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Summary

Meal delivery platforms operate in dynamic environments, facing complex challenges including fluctuating cus-
tomer demand, deciding where and which restaurants to offer, and efficient rider allocation. This thesis intro-
duces the Restaurant Selection and Rider Dimensioning Problem (RSRDP) by proposing an integrated optimiza-
tion model that jointly determines the optimal restaurant assortments and rider allocations to maximize the
platform’s expected profitability, while maintaining high service quality standards.

A nested logit model captures customer purchasing behavior on the platform to model how customers choose
a restaurant to order from, where customers initially choose a cuisine type and subsequently select a specific
restaurant within that type. Rider operations are modeled through a spatial-temporal network, enabling op-
timized management of rider flows across urban zones. We formulate the problem as a Mixed-Integer Linear
Program (MILP) and research advanced solutionmethods including Benders decomposition, column generation,
branch-and-price, and heuristics. Finally, we propose our novel Iterative Assortment Generation (IAG) algorithm
to solve the problem, ensuring computational feasibility for large-scale scenarios.

Computational experiments based on simulated urban delivery data illustrate that integrating restaurant selec-
tion with rider dimensioning consistently increases profitability and maintains high service quality compared to
traditional methods that separate these decisions. Furthermore, we explore the impact of two distinct rider
compensation policies: commission-based (payment per delivery) and fixed employment (hourly wages). Our
findings reveal significant trade-offs between these compensation structures. Commission-based compensation
offers greater operational flexibility, adaptability to fluctuating demands, and cost-effectiveness; however, it also
leads to increased rider relocations and potentially reduced rider satisfaction due to uncertainty in workload.
Conversely, fixed employment provides stable rider availability, promoting better workforce management, but
potentially incurs higher operational costs and decreased responsiveness to short-term demand fluctuations.

Based on these insights, we recommendmeal delivery platforms adopt integrated optimizationmodels as part of
their tactical planning to effectively balance service quality and profitability. Platforms should carefully evaluate
their rider compensation policies, recognizing that the ideal choice may depend on the specific context of their
operational environment, such as demand variability, competitive landscape, and workforce preferences.

Future research could build on this study by investigating dynamic compensation schemes that adapt in real-time
to observed demand conditions. Additionally, incorporating hybrid compensation schemes, combining salaried
and commission-based riders, and utilizing the strengths of both policies, provides a promising research direc-
tion. Developing multi-objective models that balance profitability against service quality measures, such as
timely deliveries or rider satisfaction, would further guide operational decisions and customer and rider reten-
tion. Furthermore, future research could improve the way service districts are designed. Instead of using fixed
boundaries, districts could be adjusted dynamically and tailored more precisely to specific customer segments
and changing demand patterns. This approach would mean that restaurant offerings can also change through-
out the day to closely match customers’ preferences, potentially increasing overall profitability. Furthermore,
modeling couriers individually, rather than as aggregated flows, allows more precise scheduling that better ac-
counts for realistic travel times, shift durations, and rider constraints. Although this approach increasesmodeling
complexity and computational demands, it offersmore accurate operational insights, leading to better-informed
management decisions. Finally, employing heuristic-driven column-generationmethods and comparing solution
approaches systematically can improve scalability and accuracy.
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1
Introduction

Meal delivery platforms operate in an uncertain environment, where customers arrive to the system and place
their order, which must be fulfilled in a timely manner. These platforms aim to achieve some key quality service
level elements: ensuring on-time delivery to maintain customer satisfaction, providing a diverse selection of
restaurants to attract demand, and managing operational costs to remain profitable. These elements translate
to the challenges these platforms face: the efficient dimensioning of riders, whomust be engaged based on their
spatial and temporal distribution to meet fluctuating demand, and which restaurants to offer on the platforms
so as to maximize expected profit while offering diverse options.

Existing research on meal delivery platforms primarily focuses on either operational efficiency or demand-side
management, but rarely integrates both aspects. Prior studies can be grouped into two main categories. The
first category focuses on the operational side, optimizing routing costs and reducing delivery times [Xue et al.,
2021, Kancharla et al., 2024, Ulmer et al., 2021], offering valuable insights into fleet operations and dispatching
strategies. However, these studies generally assume that customer demand is exogenous and fixed, meaning
the platform has no control over how demand can be shaped. Other works examine related operational chal-
lenges such as delivery time estimation, rider shift scheduling, and courier imbalances [Liu et al., 2018, Tang
et al., 2016]. The second category focuses on restaurant selection, which is mainly studied in the domain of
assortment optimization, aiming for revenue maximization of offering products to customers. These studies,
however, neglect the operational implications of assortment decisions on rider dimensioning.

The central research question guiding this thesis is defined as: How canwe design the services for ameal delivery
platform to maximize expected profits and solve it for large-scale systems? A key insight of this research is that
meal delivery platforms function as interconnected systemswhere each operational decision influences platform
performance. Customers expect timely deliveries, while riders require manageable workloads, and platforms
must remain profitable. Unlike previous studies that address these elements in isolation, we recognize that
the interactions among them create significant research opportunities. While customer arrival is exogenous,
platform controlled decision-making, such as restaurant selection and rider dimensioning, and their interaction,
are endogenous and can shaped by designing the services. In this research, we define and present a model for
theRestaurant Selection andRider Dimensioning Problem (RSRDP),which jointly determines restaurant selection
and rider dimensioning to maximize expected platform profitability while ensuring high service levels. Profit is
defined as restaurant commission revenue minus rider costs. We compare two compensation policies for the
rider costs: commission-based (CB), where riders get paid per delivery completed, and fixed employment (FE),
where riders receive hourly wages. We evaluate these policies to assess their impact on costs, rider availability,
and service quality.

To solve the RSRDP, we propose a novel iterative assortment generation heuristic, inspired by column gener-
ation, to iteratively generate and evaluate candidate assortments of restaurants and efficiently converge to a
good solution. Additionally, we apply Benders decomposition to decouple assortment decisions and rider di-
mensioning, accelerating convergence in large instances. Our results demonstrate that integrating assortment
and rider dimensioning decisions consistently enhances platform profitability while maintaining service qual-
ity, including timely deliveries and balanced rider workloads. Furthermore, we evaluate the impact of the two
rider compensation policies, finding that the commission-based approach improves operational flexibility but
increases rider relocations, whereas the fixed employment scheme ensures a stable required workforce.

1



1.1. Scientific and societal relevance 2

1.1. Scientific and societal relevance
From an academic perspective, the contributions of this research to the field of operations research and on-
demand service design are twofold. First, it extends the body of knowledge on integrated optimization by
formulating a model that simultaneously addresses assortment and rider dimensioning decisions. Second, it
explores the scalability of the model to accommodate large-scale systems by proposing a novel efficient compu-
tational method, tailored to the problem’s inherent complexity. The approach not only enhances the theoretical
understanding of on-demand service systems but also provides novel methodological contributions that can be
applied to other fields of urban logistics, such as last-mile delivery for retail and grocery sectors, or emergency
response and healthcare services.

From a societal perspective, the outcomes of this research have the potential to significantly improve the ef-
ficiency and reliability of meal delivery platforms, which have become an essential service in modern urban
environments. Enhancing operational efficiency and ensuring timely deliveries directly contribute to improved
customer satisfaction. Moreover, by optimizing rider scheduling and developing effective compensation strate-
gies, this research supports more sustainable and equitable labor practices. Such improvements in service reli-
ability and workforce management can lead to reduced environmental impacts through optimized routing and
diminished operational waste, ultimately fostering more resilient urban communities.

Furthermore, the broader implications of this research extend into policy-making and tactical business planning
within the rapidly evolving landscape of on-demand services. The integrated framework developed here offers
actionable managerial insights for platform designers, informing decisions that balance profitability with high
service quality. These findings provide a robust foundation for future innovations in smart urban logistics, paving
the way for more adaptive, sustainable, and customer-centric service models. In doing so, the study not only
contributes to academic discourse but also serves as a resource for driving positive societal change in the context
of urban mobility and service delivery.

1.2. Methodology
The proposed methodology is founded on the development of an integrated optimization model that simulta-
neously addresses restaurant assortment selection and rider dimensioning in the context of meal delivery plat-
forms. The methodology employs a nested logit model to capture the intricacies of customer decision-making
processes on the platform, ensuring that restaurant offerings are optimally aligned with consumer preferences.
The decision onwhich restaurants are opened, given the location of the customer, is integratedwith a framework
that decides when and where to deploy riders. The optimization framework is formulated as a Mixed-Integer
Programmingmodel (MIP). To solve the problem, we investigate exact and approximation approaches, including
branch-and-price, Benders decomposition and heuristics.

To ensure the robustness and practical relevance of the model, numerical experiments will be conducted us-
ing simulated urban demand scenarios, based on available open-source industry information. The scope of the
project encompasses both tactical, restaurant assortment optimization, and operational, rider dimensioning,
levels of meal-delivery service design. The geographical focus is on urban areas where (bicycle) riders are preva-
lent. The temporal scope emphasizes short-term daily operations, suitable for capturing rapid fluctuations in
order volume and peak demand times.

The study pursues the following objectives:

1. Develop a Mixed-Integer Programming (MIP) model for the Restaurant Selection and Rider Dimensioning
Problem (RSRDP).

2. Design and implement efficient solution methodologies to solve the RSRDP for both small-scale and large-
scale problem instances, ensuring computational tractability.

3. Analyze the managerial implications of the proposed model, particularly in assessing the impact of differ-
ent compensation policies on network performance, service quality, and platform profitability.

1.3. Document structure
The remainder of this thesis is structured as follows. Chapter 2 reviews related literature. Chapter 3 presents
the conceptual representation, laying the groundwork for the mathematical formulation presented in Chapter
4. Chapter 5 outlines the resolution approaches, with computational results and managerial insights outlined in
Chapter 6. Finally, Chapter 7 concludes the study with recommendations for future research.



2
Related literature

Meal delivery platforms have reshaped urban food consumption with on-demand, app-based services. They
combine transportation logistics with revenue management, requiring decisions that balance customer satis-
faction with profitability. Customer satisfaction depends on timely deliveries, high service quality, and ample
restaurant options, while profitability stems from cost-efficiency and strategic pricing. To better understand the
complexities of meal delivery platforms, we follow the meal delivery process as depicted in Figure 2.1, exam-
ining the perspectives of the customers, orders, and riders at each stage, along with the associated challenges
and how current literature tackles these.

Figure 2.1: Ordering process timeline from customer, order and rider perspective.

2.1. Request arrival and customer decisions
A primary challenge for meal delivery platforms is managing the dynamic arrival of orders. Customer arrivals
are inherently unpredictable, and platforms oftenmodel customer arrivals as stochastic processes. For instance,
Xue et al. [2021] use an empirical distribution based on real observed data, while Kancharla et al. [2024] adopt
a Poisson process. The meal delivery industry shares this challenge with on-demand micro-mobility services.
However, unlike services where requests can be declined, meal delivery platformsmust fulfill all incoming orders.
The study by Li and Wang [2024] incorporates probabilistic demand modeling in mobility-on-demand services,
demonstrating its relevance in dynamic dispatching. These approaches align with our work, where we model
arrivals of requests probabilistically using a Poisson process.

Once customers are on the platform, they navigate a two-stage decision process. First, based on personal tastes,
dietary needs, and even mood, customers select a preferred cuisine category. Next, restaurants offering that
cuisine are presented, where the choice is influenced by factors such as estimated delivery time, pricing, and
restaurant reputation [Fakfare, 2021, Chua et al., 2020]. This underscores the importance of curating restau-
rant offerings that align with consumer tastes, including more heterogeneity customized to the individual, also
suggested by Aparicio et al. [2025]. Our work builds on these insights by integrating customer choice modeling

3



2.2. Rider assignment and supply-demand management 4

using a nested logit model as presented by Davis et al. [2014] to aid decision-making on which restaurants to
offer.

Once a customer places an order, meal preparation begins at the restaurant. Meal preparation times are un-
certain, as they depend on kitchen workload, meal complexity, and restaurant efficiency. This uncertainty can
create delays, affecting rider scheduling and customer satisfaction. Ulmer et al. [2021] examine uncertain meal
preparationtimes and propose buffering techniques tominimize delays. Their anticipatory customer assignment
approach optimizes real-time order bundling and dispatching. While our model does not explicitly incorporate
meal preparation uncertainties, it introduces flexibility in rider assignment to accommodate variability in meal
readiness times. This flexibility acts as a buffer for uncertainties in general, ensuring that unexpected delays in
preparation do not significantly disrupt delivery operations.

2.2. Rider assignment and supply-demand management
Once an order is placed, matching it with an available rider poses another challenge. The spatial distribution
of orders and riders requires quick, efficient dispatch. To address this, Liu et al. [2018] incorporate predictive
travel time analytics into their order assignment model, while Li et al. [2024] improve spatial efficiency using
a dynamic matching radius. Additionally, the compensation structure of the riders affects rider availability. Ke
et al. [2022] explore how different wage schemes impact service quality and profitability, demonstrating that
optimized pay schemes influence rider participation and order fulfillment success rates. Rider participation is
also studied by Tang et al. [2016], who demonstrate that while higher wages can attract more riders, they might
also lead to inefficiencies during low-demand periods. Our research evaluates two static compensation policies,
commission-based and fixed employment, to understand their affect on both service quality and profitability.

2.3. Delivery efficiency
After rider assignment, ensuring prompt delivery is key to ensuring service quality. This challenge is addressed
in various ways: Liu and Luo [2023] propose a stochastic dynamic driver dispatching system, optimizing routing
through Benders decomposition, while Yildiz and Savelsbergh [2019a] explore multi-objective optimization to
balance cost and service quality. Their findings also highlight that compensation schemes and courier schedules
play a crucial role in ensuring service reliability. Additionally, Carlsson et al. [2021] investigate how geographic
familiarity impacts rider efficiency, proposing a partitioning algorithm to optimize delivery regions. Another up-
coming method to increase efficiency includes order bundling within a single trip, Steever et al. [2019] examine
bundling strategies that aim to minimize delays while maintaining routing efficiency. However, Yildiz and Savels-
bergh [2019a] analyze the trade-offs between bundling efficiency and service quality, concluding that bundling
does not always yield cost savings yet can decrease service quality. Our model does not include bundling but
instead focuses on maintaining strict delivery windows to ensure high service quality and timely fulfillment, as
assumed in other studies [Ulmer et al., 2021, Kancharla et al., 2024, Li et al., 2022].

Routing efficiency can also be enhanced through strategic rider relocation. Bell et al. [2024] propose a Markov
chain-based relocation model where couriers circulate through the city in a structured manner, optimizing tran-
sitions based on demand probabilities. Yang et al. [2024] examine how freelance drivers make routing and
dispatch decisions based on probabilistic acceptance behavior. While their work focuses on mobility services,
it provides insights into how supply-side constraints impact service quality and profitability. In our model, we
improve delivery efficiency by strategically relocating couriers based on future demand predictions, ensuring
that riders are positioned optimally before orders arrive. Because we can shape demand distribution through
assortment optimization of restaurant offerings, we can exert greater control over the spatial distribution of
arriving orders.

2.4. Rider scheduling
Beyond real-time rider dispatching, platforms must manage workforce scheduling. Platforms can hire riders as
employees or engage them as freelancers. Employed riders provide stability and better workforce planning, but
they increase fixed operational costs. Freelance riders offer flexibility, but their availability is uncertain and in-
fluenced significantly by compensation structures. Ulmer and Savelsbergh [2020] explore a hybrid workforce
model that incorporates both scheduled and unscheduled riders. Their work highlights the importance of struc-
tured scheduling while allowing flexibility through crowdsourced labor. The compensation policies implied by
the workforcemodels play a crucial role in rider scheduling. Yildiz and Savelsbergh [2019b] examine how service
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radius adjustments impact profitability by balancing rider costs and restaurant commissions. They also incorpo-
rate restaurant availability as a function of the service radius, allowing the platform to influence demand through
spatial adjustments. However, their study assumes exogenous demand and self-scheduling riders who can re-
ject orders, whereas our approach assumes ridersmust adhere to platformdecision-making on ridermovements
and incorporates restaurant availability through assortment optimization.

2.5. Our contributions
The analysis of current literature reveals that existing literature predominantly addresses restaurant assortment
decisions separately from rider dimensioning, overlooking the fact that decisions on restaurant offerings deter-
mine the spatial demand distribution of orders, which in turn influences required rider deployment. Our work
advances the literature by proposing an optimization approach that simultaneously determines the optimal
rider dimensioning and the assortment of restaurants being offered to the customer. Additionally, we evaluate
static compensation policies and their impact on system efficiency, offering insights into how wage policies in-
fluence workforce management and platform profitability. Finally, we propose a novel methodology to solve
the problem, ensuring practical applicability for larger problem instances. In Chapter 3, we explain in detail the
conceptual representation of this problem.



3
Conceptual representation

This chapter introduces the notation and core concepts needed for the RSRDP formulation presented in Chapter
4. We structure the problem in a spatial-temporal network and explain the interplay between revenue, costs,
customer demand, assortment selection, and rider dimensioning.

3.1. Service design structure
To formalize the platform operations, we consider a pre-defined operating area and a nominal day for plan-
ning. Our approach employs a two-level spatial representation by dividing this area into larger service districts
and smaller hexagonal zones. Service districts, denoted by d ∈ D, capture market heterogeneity by grouping re-
gions with distinct customer preferences and socio-economic traits. These districts also define the curated set of
restaurants visible to customers, enabling strategic demand shaping through assortment decisions that directly
influence order distribution. To manage rider allocation at a more granular level, the area is further partitioned
into hexagonal zones, denoted bym ∈ M . These uniformly distributed hexagons capture rider movement dy-
namics and allow for accurate travel time computation. Riders travel between zones to complete deliveries and
can be strategically relocated to balance supply and demand, therebyminimizing delivery times and operational
costs. The interaction between service districts and zones introduces spatial-temporal dependencies that our
framework explicitly models, capturing the feedback loop between assortment-driven demand generation and
rider management.

We let κ be the travel time between adjacent zone centroids. The travel time between any two zonesm andm′

is given by τmm′ , which depends on κ and the shortest path distance. It is assumed that intrazonal travel time
τmm equals κ, relating to themaximum travel distance within a zone from the hexagonal structure. Additionally,
to discretize the day into manageable intervals, we define t ∈ T = {0, κ, ..., Tmax} where κ also serves as the
length of each time period. This synchronized spatial-temporal discretization enables us to track the progression
of demand and rider movements over the course of the time horizon. Figure 3.1 presents an example of the
hexagonal zone structure on the left, and the service districts by the various colors on the right.

Figure 3.1: Hexagonal zone structure with travel time κ between adjacent zones (left) and service districts d ∈ D (right), presented by
different colors including one or multiple zonesm ∈ M .

6



3.2. Courier network activity 7

3.2. Courier network activity
To present couriermovement over the planning horizon |T |, we construct the spatial-temporal networkG(N,A)
where each node (m, t) ∈ N represents a zone m ∈ M at period t ∈ T . Using arc-based notation with
directional arcs, we define the movement of couriers between zones over time, transitioning from an earlier
period to a later one. Riders are assumed homogeneous, and all travel at the same constant speed. The network
arcs represent rider flow and are defined as arcs a ∈ A with a = ((m, t), (m′, t+ τmm′)) such that τmm′ is the
travel time between zonem andm′. The flow on these arcs represent couriers traveling from zonem starting
at time t to a zone m′ arriving at time t + τmm′ , defined for all combinations of zones m and m′ and periods
t ∈ [0, Tmax − τmm′ ]. Figure 3.2 illustrates these arcs for a three-zone-four-period network.

Figure 3.2: Hexagonal zone structure with colored service districts (left) and three-zone-four-period spacial-temporal network example
where the arcs represent possible courier flows.

Because all riders are assumed to travel at a constant speed, each arc reflects a possible flow from an earlier
time to a later one, and for every zone and period, riders can travel from and to adjacent nodes within the
spatial-temporal network. The sets of outgoing and incoming arcs at node (m, t) are denoted by A+

(m,t) and
A−

(m,t), respectively, and we do not impose capacity constraints on the arcs. Figure 3.3 presents an example for
the origin and destination adjacent arc sets.

Figure 3.3: Example of adjacent nodes for zone 4 structure. Origin arcsA−
(4,2)

are presented in blue and destination arcsA+
(4,2)

are
presented in magenta.

3.3. Customer arrivals and delivery timeline
Customer arrivals are treated as requests and are aggregated over zones. Specifically, arrivals in zone m at
period t denoted λmt follow a Poisson distribution, capturing the natural fluctuations in demand. We model
λmt ∼ Poisson(rate), where rate = Base(t) · (1 + ϵmt). Here, Base(t) is a shape function that rises and
falls with typical meal times, and ϵmt introduces normally distributed random fluctuations. A request becomes
an order if the customer decides to purchase a meal from an available restaurant showcased in the assortment
for the district in which the customer is located. How the customer chooses the restaurant is explained in the
subsequent section.

Each order placed at time t on the platform must be fulfilled within a delivery window [t, t+ ρ] Practically, this
window includes meal preparation time and rider travel time, plus a small buffer to accommodate unexpected
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delays. If η represents the average meal preparation time, and τmm′ is the travel time from a restaurant located
in zone m to the customer’s zone m′, then the rider must pick up the meal after η and complete the delivery
before the total elapsed time reaches ρ. Figure 3.4 illustrates the possible arcs that may be utilized to satisfy
the demand, allowing for some flexibility and possible higher efficiency by providing multiple options in some
scenarios.

Figure 3.4: Illustration of potential courier flow along arcs to meet demand. Orders from Zone 1 to Zone 2 are fulfilled via the blue arcs,
while orders from Zone 3 to Zone 1 follow the magenta arcs. Meal preparation time η and the maximum delivery deadline ρ are accounted

for.

3.4. Service district assortment optimization
In addition to managing rider activity, the platform chooses which restaurants to offer in each service district,
from which customers can order. Let R be the set of all restaurants in the system, and let r ∈ R. A district d
may only include restaurants that can reliably deliver within the delivery window ρ. Specifically, for a customer
located in zonem and a restaurant in zonem′, Rm = {r ∈ R : τm′m ≤ ρ− η} denotes the set of restaurants
capable of serving zone m, and if bdm ∈ {0, 1} indicates whether zone m is covered by district d, then Rd =∩
m∈M :bdm=1

Rm is the set of restaurants that can fulfill the delivery window requirements for all zones in district

d. Finally, we define a finite set of cuisine typesQ, such that q ∈ Q and each restaurant r ∈ R belongs to exactly
one cuisine type, administered by the parameter eqr ∈ {0, 1} that is one when restaurant r is of cuisine q. In
this way, the setRd

q =
∩

m∈M :bdm=1

{r ∈ Rm : eqr = 1} represents the set of restaurants that may be included for

the assortment of district d for cuisine type q. The model may decide which of these restaurants to offer. We
denote the final assortment of restaurants for cuisine type q in service district d by Sd

q ⊆ Rd
q .

The model may include constraints on the assortment to align with business or operational goals. For instance,
a minimum number of restaurants of each cuisine type may need to be included in a service district to meet
marketing or customer satisfaction requirements. LetKd

q denote theminimumnumber of restaurants of cuisine
type q required in the assortment for service district d. The binary parameter eqr equals one if restaurant r
belongs to cuisine type q and zero otherwise. Each restaurant is assigned to a single cuisine type to maintain
the nested structure and adhere to probability theory. By incorporating such constraints, the platform ensures
compliance with these operational requirements while optimizing the assortment.

3.5. Customer purchasing behavior
To model how customers choose restaurants from the platform’s assortment, we employ a nested choice frame-
work inspired by Davis et al. [2014]. On meal delivery platforms, customers tend to first choose a cuisine type
and then select a restaurant within that category. The nested logit model follows the same structure: customers
first choose a nest (cuisine) and thereafter a product within that nest (restaurant). We define vdqr as the attrac-
tion value of restaurant r of cuisine q within district d. This value encapsulates all relevant utility parameters (e.g.
price, quality, proximity) and is assumed known from prior choice modeling research or historical data. We also
define vdq0 as the attraction of the no-purchase options within cuisine q for district d. Suppose the assortment
of cuisine q in district d is Sd

q ⊆ Rd
q . The total attraction in nest q is then V d

q (S
d
q ) = vdq0 +

∑
r∈Sd

q
vdqr. Under

the framework, the probability that a customer orders from restaurant r ∈ Sd
q given they have selected nest q
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is:

Pd
r|q(S

d
q ) =

vdqr
vdq0 +

∑
r∈Sd

q
vdqr

=
vdqr

V d
q (S

d
q )

(3.1)

Let pdqr represent the revenue from an order at restaurant r in cuisine nest q for district d. The expected revenue
from customers ordering within nest q is:

πd
q (S

d
q ) =

∑
r∈Sd

q
pdqrv

d
qr

V d
q (S

d
q )

=
∑
r∈Sd

q

pdqr · Pd
r|q(S

d
q ) (3.2)

Each cuisine nest q has a dissimilarity parameter γdq ≥ 0, which accounts for the degree of dissimilarity of the
restaurants within the nest. We assume that these parameters are also researched a priori. Let vd0 denote the
attraction value of the no-purchase option for choosing any of the nests in district d. If we offer assignments
(Sd

1 , ..., S
d
|Q|) over all nests with S

d
q ⊆ Rd

q ∀q ∈ Q, d ∈ D, then a customer chooses nest q in district d with
probability:

Pd
q(S

d
q ) =

V d
q (S

d
q )

γd
q

vd0 +
∑

q∈Q V
d
q (S

d
q )

γd
q

(3.3)

Then the probability of choosing restaurant r of cuisine q in district d is given by:

Pd
qr(S

d
q ) = Pd

q(S
d
q ) · Pd

r|q(S
d
q ) =

(
V d
q (S

d
q )

γd
q

vd0 +
∑

q∈Q V
d
q (S

d
q )

γd
q

)
·

(
vdqr

V d
q (S

d
q )

)
=

vdqr · V d
q (S

d
q )

γd
q−1

vd0 +
∑

q∈Q V
d
q (S

d
q )

γd
q

(3.4)

And the expected revenue from customers ordering within district d is:

Πd(Sd
1 , ..., S

d
|Q|) =

∑
q∈Q

Pd
q(S

d
q )π

d
q (S

d
q ) =

∑
q∈Q π

d
q (S

d
q )V

d
q (S

d
q )

γd
q

vd0 +
∑

q∈Q V
d
q (S

d
q )

γd
q

(3.5)

By modeling customer choices in this manner, we can estimate the likelihood of each restaurant being selected
by customers located in each service district, which subsequently informs the effective flow of orders in the
network, which we relate to the number of needed riders to deliver these orders within the network. Equation
(3.5) highlights the independence of assortments across service districts. The only interaction between service
districts in this problem arises from riders needed to deliver orders between different zones belonging to differ-
ent districts. The assortment offered in each district dictates the available restaurants, which in turn influences
the customer demand generated at those restaurants.

3.6. Rider dimensioning
Using the customer behavioral probabilities derived, we can estimate the expected number of orders between
zones. For each period t and zonem, we determine how many orders should be delivered from zonem′ tom
and therefore how many couriers are required. Suppose that the set R̂m denotes the restaurants located in
zonem. Given the number of requests λmt and the probability of choosing restaurant r of cuisine q in district
d given by Equation (3.4), we denote the number of orders from restaurants located in zone m to customers
located in zonem′ starting at time t by δtmm′ . Then:

δtmm′ =
∑
d∈D

∑
q∈Q

∑
r∈R̂m∩Rd

q

λm′t · Pd
qr(S

d
q ) (3.6)

As the calculation incorporates probabilities, the number of orders may result in fractional values, representing
an average demand across zones. While we assume that each courier can deliver only one order at a time,
allowing fractional courier flows in this tactical decision-making model is not only practical but also analytically
beneficial. Let the decision variables uin(m,t) and u

out
(m,t) represent the number of couriers entering and leaving

the system node (m, t) in the spatial-temporal network respectively, essentially functioning as source and sink
nodes for the couriers. To determine the total fractional number of couriers needed, we sum uin(m,t) across all
nodes:

∑
(m,t)∈N

uin(m,t). Couriers are permitted to enter the system at node, providing the flexibility needed to
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optimally meet varying demand patterns. However, we impose constraints to ensure that, on average, couriers
work for at least a minimum shift duration θmin and do not exceed a maximum shift duration θmax.

While it would be ideal to track the shift duration of individual couriers, incorporating an ”entry time” index
into the model would significantly increase its complexity and computational requirements, therefore, we opt
to monitor the average shift duration of couriers instead of tracking each individually. However, if one would
prefer the model is flexible to include this additional dimension by incorporating an index tentry for the flows
and changing the constraints to include this option. This approach allows us to enforce labor regulations and
operational policies without the need for granular tracking.

3.7. Profit structure
The objective is tomaximize the platform’s total expected profit, defined as the difference between revenue and
costs. Revenue is obtained through commission paid by restaurants on each order made by customers, based
on a percentage of the order value. Each order placed by a customer therefore corresponds to a revenue which
can vary depending on the restaurant r and cuisine q and district d. We denote this revenue by pdqr.

