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Abstract

Retrieving actionable information from large datasets is increasingly computationally ex-
pensive due to the current trend of ever-increasing dataset sizes. Reducing dataset sizes
with dimensionality reduction techniques is often necessary for statistical analysis tech-
niques, such as classification, to be computationally feasible. Most dimensionality reduc-
tion methods do not require any additional information to accomplish their task. However,
datasets used for classification, for example, are accompanied by a set of class-labels as
well. This extra information can improve dimensionality reduction techniques by explicitly
preserving features that explain differences between classes.

A field where high-dimensional and large datasets are standard is Imaging Mass Spectrom-
etry (IMS), a technique that simultaneously records the abundance and spatial location
of molecules throughout biological tissue samples. Classification has been applied to IMS
datasets for a wide range of scenarios, including the diagnosis of disease, distinguishing be-
tween tumour types for personalized treatment, and identifying biomarkers. A recently in-
troduced dimensionality reduction method called Soft Discriminant Map (SDM), designed
to incorporate class information and prevent overfitting when used on high-dimensional
datasets, is a promising candidate to reduce the size and dimensionality of IMS datasets.
However, SDM currently requires manual setting of a free parameter β that influences
class separation in the newly constructed feature-space.

This thesis explores the use of SDM on IMS datasets in classification use cases and
proposes a framework to set β in a data-driven way: Data-Driven Soft Discriminant
Map (DD-SDM). Furthermore, the sensitivity of the classification performance to changes
in β is examined. DD-SDM is compared to similar state-of-the-art dimensionality reduc-
tion methods in terms of classification performance. The performed experiments show that
DD-SDM successfully finds a value for β where the classification performance is on par
with, or in some scenarios better than, state-of-the-art dimensionality reduction methods
while using fewer features. Setting β either too low or too high results in a suboptimal
feature space and worsens classification performance. Golden section search, the search
strategy used to find the optimal β in DD-SDM, succeeds in finding the optimal β in fewer
iterations than more naive methods. With the use of an artificial dataset in combination
with a novel evaluation metric, the Peak Conservation Score (PCS), the distinctive ability
of DD-SDM to discard features that are common between classes and to actively select for
discriminative features is demonstrated. The DD-SDM framework is furthermore applied
to real-world IMS measurements of rat brain and mouse kidney tissue.
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Chapter 1

Introduction

The amount of data gathered in the world is rapidly increasing. Many industries and
academic fields collect enormous amounts of data in the hope of revealing insights about
the world. New challenges accompany this trend. Although computational power has
been improved over the years, turning big data into actionable information is still a non-
trivial task. For analysis techniques to be feasible and effective, the dimensionality of these
datasets often has to be reduced. The process of reducing the dimensionality of datasets
while conserving the important information within is called Dimensionality Reduction
(DR).

A field with an abundance of potentially information-rich data is Imaging Mass Spectrom-
etry (IMS). This method enables the simultaneous recording of a wide range of ions with
their respective locations in biological tissue. For every measured ion, an ion image can be
constructed as seen in Figure 1-1-b. This visualization shows the distribution of an ion’s
abundance with a specific mass-over-charge value(m/z) across the tissue. An ion image
gives additional information that is not present in the microscopy image shown in Figure
1-1-a.

Having the molecular contents of a tissue sample available enables research such as the
molecular differentiation between common cancer types [1], detecting HER2-status, the
presence of a gene that causes breast cancer [2], and finding biomarkers in tumours to
measure the response to preliminary therapy in breast cancer [3]. Even outside the bi-
ological field, IMS is used to perform insightful analyses. For example, IMS has been
successfully applied to predict gender, ethnicity, and age from fingerprints, advancing the
tools available in forensics.

Since an IMS dataset consists of up to thousands of m/z measurements per pixel, di-
mensionality reduction methods are often applied to eliminate redundant and irrelevant
features. An often-used method for DR with IMS data is Principal Component Anal-
ysis (PCA) [4–7]. PCA is an unsupervised DR technique that requires no additional
information to perform its task and aims to extract a reduced set of features from the
data that maximizes the variance present in the newly constructed features[8].

When prior information is available in the form of class information about data points
in a dataset, classification can be performed to extract actionable information from the
dataset. Classification is a type of analysis that aims to predict the class of data points
based on a training dataset of data points for which the class is known. For example,
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(a) Microscopy image (b) A sample ion image with m/z 920

Figure 1-1: Two visualizations of a tissue sample from a mouse kidney. Using
IMS, the distribution of abundance of ions within a tissue can be visualized in an ion
image.

predicting which pixels in a tissue sample are part of tumour-tissue, based on pixels that
we know describe the molecular spectrum of a tumour.

Often, class information first gets used in the classification step performed after dimen-
sionality reduction. In a recent study Liu and Gillies [9] proposed a novel DR method
that incorporates this class information already in the DR phase, and called the method
Soft Discriminant Map (SDM). Using this information, SDM aims to extract features
that represent class differences instead of characteristics of the entire dataset like PCA.
This way, classification performance could be improved, and more useful features could
be constructed for maximizing classification performance. SDM is based on a well-known
technique called Linear Discriminant Analysis (LDA), which is also occasionally used for
dimensionality reduction while employing class information[10]. However, LDA is known
to easily suffer overfitting[9] when applied to high dimensional datasets. Overfitting is
a phenomenon that causes the extracted features to capture the specific noise patterns
in the training data instead of the general biological patterns we would like to conserve.
SDM introduces a parameter β that affects the amount of overfitting. By overcoming the
major shortcoming of LDA, SDM exhibits beneficial behaviour of both LDA and PCA
(i.e. SDM uses class information to extract informative features while mitigating the risk
of overfitting when applied to high dimensional training datasets).

Research objectives Leading up to this thesis, SDM has a parameter β that has to be
set manually. This immediately raises a few questions: To what value should this β be
set to achieve maximal classification performance? How sensitive is this performance to
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β? Does using SDM with an optimal β result in a better performance than using other
dimensionality reduction methods such as PCA and LDA?

These objectives can be stated as four main research questions which will be addressed in
this thesis:

1. When applied to a real-world IMS dataset, how does the classification performance
after applying Soft Discriminant Map (SDM) compare to after applying Principal
Component Analysis (PCA) or LDA?

2. What is the sensitivity of the classification performance to the value of the parameter
β in SDM?

3. How can β be set in an automated, data-driven way that maximizes classification
performance for a given dataset? How efficient is golden section search compared to
grid search to find the optimal β?

4. Is SDM able to conserve features that are class-specific and discard features that
have similar values between classes?

Thesis outline This thesis will start by explaining the fundamentals needed to under-
stand the remainder of the thesis. Since SDM will be evaluated on real-world datasets
originating from IMS measurements, the first section will cover the characteristics of IMS-
data and specifics about obtaining these datasets.

Next, the steps in a typical classification-pipeline are discussed. In the last fundamentals
section, the use of DR is motivated, the general approaches of DR are described, and the
specific methods PCA, LDA, and SDM are explained in detail.

After the fundamentals, the methods chapter will explain our proposed extension to SDM
which we have named Data-Driven Soft Discriminant Map (DD-SDM). This chapter will
also state the evaluation method used to compare DD-SDM to PCA and LDA.

In the experiments chapter, the datasets used will be described, including the construc-
tion of an artificial dataset and two real-world IMS datasets. The artificial dataset is
constructed in a way to represent a simple IMS dataset. In the second half of this chapter,
the research questions are stated again, along with the experiments’ descriptions that aim
to answer these questions.

The experiments’ results are then presented and discussed. The thesis ends with stating
the main conclusions and making recommendations for further research.

Master of Science Thesis Thomas Cornelis Booij



Chapter 2

Fundamentals

2-1 Imaging mass spectrometry

Imaging Mass Spectrometry (IMS) is a technique capable of analyzing the molecular con-
tents of tissue samples. By performing mass spectrometry experiments on a predefined
grid’s locations on the tissue, molecular and spatial information is simultaneously acquired.

Combining these two information sources enables IMS to visualize the spatial distribution
of a wide range of molecules, ranging from small molecules such as cell metabolites and
lipids to bigger molecules such as peptides and proteins. Up to thousands of distinct
molecular masses can be measured at the same time. The visualization of the distribution
of a particular ion within a tissue sample is called an ion image and is shown in Figure
2-3b.

IMS links the heavily studied field of pathology and the deep molecular mass spectrometric
analysis to the analysis of tissues [11]. IMS has become famous for analyzing biological
tissues without prior labelling target analytes by combining spatial and spectral infor-
mation. Other techniques as immunohistochemistry do require prior labelling. This fact
makes IMS especially suitable for exploratory research.

This chapter gives an overview of the different steps in the IMS process. Different variants
of IMS are covered in section 2-1-1. An explanation of the characteristics and interpreta-
tion of the dataset that results from the IMS experiments are stated in section 2-1-2 and
some applications of IMS are given in section 2-1-3.

