and scientific or physics-based
modelling. Some obstacles in integrating these two research areas are lack of sufficient scien-
tific training data for ML, high requirements for reliability of ML based solutions for scientific
systems and efficient utilisation of available theoretical knowledge to support ML-based sci-
entific models. For instance, a common challenge for ML-based classification methods in
scientific computing is to process an imbalanced data set. When the available data for dif-
ferent classes of classification are unequal in terms of quantity, it is difficult to train the ML
model well. Taking the field of power system security assessment as an example, a major chal-
lenge is to obtain data that pertain to high-risk or emergency situations in the power system.
Since such situations are quite sparse when compared to normal operational situations, the ML
method should account for the data imbalance in a logical way.

There are many ways in which SciML proves useful in introducing novel methods to assess
and model complicated science and engineering problems. [30] lists some application-centric
objectives of employing SciML methods in any arbitrary scientific problem. These objectives
include obtaining reduced-order models that are more computationally efficient, discovering
underlying governing equations between different parameters, data generation to obtain realis-
tic synthetic data and physics-informed forward solving partial differential equations (PDEs).
A few approaches to achieve these objectives are also mentioned in [30] - physics-guided
loss function, physics-guided initialization, physics-guided design of architecture and hybrid
modeling. While choosing a relevant SciML approach, it would help to pay attention to the
computational objectives and requirements of the scientific problem in hand. Some prevalent

8
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computational objectives while using SciML in the literature are achieving better prediction
performance in terms of speed, accuracy, sampling efficiency etc., and ensuring a good inter-
pretability of the proposed SciML approach.

In frequency security assessment, the computational objectives of using a SciML approach
in predictive analysis of frequency could range from improving prediction performance in
terms of accuracy and speed, to easy interpretation of the proposed assessment method. In [6],
hybrid modelling was used to achieve better prediction performance through better error cor-
rection methods. In this thesis, the proposed methodology takes subtle inspiration from some
SciML approaches such as physics-guided loss function and initialisation to achieve better pre-
diction performance of expected frequency response. Neural Networks, with a wide range of
types to choose from based on the computational requirements of a scientific problem, could
be a suitable ML method for integrating SciML approaches into power system security assess-
ment methods. With all the new developments expected in our power systems (like large-scale
RES integration, increasing penetration of EVs), achieving high speed and accuracy in security
assessment is critical in ensuring the security of a more volatile and flexible electrical network.
These requirements, combined with the need for high non-linear modelling capabilities to pre-
dict power system dynamics, make ANNs a relevant ML tool for future frequency security
assessment methods.

2.2. Neural Networks - Overview

With a sweeping number of applications in a wide range of fields, ANNs are one of the most
predominant ML tools in use today. As the name suggests, ANNs are touted to be inspired
from the functioning of biological neurons in animal systems. Similar to how neurons in a
human brain form extensive interconnections with one another to process complex patterns
and information, an ANN is expected to process information for artificial intelligence (AIl)
based real-world applications. Each biological neuron receives input information from other
cells or neurons, which is then passed on to other interconnected cells or neurons. While the
complexity of and unsolved mysteries around biological neural networks could possibly lead
to advancements in future ANNSs, a typical artificial neuron as used in current applications can
be depicted as shown in Figure 2.1.

. WEIGHTS

ACTIVATION

FUNCTION I

I outputr

ARTIFICIAL NEURON OR NODE

Figure 2.1: A typical artificial neuron or node

An artificial neuron, commonly referred to as a node, has a set of inputs, corresponding
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weights, a bias, an activation function and an output. In Figure 2.1, x; is any arbitrary input
value, w; is its associated weight and b is a bias value for a given node. For a set of input
values coming from different nodes, a single neuron or node takes the weighted sum of inputs
and processes it through an activation function f(x). The weights help decide how much sig-
nificance is to be given to each input node in determining the output. Bias is a constant offset
value added to the weighted sum of inputs before it is processed by the activation function.
The bias value can shift the activation function across the horizontal axes, towards left or right.
Hence, a change in the combination of weights and bias used can give rise to different values
or outcomes. The output from the activation function determines to what extent the informa-
tion from the given node is passed further on to the next set of nodes. As a simple example, a
binary activation function that gives 0 or 1 as its output can be considered. If the output is 1,
the node is activated/energised and the information it received is passed on to the next node.
If the output is 0, the node is not activated and the information is not passed on further. Of-
ten, many activation functions output continuous values that correspond to the extent to which
information is passed on from the given node as its output to the consequent set of nodes.

An ANN is, hence, an interconnection of multiple layers of artificial neurons capable of
processing complex information to achieve desired computational results. Once trained, ANNs
are capable of recognising complex patterns or approximating almost any non-linear system
of equations. The various elements that form an ANN, the working and learning of an ANN
and some prominent types of ANNs are discussed elaborately in the following sections.

INPUT LAYER HIDDEN LAYERS OUTPUT LAYER

Figure 2.2: A simple multi-layer feed-forward ANN
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2.2.1. Structure of Neural Networks

The structure of a simple feed-forward ANN (shown in Figure 2.2) is a good starting point
for understanding the different elements that form an ANN. By feed-forward, it could be un-
derstood that information is propagated through the network in only one direction. An ANN
generally has three types of layers: the input layer, one or more hidden layers and the output
layer. The simplest form of a neural network could be a two layer network with an input layer
and an output layer. The input layer is always a passive layer wherein all features or available
input variables are passed on to all the nodes in the next layer. No changes are made to the
data in this layer. The forward arrows or lines connecting these nodes to the next layer are
representative of a specific value of weight. So, in case of a two layer network, the weighted
sum of all inputs is passed through a transfer function (called as an “activation function”) in
the nodes of the output layer to give a final output variable. This output layer could consist of
a single node in case of classification or multiple nodes when two or more output variables are
required.

In order to achieve higher predicting capabilities, one or more hidden layers are added in
an ANN. Deep neural networks generally have multiple hidden layers between the input and
the output layer. The depth (number or hidden layers) and width (number of nodes in a hidden
layer) of the hidden layers can be tuned optimally according to a given problem. In each node
of the hidden layer, the weighted sum of data from the previous hidden layer or the input layer
is passed through a specified activation function. The outputs from all the nodes of the hidden
layer are once again passed through a different set of weights to each of the nodes in the next
hidden layer or the output layer. The weights between nodes are initialised randomly at the
beginning and subsequently tuned as the ANN model starts learning. While the predicting
power of the ANN model increases with the number of layers, it is also important to limit the
number of layers so as to avoid the problem of over-fitting. Having high complexity in the
ANN structure and a limited amount of training data could lead to over-fitting of the ANN
model with respect to the training data.

2.2.2. Activation Functions

Every node in a hidden layer or a output layer of an ANN has an associated activation function
that transfers the weighted sum of inputs entering the node to an output value. More often
than not, these activation functions are non-linear in nature and enable the ANN to possess
non-linear predicting capabilities. In fact, without a non-linear activation function, an ANN
would be equivalent to a linear regression model that cannot process complex information.
The simplest activation function is a linear activation function or the identity function f(x) =
X, typically used only in the output layers of ANNSs. The other non-linear activation functions
allow for non-linear combination of inputs over multiple layers to model complex problems
successfully. Some prevalent activation functions in ANN applications, their characteristics
and deciding how to choose an activation function for a given prediction problem are discussed
next.

1. Binary step function: As shown in Figure 2.3, a binary step function has only two out-
puts: 0 and 1. When 0, the neuron remains inactive and when 1, the neuron is activated.
With the bias value in a neuron, the output is decided based on whether a threshold limit
has been crossed by the weighted sum of inputs or not. This function is applicable only
in elementary binary classifier models as they are not capable of multi-class classifica-



2.2. Neural Networks - Overview 12

0,x<0
fx) = {sz N

F 3
v

Figure 2.3: Binary step activation function

tion. Moreover, the function has a gradient of zero and is hence, not applicable for ANNs
with gradient descent (GD) algorithms (discussed in subsection 2.2.3).

2. Sigmoid or Logistic activation function: This is a bounded activation function that
gives an output only between 0 and 1. The sigmoid function is, hence, suitable for
logistic regression or binary classification problems. Being continuously differentiable,
the function has a non-zero derivative centred between -3 and 3 as shown in Figure 2.4.
The derivative is not monotonic and that could lead to a vanishing gradient problem
during training.

_ 1 1 f'(x) = !
)= 1 FOA - FG)
0.5
< " 6 i h -3 0 3 :

Figure 2.4: Sigmoid activation function and its derivative

3. Hyperbolic tangent function - tanh: The tanh function has a similar shape as the sig-
moid function and bounds its output between -1 and 1. Having a zero-centred nature
makes the function good at mapping data as negative, close to zero or positive to the
next layer, making learning easier. As shown in Figure 2.5, the derivative of the tanh
function has a steeper gradient compared to sigmoid. This could imply larger gradients
or higher learning steps during learning. While vanishing gradients is still a problem for
tanh activation, having a zero-centred nature allows for a less restricted gradient motion
(in both positive and negative directions) as compared to the sigmoid function. Both
sigmoid and tanh activation functions find many applications in RNN models.

4. Rectified linear unit function - ReLU: ReLU seems to be one of the most widely used
activation functions in various types of ANN like CNN and other deep learning models.
A major advantage of this function is its higher computational speed and faster conver-
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Figure 2.5: tanh activation function and its derivative
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Figure 2.6: ReLU activation function and its derivative

gence rate. As shown in Figure 2.6, the function is unbounded in the positive side and
consists of two linear parts with corresponding linear, constant derivative parts. Since
the neurons are only activated if they receive a positive input, it is computationally sim-
pler and more efficient. This function does not have the problem of vanishing gradients
as well. However, the deactivated neurons corresponding to negative input values are
dead neurons that hamper a proper mapping of negative values during training. This is
referred to as the dying ReLLU problem as the function outputs a constant zero value for
inputs in the negative range. Also, since the function is not continuously differentiable,
it works well with lower learning rates and without large negative bias values.

To deal with the dying ReLU problem, there are many improved variations of ReLU used
commonly in many ANN applications. Figure 2.7 shows a few activation functions that
have a non-zero curve defined for the negative range of values. Each of these functions
also have their own limitations. For instance, the Leaky ReLLU function has a smaller
gradient in the negative side and would hence require more computation time. The Para-
metric ReLU function requires a good tuning and selection of the o parameter value.
The Exponential Linear Unit (ELU) function, on the other hand, could lead to a explod-
ing gradient problem. Hence, each activation function comes with its own shortcomings
and can be chosen based on the performance requirements of a given ANN.

There are many other activation functions that show good performance in hidden layers like
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Figure 2.7: Improvements on ReL U to handle negative input values

the Gaussian Error Linear Unit, Scaled Exponential Linear Unit, the Swish function which are
out of scope for this thesis. However, it is important to make an informed decision in choosing
an activation function for the different layers of the ANN (see Table 2.1). Hidden layers make
use of non-linear activation functions that can be chosen based on their prediction performance
or convergence rates for a given problem. For instance, RNNs typically use sigmoid or tanh
functions in their hidden layers. CNNs and feedforward ANNs like MLPs, on the other had, use
ReLU as their activation function for the hidden layers. The output layers have an activation
function depending on the nature of the prediction problem. Regression problems could make
use of the linear activation function (or the softplus function for positive real-valued outputs)
whereas the sigmoid function would be suitable for binary classification. Softmax is another
prominent activation function used for multiclass classification problems.

Table 2.1: Choosing an activation function. Note: Typical hidden layers depend on ANN types. For instance,
CNNs and MLPs use ReLU and its variations whereas tanh and sigmoid are common among RNNs

Prediction problem Output layer Hidden layer

Regression Linear, Softplus Depends on ANN type
Binary classification Sigmoid Depends on ANN type
Multiclass classification Softmax Depends on ANN type
Multilabel classification Sigmoid Depends on ANN type

With the right set of activation functions, weights and biases, the universal approximation
theorem suggests that there exists a neural network to approximate any arbitrarily complex,
non-linear, continuous function. This applies for any neural network having one hidden layer
of any arbitrary size. Hence, ANNSs are really good universal function approximators.