Costs are related to riders and consist of two parts: expenses related to the compensation of riders, and the
expenses related to overhead costs depending on the number of couriers that are used in the system. We
consider two compensation policies to compare and test the influence of different policies on the performance
of the system. The first policy is defined as Commission Based (CB), where riders are compensated for each order
they deliver. Wedefine this cost as cdqr, similar to the profit structure. Similarly, the expected compensation costs
of delivering an order within district d related to the CB policy can be found using Equations (3.2) and (3.5) and
replacing pdqr with cdqr:

ĉcomp
CB =

∑
q∈Q

∑
r∈Sd

q
cdqr · Pd

r|q(S
d
q )V

d
q (S

d
q )

γd
q

vd0 +
∑

q∈Q V
d
q (S

d
q )

γd
q

(3.7)

The second policy is defined as Fixed Employment (FE), where riders are hired by the platform and get compen-
sated a fixed wage per hour. Let ct be the discretized wage per time unit for a rider. Then traveling along an arc
a = ((m, t), (m′, t + τmm′)) ∈ A incurs a cost ca = ct · τmm′ . Summing this over all arcs provides the total
wage payout. We generalize the compensation costs for the policies to ccompensation

policy .

The overhead costs exist for both policies, however the overhead costs related to the FE policy are bigger than for
the CB policy, as naturally there are higher costs incurred when hiring riders. We define these costs as coverheadpolicy

per rider such that policy ∈ {CB,FE} and calculate the costs based on the number of incoming couriers
within the spatial-temporal network:

ĉoverheadpolicy = coverheadpolicy ·
∑

(m,t)∈N

uin(m,t) (3.8)

The conceptual framework presented in this chapter underpins the decision-making mechanisms of the RSRDP.
We explored the spatial-temporal structure of the network, rider dynamics, customer ordering behavior, and the
optimization of restaurant assortments within service districts. These components collectively form the founda-
tion for understanding the interactions between customer demand, restaurant offerings, and rider operations.
This framework serves as the stepping stone for the next chapter, where we formalize these concepts into a
mathematical formulation.



4
Mathematical formulation

This chapter presents the mathematical formulation of the RSRDP. We first present the formulation in its full
non-linear form, whereafter we propose a mathematical formulation that enumerates all possible assortments
for each service district d and cuisine nest q, which we can further linearize to obtain a Mixed-Integer Linear
Program (MILP). All relevant sets, parameters, and variables can be found in Tables 4.1 and 4.2.

Table 4.1: Sets and parameters used in the mathematical formulations.

Sets and indices

D set of service districts d ∈ D
R set of restaurants r ∈ R
Q set of cuisine types q ∈ Q
Rm set of restaurants within delivery limit of zonem r ∈ Rm

R̂m set of restaurants located in zonem r ∈ R̂m

Rd set of restaurants within delivery limit for service district d r ∈ Rd

Rd
q set of restaurants within delivery limit for cuisine q and service district d r ∈ Rd

q

M set of zones m,m′ ∈M
T set of time periods such that T = {0, κ, 2κ, ..., Tmax} t, t′ ∈ T
N set of spatial-temporial nodes (m, t) such thatm ∈M , t ∈ T (m, t) ∈ N
A set of arcs a ∈ A
A+

(m,t) set of possible destination arcs from node (m, t) (m′, t′) ∈ A+
(m,t)

A−
(m,t) set of possible origin arcs to node (m, t) (m′, t′) ∈ A−

(m,t)

Parameters

τmm′ travel time from zonem tom′; interzonal travel time τmm = κ [periods]
ρ delivery time deadline [periods]
η meal preparation time [periods]
λmt number of customer arrivals in zonem and period t [orders]
coverheadpolicy overhead cost per required rider for business policies [euro]
ca courier salary on arc a [euro]
ct discretized salary per period t [euro]
cdqr cost per service of delivery ordered from restaurant r of cuisine q in district d [euro]
pdqr expected revenue per order at restaurant r for cuisine type q for service district d [euro]
vdqr attraction value of restaurant r for cuisine type q for service district d [attraction]
vd0 attraction value no-purchase option cuisine level for service district d [attraction]
vdq0 attraction value no-purchase option restaurant level for cuisine q and district d [attraction]
γd
q dissimilarity parameter for cuisine type q for service district d [dissimilarity]

θmin average minimum shift duration [periods]
θmax average maximum shift duration [periods]
Kd

q min. number of restaurants of cuisine q to be included in service district d [#]
erq binary parameter indicating if restaurant r is of cuisine q [binary]
bdm binary parameter indicating if zonem is covered by service district d [binary]

11
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Table 4.2: Variables used in the mathematical formulations.

Variables

zdqr if restaurant r included in assortment for cuisine nest q in service district d [binary]
zSd

q
if assortment Sd

q offered for cuisine nest q for service district d [binary]
wa courier flow on arc a [continuous]
uin
(m,t) number of couriers starting their work at period t in zonem [continuous]

uout
(m,t) number of couriers leaving the system at period t in zonem [continuous]

yd; fd; gd auxiliary variables for model formulation [continuous]
xmd; hmd auxiliary variables for model formulation [continuous]
lSd

q
; km

Sd
q

auxiliary variables for model formulation [continuous]

4.1. Full non-linear formulation
We introduce binary decision variable zdqr which equals one if restaurant r is included in the assortment for
cuisine nest q in service district d and zero otherwise. Looking back at Section 3.5, the customer purchasing
behavior is based on the chosen assortmentSd

q ⊆ Rd
q . We can represent this assortment using decision variable

zdqr as Sd
q = {r ∈ Rd

q : zdqr = 1}. This changes the total attraction of nest q to V d
q (S

d
q ) = vdq0 +

∑
r∈Rd

q
vdqrz

d
qr.

The continuous variable wa represents the courier flow on arc a ∈ A, while uin(m,t) and u
out
(m,t) represent the

incoming and exiting couriers at period t in zonem. The mathematical formulation is presented as:

max
∑
d∈D

Erev
d (zdqr)− Ecost

policy(wa, u
in
(m,t), u

out
(m,t)) (4.1)

s.t. (4.6)− (4.16)

The objective function (4.1) calculates the difference between the expected revenue obtained from orders or-
dered within all districts based on opened restaurants and the expected cost from operating riders. In the
remainder of this section, we explain each profit component and the constraints.

Expected revenue. We first define the expected revenue contribution from district d. Each district’s rev-
enue depends on the number of arriving requests in all zones covered by the district over the time horizon,∑

m∈M

∑
t∈T b

d
mλmt, and the expected revenue from customers ordering within district d from Equation (3.5),

where total attraction is given by V d
q (S

d
q ) = vdq0+

∑
r∈Rd

q
vdqrz

d
qr. By multiplying these equations we obtain the

total expected revenue from district d over all arriving requests. To incorporate this we change Equation (3.5)
to include the model’s decision variable zdqr:

Erev
d (zdqr) =

∑
q∈Q(v

d
q0 +

∑
r∈Rd

q
vdqrz

d
qr)

γd
q−1(

∑
r∈Rd

q
vdqrp

d
qrz

d
qr)

vd0 +
∑

q∈Q(v
d
q0 +

∑
r∈Rd

q
vdqrz

d
qr)

γd
q

·
∑
m∈M

∑
t∈T

λmtb
d
m (4.2)

By summing over all districts one can obtain the total expected revenue.

Expected costs. The expected rider costs depend on the policy implemented, consisting of the compensation
costs and the overhead costs. The compensation costs can be defined similarly as the expected profit for the CB
policy, for the FE policy we sum the rider flows over all arcs. This gives us the following:

Ecost
policy(wa, u

in
(m,t), u

out
(m,t)) = ĉcompensation

policy + ĉoverheadpolicy (4.3)

Where ĉoverheadpolicy is as defined in subsection 3.7 and ĉcompensation
policy is defined as:

ĉcompensation
policy =


∑

q∈Q(vd
q0+

∑
r∈Rd

q
vd
qrz

d
qr)

γd
q −1

(
∑

r∈Rd
q
vd
qrc

d
qrz

d
qr)

vd
0+

∑
q∈Q(vd

q0+
∑

r∈Rd
q
vd
qrz

d
qr)

γd
q

·
∑

m∈M

∑
t∈T

bdmλmt if policy = CB∑
a∈A

ca · wa if policy = FE
(4.4)
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Demand satisfaction constraints. To ensure that enough rider capacity is available to fulfill all customer orders
within the allowable delivery window ρ, recall that an order place at time t at a restaurant located in zonem by a
customer located in zonem′ can be picked-up in zonem and delivered in zonem′ anywhere within the periods
{t + η ..., t + ρ}. The number of related orders was presented by Equation (3.6), and in a similar fashion as
for the objective we incorporate decision variable zdqr to obtain the number of orders, i.e. demand as specified
from restaurant to customer, from zonem tom′ ordered at period t:

∆t
mm′ = λm′t ·

∑
q∈Q(v

d
q0 +

∑
r∈Rd

q
vdqrz

d
qr)

γd
q−1(

∑
r∈R̂m

vdqrz
d
qr)

vd0 +
∑

q∈Q(v
d
q0 +

∑
r∈Rd

q
vdqrz

d
qr)

γd
q

(4.5)

Recall that the binary parameter bdm equals one when zonem is covered by district d and zero otherwise. The
number of riders needed to deliver the orders between any two zones over all districts within the delivery win-
dow should therefore be at least∆t

mm′ ifm′ is covered by d, summed over all districts d, presented in Constraint
(4.6). This constraint may include an overlap in demand generated within the delivery window, e.g. when two
orders are placed from zone m adjacent to m′ at time t1 and t2 respectively, and need to be delivered within
delivery windows [t1, t2, t3] and [t2, t3, t4] respectively, the constraint will hold if one rider delivers one order
from zonem tom′ starting at time t2. Therefore we also need to add a global constraint on total riders versus
total demand, presented in Constraint (4.7). Both constraints include larger or equal signs because couriers may
also relocate instead of delivering, resulting in larger flow values, but because rider costs areminimized the total
flow of couriers will be minimized as well.∑

t′=t+τmm′
t+η≤t′≤t+ρ

w(m,t)(m′,t′) ≥
∑
d∈D

bdm′∆t
mm′ ∀m,m′ ∈M, t ∈ T \ {Tmax − ρ− η, ..., Tmax} (4.6)

∑
a∈A

wa ≥
∑
m∈M

∑
m′∈M

∑
t∈T

∑
d∈D

bdm′∆t
mm′ (4.7)

wa ∈ R+ ∀a ∈ A (4.8)

Rider flow constraints. Rider flows are captured via the node-balance constraints and the definitions of uin(m,t)

and uout(m,t). For each node (m, t) ∈ N , we require the total incoming flow plus any new riders entering to
equal the total outgoing flow plus any riders leaving, presented in Constraint (4.9). Since the total number of
riders entering the system must be the same as the total number exiting, we add Constraint (4.10). Finally, we
represent operational rules that constrain how long each rider can work on average using the shift duration
[θmin, θmax] in Constraint (4.11).∑

a∈A−
(m,t)

wa + uin(m,t) =
∑

a∈A+
(m,t)

wa + uout(m,t) ∀(m, t) ∈ N (4.9)

∑
(m,t)∈N

uin(m,t) =
∑

(m,t)∈N

uout(m,t) (4.10)

θmin ·
∑

(m,t)∈N

uin(m,t) ≤
∑
a∈A

wa ≤ θmax ·
∑

(m,t)∈N

uin(m,t) (4.11)

wa ∈ R+ ∀a ∈ A (4.12)

uin(m,t) ∈ R+, uout(m,t) ∈ R+ ∀m ∈M, t ∈ T (4.13)

Assortment constraints. Recall that erq is the binary parameter indicating whether restaurant r is of cuisine
type q, Kd

q is the minimum number of restaurants of cuisine q to be included in the assortment for service
district d, andRd

q is the set of restaurants that may be included in the assortment for cuisine q in service district
d based on the delivery window. Constraint (4.14) enforces that a restaurant r can only be included in the
assortment for cuisine q in district d if r indeed belongs to that cuisine q. Constraint (4.15) guarantees that each
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cuisine q in district dmeets a minimum number of restaurants, providing sufficient diversity to customers.

zdqr ≤ erq ∀r ∈ R, q ∈ Q, d ∈ D (4.14)∑
r∈Rd

q

zdqr ≥ Kd
q ∀q ∈ Q, d ∈ D (4.15)

zdqr ∈ {0, 1} ∀r ∈ R, q ∈ Q, d ∈ D (4.16)

Themathematical formulation presented in Equations (4.1) - (4.16) is nonlinear due to the presence of fractional
terms, exponents, and products of decision variables. In the following section, we introduce the set partitioning
formulation of the problem, in which all feasible assortments are generated a priori. This reformulation elimi-
nates the non-linearity associated with terms involving the exponent γdq , as the base of the exponent becomes
a constant. Consequently, this formulation is more suitable for various solution methodologies.

4.2. Enumerated model formulation
Let Bdq ⊆ Rd

q represent all the possible assortments for nest q for service district d, complying with any assort-
ment constraints. For each (d, q) pair, we introduce binary decision variable zSd

q
∈ {0, 1} to indicate whether a

particular assortment Sd
q ⊆ Bd

q of restaurants is offered. The continuous variable wa represents the rider flow
on arc a ∈ A, while uin(m,t) and u

out
(m,t) represent the incoming and exiting riders at node (m, t) ∈ N . The sets

and parameters used in the formulation are summarized in Tables 4.1 and 4.2. We first present the mathemati-
cal model in its nonlinear form. The linearization of this formulation is presented in Section 4.3. The problem is
presented as follows:

max
∑
d∈D

Erev
d (zSd

q
)− Ecost

policy(wa, u
in
(m,t), u

out
(m,t)) (4.17)

s.t. (4.22)− (4.31)

The objective function (4.17) calculates the difference between the expected revenue obtained from orders
ordered within all districts based on assortments Sd

q offered and the expected cost from operating riders. In the
remainder of this section, we explain each profit component and the constraints, focusing on the changes with
respect to the full non-linear model.

Expected revenue. The expected revenue calculation is adjusted by considering the assortments Sd
q ⊆ Rd

q

and their related decision variable zSd
q
in Equation (3.5). This results in the following equation:

Erev(zSd
q
) =

∑
q∈Q

∑
Sd
q⊆Bd

q
V d
q (S

d
q )

γd
q πd

q (S
d
q ) · zSd

q

vd0 +
∑

q∈Q

∑
Sd
q⊆Bd

q
V d
q (S

d
q )

γd
q · zSd

q

·
∑
m∈M

∑
t∈T

bdmλmt (4.18)

By summing over all districts we obtain the total expected revenue.

Expected costs. The expected rider costs remain largely unchanged, except for the adjustment in the calcu-
lation of compensation costs under the CB policy. Specifically, we apply the same transformation used in the
expected revenue calculation to derive a revised expression for ĉcompensation

policy , resulting in the following modifi-
cation:

ĉcompensation
policy =


∑

q∈Q

∑
Sd
q⊆Bd

q
V d
q (Sd

q )
γd
q
∑

r∈Sd
q
cdqr·P

d
r|q(S

d
q )·zSd

q

vd
0+

∑
q∈Q

∑
Sd
q⊆Bd

q
V d
q (Sd

q )
γd
q ·z

Sd
q

·
∑

m∈M

∑
t∈T

bdmλmt if policy = CB∑
a∈A

ca · wa if policy = FE
(4.19)

Accordingly, the total expected rider costs remain defined as:

Ecost
policy(wa, u

in
mt, u

out
mt ) = ĉcompensation

policy + ĉoverheadpolicy (4.20)

Where ĉoverheadpolicy is as defined in Subsection 3.7.
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Demand satisfaction constraints. The demand constraints are adapted to incorporate the same transforma-
tion applied in the previous sections. Specifically, we modify the calculation of ∆t

mm′ from Equation (4.5) to
reflect the set partitioning formulation. This results in the following revised expression that calculates the num-
ber of orders from zonem tom′ ordered at period t:

∆̂t
mm′ = λm′t ·

∑
q∈Q

∑
Sd
q⊆Bd

q

∑
r∈R̂m∩Sd

q
vdqr · V d

q (S
d
q )

γd
q−1 · zdSd

q

vd0 +
∑

q∈Q

∑
Sd
q⊆Bd

q
V d
q (S

d
q )

γd
q · zSd

q

(4.21)

While the structure of the constraints remains unchanged, the formulation now incorporates ∆̂t
mm′ :∑

t′=t+τmm′
t+η≤t′≤t+ρ

w(m,t)(m′,t′) ≥
∑
d∈D

bdm′∆̂t
mm′ ∀m,m′ ∈M, t ∈ T \ {Tmax − ρ− η, ..., Tmax} (4.22)

∑
a∈A

wa ≥
∑
m∈M

∑
m′∈M

∑
t∈T

∑
d∈D

bdm′∆̂t
mm′ (4.23)

wa ∈ R+ ∀a ∈ A (4.24)

Rider flow constraints. The rider flow constraints remain unchanged in the set partitioning formulation:∑
a∈A−

(m,t)

wa + uin(m,t) =
∑

a∈A+
(m,t)

wa + uout(m,t) ∀(m, t) ∈ N (4.25)

∑
(m,t)∈N

uin(m,t) =
∑

(m,t)∈N

uout(m,t) (4.26)

θmin ·
∑

(m,t)∈N

uin(m,t) ≤
∑
a∈A

wa ≤ θmax ·
∑

(m,t)∈N

uin(m,t) (4.27)

wa ∈ R+ ∀a ∈ A (4.28)

uin(m,t) ∈ R+, uout(m,t) ∈ R+ ∀m ∈M, t ∈ T (4.29)

Assortment constraints. Since all feasible assortments are defined a priori, constraints on the minimum num-
ber of required restaurants per assortment Sd

q or cuisine type are directly incorporated into the enumeration of
the feasible set Bdq . As a result, the formulation no longer requires explicit constraints to enforce these condi-
tions, thereby simplifying the model. Constraint (4.30) guarantees that the model selects precisely one subset
Sd
q out of all possible subsets of Bdq for each (d, q) pair.∑

Sd
q⊆Bd

q

zSd
q
= 1 ∀q ∈ Q, d ∈ D (4.30)

zSd
q
∈ {0, 1} ∀q ∈ Q, d ∈ D, Sd

q ⊆ Bd
q (4.31)

In the following subsection, we discuss the linearization of the above-mentioned nonlinear constraints and the
objective function.

4.3. Linearization
The model presented by (4.17)-(4.31) is non-linear due to constraint (4.22), (4.23) and the objective function
(4.17). We follow a two-step procedure to transform these expressions into a Mixed-Integer Linear Program
(MILP). We first isolate the fractional expressions in the objective and constraints. For district d, let continuous
variable yd capture the fraction

yd =

∑
q∈Q

∑
Sd
q⊆Bd

q
V d
q (S

d
q )

γd
q πd

q (S
d
q ) · zSd

q

vd0 +
∑

q∈Q

∑
Sd
q⊆Bd

q
V d
q (S

d
q )

γd
q · zSd

q

=
fd
gd

(4.32)

Similarly, for each zonem and district d, define continuous variable xmd to represent the fraction

xmd =

∑
q∈Q

∑
Sd
q⊆Bd

q

∑
r∈R̂m∩Sd

q
vdqr · V d

q (S
d
q )

γd
q−1 · zdSd

q

vd0 +
∑

q∈Q

∑
Sd
q⊆Bd

q
V d
q (S

d
q )

γd
q · zSd

q

=
hmd

gd
(4.33)
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Next we rewrite each fraction as a product of the new variable and a linear function of zSd
q
, gdyd = fd ∀d ∈ D

and gdxmd = hmd ∀d ∈ D, m ∈ M , and introduce bounds for the newly defined variables. As all the
relevant components of the model are larger or equal to zero, the lower bound trivially becomes zero for all
variables. For the upper bound we want to find the maximum values these variables can attain. For the upper
bound of yd ∈ [0, yUd ] we want to find y

U
d = max yd = max{ fdgd }. fd can be maximized by noting that zSd

q
= 1

for exactly one Sd
q ∀q ∈ Q, d ∈ D, therefore max{fd} =

∑
q∈Q max

Sd
q⊆Bd

q

V d
q (S

d
q )

γd
q πd

q (S
d
q ). Similarly we can

show that to minimize gd we get min gd = vd0 +
∑

q∈Q min
Sd
q⊆Bd

q

V d
q (S

d
q )

γd
q . Combining these results we get

yUd =
max

z
fd

min
z

gd
=

∑
q∈Q max

Sd
q⊆Bd

q

V d
q (Sd

q )
γd
q πd

q (S
d
q )

vd
0+

∑
q∈Q min

Sd
q⊆Bd

q

V d
q (Sd

q )
γd
q
. Similarly we find the upper bound for xmd ∈ [0, xUmd]. Combining

all these results we obtain the following formulation:

max
∑
d∈D

yd ·
∑
m∈M

∑
t∈T

bdmλmt − Ecost
policy(wa, u

in
mt, u

out
mt ) (4.34)

s.t. (4.24)− (4.31)
gdyd = fd ∀d ∈ D (4.35)
gdxmd = hmd ∀d ∈ D, m ∈M (4.36)∑
t′=t+τmm′
t+η≤t′≤t+ρ

w(m,t)(m′,t′) ≥ λm′t

∑
d∈D

bdm′xmd (4.37)

∀m,m′ ∈M, t ∈ T \ {Tmax − ρ− η, ..., Tmax}∑
a∈A

wa ≥
∑
m∈M

∑
m′∈M

∑
t∈T

λm′t

∑
d∈D

bdm′xmd (4.38)

yd, fd, gd ∈ [0, yUd ], xmd, hmd ∈ [0, xUmd] ∀d ∈ D, m ∈M (4.39)

Note that for the CB policy we can similarly reformulate the fractional term. Yet still, constraints (4.35) and (4.36)
are bilinear in terms of decision variables zSd

q
, yd, gd and xmd. We can further linearize these constraints by ap-

plying the commonly used linearization technique by Charnes and Cooper [1973], resulting in adding additional
constraints to the model. We introduce auxiliary continuous variables lSd

q
and kmSd

q
such that lSd

q
= zSd

q
· yd and

kmSd
q
= zSd

q
· xmd. We then add the following linearization constraints:

lSd
q
≤ yd ∀q ∈ Q, d ∈ D, Sd

q ⊆ Bd
q (4.40)

lSd
q
≤ yUd · zSd

q
∀q ∈ Q, d ∈ D, Sd

q ⊆ Bd
q (4.41)

lSd
q
≥ yd − yUd · (1− zSd

q
) ∀q ∈ Q, d ∈ D, Sd

q ⊆ Bd
q (4.42)

kmSd
q
≤ xmd ∀q ∈ Q, d ∈ D, Sd

q ⊆ Bd
q , m ∈M (4.43)

kmSd
q
≤ xUmd · zSd

q
∀q ∈ Q, d ∈ D, Sd

q ⊆ Bd
q , m ∈M (4.44)

kmSd
q
≥ xmd − xUmd · (1− zSd

q
) ∀q ∈ Q, d ∈ D, Sd

q ⊆ Bd
q , m ∈M (4.45)

lSd
q
∈ [0, yUd ], kmSd

q
∈ [0, xUmd] ∀q ∈ Q, d ∈ D, Sd

q ⊆ Bd
q , m ∈M (4.46)

By incorporating the new auxiliary variables into the formulation the bilinear constraints (4.35) and (4.36) re-
spectively change to:∑

q∈Q

∑
Sd
q⊆Bd

q

V d
q (Sd

q )
γd
q πd

q (S
d
q ) · zSd

q
= vd0 · yd +

∑
q∈Q

∑
Sd
q⊆Bd

q

V d
q (Sd

q )
γd
q · lSd

q
∀d ∈ D (4.47)

∑
q∈Q

∑
Sd
q⊆Bd

q

∑
r∈R̂m∩Sd

q

vdqr · V d
q (Sd

q )
γd
q−1 · zSd

q
= vd0 · xmd +

∑
q∈Q

∑
Sd
q⊆Bd

q

V d
q (Sd

q )
γd
q · km

Sd
q
∀d ∈ D, m ∈M (4.48)

These linearizations replace all the bilinear terms the model, allowing it to be formulated as a MILP. To show
the equivalence between the original non-linear modelMNL and the enumerated linearized modelMEL, we
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prove the following theorem:

Theorem 4.3.1 (Equivalence betweenMNL andMEL). LetMNL be the original non-linear optimization
model, defined over decision variables (zdqr, wa, u

in
(m,t), u

out
(m,t)), with an objective function and constraints that

are non-linear due to fractional expressions involving binary variables zdqr. LetMEL be the enumerated and
linearized model derived fromMNL by enumerating all feasible subsets Sd

q ∈ Bd
q that represent the possible

assortments for each cuisine q in district d, thus replacing zdqr with zSd
q
, and introducing auxiliary variables and

additional constraints to linearize all fractional and non-linear terms, resulting in a Mixed-Integer Linear Pro-
gram (MILP). Then,MNL andMEL are equivalent in terms of feasible solutions and optimal objective value.
In particular:

(i) For every feasible solution ofMNL, there exists a corresponding feasible solution ofMEL that attains
the same objective value.

(ii) For every feasible solution ofMEL, there exists a corresponding feasible solution ofMNL that attains
the same objective value.

As a consequence, any globally optimal solution to the enumerated and linearized modelMEL corresponds to
a globally optimal solution of the original non-linear modelMNL.

Proof. The original modelMNL uses binary variables zdqr to implicitly determine the assortment of restaurants
selected for each cuisine q in district d. These zdqr variables must satisfy constraints such as minimum number of
selected restaurants per cuisine and other feasibility conditions related to service and routing. In the enumer-
ated modelMEL, we explicitly list all feasible subsets Bdq of restaurants for each cuisine q and district d. Each
feasible subset Sd

q ∈ Bd
q corresponds to a unique pattern of zdqr variables being 1 for r ∈ Sd

q and 0 otherwise.
Thus, selecting zSd

q
= 1 inMEL replicates exactly one feasible configuration of zdqr inMNL.

Conversely, any feasible assignment of {zdqr} inMNL that satisfies the assortment constraints defines a unique
subset Sd

q , which is included in Bdq by construction. Setting zSd
q
= 1 and zS′d

q
= 0 for S′d

q ̸= Sd
q inMEL repro-

duces this configuration. Thus, there is a one-to-one correspondence between feasible assortment selections
in the original and enumerated models. The remaining variables (wa, u

in
(m,t), u

out
(m,t)) and their constraints are

preserved in the linearization step. Hence, any feasible solution (zdqr, wa, u
in
(m,t), u

out
(m,t)) inMNL maps to at

least one (zSd
q
, wa, u

in
(m,t), u

out
(m,t), ...) solution inMEL, and vice versa.

The original modelMNL contains fractional terms in the objective and in some constraints. After enumera-
tion, some non-linear terms become constants associated with each assortment Sd

q , resulting in the following
simplified form of non-linearity: ∑

d∈D

fd(z)
gd(z)

Both functions in the numerator and denominator of are linear in zSd
q
. Similarly the non-linear constraints can

be written in this form. This makes the problem aMixed-Integer Linear Fractional Program (MILFP). By introduc-
ing auxiliary variables and linearization constraints we apply the Charnes-Cooper transformation [Charnes and
Cooper, 1973], reformulating the MILFP using bilinear constraints, and by using Glover’s linearization turning
it into the equivalent MILP, obtaining a set of linear equalities and inequalities that exactly replicate the frac-
tional relationships. This linearization is done fraction-by-fraction and since linear constraints are closed under
addition, summing multiple linearized fraction does not break any equivalence. This means that when summing
over all districts d ∈ D in the objective there is no loss of optimality in summing the individually linearized
terms. Therefore, the result is not an approximation but an exact reformulation: for any feasible assignment of
(zSd

q
, wa, u

in
(m,t), u

out
(m,t)), the auxiliary variables can be chosen to match the fractional value fromMNL exactly.

Hence, the objective value obtained inMEL for any given feasible solution matches exactly the objective value
of the corresponding solution inMNL.

Since there is a bijection between feasible solutions ofMNL andMEL and their respective objective values
are identical, optimal solutionsmap between the twomodels. If (z∗Sd

q
, w∗

a, u
in∗

(m,t), u
out∗

(m,t), . . .) is optimal inMEL

with optimal value Z∗, then the corresponding solution inMNL attains at least Z∗. If there were a better
solution inMNL, it would map to a solution inMEL with a better objective, contradicting the optimality in
MEL.



4.3. Linearization 18

In this regard, the original model is reformulated to the enumerated model and transformed into a MILP, which
can effectively be solved by a typical branch-and-bound solver like Gurobi, able of reaching global optimality.
As shown by the theorem above, this ensures we have also found the global optimum of the original non-linear
modelMNL. However, the problem grows exponentially in variables due to the number of possible combina-
tions of restaurants for the assortments. Therefore, we need to carefully search the solution space for which we
present our resolution approach in Chapter 5.



5
Resolution approaches

This chapter explores the methodologies employed to solve the RSRDP. We present an overview of resolution
techniques ranging from exact algorithms to heuristic methods, each tailored to address the trade-off between
computational efficiency and solution quality. Furthermore, a benchmark solution method for a simplified sep-
arated model provides a baseline for evaluating the added value of the integrated optimization. We aim to
provide a comprehensive narrative of different resolution approaches, guiding the reader through our decisions
and discoveries.