2-1-1 Process of IMS

This section will outline the different steps in the IMS pipeline. A rough overview of
the workflow of Matrix-Assisted Laser Desorption Ionization (MALDI) IMS is shown in
Figure 2-1. First, the sample is usually prepared for analysis by slicing a thin slice of tissue
and placing it on a plate. An ionization step is then performed to release the ions from
the tissue. An electromagnetic field transports the ions into a mass analyzer. This device
measures the intensity of many distinct mass-over-charge(m/z) values of the released ions.
Many technical choices are to be made in each step of the process that all affect the
resulting dataset’s quality. This section will highlight some of these considerations and
discusses common techniques used in each step.
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2-1 Imaging mass spectrometry 5

Figure 2-1: Schematic representation of the process of MALDI IMS The tissue
is placed onto a glass slide. A matrix is applied to extract ions from the tissue. A mass
analyzer records the abundances over a range of m/z-values. These abundances can be
plotted for a pixel in a mass spectrum. Molecular images can be constructed to show the
distribution of a specific m/z value throughout the tissue. Source of image: Boggio et al.
[12]
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2-1 Imaging mass spectrometry 6

2-1-1-1 Sample Preparation

After a researcher has selected tissue to investigate its molecular contents, the sample needs
to be prepared for IMS measurement. It is essential to have a standardized sample handling
and sample preparation workflow to achieve good spectral quality and reproducibility of
the measurements. Small deviations in some parts of the preparation process could result
in a large variation in obtained measurements. The goal of a successful sample preparation
protocol is to maintain the true spatial distribution and abundance of molecules in the
tissue by minimizing degradation or chemical modification. Even though the three major
ionization methods described in the upcoming section are very different, they share some
of the same steps in the sample preparation process [13].

The preparation pipeline can be divided into four steps: collection, sample processing,
post-sectioning processing, and ionization-aiding treatments. The following sections de-
scribe these steps and are based on the work of Goodwin [13].

Collection In literature, many classes of samples have been analyzed ranging from uni-
cellular algae [14] and surgically dissected organs [15] to whole animals [16]. For all classes,
it is vital to perform a rapid collection of the tissue to prevent degradation and delocal-
ization of the target compounds. When animals are studied, ethical guidelines have to be
followed.

After the tissue has been collected, it has to be stabilized to prevent biological processes
from degrading the specimen. Most often, this stabilization is performed by snap-freezing
the tissue to temperatures below −70◦C.

Sample Processing Since most IMS techniques are best performed on tissue that is flat,
thin slices (typically 5-10 µm thick) are cut using a cryostat microtome after tissue col-
lection. The slices will be mounted on a target plate, either with adhesive tape applied
before slicing or using thaw-mounting, where the frozen tissue-slice is transferred by care-
fully placing a warmer plate on the slice. The latter method is not advised when multiple
samples are analyzed in parallel since the difference in exposure-time to the warm plate
could result in variation between samples.

Post-sectioning processing After the slice has been mounted on a plate, the tissue can
be stored or analyzed immediately. Several processing steps are available to significantly
improve the measurement results and ensure the stability of ion abundances during the
experiment. Drying the tissue to mitigate sample instability after getting the sample out of
the freezer can be performed by freeze-drying [17], dehydration by solvent washing [18], and
air-drying under a stream of nitrogen [19]. Next to dehydration, another processing step is
to wash the tissue with organic solvents to remove ionization-suppressing small molecules
and lipids. However, when small molecules are of interest in the analysis, washing should
be avoided since these small molecules could be removed by the washing process.

Another post-sectioning processing option is on-sample enzymatic digestion, which will
divide heavy protein molecules that are normally out of the range of the mass analyzer into
smaller peptide fragments. This process can be performed by e.g. spraying a homogeneous
coating [20] or discrete spots [21] of specific enzymes.

An optical image is often acquired from the same tissue to compare IMS results to tra-
ditional histological knowledge. The tissue is stained with a staining agent that does not
interfere with the Mass Spectrometry (MS) measurement to get a representative image.
Specific protocols have to be followed to not alter the target analyte abundance [22].
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IMS measurements capture the relative abundance of ions, allowing the visualization of
analytes in the tissue. In some cases, it is even possible to quantify the measurements.
In a study by Franck et al. [23], they used an analyte with a known concentration that
they added to the target plate as a benchmark to determine the abundance of the drug
tiotropium in rat lung tissue sections.

Ionization-aiding treatments In Matrix-Assisted Laser Desorption Ionization Imaging
Mass Spectrometry (MALDI1 IMS 2) a substance, called a chemical matrix, is applied to
the tissue. The matrix aims to extract the maximum amount of analyte from the tissue
to the surface, after which the matrix crystallizes. The quality of the IMS measurements
depends heavily on the selection of the most effective ionization matrix for the analysis
task but also on the process of applying the matrix to the tissue. Matrix application is an
important step in the preparation pipeline since differences in matrix thickness, application
rate, and drying times have a large impact on the generation of high-quality, reproducible
data. The choice of matrix is largely determined by the mass-range of interest and the
wavelength of the laser used to extract the ions. An extensive review of matrix selection
for IMS has been published by MacAleese, Stauber, and Heeren [26].

2-1-1-2 Ionization

As discussed in the previous section, the matrix is applied to the tissue to extract ions in
MALDI IMS. Over the years, many compounds have been used as matrix, but a small
subset is primarily used in the literature. Three commonly used compounds are α-Cyano-4-
hydroxycinnamic acid (HCCA), sinapinic (or sinapic) acid (SA), and 2,5- dihydroxybenzoic
acid (DHB) [27].

After the matrix has been applied evenly, a laser beam, e.g. with a footprint of 10 µm, is
fired at the tissue. The laser will eject ions from the matrix, controlled by the pulse length
of the laser [28]. The goal of the ionization step is to be able to accelerate the particles
with an electromagnetic field to measure their mass using a mass analyzer.

Ionization technique selection Next to MALDI IMS, several other ionization variants
are present in the field. The choice of a particular ionization method is heavily deter-
mined by the requirements of the study. Buchberger et al. [29] state that the different
ionization methods have there own characteristics, ranging from the m/z ranges that can
be measured to the spatial resolution possible. Cole and Clench [30] give a comparison of
the commercially available IMS methods while commenting on the advances to be made
in the field for effective clinical application of IMS to identify and diagnose cancer.

A different ionization method is Secondary Ion Mass Spectrometry (SIMS). SIMS fires an
ion-beam at the substrate to achieve ionization, having the advantage of obtaining spatial
resolutions down to a sub-cellular level (∼500nm). Because of this resolution, SIMS is
able to characterize individual organelles. The characterization is, however, limited to
small molecules and metabolites and does not generally detect heavier molecules such as
peptides, proteins, and most intact lipids [12].

In Figure 2-1, the process of MALDI IMS is visualized. In the step from ion generation to
the acquisition of mass spectra (covered in section 2-1-2), an important device is omitted
which will determine the mass of the measured ions; the mass analyzer.

1The MALDI technique for conventional mass spectrometry was invented in 1987 by M. Karas and F.
Hillenkamp [24].

2The MALDI IMS process found broad introduction through Caprioli et al. [25] in 1997
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2-1-1-3 Mass analyzer

(a) Schematic representation of the reflector time-of-
flight mass analyzer

(b) Schematic representation of the Fourier trans-
form ion cyclotron resonance mass analyzer

Figure 2-2: Schematic representations of two mass analyzers

After ejection of the ions from the matrix e.g. by using a laser pulse, a mass analyzer deter-
mines their mass-over-charge values. The key parameters of mass analyzers are sensitivity
(the ability to detect small ion-abundances), resolution, and mass accuracy [31]. There
exist multiple types of mass analyzers, two of which will be considered in the following
sections.

Time-of-flight One common mass analyzer type uses the principle of Time-of-Flight
(TOF) [32] (Figure 2-2a). With this technique, using an electromagnetic field with known
potential, ions are accelerated through a field-free region where the time is measured to
cross this region and hit an ion detector.

To calculate the mass-over-charge value from the time-of-flight, the energy equilibrium of
the ion is taken into account:

Ep = Ek (2-1)

qU = 1
2
mv2 (2-2)

qU = 1
2
m

(
d

t

)2
(2-3)

m

q
= 2U(

d
t

)2 (2-4)

m

q
= 2U

d2 t
2 (2-5)

Where U is the electric potential of the electro-magnetic field in volts, m
q is the mass-over-

charge ratio, d is the distance travelled by the ion, and t is the time measured for the ion
to travel this distance. The mass-over-charge value is quadratically dependent on the time
of flight. It is important to note that these calculations provide a simplified evaluation.
In practice other factors such as initial velocity of the ions are taken into account [32].

