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Abstract

Microstructural materials with spatially-varying properties, such as trabecular bone
tissue, are widely seen in nature. These functionally graded structures possess
smoothly changing microscale topologies that enable performance far superior to
that of their base material. While the optimization of periodic microstructures has
been studied in depth, less attention has been paid to the assembly of optimized mi-
crostructures with spatially varying properties. Existing works address this problem
by ensuring geometric connectivity between adjacent microstructural unit cells. In
this report, we argue that geometric connectivity is insufficient to ensure the contin-
uation of physical properties, and propose the concept of mechanical compatibility.
Mechanical compatibility directly examines the effective mechanical properties of
the individual cell together with its neighbour. Our approach simultaneously op-
timizes the mechanical properties of individual microstructures as well as those of
neighbouring pairs, so that material connectivity and smoothly varying physical
properties are ensured. We demonstrate the application of our method in the design
of functionally graded material for implant design, and in the design of both coupled
and decoupled multiscale structures.
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1 | Introduction

Topology optimization is a field at the intersection of mechanics, mathematics and
physics which is concerned with finding the optimal spatial distribution of material,
given a specific set of performance objectives and constraints (Bendsoe and Sigmund,
2011). As an example, Fig.1.1 shows a simply supported beam designed to be as stiff
and as lightweight as possible when subjected to a load at its centre. This efficient
use of material makes topology optimization a valuable design tool, particularly
in aerospace and automotive applications, where weight minimization is key (Mot,
2006).

Figure 1.1: Typical structure generated using topology optimization.

Beyond finding the optimal distribution of traditional engineering materials, topol-
ogy optimization can be used to develop new materials that are defined not only
by their chemical composition, but by their microscopic structure. These so-called
metamaterials can be designed to have highly tailored or extreme properties that are
rare or even non-existent in nature (Sigmund, 2009). Examples of metamaterials de-
signed to be as strong as possible under normal and shear loads are shown in Fig.1.2.

0
0
0

1
1
0

1K
1K
0

Figure 1.2: 2D metamaterials designed for maximum bulk modulus (left)
and maximum shear modulus (right)

11



12 CHAPTER 1. INTRODUCTION

Their highly configurable nature makes
metamaterials suitable for a wide range
of applications, particularly in the
design of biomedical devices, which
must possess a high degree of me-
chanical compatibility with organic ma-
terials such as bone tissue (Kolken
et al., 2018). Amazingly, if one
looks closely at such organic ma-
terials, it appears that nature has
also produced microstructures. The
femoral cross-section in Fig.3.6 reveals
an intricate structure which has been
naturally optimized to balance the
need for high strength and sufficient
porosity for continuous bone regenera-
tion.

Figure 1.3: Femoral cross-section. Image
retrieved from digitalfolien.de (2002)

It is often desirable to create metamaterials with spatially varying properties, like
those which occur naturally in bone tissue. In practice, however, it is difficult to
ensure physical compatibility between neighbouring microstructures. This can lead
to unpredictable mechanical behaviour and unmanufacturable topologies. Fig.1.4
shows adjacent microstructures which exhibit exceptionally poor connection.

In recent years, several methods have been proposed to ensure geometric connec-
tivity between adjacent microstructural unit cells. In this report, we argue that
geometric connectivity is insufficient to ensure the continuation of physical proper-
ties, and propose the concept of mechanical compatibility. Mechanical compatibility
directly examines the effective mechanical properties of the individual cell together
with its neighbour. Our approach simultaneously optimizes the mechanical prop-
erties of individual microstructures as well as those of neighbouring pairs, so that
material connectivity and smoothly varying physical properties are ensured.

1.1 Purpose of research and thesis outline

The overall aim of this research is to develop a generalized method for ensuring
structural compatibility between adjacent microstructures in the design of materials
with spatially varying mechanical properties. This is an essential step in the design
of physically realizable functionally graded materials and multiscale structures.

The specific objectives of the proposed project are as follows:

1. Develop a material design algorithm which ensures physical compatibility be-
tween adjacent microstructures.

2. Apply the formulation to the design of materials with multi-dimensional func-
tional gradation.
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ae'e'd
PP

Figure 1.4: Functionally graded microstructural material designed for maxi-
mum bulk modulus, subject to linearly varying volume constraint from 30%
to 60% (left to right).

1.2

. Apply the formulation to decoupled multiscale topology optimization.
. Apply the formulation to concurrent multiscale topology optimization.

. Implement state-of-the-art length scale control techniques to material design

Evaluate the performance of the compatibility method and provide qualitative
comparison with existing approaches.

Report structure

Chapter 1 introduces the purpose of our research and presents the structure
of this report.

Chapter 2 presents an overview of topology optimization theory, methods
and applications.

Chapter 3 is a review of elasticity theory, homogenization theory and material
design.

Chapter 4 introduces the concept of multiscale structural design and presents
decoupled and concurrent design algorithms.

Chapter 5 presents the connectivity issue inherent to microstructural ma-
terial design with inhomogeneous spatial distributions, and reviews existing
approaches to address the issue.

Chapter 6 presents a new compound cell formulation which addresses the con-
nectivity issue by considering the physical behaviour of compound microstruc-
tures.
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In Chapter 7, the compound formulation is applied to the design of multiscale
structures.

In Chapter 8, several state-of-the-art feature length scale methods are applied
to material design in an effort to reduce the manufacturing complexity inherent
to functionally graded and multiscale structures.

Chapter 9 presents physically realizable design examples generated using the
compound formulation.

In Chapter 10, we evaluate the performance of the compound formulation
by comparing theoretical results to full resolution FEM studies.

In Chapter 11, we present our conclusions and recommendations for further
development.
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2 | Topology optimization

In this chapter, we present an overview of topology optimization and its use in
material design. The theoretical background and mathematical formulation are first
presented, followed by a review of elasticity and homogenization theory. Finally,
topology optimization methods are applied to the design of tailored materials.

2.1 Structural optimization

Structural optimization is a class of problems concerned with finding the optimal
layout of material, given a specific set of performance objectives and constraints.
There are three general approaches to structural optimization: sizing, shape and
topology optimization; the differences lie in how the design variables are defined.

In sizing problems, a ground structure is predefined, and the optimization objective
is to find the optimal sizes of the different features within the ground structure.
While this method guarantees structurally feasible results, it fundamentally limits
the design space, resulting in optimized structures that are in fact far from optimal.

In shape optimization problems, the size and shape of structural features are not
defined a priori. This allows for a wider solution space, producing results that gen-
erally outperform those achieved via size optimization.

Topology optimization is the most comprehensive optimization strategy in that the
location, shape and size of all features are a function of the design variables. This
results the widest possible design space, allowing for truly optimal designs (Sigmund,
2009). The three structural optimization categories are illustrated in Fig.2.1.

2.2 Problem formulation

All structural design problems can be described by a set of objectives, constraints
and design variables. The general formulation is as follows: “Minimize (or maximize)
an objective function subject to a set of constraints.” A classic optimization problem
is to maximize the stiffness of a structure, given a limited amount of material. More
complicated problems may consider advanced mechanics, multi-physics, or problems
with multiple objectives and constraints. In topology optimization problems, the
design variables are typically the material density values throughout the design
domain; they can be defined as either continuous or discrete.

16
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Figure 2.1: Categories of structural optimization. A) Sizing optimization of
a truss structure, b) shape optimization and c) topology optimization. The
initial problems are shown on the left and the optimized results are shown
on the right. (From Bendsge and Sigmund, 2002, page 2)

The general topology optimization problem can be formulated as follows (Sigmund
and Maute, 2013): Consider a material design domain 2 in R? or R? that has been
chosen so as to allow for the definition of all relevant loads and boundary conditions.
The design domain € is first discretized into finite elements. The optimization
objective is then to find the material distribution €2 which minimizes a function
F, typically subject to a volume constraint Go < 0 and possibly M other constraints
G; < 0,2 =1... M. The material distribution is described by the density variable
p(x) which, in general, can take only the value 0 (void) or 1 (solid material) at every
point x in the design domain €2. In mathematical form:

min F = Flu(p),p) = Y / (o), v

st.  :Go(p) = sz‘pi -V <0 (2.1)

:Gj(u(p),p) <0,j=1,...,.M
0<p; <1l,i=1,...,N

where the state field u satisfies a linear or non-linear state equation.