Each method offers unique strengths and limitations, contributing to a holistic understanding of the problem.
Exact methods, including using a standard solver and a Benders decomposition framework, resulted computa-
tionally intensive. Therefore, heuristic methods are explored. We present our tailored Iterative Assortment
Generation (IAG) algorithm that strikes a balance between computational feasibility and solution quality, lever-
aging problem-specific insights to navigate the solution space efficiently. Finally, column generation provided
critical insights that shaped the development of the heuristic algorithm. We discuss the challenges faced when
using column generation techniques and justify its exclusion from our main results. The proposed methodolo-
gies are evaluated through numerical experiments, comparing the useful algorithms to assess their performance
in terms of solution quality and computational efficiency, which are presented in Chapter 6.

5.1. Benchmark: separated assortment and rider optimization
To establish a baseline for evaluating the benefits of integrated optimization, we adopt a two-stage benchmark.
In the first stage, assortment offerings are optimized independently for each service district, without considering
rider decisions. In the second stage, the rider dimensioning problem is solved with the previously chosen assort-
ments treated as fixed. This approach mirrors a straightforward industry practice in which restaurant choices
(restaurant assortments) and rider operations are managed as separate processes. Below, we describe how we
obtain a polynomial-time solution for assortment selection using a method inspired by Davis et al. [2014], and
then integrate these results into the rider dimensioning problem.

Assortmentmodel. In this approach, each service district determines the optimal restaurants to offer for each
(q, d), q ∈ Q, d ∈ D pair. Under the assumptions vdq0 = 0 and γdq ∈ [0, 1] ∀q ∈ Q, d ∈ D, Davis et al. [2014]
show that for a single nest, considering only nested-by-revenue assortments is optimal. We extend this result
to all districts by noting that each district’s assortment problem is independent when rider dimensioning is not
considered.

To determine NBR assortments, for every service district d ∈ D, and restaurants in each nest q ∈ Q are ranked
in descending order of their individual revenue contributions. A candidate assortment is formed by adding
restaurants one at a time, where the process stops when adding any additional restaurant would reduce the
marginal increase in expected revenue to zero or negative. We denote the set of NBR assortments for each
cuisine-district pair (q, d) byΨd

q . To find theNBR assortments for every service districtwe extend the formulation
by Davis et al. [2014] to include multiple assortment decisions. We define decision variables χd ∈ R+ and

19
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ψd
q ∈ R+ such that ψd

q = maxSd
q⊆Rd

q
V d
q (S

d
q )

γd
q (πd

q (S
d
q )− χd). The linear program is then defined as:

R∗ = min
∑
d∈D

χd (5.1)

s.t. vd0χd ≥
∑
q∈Q

ψd
q ∀d ∈ D (5.2)

ψd
q ≥ V d

q (S
d
q )

γd
q (
∑
m∈M

∑
t∈T

bdmλmtπ
d
q (S

d
q )− χd) ∀Sd

q ⊆ Ψd
q , q ∈ Q, d ∈ D (5.3)

χd ∈ R+, ψ
d
q ∈ R+ ∀q ∈ Q, d ∈ D (5.4)

This program provides the optimal NBR assortments and is polynomial solvable as it has |D|(1 + |Q|) decision
variables and |D|(1 + |Q|(1 + |Rd|)) constraints.

Rider dimensioning. Once the optimal restaurants have been chosen for each nest q and district d, we fix these
assortment decisions by setting zSd

q
= 1 for the chosen NBR assortments and zero otherwise. We then proceed

to solve the problem with the fixed zSd
q
variables, providing us with the total expected profit of the benchmark

solution. This is still computed as the difference between the revenues from the selected assortments and
the rider costs related to the applied policy. Because the two stages are decoupled, this approach provides a
baseline to compare the integrated model to. Additionally, the NBR assortments are used as an initialization for
the resolution approaches presented in the next sections.

5.2. Exact solution method
Exact algorithms guarantee proven optimality for the underlying problem but can be computationally demand-
ing. In this section, we detail how one such approach was applied to the linearized and enumerated RSRDP
model from Chapter 4. Specifically, we explore the impact of Benders decomposition, and propose a column
generation framework to solve the problem, including the incorporation of Benders cuts to speed up conver-
gence.

5.2.1. Benders decomposition
Benders decomposition is employed to decompose the problem and solve more efficiently: the master problem
(MP) on assortment selection to maximize revenue and the rider subproblem (SP) to minimize rider costs. In
our formulation, the master problem is an integer program that selects an assortment for each service district
and cuisine nest, while the subproblem is a continuous optimization model that determines the allocation of
riders throughout the system based on the chosen assortments. Mathematically, for the integrated problem
formulated in Chapter 4, the Benders decomposition formulation is the following:

Master Problem (MP).

max
∑
d∈D

yd ·
∑
m∈M

∑
t∈T

bdmλmt −Θ (5.5)

s.t.
∑

Sd
q∈Bd

q

zSd
q
= 1 ∀q ∈ Q, d ∈ D (5.6)

(4.40)− (4.48)

Θ ≥ Z +
∑
d∈D

∑
m∈M

ϕmd · (xmd − x̂md) (5.7)

Constraint (5.7) represents the Bender’s cut from the subproblem, where ϕmd is the dual variable of constraint
(5.11) in the subproblem. Given a solution x̂md from the MP, the subproblem is presented.
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Subproblem (SP).

min Z = Ecost
policy(wa, u

in
(m,t), u

out
(m,t)) (5.8)

s.t. (4.25)− (4.29)∑
t′=t+τmm′
t+η≤t′≤t+ρ

w(m,t)(m′,t′) ≥ λm′t

∑
d∈D

bdm′xmd ∀m,m′ ∈M, t ∈ T \ {Tmax − ρ− η, ..., Tmax} (5.9)

∑
a∈A

wa ≥
∑
m∈M

∑
m′∈M

∑
t∈T

λm′t

∑
d∈D

bdm′xmd (5.10)

xmd = x̂∗md ∀m ∈M, d ∈ D (5.11)

The optimal vector x̂md represents the demand generated by the assortment plan, is obtained by solving the
master problem. The resulting cut from the SP is subsequently added to the MP, which is a process that repeats
itself until the MP reaches optimality. By incorporating Benders optimality cuts into the MP, the formulation is
progressively tightened, enhancing convergence to the optimal solution.

This approach allows for a comparison of the computational performance between a standard solver and one
incorporating Benders decomposition. However, since both methods involve the enumeration of all possible as-
sortments, they remain intractable for larger instances. To address this, we explored an exact column generation
(CG) algorithm combined with a branch-and-price method, incorporating Benders cuts to expedite convergence
at each node in the branch-and-bound tree, explained in more detail in the next subsection.

5.2.2. Column generation
Column generation (CG) is an iterative method that helps deal with very large sets of possible solutions, called
columns in the optimization model, by introducing only a few columns at a time, rather than enumerating them
all at once. The idea is to start with a Restricted Master Problem (RMP) that uses only a small subset of columns
(assortments in our case). We solve this smaller problem, then look for additional columns using the Pricing
Problem (PP) that could improve the current solution. If we find any, we add them to the RMP and resolve. This
process repeats until no further improvements are possible, guaranteeing an optimal solution to the relaxed
problem.

Initially, we believed that the ideal assortments might be close to the NBR assortments because our preliminary
results suggested these assortments were strong candidates. Column generation seemed like a good fit: it could
begin with these NBR assortments and then incrementally add only new assortments that would truly enhance
the objective, thereby handling the otherwise massive variety of possible choices.

However, despite its elegance, our investigations revealed that the associated PP became numerically unstable
and intractable due to non-convex terms. We used the Gurobi 11.0.1 solver, which was unable to obtain the
optimal solution for the PP. As the scale of the instance and the diversity of restaurants grew, the combinatorial
explosion in the PP caused severe computational bottlenecks. Repeatedly, the solver would generate columns
that were effectively duplicates, mainly due to large dual variable magnitudes that skewed the reduced-cost
calculations. In this section, we discuss the intractability of the proposed column generation approach for our
assortment optimization component, how a Benders decomposition was envisioned to handle additional rout-
ing decisions, and what the branch-and-price framework would look like to obtain an optimal solution to the
problem if the PP is solvable. Potential strategies for tailoring the method to make it computationally tractable
on large-scale instances is presented using our current knowledge, providing possible insights for future research
directions and the inspiration for our Iterative Assortment Generation heuristic presented in the next section.

Column generation formulation
Our approach initializes with a small subset of columns (assortments), yielding an Restricted Master Problem
(RMP) where constraints (5.13)–(5.24) are enforced over a subset of potential assortments B̂dq . We solve this
RMP to optimality in a relaxed setting and then solve a Pricing Problem (PP) to identify assortments with positive
reduced cost. The highest newly identified columns are added to the RMP, and the process repeats until nomore
improving columns exist. Note that this includes only the assortment optimization, we were planning on adding
the expected costs from the riders later using the Benders decomposition framework presented in the previous
subsection. The RMP is defined as:
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Restricted Master Problem (RMP).

max
∑
d∈D

yd ·
∑
m∈M

∑
t∈T

bdmλmt (5.12)

s.t.
∑

Sd
q∈B̂d

q

zSd
q
= 1 ∀q ∈ Q, d ∈ D (5.13)

∑
q∈Q

∑
Sd
q⊆B̂d

q

V d
q (Sd

q )
γd
q πd

q (S
d
q ) · zSd

q
= vd0 · yd +

∑
q∈Q

∑
Sd
q⊆B̂d

q

V d
q (Sd

q )
γd
q · lSd

q
∀d ∈ D (5.14)

∑
q∈Q

∑
Sd
q⊆B̂d

q

∑
r∈R̂m∩Sd

q

vdqr · V d
q (Sd

q )
γd
q−1 · zSd

q
= vd0xmd +

∑
q∈Q

∑
Sd
q⊆B̂d

q

V d
q (Sd

q )
γd
q · km

Sd
q
∀d ∈ D, m ∈M (5.15)

lSd
q
≤ yd ∀q ∈ Q, d ∈ D, Sd

q ⊆ B̂dq (5.16)

lSd
q
≤ yUd · zSd

q
∀q ∈ Q, d ∈ D, Sd

q ⊆ B̂dq (5.17)

lSd
q
≥ yd − yUd · (1− zSd

q
) ∀q ∈ Q, d ∈ D, Sd

q ⊆ B̂dq (5.18)

kmSd
q
≤ xmd ∀q ∈ Q, d ∈ D, Sd

q ⊆ B̂dq , m ∈M (5.19)

kmSd
q
≤ xUmd · zSd

q
∀q ∈ Q, d ∈ D, Sd

q ⊆ B̂dq , m ∈M (5.20)

kmSd
q
≥ xmd − xUmd · (1− zSd

q
) ∀q ∈ Q, d ∈ D, Sd

q ⊆ B̂dq , m ∈M (5.21)

zSd
q
∈ [0, 1] (relaxed) ∀q ∈ Q, d ∈ D, Sd

q ∈ B̂dq (5.22)

lSd
q
∈ [0, yUd ], kmSd

q
∈ [0, xUmd] ∀q ∈ Q, d ∈ D, Sd

q ∈ B̂dq , m ∈M (5.23)

yd ∈ [yLd , y
U
d ], xmd ∈ [xLmd, x

U
md] ∀d ∈ D, m ∈M (5.24)

Derivation of the Pricing Problem (PP). In the column generation framework, the Pricing Problem is derived
from the RMP by exploiting its dual solution. After solving the RMP, each constraint is associated with a dual
variable. These dual values represent the marginal worth of relaxing the corresponding RMP constraints. To
determine if a new column (assortment) could improve the current solution, we compute its reduced costs, that
is, the net benefit of introducing that column into the master problem. Mathematically, for a candidate column
defined by binary variables zdqr = 1 if restaurant r is included in the newly generated assortment Sd

q for cuisine
q in district d, and zdqr = 0 otherwise, the reduced cost depends on dual variables of the constraints. Let ϕdq
represent the dual variable for constraint (5.13), σd for constraint (5.14), µd

m for constraint (5.15), α(1)

q,d,Sd
q
and

α
(2)

q,d,Sd
q
for constraints (5.17) and (5.18) respectively, andβ(1)

d,m,q,Sd
q
andβ(2)

d,m,q,Sd
q
for constraints (5.20) and (5.21)

respectively. If Rd
q is the set of restaurants available for cuisine q in district d, the reduced cost c̄dq(zdqr) can be

formulated as:

c̄dq(z
d
qr) =− ϕdq − σd

vdq0 + ∑
r∈Rd

q

vdqrz
d
qr

γd
q ( ∑

r∈Rd
q
pdqrv

d
qrz

d
qr

vdq0 +
∑

r∈Rd
q
vdqrz

d
qr

)(∑
m∈M

∑
t∈T

bdmλmt

)

−
∑
m∈M

µd
m

∑
r∈R̂m∩Rd

q

vdqrz
d
qr

vd0q + ∑
r∈Rd

q

vdqrz
d
qr

γd
q−1

+
∑

Sd
q∈B̂d

q

(α
(1)

q,d,Sd
q
− α(2)

q,d,Sd
q
)yUd (5.25)

+
∑
m∈M

∑
Sd
q∈B̂d

q

bdm

(
β
(1)

d,m,q,Sd
q
− β(2)

d,m,q,Sd
q

)
xUmd

This expression measures the difference between the column’s potential contribution to the objective and the
cost of its impact on the RMP constraints (weighted by the duals). The PP then seeks the assortment, the vector
zdqr that maximizes c̄dq(zdqr), subject to feasibility constraints. In compact form, the PP is then presented as:
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Pricing Problem (PP).

max c̄dq(z
d
qr) (5.26)

s.t.
∑
r∈Rd

q

zdqr ≤ |Rd
q | (trivial upper bound) ∀q ∈ Q, d ∈ D (5.27)

∑
r∈Rd

q

zdqr ≥ Kd
q (if minimum selection constraints apply) ∀q ∈ Q, d ∈ D (5.28)

zdqr ∈ {0, 1} ∀q ∈ Q, d ∈ D, r ∈ Rd
q (5.29)

Where Kd
q is the optional lower bound on the assortment size. The column zdqr with the highest c̄dq(zdqr) > 0

is added to the RMP. This iterative loop continues until no improving columns exist, guaranteeing optimality in
the continuous relaxation of the RMP. However, a challenge emerges in our approach because the resulting PP
is non-convex. The non-convexity arises from several sources: non-linear exponents, fractional expressions and
multiplications of dual variables. The combination of these factors means that the PP’s objective function is
highly non-convex with respect to the binary decision variables zdqr.

Our implementation of the PP uses Gurobi 11.0.1, which is capable of handling certain classes of non-convex
optimization. Because the PP incorporates binary variables, we initially expected that Gurobi might effectively
tackle the problem despite its non-convex components. During testing, the solver did generate promising as-
sortments at early stages. However, we observed numerical instabilities that caused repeated generation of
the same columns. In particular, the large magnitudes of some dual variables led to unstable reduced-cost cal-
culations, causing the solver to repeatedly identify columns that were essentially duplicates. As we increased
the potential restaurant pool, the combinatorial complexity of the PP grew accordingly. This growth inevitably
slowed the solver, further compounding numerical precision issues. From our experiments, it appears that reli-
ably solving this non-convex PP for large instances would likely requiremore advanced techniques in non-convex
optimization, techniques that are beyond the current practical scope. As a result, a heuristic method tailored
to this particular pricing structure may be more viable for large-scale settings. Appendix C demonstrates how
the riders component can be merged into the column generation procedure by applying a full branch-and-price
framework with Benders decomposition where column generation is invoked at each node of the search tree.

Although the CG exploration proved challenging, it provided valuable insights that informed the decision to pivot
towards heuristic approaches for solving larger instances. This exploration serves as a foundation for the next
section, where we introduce our heuristic algorithm that can handle more complex scenarios.

5.3. Heuristic solution method
Given the complexity and scale of RSRDP, heuristic methods present a practical alternative to exact algorithms.
While exact methods offer optimality, they struggle to scale for real-world scenarios involving hundreds of avail-
able restaurants. In contrast, heuristics provide near-optimal solutions within reasonable computational times
by leveraging problem-specific insights to guide the search. We exploit observed solution space properties, such
as the dominance of nested-by-revenue assortments, to designmore efficient algorithms. The primary challenge
lies in the exponential growth of potential assortments as the number of available restaurants increases. To ad-
dress this, we focus on selecting a subset of assortments rather than enumerating all possibilities. Using these
problem-specific insights, we propose the Iterative Assortment Generation (IAG) algorithm, which incrementally
generates new assortments to include in the set of potential options. This section first introduces the tailored
IAG algorithm. We then present an extension inspired by the scoring system of the Adaptive Large Neighbor-
hood Search (ALNS) algorithm, providing additional insights into the mechanics and performance of the IAG
approach.

5.3.1. Iterative Assortment Generation
In addressing the problem, we propose a novel solution methodology defined as the Iterative Assortment Gen-
eration (IAG) algorithm that incorporates Benders decomposition. This approach is designed to balance com-
putational efficiency with solution quality, and it leverages problem-specific insights to navigate the vast com-
binatorial space of potential restaurant assortments. Figure 5.1 summarizes the overall methodology. The IAG
algorithm starts with decomposing the problem into a master and subproblem as described in subsection 5.2.1.
Next, the initial set of assortments that form the Restricted Master Problem (RMP) is generated, which are the
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nested-by-revenue (NBR) assortments described in subsection 5.1 and detailed again below. The RMP is solved
using a standard solver such as Gurobi. The routing subproblem is solved to generate dual information that
produces Benders cuts, which are integrated back into the RMP. New assortments are generated based on the
selected assortments from the current iteration, expanding the solution space. To maintain computational ef-
ficiency, assortments that are unused over multiple iterations are removed from the restricted problem based
on an inactivity threshold. The process iterates until a stopping criterion is met, which we define as a time limit
or maximum iteration count.

Figure 5.1: Overview diagram of the IAG algorithm.

Our initial exploration focused on an exact solution framework employing column generation combined with a
branch-and-price method augmented with Benders decomposition. In this exact framework, the master prob-
lem contains the assortment selection variables and is iteratively tightened by incorporating Benders cuts de-
rived from the routing subproblem. Unfortunately, the non-convexity of the associated pricing problem led
to intractability. To address this, we develop the Iterative Assortment Generation (IAG) algorithm described
in Algorithm 1, which is a heuristic that leverages the structure of the problem without relying on dual-based
pricing.

At the heart of the IAG algorithm are three heuristic operators (add, remove, and swap) that generate new
assortments by exploring the neighborhood of the current best solution. These operators function similarly to
the pricing step in column generation; however, they are tailored to our problem structure and do not depend
on dual variables. This allows us to maintain integrality throughout the iterative process, ensuring that every
generated solution is feasible in the original problem space. Algorithm 1 presents the pseudo-code of the IAG
algorithm. Each component of the algorithm is explained in more detail in the subsequent subsections.

Algorithm 1 Iterative Assortment Generation Algorithm
Input: Data instance, time limit Tlimit, maximum number of iterations Ilimit, inactivity threshold φ, last used iteration Ilast.
Output: Best objective P ∗ and associated assortmentsA∗.
Initialize: P ∗ ← NBR objective,A∗ ← NBR assortments, iteration counter i← 0, Ilast(A∗)← 0.
while i < Ilimit and runtime< Tlimit do

Solve the Restricted Master Problem (RMP) using the Benders decomposition method
Extract selected assortmentsAi and objective Pi

if Pi > P ∗ then
Update P ∗ ← Pi,A∗ ← Ai

Update Ilast(A∗)← i
Generate new assortments based on selected assortments and add to RP // Section: generation
Remove unused assortments based on inactivity threshold and remove from RP // Section: removal
Increment iteration counter i← i+ 1

return P ∗ andA∗

For small problem instances, we can validate the heuristic’s performance by comparing its results to the exact
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optimal solution obtained using the Benders decomposition method described earlier. By pre-computing the
optimal solution, we can introduce a condition in the algorithm’s while loop to terminate when the optimal
solution is reached. This allows us to measure the number of iterations and the computational time required
for the algorithm to find the optimal solution, provided it succeeds. To implement this, we introduce a small
tolerance ϵ and incorporate a check within the while loop. The loop is broken when |Pi − P ∗| < ϵ, indicating
that the algorithm has successfully identified the optimal solution.

Initial Nested-By-Revenue assortments.
Under the assumptions that the within-nest no-purchase option satisfies vdq0 = 0 and that the dissimilarity
parameter γdq ≤ 1 for all d ∈ D, q ∈ Q, Davis et al. [2014] showed that the optimal assortment can be
constructed by considering only the nested-by-revenue (NBR) assortments. For each cuisine nest, restaurants
are indexed in descending order of revenue, and the optimal assortment is obtained by including restaurants
sequentially until themarginal revenue becomes non-positive. These NBR solutions for each district-cuisine pair
(d, q) are used as the initial candidates in our IAG algorithm.

Assortment generation.
The pseudo-code for generating new assortments in the IAG framework is presented in Algorithm 2. It focuses
on refining the set of possible assortments (Aposs) by leveraging modifications to previously optimal selected
assortments (Aprev). At each iteration, the algorithm evaluates restaurants within the previously optimal assort-
ment for a specific cuisine and district combination (d, q) (Sprev) and attempts to apply the three key operators
to create new candidate assortments:

• add: For a given current assortment, select a restaurant not included in the set based on its profit contri-
bution (i.e., the product of its revenue pdqr and attraction value vdqr). A weighted random selection favors
higher-profit restaurants, prioritizing those with greater expected profitability.

• remove: For a given current assortment, eliminate a restaurant from the assortment based on its inverse
profit contribution. Lower-profit restaurants are more likely to be removed.

• swap: Replace a restaurant in the current assortment with one not present in it, using the weighted selec-
tion rules from the add and remove operators.

To generate new assortments, we maintain a record of assortments that have already been included in the set
of available assortments. This ensures that only genuinely new assortments are generated. If no further unique
assortments can be created, the algorithm halts the generation process.

Algorithm 2 Generate New Assortments for Selected Assortments
Input: Data instance, previous optimal selected assortmentsAprev, current possible assortmentsAposs, setRd

q .
Output: Updated possible assortmentsA′

poss.
foreach (d, q) ∈ Aprev do

Extract previously optimal selected assortment Sprev
Calculate scores for each restaurant inRd

q based on pdqr and vdqr
Attempt to add: Select a restaurant not in Sprev and add it // Section: add
Attempt to remove: Remove a restaurant from Sprev // Section: remove
Attempt to swap: Swap a restaurant inSprevwith one not in it // Section: swap
Add new assortments toA′

poss
returnA′

poss

Assortment removal.
The assortment removal pseudo-code in Algorithm 3 ensures that the set of available assortments remains ef-
ficient by removing outdated options. Each assortment tracks the last iteration in which it was used. If an
assortment has not been utilizedwithin a defined inactivity thresholdφ, it is removed from the set of possible as-
sortments. This approach streamlines the optimization process by focusing on active and relevant assortments,
reducing computational overhead while maintaining the quality of solutions.

The IAG algorithm is a tailored heuristic approach designed to address the combinatorial complexity of the
RSRDP. By iteratively generating and refining the set of possible assortments, the algorithm balances explo-
ration and exploitation to efficiently search for near-optimal solutions. The three operators, add, remove and
swap, play a central role in generating new assortments, leveraging profitability metrics to guide modifications
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Algorithm 3 Remove Old Assortments Based on Inactivity
Input: Current possible assortmentsAposs, last used iteration Ilast, current iteration i, inactivity threshold φ.
Output: Updated possible assortmentsA′

poss.
foreach (d, q) ∈ Aposs do

foreach assortment Sdq ∈ Aposs(q, d) do
Extract last used iteration Ilast(Sdq ) if i− Ilast ≥ φ then

Remove Sdq fromAposs(q, d)
returnA′

poss =Aposs

to the current solution. Additionally, an assortment removal mechanism ensures computational efficiency by
eliminating outdated options based on inactivity, allowing the algorithm to focus on themost promising subsets.
To further enhance its performance, we extend the IAG framework by introducing an operator scoring system
inspired by the Adaptive Large Neighborhood Search (ALNS) algorithm. This extension integrates a scoringmech-
anism to evaluate and prioritize the operators, providing a structuredway to adaptively guide the search process
based on observed performance. In the next section, we present the tailored ALNS-inspired algorithm and ex-
plore its potential to improve upon the IAG’s performance for larger and more complex instances.

5.3.2. Incorporating Adaptive Large Neighborhood Search scoring system
Building on the IAG framework, we seek to investigate whether the three assortment-generation operators (add,
remove, andswap) differ in performance. To this end, weborrow the idea of a scoringmechanism from theAdap-
tive Large Neighborhood Search (ALNS) algorithm [Ropke and Pisinger, 2006]. ALNS is ametaheuristic commonly
used for large-scale combinatorial optimization, where destroy-repair operators are dynamically weighted based
on their observed success in improving the solution. By introducing a similar adaptive mechanism into the IAG
algorithm, we can prioritize the operators that more frequently yield beneficial new assortments.

It is important to emphasize, however, that this extended version of the IAG is not a standard ALNS approach.
In a classical ALNS algorithm, the solution is typically partially “destroyed” and then “repaired,” with acceptance
based on an improvement (or acceptance) criterion. The solution is not re-optimized in a master problem each
time. Rather, neighborhoods are explored by modifying the solution directly and tracking improvements. In
contrast, our IAG framework, whether extended with ALNS scoring or not, re-solves the restricted master prob-
lem in every iteration. Although the ALNS-inspired scoring scheme helps select which assortments to generate
and keep, we still rely on full optimization to decide which assortments to use in each district-cuisine pair (d, q).
Thus, the IAG remains a Benders-based iterative generation procedure at its core, where the ultimate decision
regarding assortment selection is made by solving an optimizationmodel, rather than purely by local acceptance
rules.

Traditional ALNS relies on a cycle of destroying part of the solution and repairing it to explore different regions
of the search space. In our tailored extension, the removal of inactive assortments assumes a light destructive
role, while our generation operators (add, remove, and swap) act as repair operators. During each iteration,
we randomly select one of these operators according to a weighted probability distribution and generate new
assortments. If any of the newly added assortments improve the solution, we increase the score of the operator
that produced them. This score update feeds back into the operator weights, causing more successful operators
to be chosen more often in subsequent iterations.

Initially, all operator weights are set to 1, and operators are selected randomly. During each iteration, the se-
lected operator’s score is updated based on its contribution to improving the solution. Let Ω be the set of
operators and for each operator ω ∈ Ω, and let wω represent its weight and σω its score. Operator weights are
then adjusted using the following formula:

wω = (1− ξ)wω + ξ
σω∑

ω′∈Ω σω′
(5.30)

Where ξ ∈ (0, 1) is the reaction factor, controlling how sensitive the weights are to changes in the operators’
performance. The updating rule for the scores is set as follows: σω is increased by ζ if a new best solution
is found. In each iteration, a repair operator is chosen to generate a new possible solution. To decide which
operator is chosen at each iteration, we randomly pick one repair operator using probability:

pω =
wω∑

w′∈Ω wω′
(5.31)
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Algorithm 4 outlines the extended IAG approach with ALNS-inspired scoring. At each iteration, we (i) solve
the current restricted problem using Benders decomposition, (ii) update the score of the chosen operator if it
improved the solution, (iii) reweight the operators, and (iv) generate new assortments by the chosen operator.
The removal of inactive assortments keeps the search space from growing uncontrollably. The process is iterated
until either a fixed amount of CPU time Tlimit is used or after a given number of iterations Ilimit.

Algorithm 4 Extended IAG with ALNS Score-Based System
Input: Data instance, time limit Tlimit, maximum iterations Ilimit, reaction factor ξ, inactivity threshold φ, score ζ
Output: Best objective P ∗, associated assortmentsA∗, weights wω for operators
Initialize: Operators Ω = {add, remove, swap}, weights wω ← 1 ∀ω ∈ Ω, scores σω ← 0 ∀ω ∈ Ω
Set P ∗ ← NBR objective,A∗ ← NBR assortments, iteration counter i← 0
while i < Ilimit and runtime< Tlimit do

Solve the Restricted Problem (RP) using Benders decomposition
Retrieve current objective Pi and selected assortmentsAi

if Pi > P ∗ then
Update P ∗ ← Pi,A∗ ← Ai

Increase score of selected operator σchosen_op ← σchosen_op + ζ
Update operator weights: wω ← (1− ξ)wω + ξ σω∑

ω′∈Ω σω′

Select next operator chosen_op ∈ Ω using probability pω
Apply operator (add, remove, or swap) to generate new assortments
Remove unused assortments based on inactivity threshold φ
Increment iteration counter i← i+ 1

return P ∗,A∗, and weights wω ∀ω ∈ Ω

This extended IAG framework with the score-based system enables dynamic evaluation of the operators, provid-
ing valuable insights into their effectiveness. By analyzing the final weights assigned to each operator, we can
identify which operators contribute most to generating high-quality solutions. This information offers a deeper
understanding of the solution space and helps refine the heuristic approach.