Fourier transform ion cyclotron resonance mass spectrometer Another mass analyzer
type is based on the Fourier transform ion cyclotron resonance (FT-ICR) technique. A
schematic overview of this mass analyzer type is shown in Figure 2-2. The ejected ions
are trapped inside an electromagnetic field, which forces the ions to spin in a circular
orbit. With a simplified relationship, the mass-over-charge ratio can be obtained from
these angular velocities:

Master of Science Thesis Thomas Cornelis Booij



2-1 Imaging mass spectrometry 9

ω = B0
q

m
(2-6)

Where ω is the cyclotron frequency of the ion, B0 is the strength of the electro-magnetic
field, and q/m is the inverse mass-over-charge ratio of the ion[33]. The ions will rotate
with a radius that among other things depend on the mass of the ion:

r =
√

2mkT
qB0

, (2-7)

where q is the ion’s charge, m is the ion’s mass, k is the Boltzman constant, T is the
environmental temperature, and B0 is the strength of the applied electromagnetic field.
The radii of the ions can be controlled by changing the strength of the electromagnetic
field. The detector plates in the ion trap measure the current induced by the orbiting
ions. By gradually increasing the excitation field to increase the kinetic energy of the ions,
a sweep is made across all orbital frequencies. The time-domain measurements from the
detected current by the detector plates are Fourier transformed to retrieve the angular
velocities of the trapped ions. These velocities can be mapped back to m/z values by
using Equation 2-6 [33].

2-1-1-4 Further literature

The approach taken in every step of the MALDI IMS process has an influence on the quality
of the data gathered. Kriegsmann and Casadonte [34] sum up a handful of reviews that
describe the experimental considerations of MALDI IMS. In particular regarding: sample
collection, sample preparation, matrix deposition, ionization process, instrumentation and
data-processing [35–44].

2-1-2 Data structure

All local MS measurements on the predefined grid are combined to create an IMS dataset.
This dataset can be considered as a three-dimensional tensor, as shown in Figure 2-3a.
Each measurement, taken at position (x, y), produces M values, one for each measured
mass-over-charge value. The number of values M depends on the considered mass range
and the mass analyzer’s spectral resolution.

Mass spectrum The measurements acquired by the mass analyzer are mass-over-charge
(m/z) values. The unit of these values is Thompson (Th), defined as Da/e or u/e. Da
stands for Dalton and is interchangeably used with the symbol u to denote the unified
atomic mass unit. One Da or u is defined to be 1/12 of the mass of an unbound neutral
atom of carbon-12. The elementary charge e is defined as the electric charge carried by a
single proton.

The recorded intensities for all m/z values are usually visualized in a mass spectrum, as
shown in Figure 2-3c. The intensities are in arbitrary units, making the relative comparison
of the intensity between different m/z values possible. A mass spectrum can be produced
for every pixel, showing the intensity of the m/z values at that pixel’s tissue location.
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Ion image When the data tensor is sliced along the (x,y)-plane, all intensity values of
the matrix correspond to the same m/z value. A false-colour image, referred to as an ion
image, can be created by colouring the pixels according to their intensity. An example of
an ion-image is shown in Figure 2-3b.

(a) Tensor The data gathered in an IMS experimented can be represented
as a three-dimensional tensor. Along the x- and y-axis are the x- and y-
indices of the pixels. Along the z-axis, the m/z values corresponding the
pixels are stored.

(b) Example of an ion image When the tensor is
sliced in the x-y plane, a false-colour image, referred
to as an ion image, corresponding to a particular
m/z value can be constructed. A pixel is coloured
according to the intensity measured of that particu-
lar m/z value.

(c) Example mass spectrum The intensities of all
m/z values belonging to a pixel are visualized using
a mass spectrum. The x-axis represents the range of
m/z values. The y-axis indicates the corresponding
measured intensity in arbitrary units.

Figure 2-3: IMS Data structure When all pixels of a particular m/z value are consid-
ered of the three-dimensional tensor shown in Figure (a), an ion image can be constructed
as shown in Figure (b). The m/z values belonging to a pixel are visualized in a mass spec-
trum, as shown in Figure (c).

Tensor unfolding For conventional processing of the dataset, the three-dimensional ten-
sor DT ensor ∈ RP ×Q×M with P pixels in the x-direction, Q pixels in the y-direction, and
M m/z bins, is often unfolded into a matrix DMatrix ∈ RM×P ·Q as shown in Figure 2-4.
The rows and columns of DMatrix denote the pixels and the m/z values, respectively. As
seen in Figure 2-3b, the borders of the image are not covered with brain tissue. Since these
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pixels contain no information, their indices are stored elsewhere, and the corresponding
rows are often removed from Dmatrix. The indices can later be used to reconstruct the
tensor after analysis on the 2D dataset.

Figure 2-4: Tensor unfolding The three-dimensional tensor DT ensor ∈ RP ×Q×M with
P pixels in the x-direction, Q pixels in the y-direction and M m/z bins is unfolded into
a matrix DMatrix ∈ RM×P ·Q.

With increasing resolution in the spatial and spectral domain, IMS datasets tend to become
large. When a small tissue of 1 × 1 cm is measured with a pixel size of 10 µm, the dataset
can consist of up to 108 pixels. The number of analyzed peaks per pixel could become
arbitrary large depending on the mass analyzer’s spectral range and resolution, ranging
from hundreds to even thousands of distinct m/z values in concrete experiments. This
combination results in large datasets that are impractical for humans to interpret manually.
Hence, sensible computational methods are needed to process, analyze and interpret the
data successfully.

2-1-3 Applications of IMS

The combination of spatial and molecular information enables IMS to be applied in a wide
range of fields. This section will denote some of these applications. The described applica-
tions are categorized as spatial exploration, biomarker discovery and pattern recognition.

2-1-3-1 Spatial exploration

IMS is a label-free method, enabling exploratory research of molecules without prior la-
belling of targets. As discussed in the previous section, the dataset consists of an ion
image for each measured m/z bin. These ion images are a great tool for visualizing the
spatial distribution when the ion of interest is known in advance. However, these ion
images are not so informative when no a priori knowledge is available. Since the number
of ion images per experiment can run into the thousands, human interpretation of all ion
images is unfeasible.

For this reason, multivariate analysis methods such as Principal Component Analysis
(PCA) are used in literature to gain insights into the correlation between m/z bins. PCA
is extensively described in Section 2-3-3-1. PCA is applied to the unfolded tensor, after
which the mask indices are used to reconstruct the image.
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IMS measurements contain a vast amount of molecular information. However, the anatom-
ical interpretation is nontrivial and still has to be done by experts. An attempt to automate
this interpretation is made by Verbeeck et al. [45] by linking the IMS measurements to
atlas databases.

2-1-3-2 Biomarker discovery

By comparing the mass spectra of healthy and diseased cells, a profile for the characteristic
differences in m/z values can be made to gain an insight into which molecules are present or
absent in the cells affected by the investigated disease. These profiles are called biomarkers.
Biomarkers can be used to gain a deeper understanding of a disease’s molecular mechanics,
help diagnose a patient, and provide the information necessary to improve personalized
therapies.

Biomarker discovery studies Biomarker discovery studies often apply IMS on Tissue
Microarrays (TMA). With the TMA technique, a hollow needle is used to obtain small
tissue samples from a tissue of interest, such as a biopsy or a tumour. Mascini et al. [46]
performed such an experiment. The obtained tissue cores are placed on a plate in an array-
like fashion, as seen in Figure 2-5-b. An IMS experiment can be performed for dozens of
patients at the same time using this technique. This approach enables the comparison of
a vast number of different tissue samples simultaneously. All samples undergo the same
preparation steps, increasing the comparability of the samples. An example ion image
is shown in Figure 2-5-c, showing the intensity of m/z 1105.6 of all tissue cores at once.
Mascini et al. [46] analyzed the resulting mass spectra (Figure 2-5a) to obtain characteristic
biomarkers.

Figure 2-5: Example experiment for biomarker discovery using a TMA (a) Mass
spectrum from a tissue core. In the top right a hematoxylin and eosin (H&E) stained
tissue core with 80% tumor cells is shown. (b) H&E stained TMA of 120 patients. (c)
The ion image corresponding to m/z 1105.6. Source of image: Mascini et al. [46]

According to Aichler and Walch [11], one of the first biomarker discovery studies using
MALDI Imaging mass spectrometry was carried out in a patient group in which proteomic
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markers in tumor tissue were identified that were associated with the response to a pre-
liminary therapy in breast cancer [3]. Another early study from Kurabe et al. [47] found a
new biomarker called phosphatidylcholin (16:0/16:1) for the diagnosis of colorectal cancer.
They successfully applied MALDI-IMS to analyze the different mass spectra obtained to
find this biomarker.

2-1-3-3 Pattern Recognition

With the use of IMS data, algorithms can be trained to predict the class of mass-spectra.
For example, Meding et al. [1] performed classification of six common cancer types based
on proteomic profiling using MALDI IMS. Balluff et al. [2] performed classification on
IMS datasets to predict HER2-status, the presence of a gene that causes breast cancer.
They added valuable knowledge in oncology by proving that different cancer type tumours
have overlapping molecular profiles. In a later work Balluff et al. [4] used IMS profiling
to identify clonal and phenotypic heterogeneity within a tumor, gaining deeper insights
into the biological processes of cancer. These findings could finally lead to new targeted
therapies for the treatment of cancer.