2.2.1 Minimum compliance design

Considering the problem setup described above, the classic topology optimization
problem aims to find the stiffest possible structure given a specific set of loading
conditions and a limited amount of material. This is done by minimizing a char-
acteristic property called the compliance, the inverse of the stiffness. An example
setup and solution is shown in Fig.2.2.
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Design domain Q\ Qmat

D .

Vi T, Ty uu I, I'r

Figure 2.2: Tllustration of a structural topology optimization problem.

Following the derivation from Bendsge and Kikuchi (1988), we make use of the
energy bilinear form, which is an expression of the internal virtual work in an elastic
body at equilibrium wu for an arbitrary virtual displacement v:

a(u,v) :/QEijkl(x)eij(u)ekl(v)dQ (2.2)

with linearized strains €;;(u) = 3 (9% + %) and the load linear form
J T

l(u):/qudQ—i-/F tuds (2.3)

where U denotes the space of admissible displacement fields, 't is the boundary of
2, and f and t are body and boundary traction forces, respectively.

The minimum compliance problem can then be written as

min [(u)
p
st.  ra(u,v) =I1(v),forallveU (2.4)
NS Ead

When solving the problem by means of computational methods, it is convenient to
express the problem in discretized form:

min flu
P
st. K(E)u=f (2.5)
E e Ead

Here, u and f are the global displacement and load vectors, respectively. K(FE,) is
the global level stiffness matrix associated with element e.
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The requirement that £ € E,4 can be rewritten as:

1 if x e Qmat

ErL" — 1 'matEQ' y ]. mat —
gRE T S Skl S0 {0 if z € Q\ Qmat

/ LpmardS2 = vol () < V/ (2.6)
Q

Finally, the problem can be written in a form suitable for numerical optimization

N
in UTKU = Tk u,
mpln ;ue u

st. :KU=F (2.7)
V(x)/Vo=f
0<p<l

where p is the density vector (i.e. element densities), N is the number of elements in
the discretized design space, V(x) and Vj are the total material volume and design
domain volume, respectively, and f is a prescribed volume fraction. Note that upper
case variables refer to the global level and lower case variables are the corresponding
element level variables.

2.3 Optimization approaches

Since its introduction by Bensge and Kikuchi in 1988, several approaches have
been developed to tackle the topology optimization problem. The following sec-
tion presents a brief overview of these approaches. Refer to Sigmund and Maute
(2013), for a comprehensive review.

Generally speaking, topology optimization problems can be tackled by either a La-
grangian or an Eulerian approach. In the former, the problem is converted into a
shape optimization problem by introducing a mesh which follows the shape bound-
aries. In the later, a fixed mesh is defined and the element density values are the
design variables. This section focusses on the most common Eulerian method, gen-
erally referred to as the density approach.
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2.3.1 Material interpolation

The density approach involves discretization of the design domain €2 into N finite
elements, and letting the density distribution p(z) be described either by element or
nodal variables. In general, the density p(z) must be either 0 or 1 at any position z
on (). However, strict application of this requirement may cause the problem to lack
solution. Instead, a relaxed formulation is often employed. These formulations in-
troduce a continuous density variable over the 0-1 domain. The material properties
are then interpolated from the density via a smooth interpolation function. This
allows for the use of gradient-based optimization algorithms and ensures reasonably
rapid convergence.

A simple and powerful interpolation scheme introduced by Bensge (1989) is the
so-called SIMP (Simplified Isotropic Material with Penalization) or power-law ap-
proach.

E(pi) = pl Ey (2.8)

where 7 is a penalization parameter and Ej is the Young’s modulus of a solid element
of base material. For v > 1, this scheme penalizes intermediate values, as shown in
Fig.2.3, and encourages convergence to a binary solution. An appropriate choice of
v is necessary for full convergence to a global minimum.

y=1 7
— =2 i
0.8 y=3 ey
——~ =4 - A /
! e 7 /
v=5 /,/‘/ oy
0.6 | // , /
— -~ /
BN d /
\-/: e g / /
Ralig 7 p /
041 pd g e ' //
,"/// : /
/// B
0.2 /'/’ ~
P - - o
0 - -~ — i 1 | ]
0 0.2 0.4 0.6 0.8 1

1%

Figure 2.3: Normalized Young’s modulus as a function of density for differ-
ent penalization parameter values
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Since the introduction of SIMP, a number of alternative schemes and modifications
have been proposed. Among them is the so-called Modified SIMP approach, which
helps alleviate the issue of residual intermediate values in the final solution:

where the additional F,,;, term is an arbitrary small non-zero term that prevents

the global stiffness matrix from becoming singular.

Assuming a fixed Poisson’s ratio, the stiffness matrix of an element with intermediate
density is:
K(pi) = E(pi) * ko (2.10)

where kg is the stiffness matrix of a solid element of base material.

2.3.2 Filtering

In order to ensure mesh independency and avoid the common checkerboard prob-
lem, filtering techniques are usually employed, particularly when using low order
elements. A mesh independency filter can be applied to the design variable sensi-
tivities. It works by modifying each element’s sensitivity to be a weighted average
of its neighbours, within a prescribed radius r,,;, (Sigmund, 2007):

—_— oc;
Oc D ieM Wieh

B e — 2.11
O D ieM Wi (2.11)

where M is the set of elements in the neighbourhood of element e, i.e.
M = {illlz; — zella < 7} (2.12)

and r. is the filter radius. The weighting factor is defined linearly with respect to
the distance between elements

(2.13)

Figure 2.4: Optimization result of simply supported beam exhibiting
checkerboard pattern
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In addition to sensitivity filtering, a similar technique can be applied to the element
densities. In this case, the filter produces a so-called physical density p, which is a
weighted average of the design variable in a neighbourhood of radius 7,,;,.

— ZieM Wi ePi

e = 2.14
P Z ieM Wie ( )

An unfortunate side effect of mesh-independency filter is that it leaves an undesirable
grey zone of width r,,;, between the solid and void regions. This issue can be resolved
by using a projection scheme. In general,

o 1 ifp>g,
,oe(p)—{ 0 otherwise

However, for this type of numerical optimization, a relaxation method must be used.
The non-differentiable function can be approximated by

B tanh(g) + tanh(B(p — %)
B 2tanh(§)

where [ controls the sharpness of the transition as illustrated in Fig.2.5, and is

progressively increased over the course of the optimization to avoid instability (Wang
et al., 2011).

pe(p) (2.15)

P /,— .
P / __.
0.8} g=4
3=8 f ")’r/’
#=16 S
=32 I/
0.6 ..*';. ./;/j, g
- V
= A
///”,-"
0.4 )
e /
s
y / y
0.2t
/’ ' //
~ g /'/
0 e - — - 1 1 I ]
0 0.2 0.4 0.6 0.8 1

Figure 2.5: Projection function for various values of 5. As [ increases, the
function approximates the original unit step function.
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2.3.3 Numerical solution

Due to the inherently non-linear nature of topology optimization problems, the use
of numerical methods is unavoidable. Solutions are found via an iterative procedure
through which the design variables are updated according to the current state of
the system. The two most common procedures are the optimality criteria method
and mathematical programming. Fig.2.6 shows the general structural optimization
procedure.

Set up loads, supports
and boundary conditions

Initialize design variables
(initial guess)

Finite element analysis | —
|
Sensitivity analysis
|
Filtering
|
Projection
|
Optimization
|
Update design variables

Check
convergence

Figure 2.6: Structure of typical structural topology optimization procedure.