In conclusion, this chapter has introduced a range of resolution approaches to address the RSRDP, progressing
from exact methods to heuristic algorithms. While exact methods provide a theoretical benchmark, their scala-
bility limitations necessitate alternative approaches for larger problem instances. The proposed Iterative Assort-
ment Generation (IAG) algorithm, and its extension with the ALNS-inspired score-based system (IAG-E), offer
computationally efficient strategies that leverage problem-specific insights to achieve near-optimal solutions.
In the next chapter, we move on to numerical experiments, comparing the performance of these algorithms
and analyzing their effectiveness in solving both small-scale and large-scale problem instances. This evaluation
provides critical insights into the practical applicability and strengths of each approach.
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Results

In this chapter, we evaluate the performance of the proposed models and solution algorithms through an ex-
tensive set of computational experiments. The results are divided into two key sections: (1) computational
performance, where we assess the efficiency of the proposed algorithms under varying instance settings, and
(2) analyzing the impact of commission-based (CB) and fixed employment (FE) compensation policies on opera-
tional costs, rider utilization, and profitability under varying network configurations. Additionally, in Section 6.3,
we test the proposed algorithm on Amsterdam restaurant data to find practical trade-offs between rider shift
duration and delivery windows, comparing profitability, fleet size and rider workload measures.

The computational performance analysis examines three dimensions: (i) the effectiveness of algorithm com-
ponents in reducing computational time, comparing standard Gurobi (G), Gurobi with Benders decomposition
(G+B), and the Iterative Assortment Generation algorithm (IAG); (ii) the comparative performance of the IAG and
its score-based extension IAG-E for smaller and medium-sized instances; and (iii) the profitability and efficiency
of the integrated RSRDP with IAG versus the separated benchmark model explained in Section 5.1. For each
category, we report metrics such as computation time, objective value, and improvement percentage across
multiple scenarios.

Results show that the integrated RSRDP consistently outperforms the benchmark in expected profitability, while
maintaining service quality standards, with IAG delivering scalable, high-quality solutions. The score-based ex-
tension IAG-E does not add additional value to the performance of the IAG algorithm under the experiments
tested. Additionally, CB excels in high-variability environments, providing high profitability, and outperforming
FE consistently on profitability measures. However, FE performs better in stable settings, ensuring balanced
fleet utilization.

All computational experiments were conducted on two systems: smaller instances were solved on a virtual
machine equipped with an Intel(R) Core(TM) i7-6700HQ CPU, 2.60 GHz processor, and 32 GB of RAM, while
larger instances were processed on the DelftBlue supercomputer [Delft High Performance Computing Centre,
2024] with an Intel(R) Xeon(R) Gold 6248R CPU, 3.00 GHz processor, and 185 GB of RAM. All experiments were
implemented in Python 3.9.7 and solved using Gurobi 11.0.1.

6.1. Computational performance
6.1.1. Instance description
The algorithm was tested on samples of generated datasets using a set of instances. Each instance is defined
by the tuple (D,Q,M,R, vdq0, [y

L
qd, y

U
qd]), whereD is the number of service districts, Q the number of cuisine

types,M the number of zones, andR the total number of restaurants available. The no-purchase option vdq0 is
considered in two configurations: either set to zero, meaning customers always place an order once they choose
a cuisine, or assigned a value of 10, where customers have the possibility of opting out, better reflecting real-
world behavior where some customers browse without committing to a purchase. The dissimilarity parameters
ydq ∈ [yLqd, y

U
qd]) are sampled from the ranges [0, 1], indicating competitiveness between within nest restaurants,

and [1, 2], indicating synergy between restaurants. Only for γdq = 1we have independence between restaurants
corresponding to the MNL model. These configurations allow us to evaluate different behavioral scenarios and
compare against the benchmark where it is assumed that vdq0 = 0 and γdq ∈ [0, 1].

The experiments cover a broad range of problem sizes. Smaller instances include Q = 2 cuisine types and

28
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restaurant counts R ∈ {10, 15, 20}, whereas larger instances explore Q = 4 with restaurant counts extending
toR ∈ {50, 100, 150, 200}. The spatial structure remains fixed withD = 4 service districts andM = 15 zones,
ensuring consistency across all test cases. Zones are generated using the H3 indexing system. Each instance is
constructed to reflect real-world conditions, explained in the subsequent section.

Additionally, we evaluate the impact of set sizes on computational efficiency, we test three configurations: small,
medium, and large, defined as follows: T ∈ {50, 100, 150}, Q ∈ {2, 4, 6}, S ∈ {2, 3, 4}, R ∈ {10, 20, 30}
and M ∈ {4, 15, 59}. For these experiments, we compare the performance of the exact method, the G+B
approach, and the IAG algorithm. These tests use γdq ∈ [0, 1] and vdq0 = 0. To ensure comparability, the
smallest case in each configuration is treated as the baseline for evaluating the impact of scaling. Due to the
computational complexity of the exact method, these experiments are limited to relatively small instances with
fewer restaurants. By systematically varying the set sizes, we aim to identify trends in computational efficiency
and the relative trade-offs between the different solving approaches.

Parameter settings.
We adopt realistic parameter settings derived from industry information to evaluate the algorithms’ perfor-
mance under practical scenarios. Table 6.1 summarizes these settings, including spatial and temporal param-
eters, demand distributions, and cost coefficients. The restaurant and customer distributions are configured
to reflect realistic urban settings, with restaurants concentrated 50% in central zones and 50% randomly dis-
tributed across peripheral zones. For the parameters used in the score-based IAG extension (IAG-E), we follow
Gansterer et al. [2021].

Table 6.1: Parameter settings for computational performance test instances.

Parameter Value Description

T 48 periods Total time horizon
D 4 districts Number of districts
M 15 zones Number of spatial zones
ρ max(τmm′) periods Delivery window deadline
η 1 period Meal preparation time
λmt ∼ Poisson(2) Customer demand distribution
θmin 0 periods Minimum rider shift duration
θmax 48 periods Maximum rider shift duration
coverheadFE e54 euro Daily overhead costs per rider under FE policy
coverheadCB e18 euro Daily overhead costs per rider under CB policy
cdqr e3.75 euro Delivery cost per order CB policy
ct e2.50 euro Time discretized hourly wage for riders under FE policy

φ 5 iterations Inactivity threshold value IAG algorithm
Ilimit 50 iterations Iteration limit IAG algorithm
Tlimit 3600 seconds Computational time limit IAG algorithm
ξ 0.4 reaction factor IAG-E algorithm
ζ 10 score update for new best solution IAG-E algorithm

Restaurant revenues pdqr and attraction levels vdqr are generated using themethodology of Alfandari et al. [2021].
We sampleUdqr from a uniform distribution over [0, 1], andXd

qr and Y d
qr are independently sampled from a uni-

form distribution over [5, 15]. Then, the revenues and attraction levels are calculated as: pdqr = 10×Ud
qr×Xd

qr,
vdqr = 10 × (1 − Ud

qr) × Y d
qr ∀d ∈ D, q ∈ Q, r ∈ R, where higher-priced restaurants tend to have lower

attraction levels, aligning with the idea that expensive options appeal to fewer customers. However, random
variation ensures that this relationship is not strictly deterministic. The revenue distribution is skewed, pro-
ducing many low-revenue restaurants and a few high-revenue ones, reflecting real-world restaurant dynamics.
Platform revenue is modeled as a percentage (15–30%) of customer orders, consistent with industry standards.
To generate realistic profits, customer order values are set based on an average of €34, with revenue and at-
traction parameters sampled accordingly. We do not impose any restrictions on minimum restaurants to be
included in assortments.
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6.1.2. Computational performance results
For all tests, we adopt the FE policy. A time limit of 3600 seconds is imposed on each instance. For instances
that do not converge to optimality within this limit, we report the best-found solution and the corresponding
optimality gap, as well as its iteration number for the IAG algorithm. We solve 20 samples of each instance, and
present the average results. To evaluate the relative performance of different models, we calculate the average
percentage improvement for key performance indicators (KPIs), such as computation time, objective value or
required fleet size, using the following formula:

KPI improvement(%) =
1

20

20∑
I=1

100% ·
(
|KPI(1)− KPI(2)|

KPI(1)

)
(6.1)

Here, I = 1, ..., 20 denotes each sample, with (1) representing KPI results from Method 1 that is compared to
(2), representing results from Method 2.

The effect of different algorithm components.
Table 6.2 presents the objective values, computation times, and optimality gaps for all methods, along with
the number of iterations for IAG. Table 6.3 quantifies the performance improvements, showing percentage
reductions in time and any changes in objective values. The results highlight the impact of Benders decom-
position and the IAG algorithm on solving the integrated model. While all three methods achieve the same
objective values across tested instances, significant differences emerge in computation time. Adding Benders
decomposition (G+B) substantially reduces computation time compared to using only the standard solver (G),
with improvements of up to 94.87%. This effect is particularly evident in complex cases with more restaurants,
where G struggles to close optimality gaps, despite reporting the correct solution. The decomposition effectively
strengthens dual bounds, leading to faster convergence.

Further time reductions are observed for IAG, outperforming G+B by an additional 14% in scenarios with low
outside utility values. However, when the outside utility was set higher, IAG requires more time than G+B,
though all instances were still solved within three minutes. Notably, IAG scales well as the number of restau-
rants increases, benefiting from its ability to explore the solution space efficiently without full enumeration. The
number of iterations remains low, averaging between 2 and 6, underscoring its rapid convergence. Interestingly,
when complexity in terms of available restaurants increases, IAG performs relatively better, demonstrating that
IAG scales well and provides a robust alternative to exact methods for mid-sized instances.

Table 6.2: The effect of Benders decomposition and IAG.

Instance Gurobi Gurobi + Benders IAG

Obj. (€) Time (s) Gap (%) Obj. (€) Time (s) Gap (%) Obj. (€) Time (s) Gap (%) #Iter.

(4,2,15,10,0,[0,1]) 39267.59 139.65 0 39267.59 55.86 0 39267.59 47.37 0 2.5
(4,2,15,10,0,[1,2]) 73512.25 1551.69 0 73512.25 80.38 0 73512.25 69.03 0 2.1
(4,2,15,10,10,[0,1]) 30523.12 112.02 0 30523.12 54.86 0 30523.12 105.25 0 3.9
(4,2,15,10,10,[1,2]) 50187.17 1329.27 1.32 50187.17 80.92 0 50187.17 151.46 0 3.9

(4,2,15,15,0,[0,1]) 40434.99 1711.60 12.7 40434.99 106.09 0 40434.99 35.81 0 1.6
(4,2,15,15,0,[1,2]) 75682.05 3293.44 900.72 75682.51 868.49 0 75682.51 25.15 0 1.5
(4,2,15,15,10,[0,1]) 32154.20 1351.24 2.54 32154.20 67.75 0 32154.20 114.76 0 5.8
(4,2,15,15,10,[1,2]) 53176.87 2778.13 332.23 53240.35 977.54 0 53240.35 194.16 0 4.5

Impact of set size on computational efficiency.
The heatmap of computational times presented in Figure 6.1 further highlights the scalability challenges faced
by the exact methods as the problem size increases. For the G+B approach, the rapid increase in computa-
tional time with the number of restaurants (|R|) can be attributed to the growth in enumerations required
to evaluate feasible solutions as the problem space expands. Additionally, the increase in computational time
with the number of zones (|M|) reflects the added complexity of modeling rider movement and interactions
across a larger spatial network. With more zones, the solver must account for an exponentially larger number
of possible routing and delivery combinations, which drives up the computational burden. In contrast, the IAG
algorithm exhibits more stable computational times, demonstrating its efficiency and suitability for larger-scale
problems. This improvement stems from its intelligent selection of possible assortments, which effectively mit-
igates the computational challenges associated with restaurant complexity. However, as the number of zones
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Table 6.3: Performance improvement summary of effects Benders decomposition and IAG algorithm.

Instance Obj. % Impr.
G→ G+B

Obj. % Impr.
G+B→ IAG

Time % Impr.
G→ G+B

Time % Impr.
G+B→ IAG

(4,2,15,10,0,[0,1]) 0% 0% 60% 15.20%
(4,2,15,10,0,[1,2]) 0% 0% 94.82% 14.12%
(4,2,15,10,10,[0,1]) 0% 0% 50.03% -91.85%
(4,2,15,10,10,[1,2]) 0% 0% 93.91% -87.17%

(4,2,15,15,0,[0,1]) 0% 0% 93.80% 66.25%
(4,2,15,15,0,[1,2]) 0% 0% 73.63% 97.10%
(4,2,15,15,10,[0,1]) 0% 0% 94.87% -69.39%
(4,2,15,15,10,[1,2]) 0.12% 0% 93.01% 80.14%

increases, the computational time also rises, likely due to the increased complexity of integrating the demand
in the time-space graph. The expanded spatial structure necessitates tracking a greater number of potential
rider movements and needs to integrate this with the different assortment decisions, thereby adding to the
computational load despite the algorithm’s more efficient handling of restaurant choices.

Figure 6.1: Comparison of different set sizes (small, medium, large) and their impact on computational time, for the exact G+B approach
on the left, and the IAG approach on the right.

Comparing the integrated RSRDP to the separated benchmark.
The results in Table 6.4 compare the separated benchmark model, which solves assortment and rider optimiza-
tion sequentially, with our integrated RSRDP solved with IAG, where both decisions are jointly optimized. The
table presents the objective values, the number of riders required, and the percentage improvement in both
metrics across different problem instances.

The integrated RSRDP model consistently outperforms the separated benchmark in terms of expected profit,
with improvements ranging from marginal increases of 0.09% in simpler cases to substantial gains exceeding
28% in more complex settings. The largest improvements occur when the outside utility is high (vdq0 = 10)
and the restaurants exhibit higher synergy among each other (γdq ∈ [1, 2]). This indicates that the benefits of
integration grow as users have an option of not purchasing anything when they have already chosen a cuisine
type or restaurants are synergistic with respect to each other, or both. Conversely, in cases with no outside
utility and high competitiveness, the profit improvements remain modest, often below 1%, the value of joint
optimization is less pronounced yet still beneficial. For the, in our opinion, most real-world reflective case of
positive outside-utility (vdq0 = 10) and competitiveness between restaurants (γdq ∈ [0, 1]), the improvements
are still significant around 6%. Overall, the impact of integration becomes stronger as the problem size increases,
indicating that for a larger real-world network, integration is even more beneficial.

In terms of fleet size, the integrated RSRDP generally reduces the number of required riders, with decreases of
up to 13.86%. This efficiency gain results from the coordinated optimization of assortment and delivery, leading
to a more compact and effective allocation strategy. However, in some instances, particularly those with high
outside utility, the required fleet size increases, sometimes even by over 50%. This is driven by the RSRDP’s
ability to attract more customers through strategically optimized assortments, leading to a higher order volume
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Table 6.4: Comparing the separated benchmark to the integrated model.

Instance Separated benchmark Integrated model % Impr.

Obj. value # riders Obj. value # riders Obj. value # riders

(4,2,15,10,0,[0,1]) 38993.05 27.34 39267.49 23.55 0.70 -13.86
(4,2,15,10,0,[1,2]) 72768.28 42.96 73512.25 37.54 1.01 -12.62
(4,2,15,10,10,[0,1]) 29612.76 21.96 30523.12 21.71 2.98 -1.14
(4,2,15,10,10,[1,2]) 43045.87 25.78 50187.17 28.63 14.23 11.06

(4,2,15,15,0,[0,1]) 40399.01 24.87 40435.00 24.57 0.09 -1.21
(4,2,15,15,0,[1,2]) 75423.98 43.47 75682.51 40.33 0.34 -7.22
(4,2,15,15,10,[0,1]) 31491.59 19.94 32154.20 21.28 2.06 6.72
(4,2,15,15,10,[1,2]) 49643.69 26.83 53240.35 33.41 6.76 24.52

(4,2,15,20,0,[0,1]) 48635.53 24.35 48730.63 23.91 0.20 -1.81
(4,2,15,20,0,[1,2]) 87078.07 40.98 87992.27 39.99 1.04 -2.42
(4,2,15,20,10,[0,1]) 37240.32 19.00 39235.44 23.72 5.08 24.84
(4,2,15,20,10,[1,2]) 52769.58 25.79 62535.25 34.73 15.6 34.66

(4,4,15,50,0,[0,1]) 67906.86 29.39 67980.02 28.73 0.11 -2.25
(4,4,15,50,0,[1,2]) 104933.61 41.46 105252.31 39.31 0.30 -5.19
(4,4,15,50,10,[0,1]) 48353.21 21.45 52016.95 25.77 7.04 20.14
(4,4,15,50,10,[1,2]) 57285.94 24.83 69201.41 30.64 17.22 23.40

(4,4,15,100,0,[0,1]) 78849.35 31.34 79029.39 29.90 0.23 -4.59
(4,4,15,100,0,[1,2]) 118097.91 41.00 118216.01 38.32 0.10 -6.54
(4,4,15,100,10,[0,1]) 59575.97 24.08 64966.45 28.57 8.30 18.65
(4,4,15,100,10,[1,2]) 62437.89 20.85 82351.77 31.55 24.18 50.32

(4,4,15,150,0,[0,1]) 82233.79 29.47 82302.65 28.69 0.08 -2.65
(4,4,15,150,0,[1,2]) 123268.25 39.28 123296.26 38.36 0.02 -2.34
(4,4,15,150,10,[0,1]) 62038.43 22.71 67892.55 27.93 8.62 22.99
(4,4,15,150,10,[1,2]) 61038.09 20.24 85513.95 31.51 28.62 55.68

(4,4,15,200,0,[0,1]) 80393.57 31.15 80525.82 28.99 0.17 -6.93
(4,4,15,200,0,[1,2]) 123371.40 43.27 123617.42 40.41 0.20 -6.61
(4,4,15,200,10,[0,1]) 62801.29 24.73 68775.88 28.67 8.69 15.93
(4,4,15,200,10,[1,2]) 69387.55 21.56 85378.27 33.84 18.73 56.96
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that necessitates additional riders. Despite this, the corresponding profit increase is substantial, with instances
such as (4,4,15,200,10,[1,2]) showing an 18.73% improvement in profit alongside a 56.96% rise in fleet size.
These cases highlight that while more riders are required, the increase is a direct consequence of capturing
more market demand and driving higher overall profitability.

Overall, the performance of the integrated approach is strongly influenced by the behavioral characteristics of
customers. When customers are more likely to opt out of purchasing, integrating assortment and allocation
decisions allows the platform to strategically influence demand, leading to higher revenues and sometimes re-
quiring a larger fleet to meet demand. Similarly, when restaurants are synergistic, customers display stronger
preferences for specific options, making optimized assortments significantly more valuable. On the other hand,
when outside utility is low and restaurants display higher competitiveness, the impact of integration is limited,
yet still beneficial in terms of profitability and reduced fleet size.

Impact of score-based extension to IAG algorithm.
In the analysis of the IAG-E, the operator weight distributions reveal some interesting patterns. As shown in
Table 6.5, the operators are selected with relatively similar frequencies across scenarios, indicating that the
IAG-E does not exhibit a strong preference for any one operator. However, there are some differences depend-
ing on the scenario. For example, the remove operator often has a slightly higher weight in simpler scenarios,
e.g. vdq0 = 0, γdq ∈ [0, 1], suggesting that removing elements from the current solution is more effective in
these cases. This makes sense since under the condition of γdq ∈ [0, 1], where restaurants are competing more
with each other under the nested logit framework. On the other hand, for scenarios with higher outside utility
(vdq0 = 10), the add and swap operators dominate, reflecting the increased importance of exploring alternative
configurations in more complex settings, consistent with the synergistic nature of having γdq ∈ [1, 2].

Although the IAG-E approach provides flexibility and balance in operator selection, it also leads to increased
computational times, as indicated by the percentage increases reported in Table 6.5. The computation time
increase can likely be attributed to the additional iterations required in this extension. Unlike the IAG implemen-
tation, where all three operators could be applied within a single iteration, the IAG-E applies only one operator
per iteration and evaluates its performance before proceeding. This more granular evaluation strategy leads to
additional iterations before convergence, thus increasing computational effort. Overall, the relatively even dis-
tribution of operator weights suggests that our IAG algorithm is flexible andwell-balanced, as the IAG-E indicates
that no single operator is universally superior across all scenarios.

Table 6.5: Optimized weight percentages of operators in IAG-E.

Instance % Time incr. wa wr ws

(4,2,15,10,0,[0,1]) 55.75 27.64 36.91 35.45
(4,2,15,10,0,[1,2]) 43.82 32.13 33.03 34.83
(4,2,15,10,10,[0,1]) 46.95 33.49 29.47 33.04
(4,2,15,10,10,[1,2]) 69.79 39.97 27.20 32.83

(4,2,15,15,0,[0,1]) 44.06 33.47 35.96 30.56
(4,2,15,15,0,[1,2]) 85.63 30.49 34.35 35.16
(4,2,15,15,10,[0,1]) 53.91 42.84 23.79 33.37
(4,2,15,15,10,[1,2]) 62.75 35.43 26.02 38.54

(4,2,15,20,0,[0,1]) 60.51 27.13 32.91 39.95
(4,2,15,20,0,[1,2]) 70.03 28.3 40.03 31.67
(4,2,15,20,10,[0,1]) 78.23 38.35 17.96 43.70
(4,2,15,20,10,[1,2]) 57.50 52.21 19.44 28.35

In conclusion, the proposed IAG algorithm demonstrates a clear advantage in solving integrated optimization
problems for meal delivery platforms. By achieving rapid convergence, maintaining scalability, and consistently
delivering better results compared to separated models, the IAG algorithm provides a robust framework for
enhancing profitability and operational efficiency in the dynamic and competitive meal delivery industry.
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6.2. Impact of compensation policies and other managerial insights
6.2.1. Experimental setup
Weevaluate commission-based (CB) and fixed employment (FE) compensation policies over a simulated 12-hour
operating window (11:00–23:00) in a mid-sized urban area. The region consists of 34 zones across four service
districts, with 100 restaurants spanning 10 cuisine types. Restaurant distribution reflects real-world conditions,
with 50% in central zones and 50% in peripheral areas.

Customer arrivals follow a Poisson process with demand peaking during meal times, resulting in 1,250–1,500
daily orders. Assortments assume competitive restaurant interactions (γdq ∈ [0, 1]), and customers may opt out
at the cuisine level (vdq0 = 10). Meal preparation takes 10 minutes, and deliveries must be completed within
one hour. Rider shifts range from 4 to 12 hours. Under FE, riders earn €15 per hour (€2.50 per 10-minute time
step), while under CB, they receive €5 per completed delivery, assuming an average of three deliveries per hour.
Hiring costs range from 10–30% of wages, totaling €54 for platform-employed and €18 for independent riders.
The integrated RSRDP is solved using IAGwith a 2-hour time limit and amaximumof 50 iterations. Each scenario
is replicated 10 times to ensure robust results.

6.2.2. Influence of network configurations on performance of CB and FE policies
We investigate the impact of several factors on the relative performance of CB and FE, including customer arrival
rate fluctuations, restaurant distribution, shift regulations, and delivery deadlines. Summaries of the results can
be found in the Tables presented in Appendix B.

Impact of restaurant distribution
We investigate how varying spatial distributions of restaurants influence platform performance under the FE and
CB policies. Three scenarios are examined: the base configuration (50% central clustering), the centered sce-
nario (90% concentrated within five central zones), and the distributed scenario (even dispersion across zones),
as visualized in Figure 6.2. The results, presented in Figure 6.3, clearly demonstrate CB’s consistent financial
superiority across all restaurant distributions, driven primarily by its proactive rider management and adaptive
scalability.

Figure 6.2: Heatmaps representing examples of restaurant distribution over operating area, base case (left), centered (middle) and
distributed (right).

CB achieves higher revenues and profits through strategic rider relocation, allowing the platform to effectively
anticipate and respond to spatial shifts in demand, as restaurants become more evenly distributed along the
cases. Consequently, the platform opens more restaurants, increasing order volumes and enhancing customer
satisfaction by offering broader choice. While CB’s proactive relocation inevitably leads to increased delivery ac-
tivities and associated operational costs, the policy effectively mitigates these expenses through lower per-rider
hiring costs and the absence of direct relocation fees. This dynamic scalability ensures that CB’s operational cost
structure remains competitive, even as restaurant distributions become increasingly dispersed and operational
complexity grows.

In contrast, FE faces significant trade-offs due to its salaried rider framework. Although FE achieves lower di-
rect delivery and relocation expenses by restricting rider movement, the requirement to maintain sufficient
salaried staff substantially increases fixed hiring costs, particularly as restaurant distribution becomes more geo-
graphically dispersed. The lack of dynamic repositioning severely limits FE’s ability to capture emerging demand
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opportunities effectively, resulting in consistently lower revenues and profitability compared to CB.

Overall, CB consistently outperforms FE in expected profit and revenue by flexibly scaling rider participation
and repositioning at low marginal cost. In dispersed areas, CB mobilizes more riders on demand, boosting gains.
However, with centralized or uniform restaurant layouts, FE’s stable pool of salaried riders canmaintain coverage
without excessive idle costs, though it lacks CB’s dynamic responsiveness.

Figure 6.3: Plots of performance of the FE and CB policy on different metrics for evaluating the impact of restaurant distributions.

Impact of shift durations
To investigate how varying rider shift durations shape platform performance, seven distinct shift windows are
evaluated, where each shiftwindow represents the averageminimumandmaximumshift durations [θmin, θmax]
ranging from a fully flexible [0,12] schedule to a strict [6,6] window. Figure 6.4 presents the performance on the
metrics for both business policies.

When riders have maximum flexibility ([0,12]), CB significantly outperforms FE, generating higher revenues and
profits by leveraging dynamic relocation and flexible rider deployment. riders under CB are incentivized to repo-
sition frequently, increasing order fulfillment and restaurant openings, which boosts revenues despite elevated
delivery-related expenses. CB effectively controls overall costs by maintaining lower per-rider hiring expendi-
tures, which offset the increased operational complexity stemming from frequent relocations. In contrast, FE’s
salaried rider structure ensures predictable costs but limits responsiveness, yielding lower revenues and fewer
relocations, thus constraining profitability.

Interestingly, as shiftwindows becomemoderately flexible (e.g., [5,7]), profitability peaks for both policies. Mod-
erate flexibility strikes an optimal balance: riders are available for sufficient time periods to manage transient
demand spikes without incurring excessive idle times or inflated hiring costs. FE achieves cost containment
through predictable staffing levels, while CB continues to exploit moderate flexibility through targeted reposi-
tioning, optimizing rider productivity and revenues.

Under strict shift durations ([6,6]), both policies rely more heavily on strategic relocations to leverage limited
rider availability effectively. CB continues to generate higher revenues and profits despite substantial relocation
activities and associated delivery costs, whereas FE demonstrates a clearer cost advantage by maintaining a
smaller, predictably staffed workforce.
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Figure 6.4: Plots of performance of the FE and CB policy on different metrics for evaluating the impact of shift durations.

Across these scenarios, the percentage of open restaurants also varies, reflecting how the platform balances
wider restaurant availability against the delivery and hiring costs that accompany more dispersed operations.
Generally, CB’s flexibility encourages opening a higher fraction of restaurants, betting that enough riders will
shift to meet new pockets of demand. FE, meanwhile, more carefully weighs the benefit of opening additional
restaurants against the need to staff them with salaried riders.

Ultimately, flexible shift policies significantly enhance platform performance through increased responsiveness,
particularly under CB. However, moderate shift rigidity ([5,7]) can yield optimal profitability for both FE and CB,
balancing operational agility with predictable cost management. Strictly rigid shifts provide predictability but
limit responsiveness, favoring platforms prioritizing cost stability over revenue maximization.

Impact of delivery time windows
Maximum delivery deadlines are an important measure for customer satisfaction, often being the counterpart
of cost minimization. We investigate the impact of different maximum delivery deadlines, or delivery windows,
and the results are presented in Figure 6.5. Short delivery deadlines (20–30mins) drastically constrain the opera-
tional radius, limiting restaurant openings and reducing order fulfillment. Consequently, revenues and expected
profits drop significantly for both models. FE experiences pronounced financial strain at tight deadlines, given
its obligation to maintain a sufficient salaried workforce to quickly serve nearby customers, resulting in dispro-
portionately high fixed labor costs.

As delivery deadlines extend (40–80 minutes), both FE and CB substantially increase geographic coverage and
expand their restaurant assortments, significantly boosting order volumes and revenues. CB is particularly adept
at exploiting these longer deadlines through dynamic rider repositioning and flexible workforce scaling. Despite
higher relocation expenses and increased rider deployments, CB’s lower hiring costs and agile workforce man-
agement translate into consistently higher profitability and revenues. FE also benefits from extended deadlines
but experiences reduced gains due to fixed hiring expenses, which limit flexibility and scalability.

Interestingly, both policies demonstrate an initial increase in the number of riders when extending deadlines
to about 40–50 minutes, after which the rider count stabilizes or gradually decreases. This reflects diminishing
marginal returns, as the platform eventually reaches optimal geographic coverage, reducing the need for further
rider scaling.
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Figure 6.5: Plots of performance of the FE and CB policy on different metrics for evaluating the impact of maximum delivery deadlines.

While deadlines beyond 80 minutes can slightly enhance profitability, extended delivery times risk compromis-
ing customer satisfaction and eroding the platform’s value proposition of timely service. Therefore, optimal
delivery deadlines typically range between 40–70 minutes, balancing profitability, cost efficiency, and customer
expectations. CB clearly demonstrates greater flexibility and profitability within this range, strategically aligning
rider deploymentswith fluctuating demand. FE remains a viable alternative for platforms prioritizing predictable
labor costs but consistently underperforms in responsiveness and overall profitability compared to CB, but re-
quires a smaller fleet size.