Figure 2-6: Recognition of overlapping fingerprints (a) Ion image at m/z = 253 (b)
The classification result of the trained classifier. The pixels predicted to be of a Chinese
male and Indian female are shown in blue and red respectively. Source of image: Zhou
and Zare [48]

IMS is also used in non-biological fields, such as forensics. For example, Zhou and Zare
[48] used IMS to predict gender, ethnicity and age from fingerprints. Figure 2-6 shows the
result of an experiment where two overlapping fingerprints are analyzed. The classification
model (classification will be broadly discussed in Section 2-2) correctly predicts that the
fingerprints belong to a Chinese male and an Indian female. These predictions could help
forensic professionals get more information about a suspect based on their fingerprints
found at the crime scene, showing that IMS has a wide range of application possibilities.
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2-2 Classification

As stated in Chapter 2-1, there are many applications of IMS. One such application is to
learn about cancer tumours by studying the molecular profiles of different cancer types.
Meding et al. [1] used IMS data to study the molecular content of six different tumour
types. These learnings can then be applied to help diagnose tissue in one of the categories.
The analysis often makes use of a technique called classification. In this section, the
theoretical background is presented to understand how such an analysis is performed.

First, mathematical definitions are presented that will be used in the remainder of this
thesis. After that, the different steps of a typical classification pipeline are discussed:
reducing the size of the original dataset, training a classification algorithm, validation of
the classification performance and the application of the algorithm to make predictions
about new data.

2-2-1 Definitions

Throughout this thesis, several technical terms are used consistently. In this section,
we will define some of these terms. When measurements are taken, e.g. from an IMS
experiment, they are stored in a dataset Dfull which could be represented as a table
shown in Figure 2-7. For example, with IMS, a mass spectrum is recorded and stored in
a row of the table for every pixel. The set of measurements corresponding to a pixel will
be referred to as an observation or a data point. Each measurement of an observation
is called a feature. All feature values belonging to an observation are stored in a feature
vector x = [x1, x2, x3, x..., xM ]. The jth feature value of the nth observation is referred
to as xn,j . The total number of features recorded per observation is referred to as the
dimensionality M of a dataset. The total number of observations is denoted with N .

Figure 2-7: Schematic representation of a dataset Data is typically stored in a table.
Each row is called an observation or data point described by a feature vector x. Each
observation also has a corresponding label y that indicates to which class the observation
belongs. The number of features is referred to as the dimensionality M , and the number
of observations is denoted with N .
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In classification, each observation has a corresponding class label, indicating to which
class it belongs. For example, when an IMS dataset is analyzed, a researcher could assign
sections of the examined tissue as healthy or diseased. Using the tumour example again,
the label indicates to which cancer type a mass spectrum belongs. These different groups
are referred to as classes. The label y is stored for each observation in addition to the
feature vector x to indicate to which class each pixel belongs.

2-2-2 Dimensionality reduction

When data has been acquired and stored in a dataset, not all features are informative
for determining the class of an observation. Especially when handling big datasets with
a high number of features, it becomes increasingly essential to only analyze informative
features for many reasons.

Since this procedure called Dimensionality Reduction (DR) will be the main focus of this
thesis, it will be explored in full in section 2-3. For the sake of the current section, we
will, for now, assume that a method exists that reduces the full dataset Dfull ∈ RN×M to
a reduced dataset Dred ∈ RN×K with K < M .

2-2-3 Classification

When we consider the dataset from Figure 2-7, each observation corresponds to a class.
When new observations are made, the classification goal is to assign a class to these
new, unlabeled observations. In the example of IMS, this means that the trained classifier
should predict which cancer type an unlabelled mass spectrum belongs to. In other words:
the goal of classification is to find a model called a classifier that has a feature vector x
as an input and predicts a class-label as an output.

In the remainder of this section, the several steps involved with classification are discussed:
building the classifier model with training data, validating the classifier’s performance, and
using the classifier to predict new samples.

2-2-3-1 Training

To make accurate predictions of the class of unlabelled observations, the observations
of which the label is known are analyzed to find patterns that explain how the features
determine the class. There is assumed to be a function

f(x) = y (2-8)

that describes the mapping from feature vector to the class label.

This function’s learning is done in the training-phase of classification by studying obser-
vations for which the corresponding class-label is known. This set of observations will be
referred to as the training dataset. Since the training data supervises the building of the
model, classification is defined to be in the field of supervised learning. Many approaches
recognize patterns in labelled data called classifiers. As an example, the following section
describes one such classifier.

Master of Science Thesis Thomas Cornelis Booij



2-2 Classification 16

Example classifier: Gaussian Naïve Bayes Assume that we have a two-dimensional two-
class dataset as shown in Figure 2-8. The blue crosses and the red stars correspond to class
one (ω1) and class two (ω2) respectively. The shown training dataset consists of a number
of observations {x1,x2,x3, . . . ,xN} with corresponding class labels {y1, y2, y3, . . . , yN , } ∈
{ω1, ω2}. On the left in Figure 2-8, the two elements of the feature vectors are plotted
against each other.
The classifier called Gaussian Naïve Bays will start by assuming that the two classes are
generated by a Gaussian distribution with different mean vectors µ1 and µ2 and diagonal
covariance matrices Σ1 and Σ2 ∈ R2×2. The parameters of these distributions can now be
estimated based on the values of these feature vectors.

Figure 2-8: Plots illustrating Gaussian naive Bayes The left figure shows 200 ob-
servations belonging to class one (blue crosses) and class two (red stars). The contour
lines represent the estimated Gaussians, shown in three dimensions in the right figure.
The vertical black line in the left figure represents the decision boundary where the class-
conditional probabilities are equal.

The means are estimated by calculating the sample mean vector. The jth element is
calculated (with K = 2 in our example) as follows:

x̄j = 1
N

N∑
i=1

xij , j = 1, . . . ,K. (2-9)

Thus, the sample mean vector contains the averages of each feature of a class:

x̄ = 1
N

N∑
i=1

xi =



x̄1
...
x̄j
...
x̄K


(2-10)

Naïve Bayes owes its name to the assumption that the features are uncorrelated. Conse-
quently, the sample covariance is estimated for every feature independently. The sample
covariance matrix is, therefore, a diagonal K-by-K matrix Q with entries

qjk = 1
N − 1

N∑
i=1

(xij − x̄j)(xik − x̄k) (2-11)
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Since we now have estimates for the parameters defining the Gaussian distributions, it
is possible to plot them as shown in the right plot in Figure 2-8. The Gaussians serve
as an estimate for the class-conditional probability density functions (pdf) p(x|blue) and
p(x|red).

To arrive at the class-conditional probabilities needed to make a prediction about a class-
label we will refer to the Bayes’ Rule:

P (ωi|x) = p(x|ωi)P (ωi)
p(x)

(2-12)

where p(x) is the pdf of x and for which we have in the two class case:

p(x) =
2∑

i=1
p(x|ωi)P (ωi) (2-13)

P (ωi) is used to denote the a priori probabilities which are estimated from the available
training feature vectors. When there are N observations of which N1 belong to class one
and N2 to class two, then P (ω1) = N1

N and P (ω2) = N2
N .

The mapping learned from the data as in Equation (2-8), will now be based on the calcu-
lated class conditional probabilities from Equation (2-12):

if P (ω1|x) > P (ω2|x), x is classified to ω1,

if P (ω1|x) < P (ω2|x), x is classified to ω2 (2-14)

Such a classification rule is also called an hypothesis. The line corresponding to the case
when P (ω1|x) = P (ω2|x) is drawn in the feature space and is referred to as the decision
boundary. For the example shown in Figure 2-8 the vertical line in the left plot represents
the generated decision boundary. New observations are plotted in the same figure and
given a label based on its side of the decision boundary.

2-2-3-2 Model validation

When a classifier is trained and a decision boundary is constructed, the trained classifier
is used to predict the labels of unseen observations.

Among other reasons, since there are many classifiers available, it is necessary to have a
performance measure that shows how different classifiers perform compared to each other.
This measure helps to select a classifier that adequately models the characteristics of the
dataset.

Accuracy An often-used performance metric in classification is accuracy. Accuracy is
defined as:

accuracy = # of correctly classified points
total # of observations

(2-15)

If we go back to the example of Figure 2-8, the total number of observations is 200.
Furthermore, there are two blue crosses and one red star on the wrong side of the decision
boundary, making the number of correctly classified points equal to 197. The accuracy
would be calculated as 197/200 = 0.985.
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One could be tempted to conclude that 98,5 % of correctly classified observations directly
indicates that the classifier is performing well. However, this accuracy is based on the
correctly classified observations used to generate the decision boundary. The accuracy
based on the training dataset is therefor called the apparent accuracy or training accuracy.
The performance we are interested in is how well the classifier performs when applied to
unseen data.

Test dataset To test whether the generated decision boundary performs well on unseen
data points, the original data is split up in two parts that are called the training dataset
Dtrain and the test dataset Dtest. As illustrated in Figure 2-9, the observations in the
training dataset are used to train the classifier and to generate a decision boundary. This
hypothesis is then used to predict the labels of the observations in the test dataset. Since
the observations in the test dataset were not used to train the classifier, the obtained accu-
racy is a better estimator for the generalization performance than the apparent accuracy
and is called the test accuracy.