24 CHAPTER 2. TOPOLOGY OPTIMIZATION

Optimality criteria

The optimality criteria method (OC) is a variant of the Lagrange multiplier ap-
proach, which has been adapted for problems with a large number of design vari-
ables subject to a small number of constraints (Patnaik et al., 1995). The Lagrange
multiplier approach combines the objective f and constraints g; into a single energy
functional

Lx,A) = f(x)+ ) \Vgi(x) (2.16)

The unknown vectors x and A are found from the stationary conditions of the
Lagrangian £(x, ). In the OC method, the stationary conditions of the Lagrangian
are used to develop a set of rules which guide the iterative update of the design
variables. Though extremely efficient, the OC method has one major limitation: it
is generally only suitable for single constraint problems.

Mathematical programming

Mathematical programming (MP) algorithms such as NLOPT and MMA (Svan-
berg, 1987) are popular alternatives to the OC method because of their ability to
handle multiple constraints. They operate by updating the design variables base
on the current state of the objective function and constraints, and their respective
sensitivities.



3 | Material design

Before presenting the material design problem formulation, we briefly review Hooke’s
law for continuous media.

3.1 Hooke’s law

Hooke’s law states that the magnitude of a force F needed to extend or compress a
spring by a distance x is linearly proportional to x. The same linear relation applies
to the behaviour of many materials under small elastic deformation. In Fig.3.1, a
2D isotropic material subject to a normal stress oq; in the x direction undergoes
strains €11 and €99, described by

1

11 — EO'H (31)
-1

€29 = fvan (3-2)

where v is the Poisson’s ratio, which is an expression of the deformation in one
direction due to an applied stress in a perpendicular direction.

v 011 <« 3 3 — 011

Figure 3.1: 2D material subjected to normal stress o1,

When stresses are applied in both (2D) or all three (3D) directions, the resulting
strains can be expressed as,

1
Eij = E[(l + v)oij — vO;ok] (3.3)
which, when inverted, yields a more useful expression of stress as a function of strain
E v
Uij = m Eij + 1_—2852']'51614: (34)

25
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The stiffness tensor is the derivative of the stress o;; with respect to strain ey;.

80’@‘ . FE 1 v
Cijrl = Gen - (11 0) 2(5zk5]l + 0k04) + i 2@)5”51@ (3.5)

This expression described the mechanical properties of any linearly elastic isotropic
material.

The bulk modulus & is the ratio of hydrostatic stress op,q to volumetric strain.
In other words, it is a measure of the compressibility of a material under uniform
pressure. For an isotropic 2D material, the bulk modulus is given by

O hyd E

1
K = - = 3(1 — 21)) = Z(Cllll + 01122 + 02211 + 02222) (36)

Ohyd

Figure 3.2: 2D material subjected to hydrostatic stress o4

The shear modulus G is the resistance of a material to deform under the influence
of a shear load. It is defined as the ratio of the shear stress 772 over the shear strain

Y12:

.
G="2_ 1o = Ci212 (3.7)

T12

X

Figure 3.3: 2D material subjected to shear stress 79
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3.2 Homogenization

Topology optimization can be used in combination with homogenization theory to
design materials with highly tailored or extreme properties that are rare or even
non-existent in nature. The basic idea is that the mechanical properties of a het-
erogenous material composed of periodically repeating microscopic unit cells are
defined not only by the base material but by the topology of the unit cell. The
material design problem is that of finding the optimal unit cell topology, given a
specific performance objective.

Consider a heterogeneous material composed of periodically repeating microscopic
unit cells Y in R? or R?, as shown in Fig.3.4

OISO
OISO
OO0
OISO
OISO
OISIOIOIOIS

Figure 3.4: Periodic material composed of identical unit cells

The unit cell can be defined as

0
- 1
Y =10, 47[x]0, y5[x]0, y5] in R (3.8)

where 39, 49 and ¢ are the dimensions of the base cell along the principle axes. Due
to the periodicity, any physical characteristic F has the following property

F(x+NY) = F(x) (3.9)

where x = (1, 2, z3) is the position vector, N is a 3 x 3 diagonal matrix

1 0 0
N=1]0 o 0 s
0 0 ns

where ny, ny and ng are arbitrary integers and Y = (Y}, Y5, Yg}T is a constant vector
which determines the period in each of the principle directions.
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In other words, the characteristic properties of the heterogenous medium are a func-
tion of two independent scales: the macroscopic global scale x and the microscopic
local scale y. On the local scale, these characteristic functions may oscillate rapidly
but on the global scale they behave smoothly, as shown in Fig.3.5. As long as the
dimensions of the unit cell are very small compared to those of the macroscopic
structure, and the geometry of the unit cell is either constant of slowly changing,
only the global scale need be considered. Moreover, the effective properties of the
heterogeneous medium can be obtained from the geometry of a single unit cell.

X

1 1+1 X

Figure 3.5: Function with high local oscillation and smooth global variation.
From Hassani and Hinton (1998)

Characteristic functions of the heterogeneous medium can be expressed according
to the double scale asymptotic expansion
(z) = D°(z,y) + €@ (z,y) + O (z,y) + ..., (3.10)

where € = £. Since € is very small, only the first order terms of the expansion need
to be considered.
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3.3 Homogenization formulae for periodic composite
structures
Applying these concepts, the homogenized stiffness tensor Cyj;,; of any heterogeneous

medium with periodically repeating microscale geometry is given by the average of
the integral over the base cell Y as

o = 57 J, Comle2” = 54)a¥ 1)
where 5 is the Y-periodic solution of
avz 81}1
/ ijpa® qul dY / ijpa® qul) dYa (3.12)

where v is the Y-periodic admissible displacement field and aqul) correspond to three

or six linearly independent unit test strains in 2D or 3D, respectively.
The effective elasticity matrix can also be written in terms of element mutual energies

zgk:l |Y| / qrsgA(” f(kl)dy (313)

In finite element form, for a base cell discretized into /N elements, the effective tensor
is approximated by

N
_ 1 .
Cha = 377 (a0 (3.14)
e=1
where uf(kl) are the element displacement solutions corresponding to the unit test

strain fields £0(k0),

Each element of the homogenized elasticity tensor is the average of the element
mutual energies, for the three unit test strains.. Using Voigt notation,

N
_ 1 . . . .
o E (i) i — (gAONT A7)
Cl] - |Y| — qej ) qe] - (ue ) keue (315)

This form is very similar to the objective function of the minimum compliance
problem described in Section 2.2.1. In fact, the design of tailored materials can be
performed in much the same way, with the addition of periodic boundary conditions.
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3.4 Material design problem formulation

In the material design problem, the objective is to find the optimal topology of a
single unit cell. The unit cell is first discretized into N finite elements, each with
a corresponding density variable p(z). The elemental Young’s moduli E.(p.) are
evaluated using the modified SIMP scheme described in Section 2.3.1. The global
stiffness matrix K is then assembled and used to solve the equilibrium equation and
evaluate the homogenized stiffness tensor Cijkl of the structure.

The mathematical formulation, from Xia and Breitkopf (2015), is:
mpin C(C'ijkl(p))

st. (KUAR) —p®) L1 —=1 .. . .4d

1 N
: m Zvepe S VEJ
e=1

0<p.<l,e=1,....N

(3.16)

where U4 (kl) and F*" are the global displacement and external force vectors for
each of the unit test cases (kl), respectively. d is the spatial dimention, v, is the
element volume, and V; is the prescribed maximum volume fraction. The objective
function c(C_‘,-jkl (p)) is a function of the homogenized stiffness tensor, and can take
different forms, depending on the desired mechanical properties. In the following,
we formulate the objective functions for the two main material design problems:
design for extreme properties and design for tailored properties.

The design of materials with extreme properties involves the minimization of some
function of the homogenized stiffness tensor Cjjr;. The objective take the form:

3
c(Cigm(p)) = > _ 7i;(Cij) (3.17)
ij=1
where 7;; is a function of C’ij.