Impact of customer arrivals throughout the time horizon
We next examine the influence of three different customer arrival distributions on meal delivery platform out-
comes: base, uniform, and peak. In the base case, demand rises moderately around standard meal times with-
out dramatic surges. By contrast, uniform arrivals spread demand consistently across the day, minimizing high
demand intervals. The peak scenario features pronounced spikes at lunch and dinner. Figure 6.6 offers a visual
representation of the key metrics across the three scenarios.

Under the base scenario, CB leverages dynamic rider repositioning to capitalize effectively onmoderate demand
surges, significantly increasing revenues and profits relative to FE. CB incurs higher costs due to proactive repo-
sitioning but effectively manages total expenses by maintaining lower rider hiring costs. FE’s salaried workforce
structure limits responsiveness, resulting in stable but lower overall revenue due to missed demand-capture
opportunities during moderate peaks.

When demand is uniformly distributed throughout the operational horizon, the value of CB’s dynamic reposition-
ing diminishes, as fewer peak demand opportunities exist to exploit. Both FE and CB requireminimal relocations,
stabilizing operational costs. However, CB continues to marginally outperform FE, optimizing rider deployment
more efficiently, whereas FE benefits from predictable labor expenditures and reduced idle times, narrowing
the profitability gap. Under uniform demand, both policies achieve relatively stable profitability, with FE gaining
slight competitiveness due to cost predictability.

In contrast, the peak scenario, with significant lunch and dinner surges, clearly highlights CB’s strengths. CB dy-
namically mobilizes riders precisely during these high-demand windows, capturing substantial revenues despite
escalating hiring and relocation costs. FE, restricted by fixed staffing levels, must significantly scale its salaried
workforce to meet peak intervals, causing sharp increases in total labor expenses and limiting overall profitabil-
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Figure 6.6: Plots of performance of the FE and CB policy on different metrics for evaluating the impact of various customer arrival
distributions.

ity compared to CB. FE utilizes less riders but cannot match CB’s agility and revenue capture during concentrated
demand peaks.

Thus, CB consistently excels in volatile demand scenarios, maximizing profitability through flexible rider reposi-
tioning. FE performs best under steady demand conditions, prioritizing predictable cost structures but at the
expense of responsiveness and higher revenue opportunities during peak periods.

Impact of business policy costs
This section explores how raising the delivery cost cdqr in the CB policy influences overall platform outcomes
compared to FE, whose cost structure remains unchanged. Figure 6.7 summarizes key metrics for values of cdqr
ranging from e3 through e7. Results clearly demonstrate CB’s robust advantage across nearly all evaluated
delivery-cost scenarios. Even as CB’s variable per-delivery expenses significantly rise, the policy consistently
maintains higher profitability and revenues compared to FE by strategically adapting rider deployments and
selectively adjusting restaurant availability.

At lower delivery costs (e.g., €3-€3.5), CB effectively leverages flexible rider scheduling and repositioning to max-
imize profitability without substantially increasing delivery-related expenses. As per-delivery fees rise toward €7,
CB dynamically fine-tunes its rider workforce and selectively adjusts open restaurant numbers, carefully balanc-
ing revenue opportunities against higher operational expenditures. Although this strategic flexibility results in
higher total delivery costs, the marginal revenue gains consistently surpass the incremental expenses.

Relocation flows under CB display variability as delivery costs increase, reflecting strategic adjustments in rider
deployment driven by the cost-benefit considerations of relocations versus additional rider hiring. Despite this
variability, CB consistently maintains profitability advantages over FE due to its superior adaptability. At ex-
tremely high per-delivery costs, CB’s advantage diminishes slightly, suggesting that in such scenarios, a hybrid
model incorporating both salaried and flexible riders might optimize cost-efficiency and responsiveness.

Conclusion
Overall, our analysis reveals that under the conducted experiments, the CB policy generally outperforms the FE
contracts in terms of profitability, particularly in environments characterized by high demand variability, broad
service areas, or extendeddeliverywindows. Under CB, the per-delivery compensation structure provides strong
incentives for riders to relocate frequently and serve dispersed restaurants, thereby capturing more orders and
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Figure 6.7: Plots of performance of the FE and CB policy on different metrics for evaluating the impact of changing cdqr .

boosting platform revenues. By contrast, FE provides more predictable costs and staffing coverage but can be-
come expensive in volatile settings, since salaried riders must be paid regardless of demand fluctuations.

When considering the full range of parameters (e.g., rider shift lengths, restaurant distributions, wage overhead,
and demand patterns), certain parameter extremes reinforce each other and further highlight the advantages of
CB. For instance, very short shifts, widely scattered restaurants, high rider wages, and spiky (highly variable) de-
mand can together amplify CB’s relative profitability. Meanwhile, more moderate or uniform parameter values
yield narrower differences. In other words, synergy, or friction, arises when multiple factors push in the same
direction, favoring one policy over the other.

From a managerial perspective, these insights underscore that there is no one-size-fits-all solution. CB tends to
excel in maximizing revenue but requires careful management of high-frequency rider relocations, which can
elevate rider dissatisfaction. FE offers more predictable labor costs and steadier coverage, especially in uniform-
demandor centralized-restaurant scenarios, yet its fixed cost structuremay rapidly inflate under high demand. In
practice, hybridmodels that blend the dynamic scalability of CBwith the cost stability of FEmay offer a promising
balance, potentially improving profitability, enhancing rider retention, and maintaining customer satisfaction
across diverse operational settings.

6.3. Scaling RSRDP to real-world data
In this section, we evaluate the practical application of the RSRDP by scaling our proposed approach to real-world
data from Amsterdam, The Netherlands. Using data from 100 restaurants, randomly selected to represent a
diverse sample spanning 13 cuisines, we analyze how our model performs under realistic urban conditions. The
data is obtained from a real meal delivery platform available in Amsterdam and the data includes specifics on
the location of the restaurant, main cuisine type, review score (1.0-5.0) and price category (1-3). The study area
is defined by the geographical boundaries of Amsterdam, which we partition into five service districts based
on existing municipal divisions [Amsterdam, 2024b]. Each district is covered with the hexagonal zonal structure
generated by the H3 spatial indexing system at a resolution that approximates an 8-minute travel time between
adjacent zone centroids.

To simulate customer demand, we combine population density factors [Amsterdam, 2024a] with temporal pat-
terns that mirror typical meal-ordering behavior. Specifically, the arrival rate in each zone and time period, λmt,
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is computed based on these factors, resulting in an aggregate of roughly 2600 orders over the planning horizon.
The attractiveness of restaurants is modeled through a regression that accounts for both price category and
review scores. Here, the average price for a restaurant is determined by its price category, with:

avg_pricer =


10 if price category 1
15 if price category 2
30 if price category 3

(6.2)

The restaurant-specific attraction value is based on the negative influence of higher prices, and positively influ-
enced by high review scores, given by:

vdqr = vdq0 + 10× (2× reviewr − price_categoryr + ϵ
(1)
dqr) (6.3)

Where reviewr denotes the review score of restaurant r, and ϵ(2)dqr ∼ extreme value type I = Gumbel(µ =
0, β = 1) accounts for unobserved factors. Revenues from restaurants are based on the price category, us-
ing the commission rate of 15%-30% per order. We draw commission rates for restaurant r from the uniform
distribution: commission_rater ∼ U(0.15, 0.30). The price parameter is then calculated as:

pdqr = 2× avg_pricer × commission_rater × (1 + ϵ
(2)
qrd) (6.4)

Where the multiplicative noise term is ϵ(2)qrd ∼ N(0, 0.05). This formulation means that the base price is scaled
by 2 and then adjusted for the commission and a small normally distributed perturbation. Other parameters
and sets are consistent with those described in Section 6.2, and Figure 6.8 provides an overview of the service
districts, zonal structure, demand distribution, and restaurant locations, for the Amsterdam case study.

The selected case study reflects the typical urban distribution of restaurants, with a high concentration in the
city center. Through this analysis, we investigate the impact of varying average shift durations and maximum
delivery windows on key performance metrics, including platform profitability, rider workload per hour, and the
required fleet size. Our objective is to identify a Pareto-optimal trade-off that can inform decision-making for
meal delivery platforms. The RSRDP is solved under the Fixed Employment (FE) policy to evaluate its implications
in this setting.

We define each solution as a vector (Profit,#R,WL), where we want to maximize the Profit, minimize the
number of required riders#R, and eitherminimize or have a reasonableworkloadWL for the riders, presented
as the average number of orders per hour per rider. Mathematically, we say that a solution (Profiti,#Ri,WLi)
dominates another solution (Profitj ,#Rj ,WLj) if the following conditions hold:

Profiti ≥ Profitj #Ri ≤ #Rj WLi ≤WLj (6.5)

With at least one of these equalities being strict. In otherwords, (Profiti,#Ri,WLi) is considered better than
(Profitj ,#Rj ,WLj) in all objectives, without being worse in any. The Pareto frontier consists of all solutions
that are not dominated by any other solution in the set.

Table 6.6: Case study results.

Delivery window [minutes]

30 40 50 60 70

Profit # R WL Profit # R WL Profit # R WL Profit # R WL Profit # R WL

Average [4-6] 13263.07 87.23 3.64 15471.96 96.30 3.55 20274.53 76.79 4.66 23443.93 57.96 6.95 24045.89 57.36 7.20
shift [5-7] 13140.89 86.52 3.14 14884.17 91.98 3.10 19177.51 76.68 3.89 22446.59 59.42 5.28 22761.63 46.85 6.37

duration [6-8] 11801.41 85.85 2.70 16265.18 62.13 3.85 18044.48 68.08 3.69 21634.53 53.53 4.91 23029.38 47.96 5.69
[hours] [7-9] 10691.79 64.68 2.65 13371.34 53.14 3.43 18805.00 64.36 3.56 21421.72 56.59 4.26 22315.70 46.85 4.77

[8-10] 9583.14 64.16 2.34 12956.40 72.42 2.57 16942.20 70.62 2.90 20851.20 53.79 3.99 21659.90 44.83 4.43

The experimental evaluation examines the effects of varying two key operational parameters: the average rider
shift duration and themaximum delivery window. Table 6.6 summarizes the outcomes in terms of platform prof-
itability, the required number of riders (denoted as #R), and the average hourly workload, i.e. number of deliver-
ies, per rider (WL). For instance, with a shift duration of 4–6 hours, increasing the delivery window from 30 to 70
minutes results in a profit increase from $13,263.07 to $24,045.89, yet the rider workload also rises from 3.64 to
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Figure 6.8: Case study data of Amsterdam. Top left indicates service regions, zones and restaurant locations. Top right
presents customer arrivals over space and time for the time horizon. Bottom left shows heatmap of restaurant locations,

bottom right heatmap of total customer arrivals in space over time horizon.
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7.20 deliveries per hour. In contrast, longer shift durations tend to yield lower overall profitability but generally
correspond to lower workloads, highlighting a trade-off between rider efficiency and cost-effectiveness.

The analysis is further enriched by the identification of Pareto frontier solutions. These solutions reveal balanced
configurations where incremental increases in profitability are accompanied by relative changes in fleet size and
rider workload. Figure 6.9 presents contrasting facets of the Pareto frontier solutions in a different context. The
left subplot showcases the Pareto frontier considering profit, number of riders, and workload, where each point
is color-coded to reflect workload intensity. For example, one Pareto optimal solution with a 4–6 hour shift and
a 60-minute delivery window yields a profit of $23,443.93 with 57.96 riders and an average workload of 6.95
deliveries per hour, while another solution with a 5–7 hour shift and a 50-minute window achieves $19,177.51
profit with 76.68 riders and a workload of 3.89 deliveries per hour. Such comparisons underscore that a mod-
erate delivery window, paired with an appropriate shift duration, can enhance service quality by keeping rider
workloads within a reasonable threshold (around 3 deliveries per hour) while simultaneously improving prof-
itability. The right subplot narrows the focus to the Pareto optimal solutions based solely on profit and the
number of riders, while still employing workload for visual clarity. This simplification underscores the pivotal
role of workload management in balancing service quality and operational efficiency. Notably, solutions situ-
ated in the bottom-right quadrant of both subplots exemplify the platform’s capacity to maximize profitability
with fewer riders, albeit with varying workload implications and a large delivery window.

These findings provide actionable insights for meal delivery platforms. In practice, shorter delivery windows
enhance customer satisfaction and service quality, but may necessitate either more riders and lower profits.
Conversely, extending the delivery window improves profit margins but risks overburdening riders and compro-
mising timely service. For decision makers, the Pareto frontier serves as a decision-support tool, enabling a
trade-off analysis where relative changes can be carefully evaluated.

Figure 6.9: The 2D Pareto frontier solutions display profit on the x-axis and the number of riders on the y-axis, with color representing
workload. The left figure considers dominance across all three metrics, profit, number of riders, and workload, while the right figure

accounts only for profit and number of riders.
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Conclusion and recommendations

Over the course of this thesis, we addressed the central research question: How can we design the services for
a meal delivery platform to maximize expected profits and solve it for large-scale systems? To investigate this
question, three research objectives were set: developing a mathematical model to capture the core decisions
and constraints of the problem, designing and implementing efficient solution methodologies for both small
and large instances, and analyzing the managerial implications of different compensation policies and network
configurations on platform profitability and rider dimensioning.

By formulating the Restaurant Selection and Rider Dimensioning Problem (RSRDP), we first established the im-
portance of jointly determining which restaurants to offer and how to allocate riders in space and time, demon-
strating that demand and supply decisions are fundamentally interlinked. Our numerical experiments showed
that an integrated approach consistently outperforms separated methods, leading to higher profitability while
still ensuring timely deliveries and balancedworkloads. In fulfilling the first objective, we developed aMIP, trans-
formed this to a MILP, incorporating a nested logit framework for customer restaurant choice and combining
it with a spatial-temporal network model of rider flows, providing a holistic view of platform operations and
clarifying how restaurant availability shapes order volumes and how and where to deploy riders.

Moving toward our second objective, we tested several exact and heuristic solution strategies on datasets of
varying sizes. While exact methods were tractable for smaller problems, we found that Benders decomposition
and a novel Iterative Assortment Generation (IAG) heuristic effectively scaled up to larger instances. Benders
decomposition separated assortment decisions from rider allocation, accelerating solution times by focusing on
smaller subproblems, whereas the IAG heuristic incrementally refined the set of candidate assortments until
a near-optimal solution emerged. Both approaches performed well across different computational scenarios,
reinforcing the value of tailoring solution strategies to the structural properties of the RSRDP rather than relying
on traditional off-the-shelf solvers alone.

Having addressed the methodological objectives, we then analyzed how the platform’s choices and constraints
translate into managerial insights, thereby fulfilling the third objective of evaluating compensation policies and
operational decisions in a realistic context. Comparing commission-based (CB) and fixed-employment (FE) poli-
cies revealed trade-offs between flexibility, stability, and cost predictability. CB tended to yield higher profits in
settings with significant spatial or temporal demand fluctuations, but could also impose more frequent reloca-
tions and higher rider turnover. FE provided more predictable labor costs and coverage, yet became expensive
when demand spikes required many salaried couriers. Our exploration of parameter extremes, such as short
shifts or widely dispersed demand, underscored how multiple factors can converge to accentuate one policy’s
advantages over the other. In practice, the choice of compensation model will depend on each platform’s pref-
erence for profitability, cost stability, rider satisfaction, and the potential for demand surges.

Viewed collectively, these findings confirm that an integrated approach to restaurant assortment selection and
rider dimensioning is critical for maximizing overall performance. Managing the demand side (through carefully
curated assortments) shapes the order distribution in time and space, which in turn allows a more efficient allo-
cation of riders. Platforms adopting this perspective should encourage cross-functional collaboration between
marketing and operations teams so that restaurant offerings and rider schedules reinforce each other. They
might also consider hybrid pay structures that combine the flexibility of commission-based arrangements with
the predictability of guaranteed wages. Furthermore, there is scope to extend this research to rolling-horizon
planning, dynamic assortment updates, richer rider heterogeneity, and additional performance metrics such as
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rider well-being or customer satisfaction.

In answering the research question, our results demonstrate that the design of restaurant offerings and rider
dimensioning is paramount to competing successfully in a crowded meal delivery market. By meeting the three
research objectives, we have shown that an integrated optimization framework can substantially improve prof-
itability, especially when supported by robust heuristic and decomposition methods suitable for large-scale in-
stances. The insights and methods presented here apply broadly to on-demand service contexts that similarly
depend on interplay between demand-shaping and supply-side orchestration, offering a platform formore adap-
tive, equitable, and sustainable approaches in the emerging urban logistics landscape.

7.1. Discussion and recommendations
While the proposedmodel and results offer encouraging evidence that an integrated approach can improve both
profitability and operational efficiency, several limitations remain. The parameter settings employed here cap-
ture only approximate reflections of real-world conditions. For instance, more detailed information on customer
behavior, courier turnover, and geographically specific ordering patterns would likely sharpen quantitative esti-
mates and guide more targeted managerial strategies. Likewise, the scope of validation could be broadened by
repeatedly sampling a wider variety of instances, thereby increasing confidence in both the robustness and gen-
eralizability of the outcomes. Nevertheless, the unified methodology introduced in this study provides a solid
foundation for decision support by incorporating both demand and supply considerations in a single framework.

Looking ahead, several research directions appear particularly promising. One fruitful extension would be to
systematically integrate a hybrid compensation model in which some riders are assigned to fixed employment
contracts and others to commission-based, potentially optimizing the mix of courier types across zones and
time. Such amodel could better capture the nuances of real-world labormarkets, where different compensation
schemes are used simultaneously. Another avenue would involve developing multi-objective formulations that
explicitly trade off maximizing platform profit against other performance indicators, such as on-time delivery
ratios or rider satisfaction. This could illuminate the compromises managers must make between cost efficiency
and service quality.

An additional research priority is to make the design of service districts more endogenous, allowing for variable
granularity and consumer segmentation rather than assuming a fixed district map. Finer segmentation, possibly
augmented by time-varying assortments that align restaurant offeringswith fluctuating demand, might generate
higher overall profitability but would also increase modeling complexity. Meanwhile, tracking couriers on an
individual basis, converting parts of the problem from a minimum-cost flow paradigm to richer integer-based
routing, holds potential for more precise scheduling around travel times and shift boundaries, though it would
require larger computational resources and advanced solving techniques.

Moreover, the solution approach itself can be extended in ways that bolster both performance and scalabil-
ity. One possibility is to adopt a full column generation scheme in which the pricing problem (PP) is solved by
a heuristic, then compare this approach directly with the Iterative Assortment Generation (IAG) algorithm to
identify trade-offs in quality and runtime. A deeper investigation into how these column-generation heuristics
perform under varying instance sizes or cost structures could reveal further gains in solution accuracy or speed.
Additional heuristic strategies, along with upper-bound estimation tools, would help practitioners of large-scale
systems gauge the gap between a time-feasible solution and any theoretical optimum, particularly relevant in
environments where quick responses are paramount.

In conclusion, embedding restaurant assortment choices within rider allocation and testing alternative compen-
sation schemes demonstrates that meal delivery platforms can indeed achieve meaningful improvements in
profitability and operational performance. Although several avenues remain open for future research, this work
provides both methodological progress and tangible guidance. In an industry characterized by speed, flexibility,
and cost competitiveness, seamlessly interlinking menu offerings and fleet management emerges as a powerful
means of sustaining growth and success.
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We introduce the Restaurant Selection and Rider Dimensioning Problem (RSRDP) for meal delivery plat-

forms operating in urban areas. The goal is to jointly decide which restaurants to offer a nd h ow many 

riders to deploy in a spatial-temporal network to maximize expected profit, defined as restaurant commission 

revenues minus rider costs, while ensuring high service quality. Customers arrive to the platform probabilis-

tically, yet decisions on where they order is shaped through restaurant assortment optimization, where each 

service district curates a subset of restaurants based on a nested logit model capturing customer choices. 

Meanwhile, rider dimensioning decisions account for spatial and temporal fulfillment o f o rders, achieving 

high service quality standards. We compare two compensation schemes: commission-based, where riders are 

paid per delivery, and fixed employment, where they a re paid hourly. Our model i s s olved using our novel 

iterative assortment generation algorithm combined with Benders decomposition. Results demonstrate that 

integrating assortment and rider decisions enhances platform profitability, s ervice q uality, a nd workforce 

stability.

Key words : Meal Delivery Platform, Rider Dimensioning, Assortment Optimization, Service Design

1. Introduction

Meal delivery platforms operate in an uncertain environment, where customers arrive to the system

and place their order, which must be fulfilled in a timely manner. These platforms aim to achieve

some key quality service level elements: ensuring on-time delivery to maintain customer satisfaction,

providing a diverse selection of restaurants to attract demand, and managing operational costs

to remain profitable. These elements translate to the challenges these platforms face: the efficient

dimensioning of riders, who must be engaged based on their spatial and temporal distribution

to meet fluctuating demand, and which restaurants to offer on the platforms so as to maximize

expected profit while offering diverse options.
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Existing research on meal delivery platforms primarily focuses on either operational efficiency

or demand-side management, but rarely integrates both aspects. Prior studies can be grouped into

two main categories. The first category focuses on the operational side, optimizing routing costs

and reducing delivery times (Xue, Wang, and Wang 2021, Kancharla et al. 2024, Ulmer et al. 2021),

offering valuable insights into fleet operations and dispatching strategies. However, these studies

generally assume that customer demand is exogenous and fixed, meaning the platform has no

control over how demand can be shaped. Other works examine related operational challenges such

as delivery time estimation, rider shift scheduling, and courier imbalances (Liu, He, and Shen 2018,

Tang et al. 2016). The second category focuses on restaurant selection which is mainly studied in

the domain of assortment optimization, aiming for revenue maximization of offering products to

customers. These studies, however, neglect the operational implications of assortment decisions on

rider dimensioning.

A key insight of this research is that meal delivery platforms function as interconnected systems

where each operational decision influences platform performance. Customers expect timely deliv-

eries, while riders require manageable workloads, and platforms must remain profitable. Unlike

previous studies that address these elements in isolation, we recognize that the interactions among

them create significant research opportunities. While customer arrival is exogenous, platform con-

trolled decision-making, such as restaurant selection and rider dimensioning, and their interaction,

are endogenous and can be shaped by designing the services. In this research, we define and present

a model for the Restaurant Selection and Rider Dimensioning Problem (RSRDP), which jointly

determines restaurant selection and rider dimensioning to maximize expected platform profitability

while ensuring high service levels. Profit is defined as restaurant commission revenue minus rider

costs. We compare two compensation policies for the rider costs: commission-based (CB), where

riders get paid per delivery completed, and fixed employment (FE), where riders receive hourly

wages. We evaluate these policies to assess their impact on costs, rider availability, and service

quality.

To solve the RSRDP, we propose a novel iterative assortment generation heuristic, inspired by

column generation, to iteratively generate and evaluate candidate assortments of restaurants to

efficiently converge to a good solution. Additionally, we apply Benders decomposition to decou-

ple assortment decisions and rider dimensioning, accelerating convergence in large instances. Our

results demonstrate that integrating assortment and rider dimensioning decisions consistently

enhances platform profitability while maintaining service quality, including timely deliveries and

balanced rider workloads. Furthermore, we evaluate the impact of the two rider compensation

policies, finding that the commission-based approach improves operational flexibility but increases

rider relocations, whereas the fixed employment scheme ensures stable required workforce.
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The remainder of this paper is organized as follows: Section 2 reviews related literature. Section 3

presents the conceptual representation, laying the groundwork for the mathematical formulation in

Section 4. Section 5 outlines the solution methodology, detailing the iterative assortment generation

algorithm. Section 6 presents computational experiments, validating the model’s effectiveness with

simulated data, and Section 7 summarizes key findings.

2. Related Literature

Meal delivery platforms have reshaped urban food consumption with on-demand, app-based ser-

vices. They combine transportation logistics with revenue management, requiring decisions that

balance customer satisfaction with profitability. Customer satisfaction depends on timely deliver-

ies, high service quality, and ample restaurant options, while profitability stems from cost-efficiency

and strategic pricing. To better understand the complexities of meal delivery platforms, we follow

the meal delivery process as depicted in Figure 1, examining the perspectives of the customers,

orders, and riders at each stage, along with the associated challenges and how current literature

tackles these.

Figure 1 Ordering process timeline from customer, order and rider perspective.

2.1. Request arrival and customer decisions

A primary challenge for meal delivery platforms is managing the dynamic arrival of orders. Cus-

tomer arrivals are inherently unpredictable, and platforms often model customer arrivals as stochas-

tic processes. For instance, Xue, Wang, and Wang (2021) use an empirical distribution based on

real observed data, while Kancharla et al. (2024) adopt a Poisson process. The meal delivery indus-

try shares this challenge with on-demand micro-mobility services. However, unlike services where

requests can be declined, meal delivery platforms must fulfill all incoming orders. The study by

Li and Wang (2024) incorporates probabilistic demand modeling in mobility-on-demand services,

demonstrating its relevance in dynamic dispatching. These approaches align with our work, where

we model arrivals of requests probabilistically using a Poisson process.
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Once customers are on the platform, they navigate a two-stage decision process. First, based

on personal tastes, dietary needs, and even mood, customers select a preferred cuisine category.

Next, restaurants offering that cuisine are presented, where the choice is influenced by factors such

as estimated delivery time, pricing, and restaurant reputation (Fakfare 2021, Chua et al. 2020).

This underscores the importance of curating restaurant offerings that align with consumer tastes,

including more heterogeneity customized to the individual, also suggested by Aparicio, Prelec, and

Zhu (2025). Our work builds on these insights by integrating customer choice modeling using a

nested logit model as presented by Davis, Gallego, and Topaloglu (2014) to aid decision-making

on which restaurants to offer.

Once a customer places an order, meal preparation begins at the restaurant. Meal preparation

times are uncertain, as they depend on kitchen workload, meal complexity, and restaurant effi-

ciency. This uncertainty can create delays, affecting rider scheduling and customer satisfaction.

Ulmer et al. (2021) examine uncertain meal preparation times and propose buffering techniques

to minimize delays. Their anticipatory customer assignment approach optimizes real-time order

bundling and dispatching. While our model does not explicitly incorporate meal preparation uncer-

tainties, it introduces flexibility in rider assignment to accommodate variability in meal readiness

times. This flexibility acts as a buffer for uncertainties in general, ensuring that unexpected delays

in preparation do not significantly disrupt delivery operations.

2.2. Rider assignment and supply-demand management

Once an order is placed, matching it with an available rider poses another challenge. The spatial

distribution of orders and riders requires quick, efficient dispatch. To address this, Liu, He, and

Shen (2018) incorporate predictive travel time analytics into their order assignment model, while

Li et al. (2024) improve spatial efficiency using a dynamic matching radius. Additionally, the

compensation structure of the riders affects rider availability. Ke, Wang, and Li (2022) explore

how different wage schemes impact service quality and profitability, demonstrating that optimized

pay schemes influence rider participation and order fulfillment success rates. Rider participation

is also studied by Tang et al. (2016), who demonstrate that while higher wages can attract more

riders, they might also lead to inefficiencies during low-demand periods. Our research evaluates two

static compensation policies, commission-based and fixed employment, to understand their affects

on both service quality and profitability.

2.3. Delivery efficiency

After rider assignment, ensuring prompt delivery is key to ensuring service quality. This chal-

lenge is addressed in various ways: Liu and Luo (2023) propose a stochastic dynamic driver dis-

patching system, optimizing routing through Benders decomposition, while Yildiz and Savelsbergh
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(2019a) explore multi-objective optimization to balance cost and service quality. Their findings

also highlight that compensation schemes and courier schedules play a crucial role in ensuring ser-

vice reliability. Additionally, Carlsson et al. (2021) investigate how geographic familiarity impacts

rider efficiency, proposing a partitioning algorithm to optimize delivery regions. Another upcoming

method to increase efficiency includes order bundling within a single trip, Steever, Karwan, and

Murray (2019) examine bundling strategies that aim to minimize delays while maintaining rout-

ing efficiency. However, Yildiz and Savelsbergh (2019a) analyze the trade-offs between bundling

efficiency and service quality, concluding that bundling does not always yield cost savings yet can

decrease service quality. Our model does not include bundling but instead focuses on maintaining

strict delivery windows to ensure high service quality and timely fulfillment, as assumed in other

studies (Ulmer et al. 2021, Kancharla et al. 2024, Li et al. 2022).

Routing efficiency can also be enhanced through strategic rider relocation. Bell et al. (2024)

propose a Markov chain-based relocation model where couriers circulate through the city in a struc-

tured manner, optimizing transitions based on demand probabilities. Yang, Umboh, and Ramezani

(2024) examine how freelance drivers make routing and dispatch decisions based on probabilistic

acceptance behavior. While their work focuses on mobility services, it provides insights into how

supply-side constraints impact service quality and profitability. In our model, we improve delivery

efficiency by strategically relocating couriers based on future demand predictions, ensuring that

riders are positioned optimally before orders arrive. Because we can shape demand distribution

through assortment optimization of restaurant offerings, we can exert greater control over the

spatial distribution of arriving orders.