2.2.3. Learning and Optimization

An ANN with a defined structure and set of activation functions becomes capable of processing
unseen information and making reasonable predictions only after it has undergone learning
with relevant training data. In the beginning, after the structure and elements of an ANN have
been defined, the weights are assigned randomly generated values. Similar to how the human
brain learns based on the inputs it receives and changes its outputs accordingly, an ANN learns
from the input sent through it and the corresponding processed output. This learning is reflected
in the ANN as an updating of its weights between different nodes. While the input, hidden and
output layers, and their activation functions remain fixed, an ANN learns and adapts to any
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complex problem through modification of its weights.
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Figure 2.8: The three basic learning models

Learning in ANN can be broadly classified as supervised learning, unsupervised learning or
reinforcement learning (RL) - the three primary learning paradigms for an ML tool. Supervised
learning is dependent on a set of target data that is used for comparison with the output of the
ANN to determine further updates in the network. In other words, it could be said that the
learning is guided/supervised by this available set of target data. Unsupervised learning, on
the other hand, is independent of any kind of target data that could act as a feedback for the
ANN. Instead, the model tries to make sense of input patterns and the hidden information
present in unlabeled data, and learn on its own. [31] reviews learning and training methods
for unsupervised learning in ANNs. Reinforcement learning, on the other hand, learns from
experience or interaction with a given environment. RL tries to learn the optimal behaviour of
agents in an environment by performing actions sequentially and acting based on the resulting
outcomes/rewards. The goal of an RL problem is to maximise a numerical reward. Since data
is obtained through interaction, this type of learning involves data-sets that change dynamically
with time. Figure 2.9 summarises the differences between these three learning methods in a
simplified manner.

The thesis, henceforth, focuses only on supervised learning using ANNs. Security assess-
ment in power systems have certain quantities whose futuristic prediction adds value to con-
ventional assessment methods. These quantities are, hence, the target values for supervised
learning-based prediction algorithms. The updating of weights based on the error between
the output of an ANN and the target value could be done using different training algorithms.
The most common way to process this error is to propagate it backwards through the ANN to-
wards the input layer. This is referred to as back-propagation. The optimization of parameters
(or weights and bias values) based on the back-propagated error is usually carried out using
Gradient Descent - an optimization algorithm.

Considering a regression prediction problem, the objective of an optimization algorithm is
to obtain an optimal fit of the prediction with respect to the target values using an optimal set
of parameters. For example, say the error is computed using a loss function L defined as the
mean square error (MSE) between the output and target values:

L(0) _ 1 i( - 2 2.1
- N * Yn ypred,n) ( . )
n=1
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N is the total number of training samples (target values available for training), y is the target
value and yjy.q is the predicted output from the ANN. Obtaining an optimal fit, hence, depends
on minimising the loss function L through changes in parameters (referred by 0). Thus, the
optimal parameters (0") are:

0 = arg mein L(6) (2.2)

The iterative updating of parameters could be written as:

_OL()

4 (2.3)

Or+1 = O) —
k refers to a learning step, o is the learning rate and the partial derivative of L with respect to
0 is the gradient. The parameters are, hence, adjusted in a direction opposite to the gradient
which explains why it is called gradient descent. If the ANN can be expressed as a function
fo(x), then the output ypyeq for the n'™ training input sample (x,) can be written as:

Ypredn = fek (xn) (24)

The gradient term in Equation 2.3 can be expanded as:

aL dfek (zn)

doy,

:——*

Mz

— fo.(zn)) (2.5)

n:l

The derivative term in Equation 2.5 represents the sensitivity of the output prediction with
respect to changes in the parameter values. The difference between the output prediction and
the target value is the error computed for a given input training sample. If W, is the set of
weights between layer (I-1) and layer 1, a; is the activation function in layer 1, then the function
fo(x) can be written as:

fg(l‘) = aL(WL.aL_l(WL_l.aL_Q(..(Wl.z)..) (26)

In Equation 2.3, computing the loss gradient for each weight across the ANN is inefficient.
Instead, computing gradient for the weighted inputs in each layer from the last layer towards
the first helps avoid unnecessary and repetitive calculations. If z; is the weighted sum at layer
1, Ap 1s the activation value at layer 1, then:

Z] = m/l~Al—1 (27)

Ap = ai(z) (2.8)

Then the gradient term of loss for each individual weight (w;; is the weight between j™ node
in previous layer to iy node in the next layer) can be computed using chain rule through back-
propagation:

OL(0)  OL(0) 0z

8wm~l N 8zil ) 8wi7]~l
Through back-propagation, error is propagated efficiently backwards through layers where
at each layer, gradients of weights are computed using corresponding derivatives in activation
functions and matrix multiplication of weight values. In computing software, back-propagation
is carried out through reverse mode automatic differentiation, wherein the chain rule is used to

(2.9)
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compute partial derivatives backwards across layers. Vanishing gradients and exploding gra-
dients are two problems that could occur during back-propagation. The former happens when
the gradients diminish a lot across layers during back-propagation and the latter happens when
the gradients become too large. This leads to too small gradients to effectively update weights
in the front layers or divergence to extreme values due to very large gradients, respectively.

In real-world applications, several derivations of GD are used for optimization and learn-
ing. These include mini-batch gradient descent, stochastic gradient descent, momentum-based
gradient descent, Nesterov-accelerated gradient, Adagrad and Adam. Each optimizer comes
with different advantages and could be chosen based on requirements like convergence rates
or better generalising capabilities.

2.2.4. Types of Neural Networks
Without elaborate explanations, some common types of neural networks and their applications
are listed below. This is not an exhaustive list.

* Feed-forward ANNs: One of the oldest and simplest ANNSs, these have a single hidden
layer and there are no backward loops. Some applications include simple classification
or image processing algorithms. ANNs with a similar structure but multiple hidden
layers are the Multi-layer Perceptrons.

* Radial Basis Function ANNs: These networks are feed-forward ANNs that use radial
basis functions as their activation functions, and can be used for universal function ap-
proximation applications with advantages of ease in designing and high learning speed.

* Convolutional Neural Networks: Widely used in image recognition and processing,
CNNs use convolution layers in one or more hidden layers that can identify complex
patterns or images by progressively learning from small portions of an image (like the
brightness or the colour of a set of pixels) to more complex parts of the image.

* Recurrent Neural Networks: These networks have cyclic flow among nodes which
allows for past outputs to be used to influence current inputs or decisions. These ANNs
are prevalent in text-processing and speech recognition applications.

* Long/Short Term Memory (LSTM): These networks are a type of RNNs that come
with a capability to learn long-term dependencies among sequential data. They find
applications in various time-series data processing applications, for instance, in natural
language processing applications.

* Residual Networks (ResNet): A relatively new type of ANN, these networks allow for
building of deeper neural networks using skip connections that connect outputs from
earlier layers to the outputs of other stacked layers. They help in solving vanishing
gradients (for instance, a problem in case of large CNNs) and achieve higher accuracy
in deep ANNS.

2.3. Neural Ordinary Differential Equations

Neural Ordinary Differential Equations (NODE) are a rather recently introduced type of neural
networks, discussed extensively in [32]. To understand the working of NODE, it helps to
explain about the residual blocks present in ResNets. Certain ANN models like ResNets use
a discrete set of transformations for their hidden states (see Equation 2.11). For instance, the
skip connections of a ResNet mentioned in subsection 2.2.4 could be represented as shown in
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Figure 2.9. If the transformation applied to data x; across the layers is represented as F(x) and
0, is the parameters of the layers, then x..; can be expressed as:

Toy1 = o+ F (24, 0) (2.10)
This can be seen as a discrete transformation of hidden states from h; to hy;:
hev1 = hy + F(hy, 6;) (2.11)

Ordinary Differential Equations (ODEs) refer to one or more functions dependent on a single

X
Y
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Figure 2.9: A building block in a ResNet, figure retrieved from [33]

independent variable and its derivatives. A simple, first order ODE can be defined as:

o0x(t)
ot

= f(z(t)) (2.12)

Using Euler discretization, it is possible to approximate an unknown continuous curve by solv-
ing ODEs for an initial value problem (IVP). So, given an initial value x, = x(t;) at time t,,
it is possible to take small tangential steps starting from the initial value to approximate the
actual curve. If one step size is h and time t,, after n steps is (t, + nh), then one step in the Euler
method can be written as:

2(tns1) = 2(tn) + hof ((t), tn) (2.13)

When the time steps are taken to be infinitesimally small, it is possible to obtain a continuous
curve. Similarly, when the number of hidden layers are increased and smaller steps are taken,
neural networks can be used to represent ODEs for the continuous dynamics of the hidden
states (see Equation 2.11) as:

dh(t)

dt

Hence, if h(0) is the input layer of the ANN, then h(T) can be defined as the output layer at a
desired time T and a black-box ODE solver can be used to compute the hidden state dynamics
defined by function fin Equation 2.14. Differences in hidden state dynamics between ResNets
and ODE networks are depicted in Figure 2.10. However, in order to train an ODE network,
back-propagating through reverse-mode differentiation in the ODE solver is difficult. Hence,
the adjoint sensitivity method is used in gradient computations for ODE solvers.

= f(h(t),t,0) (2.14)
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Figure 2.10: Comparison of hidden state dynamics in ResNets and ODE networks, figure retrieved from [32]

2.3.1. Adjoint Sensitivity Method

For optimization of the loss function and computing gradients across the black-box ODE solver,
ODE networks use the adjoint sensitivity method. The optimization method explained below
has been presented as a detailed algorithm with derivations in [32]. Say, the loss function for
the ODE network is a function of its ODE solver’s output z(t,), defined as:

L(z(t1)) = L(2(to) + /ttl f(z(t),t,0)dt) (2.15)

Hence, the inputs to the ODE solver are z(ty), to, t;, © and f. Similar to optimisation of the
loss function using GD in subsection 2.2.3, the gradient of L with respect to © needs to be
computed. The gradient of L is dependent on the hidden state z(t) at each instant t, and this
dependence is denoted by a value called adjoint a(t):

) oL
a —=
0z(t)
The adjoint state is, thus, indicative of the sensitivity of the loss function with respect to z(t).
The dynamics of the adjoint state is defined in [34] as an ODE:
da(t) 7, 0f(2(1),1,0)
= —a(t) (——— 2.17
2 = —a(ey (R 2.17)
Starting from a(t;), the ODE solver moves backwards towards to compute a(ty), as shown in
Figure 2.11. Since this requires the knowledge of z(t) over the period ty to t;, z(t) is also

computed backwards from z(t;) to z(ty). Then the gradient of L with respect to 0 is now
dependent on both a(t) and z(t):

d_L — /to a(t)T(af(Z(t)v t’ 9)) dt

dé t 00
Thus, in reverse-mode differentiation for the ODE solution, both the hidden state z(t) and the
sensitivity of L with respect to that state are considered. Whenever there is a direct dependence
of L on the hidden state at an observation point (indicated by the dots in Figure 2.11), the
adjoint state is modified in the direction of the gradient of loss at that observation point. Hence,
the inputs and outputs of the reverse-mode differentiation algorithm [32] using the adjoint
sensitivity method are given in Table 2.3.

(2.16)

(2.18)
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Table 2.2: Inputs and outputs for the reverse-mode differentiation algorithm [32] using adjoint states

Parameters in reverse-mode differentiation algorithm
Inputs  to, t1, z(t;), 0, Gradient of L with respect to z(t;)
Outputs Gradient of L with respect to z(ty), Gradient of L with respect to 0

2(to) tiv1) State
Adjoint State

Figure 2.11: Reverse-mode differentiation using adjoint states, figure retrieved from [32]

2.3.2. DiffEqFlux.jl - A Julia Library
The DiffEqFlux.jl package in Julia programming language allows for easy integration of dif-
ferential equation methods in neural network models to support various SciML applications.
For instance, this package facilitates the usage of DifferentialEquations.jl package to imple-
ment suitable differential equation solvers for applications in ML libraries with neural network
frameworks like Flux.jl and Lux.jl. With respect to NODEs, this package allows neural net-
works to make use of differential methods for optimization and adjoint sensitivity methods. A
good example of using DiffEqFlux.]j to approximate differential equations using NODEs has
been presented in [34].