For example, the design of a 2D material with maximized bulk modulus corresponds
to the minimization of

C(éijkl(p)) = —(Chri11 + Criz2 + Coo11 + Caa22) (3.18)

Materials with tailored mechanical properties are obtained by minimizing the square
of the difference between the desired and homogenized tensor values. In mathemat-
ical form, from Zhou and Li (2008),

3

c(Cim(p)) = > ri;(Cy; — Ciy)? (3.19)

3,j=1

where C;‘j is the desired stiffness tensor.



3.5. FUNCTIONALLY GRADED MATERIALS 31

3.5 Functionally graded materials

Materials with spatially varying porous structures are widely seen in nature. They
are the result of an organic optimization process which balances global structural
performance requirements and local topological constraints (Wessel, 2004). Trabec-
ular bone tissue, for example, possesses a highly heterogenous material distribu-
tion designed to be strong and lightweight, while maintaining sufficient porosity for
continuous tissue regeneration. The synthetic design of such functionally graded
materials (FGM) is the subject of this chapter.

Figure 3.6: Femoral cross-section. Image retrieved from digitalfolien.de
(digitalfolien, 2002)

Consider the design of a 2D FGM with gradation in one direction and periodicity
in the other, as shown in Fig.3.7. The typical FGM formulation minimizes the sum
of the objective functions for each of the individual periodic base cells (PBC).

n-1 n n+1 e N-1 N

Periodic
-
no

Graded

Figure 3.7: Global base cell comprised of N periodic base cells.
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In mathematical form, the design of functionally graded materials can be written
as:

N
min 3" ealC(p)
n=1
st K, UAM) —FkD) k1 =1 .d n=1,..,N
o (3.20)
: Zvepe/|Yn] <V,n=1,..,N
e=1
0<p.<lie=1,...NxM
where, for each unit cell n, K,, is the global stiffness matrix, UZ™ and FF are the

global displacement vector and external force vector of the test case (kl), respec-
tively. FGM’s can be optimized to possess either tailored or extreme local properties.
Fig.3.8 shows an FGM optimized for maximum bulk modulus under linearly varying
local volume constraint.

RASK AN AN A
[
AN AN AN LA

Figure 3.8: 2D FGM optimized for maximum bulk modulus with 1D linearly
varying volume constraint from 20% to 90%.

The optimized properties of the individual PBC’s are plotted in Fig.3.9, along
with the Hashin-Shtrickman theoretical bounds for two-phase materials (Hashin
and Shtrikman, 1963). It is apparent that the local material properties have in-
deed been maximized. However, when observing the boundaries between adjacent
PBC’s, there is often little, if any, material connectivity (see Fig.3.10). As a result,
the FGM may not be manufacturable and will not perform as expected under load.
The connectivity issue is the subject of Chapter 5.

Figure 3.10: Material discontinuity between adjacent microstructures in
FGM.
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Figure 3.9: Maximized bulk and shear moduli as a function of average
material density, along with corresponding Hashin-Shtrickman theoretical
bounds

3.6 Summary

The design of functionally graded materials has a wide range applications, partic-
ularly in the field of biomechanical engineering, in which mechanical compatibility
with organic tissue is of primary importance. The existing topology optimization-
based approaches generally do not account for boundary conditions, which leads
to material connectivity problems. As a result, the optimized structures are often
unmanufacturable and do not perform as expected.



4 | Multiscale structural design

In addition to single scale structures or materials, topology optimization can be
applied to the design of multiscale structures, which possess both optimized global
scale material distribution and optimized local materials properties. An example of
a multiscale simply supported beam is shown in Fig.4.1. In this chapter, we intro-
duce two common approaches to the multiscale optimization problem: the decoupled
bottom-up method, and the concurrent hierarchical free-material method.

/y/\) N N
7 N\
4 \
/7 Z N S N\
7 2 7 N :u \
7 ’ N\
v N
/ 9.9, A ' 7, X N
py? 705 N\ X N
/ N\
i N
y 4 ) <
4 N
g = =
3= N

Figure 4.1: Simply supported beam generated via multiscale optimization
with 30 by 30 micro unit cells and 30 by 20 macro unit cells.

4.1 Bottom-up multiscale optimization

A bottom-up approach was proposed by Cramer et al. (2016). In this method, a
series of isotropic microstructures are optimized for maximum bulk modulus. The
homogenized properties are then fitted to a functional with the form of the Hashin-
Shtrickman bounds. The resulting smooth functions are then used to replace the tra-
ditional SIMP method in a single scale macro level optimization procedure. Fig.4.4
presents the procedure flow.

Isotropy can be ensured in the microstructure design process by imposing a cubic
symmetry constraint and

Chy + Cyy — (612 + 621) — 4033 =0 (4.1)

34
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Figure 4.3: a) Non-binary material distri-
bution; b) Equivalent multiscale material
distribution

Figure 4.2: Fitted material property
interpolation functions.

The isotropy constraint ensures that the interpolation functions closely match the
homogenized elastic properties of the microstructures. Moreover, it reduces the
number of parameters required to build the stiffness matrix from 6 (2D) or 21 (3D)
to 2 (or 3 if slight anisotropy due to FEM discretization is taken into account). This
significantly reduces the computational cost of the procedure, particularly for 3D
implementations.

The fitting functional take the form:

. _ 1—
fit oy — G0 (1 L > 4.2
z]kl(p) ijkl 1+ agup (4.2)

The functional matches the data very closely, and has the appropriate boundary
values, i.e., C_’szl(O) =0 and C_’fji,:l(l) = Oy (see Fig.4.2).

Since the interpolation functions are concave, bottom-up optimization procedures
generally lead to binary solutions in which no microstructures are present. How-
ever, in the case of non-convergent single scale optimization problems, this method
allows for the physical realization of greyscale elements. Fig.4.3 shows an exam-
ple of a greyscale material distribution replaced with equivalent black and white
microstructures. The microstructures are shown in colour for illustrative purposes.
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Figure 4.4: Bottom-up decoupled multiscale optimization procedure.
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4.2 Concurrent multiscale optimization

Concurrent multiscale optimization simultaneously considers the material distribu-
tion at both the macroscopic and microscopic scales. For the minimum compliance
problem, this requires simultaneous minimization of the global scale compliance
and maximization of the local scale strain energy. From Rodrigues et al. (2002), the
problem can be formulated as:

M
. 1 / o
max min E — | Ciipg(X)gi:(0¥)e,,(0u¥)dQY
Cijpg(*) € Eaa{p(x)} ut € U +— (2 Q pa ()23 (W) pg (u7)

0<p(x)<1 =1,y

Jo PRV (4.3)
—/pk-ude—/ th . ubds
Q Tk

The problem can be solved hierarchically by reformulating Eq.4.3 such that the
point-wise minimization of strain energy is treated as a subproblem:

1 ,
max min — . / d(p,ut, ..., ut)dQ —
Cijpg(x) € Eaa{p(x)} uk e U |2 Jq

0<p(x)<1 k=1,....M

Ja p(x)dQ<V (4.4)
M
> /p’“-ukd9+/ th . uds
k=1 Q r

M
®(p,u',... ) = max Ciipg€ij (U )epg (u” 4.5
(p ) Copee Baaip) kz:; ipa€ij (0" )Epq(0") (4.5)

The outer problem Eq.4.4 determines the macroscale material distribution, while
the inner problem Eq.4.5 determines the homogenized material properties within
each macroscale element. The optimization procedure is presented in Fig.4.5. The
simply supported beam shown in Fig.4.1 is the result of a concurrent multiscale
optimization procedure.
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Figure 4.5: Hierarchical multiscale optimization procedure



5 | Connectivity issue

Functionally graded materials and multiscale structures generated using homoge-
nization theory typically suffer from poor connectivity between adjacent microstruc-
tures, resulting in designs with unpredictable behaviour and suboptimal perfor-
mance. The connectivity issue arrises because each individual periodic base cell is
designed in isolation, without consideration for boundary conditions; this is an un-
fortunate disadvantage of homogenization theory. In the last decade, a number of
approaches have been proposed to address this issue. The following section outlines
these methods, highlighting their respective strengths and weaknesses.