2.4. Rider scheduling

Beyond real-time rider dispatching, platforms must manage workforce scheduling. Platforms can

hire riders as employees or engage them as freelancers. Employed riders provide stability and better

workforce planning, but they increase fixed operational costs. Freelance riders offer flexibility,

but their availability is uncertain and influenced significantly by compensation structures. Ulmer

and Savelsbergh (2020) explore a hybrid workforce model that incorporates both scheduled and

unscheduled riders. Their work highlights the importance of structured scheduling while allowing

flexibility through crowdsourced labor. The compensation policies implied by the workforce models

play a crucial role in rider scheduling. Yildiz and Savelsbergh (2019b) examine how service radius

adjustments impact profitability by balancing rider costs and restaurant commissions. They also

incorporate restaurant availability as a function of the service radius, allowing the platform to

influence demand through spatial adjustments. However, their study assumes exogenous demand

and self-scheduling riders who can reject orders, whereas our approach assumes riders must adhere
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to platform decision-making on rider movements and incorporates restaurant availability through

assortment optimization.

Our work advances the literature by proposing an optimization approach that simultaneously

determines the optimal rider dimensioning and the assortment of restaurants being offered to

the customer. Additionally, we evaluate static compensation policies and their impact on system

efficiency, offering insights into how wage policies influence workforce management and platform

profitability. In Section 3, we explain in detail the conceptual representation of this problem.

3. Conceptual representation

This section introduces the notation and core concepts needed for the RSRDP formulation. We

structure the problem in a spatial-temporal network and explain the interplay between revenue,

costs, customer demand, assortment selection, and rider dimensioning.

3.1. Service design structure

We consider a pre-defined operating area and a nominal day for planning. Our approach employs

a two-level spatial representation by dividing this area into larger service districts and smaller

hexagonal zones. Service districts, denoted by d ∈D, capture market heterogeneity by grouping

regions with distinct customer preferences and socio-economic traits. These districts also define

the curated set of restaurants visible to customers, enabling strategic demand shaping through

assortment decisions that directly influence order distribution. To manage rider allocation at a

more granular level, the area is further partitioned into hexagonal zones, denoted by m∈M . These

uniformly distributed hexagons capture rider movement dynamics and allow for accurate travel

time computation. Riders travel between zones to complete deliveries and can be strategically

relocated to balance supply and demand, thereby minimizing delivery times and operational costs.

The interaction between service districts and zones introduces spatial-temporal dependencies that

our framework explicitly models, capturing the feedback loop between assortment-driven demand

generation and rider management.

We let κ be the travel time between adjacent zone centroids. The travel time between any

two zones m and m′ is given by τmm′ , which depends on κ and the shortest path distance. It

is assumed that intrazonal travel time τmm equals κ, relating to the maximum travel distance

within a zone from the hexagonal structure. Additionally, to discretize the day into manageable

intervals, we define t ∈ T = {0, κ, ..., Tmax} where κ also serves as the length of each time period.

This synchronized spatial-temporal discretization enables us to track the progression of demand

and rider movements over the course of the time horizon. The left side of Figure 2 illustrates the

service design structure, with hexagonal zones and colored service districts.
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Figure 2 Hexagonal zone structure with colored service districts (left) and three-zone-four-period spacial-

temporal network example where the arcs represent possible courier flows.

3.2. Rider network activity

We model rider movements through a directed spatial-temporal network G(N,A). Each node

(m,t)∈N represents zone m∈M at period t∈ T . An arc a= ((m,t), (m′, t+ τmm′))∈A indicates

that a rider can travel from zone m at time t to zone m′ at time t+τmm′ , illustrated in Figure 2 for

a three-zone-four-period network. Because all riders are assumed to travel at a constant speed, each

arc reflects a possible flow from an earlier time to a later one. The sets of outgoing and incoming

arcs at node (m,t) are denoted by A+
(m,t) and A−

(m,t), respectively, and we do not impose capacity

constraints on the arcs. Figure 3 presents an example for the origin and destination adjacent arc

sets.

Figure 3 Example of adjacent nodes for zone 4 structure. Origin arcs A−
(4,2) are presented in blue and destination

arcs A+
(4,2) are presented in magenta.

3.3. Customer arrivals and delivery timeline

Customer arrivals are treated as requests and are aggregated over zones. Specifically, arrivals in

zone m at period t denoted λmt follow a Poisson distribution, capturing the natural fluctuations

in demand. We model λmt ∼ Poisson(rate), where rate = Base(t) · (1 + ϵmt). Here, Base(t) is a

shape function that rises and falls with typical meal times, and ϵmt introduces normally distributed
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random fluctuations. A request becomes an order if the customer decides to purchase a meal

from an available restaurant showcased in the assortment for the district in which the customer is

located. How the customer chooses the restaurant is explained in the subsequent section.

Each order placed at time t on the platform must be fulfilled within a delivery window [t, t+ ρ]

Practically, this window includes meal preparation time and rider travel time, plus a small buffer

to accommodate unexpected delays. If η represents the average meal preparation time, and τmm′

is the travel time from a restaurant located in zone m to the customer’s zone m′, then the rider

must pick up the meal after η and complete the delivery before the total elapsed time reaches ρ.

Figure 4 illustrates the possible arcs that may be utilized to satisfy the demand, allowing for some

flexibility and possible higher efficiency by providing multiple options in some scenarios.

Figure 4 Illustration of potential courier flow along arcs to meet demand. Orders from Zone 1 to Zone 2 are

fulfilled via the blue arcs, while orders from Zone 3 to Zone 1 follow the magenta arcs. Meal preparation

time η and the maximum delivery deadline ρ are accounted for.

3.4. Service district assortment optimization

In addition to managing rider activity, the platform chooses which restaurants to offer in each

service district, from which customers can order. Let R be the set of all restaurants in the system,

and let r ∈R. A district d may only include restaurants that can reliably deliver within the delivery

window ρ. Specifically, for a customer located in zone m and a restaurant in zone m′, Rm = {r ∈R :

τm′m ≤ ρ− η} denotes the set of restaurants capable of serving zone m, and if bdm ∈ {0,1} indicates

whether zone m is covered by district d, then Rd =
⋂

m∈M :bdm=1

Rm is the set of restaurants that can

fulfill the delivery window requirements for all zones in district d. Finally, we define a finite set of

cuisine types Q, such that q ∈Q and each restaurant r ∈ R belongs to exactly one cuisine type,

administered by the parameter eqr ∈ {0,1} that is one when restaurant r is of cuisine q. In this way,

the set Rd
q =

⋂
m∈M :bdm=1

{r ∈Rm : eqr = 1} represents the set of restaurants that may be included for

the assortment of district d for cuisine type q. The model may decide which of these restaurants
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to offer. We denote the final assortment of restaurants for cuisine type q in service district d by

Sd
q ⊆Rd

q .

3.5. Customer purchasing behavior

To model how customers choose restaurants from the platform’s assortment, we employ a nested

choice framework inspired by Davis, Gallego, and Topaloglu (2014). On meal delivery platforms,

customers tend to first choose a cuisine type and then select a restaurant within that category. The

nested logit model follows the same structure: customers first choose a nest (cuisine) and thereafter

a product within that nest (restaurant). We define vdqr as the attraction value of restaurant r

of cuisine q within district d. This value encapsulates all relevant utility parameters (e.g. price,

quality, proximity) and is assumed known from prior choice modeling research or historical data.

We also define vdq0 as the attraction of the no-purchase options within cuisine q for district d.

Suppose the assortment of cuisine q in district d is Sd
q ⊆ Rd

q . The total attraction in nest q is

then V d
q (S

d
q ) = vdq0+

∑
r∈Sd

q
vdqr. Under the framework, the probability that a customer orders from

restaurant r ∈ Sd
q given they have selected nest q is:

Pd
r|q(S

d
q ) =

vdqr
vdq0 +

∑
r∈Sd

q
vdqr

=
vdqr

V d
q (S

d
q )

(3.1)

Let pdqr represent the revenue from an order at restaurant r in cuisine nest q for district d. The

expected revenue from customers ordering within nest q is:

πd
q (S

d
q ) =

∑
r∈Sd

q
pdqrv

d
qr

V d
q (S

d
q )

=
∑
r∈Sd

q

pdqr ·Pd
r|q(S

d
q ) (3.2)

Each cuisine nest q has a dissimilarity parameter γd
q ≥ 0, which accounts for the degree of dissim-

ilarity of the restaurants within the nest. We assume that these parameters are also researched a

priori. Let vd0 denote the attraction value of the no-purchase option for choosing any of the nests

in district d. If we offer assignments (Sd
1 , ..., S

d
|Q|) over all nests with Sd

q ⊆Rd
q ∀q ∈Q, d ∈D, then

a customer chooses nest q in district d with probability:

Pd
q(S

d
q ) =

V d
q (S

d
q )

γd
q

vd0 +
∑

q∈Q V d
q (S

d
q )

γd
q

(3.3)

Then the probability of choosing restaurant r of cuisine q in district d is given by:

Pd
qr(S

d
q ) = Pd

q(S
d
q ) ·Pd

r|q(S
d
q ) =

(
V d
q (S

d
q )

γd
q

vd0 +
∑

q∈Q V d
q (S

d
q )

γd
q

)
·
(

vdqr
V d
q (S

d
q )

)
=

vdqr ·V d
q (S

d
q )

γd
q−1

vd0 +
∑

q∈Q V d
q (S

d
q )

γd
q

(3.4)

And the expected revenue from customers ordering within district d is:

Πd(Sd
1 , ..., S

d
|Q|) =

∑
q∈Q

Pd
q(Sq)π

d
q (S

d
q ) =

∑
q∈Q πd

q (S
d
q )V

d
q (S

d
q )

γd
q

vd0 +
∑

q∈Q V d
q (S

d
q )

γd
q

(3.5)
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By modeling customer choices in this manner, we can estimate the likelihood of each restaurant

being selected by customers located in each service district, which subsequently informs the effective

flow of orders in the network, which we relate to the number of needed riders to deliver these

orders within the network. Equation 3.5 highlights the independence of assortments across service

districts. The only interaction between service districts in this problem arises from riders needed

to deliver orders between different zones belonging to different districts. The assortment offered

in each district dictates the available restaurants, which in turn influences the customer demand

generated at those restaurants.

3.6. Rider dimensioning

Using the customer behavioral probabilities derived, we can estimate the expected number of orders

between zones. For each period t and zone m, we determine how many orders should be delivered

from zone m′ to m and therefore how many couriers are required. Suppose that the set R̂m denotes

the restaurants located in zonem. Given the number of requests λmt and the probability of choosing

restaurant r of cuisine q in district d given by Equation 3.4, we denote the number of orders from

restaurants located in zone m to customers located in zone m′ starting at time t by δtmm′ . Then:

δtmm′ =
∑
d∈D

∑
q∈Q

∑
r∈R̂m∩Rd

q

λm′t ·Pd
qr(S

d
q ) (3.6)

As the calculation incorporates probabilities, the number of orders may result in fractional values,

representing an average demand across zones. While we assume that each courier can deliver only

one order at a time, allowing fractional courier flows in this tactical decision-making model is not

only practical but also analytically beneficial. Let the decision variables uin
(m,t) and uout

(m,t) represent

the number of couriers entering and leaving the system node (m,t) in the spatial-temporal network

respectively, essentially functioning as source and sink nodes for the couriers. To determine the

total fractional number of couriers needed, we sum uin
(m,t) across all nodes:

∑
(m,t)∈N

uin
(m,t). Couriers are

permitted to enter the system at node, providing the flexibility needed to optimally meet varying

demand patterns. However, we impose constraints to ensure that, on average, couriers work for at

least a minimum shift duration θmin and do not exceed a maximum shift duration θmax.

3.7. Profit structure

The objective is to maximize the platform’s total expected profit, defined as the difference between

revenue and costs. Revenue is obtained through commission paid by restaurants on each order

made by customers, based on a percentage of the order value. Each order placed by a customer

therefore corresponds to a revenue, which can vary depending on the restaurant r and cuisine q

and district d. We denote this revenue by pdqr.
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Costs are related to riders and consist of two parts: expenses related to the compensation of

riders, and the expenses related to overhead costs depending on the number of couriers that are

used in the system. We consider two compensation policies to compare and test the influence of

different policies on the performance of the system. The first policy is defined as Commission Based

(CB), where riders are compensated for each order they deliver. We define this cost as cdqr, similar

to the profit structure. Similarly, the expected compensation costs of delivering an order within

district d related to the CB policy can be found using Equations 3.2 and 3.5 and replacing pdqr with

cdqr:

ĉcomp
CB =

∑
q∈Q

∑
r∈Sd

q
cdqr ·Pd

r|q(S
d
q )V

d
q (S

d
q )

γd
q

vd0 +
∑

q∈Q V d
q (S

d
q )

γd
q

(3.7)

The second policy is defined as Fixed Employment (FE), where riders are hired by the platform

and get compensated a fixed wage per hour. Let ct be the discretized wage per time unit for a rider.

Then traveling along an arc a= ((m,t), (m′, t+ τmm′)) ∈ A incurs a cost ca = ct · τmm′ . Summing

this over all arcs provides the total wage payout. We generalize the compensation costs for the

policies to ccompensation
policy .

The overhead costs exist for both policies, however the overhead costs related to the FE policy

are bigger than for the CB policy, as naturally there are higher costs incurred when hiring riders.

We define these costs as coverheadpolicy per rider such that policy ∈ {CB,FE} and calculate the costs

based on the number of incoming couriers within the spatial-temporal network:

ĉoverheadpolicy = coverheadpolicy ·
∑

(m,t)∈N

uin
(m,t) (3.8)

The conceptual framework presented in this section underpins the decision-making mechanisms

of the mathematical formulation presented in the next section.

4. Mathematical formulation

We propose a mathematical formulation for the RSRDP that enumerates all possible assortments

for each service district d and cuisine nest q. For each (d, q) pair, we introduce binary decision

variable zSd
q
∈ {0,1} to indicate whether a particular assortment Sd

q ⊆Rd
q of restaurants is offered.

The continuous variable wa represents the rider flow on arc a∈A, while uin
(m,t) and uout

(m,t) represent

the incoming and exiting riders at node (m,t)∈N . The sets and parameters used in the formulation

are summarized in Appendix A, and we refer the reader to the conceptual framework (Section 3)

for further details on the problem setting. We first present the mathematical model in its nonlinear
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form. The linearization of this formulation is presented in Section 4.1. The problem is presented

as follows:

max
∑
d∈D

Erev
d (zSd

q
)−Ecost

policy(wa, u
in
(m,t), u

out
(m,t)) (4.1)

s.t. (4.6)− (4.15)

The objective function (4.1) calculates the difference between the expected revenue obtained from

orders ordered within all districts based on assortments Sd
q offered and the expected cost from

operating riders. In the remainder of this section, we explain each profit component and the con-

straints.

Expected revenue. We first define the expected revenue contribution from district d. Each dis-

trict’s revenue depends on the number of arriving requests in all zones covered by the district over

the time horizon,
∑

m∈M

∑
t∈T bdmλmt, and the expected revenue from customers ordering within

district d from Equation (3.5), by multiplying these, we obtain the total expected revenue from

district d over all arriving requests. To incorporate this we change Equation (3.5) to include the

model’s decision variable zSd
q
:

Erev(zSd
q
) =

∑
q∈Q

∑
Sd
q⊆Rd

q
V d
q (S

d
q )

γd
qπd

q (S
d
q ) · zSd

q

vd0 +
∑

q∈Q

∑
Sd
q⊆Rd

q
V d
q (S

d
q )

γd
q · zSd

q

·
∑
m∈M

∑
t∈T

bdmλmt (4.2)

By summing over all districts one can obtain the total expected revenue.

Expected costs. The expected rider costs depend on the policy implemented, consisting of the

compensation costs and the overhead costs. The compensation costs can be defined similarly as

the expected profit for the CB policy, for the FE policy we sum the rider flows over all arcs. This

gives us the following:

Ecost
policy(wa, u

in
(m,t), u

out
(m,t)) = ĉcompensation

policy + ĉoverheadpolicy (4.3)

Where ĉoverheadpolicy is as defined in subsection 3.7 and ĉcompensation
policy is defined as:

ĉcompensation
policy =


∑

q∈Q

∑
Sd
q⊆Rd

q
V d
q (Sd

q )
γdq

∑
r∈Sd

q
cdqr·P

d
r|q(S

d
q )·zSd

q

vd0+
∑

q∈Q

∑
Sd
q⊆Rd

q
V d
q (Sd

q )
γdq ·z

Sd
q

·
∑

m∈M

∑
t∈T

bdmλmt if policy = CB∑
a∈A

ca ·wa if policy = FE

(4.4)

Demand satisfaction constraints. To ensure that enough rider capacity is available to fulfill all

customer orders within the allowable delivery window ρ, recall that an order placed at time t at

a restaurant located in zone m by a customer located in zone m′ can be picked-up in zone m and

delivered in zone m′ anywhere within the periods {t+η ..., t+ρ}. The number of related orders was
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presented by Equation (3.6), and in a similar fashion as for the objective we incorporate decision

variable zSd
q
to obtain the number of orders, i.e. demand as specified from restaurant to customer,

from zone m to m′ ordered at period t:

∆t
mm′ = λm′t ·

∑
q∈Q

∑
Sd
q⊆Rd

q

∑
r∈R̂m∩Sd

q
vdqr ·V d

q (S
d
q )

γd
q−1 · zd

Sd
q

vd0 +
∑

q∈Q

∑
Sd
q⊆Rd

q
V d
q (S

d
q )

γd
q · zSd

q

(4.5)

Recall that the binary parameter bdm equals one when zone m is covered by district d and zero

otherwise. The number of riders needed to deliver the orders between any two zones over all districts

within the delivery window should therefore be at least ∆t
mm′ if m′ is covered by d, summed over

all districts d, presented in Constraint (4.6). This constraint may include an overlap in demand

generated within the delivery window, e.g. when two orders are placed from zone m adjacent

to m′ at time t1 and t2 respectively, and need to be delivered within delivery windows [t1, t2, t3]

and [t2, t3, t4] respectively, the constraint will hold if one rider delivers one order from zone m to

m′ starting at time t2. Therefore we also need to add a global constraint on total riders versus

total demand, presented in Constraint (4.7). Both constraints include larger or equal signs because

couriers may also relocate instead of delivering, resulting in larger flow values, but because rider

costs are minimized the total flow of couriers will be minimized as well.∑
t′=t+τmm′
t+η≤t′≤t+ρ

w(m,t)(m′,t′) ≥
∑
d∈D

bdm′∆t
mm′ ∀m,m′ ∈M, t∈ T \ {Tmax− ρ− η, ..., Tmax} (4.6)

∑
a∈A

wa ≥
∑
m∈M

∑
m′∈M

∑
t∈T

∑
d∈D

bdm′∆t
mm′ (4.7)

wa ∈R+ ∀a∈A (4.8)

Rider flow constraints. Rider flows are captured via the node-balance constraints and the defi-

nitions of uin
(m,t) and uout

(m,t). For each node (m,t) ∈N , we require the total incoming flow plus any

new riders entering to equal the total outgoing flow plus any riders leaving, presented in Constraint

(4.9). Since the total number of riders entering the system must be the same as the total number

exiting, we add Constraint (4.10). Finally, we represent operational rules that constrain how long

each rider can work on average using the shift duration [θmin, θmax] in Constraint (4.11).∑
a∈A−

(m,t)

wa +uin
(m,t) =

∑
a∈A+

(m,t)

wa +uout
(m,t) ∀(m,t)∈N (4.9)

∑
(m,t)∈N

uin
(m,t) =

∑
(m,t)∈N

uout
(m,t) (4.10)

θmin ·
∑

(m,t)∈N

uin
(m,t) ≤

∑
a∈A

wa ≤ θmax ·
∑

(m,t)∈N

uin
(m,t) (4.11)

wa ∈R+ ∀a∈A (4.12)

uin
(m,t) ∈R+, uout

(m,t) ∈R+ ∀m∈M, t∈ T (4.13)
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Assortment constraints. Constraint (4.14) guarantees that the model selects precisely one subset

Sd
q out of all possible subsets of Rd

q for each (d, q) pair.∑
Sd
q⊆Rd

q

zSd
q
= 1 ∀q ∈Q, d∈D (4.14)

zSd
q
∈ {0,1} ∀q ∈Q, d∈D, Sd

q ⊆Rd
q (4.15)

In the following subsection, we discuss the linearization of the above-mentioned nonlinear con-

straints and the objective function.

4.1. Linearization

The model presented by (4.1)-(4.15) is non-linear due to constraint (4.6), (4.7) and the objective

function (4.1). We follow a two-step procedure to transform these expressions into a Mixed-Integer

Linear Program (MILP). We first isolate the fractional expressions in the objective and constraints.

For district d, let continuous variable yd capture the fraction

yd =

∑
q∈Q

∑
Sd
q⊆Rd

q
V d
q (S

d
q )

γd
qπd

q (S
d
q ) · zSd

q

vd0 +
∑

q∈Q

∑
Sd
q⊆Rd

q
V d
q (S

d
q )

γd
q · zSd

q

=
fd
gd

(4.16)

Similarly, for each zone m and district d, define continuous variable xmd to represent the fraction

xmd =

∑
q∈Q

∑
Sd
q⊆Rd

q

∑
r∈R̂m∩Sd

q
vdqr ·V d

q (S
d
q )

γd
q−1 · zd

Sd
q

vd0 +
∑

q∈Q

∑
Sd
q⊆Rd

q
V d
q (S

d
q )

γd
q · zSd

q

=
hmd

gd
(4.17)

Next we rewrite each fraction as a product of the new variable and a linear function of zSd
q
,

gdyd = fd ∀d∈D and gdxmd = hmd ∀d∈D, m∈M , and introduce bounds for the newly defined

variables. As all the relevant components of the model are larger or equal to zero, the lower bound

trivially becomes zero for all variables. For the upper bound we want to find the maximum values

these variables can attain. For the upper bound of yd ∈ [0, yU
d ], we want to find yU

d = maxyd =

max{ fd
gd
}. fd can be maximized by noting that zSd

q
= 1 for exactly one Sd

q ∀q ∈Q, d∈D, therefore

max{fd}=
∑

q∈Q max
Sd
q⊆Rd

q

V d
q (S

d
q )

γd
qπd

q (S
d
q ). Similarly we can show that to minimize gd we get mingd =

vd0 +
∑

q∈Q min
Sd
q⊆Rd

q

V d
q (S

d
q )

γd
q . Combining these results we get yU

d =
max
z

fd

min
z

gd
=

∑
q∈Q max

Sd
q⊆Rd

q

V d
q (Sd

q )
γdq πd

q (S
d
q )

vd0+
∑

q∈Q min
Sd
q⊆Rd

q

V d
q (Sd

q )
γdq

.

Similarly, we find the upper bound for xmd ∈ [0, xU
md]. Combining all these results we obtain the

following formulation:

max
∑
d∈D

yd ·
∑
m∈M

∑
t∈T

bdmλmt−Ecost
policy(wa, u

in
(m,t), u

out
(m,t)) (4.18)

s.t. (4.8)− (4.15)

gdyd = fd ∀d∈D (4.19)
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gdxmd = hmd ∀d∈D, m∈M (4.20)∑
t′=t+τmm′
t+η≤t′≤t+ρ

w(m,t)(m′,t′) ≥ λm′t

∑
d∈D

bdm′xmd (4.21)

∀m,m′ ∈M, t∈ T \ {Tmax− ρ− η, ..., Tmax}∑
a∈A

wa ≥
∑
m∈M

∑
m′∈M

∑
t∈T

λm′t

∑
d∈D

bdm′xmd (4.22)

yd, fd, gd ∈ [0, yU
d ], xmd, hmd ∈ [0, xU

md] ∀d∈D, m∈M (4.23)

Note that for the CB policy we can similarly reformulate the fractional term. Yet still, constraints

(4.19) and (4.20) are bilinear in terms of decision variables zSd
q
, yd, gd and xmd. We can further

linearize these constraints by applying the commonly used linearization technique by Charnes and

Cooper (1973), resulting in adding additional constraints to the model. We introduce auxiliary

continuous variables lSd
q
and km

Sd
q
such that lSd

q
= zSd

q
· yd and km

Sd
q
= zSd

q
· xmd. We then add the

following linearization constraints:

lSd
q
≤ yd ∀d∈D, q ∈Q, Sd

q ⊆Rd
q (4.24)

lSd
q
≤ yU

d · zSd
q

∀d∈D, q ∈Q, Sd
q ⊆Rd

q (4.25)

lSd
q
≥ yd− yU

d · (1− zSd
q
) ∀d∈D, q ∈Q, Sd

q ⊆Rd
q (4.26)

km
Sd
q
≤ xmd ∀d∈D, q ∈Q, Sd

q ⊆Rd
q , m∈M (4.27)

km
Sd
q
≤ xU

md · zSd
q

∀d∈D, q ∈Q, Sd
q ⊆Rd

q , m∈M (4.28)

km
Sd
q
≥ xmd−xU

md · (1− zSd
q
) ∀d∈D, q ∈Q, Sd

q ⊆Rd
q , m∈M (4.29)

lSd
q
∈ [0, yU

d ], km
Sd
q
∈ [0, xU

md] ∀d∈D, q ∈Q, Sd
q ⊆Rd

q , m∈M (4.30)

By incorporating the new auxiliary variables into the formulation the bilinear constraints (4.19)

and (4.20) respectively change to:

∑
q∈Q

∑
Sd
q⊆Rd

q

V d
q (S

d
q )

γd
q πd

q (S
d
q ) · zSd

q
= vd

0 · yd +
∑
q∈Q

∑
Sd
q⊆Rd

q

V d
q (S

d
q )

γd
q · lSd

q
∀d∈D (4.31)

∑
q∈Q

∑
Sd
q⊆Rd

q

∑
r∈R̂m∩Sd

q

vd
qr ·V d

q (S
d
q )

γd
q−1 · zSd

q
= vd

0 ·xmd +
∑
q∈Q

∑
Sd
q⊆Rd

q

V d
q (S

d
q )

γd
q · km

Sd
q
∀d∈D, m∈M (4.32)

These linearizations replace all the bilinear terms the model, allowing it to be formulated as a MILP,

which can be effectively solved by a typical branch-and-bound solver like Gurobi, able of reaching

global optimality. However, the problem grows exponentially in variables due to the number of

possible combinations of restaurants for the assortments. Therefore, we need to carefully search

the solution space for which we present our resolution approach in Section 5.
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5. Resolution approach

In addressing the problem, we propose a novel solution methodology defined as the Iterative

Assortment Generation (IAG) algorithm that incorporates Benders decomposition. This approach

is designed to balance computational efficiency with solution quality, and it leverages problem-

specific insights to navigate the vast combinatorial space of potential restaurant assortments. The

proposed methodology is evaluated through numerical experiments to assess performance in terms

of solution quality and computational efficiency, presented in Section 6.

Figure 5 Overview diagram of the IAG algorithm.

Figure 5 summarizes the overall methodology. The IAG algorithm starts with decomposing the

problem into a master and subproblem as described in subsection 5.1. Next, the initial set of

assortments that form the Restricted Master Problem (RMP) is generated, explained in subsection

5.2. The RMP is solved using a standard solver such as Gurobi. The routing subproblem is solved

to generate dual information that produces Benders cuts, which are integrated back into the RMP.

Concurrently, the IAG algorithm refines the assortment set via heuristic operators and a removal

threshold, and the process iterates until a stopping criterion is met, which we define as a time limit

or maximum iteration count.

5.1. Benders decomposition

Benders decomposition is employed to decompose the problem and solve it more efficiently: the

master problem (MP) on assortment selection to maximize revenue and the rider subproblem (SP)

to minimize rider costs. In our formulation, the master problem is an integer program that selects
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an assortment for each service district and cuisine nest, while the subproblem is a continuous opti-

mization model that determines the allocation of riders throughout the system based on the chosen

assortments. Mathematically, for the RSRDP formulated in Section 4, the Benders decomposition

formulation is the following:

Master Problem (MP).

max
∑
d∈D

yd ·
∑
m∈M

∑
t∈T

bdmλmt−Θ (5.1)

s.t.
∑

Sd
q∈Bd

q

zSd
q
= 1 ∀q ∈Q, d∈D (5.2)

(4.24)− (4.32)

Θ≥Z +
∑
d∈D

∑
m∈M

ϕmd · (xmd− x̂md) (5.3)

Constraint (5.3) represents the Bender’s cut from the subproblem, where ϕmd is the dual variable of

constraint (5.7) in the subproblem. Given a solution x̂md from the MP, the subproblem is presented.

Subproblem (SP).

min Z = Ecost
policy(wa, u

in
(m,t), u

out
(m,t)) (5.4)

s.t. (4.9)− (4.13)∑
t′=t+τmm′
t+η≤t′≤t+ρ

w(m,t)(m′,t′) ≥ λm′t

∑
d∈D

bdm′xmd ∀m,m′ ∈M, t∈ T \ {Tmax− ρ− η, ..., Tmax} (5.5)

∑
a∈A

wa ≥
∑
m∈M

∑
m′∈M

∑
t∈T

λm′t

∑
d∈D

bdm′xmd (5.6)

xmd = x̂∗
md ∀m∈M, d∈D (5.7)

The optimal vector x̂md represents the demand generated by the assortment plan, obtained by

solving the master problem. The resulting cut from the SP is subsequently added to the MP,

which is a process that repeats itself until the MP reaches optimality. By incorporating Benders

optimality cuts into the MP, the formulation is progressively tightened, enhancing convergence to

the optimal solution.