Figure 2-9: Illustration of the use of a test set to obtain the test accuracy The
full dataset Dfull is split into two datasets: Dtrain and Dtest. Dtrain is used to train the
classifier. This classifier is then used to predict the class of the observations in Dtest. The
percentage of correctly classified observations is called the test accuracy.

Cross validation A parameter that has to be set is the relative sizes of the train- and test
dataset. There is a trade-off to be made here. Classifiers generally perform better when
trained on more training data. However, since the test dataset is used to estimate the
classifier’s generalization performance, having a bigger test dataset ensures a more accurate
estimate of this accuracy. As earlier mentioned, accurate test accuracy is preferred in order
to make a justified choice of the classifier.

A validation-method ensuring that all observations are used for both training and testing
is called cross validation. The dataset is split in k sections called folds as illustrated in
Figure 2-10. A classifier is trained on k−1 folds, and the test accuracy is calculated using
this trained classifier on the remaining fold. This process is repeated k times to obtain
k test-accuracies. The total k-fold cross-validation accuracy is calculated by taking the
average over the k test accuracies. The final classifier is trained on all observations.
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Figure 2-10: Schematic representation of 5-fold cross-validation The dataset is
split into five folds. Each run, four folds are used to train the classifier, and the fifth fold
is used to compute the test accuracy. The final cross-validation accuracy is computed by
taking the average over the five obtained accuracies.

All observations are used in the train dataset and test dataset using this method. The
number of folds k can be chosen from 1 to the number of observations N . A higher
number of folds generally results in a more accurate accuracy. However, the classifier
has to be trained k times, making the computational costs increase with the number of
folds. The case where k = N is called leave-one-out cross-validation, which has the highest
computational load and most accurate cross-validation accuracy.

2-2-3-3 Prediction

The goal of classification is to predict the class-labels of unlabelled observations. Referring
back to the example of the classification of cancer tumours at the beginning of this chapter,
Meding et al. [1] obtained MALDI imaging-derived spectra data from tissue specimens
from resectioned tumours. The classifier was trained on data originating from six different
cancer types: Barrett’s cancer, breast cancer, colon cancer, gastric cancer, hepatocellular
carcinoma and papillary thyroid cancer. This makes for a six-class classification problem.

A train and test dataset were defined, and two classifier types were trained called Support
Vector Machine[49] and Random Forest[50]. The test dataset was used to evaluate the
performance of the classifiers.

These trained classifiers can now be used to discriminate between the different cancer
types of new tissue samples.
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2-3 Dimensionality reduction

This chapter will elaborate on the motivation for the application of dimensionality reduc-
tion before training a classifier. The process is illustrated in Figure 2-11. The left side of
Figure 2-11 shows the full dataset Dfull ∈ RN×M consisting of features [d1,d2,d3, . . . ,dM ]
where d ∈ RN×1. Dimensionality reduction aims to construct a representative, reduced
dataset Dred ∈ RN×K with K < M .

Figure 2-11: Schematic representation of dimensionality reduction Dimension-
ality reduction aims to contruct a representative dataset Dred ∈ RN×K from the full
dataset Dfull ∈ RN×M with a reduced number of features : K < M .

In the rest of this chapter, the motivation for dimensionality reduction is given. The two
main categories within dimensionality reduction, feature selection and feature extraction,
are discussed.

2-3-1 Motivation

As discussed in chapter 2-2, the classification goal is to predict the class of an unseen
observation by training a model on labelled data. One could assume that when a dataset
has more features, the hypothesis created with a classifier will perform better in prediction
accuracy. The rationale would be that the more features each observation has, the more
information is available. With this reasoning, it will be easier to construct a decision
boundary that separates the training data points. However, more observations are needed
to describe the feature space spanned by the features well when more features are in a
dataset. The volume of the feature space grows exponentially with the number of features.
This phenomenon is illustrated in Figure 2-12. If the observations do not adequately fill
the feature space, the prediction accuracy can decrease. This phenomenon is called the
‘curse of dimensionality’ in literature and is further discussed in section 2-3-1-1.

Even when the prediction accuracy does not decrease using all available features, there
are other reasons why using a reduced feature set is preferable with model training. The
size of the dataset used in the modelling phase directly correlates with the time and space
needed to train the model. This effect will be discussed in section 2-3-1-4.
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2-3-1-1 Curse of dimensionality

The term ‘Curse of dimensionality’ is used in many fields, including numerical analysis,
sampling, combinatorics, machine learning, and data mining. The term is used as an
umbrella term for the problems that arise with analyzing large datasets. The root of
the issues that occur with an increase in dimensionality is the amount of data needed to
populate the feature space adequately. For two dimensions, this problem is illustrated in
the following example. A feature vector of length M of an observation can be represented
by a point in a M -dimensional space. In Figure 2-12 50 observations are plotted with
one and two features in a and b respectively. It is illustrated here that the average
distance between points becomes larger when the dimensionality increases. In other words,
space is less densely populated when the number of observations stays the same and the
dimensionality increases.

In generating a decision-border by a classifier in the feature space, fewer points are available
to conclude this hypothesis.

Figure 2-12: The effect of adding dimensions on the density of data points in
the feature space Fifty data points drawn from a uniform distribution are shown in
one dimension (a) and two dimensions (b). The points in the two-dimensional space are
more spread out than in the one-dimensional space. Source of image: Theodoridis and
Koutroumbas [51]

2-3-1-2 The peaking phenomenon

As a result of the less populated feature space, classifiers’ performance can vastly decrease
by adding more dimensions. This is a paradoxical observation, referred to as the peaking
phenomenon. In theory, the probability of misclassification does not increase as the num-
ber of features increases, as long as the class-conditional densities are completely known (in
other words, when there is a sufficient amount of data available that is representative for
the underlying densities)[9]. This last assumption is, however, exactly the problem in prac-
tice. Simple parametric classifiers estimate the parameters of assumed class-conditional
distributions and use these estimates as true values in the model. Therefore, when the
dimensionality (and therefore, the number of estimated parameters) grows, the estimates’
reliability and the resulting classifier’s performance decreases[52]. The phenomenon is
illustrated in Figure 2-13.
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Figure 2-13: Peaking phenomenon When the dimensionality of a dataset increases, the
classifier’s performance increases until the optimal number of features is reached. When
the dimensionality is increased any further without adding more training data points, the
classifier’s performance will drop. Source of image: Spruyt [53]

Many classifiers incorporate a distance measure. One of these classifiers is the Nearest
Neighbour classifier that assigns the same label of the closest training points to the unseen
observation. However, in high dimensions, it can be shown that the expected value of the
difference of the distance from the nearest and the farthest point approaches zero:[54]:

lim
d→∞

E

(
distmax(d)− distmin(d)

distmin(d)

)
= 0

However, this is true with the assumption that the features are independent and identically
distributed. According to Zimek, Schubert, and Kriegel [55] there are scenarios with
correlated features where Nearest Neighbour makes sense in high dimensions. In any
case, applying dimensionality reduction to remove irrelevant and redundant features will
improve the quality of distance measures.

2-3-1-3 Overfitting

A problem closely related to the curse of dimensionality is called overfitting. This phe-
nomenon occurs when the generated model depends on the train set’s specific structure
rather than the underlying distribution and will not generalize for unseen data points.
Overfitting happens more often in the case where more dimensions than data points are
available. When we consider the case of a decision boundary consisting of a hyperplane,
it can be shown that we can arbitrarily separate all data points if we use more dimensions
than data points. However, this will result in an artificially complex classifier projected
into a lower-dimensional space, making it perform poorly on unseen data. Hence the
relationship to the curse of dimensionality.
An indication of the amount of overfitting is the difference in training and test accuracy.
We consider a classifier that has a 100% accuracy on the training set (apparent accuracy)
and an 50% classification rate on the test set (test accuracy). If simultaneously on the
same dataset, a classifier is possible, which scores 75% on both training and test data, the
first classifier was a victim of overfitting.
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2-3-1-4 Time and space

With a reduced feature-space, analyses become faster and take less space in RAM and
storage capacity. In the training phase of a classifier, the time needed is positively corre-
lated with the number of dimensions and can often increase quadratically or exponentially.
Using too many dimensions makes some complex classifiers simply infeasible to train be-
cause the time and space blow up. Dimensionality reduction is needed to give access to
those more sophisticated classifiers.

2-3-1-5 Effect of Redundancy

When datasets become more extensive, it becomes increasingly possible that not all the
features provide information for the task at hand. For the reasons explained above, it is
beneficial to remove these features from the dataset. A feature that does not contribute
to the task is called an irrelevant feature. Likewise, a feature that does contribute to the
task at hand is called a relevant feature.

However, not every relevant feature has to be kept to ensure an optimal dataset. For
example, if we have a population dataset with two features that indicate the height of
the people in the dataset in feet and meters, we would not lose information if one of the
features is eliminated. Such a feature is called a redundant feature.