Figure 5.1: Material discontinuity between adjacent microstructures in
FGM.

5.1 State of the art

One of the first attempts to address the connectivity issue was performed by Zhou
and Li (2008). They proposed the concept of a global base cell (GBC) comprised
of multiple PBC’s, and systematically investigated three methods to ensure con-
nectivity within the GBC, namely connectivity constraint, pseudo-load and unified
formulation with non-linear diffusion.

39
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5.1.1 Connectivity constraint

The connectivity constraint promotes material continuity between adjacent PBC’s
by forcing areas at the boundaries to be permanently occupied by solid material, as
shown in Fig.5.2. Although this method generally succeeds in ensuring connectivity,
it suffers from several drawbacks:

e The location of the prescribed connections must be carefully chosen, and may
cause convergence to a suboptimal design.

e The algorithm may sacrifice material at the prescribed connections to achieve
a better PBC design, thus failing to generate connections.

e The algorithm does not consider the overall behaviour of the GBC, which may
result in unpredictable mechanical properties across the boundaries between
unique PBC’s.

PBC1 PBC 2 PBC N
g
10 i i 1
£
[}
s
£ 11 i 0 i
ol

Gradient direction

Figure 5.2: Tllustration of connectivity constraint between adjacent PBC’s
within GBC; imposed solid regions are shown in blue. Reproduced from
Zhou and Li (2008).

5.1.2 Pseudo-load

Connectivity between adjacent cells enables the FGM to withstand a tensile load.
If a pseudo-load is applied to the GBC, then the application of a minimum stiffness
constraint should ensure at least some connectivity between adjacent PBC within
the GBC. This method was the first to directly consider the mechanical response of
the FGM during the optimization procedure. However, it also suffers from several
drawbacks:

e The pseudo-load conditions and minimum pseudo-stiffness are not easily de-
fined.

e The mechanical behaviour across unit cells is not directly related to the opti-
mization objective or to the properties of the adjacent PBC’s.

e The method is not easily applicable to multi-dimensional or multiscale topol-
ogy optimization problems.
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Figure 5.3: Tllustration of pseudo-load method. Reproduced from Zhou and
Li (2008).

5.1.3 Diffusion

The so-called unified formulation with non-linear diffusion considers the GBC as a
whole and uses a similar filter to the one described in Section 2.3.2 to promote ma-
terial deposition across PBC’s. It does not guarantee connectivity, but can be used
in combination with other methods to promote smooth transitions across PBC’s.
This application will be discussed in Chapter 5.

5.1.4 Structural families

Another method to ensure microstructural connectivity is to begin with a family of
microstructures with parametrized topologies. The optimization objective is then
to find the optimal parameter values over the design domain. An example of such
a structural family is shown in Fig.5.4, from Wang et al. (2018). The downside of
this method is that it fundamentally limits the design space, which inevitably leads
to suboptimal solutions in most cases.

X 0 X B DK
K

oKl oK B HA

x=0.12 x=0.14 x=0.16 x=0.18 x=10.20
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Figure 5.4: Parametrized lattice microstructures. From Wang et al. (2018).
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5.1.5 Shape morphing

Recently, a number of geometric shape morphing techniques have been applied to
the connectivity issue. Cramer et al. (2016) developed a microstructure-based ma-
terial interpolation scheme in which key microstructures are first generated individ-
ually, and shape interpolation methods are used to generate intermediate structures
between adjacent key structures. Subsequently, Du and Kim (2018) used shape
morphing to modify microstructural topologies post-optimization so as to maximize
connectivity, while minimizing the effect on the effective mechanical properties. An
example is shown in Fig.5.5, from Du and Kim (2018). Several issues arise from the
application of these methods:

e The shape-interpolation technique only succeeds when the material property
gradient is sufficiently small, i.e., neighbouring cells must belong to the same
interpolation family (between the same key microstructures).

e The post-optimization morphing technique is sequential and the results are
dependent on the order in which cells are modified.

e These methods do not consider the mechanical behaviour across adjoining
cells.

O OG

Figure 5.5: Pre-enhancement (left) and post-enhancement (right) neigh-
bouring microstructures, from Du and Kim Du and Kim (2018).

5.1.6 Progressive optimization

Radman et al. (2013) proposed a progressive optimization scheme for FGM design in
which each successive PBC is designed while a filter is applied to a GBC composed
of the current cell ¢, and the two previously designed cells (i — 1) and (i — 2). This
method appears to be an extension of the diffusion method described in Section
5.1.3, with some improvement in convergence speed.
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5.1.7 Full resolution

The most self-evident solution to the connectivity issue is to consider the full mi-
croscopic detail in the optimization procedure. This approach is extremely compu-
tationally expensive, even for 2D optimization problems. Special techniques based
on contrast-independent spectral preconditioners such as the multiscale finite ele-
ment method (MsFEM) have been developed to alleviate the computational burden
(Lazarov, 2014). None-the-less, these methods are not yet capable of solving large
scale 3D optimization problems without significant problem simplifications (Alexan-
dersen and Lazarov, 2015).

5.2 Summary

Although several approaches have been proposed to address the connectivity issue,
none are easily generalizable and most do not consider the mechanical behaviour
of the heterogenous structure. As a result, even if adjacent microstructures possess
adequate material connectivity, the performance of the structure is unpredictable. It
is therefore worthwhile to develop a method which directly considers the mechanical
properties across adjacent microstructures in the optimization procedure. Part II of
this report presents a new approach to do just that.
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6 | FGM design

In this chapter, we present a new approach to address the connectivity issue. It
is applicable to FGM design, multi-physics problems and multiscale structural op-
timization. Instead of designing PBC’s individually, we consider the mechanical
behaviour of compound base cells (CBC) comprised of neighbouring PBC’s. In the
following section, we demonstrate the process as it applies to the design of 2D FGM
with gradation in a single direction and periodicity in the other.

n-1 n n+1 e N-1 N

Periodic
—
B

Graded

Figure 6.1: Global base cell comprised of N periodic base cells.

6.1 Compound cell formulation

For the GBC comprised for N PBC’s shown in Fig.6.1, cell n is considered both
individually and as part of two compound base cells [(n — 1),n] and [n, (n+1)] (see
Fig.6.2 a). The optimization objective is formulated as a weighted average of the
individual and compound cell properties.

min ((1 —we) > e(Cli(p)) + we Z_ C(C*Z}’"“(p)))

n=1 n=1
st K, UAM —f®) k=1 . d n=1,..,N
K UL = FM kl=1,.d, n=1,.,N 1 (6.1)
M
: Zvepe/|Yn| <V,n=1,...N

e=1

0<p.<lie=1,...,. NxM
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where M is the number of finite elements, and for each unit cell n, K,, is the global
stiffness matrix, Ufl‘(kl) and Fg{l) are the global displacement vector and external
force vector of the test case (kl), respectively. Similarly, for each compound unit
cell [n,n+1], K,, ,+1 is the global stiffness matrix, Uﬁ,(:i)l and Ffffl) 1 are the global
displacement vector and external force vector of the test case (kl), respectively. A
weighting factor w. determines the influence of neighbouring cells on the optimiza-
tion of each individual unit cell. With w, = 0, this formulation is equivalent to the
individual microstructure design formulation.

a) b) (n-1, m+1)  (n, m+1) (n+1, m+1)
n-1 : n n+1 : (n-1, m) (n, m) (n+1, m)
‘ I

(n-1, m-1) (n, m-1) (n+1, m-1)

Figure 6.2: a) Cell n shown as part of compound base cells [(n — 1),n| and
[n, (n+ 1)]; b) Cell (n,m) shown as part of 3 x 3 superelement.