5.2. Iterative Assortment Generation Algorithm

Our initial exploration focused on an exact solution framework employing column generation com-

bined with a branch-and-price method augmented with Benders decomposition. In this exact frame-

work, the master problem contains the assortment selection variables and is iteratively tightened by

incorporating Benders cuts derived from the routing subproblem. Unfortunately, the non-convexity

of the associated pricing problem led to intractability. To address this, we develop the Iterative
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Assortment Generation (IAG) algorithm described in Algorithm 1, inspired by the column gener-

ation approach, which is a heuristic that leverages the structure of the problem without relying on

dual-based pricing.

At the heart of the IAG algorithm are three heuristic operators (add, remove, and swap) that

generate new assortments by exploring the neighborhood of the current best solution. These oper-

ators function similarly to the pricing step in column generation; however, they are tailored to

our problem structure and do not depend on dual variables. This allows us to maintain integrality

throughout the iterative process, ensuring that every generated solution is feasible in the original

problem space. Algorithm 1 presents the pseudo-code of the IAG algorithm. Each component of

the algorithm is explained in more detail in the subsequent subsections.

Algorithm 1: Iterative Assortment Generation Algorithm

Input: Data instance, time limit Tlimit, maximum number of iterations Ilimit, inactivity threshold φ,

last used iteration Ilast.

Output: Best objective P ∗ and associated assortments A∗.

Initialize: P ∗← NBR objective, A∗← NBR assortments, iteration counter i← 0, Ilast(A∗)← 0.

while i < Ilimit and runtime <Tlimit do
Solve the Restricted Master Problem (RMP) using the Benders decomposition method;

Extract selected assortments Ai and objective Pi

if Pi >P ∗ then
Update P ∗← Pi, A∗←Ai

Update Ilast(A∗)← i;

Generate new assortments based on selected assortments and add to RP;

// Section 5.2.2: generation

Remove unused assortments based on inactivity threshold and remove from RP;

// Section 5.2.3: removal

Increment iteration counter i← i+1
return P ∗ and A∗

5.2.1. Initial Nested-By-Revenue assortments. Under the assumptions that the within-

nest no-purchase option satisfies vdq0 = 0 and that the dissimilarity parameter γd
q ≤ 1 for all d ∈

D, q ∈Q, Davis, Gallego, and Topaloglu (2014) showed that the optimal assortment can be con-

structed by considering only the nested-by-revenue (NBR) assortments. For each cuisine nest,

restaurants are indexed in descending order of revenue, and the optimal assortment is obtained by

including restaurants sequentially until the marginal revenue becomes non-positive. These NBR

solutions for each district-cuisine pair (d, q) are used as the initial candidates in our IAG algorithm.
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5.2.2. Assortment generation. The pseudo-code for generating new assortments in the IAG

framework is presented in Algorithm 2. It focuses on refining the set of possible assortments (Aposs)

by leveraging modifications to previously optimal selected assortments (Aprev). At each iteration,

the algorithm evaluates restaurants within the previously optimal assortment for a specific cuisine

and district combination (d, q) (Sprev) and attempts to apply the three key operators to create new

candidate assortments:

• add: For a given current assortment, select a restaurant not included in the set based on its

profit contribution (i.e., the product of its revenue pdqr and attraction value vdqr). A weighted

random selection favors higher-profit restaurants, prioritizing those with greater expected

profitability.

• remove: For a given current assortment, eliminate a restaurant from the assortment based on

its inverse profit contribution. Lower-profit restaurants are more likely to be removed.

• swap: Replace a restaurant in the current assortment with one not present in it, using the

weighted selection rules from the add and remove operators.

A record is maintained to ensure only unique assortments are generated. If no further unique

assortments can be created, the algorithm halts the generation process.

Algorithm 2: Generate New Assortments for Selected Assortments

Input: Data instance, previous optimal selected assortments Aprev, current possible assortments

Aposs, set R
d
q .

Output: Updated possible assortments A′
poss.

foreach (d, q)∈Aprev do
Extract previously optimal selected assortment Sprev;

Calculate scores for each restaurant in Rd
q based on pd

qr and vd
qr;

Attempt to add: Select a restaurant not in Sprev and add it;

// Section: add

Attempt to remove: Remove a restaurant from Sprev;

// Section: remove

Attempt to swap: Swap a restaurant in Sprev with one not in it;

// Section: swap

Add new assortments to A′
poss

return A′
poss

5.2.3. Assortment removal. The assortment removal pseudo-code in Algorithm 3 ensures

that the set of available assortments remains efficient by removing outdated options. Each assort-

ment tracks the last iteration in which it was used. If an assortment has not been utilized within
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a defined inactivity threshold φ, it is removed from the set of possible assortments. This approach

streamlines the optimization process by focusing on active and relevant assortments, reducing

computational overhead while maintaining the quality of solutions.

Algorithm 3: Remove Old Assortments Based on Inactivity

Input: Current possible assortments Aposs, last used iteration Ilast, current iteration i, inactivity

threshold φ.

Output: Updated possible assortments A′
poss.

foreach (d, q)∈Aposs do
foreach assortment Sd

q ∈Aposs(q, d) do
Extract last used iteration Ilast(Sd

q ) if i−Ilast ≥φ then
Remove Sd

q from Aposs(q, d)
return A′

poss = Aposs

6. Numerical experiments

This section evaluates the proposed model and solution algorithm through two key experiments:

(1) assessing the algorithm’s computational performance across different instance settings, and (2)

analyzing the impact of commission-based (CB) and fixed employment (FE) compensation policies

on operational costs, rider utilization, and profitability, under varying network configurations.

Additionally, in Section 6.4, we test the proposed algorithm on Amsterdam restaurant data to

find practical trade-offs between rider shift duration and delivery windows, comparing profitability,

fleet size and rider workload measures. The computational analysis considers: (i) the effectiveness

of algorithm components in reducing computational time, comparing standard Gurobi (G), Gurobi

with Benders decomposition (G+B), and the Iterative Assortment Generation algorithm (IAG);

and (ii) the profitability and efficiency of the integrated RSRDP with IAG versus the separated

benchmark model explained in Section 6.1. Results show that the RSRDP consistently outperforms

the benchmark in expected profitability while maintaining service quality standards, with IAG

delivering scalable, practical, and high-quality solutions. Additionally, CB excels in high-variability

environments providing high profitability, while FE performs better in stable settings, ensuring

balanced fleet utilization.

All computational experiments were conducted on two systems: smaller instances were solved

on a virtual machine equipped with an Intel(R) Core(TM) i7-6700HQ CPU, 2.60 GHz processor,

and 32 GB of RAM, while larger instances were processed on the DelftBlue supercomputer (Delft

High Performance Computing Centre, 2024) with an Intel(R) Xeon(R) Gold 6248R CPU, 3.00 GHz

processor, and 185 GB of RAM. All experiments were implemented in Python 3.9.7 and solved

using Gurobi 11.0.1.
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6.1. Benchmark: separated assortment and rider optimization

We adopt a benchmark inspired by Davis, Gallego, and Topaloglu (2014). The key idea is to

separate the assortment selection from the rider decisions, focusing first on which restaurants to

offer in each service district and thereafter determining delivery costs based on those selections. We

begin by considering a framework in which each service district optimizes its restaurant offerings

independently. Under the assumptions of vdi0 = 0 and γd
q ≤ 1 ∀d ∈D, q ∈Q, the set of nested-by-

revenue assortments is optimal to consider for the assortment offerings. This means restaurants are

ranked according to their expected contribution to revenue, allowing us to include only those that

are most profitable. This problem can be solved in polynomial time. Once the best restaurants

have been selected for each service district, we calculate the delivery costs by solving the rider

problem separately. Because the assortment has already been chosen, this step solely addresses how

to dispatch riders and plan their routes to serve the anticipated orders. By combining the revenues

from the selected restaurants with the estimated rider costs, we establish an overall expected profit.

This outcome serves as our benchmark, reflecting a straightforward practice of treating assortment

and routing as separate decisions. It provides the baseline for judging the effectiveness of integrated

approaches.

6.2. Computational performance

6.2.1. Instance description. The algorithm was tested on samples of generated datasets

using a set of instances. Each instance is defined by the tuple (D,Q,M,R,vdq0, [y
L
qd, y

U
qd]), where D

is the number of service districts, Q the number of cuisine types, M the number of zones, and R

the total number of restaurants available. The no-purchase option vdq0 is considered in two config-

urations: either set to zero, meaning customers always place an order once they choose a cuisine,

or assigned a value of 10, where customers have the possibility of opting out, better reflecting real-

world behavior where some customers browse without committing to a purchase. The dissimilarity

parameters yd
q ∈ [yL

qd, y
U
qd]) are sampled from the ranges [0,1], indicating competitiveness between

within nest restaurants, and [1,2], indicating synergy between restaurants. These configurations

allow us to evaluate different behavioral scenarios and compare against the benchmark where it is

assumed that vdq0 = 0 and γd
q ∈ [0,1].

The experiments cover a broad range of problem sizes. Smaller instances include Q= 2 cuisine

types and restaurant counts R ∈ {10,15,20}, whereas larger instances explore Q= 4 with restaurant

counts extending to R ∈ {50,100,150,200}. The spatial structure remains fixed with D= 4 service

districts and M = 15 zones, ensuring consistency across all test cases. Zones are generated using

the H3 indexing system. Each instance is constructed to reflect real-world conditions, explained in

the subsequent section.
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6.2.2. Parameter settings. We adopt realistic parameter settings derived from industry

information to evaluate the algorithms’ performance under practical scenarios. Table 1 summa-

rizes these settings, including spatial and temporal parameters, demand distributions, and cost

coefficients. The restaurant and customer distributions are configured to reflect realistic urban

settings, with restaurants concentrated 50% in central zones and 50% randomly distributed across

peripheral zones.

Table 1 Parameter settings for computational performance test instances.

Parameter Value Description

T 48 periods Total time horizon
D 4 districts Number of districts
M 15 zones Number of spatial zones
ρ max(τmm′) periods Delivery window deadline
η 1 period Meal preparation time
λmt ∼Poisson(2) Customer demand distribution
θmin 0 periods Minimum rider shift duration
θmax 48 periods Maximum rider shift duration
coverheadFE e54 euro Daily overhead costs per rider under FE policy
coverheadCB e18 euro Daily overhead costs per rider under CB policy
cdqr e3.75 euro Delivery cost per order CB policy
ct e2.50 euro Time discretized wage for FE riders

φ 5 iterations Inactivity threshold value IAG algorithm
Ilimit 50 iterations Iteration limit IAG algorithm
Tlimit 3600 seconds Computational time limit IAG algorithm

Restaurant revenues pdqr and attraction levels vdqr are generated using the methodology of Alfan-

dari, Hassanzadeh, and Ljubić (2021). We sample Udqr from a uniform distribution over [0,1],

and Xd
qr and Y d

qr are independently sampled from a uniform distribution over [5,15]. Then, the

revenues and attraction levels are calculated as: pdqr = 10× Ud
qr ×Xd

qr, v
d
qr = 10× (1− Ud

qr)× Y d
qr

∀d ∈D, q ∈Q, r ∈R, where higher-priced restaurants tend to have lower attraction levels, align-

ing with the idea that expensive options appeal to fewer customers. However, random variation

ensures that this relationship is not strictly deterministic. The revenue distribution is skewed, pro-

ducing many low-revenue restaurants and a few high-revenue ones, reflecting real-world restaurant

dynamics. Platform revenue is modeled as a percentage (15–30%) of customer orders, consistent

with industry standards. To generate realistic profits, customer order values are set based on an

average of €34, with revenue and attraction parameters sampled accordingly.

6.2.3. Computational performance results. For all tests, we adopt the FE policy. A time

limit of 3600 seconds is imposed on each instance. For instances that do not converge to optimality

within this limit, we report the best-found solution and the corresponding optimality gap, as well

as its iteration number for the IAG algorithm. We solve 20 samples of each instance, and present

the average results. To evaluate the relative performance of different models, we calculate the
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average percentage improvement for key performance indicators (KPIs), such as computation time,

objective value or required fleet size, using the following formula:

KPI improvement(%) =
1

20

20∑
I=1

100% ·
(
|KPI(1)−KPI(2)|

KPI(1)

)
(6.1)

Here, I = 1, ...,20 denotes each sample, with (1) representing KPI results from Method 1 that is

compared to (2), representing results from Method 2.

The effect of different algorithm components. Table 2 presents the objective values, computation

times, and optimality gaps for all methods, along with the number of iterations for IAG. Table 3

quantifies the performance improvements, showing percentage reductions in time and any changes

in objective values. The results highlight the impact of Benders decomposition and the IAG algo-

rithm on solving the RSRDP. While all three methods achieve the same objective values across

tested instances, significant differences emerge in computation time. Adding Benders decomposi-

tion (G+B) substantially reduces computation time compared to using only the standard solver (G),

with improvements of up to 94.87%. This effect is particularly evident in complex cases with more

restaurants, where G struggles to close optimality gaps, despite reporting the correct solution. The

decomposition effectively strengthens dual bounds, leading to faster convergence.

Further time reductions are observed for IAG, outperforming G+B by an additional 14% in scenar-

ios with low outside utility values. However, when the outside utility was set higher, IAG requires

more time than G+B, though all instances were still solved within three minutes. Notably, IAG

scales well as the number of restaurants increases, benefiting from its ability to explore the solu-

tion space efficiently without full enumeration. The number of iterations remains low, averaging

between 2 and 6, underscoring its rapid convergence. Interestingly, when complexity in terms of

available restaurants increases, IAG performs relatively better, demonstrating that IAG scales well

and provides a robust alternative to exact methods for mid-sized instances.

Table 2 The effect of Benders decomposition and IAG.

Instance
Gurobi Gurobi + Benders IAG

Obj. (€) Time (s) Gap (%) Obj. (€) Time (s) Gap (%) Obj. (€) Time (s) Gap (%) #Iter.

(4,2,15,10,0,[0,1]) 39267.59 139.65 0 39267.59 55.86 0 39267.59 47.37 0 2.5
(4,2,15,10,0,[1,2]) 73512.25 1551.69 0 73512.25 80.38 0 73512.25 69.03 0 2.1
(4,2,15,10,10,[0,1]) 30523.12 112.02 0 30523.12 54.86 0 30523.12 105.25 0 3.9
(4,2,15,10,10,[1,2]) 50187.17 1329.27 1.32 50187.17 80.92 0 50187.17 151.46 0 3.9

(4,2,15,15,0,[0,1]) 40434.99 1711.60 12.7 40434.99 106.09 0 40434.99 35.81 0 1.6
(4,2,15,15,0,[1,2]) 75682.05 3293.44 900.72 75682.51 868.49 0 75682.51 25.15 0 1.5
(4,2,15,15,10,[0,1]) 32154.20 1351.24 2.54 32154.20 67.75 0 32154.20 114.76 0 5.8
(4,2,15,15,10,[1,2]) 53176.87 2778.13 332.23 53240.35 977.54 0 53240.35 194.16 0 4.5
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Table 3 Performance improvement summary of effects Benders decomposition and IAG algorithm.

Instance
Obj. % Impr.
G → G+B

Obj. % Impr.
G+B → IAG

Time % Impr.
G → G+B

Time % Impr.
G+B → IAG

(4,2,15,10,0,[0,1]) 0% 0% 60% 15.20%
(4,2,15,10,0,[1,2]) 0% 0% 94.82% 14.12%
(4,2,15,10,10,[0,1]) 0% 0% 50.03% -91.85%
(4,2,15,10,10,[1,2]) 0% 0% 93.91% -87.17%

(4,2,15,15,0,[0,1]) 0% 0% 93.80% 66.25%
(4,2,15,15,0,[1,2]) 0% 0% 73.63% 97.10%
(4,2,15,15,10,[0,1]) 0% 0% 94.87% -69.39%
(4,2,15,15,10,[1,2]) 0.12% 0% 93.01% 80.14%

Comparing the integrated RSRDP to the separated benchmark. The results in Table 4 compare

the separated benchmark model, which solves assortment and rider optimization sequentially, with

our integrated RSRDP solved with IAG, where both decisions are jointly optimized. The table

presents the objective values, the number of riders required, and the percentage improvement in

both metrics across different problem instances.

Table 4 Comparing the separated benchmark to the integrated model.

Instance
Separated benchmark Integrated model % Impr.

Obj. value # Riders Obj. value # Riders Obj. value # Riders

(4,2,15,10,0,[0,1]) 38993.05 27.34 39267.49 23.55 0.70 -13.86
(4,2,15,10,0,[1,2]) 72768.28 42.96 73512.25 37.54 1.01 -12.62
(4,2,15,10,10,[0,1]) 29612.76 21.96 30523.12 21.71 2.98 -1.14
(4,2,15,10,10,[1,2]) 43045.87 25.78 50187.17 28.63 14.23 11.06

(4,2,15,15,0,[0,1]) 40399.01 24.87 40435.00 24.57 0.09 -1.21
(4,2,15,15,0,[1,2]) 75423.98 43.47 75682.51 40.33 0.34 -7.22
(4,2,15,15,10,[0,1]) 31491.59 19.94 32154.20 21.28 2.06 6.72
(4,2,15,15,10,[1,2]) 49643.69 26.83 53240.35 33.41 6.76 24.52

(4,2,15,20,0,[0,1]) 48635.53 24.35 48730.63 23.91 0.20 -1.81
(4,2,15,20,0,[1,2]) 87078.07 40.98 87992.27 39.99 1.04 -2.42
(4,2,15,20,10,[0,1]) 37240.32 19.00 39235.44 23.72 5.08 24.84
(4,2,15,20,10,[1,2]) 52769.58 25.79 62535.25 34.73 15.6 34.66

(4,4,15,50,0,[0,1]) 67906.86 29.39 67980.02 28.73 0.11 -2.25
(4,4,15,50,0,[1,2]) 104933.61 41.46 105252.31 39.31 0.30 -5.19
(4,4,15,50,10,[0,1]) 48353.21 21.45 52016.95 25.77 7.04 20.14
(4,4,15,50,10,[1,2]) 57285.94 24.83 69201.41 30.64 17.22 23.40

(4,4,15,100,0,[0,1]) 78849.35 31.34 79029.39 29.90 0.23 -4.59
(4,4,15,100,0,[1,2]) 118097.91 41.00 118216.01 38.32 0.10 -6.54
(4,4,15,100,10,[0,1]) 59575.97 24.08 64966.45 28.57 8.30 18.65
(4,4,15,100,10,[1,2]) 62437.89 20.85 82351.77 31.55 24.18 50.32

(4,4,15,150,0,[0,1]) 82233.79 29.47 82302.65 28.69 0.08 -2.65
(4,4,15,150,0,[1,2]) 123268.25 39.28 123296.26 38.36 0.02 -2.34
(4,4,15,150,10,[0,1]) 62038.43 22.71 67892.55 27.93 8.62 22.99
(4,4,15,150,10,[1,2]) 61038.09 20.24 85513.95 31.51 28.62 55.68

(4,4,15,200,0,[0,1]) 80393.57 31.15 80525.82 28.99 0.17 -6.93
(4,4,15,200,0,[1,2]) 123371.40 43.27 123617.42 40.41 0.20 -6.61
(4,4,15,200,10,[0,1]) 62801.29 24.73 68775.88 28.67 8.69 15.93
(4,4,15,200,10,[1,2]) 69387.55 21.56 85378.27 33.84 18.73 56.96
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The integrated RSRDP model consistently outperforms the separated benchmark in terms of

expected profit, with improvements ranging from marginal increases of 0.09% in simpler cases to

substantial gains exceeding 28% in more complex settings. The largest improvements occur when

the outside utility is high (vdq0 = 10) and the restaurants exhibit higher synergy among each other

(γd
q ∈ [1,2]). This indicates that the benefits of integration grow as users have an option of not pur-

chasing anything when they have already chosen a cuisine type or restaurants are synergistic with

respect to each other, or both. Conversely, in cases with no outside utility and high competitive-

ness, the profit improvements remain modest, often below 1%, the value of joint optimization is less

pronounced yet still beneficial. For the, in our opinion, most real-world reflective case of positive

outside-utility (vdq0 = 10) and competitiveness between restaurants (γd
q ∈ [0,1]), the improvements

are still significant around 6%. Overall, the impact of integration becomes stronger as the problem

size increases, indicating that for a larger real-world network, integration is even more beneficial.

In terms of fleet size, the integrated RSRDP generally reduces the number of required riders,

with decreases of up to 13.86%. This efficiency gain results from the coordinated optimization of

assortment and delivery, leading to a more compact and effective allocation strategy. However,

in some instances, particularly those with high outside utility, the required fleet size increases,

sometimes even by over 50%. This is driven by the RSRDP’s ability to attract more customers

through strategically optimized assortments, leading to a higher order volume that necessitates

additional riders. Despite this, the corresponding profit increase is substantial, with instances such

as (4,4,15,200,10,[1,2]) showing an 18.73% improvement in profit alongside a 56.96% rise in fleet

size. These cases highlight that while more riders are required, the increase is a direct consequence

of capturing more market demand and driving higher overall profitability.

Overall, the performance of the integrated approach is strongly influenced by the behavioral

characteristics of customers. When customers are more likely to opt out of purchasing, integrating

assortment and allocation decisions allows the platform to strategically influence demand, leading

to higher revenues and sometimes requiring a larger fleet to meet demand. Similarly, when restau-

rants are synergistic, customers display stronger preferences for specific options, making optimized

assortments significantly more valuable. On the other hand, when outside utility is low and restau-

rants display higher competitiveness, the impact of integration is limited, yet still beneficial in

terms of profitability and reduced fleet size.

6.3. Impact of compensation policies and other managerial insights

6.3.1. Experimental setup. We evaluate commission-based (CB) and fixed employment

(FE) compensation policies over a simulated 12-hour operating window (11:00–23:00) in a mid-sized
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urban area. The region consists of 34 zones across four service districts, with 100 restaurants span-

ning 10 cuisine types. Restaurant distribution reflects real-world conditions, with 50% in central

zones and 50% in peripheral areas.

Customer arrivals follow a Poisson process with demand peaking during meal times, resulting

in 1,250–1,500 daily orders. Assortments assume competitive restaurant interactions (γd
q ∈ [0,1]),

and customers may opt out at the cuisine level (vdq0 = 10). Meal preparation takes 10 minutes,

and deliveries must be completed within one hour. Rider shifts range from 4 to 12 hours. Under

FE, riders earn €15 per hour (€2.50 per 10-minute time step), while under CB, they receive €5

per completed delivery, assuming an average of three deliveries per hour. Hiring costs range from

10–30% of wages, totaling €54 for platform-employed and €18 for independent riders. The RSRDP

is solved using IAG with a 2-hour time limit and a maximum of 50 iterations. Each scenario is

replicated 10 times to ensure robust results.

6.3.2. Influence of network configurations on performance of CB and FE policies.

We investigate the impact of several factors on the relative performance of CB and FE, including

customer arrival rate fluctuations, restaurant distribution, shift regulations, and delivery deadlines.

Summaries of the results can be found in the Tables and Figures presented in Appendix B.

Effect of restaurant distribution. When analyzing three restaurant distributions, base (50% cen-

tral clustering), centered (90% central clustering), and distributed (even dispersion across all zones),

CB consistently outperforms FE in expected profit and revenue by flexibly scaling rider partici-

pation and repositioning at low marginal cost. In dispersed areas, CB mobilizes more riders on

demand, boosting gains. However, with centralized or uniform restaurant layouts, FE’s stable pool

of salaried riders can maintain coverage without excessive idle costs, though it lacks CB’s dynamic

responsiveness.

Impact of delivery window. Short delivery deadlines (20–30 minutes) significantly constrain rev-

enues due to reduced geographic coverage, especially penalizing FE due to its fixed labor costs.

Extending deadlines (40–70 minutes) markedly increases revenues and profitability for both CB

and FE by expanding service areas and order volumes. CB leverages these longer deadlines more

effectively through dynamic rider repositioning and workforce scaling, despite higher delivery costs.

FE sees moderate gains but remains hindered by fixed labor expenses. While deadlines beyond 70

minutes may slightly increase profits further, customer satisfaction may deteriorate, emphasizing

the optimal range (40–70 minutes) as critical for balancing operational efficiency and customer

experience.



27

Role of shift regulations. Analyzing rider’s average shift durations from fully flexible (0h-12h)

to strictly fixed (6h), CB yields higher profits through dynamic rider repositioning. Rigid shifts

reduce over-staffing and turnover in FE, ensuring predictability. Maximum profitability occurs at

moderately flexible shifts (5h-7h) for both CB and FE, optimizing the balance between cost and

responsiveness. Thus, platforms prioritizing dynamic scaling benefit from flexibility, while those

focused on stability may favor fixed shifts.

Impact of customer arrivals throughout the time horizon. CB consistently outperforms FE across

three customer arrival patterns: the base scenario, featuring moderate demand peaks around stan-

dard meal times; the uniform scenario, where customer arrivals are steady throughout the day; and

the peak scenario, characterized by sharp surges at lunch and dinner. CB leverages dynamic rider

repositioning and scalable workforce management to effectively capture revenues, especially during

peak demand, despite higher relocation costs. FE, constrained by fixed salaried labor, struggles

financially during demand surges but remains relatively competitive under uniform conditions.

Thus, CB suits volatile demand patterns, while FE favors predictable, stable demand environments.

Cost considerations in CB. Increasing per-delivery costs under CB (e3-e7) consistently high-

lights CB’s profitability and adaptability compared to FE. Although increasing per-delivery fees

raises CB’s variable costs, its adaptive deployment keeps marginal expenses low, maintaining higher

profit margins than FE. At very high cost levels, the gap narrows as per-trip fees approach the

fixed costs of FE. In such cases, a hybrid model, using a salaried core with flexible riders during

peaks, may be optimal.

Overall, our findings indicate that there is no one-size-fits-all policy for meal delivery platforms.

Commission-based (CB) consistently outperforms fixed employment (FE) in terms of profitability

and revenue, particularly in environments characterized by significant demand variability, wide

service areas, and extended delivery windows. However, this profitability advantage comes with

trade-offs: higher relocation flows under CB can increase rider workload and potentially lead to

dissatisfaction. Conversely, FE offers predictable labor costs and stable coverage in scenarios with

uniform demand or centralized restaurant distributions, though its fixed cost structure may escalate

rapidly under high-demand conditions. Ultimately, the optimal policy depends on balancing profit

maximization with operational efficiency and rider satisfaction. Future work might explore hybrid

models that integrate the dynamic scalability of CB with the cost stability of FE to further enhance

performance across diverse operational scenarios.

6.4. Scaling RSRDP to real-world data

In this section, we evaluate the practical application of the RSRDP by scaling our proposed

approach to real-world data from Amsterdam, The Netherlands. Using data from 100 restaurants,
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randomly selected to represent a diverse sample spanning 13 cuisines, we analyze how our model

performs under realistic urban conditions. The data is obtained from a real meal delivery plat-

form available in Amsterdam and the data includes specifics on the location of the restaurant,

main cuisine type, review score (1.0-5.0) and price category (1-3). The study area is defined by

the geographical boundaries of Amsterdam, which we partition into five service districts based

on existing municipal divisions (Amsterdam 2024a). Each district is covered with the hexagonal

zonal structure generated by the H3 spatial indexing system at a resolution that approximates an

8-minute travel time between adjacent zone centroids.

To simulate customer demand, we combine population density factors (Amsterdam 2024b) with

temporal patterns that mirror typical meal-ordering behavior. Specifically, the arrival rate in each

zone and time period, λmt, is computed based on these factors, resulting in an aggregate of roughly

2600 orders over the planning horizon. The attractiveness of restaurants is modeled through a

regression that accounts for both price category and review scores. Here, the average price for a

restaurant is determined by its price category, with:

avg pricer =


10 if price category 1

15 if price category 2

30 if price category 3

(6.2)

The restaurant-specific attraction value is based on the negative influence of higher prices, and

positively influenced by high review scores, given by:

vdqr = vdq0 +10× (2× reviewr−price categoryr + ϵ
(1)
dqr) (6.3)

Where reviewr denotes the review score of restaurant r, and ϵ
(2)
dqr ∼ extreme value type I =

Gumbel(µ= 0, β = 1) accounts for unobserved factors. Revenues from restaurants are based on the

price category, using the commission rate of 15%-30% per order. We draw commission rates for

restaurant r from the uniform distribution: commission rater ∼U(0.15,0.30). The price parameter

is then calculated as:

pdqr = 2× avg pricer× commission rater× (1+ ϵ
(2)
qrd) (6.4)

Where the multiplicative noise term is ϵ
(2)
qrd ∼N(0,0.05). This formulation means that the base price

is scaled by 2 and then adjusted for the commission and a small normally distributed perturbation.

Other parameters and sets are consistent with those described in Subsection 6.3, and Figure 6

provides an overview of the service districts, zonal structure, demand distribution, and restaurant

locations, for the Amsterdam case study.
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The selected case study reflects the typical urban distribution of restaurants, with a high con-

centration in the city center. Through this analysis, we investigate the impact of varying average

shift durations and maximum delivery windows on key performance metrics, including platform

profitability, rider workload per hour, and the required fleet size. Our objective is to identify a

Pareto-optimal trade-off that can inform decision-making for meal delivery platforms. The RSRDP

is solved under the Fixed Employment (FE) policy to evaluate its implications in this setting.

Figure 6 Case study data of Amsterdam. Top left indicates service regions, zones and restaurant

locations. Top right presents customer arrivals over space and time for the time horizon.

Bottom left shows heatmap of restaurant locations, bottom right heatmap of total customer

arrivals in space over time horizon.