Figure 2-14 illustrates these three types of features. Figure 2-14a shows relevant feature f1
on the x-axis. This feature needs to be kept in the dataset. Figure 2-14b shows two relevant
but redundant features. Either f1 or f2 could be eliminated without loss of information.
Figure 2-14c shows irrelevant feature f3 on the y-axis. The two classes have much overlap.
Dimensionality reduction methods aim to eliminate irrelevant and redundant features. A
dataset with all redundant and irrelevant features removed is called an optimal subset[56].

Figure 2-14: Illustration of relevant, redundant and irrelevant features Relevant
features are informative and should be conserved (a). Redundant features capture the
same information. One of the features should be conserved (b). Irrelevant features carry
no information. They should be eliminated (c). Source of image: Li et al. [57]
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2-3-2 Feature selection

Figure 2-15: Schematic representation of feature selection Feature selection re-
duces the dimensionality of the full dataset Dfull by selecting a subset of its columns
and putting them in the reduced dataset Dred ⊂ Dfull. In this example the algorithm
selected three columns (K = 3): d2,d4 and d6.

The first approach to reduce the dimensionality of a dataset we will discuss is called feature
selection. Figure 2-15 shows the full dataset Dfull with columns [d1,d2,d3, . . . ,dM ] ∈
RN×1. A feature selection algorithm constructs the reduced dataset Dred with a subset of
these columns: Dred ⊂ Dfull. In this example three columns are selected by the algorithm:
d2,d4 and d6. Feature selection algorithms aim to find an optimal subset of the original
features by eliminating irrelevant, redundant and noisy features[58]. The concepts of
relevance and redundancy were explored in section 2-3-1-5. Since the remainder of this
thesis mainly covers the other family of DR methods discussed in the following section:
feature extraction, the full overview of feature selection methods is given in Appendix A.

2-3-3 Feature extraction

The second category within the dimensionality reduction field is called feature extraction.
As opposed to feature selection where Dred consists of a subset of the original features,
feature extraction aims to create a set of new features that are a linear or non-linear
combination of the original features.

Mathematical description A schematic representation of feature extraction is shown in
figure 2-16. The input to the feature extraction routine is the full dataset Dfull, consisting
of feature columns df1,df2,df...,dfM . The routine takes these columns as input and
aims to transform the columns to describe the dataset accurately. The transformed data
is stored in a new dataset Dreduced with columns dr1,dr2,dr...,drM . Most of the methods
aim to capture the data’s characteristics in as few features as possible, sorting the new
features from most to least informative. The least informative features are eliminated
from the dataset to reduce the dimensionality. In the example of Figure 2-16, three feature
columns are kept to reach a final dimensionality of three. Finding the optimal number of
features to be kept is non-trivial and often found by trial and error (for example, choosing
the number with the highest cross-validation accuracy) in practice.
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Figure 2-16: Schematic representation of feature extraction Feature extraction
creates a combination of the features of Dfull and puts them in Dred. In contrast to
feature selection, Dred does not consist of a subset of the columns of Dfull but a (linear)
combination of them.

Examples Feature extraction methods can be largely divided into linear and non-linear
techniques[59]. A commonly used linear method is PCA, an unsupervised method project-
ing the data in a new feature space aiming to maximize the variance in the first few created
features. PCA will be extensively discussed in Section 2-3-3-1. Another linear method is
Linear Discriminant Analysis (LDA). This supervised technique aims to project the data
in a feature space that maximizes the class separation. LDA will be further explained in
Section 2-3-3-2. A recent contribution that aims to find a trade-off between the benefits
of PCA and LDA was proposed by Liu and Gillies [9]. This supervised method called Soft
Discriminant Map (SDM) aims to reduce the risk of overfitting present when using LDA
in high dimensional datasets by tuning a parameter that controls the separation of the
classes. SDM is discussed in Section 2-3-3-3.

Examples of non-linear techniques are kernel-PCA[60], Multi-dimensional scaling (MDM)[61]
and isometric feature mapping (Isomap)[62]. These non-linear techniques can detect
higher-order redundancies than linear methods at the cost of higher computational com-
plexity. This makes them costlier for high dimensional datasets and harder to interpret
the relationship to the original features.

In the following sections, three linear feature extraction methods are further explored:
PCA, LDA and SDM.

2-3-3-1 Principal Component Analysis

A frequently used feature extraction technique in machine learning is called PCA[8]. This
unsupervised technique’s main goal is to reduce a dataset’s dimensionality while retaining
as much variance as possible in the new feature space.

To illustrate the process of PCA, consider a dataset Dfull ∈ R50×2 having 50 data points
with 2 feature values each: x1 and x2. By considering this simple two-dimensional example,
the dataset can be visualized in two dimensions, as seen in Figure 2-17a. The plot suggests
that the features are highly correlated, which, loosely speaking, means that x1 and x2 move
together in value. PCA aims to find the directions in this dataset with the highest variance
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and that are orthogonal to each other. In this simple example, the approximate directions
can be drawn, as shown in Figure 2-17a. Vectors describe these directions z1 and z2 and
are called the principal components. Next, the data points can be projected in the new
feature space span by these principal components, as shown in Figure 2-17b.

In the context of dimensionality reduction, the next step with this simple example dataset
could be to only consider z1 in further analysis, resulting in a reduced dataset Dreduced ∈
R50×1. Note that in this simple example, important information is probably lost by dis-
carding half of the features. However, in a more realistic higher dimensional correlated
scenario, such as datasets from the IMS field, the last principal components have a great
chance of only containing noise and can most likely safely be discarded. Note that PCA is
an unsupervised technique, meaning that it does not use class information. When using
PCA in a supervised setting, the assumption is that retaining most of the dataset variance
is beneficial for the classification task.

(a) 50 data points plotted in the original fea-
ture space {x1, x2}. The directions of greatest
variance {z1, z2} which are orthogonal to each
other are drawn. Principal component analysis
aims to find these directions.

(b) The same 50 data points plotted in the new
feature space {z1, z2}. In this new coordinate
system most of the variance of the data points is
explained by the first principal component z1.

Figure 2-17: Visualization of principal component analysis PCA aims to find the
directions of most variance in the dataset and transforms the dataset in a feature space
spanned by these directions called principal components. Source of images: modified from
Jolliffe [8].

Next, we consider the mathematical construction of the principal components based on the
full derivation made by Jolliffe [8]. The first step of PCA is to find a linear combination
α′

1x of the elements of feature vector x that maximizes the variance. Where α1 is a vector
of p constants α11, α12, α13, . . . , α1p and where p is the dimensionality of the dataset such
that

α′
1x = α11x1 + α12x2 + α13x3 + · · ·+ α1pxp =

p∑
j=1

α1jxj = z1 (2-16)

Next, we look for a similar linear function α′
2x with maximum variance which is uncorre-

lated with α′
1x. This process is repeated for every principal component so that at the kth

stage a linear function α′
kx is found that maximizes the variance and is uncorrelated to

the previously found principal components α′
1x,α′

2x,α′
3x, . . . ,α′

k−1x. Up to p principal
components could be found but, by construction, most of the variation in x is accounted
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for in the first few components. In general, the more correlated the features of the original
dataset are, the more of the variation is explained by the first few principle components.

Suppose in our example that x1 and x2 are random variables with a covariance matrix
Σ. This matrix consists of the covariance between the ith and the jth element of x when
i ̸= j, and the variance when i = j. This matrix is used in the construction of the
principal components. However, the real covariance matrix is unknown and estimated
with the sample covariance matrix S.

It is shown by Jolliffe [8] that the coefficient vectors α could be computed by calculating
eigenvectors of the (sample) covariance matrix of a dataset. The principal components
are computed by post-multiplying them with the original features x.

In terms of computing costs, this process means that a sample covariance matrix of the
dataset has to be found S ∈ Rp×p. When dealing with high dimensional datasets such as
IMS, this matrix could become so large that it does not fit the computer’s RAM. Klerk
[63] proposes a variation of PCA that exploits the fact that IMS datasets are often sparse
(contains a high number of zeros), which he uses to reduce the size of the covariance
matrix. Race et al.[64] propose another variation of PCA that sequentially computes the
covariance matrix, ensuring that only one data point at a time has to be kept in memory,
a so-called online approach. These methods facilitate that PCA could still be used when
the dimensionality of a dataset becomes large.

2-3-3-2 Linear Discriminant Analysis

LDA aims to find a linear combination of the original features that maximize class sepa-
ration. Figure 2-18 illustrates LDA with a two-class, two-dimensional problem. The data
points are generated from two multi-variate Gaussian distributions with equal diagonal
covariance matrices and different means µ1 µ2 shown at the top of the figure. The line at
the bottom represents LDA’s direction, and the dots on this line are the projected data
points. In this dimension, the two classes are still linearly separable. It can be shown
that the generated dimension in this example is parallel to the vector µ1 − µ2[51]. This
does not hold in the Gaussians’ general case with non-diagonal elements in the covariance
matrix.