6.2 FGM with 1D gradation

The FGM optimized for maximum bulk modulus shown in Fig.3.8 can be made
connectable using the compound formulation with w. > 0. Fig.6.3 shows the result
for w. = 0.5. A remarkable improvement in connectivity is achieved, at little expense
to the performance of individual PBC’s. The optimized properties of PBC’s within
the FGM are shown in Fig.6.4.

nxlxl X A
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Figure 6.3: 2D FGM optimized for maximum bulk modulus with 1D linearly
varying volume constraint from 20% to 90% and w. = 0.5.
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Figure 6.4: Maximized bulk and shear moduli as a function of average
material density, along with corresponding Hashin-Shtrickman theoretical
bounds.

6.3 FGM with 2D gradation

The method can be extended to the design of FGM’s with gradation along multiple
directions. The addition of a cubic symmetry constraint enables cells ¢ and 7 + 1
to be connectable along other principle axes, as can be seen in Fig.6.6. For most
optimization objectives, the symmetry constraint has little effect on the performance
of individual microstructures.

0000000000000 00

0010000000000 0 00

0010000000000
0100000000000 0o

Figure 6.5: 2D FGM with unit cell symmetry, optimized for maximum bulk
modulus with 1D linearly varying volume constraint from 20% to 90% and
w, = 0.5.
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n-1 n n+1

n+1

Figure 6.6: a) Demonstration of bidirectional connectivity of PBC’s i — 1,
and 7 4+ 1. b) Microstructures designed with cubic symmetry constraint.

w,

Figure 6.7: 2

FGM with symmetrical bidirectional gradation.



7 | Multiscale structural design

Multiscale optimization enables simultaneous material and structural design, which
opens up incredible new opportunities. However, as was the case for FGM design,
the typical multiscale formulation suffers from material connectivity issues. In this
case, the impact is even more serious since we are interested in the performance of the
global structure as opposed to the local properties within a prescribed distribution.
It is therefore even more important to take into account the physical behaviour of
adjacent microstructures.

7.1 Bottom-up multiscale design

The compound formulation can be applied to the bottom-up multiscale topology
optimization method presented in chapter 4.1. Instead of generating the microstruc-
tures individually, we apply the compound formulation, which ensures connectivity
between adjacent microstructures. Fig.7.1 shows a sound multiscale structure gen-
erated using the bottom-up approach with compound formulation.

Figure 7.1: Multiscale structure generated using bottom-up approach with
compound formulation.

An issue which arrises from the direct application of the compound formulation
is that it requires that only small gradients be present in the macroscale material
distribution, otherwise connectivity is not guaranteed. This is because the optimiza-
tion scheme only considers adjacent pairs of microstructures. The formulation can
be modified to ensure that all microstructures within the family are design to be
compatible with one another.
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N

(Nt 3w c<6f?;m<p>>)

nm=1, m#n

-

min ((1 —wr™)

p

st K UAM —fp®) k=1 . d n=1,..,N
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This formulation ensures compatibility between all microstructures, but also in-
creases the computation cost from O(n) to O(n?). It may also have an impact on
the optimized performance, since it restricts the design space significantly. Fig.7.2
shows how non-adjacent pairs are compatible with one another.

a)

3
'0’1.00- [ [

Figure 7.2: Non-adjacent pair of microstructures generated using a) original
compound cell formulation, b) modified compound cell formulation.

7.2 Concurrent multiscale design

Concurrent multiscale optimization also suffers from the connectivity issue because
the boundary conditions between adjacent microstructures are not considered in the
assembly of the global stiffness matrix. In general, the ideal mechanical properties
vary smoothly from cell to cell within the macro structure, but these properties can
be achieved by any number of equivalent topologies. As an example, Fig.7.3 shows
two cell which, individually, have identical elasticity matrices. When considered
as a neighbouring pair, however, their performance is significantly diminished due
to their poor material connectivity. In practice, as long as an appropriate initial
design has been chosen and global filtering is employed, the connectivity issue is
not widespread. However, the compound formulation can be employed to guarantee
adequate compatibility.
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Figure 7.3: Incompatible microstructural topologies with identical mechan-
ical properties.

We use an in-situ compound formulation in which the homogenized properties of
each macroscale element are defined as a weighted average of the individual element
stiffness tensor and a superelement stiffness tensor. The superelement is defined as
the 3 x 3 (in 2D) or 3 x 3 x 3 (in 3D) Moore neighbourhood centred about the
element (see Fig.6.2 b). Applied in this way, the compound formulation acts as a
sort of smoothing filter over the macroscale domain.

The mathematical formulation of the multiscale design problem is unchanged. The
only difference is in how the homogenized stiffness tensor Cjj is computed:

~ - ~ntlmel
i = (1 —w) O +wCiy ™ (7.2)

Fig.7.4 and Fig.7.5 show MBB-beams generated with and without the compound
formulation. The homogenization-based theoretical performance of the structures
are nearly identical but the connectivity issue is reduced in the compound case.
As a result, the actual performance of the structure is expected to be significantly
improved. This will be investigated in Chapter 10.

2L

NN
N

Figure 7.4: Multiscale simply supported beam under 30% volume constraint
with compound formulation.
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Figure 7.5: Multiscale simply supported beam under 30% volume constraint
without compound formulation.

Note that the disconnected material segments at the boundaries of the structure re-
sult from the periodicity constraint and will always occur in homogenization theory-
based concurrent multiscale optimization. Simple post-processing filters can be used
to remove these artefacts once an optimized design has been obtained.

7.3 Summary

Multiscale structures generated using the compound formulation possess improved
material connectivity. As a result, the actual performance of the structures is ex-
pected to be much closer to the predicted theoretical performance. In the case of
concurrent multiscale optimization, the compound formulation has the added ben-
efit of providing macroscale smoothing which prevents sharp changes in material
properties from cell to cell. Since slowly changing macroscale material properties is
a fundamental assumption upon which homogenization theory is based, this is ex-
pected to improve the accuracy of the repeated FEM studies within the algorithm,
as well as the performance of the resulting optimized structure.



8 | Manufacturability considerations

Today’s 3D printing technologies allow for the fabrication of structures with micro
or even nano-scale features (see Fig.8.1). However, there exists an inverse correlation
between printer resolution and build volume. This makes microstructural materials
very challenging to fabricate at scale. To minimize this issue, we limit the required
printer resolution by prescribing topological feature size restrictions on the individual
unit cells. In this chapter we apply several length scale control methods to the design
of microstructural materials.

Figure 8.1: Nanoscale metamaterial fabricated with Nanoscribe 3D laser
lithographic printer. Image retrieved from Industrial laser solutions, 2015.
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8.1 Length scale control

By applying a minimum length scale constraint on each microstructure, we can
eliminate ultra-fine detail from the optimization results. If we add an additional
maximum length scale constraint, we can achieve almost uniform length scale, mak-
ing it possible to use fused deposition modeling (FDM) or direct ink writing (DIW)
technologies with single print paths.

8.1.1 Minimum length scale

To control the minimum length scale, we use the so-called robust formulation pro-
posed by Wang et al. (2011). Without going into detail, this method considers
additional eroded and dilated projections of the design variables to ensure that the
minimum length scale is a direct function of the filter radius 7,,;,. Fig.8.2 shows
examples of microstructures optimized under different minimum length scale con-
straints. Interestingly, the algorithm often converges to topologies with minimum
length scales greater than the imposed constraint. This can be seen in Fig.8.2 for
Tonin = 2.1-2.3.
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Figure 8.2: Microstructures optimized for maximum bulk modulus under
different minimum length scale constraints and subject to 40% volume con-
straint.
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8.1.2 Maximum length scale

To control the maximum length scale, we add a local volume constraint, as proposed
by Wu et al. (2018). This constraint restricts the accumulation of material in any
region of the unit cell, effectively limiting the maximum length scale and minimum
pore size. In mathematical form, the constraint is written as

pe < a, Ve (8.1)

where « is the prescribed local volume fraction and p, is the average volume fraction
in the neighbourhood N of e, i.e.,

ZieN Pi
P = = (8.2)
>ien,

and the neighbourhood N is the set of elements within a radius R, of element e, i.e.,

Ne = {i] [|z; — x|l < Re} (8.3)

where x. and x; are the centroids of the element and neighbouring elements, respec-
tively. The maximum length scale is a function of both R,,;, and «a. Fig.8.3 shows
microstructures optimized with different values of o, and Fig.8.4 shows microstruc-
tures optimized with different values of R,,;,.