We define each solution as a vector (Profit,#R,WL), where we want to maximize the Profit,

minimize the number of required riders #R, and either minimize or have a reasonable workload

WL for the riders, presented as the average number of orders per hour per rider. Mathematically,
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we say that a solution (Profiti,#Ri,WLi) dominates another solution (Profitj,#Rj,WLj) if the

following conditions hold:

Profiti ≥ Profitj #Ri ≤#Rj WLi ≤WLj (6.5)

With at least one of these equalities being strict. In other words, (Profiti,#Ri,WLi) is considered

better than (Profitj,#Rj,WLj) in all objectives, without being worse in any. The Pareto frontier

consists of all solutions that are not dominated by any other solution in the set.

Table 5 Case study results.

Delivery window [minutes]

30 40 50 60 70

Profit # R WL Profit # R WL Profit # R WL Profit # R WL Profit # R WL

Average [4-6] 13263.07 87.23 3.64 15471.96 96.30 3.55 20274.53 76.79 4.66 23443.93 57.96 6.95 24045.89 57.36 7.20
shift [5-7] 13140.89 86.52 3.14 14884.17 91.98 3.10 19177.51 76.68 3.89 22446.59 59.42 5.28 22761.63 46.85 6.37

duration [6-8] 11801.41 85.85 2.70 16265.18 62.13 3.85 18044.48 68.08 3.69 21634.53 53.53 4.91 23029.38 47.96 5.69
[hours] [7-9] 10691.79 64.68 2.65 13371.34 53.14 3.43 18805.00 64.36 3.56 21421.72 56.59 4.26 22315.70 46.85 4.77

[8-10] 9583.14 64.16 2.34 12956.40 72.42 2.57 16942.20 70.62 2.90 20851.20 53.79 3.99 21659.90 44.83 4.43

The experimental evaluation examines the effects of varying two key operational parameters: the

average rider shift duration and the maximum delivery window. Table 5 summarizes the outcomes

in terms of platform profitability, the required number of riders (denoted as #R), and the average

hourly workload, i.e. number of deliveries, per rider (WL). For instance, with a shift duration of

4–6 hours, increasing the delivery window from 30 to 70 minutes results in a profit increase from

$13,263.07 to $24,045.89, yet the rider workload also rises from 3.64 to 7.20 deliveries per hour. In

contrast, longer shift durations tend to yield lower overall profitability but generally correspond to

lower workloads, highlighting a trade-off between rider efficiency and cost-effectiveness.

The analysis is further enriched by the identification of Pareto frontier solutions. These solutions

reveal balanced configurations where incremental increases in profitability are accompanied by

relative changes in fleet size and rider workload. Figure 7 presents contrasting facets of the Pareto

frontier solutions in a different context. The left subplot showcases the Pareto frontier considering

profit, number of riders, and workload, where each point is color-coded to reflect workload intensity.

For example, one Pareto optimal solution with a 4–6 hour shift and a 60-minute delivery window

yields a profit of $23,443.93 with 57.96 riders and an average workload of 6.95 deliveries per

hour, while another solution with a 5–7 hour shift and a 50-minute window achieves $19,177.51

profit with 76.68 riders and a workload of 3.89 deliveries per hour. Such comparisons underscore

that a moderate delivery window, paired with an appropriate shift duration, can enhance service

quality by keeping rider workloads within a reasonable threshold (around 3 deliveries per hour)

while simultaneously improving profitability. The right subplot narrows the focus to the Pareto
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optimal solutions based solely on profit and the number of riders, while still employing workload for

visual clarity. This simplification underscores the pivotal role of workload management in balancing

service quality and operational efficiency. Notably, solutions situated in the bottom-right quadrant

of both subplots exemplify the platform’s capacity to maximize profitability with fewer riders,

albeit with varying workload implications and a large delivery window.

These findings provide actionable insights for meal delivery platforms. In practice, shorter deliv-

ery windows enhance customer satisfaction and service quality, but may necessitate either more

riders and lower profits. Conversely, extending the delivery window improves profit margins but

risks overburdening riders and compromising timely service. For decision makers, the Pareto fron-

tier serves as a decision-support tool, enabling a trade-off analysis where relative changes can be

carefully evaluated.

Figure 7 The 2D Pareto frontier solutions display profit on the x-axis and the number of riders on the y-axis,

with color representing workload. The left figure considers dominance across all three metrics, profit,

number of riders, and workload, while the right figure accounts only for profit and number of riders.

7. Conclusion

This study introduced the Restaurant Selection and Rider Dimensioning Problem (RSRDP) that

jointly considers decisions on restaurant assortments and rider dimensioning to enhance profitabil-

ity and service quality for meal delivery platforms. Numerical experiments confirm that designing

meal delivery platform services using our proposed model outperforms conventional approaches

where these steps are optimized in sequence. The proposed iterative assortment generation algo-

rithm demonstrates practical scalability.
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Further, by evaluating two rider compensation schemes, commission-based (CB) and fixed

employment (FE), we observe that CB leverages flexible deployment to sustain higher profit mar-

gins, especially when demand is volatile. Meanwhile, EC models tend to yield lower average prof-

itability in volatile contexts, but offer the advantages of workforce stability, cost predictability,

and potentially smaller fleets. These insights suggest that real-world operators may benefit from

hybrid compensation strategies, blending a core set of employed riders with a pool of on-demand

freelancers to handle peak loads while stabilizing baseline services.

Moving forward, future research could expand this framework in several directions. One promis-

ing avenue is exploring more complex hybrid compensation schemes that dynamically adjust the

mix of employed and freelance couriers based on the time of day, demand forecasts, or regional

characteristics. Additionally, incorporating multi-objective criteria, such as balancing profit with

customer satisfaction or driver well-being, would provide a more holistic view of performance.

Time-varying assortments, which adjust to changing consumer preferences throughout the day,

could refine demand modeling. Finally, developing more advanced heuristic and decomposition

approaches would further reduce computational complexity, especially when tracking individual

couriers. These extensions can equip meal delivery platforms with even more robust, profitable,

and equitable strategies to serve consumers’ growing expectations.
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Alfandari L, Hassanzadeh A, Ljubić I, 2021 An exact method for assortment optimization under the nested

logit model. European Journal of Operational Research 291(3):830–845, URL http://dx.doi.org/10.

1016/j.ejor.2020.12.007.

Amsterdam G, 2024a Amsterdam districts and neighborhoods. URL https://www.amsterdamsights.com/

about/neighborhoods.html.

Amsterdam G, 2024b Population Density Amsterdam — Website Onderzoek en Statistiek. URL

https://onderzoek.amsterdam.nl/interactief/dashboard-kerncijfers?tab=indicator&

thema=bevolking&indicator=BEVDICHT&indeling=wijken&jaar=2024&gebied=KA&taal=en.

Aparicio D, Prelec D, Zhu W, 2025 Choice Overload and the Long Tail: Consideration Sets and Purchases

in Online Platforms. Manufacturing & Service Operations Management msom.2021.0318, URL http:

//dx.doi.org/10.1287/msom.2021.0318.



33

Bell MGH, Le DT, Bhattacharjya J, Geers G, 2024 On-Demand Meal Delivery: A Markov Model for Cir-

culating Couriers. Transportation Science trsc.2024.0513, URL http://dx.doi.org/10.1287/trsc.

2024.0513.

Carlsson JG, Liu S, Salari N, Yu H, 2021 Provably Good Region Partitioning for On-Time Last-Mile Delivery.

SSRN Electronic Journal URL http://dx.doi.org/10.2139/ssrn.3915544.

Charnes A, Cooper WW, 1973 An explicit general solution in linear fractional programming. Naval Research

Logistics Quarterly 20(3):449–467, URL http://dx.doi.org/10.1002/nav.3800200308.

Chua BL, Karim S, Lee S, Han H, 2020 Customer Restaurant Choice: An Empirical Analysis of Restaurant

Types and Eating-Out Occasions. International Journal of Environmental Research and Public Health

17(17):6276, URL http://dx.doi.org/10.3390/ijerph17176276.

Davis JM, Gallego G, Topaloglu H, 2014 Assortment Optimization Under Variants of the Nested Logit Model.

Operations Research 62(2):250–273, URL http://dx.doi.org/10.1287/opre.2014.1256.

Delft High Performance Computing Centre,, 2024 DelftBlue Supercomputer (Phase 2). https://www.

tudelft.nl/dhpc/ark:/44463/DelftBluePhase2.

Fakfare P, 2021 Influence of service attributes of food delivery application on customers’ satisfaction and their

behavioural responses: The IPMA approach. International Journal of Gastronomy and Food Science

25:100392, URL http://dx.doi.org/10.1016/j.ijgfs.2021.100392.

Kancharla SR, Van Woensel T, Waller ST, Ukkusuri SV, 2024Meal Delivery Routing Problem with Stochastic

Meal Preparation Times and Customer Locations. Networks and Spatial Economics URL http://dx.

doi.org/10.1007/s11067-024-09643-1.

Ke J, Wang C, Li X, 2022 Equilibrium Analysis for On-Demand Food Delivery Markets. SSRN Electronic

Journal URL http://dx.doi.org/10.2139/ssrn.4291481.

Li J, Yang S, Pan W, Xu Z, Wei B, 2022 Meal delivery routing optimization with order allocation strategy

based on transfer stations for instant logistics services. IET Intelligent Transport Systems 16(8):1108–

1126, URL http://dx.doi.org/10.1049/itr2.12206.

Li X, Ke J, Yang H, Wang H, Zhou Y, 2024 An aggregate matching and pick-up model for mobility-on-demand

services. Transportation Research Part B: Methodological 190:103070, URL http://dx.doi.org/10.

1016/j.trb.2024.103070.

Li Z, Wang G, 2024 On-Demand Delivery Platforms and Restaurant Sales. Management Science

mnsc.2021.01010, URL http://dx.doi.org/10.1287/mnsc.2021.01010.

Liu S, He L, Shen ZJM, 2018 Data-Driven Order Assignment for Last Mile Delivery. SSRN Electronic

Journal URL http://dx.doi.org/10.2139/ssrn.3179994.

Liu S, Luo Z, 2023 On-Demand Delivery from Stores: Dynamic Dispatching and Routing with Random

Demand. Manufacturing & Service Operations Management 25(2):595–612, URL http://dx.doi.org/

10.1287/msom.2022.1171.



34

Steever Z, Karwan M, Murray C, 2019 Dynamic courier routing for a food delivery service. Computers &

Operations Research 107:173–188, URL http://dx.doi.org/10.1016/j.cor.2019.03.008.

Tang CS, Bai J, So KC, Chen XM, Wang H, 2016 Coordinating Supply and Demand on an On-Demand

Platform: Price, Wage, and Payout Ratio. SSRN Electronic Journal URL http://dx.doi.org/10.

2139/ssrn.2831794.

Ulmer MW, Savelsbergh M, 2020 Workforce Scheduling in the Era of Crowdsourced Delivery. Transportation

Science 54(4):1113–1133, URL http://dx.doi.org/10.1287/trsc.2020.0977.

Ulmer MW, Thomas BW, Campbell AM, Woyak N, 2021 The Restaurant Meal Delivery Problem: Dynamic

Pickup and Delivery with Deadlines and Random Ready Times. Transportation Science 55(1):75–100,

URL http://dx.doi.org/10.1287/trsc.2020.1000.

Xue G, Wang Z, Wang G, 2021 Optimization of Rider Scheduling for a Food Delivery Service in O2O

Business. Journal of Advanced Transportation 2021:1–15, URL http://dx.doi.org/10.1155/2021/

5515909.

Yang Y, Umboh SW, Ramezani M, 2024 Freelance drivers with a decline choice: Dispatch menus in on-

demand mobility services for assortment optimization. Transportation Research Part B: Methodological

190:103082, URL http://dx.doi.org/10.1016/j.trb.2024.103082.

Yildiz B, Savelsbergh M, 2019a Provably High-Quality Solutions for the Meal Delivery Routing Problem.

Transportation Science 53(5):1372–1388, URL http://dx.doi.org/10.1287/trsc.2018.0887.

Yildiz B, Savelsbergh M, 2019b Service and capacity planning in crowd-sourced delivery. Transportation

Research Part C: Emerging Technologies 100:177–199, URL http://dx.doi.org/10.1016/j.trc.

2019.01.021.



35

Appendix A: Table of notations

Sets and indices

D set of service districts d∈D
R set of restaurants r ∈R
Q set of cuisine types q ∈Q
Rm set of restaurants within delivery limit of zone m r ∈Rm

R̂m set of restaurants located in zone m r ∈ R̂m

Rd set of restaurants within delivery limit for service district d r ∈Rd

Rd
q set of restaurants within delivery limit for cuisine q and service district d r ∈Rd

q

M set of zones m,m′ ∈M
T set of time periods such that T = {0, κ,2κ, ..., Tmax} t, t′ ∈ T
N set of spatial-temporial nodes (m,t) such that m∈M , t∈ T (m,t)∈N
A set of arcs a∈A
A+

(m,t) set of possible destination arcs from node (m,t) (m′, t′)∈A+
(m,t)

A−
(m,t) set of possible origin arcs to node (m,t) (m′, t′)∈A−

(m,t)

Parameters

τmm′ travel time from zone m to m′; interzonal travel time τmm = κ [periods]
ρ delivery time deadline [periods]
η meal preparation time [periods]
λmt number of customer arrivals in zone m and period t [orders]
coverheadpolicy overhead cost per required rider for business policies [euro]
ca courier salary on arc a [euro]
ct discretized salary per period t [euro]
cdqr cost per service of delivery ordered from restaurant r of cuisine q in district d [euro]
pd
qr expected revenue per order at restaurant r for cuisine type q for service district d [euro]

vd
qr attraction value of restaurant r for cuisine type q for service district d [attraction]
vd
0 attraction value no-purchase option cuisine level for service district d [attraction]
vd
q0 attraction value no-purchase option restaurant level for cuisine q and district d [attraction]
γd
q dissimilarity parameter for cuisine type q for service district d [dissimilarity]

θmin average minimum shift duration [periods]
θmax average maximum shift duration [periods]
erq binary parameter indicating if restaurant r is of cuisine q [binary]
bdm binary parameter indicating if zone m is covered by service district d [binary]

Variables

zSd
q

if assortment Sd
q offered for cuisine nest q for service district d [binary]

wa courier flow on arc a [continuous]
uin
(m,t) number of couriers starting their work at period t in zone m [continuous]

uout
(m,t) number of couriers leaving the system at period t in zone m [continuous]

yd; fd; gd auxiliary variables for model formulation [continuous]
xmd; hmd auxiliary variables for model formulation [continuous]
lSd

q
; km

Sd
q

auxiliary variables for model formulation [continuous]
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Appendix B: Tables of impact compensation policies under different network
configurations

Table 7 Summary of average results for different restaurant distributions and policies.

Distribution Policy Exp. profit Revenue Deliv. cost Hiring cost # Riders % Reloc. flow % Open rest.

Base
FE 52285.31 58107.62 4478.80 2018.52 37.38 16.86 49.75
CB 54510.21 60843.35 5616.92 716.22 39.79 18.00 51.50

Distributed
FE 49034.86 54971.13 3258.93 2003.38 37.10 26.07 48.60
CB 53195.40 59676.61 5622.69 858.52 47.70 28.57 57.80

Centered
FE 52945.24 58684.89 3636.57 2103.09 38.95 14.82 55.00
CB 56335.96 62878.26 5784.42 757.88 42.10 19.85 57.20

Figure 8 Heatmaps representing examples of restaurant distribution over operating area, base case (left), cen-

tered (middle) and distributed (right).

Table 8 Summary of average results for different shift durations and policies.

Shift duration Policy Exp. profit Revenue Deliv. cost Hiring cost # Riders % Reloc. flow % Open rest.

[0,12]
FE 55553.44 60601.25 3228.04 1819.77 33.70 0.00 50.75
CB 56370.05 62520.28 5532.34 617.89 34.33 7.26 54.50

[1,11]
FE 49216.07 54862.81 3555.45 2091.28 38.73 0.13 46.75
CB 54093.07 60428.1 5588.10 746.94 41.50 12.41 53.00

[2,10]
FE 50234.02 55979.93 3604.18 2141.73 39.66 1.03 49.40
CB 51932.77 58177.77 5581.64 663.36 36.85 12.06 50.80

[3,9]
FE 50661.00 55826.02 3218.91 1946.12 36.04 2.81 48.25
CB 53639.53 59932.51 5582.71 710.27 39.46 13.99 54.50

[4,8]
FE 47503.50 53255.96 3761.50 1990.96 36.87 19.06 47.60
CB 54374.18 61030.91 5840.59 816.15 45.34 20.81 55.20

[5,7]
FE 53443.48 59690.76 4276.31 1970.97 36.50 35.97 52.00
CB 57115.63 63460.97 5541.42 803.92 44.66 41.41 57.25

[6,6]
FE 46954.00 52430.81 3886.01 1590.80 29.46 44.74 42.80
CB 49357.30 55214.75 5237.34 620.11 34.45 47.31 49.80
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Figure 9 Plots of performance of the FE and CB policy on different metrics for evaluating the impact of restaurant

distributions.

Figure 10 Plots of performance of the FE and CB policy on different metrics for evaluating the impact of shift

durations.
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Table 9 Summary of average results for different maximum delivery deadlines.

Max. delivery
time [min]

Policy Exp. profit Revenue Deliv. cost Hiring cost # Riders % Reloc. flow % Open rest.

20
FE 2884.92 4018.15 619.06 514.17 9.52 60.40 4.40
CB 3404.78 3713.64 154.93 153.92 8.55 78.42 4.40

30
FE 18162.72 22847.46 2731.12 1953.67 36.18 50.47 26.00
CB 20280.12 22647.23 1627.91 739.20 41.07 51.91 27.20

40
FE 40416.87 47520.43 4291.28 2812.28 52.08 45.17 42.25
CB 46424.02 53165.75 5615.27 1126.46 62.58 49.19 51.50

50
FE 45058.67 52951.65 4943.67 2949.31 54.62 40.62 47.40
CB 50210.90 56939.39 5670.34 1058.15 58.79 39.74 54.80

60
FE 43203.56 49447.56 3979.51 2264.49 41.94 27.81 50.75
CB 48829.63 55185.78 5464.12 892.04 49.56 33.48 57.50

70
FE 49896.55 55646.27 3166.23 1993.63 36.92 21.10 49.20
CB 54750.86 61275.00 5763.18 760.97 42.27 20.41 56.20

80
FE 51008.30 55907.55 3288.10 1611.15 29.84 9.33 47.50
CB 54518.39 60620.12 5467.45 634.29 35.24 11.04 48.75

Figure 11 Plots of performance of the FE and CB policy on different metrics for evaluating the impact of

maximum delivery deadlines.

Table 10 Summary of average results for different customer arrival distributions.

Shift duration Policy Exp. profit Revenue Deliv. cost Hiring cost # Riders % Reloc. flow % Open rest.

Base
FE 47499.62 53669.36 3957.04 2212.71 40.97 30.94 48.80
CB 52468.50 58807.99 5485.07 854.42 47.47 35.92 53.60

Uniform
FE 52076.55 56720.65 3501.11 1143.00 21.17 0 50.75
CB 54999.36 61205.55 5764.76 441.44 24.52 1.84 55.25

Centered
FE 50711.98 58090.73 4585.89 2792.87 51.72 41.16 52.4
CB 54215.03 60956.75 5594.48 1147.24 63.73 47.26 56.6



39

Figure 12 Plots of performance of the FE and CB policy on different metrics for evaluating the impact of various

customer arrival distributions.

Table 11 Summary of average results for different delivery costs cdqr.

Cost cdqr Policy Exp. profit Revenue Deliv. cost Hiring cost # Riders % Reloc. flow % Open rest.

c = 3
FE 47817.17 55118.73 4710.76 2590.80 47.98 38.21 50.60
CB 53408.95 57663.16 3353.76 900.45 50.02 38.05 51.20

c = 3.5
FE 46578.77 53069.63 4156.23 2334.62 43.23 29.61 49.40
CB 50699.13 55343.49 3794.48 849.89 47.22 34.04 52.20

c = 4
FE 45824.30 51841.77 3856.30 2161.17 40.02 32.62 44.60
CB 52015.58 57451.08 4539.07 896.44 49.80 33.91 54.60

c = 4.5
FE 46871.61 53200.12 4079.78 2248.72 41.64 34.27 46.80
CB 54482.87 60423.81 5031.00 909.94 50.55 33.91 56.50

c = 5 (base)
FE 50049.26 56285.42 3997.19 2238.97 41.46 29.74 47.40
CB 53858.38 60647.64 5866.41 922.86 51.27 31.45 54.20

c = 5.5
FE 50904.79 57206.45 4047.54 2254.13 41.74 26.13 49.60
CB 53394.51 60630.25 6294.56 941.18 52.29 35.57 54.00

c = 6
FE 44754.77 50832.16 3896.01 2181.38 40.39 35.41 45.80
CB 49421.64 57066.62 6734.86 910.12 50.56 35.20 52.20

c = 6.5
FE 49405.70 55879.90 4156.19 2318.01 42.93 30.70 48.80
CB 52922.34 61383.76 7489.24 972.18 54.01 35.65 57.20

c = 7
FE 48595.06 55259.37 4279.24 2385.07 44.17 34.81 47.60
CB 51183.03 60079.34 8025.81 870.50 48.36 33.17 51.00
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Figure 13 Plots of performance of the FE and CB policy on different metrics for evaluating the impact of

changing cdqr.



B
Summary tables results compensation
policies and other managerial insights

Table B.1: Summary of average results for different restaurant distributions and policies.

Distribution Policy Exp. profit Revenue Deliv. cost Hiring cost # Riders % Reloc. flow % Open rest.

Base FE 52285.31 58107.62 4478.80 2018.52 37.38 16.86 49.75
CB 54510.21 60843.35 5616.92 716.22 39.79 18.00 51.50

Distributed FE 49034.86 54971.13 3258.93 2003.38 37.10 26.07 48.60
CB 53195.40 59676.61 5622.69 858.52 47.70 28.57 57.80

Centered FE 52945.24 58684.89 3636.57 2103.09 38.95 14.82 55.00
CB 56335.96 62878.26 5784.42 757.88 42.10 19.85 57.20

Table B.2: Summary of average results for different shift durations and policies.

Shift duration Policy Exp. profit Revenue Deliv. cost Hiring cost # Riders % Reloc. flow % Open rest.

[0,12] FE 55553.44 60601.25 3228.04 1819.77 33.70 0.00 50.75
CB 56370.05 62520.28 5532.34 617.89 34.33 7.26 54.50

[1,11] FE 49216.07 54862.81 3555.45 2091.28 38.73 0.13 46.75
CB 54093.07 60428.1 5588.10 746.94 41.50 12.41 53.00

[2,10] FE 50234.02 55979.93 3604.18 2141.73 39.66 1.03 49.40
CB 51932.77 58177.77 5581.64 663.36 36.85 12.06 50.80

[3,9] FE 50661.00 55826.02 3218.91 1946.12 36.04 2.81 48.25
CB 53639.53 59932.51 5582.71 710.27 39.46 13.99 54.50

[4,8] FE 47503.50 53255.96 3761.50 1990.96 36.87 19.06 47.60
CB 54374.18 61030.91 5840.59 816.15 45.34 20.81 55.20

[5,7] FE 53443.48 59690.76 4276.31 1970.97 36.50 35.97 52.00
CB 57115.63 63460.97 5541.42 803.92 44.66 41.41 57.25

[6,6] FE 46954.00 52430.81 3886.01 1590.80 29.46 44.74 42.80
CB 49357.30 55214.75 5237.34 620.11 34.45 47.31 49.80
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Table B.3: Summary of average results for different maximum delivery deadlines.

Max. delivery
time [min] Policy Exp. profit Revenue Deliv. cost Hiring cost # Riders % Reloc. flow % Open rest.

20 FE 2884.92 4018.15 619.06 514.17 9.52 60.40 4.40
CB 3404.78 3713.64 154.93 153.92 8.55 78.42 4.40

30 FE 18162.72 22847.46 2731.12 1953.67 36.18 50.47 26.00
CB 20280.12 22647.23 1627.91 739.20 41.07 51.91 27.20

40 FE 40416.87 47520.43 4291.28 2812.28 52.08 45.17 42.25
CB 46424.02 53165.75 5615.27 1126.46 62.58 49.19 51.50

50 FE 45058.67 52951.65 4943.67 2949.31 54.62 40.62 47.40
CB 50210.90 56939.39 5670.34 1058.15 58.79 39.74 54.80

60 FE 43203.56 49447.56 3979.51 2264.49 41.94 27.81 50.75
CB 48829.63 55185.78 5464.12 892.04 49.56 33.48 57.50

70 FE 49896.55 55646.27 3166.23 1993.63 36.92 21.10 49.20
CB 54750.86 61275.00 5763.18 760.97 42.27 20.41 56.20

80 FE 51008.30 55907.55 3288.10 1611.15 29.84 9.33 47.50
CB 54518.39 60620.12 5467.45 634.29 35.24 11.04 48.75

Table B.4: Summary of average results for different customer arrival distributions.

Shift duration Policy Exp. profit Revenue Deliv. cost Hiring cost # Riders % Reloc. flow % Open rest.

Base FE 47499.62 53669.36 3957.04 2212.71 40.97 30.94 48.80
CB 52468.50 58807.99 5485.07 854.42 47.47 35.92 53.60

Uniform FE 52076.55 56720.65 3501.11 1143.00 21.17 0 50.75
CB 54999.36 61205.55 5764.76 441.44 24.52 1.84 55.25

Centered FE 50711.98 58090.73 4585.89 2792.87 51.72 41.16 52.4
CB 54215.03 60956.75 5594.48 1147.24 63.73 47.26 56.6

Table B.5: Summary of average results for different delivery costs cdqr .

Cost cdqr Policy Exp. profit Revenue Deliv. cost Hiring cost # Riders % Reloc. flow % Open rest.

c = 3 FE 47817.17 55118.73 4710.76 2590.80 47.98 38.21 50.60
CB 53408.95 57663.16 3353.76 900.45 50.02 38.05 51.20

c = 3.5 FE 46578.77 53069.63 4156.23 2334.62 43.23 29.61 49.40
CB 50699.13 55343.49 3794.48 849.89 47.22 34.04 52.20

c = 4 FE 45824.30 51841.77 3856.30 2161.17 40.02 32.62 44.60
CB 52015.58 57451.08 4539.07 896.44 49.80 33.91 54.60

c = 4.5 FE 46871.61 53200.12 4079.78 2248.72 41.64 34.27 46.80
CB 54482.87 60423.81 5031.00 909.94 50.55 33.91 56.50

c = 5 (base) FE 50049.26 56285.42 3997.19 2238.97 41.46 29.74 47.40
CB 53858.38 60647.64 5866.41 922.86 51.27 31.45 54.20

c = 5.5 FE 50904.79 57206.45 4047.54 2254.13 41.74 26.13 49.60
CB 53394.51 60630.25 6294.56 941.18 52.29 35.57 54.00

c = 6 FE 44754.77 50832.16 3896.01 2181.38 40.39 35.41 45.80
CB 49421.64 57066.62 6734.86 910.12 50.56 35.20 52.20

c = 6.5 FE 49405.70 55879.90 4156.19 2318.01 42.93 30.70 48.80
CB 52922.34 61383.76 7489.24 972.18 54.01 35.65 57.20

c = 7 FE 48595.06 55259.37 4279.24 2385.07 44.17 34.81 47.60
CB 51183.03 60079.34 8025.81 870.50 48.36 33.17 51.00



C
Branch-and-Price and Benders

decomposition framework

A natural extension of column generation is Branch-and-Price, wherein the generation of new assortments is
embedded within the branch-and-bound process to ensure integrality. At each node of the branch tree, one
solves a restricted master problem (RMP) over a subset of columns. Afterward, a pricing subproblem identifies
promising columns with positive reduced cost, which are then introduced into the RMP. When rider decisions
must also be considered, a Benders decomposition can be added to separate rider from assortment selection.
Algorithm 5 sketches a possible algorithmic framework:

Algorithm 5 Branch-and-Price with Benders Decomposition
Input: Initial restricted master problem (RMP) with a limited column set, initial Benders cuts, convergence tol-

erance
Output: Global optimal solution with assortments and rider decisions
Initialize: Include an initial set of columns (e.g., NBR assortments) in the RMP, and add initial Benders cuts
approximating rider costs from NBR assortments

while not converged and branch-and-bound nodes remain do
Solve the RMP Relaxation (LP) without integrality on zSd

q

Extract dual information for the Pricing Problem
Solve Pricing Problem for each (q, d):
Identify columns with positive reduced cost
Add any such columns to the RMP and re-solve

if no new columns with positive reduced cost exist then
Branch-and-Price on fractional zSd

q
:

Resolve RMP at each branch node with column generation
Continue until all nodes are explored or pruned

if integer-feasible solution is found then
Solve the Rider Subproblem given the current solution
if rider cost exceeds the expected cost then

Generate a Benders cut from the rider subproblem
Add the cut to the RMP and restart column generation

return Optimal assortments and rider decisions

In principle, this integrated method can deliver exact solutions for the unified optimization of assortments and
rider dimensioning, but it is computationally expensive. Every node in the branch-and-bound tree becomes a
specialized column-generation procedure, and each integer solution requires a rider subproblem solve.
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