An ODE problem can be solved (using solve function) in Julia using the DifferentialEqua-
tions.jl package when the corresponding ODE function (f), initial condition (uy), time-span
(tspan) and the function parameters (p) are specified:

prob = ODE Problem(f, ug, tspan, p)
sol = solve(prob, ode_algorithm)

In case of NODESs, a neural network is used to approximate the ODE function (indicated as
f in Equation 2.14). Using the Lux.jl library, a neural network with say, a hidden layer of 20
neurons with ReLU activation to predict 3 states in a non-linear system, could be defined as:

dudt = Lux.Chain(x— > x, Luz.Dense(3, 20, Lux.relu), Luz. Dense(20, 3))

Given a time-span (tspan), an ODE solver algorithm (for example, Tsit5()) and a saveat value
(for example, 0.1 time unit) to specify the time points when the solver has to save the solutions,
then the NODE layer can be defined using the Neural ODE function:

node = NeuralODE(dudt, tspan, Tsit5(), saveat = 0.1)
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In order to back-propagate using the adjoint sensitivity method, the ODE integrators need
to be reversible to allow reverse-mode differentiation. DiffEqFlux.jl makes it easy for the
user to switch between these different gradient methods using its three functions: diffeq fd,
diffeq rd and diffeq adjoint. Hence, the package allows switching between different modes
of differentiation by a change of one character.

2.3.3. Advantages of NODEs

Some benefits of using NODEs for regression prediction problems are listed below.

* NODE:s have a constant memory cost. Unlike other prevalent ANNs used for regression
like RNNs, no intermediate quantities are stored in the network during a forward pass.
Instead all inputs are accounted for through the gradient computation method discussed
in subsection 2.3.1. This ensures high memory efficiency, especially in building deep
neural network models.

* The ODE solvers used for learning and predicting any unknown curve vary greatly in
terms of their ability to accurately approximate the true curve. With the range of ODE
solvers that are available today, it is possible to trade-off between achieving high levels
of accuracy and high costs of computing based on the complexity or speed requirements
of a problem. NODEs, thus, allow for adaptability in terms of computation.

* It is suggested in [32] that the number of network parameters required could be reduced
because the hidden state dynamics of NODE layers allow closer layers to be tied together
automatically. This results in higher parameter efficiency.

* NODE:s can support continuous time-series data which arrive at arbitrary time intervals.
With irregularly sampled data, conventional RNNs face difficulty in handling arbitrary
time gaps between observations. With NODEs, it is possible to define a unique latent
trajectory given any initial latent state. A generative, latent variable-based approach for
modelling time-series has also been presented in [32].

The benefits of using NODE are, thus, multi-fold. There are good examples of successful im-
plementation of NODEs in dynamic system modelling and parameter estimation problems [35,
36] in the literature. However, there are also many papers addressing some shortcomings of the
NODE models and mathematical solutions to mitigate them using augmenting methodologies.
Some good examples include [37] that proposes more expressive models which can augment
the ODE solving space to provide added dimensions to learn more complex problems, [38]
which proposes a more accurate gradient estimation method for NODEs called the Adaptive
Checkpoint Adjoint (ACA) method and [39] that proposes NODEs with time-varying weights
to achieve enhanced expressiveness in image processing applications.

2.4. Data Handling and Performance Evaluation

The key elements in an ML algorithm include the training input data in the form of features
(or) multiple independent quantities corresponding to a range of observation points, the output
quantities at these observation points which are expected to be predicted, a loss function that
is representative of the accuracy of the model prediction, an optimization method to minimise
the loss function and a set of unseen data reserved for validation and testing of the trained
model. All these elements are introduced into an ML workflow at suitable points. A simple
ML workflow with all the basic blocks of a prediction algorithm is shown in Figure 2.12.
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Figure 2.12: A sample workflow in an ML-based prediction algorithm

Raw available data is generally pre-processed before being used in a prediction model. In
case of security assessment in power systems, a relevant example of raw data are PMU mea-
surements from power grids. For a given time-span, these measurements could have missing
values or noisy readings or inconsistent outlier values. Processing this data to have a continu-
ous, realistic time-series input data is often a necessity for a prediction model. Once processed,
data transformations could be done to obtain more representative derived quantities. A simple
example is deriving the power angle and active power values from the available voltage and
current PMU measurements. In prediction problems with large number of available features,
feature reduction techniques are carried out to address possible redundancy in data and improve
computational efficiency of the model. In security assessment, it is often possible to logically
decide if certain features are not important. Once selected, these set of features could be re-
duced further (in terms of dimensions, if required) using various feature extraction or reduction
techniques. Another important aspect in data-preprocessing is scaling of features. Having dif-
ferently scaled features (for example, voltage measured in the range of a few thousand volts
and frequency measured in the range of 49 to 51 Hz) would be misleading to prediction models
that are largely dependent on the numeric values of the features and related inter-dependencies.
In order to effectively capture the variations in a feature and understand its correlation with
other features or the target output values, scaling transformations like min-max normalization
or standard normalization are carried out for numerical data.

The prediction performance after training a model depends on its complexity and the cor-
responding ability to be applied to unseen data accurately. The two extremes of model com-
plexity are when the trained model is under-fitting or over-fitting for the prediction problem
(see Figure 2.13). Under-fitting models give rise to bias errors due to high simplifications in
approximating the target function. Over-fitting gives rise to variance errors when the model
is presented with new input data to predict from. Hence, a reasonable trade-off between bias
and variance errors results in a prediction model that is more representative of the underlying
dynamic phenomena and capable of predicting from unseen data. In order to evaluate the per-
formance error with respect to model complexity, a small fraction of available, unseen data
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is reserved for validation immediately after training. The resulting validation error from the
prediction model helps in finding a viable level of model complexity, as shown in Figure 2.14.

So, after a few prediction models have been optimized through training, validation could help
in choosing the more suitable model.
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4 b
50 4 @ - TRAINING SAMPLES 50 4 @ - TRAINING SAMPLES
- TRAINED CURVE - TRAINED CURVE
—~1 e -
T ES
I °
= e = )
g ® g
g e e o g
S ° e 2 3 °
=4 oo T
[ ] @ 2
w ° ° (<) w °
49.8 4 e 49.8 4=
Time-series data Time-series data

MODEL COMPLEXITY

BIAS
VARIANCE

Figure 2.13: Impact of model complexity on curve-fitting
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Figure 2.14: A simple validation approach to choose an optimal level of model complexity

While the training data is used to optimize a set of prediction models, validation data could
be used to choose an optimal model and test data could be used to finally evaluate the per-
formance of the model. Some common ways to optimize models include modifying the loss
function to enhance the training speed and be more representative of the required model perfor-
mance, tuning parameters of the ANN model (like the number of layers, activation functions
etc.), trying different optimizers and tuning corresponding parameters like learning rates, and
choosing a suitable set of evaluation metrics for validation and testing. MSE, R? score and
root mean square error (RMSE) are some prevalent evaluation metrics for regression prob-
lems. Accuracy, precision, recall, F; score, confusion matrix and the area under the curve in
a receiver operator characteristic (AUC - ROC) curve are some common evaluation metrics
for classification problems. The relevant evaluation metrics used in this thesis are elaborated
upon in chapter 3 and chapter 4.

2.5. Frequency Stability - Continental Europe

When there is an imbalance between generation and demand, the ability of a power system to
maintain a steady frequency value could be referred to as frequency stability [3]. After any
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severe disturbance, if the system is unable to maintain or restore its frequency to nominal val-
ues, tripping of generating units or loads could take place. European Network of Transmission
System Operators for Electricity (ENTSO-E) suggests the range of 49.8 Hz to 50.2 Hz to fall
under the ordinary operation range. The system becomes prone to severe outages and also,
possible blackout situations when the frequency deviations go beyond the acceptable range for
stable operation.

Figure 2.15: A snippet of transmission lines (220 kV or higher) across the synchronous grid of Continental
Europe, part of the ENTSO-E. More information about the map is available at the official ENTSO-E website.

There are various wide-area synchronous grids across the world that operate at a speci-
fied utility frequency and have interconnections spanning across large regions, or also across
many countries. There are about 26 countries synchronously interconnected in the case of the
synchronous grid of Continental Europe (see Figure 2.15). With a fixed nominal frequency set-
point of 50 Hz, it is possible for any major disturbance in the Continental Europe gird to have
repercussions at any other location across the entire synchronous grid. The impact of instabil-
ity due to frequency disturbances and the subsequent control or stability restoration measures
taken in a power system (with an emphasis on the Continental Europe grid, currently a part of
the ENTSO-E) are discussed below.

2.5.1. Power Imbalance and Impact on System Stability

In any synchronous grid, the frequency is directly representative of the balance between gen-
eration and demand, and needs to be within operational security limits at all points. In case
of Continental Europe, when the frequency breaches the 47.5 Hz (under-frequency) or 51.5
Hz (over-frequency) limit, all generating units and connected devices are expected to automat-
ically disconnect. Apart from the risk of losing synchronism across the grid, the impact of
frequency deviations beyond acceptable thresholds could range from poor load performance
and overloaded transmission lines to protection failures, large scale load-shedding and loss of
generating units.
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The dynamics in synchronous machines during power imbalances can be described by the
swing equation:
2H d?6

——— =P, =P, —F. 2.19
wy dt? 2.19)

H is the inertial constant, w; is the synchronous speed of the rotor, 6 is the load angle (also
referred to as the power angle), P, is the accelerating power, Py, is the mechanical power and
P. is the electrical power. In steady state, the accelerating power is zero as the the mechanical
torque and the electromagnetic torque are in balance, and the machine runs at synchronous
speed. Since the frequency and the speed of the synchronous generators are directly propor-
tional, any change in the speed of the machine reflects in the frequency response of the system.
During a power imbalance, when Py, is not equal to P, an accelerating or decelerating torque
exists and leads to an increase or decrease in speed (indicated by the derivative term in Equa-
tion 2.19) and frequency, respectively. The RoCoF term could then be expressed as:

df APf
RoCoF = - & (2.20)
f; 1s the nominal frequency and the change in P refers to the difference between Py, and P..
The causes of power imbalance could range from excessive load demand or loss of gener-
ating units (leading to a drop in frequency) to decreasing demand levels (leading to a rise in
frequency) or disconnection of interconnected areas in a power network. Most of the severe
imbalances are generally due to unforeseen changes in large-scale generation or consumption.
Over the last few years, ENTSO-E has also noted significant frequency deviations in the Con-
tinental Europe grid that are deterministic in nature. Occurring at similar times in an expected
fashion, these deviations could be attributed to the influence of market rules on generating
units. The step-wise changes in generation and a continuous demand curve, hence, lead to
short duration of imbalances at fixed times. [3] classifies frequency instability further as short-
term and long-term phenomenon. Some examples of frequency stability-related problems and

their possible impact on the power system and its components are given in Table 2.3.

Table 2.3: Examples of frequency instability problems and their possible impact on power systems

Frequency instability problems Possible impact Nature

Significant changes in Tr1pp1ng of protgctmn relays

voltage in generator, for instance, Short-term
& volts/Hertz relays

Under‘—frequency load Slgmﬁcant los§ of load apd Short-term

shedding (UFLS) associated socio-economic costs

Poor equipment response

and control - Boilers, reactors, Inefficient stability restoration Long-term
voltage regulators etc.

Insufficient generation or UFLS

schemes in islanded systems; Short-term
blackout in extreme cases

System splitting in
interconnected networks

Irrespective of the cause or nature of instability, frequency deviations are expected to have
increasing amplitudes or nadirs due to low inertia levels in RES-penetrated power systems.
With automatic generation control (AGC) in conventional power systems with synchronous
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generation, resistance against speed changes from inertia of large rotating masses in genera-
tors is critical in providing valuable extra time for other stability controls to start acting. Since
variable energy sources like wind power lack rotational inertia, new frequency control mea-
sures are required to address the reduction in inertia levels.

2.5.2. Control and Restoration Measures

Automatic Generation Control is employed in power systems with synchronous generators to
maintain the power balance, the system frequency and also, net interchange in power when
there are multiple control areas that are connected by tie-lines. Three steps of control, namely,
primary, secondary and tertiary control are used to restore a system back to its nominal state.
The impact of each of the three controls could be seen in a typical frequency response curve
after a disturbance, as shown in Figure 1.4 and Figure 2.16. Frequency control responses and
their corresponding time-scales, however, may vary among different nations [40]. Figure 2.16
shows typical time-scales for each tier of frequency control.