Figure 2-18: Illustration of LDA LDA aims to find a linear combination of the original
features that maximally separates the classes. In this two-class problem, the line on the
bottom represents the direction found by LDA with the projected data points drawn on
it. In this new dimension, the two classes are fully separable, while the dimensionality
has been reduced from two to one. Source of image: Theodoridis and Koutroumbas [51].
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Mathematical description The objective direction is described by a linear transformation
Ω ∈ RK×M that transforms the original dataset Dfull ∈ RN×M to the reduced dataset
Dred ∈ RN×K . M represents the dimensionality of the full dataset Dfull and K the
dimensionality of reduced dataset Dred with K < C − 1 where C is the number of classes.
Ω corresponds to the transformation matrix A that maximizes the Fisher Criterion:

JF (A) = trace((ASW AT )−1(ASBAT )), (2-17)

where

Sb :=
C∑

i=1
pi(µi − µ̄)(µi − µ̄)T , (2-18)

and

Sw :=
C∑

i=1
piSi (2-19)

are the between-class scatter matrix and the summed within-class scatter matrix, respec-
tively. C is the number of classes, µi the mean vector of class i, pi the a priori probability,
estimated by ni

N the number of data points in class i devided by the total number of data
points. The overall mean is defined as µ̄ =

∑c
i=1 pimi. Furthermore Si is the sample

covariance matrix of the data points in class i.

It is shown by Theodoridis and Koutroumbas [51] that the solution to this maximization
problem of equation 2-17 is found by finding the eigenvectors of the objective matrix we
will call Φ:

Φ = S−1
w Sb (2-20)

The transformation matrix Ω is found by taking the rows to be the eigenvectors of Φ
corresponding to the K largest eigenvalues.

Maximum number of embedded dimensions LDA has the limitation that the maximum
number of embedded dimensions is equal to C − 1 [51], where C stands for the number of
classes. The derivation is shown below.
Since

rank(AB) ≤ min(rank(A), rank(B)) (2-21)

hence

rank(S−1
w Sb) ≤ rank(Sb) ≤ c− 1 (2-22)

As a consequence, in a two-class classification problem, using LDA as a dimensionality
reduction technique will reduce the dimensionality to one. When the original dataset has
a high number of features compared to the amount of data points , M > N , LDA has the
risk of overfitting the data as shown in [9].

To summarize, as opposed to PCA, LDA does incorporate class information to find di-
mensions that separate the classes well for a classification algorithm to generalize well.
However, LDA has the risk of overfitting the data. The following section describes a
technique that aims to mitigate the risk of overfitting while still incorporating class infor-
mation.
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2-3-3-3 Soft Discriminant maps

The main idea LDA is based upon is that the classification error improves by maximizing
the inter-class discrimination, i.e. the creation of compact clusters of data points that are
far away from each other. Liu and Gillies [9] show that this is untrue for high-dimensional
datasets. They show that when the number of features is higher than the number of
data points (M > N), it is arbitrary to find a feature space with LDA that minimizes
the within-class variance to such an extent that the projected data points appear as a
single point when plotted in a scatter plot. Namely, a dimension can always be found that
ensures that all data points of a class coincide, as seen in Figure 2-19e. However, when
data points of the test dataset are plotted in the same feature space, their location is, in
general, not close to the training points, suggesting that the learning model suffered from
overfitting.

To overcome this problem, a method called Soft Discriminant Map (SDM) is proposed by
Liu and Gillies [9]. The approach modifies LDA by controlling the weight the optimization
problem assigns to the minimization of the within-class variance to reduce overfitting.
In Figure 2-19, the AT&T Dataset of Faces [65] is projected in two dimensions using
different methods. In Figure 2-19a-d, SDM has been applied with different values of β,
the coefficient controlling the amount of class separation. Subfigure e shows the result of
LDA, and subfigure f shows the projection obtained by PCA. For high values of β, The
data points coincide similar to LDA. For low values of β, the class separation is reduced,
making the projection look more like the PCA result.

Figure 2-19: 2D projections of the AT&T Dataset of Faces computed by SDMs
(a) β = 10,(b) β = 50, (c) β = 10.000,(d) β = 10.000.000, LDA in (e), and PCA in (f).
Source of image: Liu and Gillies [9]

Mathematical description The derivation of the new features from SDM is similar to
those of LDA. In LDA, the new directions are found by calculating the eigenvectors of the
objective matrix Φ of Equation 2-20. With SDM, the directions are found by calculating
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the eigenvectors of a new objective matrix Φβ:

Φβ := Sb − βSw, β ∈ R, (2-23)

where Sb is the between scatter matrix, Sw the within scatter matrix and β a factor that
scales the within scatter matrix. LDA maximizes the ratio between the between-class
variance and the within-class variance, while SDM maximizes the weighted difference
between them. The transformation matrix Ω, analogue to LDA, is found by placing the
eigenvectors corresponding to the K largest eigenvalues in the rows of Ω. The optimization
problem SDM aims to solve is further discussed in the following chapter.

Classification performance For classification problems using datasets with high dimen-
sionality, SDM can use class information unlike PCA and is less likely to be victim of
overfitting like LDA. Liu and Gillies [9] showed experimentally that in this scenario, SDM
performs better than PCA and LDA in terms of classification error.
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Chapter 3

Methods

This research proposes an extension to Soft Discriminant Map (SDM), the linear feature
extraction method proposed by Liu and Gillies [9]. Before the extension, which we have
named Data-Driven Soft Discriminant Map (DD-SDM), is presented in section 3-3, SDM
will first be defined in section 3-1. The new feature space’s classification performance is
often used as a performance metric in the experiments that were performed. Section 3-2
describes the procedure used to derive this performance metric.

3-1 Soft Discriminant Maps

The essence of SDM is to influence the level of class-discrimination in the new feature
space to avoid overfitting while still using class information to extract new features, called
soft discriminants. SDM is used to reduce the dimensionality of the full dataset DF ull

which has N data points and M features. In section 2-3-3-3, SDM was introduced and
can also be defined with the following optimization problem given by Liu [66]:

Maximise
w∈RM×1

wTSbw subject to wTSww = α (3-1)

and wTw = 1,

where Sb ∈ RM×M is the between-scatter matrix and Sw ∈ RM×M the within-scatter
matrix as defined in Equations 2-18 and 2-19. These scatter-matrices are calculated based
on the full dataset Dfull ∈ RN×M . w is the vector to be varied containing the weights used
to linearly transform the original features to the corresponding soft discriminant, and α
is a constant. The value of α is irrelevant to the construction of w since it vanishes in the
derivative of the Lagrangian as seen shortly in Equation 3-3. To put Equation 3-1 into
words: a unit vector needs to be found that maximizes the between-class variance (the
distance between class means) as long as the within-class covariance is equal to a constant
number α. To solve this optimization problem, the Lagrangian is constructed:

L(w, β, λ) = wTSbw − β(wTSww − α)− λ(wTw − 1) (3-2)
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By setting the derivative with respect to w to zero, we obtain

(Sb − βSw)w = λw (3-3)

Repeating the definition of Equation 2-23:

Φβ := (Sb − βSw) (3-4)

Equation 3-3 shows that w is an eigenvector of Φβ with eigenvalue λ.To be more specific, w
is the eigenvector with the highest corresponding eigenvalue. The second soft discriminant
is the eigenvector with the second-highest eigenvalue and so forth. Since both the between-
scatter matrix Sb ∈ RM×M and the within-scatter matrix Sw ∈ RM×M are square and
symmetric, and Φβ is a weighted difference between them, Φβ is also square and symmetric.
A fortunate property of symmetric matrices is that their eigenvectors are guaranteed to be
orthogonal. As a result, the soft discriminants are orthogonal to each other. Another way
to find the subsequent soft discriminants is to repeat the optimization problem, with an
added constraint that w2 should be orthogonal to w1. In general, wn should be orthogonal
to wi with 0 < i < n.

The first K soft discriminants are stacked horizontally to obtain a transformation matrix
Ω ∈ RM×K . Matrix Ω can be used to map the original data points to the new coordinate
system by post-multiplying with the full dataset Dfull ∈ RN×M :

Dred = DfullΩ (3-5)

The reduced dataset Dred ∈ RN×K has a reduced dimensionality K. The following section
explains how this thesis evaluates whether this procedure improved the dataset for further
classification analysis.

3-2 Classification performance measures

By reducing the full dataset’s dimensionality, Dfull, the problems of handling big datasets
as explained in chapter 2-3 are hopefully mitigated. To evaluate whether the reduction
resulted in a dataset Dred that is more suitable for classification, this section introduces
standardized performance measures.

Figure 3-1: Process of applying dimensionality reduction in a classification
pipeline to obtain a training- and test error The parallelograms represent datasets
with their dimensions. The diamond represents the application of a dimensionality re-
duction method. A rectangle represents a procedure such as matrix multiplication, or the
training of a classifier and the ellipses represent the calculated performance metrics.
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Figure 3-1 shows the process of obtaining two performance metrics: the training error
and the test error. These metrics are a measure for the classification performance of the
classification pipeline and were more in-depth discussed in section 2-2-3. The full dataset
DF ull consists of N data points with M features. Each data point is assigned to a class
with a label. DF ull is then split into two datasets. The first being the training dataset
DT rain with N1 data points and M features. The second set is the test dataset with N2
data points and M features where N1 +N2 = N .