BREBHEIO0

a=5% a=60% «a=6% a=T70% a=7% a=80% a=8% «a=90%

Figure 8.3: Microstructures optimized for maximum bulk modulus under
local volume constraint with different values of o and R,,;, = 26.

Figure 8.4: Microstructures optimized for maximum bulk modulus under
local volume constraint with different values of R,,;, and a = 70%.
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8.2 Global filtering

It is also important to avoid sharp edges within and across adjacent microstructures.
This helps eliminate stress concentrations and reduces manufacturing complexity.
We apply a filter across the entire GBC, similar to the diffusion technique proposed
by Zhou and Li (2008). Instead of a non-linear filter, we simply apply the mesh-
independency filter presented in Chapter 2. In Fig.8.5, GBC’s optimized with and
without global filtering are compared. Note that the filter often changes the topology
of the unit cells, but has little effect on the objective function.

fais:0=020.0.0 0 o
Figure 8.5: GBC optimized for maximum bulk modulus under linearly vary-

ing volume constraint from 20% to 90% a) without global filtering; b) with
global filtering.

8.3 Summary

Even as 3D printing technologies mature, the needs for large build volumes and
high resolutions will be at odds. This issue is especially important to take into
consideration in the design of microstructural materials. We demonstrate the use of
length scale control methods and global filtering in reducing the printer resolution
requirements.
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9 | Design examples

In this section, we present examples of microstructures designed using our compound
formulation. We focus on three applications: functionally graded orthopaedic hip
implants with prescribed property distributions, non-convergent single scale opti-
mization, and multiscale structures with prescribed boundary geometry.

9.1 Functionally graded prosthetic implant

Building on the work of Kolken et al. (2018), we apply our method to the design of
meta-biomaterials aimed at improving the longevity of orthopaedic implants. Specif-
ically, we aim to achieve better implant fixation by generating a structure with high
porosity at the bone-implant interface. This is expected to promote dendritic bone
ingrowth, which will effectively fuse the bone and implant together. Here we focus
on applications in total hip replacement surgeries (see Fig.9.1), which typically suffer
from low lifespans due to aseptic loosening, resulting from poor implant fixation.

Figure 9.1: Femur before (a) and after (b) total hip replacement surgery.
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We first define a macrostructural gradation with high porosity and the bone-implant
interface and high density in the core region (1). We then generate a family of com-
patible microstructures optimized for maximum bulk modulus under linearly varying
porosity constraint (2). Finally, we map the microstructures into the macroscale dis-
tribution (3). Fig.9.2 shows the process in 2D. Fig.9.4 shows a titanium specimen
fabricated using a GmbH SLM125 selective laser melting machine.

3)

0) 1) 2)

Figure 9.2: Procedure for generating bio-compatible orthopaedic hip im-
plant.

Figure 9.3: Functionally graded orthopaedic implant
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Figure 9.4: .
Specimen fabricated using selective laser melting (SLM). Material: Ti-6A1-4V ELI
(Extra Low Interstitials) ASTM B348 with a particle size range of 10-45 micron,
Machine: GmbH SLM125
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9.1.1 Bone ingrowth

It is difficult to visualize how the increased porosity promotes dendritic bone in-
growth based on the 2D renders since there are no physical connections between
neighbouring pores. In 3d, however, this is usually not the case. Fig.9.5 shows a
3D microstructure optimized for maximum bulk modulus. Here, the void region is
connected to its neighbours on all sides. Unfortunately, there is no guarantee that
this will be the case in all optimization results. In general, the addition of some sort
of fluid permeability constraint is necessary to ensure pore connectivity (Guest and
Prévost, 2006).

Figure 9.5: Three-dimensional microstructure with maximum bulk modu-
lus. Reproduced from Radman et al. (2013).
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9.2 Non-convergent structures

In some cases, topology optimization problems suffer from lack of convergence. In
many cases, this issue can be resolved with the addition of projection methods or
filtering techniques (Guest et al., 2004). However, in certain cases, the best solution
is in fact non-binary. In such cases, it would be better to generate microstructures
with the mechanical properties of these intermediate density elements and map them
into the structure. The bottom-up optimization approach described in Section 4.1 is
well suited to this task. In Fig.9.6, the process is applied to the design of a fixed beam
with a distributed load and subjected to a local material constraint. The problem is
initialized in (1). A set of isotropic microstructures are generated, and their stiffness
tensors are used to generate an interpolation scheme, which is in turn used to solve
the macroscale optimization problem (2). The macroscale design variables are then
discretized (3) and replaced with their corresponding microstructures (4). Fig.9.7
shows the final microstructural distribution, highlighting the connectivity in a high
contrast region of the macrostructure. In Chapter 10, we compare the performance
of the multiscale structure to the theoretical performance of the greyscale solution.

D 2 L

Figure 9.6: Bottom-up multiscale procedure applied to fixed beam with
distributed load and local volume constraint (o = 0.6, 7y, = 22).

Figure 9.7: Result of bottom-up optimization applied to fixed beam with
distributed load and local volume constraint (a = 0.6, 7y, = 22).
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9.3 Structures with prescribed boundary geometry

The connectivity issue becomes especially apparent in concurrent multiscale opti-
mization when a design domain is bounded by a prescribed microstructure. In the
following example, a cantilevered beam with a prescribed shell structure is optimized
for maximum stiffness. The compound formulation ensures that the final structure
is well connected both internally and with respect to the prescribed shell geometry.

Figure 9.8: Multiscale cantilevered beam with prescribed shell microstruc-
ture optimized without the compound formulation (w. = 0.1).
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Figure 9.9: Multiscale cantilevered beam with prescribed shell microstruc-
ture optimized with the compound formulation.



10 | Numerical validation

In this chapter, we evaluate the effectiveness of the compound formulation in its
different forms. Firstly, we evaluate microstructural connectivity by comparing the
properties of compound cells to those of their constituent microstructures. Secondly,
we assess the impact of the compound formulation on the properties of individual
microstructures. Finally, we evaluate the performance of multiscale structures via
full resolution FEM studies.

10.1 Connectivity and compatibility

To assess microstructural connectivity, prior works measured the fraction of con-
necting material across cell boundaries. This method provides some indication of
connectivity, but may fail to provide an accurate representation if the algorithm
chooses to sacrifice material at the cell boundaries. Moreover, it does not consider
the mechanical properties across adjacent cells. As a result, the structures may
behave unpredictably, even if they are well connected. Instead, we investigate the
properties of compound cells comprised of adjacent microstructures. We compare
these properties to those of the constituent microstructures and to those of the
theoretical bounds. The results are plotted in Fig.10.1 and Fig.10.2.
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Figure 10.1: Optimized properties across adjacent cells with and without
compound formulation, without global filtering.
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Figure 10.2: Optimized properties across adjacent cells with and without
compound formulation, with global filtering.

The results show that without the compound formulation, mechanical properties
across adjacent cells are often far from optimal. In fact, in many cases, they are
inferior to those of either of the constituent cells. This is consistent with a visual
connectivity assessment. With the compound formulation applied, properties across
adjacent cells are very close to the theoretical bounds and always between those of
the constituent cells. This appears to be the case for all values of w, > 0.

10.2 Parameter study: Weighting factor w.

The compound weighting factor w. determines the degree to which the behaviour of
the compound unit cells affects the objective function. With w. = 0, only the indi-
vidual cells are considered and no connectivity constraint is applied. With w, = 1,
only the compound cells are considered in the objective function.