PRIMARY SECONDARY TERTIARY
CONTROL CONTROL CONTROL

_________________________ —

u
o
4
N

Frequency

Time

Few seconds Seconds to few minutes Minutes to many hours

Figure 2.16: Tiers of frequency control and corresponding time-scales

Primary control aims to restore the generation-demand balance and bring the frequency to
a stationary, stable value. This is implemented through droop control using a speed governor
in the generator turbines. The speed-governing characteristic of a generator is a plot between
its frequency (representative of speed) f and power output P, where the slope -R is the droop
constant. It represents the sensitivity of system frequency to changes in output power or vice

versa.
AP 1 1 Pg

Af R Rifr
K is the turbine constant (in MW/Hz) defined for each turbine, R, is the per-unit droop used
in speed regulation, Py is the rated power output and fy is the rated frequency. When the power
balance is restored by say, changing the amount of fuel flowing in to the generator, the system
is brought to a new steady state value of frequency defined by the droop value. When there
are N generating units operating in synchronism, then:
AP

Af = ——x— (2.22)

Zn:l K Tn

Kp = 2.21)
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Hence, load could be shared among multiple generating units based on their turbine constants.
When the rated frequency and droop are common for different generating units operating in
parallel, load sharing depends on individual power ratings of the generators.

In secondary control, available secondary control reserves are activated and active power
set-points of the generators or controllable loads are modified to restore the frequency back to
its nominal levels. In case of multiple control areas (as typical in large synchronous grids), the
tie-line power flows also have to be restored to ensure a stable system frequency. This tier of
control is also referred to as load-frequency control (LFC). AGC in LFC is dependent on Area
Control Error (ACE) defined for each control area.

ACEarea = APtie—line,area + KareaAf (223)

Karea 18 the frequency bias setting for a given control area defined by:

AParea
Af

Korea = — (2.24)

Change in power flow inside a control area is taken to be the sum of both internal and tie-line
power flow changes. So, ACE provides information about the power flow changes required in
each control area to achieve LFC.

Tertiary control is implemented generally over a longer period of time where set-points of
generators and controllable loads could be modified to ensure that the primary and secondary
control reserves are restored, while also accounting for economic considerations. This type of
control could be manual or automatic.

For the Continental Europe grid, ENTSO-E has a separate policy on “Load Frequency
Control and Performance” that clearly defines the technical and operational requirements and
framework for each level of frequency control.

To address reducing inertia levels in RES-penetrated systems, new additions to instanta-
neous frequency control like fast frequency response (FFR) and synthetic inertia have been
introduced. Based on frequency deviations or the RoCoF measured, FFR schemes are acti-
vated almost instantly (in the time frame of 1-2 seconds) to provide rapid increase or decrease
in active power for compensating the reduced inertia levels. Synthetic inertia, on the other
hand, tries to mimic the kinetic energy released from a rotating mass by providing a resisting
electrical torque proportional to the detected RoCoF [41]. With increasing RES penetration
and inadequate methods to compensate for low inertia, sudden events like large-scale LoG
or system split in large networks could lead to drastic frequency deviations more frequently.
In situations where frequency thresholds are breached, defensive control methods like UFLS,
over-frequency in-feed reduction are employed. When all available control methods fail to
stabilise the frequency, cascading outages and/or a blackout could occur.



Predictive NODE Algorithm -
Methodology

3.1. Introduction

Defining a NODE algorithm for frequency prediction is largely dependent on available input
data, the selected power system model, desired prediction horizon, nature of frequency events,
desired output quantities and relevant performance metrics. Figure 3.1 summarises the general
workflow in a frequency predictive NODE algorithm. This chapter discusses adapting NODEs
for frequency security assessment to achieve fast and reliable futuristic predictions that could
provide timely, critical details regarding the (impending) status of a power system.

Model definition
!

Grid data —| Data preparation [—| Model training Model testing |

Performance
evaluation

Training and
validation error

Figure 3.1: General workflow in predictive NODE algorithm

3.2. Data Preparation

Since drastic frequency events are sparse in reality, both real grid data and synthetically sim-
ulated data are crucial for training the prediction model. While the real grid data provides
an insight into the real-time PMU measurements that present security assessment algorithms
work with, the number of recorded frequency events corresponding to large LoG and major
system split events are quite small in number. On the other hand, it is possible to simulate a
range of frequency events for different system conditions with the help of modern power sys-
tem simulation software like PowerFactory. This thesis attempts to define a prediction model
for frequency events while acknowledging the impact of training on synthetic data and the ex-
pected differences in performance when dealing with real-time PMU data. To do so, both types

28
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of data are processed, trained upon and the resulting differences in prediction performance are
noted.

3.2.1. PMU Measurements from the Netherlands Grid

PMU measurements of real-time grid data are available at three substations across the Dutch
High Voltage grid. At each substation, quantities are measured at two locations. For a given
timestamp, frequency, RoCoF, magnitudes and angles of each phase of voltage and current are
measured. A few data-sets corresponding to small frequency deviations and two system split
events in Continental Europe are available for processing on request from a Dutch Transmis-
sion System Operator (TSO). Results of processing two of these data-sets, one corresponding
to normal operational scenario (say, scenario 1) and one corresponding to frequency restora-
tion scenario (say, scenario 2) post-system split are presented in this thesis. These data-sets
were chosen by checking if important data quantities were not missing for large intervals at all
three substations across the entire available time-span. The interpolated frequency data from
one of the six locations (say, Location 1, Substation or SS 1) for the two selected data-sets
looks as shown in Figure 3.2.
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Figure 3.2: Interpolated frequency data from Location 1, SS1 of the selected data-sets

The data processing of the PMU data to attain the final set of features is summarised in
Figure 3.3.

FEATURE TRANSFORMATION

Compute
active power,
power angle

Feature Final feature
analysis set

Sequence
transformation

1

Griddata [— Data cleaning [—]

Figure 3.3: Data preparation with PMU data from the Netherlands grid

The missing entry statistics for both the data-sets is shown in Table 3.1. Since continuous
intervals of missing data are restricted to a span of 0.3 seconds, linear interpolation was con-
sidered sufficient for data imputation. However, the effects of interpolation on the angle data
are noted in the form of abnormal spikes during the interpolated intervals in voltage, current
and other derived quantities during further processing. This is due to sharp turns arising from
the measuring range used in PMU data i.e., -180 to 180 degrees (see Figure 3.4). To prevent
errors in measurement during the sharp turns, missing data are removed instead. This does not
lead to significant changes or abrupt shifts in the measured quantities as the missing intervals
are small.
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Table 3.1: Missing entry statistics for PMU data

Scenario 1 Scenario 2

Number of locations with 6 4

available data

Total number of missing

entries (with respect to full 1 83 (out 0f 6300) 1 259 (out of 57319)
1.e., 2.9% 1e.,2.2%

time-span of data)
Maximum duration of 0.3s 0.3s
continuous missing entries  Total duration: 10.5 mins Total duration: 95.5 mins

Phase angles at substation 1 (in degrees)

Leads to spikes due

Original data Interpolated data to interpolation of Expected data after cleaning
inaccurate values
1| I sl | | | )
150 150 150

100 100 100
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Figure 3.4: Interpolation of angle values from PMU data

Cleaned data consists of 14 different quantities with possibly redundant information for
frequency prediction. To reduce the number of features without losing any valuable informa-
tion, feature transformation is carried out to process three-phase quantities and compute useful
derived quantities from the original data. After sequence transformation, the positive sequence
current and voltage show a similar waveform as compared to all the individual phase quantities
(see Figure 3.5), as expected. Hence, the magnitudes and angles data are transformed without
any loss of information.

Since the three substations collecting PMU data are spread across the Netherlands, power
flow at these locations could be a good indicator of changing generation or demand across the
grid. Hence, the three phase active power and power angle values are computed at the available
locations.

Ps_hase = Vi.Iy.cos(01) + Va.lz.cos(02) + Vi.15.cos(03) (3.1

Vi, V,, V3, 1}, I, I3 are the phase voltages and currents. 0, 0, and 05 are the power angles.
Power angles are found to be in the range of either 40 - 50 degrees or -320 to 320 degrees.
They are adjusted to lie in similar numerical ranges as shown in Figure 3.6.

There are 30 features in total (frequency, positive-sequence voltage, positive-sequence cur-
rent, active power and power angle from six PMU data collection locations) for scenario 1 and
20 features (same quantities from four PMU data collection locations) for scenario 2. With
lower number of features and lower redundancy in data, it is more computationally efficient for
the NODE algorithm to learn the inter-dependencies among features. To eliminate redundancy,
features are visually checked for high correlation among each other. Firstly, the frequency mea-
surements at all six locations almost fully coincide. This is expected as the Netherlands grid
is but a small part of the synchronous grid of Continental Europe. Secondly, the two loca-
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Figure 3.5: Sequence transformed quantities from original PMU data

tions in each of the 3 substations are at high proximity to each other. The measurements, thus,
mostly coincide and reinforce the accuracy of PMU blocks in the same substation. Hence, all
the features could be grouped (by taking their mean) based on their substations to effectively
represent the measurements across the grid. With 3 substations, there are still 13 features
(mean frequency from all 6 locations and other quantities from each substation) available after
grouping. These quantities are shown in Figure 3.7.
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Figure 3.6: Active power and power angle values at Location 1, SS1 from scenario 1

Among the 13 features, 5 features are chosen for the final feature set: Mean frequency,
mean voltage, active power at SS1, active power at SS2 and active power at SS3. Since current
and active power values at a given substation show high correlation, active power values at
3 substations are chosen. Since the voltages at all three substations have a similar waveform,
the mean of these values are taken. This is because NODEs work effectively with scaled data
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Figure 3.7: Time-series plots of grouped features

(often around the range of 0-1) and hence, the dynamics captured by a waveform are given
higher precedence than difference observed in magnitudes. Since the power angle values are
taken into consideration while computing active power, this information is not lost in the final
feature set.

3.2.2. Synthetic Measurements from a Modified IEEE39 Bus Sys-

tem

For synthetic simulations of frequency events, simulation results from the other thesis project
as part of the research project with Reddyn B. V. on low-frequency demand disconnect (LFDD)
schemes are used. The events were introduced on a modified IEEE39 bus system (see Fig-
ure 3.8) simulated on PowerFactory software. In Figure 3.8, the orange circles indicate the
synchronous generators with available current, active power and rotor angle data, and the blue
markers indicate buses with available voltage and frequency data. Bus 39 is the slack bus and
generator 01 is representative of the interconnection of the system to the larger grid. The red
marker indicates the excessive loads simulated to create frequency events in the system by caus-
ing supply-demand imbalances of large magnitude. The green markers in Figure 3.8 indicate
the RES generation points that are added or removed sequentially to change the inertia levels in
the system. RES generation has been added to the IEEE39 system using the Western Electric-
ity Coordinating Council (WECC) type 4B wind turbine connected at 7 different points in the
system. To create different scenarios, each wind turbine sequentially replaces a synchronous
generator in each scenario and causes a drop in the total system inertia. The power ratings of
the added RES generation is matched to the ratings of the replaced synchronous generator.

To analyse the available data, a low RES penetrated system (with 9% RES generation out
of the total supply) with a 300MW imbalance event due to increase in load is considered. The
frequency, voltage, current, active power and rotor angles at the different measurement points
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Figure 3.8: Modified IEEE39 grid diagram

on the system are plotted in Figure 3.9. As expected, the frequency at all the points coincide
to ensure that the system is synchronous. Since Bus 39 and Generator 01 act as the point of
interconnection with the main grid, the effect of internal changes in the IEEE39 system are
reflected evidently at this location. While all internal bus voltages show a similar response
during the frequency event, the voltage response at Bus 39 shows a higher correlation to the
frequency response in the system. Similar to the PMU data from the Dutch High Voltage
grid, current and active power responses are quite identical to each other for a given location.
The rotor angle at Generator 02 is set as the reference angle and is, hence, always zero in all
scenarios. While the rotor angles at all the synchronous generators recover quickly after the
frequency event, the rotor angle measured at Generator 01 is again indicative of the frequency
disturbance experienced by the entire IEEE39 system.
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Figure 3.9: Available system data for 9% RES generation scenario, 300MW event simulation

Given all the available measurements from simulations, data preparation is relatively easier
for synthetic data when compared to real-time PMU data. The observed dynamic response in
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all quantities are noise-free and do not have any missing data or unexpected outliers. The
more important aspect in this case is to reduce the feature size by grouping or transforming
data without losing key information. The final set of features used for training the NODE
model is mentioned in chapter 4. Since the number of scenarios and volume of available data
are large in number (see Table 3.2), it is possible to implement oftline training with synthetic
data to show improvement in performance of the prediction model.

Table 3.2: Available simulated frequency disturbance scenarios

RES generation  System inertia Energy imbalance
levels levels (Hsync) events
Available 0%, 9%, 20%, 12.23s, 11.85s, 11.40s, 300MW, S500MW,
scenarios 33%, 43%, 53%, 10.86s, 10.45s,9.91s, 700MW, 800MW,

66% 9.25s 1000MW

3.3. Predictive Model Definition

3.3.1. Data Initialisation

The initial set of data taken by a NODE algorithm are the input features, initial set of points in
the system of ODEs that is to be solved, prediction time span, time steps for the ODE solver to
save at and a random number generator to initialise the initial set of parameters in the neural
network. Some important points to note while initialising data are:

* Sampling rate of input features: Sampling rate provides the ODE solver with the set
of points using which the prediction model is trained. While having a high sampling rate
might lead to higher computational times with no considerable change in model perfor-
mance, having a very low sampling rate might not be enough to capture the dynamics in
the non-linear system. Hence, a good selection of the sampling rate is required to ensure
optimal model performance with minimal computational time (see Figure 3.10.

=
oose, N
0.4 » ° 04 > °

Z . o 02 ° o 02
@ 02 eeo® & &
& 000 ¢°,
R B s S
0%0 %, o ee o, E £
000® . 01 \: Y,

°
% © v
(e 00

20 30 20 30 0 5 50 75
Sampled datapoints Sampled datapoints Sampled datapoints

SAMPLING RATE, TRAINING TIME
CONVERGENCE RATE
PERFORMANCE PERFORMANCE

Figure 3.10: Impact of sampling rate on training

* Seeding the random generator: It is important to be able to reproduce model perfor-
mance for a given set of parameters and model definition. Seeding ensures a good base
workflow for comparing performance results between different model settings.

* Prediction time span: Choosing a time span for training and prediction depends on our
desired end outputs. For instance, estimating nadir after a frequency event and predicting
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the settling time post-nadir require different time scales of training depending on the
typical duration of the respective phenomenon.

Starting point,
option 1

Starting point,
option 2
OH Q= e e e e e e ==
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Time

Figure 3.11: Choosing initial set of points for the ODE solver

* Choosing the initial conditions (u0) for the ODE solver: As mentioned in subsec-
tion 2.3.2, u0 is the initial condition of that states in a system given as an input to the
ODE solver. Since this is one of the key information passed on to NODE block, it is
effective to introduce differences in real-time status of the system frequency by passing
the state values at a few points in time after the frequency event occurs (shown as option
2 in Figure 3.11). With option 1, an opportunity is lost to send in real-time information
post-event in a system which is more useful in predicting the ensuing dynamics.

3.3.2. Neural Network Definition

A neural network definition includes a good choice of width and depth of hidden layers, and
the activation function. The impact of changing activation functions on a simple, single hidden
layer neural network that is training on 1 minute of grid data is shown in Figure 3.12. All data
have been scaled to lie in the 0 -1 numerical range. While the model with Relu activation
seems to have achieved a decent fit, its test loss with unseen data was recorded at the scale of
10?7, compared to test loss in the range of 20 - 30 for sigmoid and tanh activated models (see
Table 3.3). Among sigmoid and tanh activation functions, sigmoid activation displays a higher
level of adaptibility to non-linear curves on tuning other network parameters. Henceforth,
sigmoid activation is used in other NODE models presented in this thesis.

Table 3.3: Loss scores after training with different activation functions

Activation function Train loss value (RMSE) Test loss value (RMSE)

Sigmoid 2.37905 21.38202
tanh 2.43350 23.98665
Relu 1.90882 1.09465€27

With sigmoid activation, the impact of changing the width and depth of the neural network
is considered. Figure 3.13 shows the change in learning capabilities of NODEs by adding
more neurons in the hidden layer. While there is no significant difference seen on changing
the number of neurons up to 25, increasing the number up to 50 shows improved learning of
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Figure 3.12: Impact of activation functions on training NODEs on an identical network structure for a 5-state
system

Table 3.4: Test loss scores for different widths of hidden layer

NODE models with different hidden layers
Number of neurons

in hidden layer 10 25 30
Test loss value (RMSE) 17.13825 16.93585 20.77384

the non-linear curve in the same number of iterations. However, as shown in Table 3.4, the test
loss for the model with 50 neurons in hidden layer is higher and indicates a case of relatively
higher over-fitting. Hence, the choice of the width depends on the output requirements from
the model. If it is important to capture the oscillatory behaviour of frequency, higher width in
hidden layers is preferable. If predicting the overall mean trajectory of the frequency is more
important, shorter widths of hidden layer could be preferred.

Figure 3.14 shows the impact of adding an extra hidden layer on the learning capabilities of
the NODE model. Visually, adding one or more hidden layers do not lead to much differences
in the prediction performance of the NODE model. However, the difference in learning could
be observed in the loss function plots. While more hidden layers seem to cause more erratic
learning patterns, it is possible to tune these patterns by changing other parameters like the
learning rate and the number of iterations in the optimizer. Hence, depending on the nature of
the frequency data being processed (based on factors like real-time or synthetic data, normal
or abnormal frequency data etc.), more hidden layers could be added to check for possible
improvement in model performance.

It is important to note that there is not necessarily a best combination of activation, width
and depth of hidden layers for the frequency prediction problem. It is possible to achieve high
performance with different combinations of network parameters by tuning the other model
parameters (like learning rates, loss function definition, number of input features, training
time etc.). However, since sigmoid activation with a large width in the hidden layer provides
reasonably good results, it is chosen to be a good starting point to train the prediction model
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Figure 3.13: Impact of changing the width of a hidden layer on the learning capabilities of NODEs

on different frequency data and tune model parameters subsequently to further improve the
prediction performance.

3.3.3. Loss Function Definition
Since the output prediction is expected to approximate a non-linear curve representing the
system frequency, choosing a function that measures the fitting of the curve to target data
would be required for the loss function. Using NODEs, it is possible to approximate multiple
states in a non-linear system and learn the inter-dependencies among these states through the
training process. With the help of PMU data corresponding to scenario 1, Figure 3.15 shows
the expected training result on passing the given input features into the NODE model. So, to
help the model learn the behaviour of all the passed states, the loss function must consider the
deviations of all the state values from their respective target values.

An example loss function giving equal importance to all the states in the system could be
written in Julia as:

loss = sum(abs2,[1,1,1,1,1]. x (real_data. — predicted_data))

real data and predicted data are matrices consisting of the time-series data points available
for training, corresponding to all the states in the system. The above function finds the error
among all elements in the feature matrix with respect to its target values, squares the error for
each element and returns the sum of all the errors as the loss value. The weight matrix can
be adjusted to give different weights to different features. Since frequency is the principle
quantity requiring estimation and the other features are supporting quantities, assigning more
weight to frequency helps the model to prioritize learning the frequency response better. This
provides the model with more direction, and possibly explains the increased speed in learning
as shown in Figure 3.16 and Figure 3.17. Assigning equal weights could still show a good
prediction performance with an increase in the number of iterations and longer learning times.

Modifying the loss function in sightly different ways gives rise to a considerable differences
in prediction performance as shown in Figure 3.18. The four different loss functions used to
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Figure 3.15: Expected learning of passed features by the NODE model

obtain the predictions in Figure 3.18 are:
loss_function_1 = sum(abs2,[2,1,1,1,1]. % (real_data. — predicted_data))/5

loss_function 2 = sqrt(sum(abs2,[2,1,1,1,1]. x (real_data. — predicted_data))/5)
loss_function_3 = sum(abs2,[2,1,1,1,1]. x (real_data. — predicted_data))
loss_function_4 = sqrt(sum(abs2,[2,1,1,1,1]. * (real_data. — predicted_data)))

While loss functions 1 and 2 seem to require more iterations to achieve better prediction
performance, loss functions 3 and 4 provide relatively better approximating power in lesser
number of iterations to the NODE model. Since computed training loss values often range
anywhere between 1 to 10 in the final few iterations of training for any of the loss functions
used, achieving a loss of, say 1, has different meanings in each case. The ability to bring down
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Figure 3.16: Impact of different weights in loss function on frequency prediction
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Figure 3.17: Impact of different weights in loss function on prediction of all features

the numeric value of any loss function to around 1 could be attributed to the optimizer used and
its parameters. However, for a given combination of neural network structure and optimizers,
choosing loss functions 3 and 4 ensures overall lower error magnitudes in all the predicted
data. Among loss functions 3 and 4, loss function 3 penalises larger deviations more than loss
function 4. This difference could explain the ability of loss function 4 to enable the model to
learn short-term oscillatory information better than loss function 3, which, on the other hand,
captures the mean trajectory of the frequency response better.

3.3.4. Optimizers

The Adam optimizer and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm-based op-
timizer are used sequentially in all the prediction models used in this thesis. An example of
training on frequency data using both the optimizers is shown in Figure 3.19. While Adam is
one of the most commonly used optimizers for training neural networks, the BFGS optimizer
is a gradient-based optimizer that shows higher convergence rate compared to gradient descent
algorithms. Figure 3.20 shows the jump in performance of the model shown in Figure 3.19,
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Figure 3.18: Training (0-100s) and prediction (100-240s) results from using different loss functions

on switching optimizers after the 100" iteration. Since both the optimizers showed promis-
ing performance in the preliminary set of prediction models, other optimizers have not been
considered. Some advantages of Adam include its simplicity in implementation, faster conver-
gence rates and good adaptability of its learning rate. Both Adam and BFGS have very few
parameters whose tuning can make the optimization highly adaptable to a range of learning
requirements of the prediction models.

The learning rate o and the momentum values 3; and [, in the Adam optimizer, and the
initial stepnorm value in the BFGS optimizer are a few parameters that could be tuned to
improve learning performance. Stopping limits of the optimizer could be assigned based on
different factors like maximum number of iterations, maximum time for optimization to run or
tolerance values in changes in the objective value of the optimization problem. Table 3.5 and
Figure 3.21 show the results of training with different learning rates in the Adam optimizer. It
is evident that small changes in the learning rate have a considerable impact on the learning
outcomes of the model. Similarly, changing initial stepnorm values lead to changes in the loss
values after training that are not quite significant for this example (see Table 3.6). Hence, to
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Figure 3.20: Converging loss function over 100 iterations of Adam and 80 iterations of BFGS optimization

achieve a better fit for such cases, other neural network parameters could be tuned.

Table 3.5: Training loss values for different learning rates in Adam optimizer

100 iterations 200 iterations
Alpha Train loss value Test loss value Train loss value Test loss value
0.001  12839.07965 2.40216e7 5288.92266 1.27512¢7

0.005 615.48583 15232.90941 165.09250 4804.60210
0.01 333.75176 8853.94240 77.13131 2799.40234
0.05 123.70518 4992.40481 47.96406 2585.68578
0.1 675.58215 18578.57905  416.70319 12535.83436

3.4. Training Methods

Depending on the availability of data, presence of noise in data and the nature of the frequency
event/response, different training methodologies are used on the predictive NODE models.
While low availability of data leads to constraints for offline learning, having multiple data-
sets for similar frequency events could allow for offline learning to enhance the real-time per-
formance of a model. Also, any unexpected addition of a disturbance or a frequency control
scheme at any point in the prediction horizon would require the NODE model to detect the
change and re-calibrate accordingly. The following training methods consider these aspects
depending on the nature of their respective test cases and corresponding data-sets.

3.4.1. Adjusting Starting Parameters for Online Training

With random initialisation of starting network parameters, it is possible to ensure there is no
inherent biasing in the initial prediction of the NODE model. However, in some cases, it is
possible that random initialisation could lead to very high initial loss values which require a
larger number of iterations during online training for the predictions to converge to reasonable
values. Trying to train the model with a fixed set of starting parameters that are more close



3.4. Training Methods 42

Figure 3.21: Training results from different parameter settings in Adam optimizer

Table 3.6: Training loss values for different initial stepnorm values in BFGS optimizer

initial_stepnorm Train loss value Test loss value

0.001 7.44423 467.37722
0.01 6.81161 370.79517
0.05 6.81941 322.20040
0.1 6.85345 576.07417

in magnitude to the scaled features (in the range of 0 to 1) implies introducing a bias into the
model that is not backed with a scientific reason (as shown in Figure 3.22). While introducing
biased parameters helps scale down the initial prediction values to reasonable ranges, it could
also affect the performance of the NODE model adversely due to the initial biasing.
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Figure 3.22: Possibility of using biased pre-trained starting parameters to replace worse case randomly
generated initial parameters

One workaround is to use the Adam optimizer with pre-tuned parameters on a randomly
initialised network during online training to bring the predictions closer to the scaled magnitude
of features. If the prediction results after a fixed number of iterations using the Adam optimizer
are still very farther from the target values (say, the predictions are in the range of 10° or more
compared to target values in the range of 0 to 1), pre-trained starting parameters could be used.
The latter option of using biased initial starting parameters is expected to be infrequent given
the optimization capabilities of the Adam optimizer.