Families of eight microstructures (GBC) optimized for maximum bulk modulus were
generated with values of w. from 0 to 1 by increment of 0.1. GBC’s generated with
different values of w, are shown in Fig.10.5. The impact on the optimized properties
is defined as: (cy — ¢y, )/co, where ¢ and ¢, are the objective function values with
weighting factor equal 0 and w,, respectively. Fig.10.6 shows the impact factor as a
function of w,.. The study was performed with and without global filtering applied.
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Figure 10.3: GBC’s optimized for maximum bulk modulus without global
filtering under linearly varying volume constraint from 20% to 90% and a)
w. = 0.0, b) w, = 0.5, ¢) w. = 1.0.

-4
O*Xm
*
—~ 05
X * *
| . *
o)
S - *
S
k] *
S 15 *
S
3
N ool *
©
-
o)
Z_2A5k
*
3 1 *
0 0.2 0.4 0.6 0.8 1
w

Cc

Figure 10.4: Average normalized impact on bulk modulus as a function of
w,, for 8 cell GBC’s optimized for maximum bulk modulus without global
filtering under linearly varying volume constraint from 20% to 90%.



68 CHAPTER 10. NUMERICAL VALIDATION

Figure 10.5: GBC’s optimized for maximum bulk modulus with global fil-
tering under linearly varying volume constraint from 20% to 90% and a)
w. = 0.0, b) w. = 0.5, ¢) w. = 1.0.
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Figure 10.6: Average normalized impact on bulk modulus as a function
of w,, for 8 cell GBC’s optimized for maximum bulk modulus with global
filtering under linearly varying volume constraint from 20% to 90%.

The results show that the compound formulation has negligible impact on the opti-
mized properties of individual microstructures ( < 0.001%) . Moreover, there does
not appear to be any correlation between the value of w, and the impact factor. For
the design of FGM with maximized mechanical properties, it appears that w, = 1 is
a suitable parameter setting. This means that individual cells can be ignored in the
optimization procedure, reducing the number of FEM studies from 2n — 1 ton — 1
per iteration. We also note that the resulting topologies are very different from one
GBC to another. This supports the conclusion from previous works that identical
properties can be achieved via any number of different topologies.
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10.3 Full resolution FEM studies

Homogenization theory states that a set of averaged mechanical properties can be
obtained from the study of a single unit cell, and that an infinitely dense array of
this unit cell will have nearly the same mechanical properties. In this section, we
compare the homogenization-based performance of multiscale structures to full reso-
lution FEM studies. We make use of the multigrid conjugate gradient preconditioner
algorithm from Amir et al. (2014) to handle the large problem sizes.

10.3.1 FGM study

A macrostructure comprised of two material regions, is loaded as shown in Fig.10.7.
Each region is prescribed a microstructure, designed to be compatible with its neigh-
bour via the compound formulation. The compliance of the structure is then eval-
uated first using the homogenized properties of the two microstructures and then
via full resolution FEM studies, with various array densities. Fig.10.8 shows the
normalized results as a function of microstructural array density. The results in-
dicate that even for relatively coarse microstructural arrays, the compliance values
computed via homogenization are within 5% of the full resolution FEM results. In
contrast, the compliance of a macrostructure comprised of microstructures designed
without the compound formulation perform is several orders of magnitude larger
than predicted by homogenization theory. The results are included in Table ?7.
The fact that homogenization theory does indeed hold for this multi-metamaterial
structure confirms that the compound formulation succeeded in generate compatible
microstructures.

a)

Figure 10.7: Test structure comprised of two microstructural regions. a)
Homogenized material distribution; b) Finite length scale microstructural
distribution with array density m = 10.



70 CHAPTER 10. NUMERICAL VALIDATION

1 L
o) (@) O (@) o)
o o ©
o
0.8
r 06r
Q
o
0.4
0.2
O 1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18

Microstructure array size (m)

Figure 10.8: Normalized compliance vs. microstructural array density for
test structure described in Fig.10.7.

10.3.2 Multiscale study

We apply the same methodology to the study of multiscale structures. We consider
the multiscale MBB-beams shown in Fig.7.1 and Fig.7.4 optimized for minimum
compliance using the bottom-up and concurrent multiscale algorithms. The com-
pliance of the optimized structures are evaluated using full resolution FEM and
compared to the results homogenization-based multiscale algorithms.

Table 10.1: Results of full resolution FEM analysis for structures generated with
and without compound multiscale formulation

Compliance

Standard formulation Compound formulation
Homogenized Full resolution Homogenized Full resolution

FGM (m =10) 2436 x 10>  1.899 x 108 2.862 x 102 2.892 x 10?
Bottom-up MBB  3.536 x 10!  6.735 x 102  3.536 x 10*  5.121 x 10%°
Concurrent MBB  6.354 x 10*  4.842 x 10 7.453 x 10>  1.532 x 107

As expected, the full resolution structures perform worse than the homogenized
structures. However, the structures generated using the compound formulation per-
form significantly better than those generated with the state-of-the-art algorithms.
This can be attributed to the improved connectivity and compatibility between ad-
jacent microstructures.
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11.1 Conclusions

The design and realization of functionally graded metamaterials, whose spatially-
varying physical properties are a function of their microstructural geometry, is par-
ticularly challenging because the underlying mathematical model does not take into
account the physical boundary conditions between adjacent microstructures. As a
result, the optimized structures do not perform as expected and are often impos-
sible to fabricate. In this work, we proposed a compound cell formulation which
directly considers the mechanical properties across adjacent microstructures to en-
sure both geometric connectivity and mechanical compatibility. In our formulation,
microstructures are generated based on the performance of both individual unit
cells and compound unit cells comprised of neighbouring pairs. In contrast to ex-
isting methods, our approach is generalizable and can be applied to multiscale and
multi-physics problems. It is also easily integrated into many existing topology op-
timization algorithms, density-based or otherwise.

We applied our method to the design of single and multidimensional functionally
graded materials and to the design of multiscale structures. The results show im-
proved connectivity at no expense to the performance of individual microstructures.
This observation supports the notion that many microstructural topologies may
share the same mechanical properties. The compound formulation simply promotes
convergence to compatible microstructures. Furthermore, we compared the per-
formance of full resolution structures generated with and without the compound
formulation to the homogenization-based predictions and observed a significant im-
provement in accuracy when the compound formulation is applied.

Even with improved microstructural connectivity, the fabrication of metamaterials
and multiscale structures presents significant challenges. Homogenization theory is
only accurate if the microscopic length scale is very small compared to the macro-
scopic length scale. As a result, any 3D printing technologies employed in the fab-
rication of these structures must be both extremely precise and possess large build
volumes. To reduce the required precision, we applied state-of-the-art length scale
control methods to the design of microstructural materials. We were able to control
both minimum and maximum length scales on both material and voids. Moreover,
we applied global smoothing to reduce the occurrence of sharp edges, which are
nearly impossible to fabricate in practice.
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11.2 Recommendations
Multi-physics

Although the examples presented in this work related to the optimization of me-
chanical properties, the proposed method can also be applied to the development of
materials with gradations in other functional properties such as electrical permittiv-
ity, thermal conductivity, magnetic permeability, vibration dampening, etc. In fact,
the compound formulation can be applied to most optimization problems in which
spatially-varying objectives or constraints exist.

Three dimensions

The examples presented in this work were all 2 dimensional in nature. The method
is equally applicable in 3 dimensions. However, the computational cost of such
procedures will be much larger and parallel processing techniques will need to be
employed to ensure sufficiently rapid convergence.

Ezrperimental validation

Due to the limitations of current 3D printing technologies, the work presented in
this report cannot be experimentally validated. Although we have performed full
resolution FEM studies, future work in this area would benefit from physical proto-
typing and testing.

Pore size control

In applying a local material volume constraint to control the maximum length scale,
we realized that the size of voids of the material could also be controlled to some
extent. The ability to prescribe pore size may be useful to promote dendritic bone
ingrowth in the design of orthopaedic implants. This may be an interesting oppor-
tunity for further investigation.
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