Another option to ensure better prediction performance is to choose from consecutively
generated random parameter sets based on their initial loss scores. Table 3.7 shows the train
loss values for predictions from 8 consecutively generated random starting parameter values.
The maximum deviations of predicted frequency values (with respect to scaled frequency val-
ues) are all less than 100, which are good starting predictions for the optimizers to work with.
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Table 3.7: Starting predictions using 8 consecutive randomly initialised set of parameters

Iteration number: 1 2 3 4 5 6 7 8
Initial loss 9.2e05 2.8¢06 4.0e06 1.6e06 4.8¢06 3.8¢06 2.8¢06 1.5¢06
Max. deviation

(predicted 21.7 84.8 3.8 51.3 44.3 78.7 17.3 93.4
frequency)

Hence, for almost all cases, this selection method is expected to work well. However, it is
also safe to have an alternate set of starting parameters for worst-case situations during online
training, as the estimates are required to provide fast, real-time estimates about the system.

3.4.2. Detection of Change in Frequency Restoration Response

The predicting capabilities of a NODE model depends largely on the nature of the event it is
trained on. For instance, if a model is trained with normal operating range frequency data, it is
capable of learning the minor fluctuations that might occur in a system that is in its stable state.
This model would perform badly in situations where new control actions or major disturbances
or any topological changes are introduced in the system. Hence, training with the right set of
event data corresponding to the relevant system and suitable influencing features is required.

To demonstrate the ability of NODE to learn specific response patterns, a PMU data-set
corresponding to a system-split event in Continental Europe grid originating from disturbances
in the Balkan Peninsula was considered. The data received corresponded to the restoration
phase of the frequency response as shown in Figure 3.2. It could be observed that as the
system recovers to S0Hz, there is a minor drop in frequency again about an hour after the start
of the available data. The system is seen to start restoring again towards S0Hz. This provides
an opportunity to study the ability of a NODE model trained on initial restoration response to
recreate a new restoration response arising from a disturbance much smaller in magnitude.

It is important to note that by assuming the system will show a similar recovery pattern, a
bias is introduced into the NODE model. While it is possible and also likely for the system
to show different types of frequency response depending on a multitude of factors governing
frequency control over the large-area synchronous grid, this assumption biases the model into
learning only a single response pattern that may or may not occur again. Though the model
cannot be relied on to provide accurate real-world estimates of the frequency response (largely
because of lack of information regarding all the control schemes that are acting on the system),
it is still a good test case to explore the pattern recreation and real-time retraining capabilities
of the NODE model to provide predictions for similar nature of frequency events.

To detect a second restoration pattern, the deviation between the predicted values from
the initial online-trained model and the real-time measured values (referred to as target values
in Figure 3.23) is observed. When the deviation crosses a pre-defined limit, the model starts
observing and waits until another restoration pattern is detected (by checking for zero-crossing,
in this case). Once the pattern in detected, the model uses the point of maximum deviation from
the past data as the new initial point for the NODE solver. First, an initial prediction is made
with the same NODE model, but with a different starting pointuy. Second, a short time-window
of data starting from uy is used for real-time retraining of the model to provide an improved
frequency response estimate for the next few minutes. The impact of retraining the model after
detecting a new pattern could be seen in terms of improvement in the evaluation metric values
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Figure 3.23: Possibility of NODE to recreate frequency response for similar type of events

of the predictions.

3.4.3. Offline Training for Improved Starting Parameters

With multiple data-sets available for training from different simulations on the modified IEEE39
grid, it is possible to incorporate offline training to introduce prior information about frequency
dynamics into the NODE model.

While Table 3.2 indicates 35 different data-sets in total, not all of them are practically
relevant for training and testing a NODE model. This is because, at high RES penetration levels
and during large power imbalance situations, the system is neither equipped with sufficient
frequency control nor has well-defined operational constraints and limits to mimic real-world
operation of similar power systems. Hence, frequency could drop to unrealistic values (for
instance, less than 47 - 48 Hz) and the simulations still show a frequency response wherein the
frequency slowly recovers to a stable yet practically infeasible value. To ensure an acceptable
degree of practical relevance, 9 scenarios are chosen to obtain training and testing data-sets
from (as shown in Figure 3.24).

Since the IEEE39 system was modified to introduce LFDD schemes and study their impact
on frequency response, the frequency limits breached for a given event size act as triggers
for implementing demand disconnection. If real-time frequency prediction could be used for
aiding similar demand-disconnect schemes, estimating the frequency thresholds that will be
breached until the nadir, the time taken until a threshold is breached and the settling frequency
values a few seconds or minutes after the nadir could act as useful information. To indicate
frequency thresholds, every 0.2Hz interval below 49Hz is represented as a trap as seen in
Figure 3.24.

The least-impact event corresponding to all synchronous generation (i.e., 0% RES penetra-
tion) and a power imbalance of 300MW is chosen for offline training the NODE model. This
fulfills the main purpose of offline training - to introduce information about how different sys-
tem quantities (like frequency, voltage, rotor angle and active power) respond during a power
imbalance event to the prediction model. The entire 120 seconds of data is used to obtain a
trained NODE model shown in Figure 3.25.

By offline-training, valuable computational time is saved and faster convergence can be
achieved for online-trained models. The decrease in loss value over 350 iterations (200 itera-
tions of Adam + 150 iterations of BFGS) is shown in Figure 3.26. For this test case, the loss
function is similar to the loss_function 3 mentioned in subsection 3.3.3, only differing by the
fact that all features are given equal weights in this case. It takes the model 64.828 seconds to
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Data-set (RES%_EventSize) Duration (s) Nadir - Value (Hz) Nadir - Time (s) Settling value (Hz)
0%_300MW 120 49.491199 22.501666 49.665722
0%_500MW 120 48.963955 28.11 49.43575
9%_300MW 120 49.415513 24.435 49.642382
9%_500MW 120 48.759124 29.858333 49.401231

20%_300MW 120 49.277489 28.394999 49.613933
20%_500MW 120 48.558483 30.168333 49.334291
33%_300MW 120 49.146053 28.351666 49.575166
43%_300MW 120 48.978162 29.001666 49.544446
53%_300MW 120 48.812573 28.731666 49.470357

Nadir Values

> 49Hz

< 49Hz, > 48.8Hz - TRAP 1
< 48.8Hz, > 48.6Hz - TRAP 2

<48.6Hz, > 48.4Hz - TRAP 3

Figure 3.24: Set of simulated scenarios used for training and testing NODE prediction model

ORIGINAL SIMULATED DATA - 0% RES PENETRATION, 300MW EVENT PREDICTIONS FROM TRAINED MODEL
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Figure 3.25: Predictions from offline-trained NODE model

train and reach a final loss value of 0.3325 starting from a initial loss value of 781865.3805.
Since the unseen test data-sets will consist of scaled values with their respective frequency
nadirs and settling values in similar ranges as that of the offline-trained values, it is easier for
the online models to use the pre-trained starting parameters for real-time training. This is a ne-
cessity as the nadirs are expected to occur in about 20 to 30 seconds after an event is detected.
Hence, every second saved helps in improving the prediction capability of the model.

3.5. Performance Evaluation

Performance metrics for all the test cases presented in this thesis focus solely on the frequency
predictions, unlike the loss function formulation. In case of PMU data-sets, regression met-
rics measuring accuracy and those that are indicative of practical relevance of the predictions
are considered important. The ability of the model to capture the future mean trajectory or
possible oscillatory instabilities in the next few minutes are considered significant when a sys-
tem operates in normal frequency ranges. On the other hand, in case of specific frequency
events generated by simulations, it is considered more important to capture the instability lim-
its breached by a system. For instance, the frequency thresholds breached or the expected
settling time during restoration are key aspects for analysing the stability of a system. Hence,
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Figure 3.26: Training loss curve from offline training

regression metrics to predict the severity of a frequency event are preferred for the test cases
with synthetic data.

In case of both the PMU data and the simulated data, it is important for the regression pre-
diction to fit the original frequency curve well. Mean absolute error (MAE) of the predicted
frequency values from the target values would be a suitable performance metric for regression
using PMU data. Since capturing noise or minor oscillations of frequency in the normal op-
erating range is not very useful, penalising higher deviations is not quite necessary. Hence,
RMSE or MSE is not preferred for performance evaluation of the test cases with PMU data.
The two regression metrics used for evaluating performance on PMU data in chapter 4 are:

* Mean absolute error: It directly represents how close in magnitude the predicted values
are to the target values on an average basis.

* Maximum absolute error: The maximum deviation in the predicted value from the
target value in Hz shows the worst performing prediction for a given data-set.

To evaluate prediction results on simulated data, specific aspects of the frequency curve
like the nadir and settling value are important. Hence, deviation in the estimates of such critical
values from the real values are used as regression metrics. The three regression metrics used
for evaluating performance on simulated data in chapter 4 are:

* Deviation of estimated frequency nadir value: Since the test cases represent large
frequency disturbance events, the frequency nadirs are expected to reach lower magni-
tudes than the normal operating range during the simulations. The difference between
the estimated nadir and the actual nadir in the simulation is, thus, used as a performance
metric.

* Deviation in estimated time (T),,q4;r) of when the frequency nadir occurs: Estimation
of the time point at which the nadir occurs could provide key information about the
dynamics of a system and the expected recovery period post an event. Deviation of
the estimated T,,q;; from the the actual T,,q;; in the simulation is, thus, observed in the
prediction results.

 Deviation in estimated frequency value 2 minutes after the onset of a event: Since
all the data-sets available for testing having a maximum duration of 2 minutes, the final
frequency value of the predicted curve and the original curved are compared. For low
RES penetration and low power imbalance scenarios, this final value represents a settled
frequency value as secondary and tertiary controls are not activated in the simulated
system. For larger power imbalance scenarios, it is possible that the frequency has not
settled within the 2-minute window.
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3.6. Conclusion

The training methods and tuneable aspects present in NODE algorithms that enable the ap-
plication of NODE to frequency security assessment have been addressed elaborately in this
section. Depending on the nature of the frequency assessment situation, the presented meth-
ods could be modified and adapted to achieve relevant prediction results. The final prediction
results, observations during the implementation of NODE models for different test cases and
the impact of using the training methods introduced in this section on enhancing the predictive
powers of NODE models are presented thereupon in chapter 4.



Results & Discussion

4.1. Applications of the Predictive Model - Case Studies

Predictive NODE models applied to a set of different test cases are presented in this section.
The models have been tuned with respect to the test case and appropriate training methods
from section 3.4 have been implemented. For all the test cases, the simple validation approach
shown in Figure 2.14 has been implemented to find a well-performing set of prediction param-
eters. In each of the prediction result plots, the best predicted frequency curve corresponds to
the parameters chosen after the validation approach and the final predicted frequency curve
corresponds to the parameters obtained after the maximum number of iterations specified in
the optimizers. All the models use Tsit5 as their ODE solver, and work with the Adam and
BFGS optimizers.

4.1.1. PMU Data: Normal Operating Frequency
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Figure 4.1: Data-sets used for producing results from the available 10 minute window of data
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For frequency prediction in the normal operation scenario, a generic prediction model that
is capable of learning in a fixed time with past data to predict for the the next fixed interval
of time is required. To show the generalising ability of the model, a large time window of 10
minutes of frequency data is considered. The same pre-tuned model is trained with four data-
sets (each with a total time-span of 4 minutes) taken from the 10-minute data, as shown in
Figure 4.1. With each data-set, the model trains on 100 seconds of past data, validates with the
subsequent 25 seconds of data and predicts for the next 115 seconds. The network parameters
and relevant model information are summarised in (add table in Comparison section).

Table 4.1: Training and performance metrics for prediction results from PMU data - normal operation scenario

Training time MAE  Maximum absolute Minimum validation

Data-sets (s) (Hz)  error (Hz) loss (unit-less)
Data-set1 75.3 0.0047 0.0118 76.75
Data-set 2 48.2 0.0059 0.0102 84.81
Data-set 3 43.5 0.0099 0.0156 23.24
Data-set4 42.6 0.0061 0.0121 22.76

The training and prediction results on using a fixed prediction model on four different
data-sets are shown in Table 4.1 and Figure 4.2. The oscillations shown in the frequency
data are very small in magnitude and do not represent any significant change in the system.
Hence, a prediction model that can fit any given frequency data to provide an estimate of the
direction in which the frequency trajectory would evolve in the next many seconds is used in
this test case. While it is possible to capture the oscillatory behaviour (though farther in terms
of the magnitude predicted) by increasing the number of iterations or tuning the neural network
differently, it could lead to over-fitting of the model.

It might seem ideal for the model to be able to predict the oscillatory behaviour while
ensuring it is in the right direction in which frequency evolves. This is not feasible in this test
case due to a few reasons. Firstly, the model tries to learn the evolution of other quantities
like active power and voltage simultaneously, while trying to find the inter-dependencies of
these quantities with the frequency. The chosen set of features might be completely unrelated
to the unexpected minor oscillations seen in the frequency response during normal operational
conditions. Secondly, the erratic behaviour in frequency could be attributed to subtle changes
in the electrical system that are insignificant, and are inherently present in any system with
electro-mechanical components. It is, thus, not possible for the NODE model to learn small-
scale erratic behaviour arising due to non-traceable physical reasons from the available PMU
data. However, this test case helps in demonstrating the fundamental predicting capabilities of
NODE models for frequency data.

4.1.2. PMU Data: Frequency Restoration Post-System Split Event
The PMU data-set corresponding to the restoration of frequency after a system-split in Con-
tinental Europe grid has a total duration of about 90 minutes (5500 seconds, precisely). The
data-split for training, validation and testing, and the available features after data preparation
are shown in Figure 4.3.

While the NODE model trains online from the start of the available data, a training data
corresponding to about 1000 seconds is required to approximate the mean value and direction in
which the response evolves over the next hour. Though this duration of training data might be



4.1. Applications of the Predictive Model - Case Studies 50

DATA-SET 1 DATA-SET 2

49.985 Real frequency L
Final 49.985

Real frequency
Final predicted frequency
Best predicted frequency

| predicted frequency
Best predicted frequency

49,980

49.980
49.975

I
@
©
9
S

49.975 -

49.965

Frequency (in Hz)
Frequency (in Hz)

49.960 Ao/ 19970 1y
X

49.955
49.965

[ 50 100 150 200 ] 50 100 150 200
Time (in s) Time (in s)

DATA-SET 3 DATA-SET 4

49.99 49.990 |-

49.985

a
&
"
-3

49.980

4997

Frequency (in Hz)
Frequency (in Hz)

49.975

49.96 /
Real frequency 49.970 [y \f Real frequency

Final predicted frequency { Final predicted frequency
Best predicted frequency Best predicted frequency

o 50 100 150 200 [+] 50 100 150 200
Time (in s) Time (in s)

Figure 4.2: Prediction results from PMU data - normal operation scenario

quite long for producing fast real-time estimates about the system, it is still useful in learning
the typical restoration response of the system in order to detect and predict for any similar
restoration scenarios in the future.

Table 4.2: Training and performance metrics for preliminary prediction results from PMU data (only frequency)
- restoration scenario

Training time MAE  Maximum absolute Minimum validation
(s) (Hz) error (Hz) loss (unit-less)
120.8 0.0155 0.0560 53.06

The preliminary prediction results and corresponding performance metrics for the entire
duration of available data are shown in Table 4.2 and Figure 4.4. The NODE model is trained
initially with all the four features, and then trained with only the frequency data. It is observed
that training with only frequency data is more computationally efficient and easier for the
model to learn from. The spikes in the initial seconds shown in the prediction results from
training on all features could be due to the influence of initial oscillations present in other
features. Since the frequency event and eventual response are majorly triggered by actions
occurring in different part of the synchronous grid of Continental Europe, the local voltage
and active power measurements in the Netherlands grid might not significantly add any new
information regarding frequency to the NODE model. In fact, since voltage and frequency
show high correlation in all the available PMU data-sets, it could be said that the trajectory
of local voltages are but a result of the frequency disturbance due to the system-split event.
Hence, using only frequency data was nominal for training the frequency prediction NODE
model. Owing to the large duration of training data and high noise content, the model took
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Figure 4.3: Available features and data-split for preliminary online training with PMU data - restoration
scenario

about 120 seconds to train and produce the preliminary prediction results. The best prediction
corresponds to the result with minimum observed validation loss. The computed loss is the
sum of squared deviations of predicted values from target values, and is unit-less as the model
operates with scaled frequency data during training.
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Figure 4.4: Preliminary prediction results from PMU data - restoration scenario. Left: Trained with only
frequency data. Right: Trained with all available features

After the detection of a minor restoration at around 4000s and finding a new starting point
Uy to make better predictions as described in subsection 3.4.2, prediction results are obtained
with and without retraining the NODE model as shown in Figure 4.5. In the first case, the
model predicts with the same parameters obtained after training on the preliminary frequency
data but uses the local minimum in the curve as the new starting point. With a changed input
to the ODE solver, an improved prediction is obtained and the corresponding performance
metrics are given in Table 4.3. In the second case, with the new starting point and pre-trained
parameters, the NODE model is further retrained using about 500 seconds of data to adjust itself
to restoration pattern being observed. The retraining time taken by the model (see Table 4.3)
is short as the model starts by already having prior information about a similar restoration
pattern. The retraining also uses lesser number of iterations in the optimizers to ensure that
the model does not over-fit to the newly observed data and consequently lose previously learnt
information from initial training. Among the multiple iterations, the best predicting set of
parameters are chosen based on the observed validation loss and the results are plotted as
shown in Figure 4.5. The evident improvement in the fit of the predicted curve after retraining
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is reflected in the performance metrics presented in Table 4.3.
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Figure 4.5: Prediction results from retraining the preliminary model after the minor disturbance

Table 4.3: Training and performance metrics for prediction results before and after retraining with PMU data -
restoration scenario

Training time MAE  Maximum absolute Minimum validation

(s) (Hz) error (Hz) loss (unit-less)
Without retraining 0 0.0216 0.0419 N/A
With retraining 20.53 0.0091 0.0208 31.02

Starting retraining with prior information introduces a bias into the NODE model that ex-
pects any restoration detected to follow a similar pattern. However, such a pattern might not
prevail in reality when there are other frequency control schemes in place. The assumption
of expecting similar responses for any detected restoration holds true only when the control
factors acting on the system are the same as the ones that were active during initial training
of the model. While retraining of the model can account for any minor factors that are newly
active in the system, the impact of any change in or new activation of important power system
components cannot be predicted by the existing model. Hence, the status of the system and the
active power system components/parameters during initial training are key indicators of the
information processed and withheld by the predictive NODE model before it starts retraining.

4.1.3. Synthetic data: High-impact Frequency Events
All prediction models for the synthetic data start with parameters obtained from offline training
on the 0% RES 300 MW event, wherein the predicted frequency curve is made to exactly fit
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Figure 4.6: Impact of choosing a different starting point uy on prediction results for unseen events

the original curve. Due to absence of noise, it is possible for NODE models to almost exactly
replicate the original curve during offline training by using the entire duration of available data
for learning. In all the simulated events, the frequency event occurs exactly at t = 5s. As an
initial result, the offline-trained NODE model is used to predict for one unseen test case (0%
RES 500 MW event) only by changing the starting point uy that is fed to the NODE model.
To observe the impact of using a starting point from a few milliseconds after the onset of the
event, two different offline models are trained: one starting from t = 5s and the other starting
from t = 5.1s. The prediction curve from the initial offline-trained model starting from t =
Ss and the two prediction curves for unseen test data obtained using different starting point
inputs are shown in Figure 4.6. In the first few milliseconds after the onset of the event, all
the measured quantities (including voltage, rotor angle and active power) are in very similar
magnitudes in different data-sets. Since the difference in response can be observed at about t
= 5.1s, the consequence of using this information as input for the starting point for the ODE
solver reflects as an improvement in the prediction of the NODE model.
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Figure 4.7: Prediction results for unseen test cases using their respective starting points at t =5.1s and
offline-trained parameters

Using a similar approach of taking the starting point at t = 5.1s, predictions are made for
all the chosen scenarios with the offline-trained model (see Figure 4.7). The prediction per-
formance deteriorates quite fast for increasing RES penetration levels and larger event sizes.
This drop in performance could be attributed to too little information being available to the
offline-trained model to predict for varying system scenarios.
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Figure 4.8: Data-split for training, validating and testing the NODE model to predict frequency nadir

In order to provide more information about the real-time status of the system, a short time-
window of a few seconds after the onset of an event is chosen for retraining the offline-trained
NODE model. Two changes are made to the model at this stage. Firstly, offline training is
carried out separately on two sections of the frequency curve - the section from the onset of
an event until the nadir and the section after the nadir up to t = 120s. As replicating the entire
frequency response based on training on a few seconds of steeply dropping frequency data
makes the model over-fit to the local trends in the curve during retraining (see Figure 4.8),
separation of the curve into two sections corresponding to nadir occurrence and post-nadir
recovery is preferred. Secondly, since re-training has to happen very fast to provide immediate
short-term predictions, the features being used are reduced to include only the frequency data
(similar to the test case with PMU data corresponding to restoration scenario). The model is
still able to predict frequency with reasonable accuracy (as seen in the right hand test plot in
Figure 4.8) when only frequency is used for training the model.
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Figure 4.9: Frequency nadir prediction results for unseen test cases using real-time retraining of the NODE
model for 3 seconds after the onset of an event

For the nadir prediction case, 3 seconds of data are used for quick online training followed
by 1 second of validation data. Since the number of iterations in the optimizer are as low
as 10, the time taken by the NODE model for retraining from the offline-trained parameters
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is almost instant and always less than 1 second. Having a lower number of iterations also
ensures that model does not over-fit to the local patterns of the observed frequency curve. The
prediction plots and the corresponding performance metrics for the obtained results are shown
in Figure 4.9 and Table 4.4, respectively.

Table 4.4: Frequency nadir prediction model - Results

Scenario Real Nadir Predicted  Nadir Real Ty  Predicted
(RES% _EventSize) (Hz) Nadir (Hz) Deviation (Hz) (s) Thadir (5)
0% 500MW 48.9640 49.0143 0.0503 28.11 28.5

9% 300MW 49.4155 49.4924 0.0768 24.44 22

9% 500MW 48.7591 48.9579 0.1988 29.86 29

20% 300MW 49.2775 49.4058 0.1283 28.39 23.5

20% 500MW 48.5585 48.9258 0.3673 30.17 29.5

33% 300MW 49.1461 49.3203 0.1742 28.35 25

43% 300MW 48.9782 49.2586 0.2804 29.00 26

53% 300MW 48.8126 49.1606 0.3480 28.73 26.5

It can be observed that the deviation of the predicted nadir values from the real values
range from a closest of 0.05Hz to farthest of 0.37 Hz across different scenarios. Among all the
300 MW events, the deviation shows a progressive increase with decrease in system inertia
levels and increase in RES penetration. The deviation in the predicted time at which nadir
(Thagir) occurs from the real values, on the other hand, shows a more erratic behaviour across
the scenarios. Nevertheless, the absolute deviation ranges from a lowest of 0.39 seconds to a
highest of 4.89 seconds. In fact, all scenarios except the 20% RES 300 MW scenario have an
absolute deviation in T,.q4; of less than 3 seconds.
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Figure 4.10: Retraining the NODE model to predict the post-nadir restoration curve and the impact of using
different optimizers for real-time retraining

The post-nadir recovery section is longer in duration compared to the first section of the
frequency curve. Accordingly, the data-split for training, validation and testing are shown in
Figure 4.10. Unlike the previous section of the curve, a higher number of iterations in the
optimizer are required to learn the higher number of data-points and fit reasonably well for
longer duration. In an attempt to reduce the number of iterations to low numbers, the BFGS
optimizer is tried for retraining the offline-trained model. In spite of changing the different
optimizer parameters (namely, the initial stepnorm and maxiters values), the model tends to
over-fit to the training part of the curve in as low as about 5 to 10 iterations. To achieve a
slower learning rate and a more gradual modification of the offline-trained curve to fit on the
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newly encountered training data, the Adam optimizer is used. Though the model takes about
200 iterations to show a good fit, the training time taken by the model to learn is still as low as
a maximum of 6 seconds. This could be attributed to prior training of the model on the data-set
of the base test case - 0% RES 300 MW scenario. The difference in prediction results on using
BFGS and Adam optimizers for retraining the NODE model is shown in Figure 4.10.
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Figure 4.11: Post-nadir frequency curve prediction results for unseen test cases using real-time retraining of the
NODE model for 20 seconds after the occurrence of the nadir

Table 4.5: Post-nadir frequency curve prediction model - Results

Scenario Real Frequency Predicted Frequency Frequency
(RES% _ EventSize) att=120s (Hz) att=120s (Hz) Deviation (Hz)
0%_500MW 49.4357 49.3822 -0.0536

9% 300MW 49.6424 49.6382 -0.0042

9% 500MW 49.4012 49.2163 -0.1848

20% 300MW 49.6139 49.5876 -0.0263
20%_500MW 49.3343 49.0748 -0.2595

33% 300MW 49.5752 49.5328 -0.0424

43% 300MW 49.5444 49.4387 -0.1057

53% 300MW 49.4704 49.3659 -0.1045

The prediction results of post-nadir recovery from training on 20 seconds of data after the
nadir and validating on the next 10 seconds of data for different system scenarios are shown in
Figure 4.11. The corresponding performance metrics are given in Table 4.5. The deviation in
predicted frequency values are relatively smaller compared to the results from nadir prediction.
Similar to the deviation in predicted nadir values, a progressive increase in the deviation of pre-
dicted frequency at t = 120s could be observed for all 300 MW events with decreasing system
inertia levels and increasing RES penetration. For larger imbalance events corresponding to
500 MW, there is still a scope for improvement in the prediction results. A possible reason
for worse results in the 500 MW scenarios could be change in power flows experienced by
the system for a larger imbalance event. Since these changes could lead to slightly different
behaviour in frequency response, a different offline-trained model that learns from a system
with similar power flows could be expected to provide better prediction results.
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Table 4.6: Predictive model definition - Summary

Neurons in  Activation Training-Validation Learning rates Maximum Performance Is retraining
hidden layer function -Test data split (ins) (Adam; BFGS) iteration metrics required?
TestCase 1. 30 Sigmoid  100-25- 115 0.05; 0.1 2004100 AE, Max. No
Normal operation absolute error
Test Case 2: . . MAE, Max.
Restoration - Initial model 40 Sigmoid 1000 - 500 - 4000 0.01; 0.05 200+100 absolute error No
Test Case 2: . . MAE, Max.
Restoration - Retrained model 40 Sigmoid 450-100-1200 0.1;0.05 10+100 absolute error Yes
Deviation of
Test Case 3: 30 Sigmoid  3-1-21 0.001; N/A 10 estimates: Nadir, Yes
Nadir prediction
TNadir
Deviation of
JestCased: 30 Sigmoid 20 10- 60 0.001;N/A 200 estimates: Yes
Post-nadir restoration Frequency at
t=120s

4.2. Comparison and Discussion

The prediction models for each test case differ from each other in their respective model def-
inition in aspects like number of network layers, loss function definition, train-validation-test
data split, data pre-processing and performance metrics. These differences are required to ac-
count for the changes in the nature of available data (noise levels, measurement locations, test
system etc.) and changes in prediction requirements (required outputs, computational speed,
performance indicators etc.) among different test cases. Table 4.6 summarises key model defi-
nition aspects for all the test cases. While the initial choice of having a single hidden layer and
sigmoid activation continued to competently support the model performances, further tuning
was achieved by changing the learning rates and max_iters values of the optimizers. It could
be observed that even a small change in the optimizer settings from the values shown in Ta-
ble 4.6 leads to a drop in model performance. On the other hand, this makes it easier to obtain
the optimal set of tuned optimizer parameters. In test case 3, the very low learning rates in the
optimizer enable the model to learn the new, local behaviour in a short number of iterations
while avoiding over-fitting. The major differences in training-validation-test data split is a di-
rect consequence of the changing test cases and the respective performance metrics have also
been introduced accordingly.

The test cases also illustrate working with two types of input data that are quite different
from each other. The PMU data is seldom smooth and indicates how all the power system quan-
tities fluctuate and evolve in real-time. Consequently, NODE models require a higher number
of iterations or more data to process out local, insignificant fluctuations in measured quantities.
The PMU data has also been collected from three different substations, allowing for possibil-
ities of a centralised security assessment. However, discussions with the industry during the
course of the thesis suggest that it in the foreseeable future, it is more practically feasible to
work with local grid measurements and control actions, as compared to a large centralised sys-
tem of security assessment and control. With the synthetic data, features obtained correspond
to measurements at a single location - Bus 39. Since all the critical dynamic power system
behaviour are reflected at this point, localised measurements suffice for test case 3. Since fre-
quency dynamics in a system are decided by factors spread across a large synchronous grid,
local control actions might not help in mitigating large scale disturbances. In such situations,
a centralised assessment and control system would be required to effectively address large
scale frequency disturbances. However, in case of smaller area grids that could be quickly dis-
connected from the main synchronous grid, it is convenient to implement localised frequency
assessment and control approaches.
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Other changes among the models include small modifications in scaling, weights used in
loss functions and data-preprocessing steps. The noise-free synthetic data requires almost no
data-preprocessing. Scaling of data for models depends on the retraining method used. With
models requiring no retraining involving a new starting point, the entire available training data
can be scaled together close to the ranges of 0 to 1 and processed further. However, when the
starting point is of significance, a standard scaling rate that could accommodate all possible
drop in frequency values across different scenarios is required. Only then could the model
make use of the starting point information to its advantage. As for the loss function, some
test cases require an increase in the weights assigned to frequency data for the model to start
converging over iterations. These weights often depend on the converging capabilities of the
optimizer with respect to the available training data. Overall, tuning a few key aspects in
predictive NODE models aids in the applicability of the model to a wide range of test cases
and frequency disturbance scenarios.



Future Scope & Conclusion

Drawing on the results and learning from this thesis, this chapter provides answers to the ques-
tions raised in section 1.4 and elaborates on the steady progress towards the research objective
stated as: “To use Neural Ordinary Differential Equations (NODE) for real-time frequency se-
curity assessment and subsequently enable timely frequency stability control.” Additionally,
areas for improvement and possible avenues for further research in using NODE for frequency
dynamics studies are also discussed thereupon.

5.1. Research Questions

1. How can Neural Ordinary Differential Equations be adapted to frequency dynamics
predictions?

Neural Ordinary Differential Equations are applied in scientific areas for capturing complex dy-
namic behaviour among different variables in any non-linear system. Since frequency response
is a similar phenomenon governed by various power system quantities, frequency stability stud-
ies is a relevant area for applying NODE in. Frequency instabilities are often controlled after
the detection of large RoCoFs and a nadir in the frequency response curve. Attempts have been
made in the literature to predict post-disturbance frequency behaviour in advance so as to trig-
ger stability control actions earlier than in conventional methods. Similarly, NODE provides
an opportunity to learn frequency dynamics from historic patterns and power system simula-
tions which could be further used to make real-time frequency predictions after a disturbance
has been detected. With a good selection of parameters to predict like the frequency nadir or
the settling time of the post-nadir frequency curve, it is possible to provide key information in
advance to pre-existing frequency stability control mechanisms that are currently active in our
power systems.

2. What are the challenges in obtaining relevant input data for training and testing NODE
models?

Major frequency disturbance scenarios are sparsely available from real system data and hence,
synthetically generated frequency events are required to provide NODE models with the neces-
sary information about expected post-disturbance frequency response in power systems. How-
ever, the characteristics of real system data available from PMU and synthetically simulated
data are very different from each other. There is no noise observed in synthetic data, which re-
duces the processing and curve-approximating time in NODE models by a large margin, while
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simultaneously increasing the prediction capabilities of the model. Hence, to obtain realistic
estimates of how well the model could perform in real world applications, it would be neces-
sary to induce realistic noise characteristics in synthetic data. Working with real system data is
also constrained by the limited number of locations where PMU data are available. These lo-
cations also have an impact in deciding the final set of features that best represent the changing
dynamics in the observed area of the power system. Another significant aspect to considering
while collecting relevant input data is that it might be practically infeasible to carry out security
assessment for a large-scale synchronous grid in a centralised manner when there are indefinite
number of factors influencing the system dynamics. In such cases, smaller areas of grid that
could be disconnected from the main grid during major system disturbances seem to be more
practically feasible test systems to work on.

3. Which aspects of the NODE algorithms need to be tuned to address different frequency
security situations?

Certain aspects from preliminary predictive NODE models could be retained while approach-
ing different test cases and corresponding frequency scenarios, whereas some key aspects ad-
dressed in section 4.2 need to be tuned to allow effective application of NODE for different
frequency security situations. Factors like depth and width of neural networks, activation func-
tions and choice of optimizers need not be changed across test cases. The initial set of param-
eters chosen for these factors provide enough flexibility to model frequency-related dynamic
behaviour in power system quantities across different test cases. However, achieving the de-
sired level of prediction performance in each test case is only possible when parameters like the
learning rates and the number of iterations used in the optimizers and/or the duration of training
data and the length of the prediction horizon are changed. With changing prediction require-
ments depending on the security situation detected (for instance, a large RoCoF suggesting an
impending nadir or a nadir in the detected frequency curve suggesting an impending restora-
tion), it is also required to change the performance metrics with respect to the set of quantities
that need to be predicted. Since these parameters are easy to tune, it is possible to develop a
generic NODE algorithm with tuneable parameters for frequency security assessment applica-
tions.

4. What are some possible real-world implications of the frequency prediction outcomes
from NODE models?

A major motivation behind this thesis is that real-time predictive analysis of frequency during
disturbances in the power system could aid in earlier onset of stability control actions to achieve
a more controlled frequency response. While possible control actions after estimation of rele-
vant frequency instability parameters have not been considered in this thesis, it has been shown
that is is possible to obtain fast predictions of the expected frequency trajectory using NODE
as compared to what is possible using conventional frequency security assessment methods.
Any relevant information about the power system with respect to frequency dynamics could
be used as an input for NODE models using appropriate data-processing steps. Hence, with
more available PMU locations and higher access to abnormal frequency data, it is possible to
recreate expected frequency response patterns when similar system disturbances occur in the
future. This information could be useful in analysing the impact of possible disturbances due
to, say, new developments in the power system. With rising RES levels and the corresponding
expected drop in system inertia levels, the prospects of higher number of large scale frequency
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disturbances also increases. Accordingly, the frequency stability and control methods present
in the power system have to remain updated and competent in the future. Combining advanced
frequency monitoring and assessment methods that could perform reliable predictive analysis
on the status of a system would, hence, contribute to achieving state-of-art frequency stability
and control for future electrical power systems.

5.2.

Avenues for Further Research

Some limitations of NODE-based predictive analysis of frequency that could be observed from
the results of this thesis are stated below:

The frequency scenarios and respective power system data created synthetically to train
NODE models are not good approximations of real-world dynamic phenomenon that
occur in power system quantities (which consist of multiple local oscillations in data
and/or noise) during frequency disturbances.

The test system used for synthetic generation of frequency data is less complex, and thus
easy to learn for the NODE model. However, more sophisticated power system models
are required to close the gap between the differences in input received from simulations
and real-world systems.

The NODE models in this thesis do not consider any information concerning frequency
control reserves that act as important frequency stability controlling elements in the
power system during frequency recovery.

The extent to which early estimation of frequency instability parameters like nadir and
RoCoF can improve the frequency response curve is not considered in this thesis. The
scope of using NODE-based prediction results to improve system stability can be evalu-
ated by using them as inputs for standard frequency control methods and observing the
change in frequency response.

Based on the limitations discussed, it is possible to suggest a few avenues (as listed below)
wherein NODE-based frequency analysis could be further extended and applied to:

Develop a synthetically generated data-set for training frequency predictive NODE mod-
els that is more realistic and close in noise characteristics with respect to real power
system data.

Model and simulate frequency events using a more sophisticated power system model
that is representative of other stability-influencing technologies (like offshore connec-
tions, large-scale onshore RES generation, EV charging hubs etc.) being connected to
the European grid in the recent times.

Study further about prescribed stability and control actions taken in the synchronous grid
of Continental Europe during major frequency disturbances, and incorporate information
about significant frequency control reserves or available load shedding schemes into
NODE-based prediction models.

Check the feasibility of using frequency predictions for achieving improved stability
control by combining the results from predictive NODE models with relevant frequency
control schemes in appropriate test systems.

Extend NODE to monitor and assess other dynamic phenomena in power systems to
combine multiple stability studies for a more holistic power system security assessment.
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