The test dataset is used to test whether a classifier trained on this new feature space also
performs well on unseen data. E.g., in the case of Imaging Mass Spectrometry (IMS),
this means that we want to know whether the dimensionality reduction methods capture
underlying biological patterns or that they capture noise that coincidentally separates the
mass spectra well. When there is a big difference between the test error and the training
error, the model was a victim of overfitting.

In this thesis, SDM is compared to two other linear feature extraction methods that
serve as a benchmark: Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA). The dimensionality reduction method to be evaluated is applied to
training dataset Dtrain, resulting in a transformation matrix Ω ∈ RM×K , where K is
the number of latent variables whos value is dependent on the method used. Matrix
Ω is used to project the data points of Dtrain ∈ RN1×M and DT est ∈ RN2×M onto the
new coordinated system resulting in the two reduced datasets DRed.train ∈ RN1×K and
DRed.test ∈ RN2×K . The projection is performed by post-multiplying Ω with the datasets:

DRed.train = DT rainΩ (3-6)
DRed.test = DT estΩ (3-7)

Since the data points do not change classes during the dimensionality reduction step,
the labels of the data points in the reduced datasets remain the same and are therefore
still known. The labelled reduced datasets are used to train a classifier and obtain a
classification model with a decision rule described in section 2-2-3. The model is used on
both DRed.train and DRed.test to predict a class for each data point. Since the true labels
of the data points are known, the prediction can be compared to the ground truth. The
training and test error percentages are the percentages of mismatches between predicted
and true classes for the training- and test datasets, respectively. A lower error means a
better classification performance.

3-3 Data-Driven Soft Discriminant Maps

As discussed in section 3-1, SDM has a parameter β that has to be set manually. We can
immediately raise a few questions: to what value should this β be set to achieve maximal
classification performance? How sensitive is this performance to β? Does using SDM with
an optimal β result in a better performance than using other dimensionality reduction
methods such as PCA and LDA? The following sections will explain our proposed frame-
work of setting β in a way that minimizes the test error on a given dataset. We have
named the method DD-SDM. The experiments performed in this thesis aim to answer the
other questions.

Master of Science Thesis Thomas Cornelis Booij



3-3 Data-Driven Soft Discriminant Maps 34

3-3-1 Bracketing of the minimum

The function to be minimized is the test error, the calculation of which was explained in
section 3-2, as a function of β:

f(x) = Error(β) (3-8)

The β needs to be found that minimizes this function, preferably while computing f(x)
as few times as possible. Textbook Numerical Recipes 3rd Edition from Press et al. [67]
provides a suggestion how to approach such a one-dimensional minimization problem. The
trick is to iteratively bracket the minimum while making the search interval smaller each
iteration. A minimum is bracketed if there is a triplet of points a < b < c where f(b) is
smaller than both f(a) and f(c). In this case, we know that the function, if it is smooth,
contains a minimum in the interval [a, c].

The first step is to choose an initial interval where we are guaranteed to have an optimum.
Press et al. [67] proposes a method to find a suitable interval automatically. For the
DD-SDM case, this interval is set manually to be from 0 to a sufficiently high number
(chosen in the order of 102).Namely, in the experiments performed in this thesis, the
optimal β was always lower than 100. However, further research could further improve
DD-SDM by implementing the bracketing algorithm from Press et al. [67]. Having access
to the initial interval, which contains a minimum, the next step is to find this minimum.

3-3-2 Golden-section search

The following derivation of golden section search is based on the work of Press et al. [67].
Suppose we have a starting triplet (a, b, c) that brackets the minimum. An illustration
of this situation is shown in Figure 3-2. A strategy is needed for choosing the next β to
evaluate. Suppose that b is a fraction y of the way between a and c:

y = b− a
c− a

(3-9)

And say that the next point to be evaluated x is an additional fraction z beyond y:

z = x− b
c− a

(3-10)

Depending on the value of f(x), the new points that bracket the minimum are either
(a, b, x) or (b, x, c) with length relative to the current one y + z or 1 − y respectively. If
we want to minimize the length of the worst case, these lengths should be set equal. This
will result in z to be:

y + z = 1− y (3-11)
z = 1− 2y (3-12)

From this value for z it can be seen that the new point x is the symmetric point to b in
the original interval, meaning that |b− a| is equal to |x− c|. If b was chosen in the same
optimal way as x, scale similarity would imply that x should be the same fraction of the
way from b to c as b was from a to c, or:

z

1− y
= y (3-13)

When we substitute equation 3-10 into Equation 3-13, the following quadratic equation
emerges:

y2 − 3y + 1 = 0 (3-14)
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Which has solutions:

y1 = 3−
√

5
2

= 0.3819... (3-15)

y2 = 3 +
√

5
2

= 2.6180... (3-16)

We discard the second solution since it lies outside the interval from 0 to 1 and get
y = 0.3819. As an example, when the initial underbound a = 0 and the upperbound
c = 1, b should be set at 0.3819 and x at 1 − 0.3819 = 0.6180. These fractions are those
of the so-called golden section, a ratio occurring many times in nature, architecture and
graphic design among other areas. This is the reason why the method is referred to as
golden section search. The next point in the iteration can always be found by going a
fraction of 0.38197 into the larger of the two intervals (measuring from the central point
of the current triplet).

Figure 3-2: Schematic of golden-section search Schematic representation of one
iteration of golden-section search. The function-value to be minimized lies on the y-axis
and the argument on the x-axis. The method assumes the minimum lies between outer
bounds a and c. When the function evaluated on x is higher than f2; the new outer
bounds are set to be a and x. Conversely, when f4 is lower than f2, the next outer
bounds are set to be b and c.

Next,the value at x is evaluated. When the function value is higher than that of middle
point of the current triplet (in this example point f2), the case with point f4a in Figure 3-2,
the new three bracket points become (a, b, x). When the value is lower than point f2, the
new bracket points become (b, x, c). This procedure is repeated until the distance between
the new point and the previous middle point is smaller than a pre-defined tolerance ϵ. Press
et al. [67] show that a practical tolerance is

√
ψ where ψ is the floating point precision of

the computer used for the analysis. In MATLAB, the double-precision accuracy is in the
order of 10−15, resulting in ϵ =

√
10−15 = 3× 10−8. Setting ϵ smaller than this value will

not achieve better results.
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3-3-3 Alternative search methods

Note that golden section search is optimal for the worst case. It possible to trade off a worse
worst-case for a quicker convergence to the optimal β. The method that achieves this is
based on assuming that the function behaves parabolically near the minimum and is called
Brent’s method [67]. However, Press et al. [67] note the following:"If your function has
a discontinuous second (or lower) derivative, then the parabolic interpolations of Brents
method are of no advantage,and you might wish to use the simplest form of golden section
search, as described in paragraph 10.2.". It can not be guaranteed that the test error
function has a continuous first and/or second derivative since the error is highly dependent
on random sampling of the full dataset. The safer choice is to use the golden section search
method. Future work could apply Brent’s method to validate this reasoning. Note that
we have no access to the derivative of the test error function, removing the option of using
derivative-based search methods.

3-3-4 Implementation

DD-SDM is, in essence, golden section search using the test error as the evaluation func-
tion. Pseudocode for DD-SDM is given in Algorithm 1. Our version of the golden section
search algorithm takes the following inputs: the full labelled dataset DF ull , the initial
lower bound a and upper bound c, and the desired accuracy ϵ as a stopping criterion. Ev-
ery iteration, the considered interval (c− a) becomes smaller. When this value is smaller
than ϵ, the algorithm stops and returns the current β corresponding to the lowest test
error. This β can be used to calculate the final SDM mapping. As earlier stated, the
stopping accuracy ϵ has a theoretical limit of around 3 × 10−8. Fortunately, experiment
two of this thesis seems to indicate that such precision of β is not necessary, and an ϵ of
0.1 will suffice.

The evaluation function denoted as getSDMTestError() in Algorithm 1 computes a test
error for a specific β. The procedure to obtain the test error is described in section 3-2
and the pseudocode is shown in Algorithm 2.

The test error value is stochastic since the error depends on the randomly chosen data
points in the test and train datasets. Furthermore, the data itself can be modelled from
a random distribution, making the problem non-deterministic. For this reason, the cal-
culation of the test error is repeated several times for every β with different randomly
generated partitions of the full dataset; DT rain and DT est. The input Folds sets the num-
ber of repetitions. In this thesis, the number of folds was set to 5. The mean of these errors
is returned as the test error. More work could be done on setting this value "optimally".

Another input to the algorithm is the relative size of the training dataset to the test
dataset. This parameter’s influence is analyzed in the experiment described in section
4-2-2. The input K is the number of soft discriminants SDM reduces the dataset to. An
analysis of K’s effect is performed in the experiment described in section 4-2-1.

The test error is also dependent on the classifier trained on Dred.train. In this thesis, the
linear classifier Linear Bayes Normal is used. Since the error has to be computed multiple
times, a linear method’s relatively low computational cost is beneficial. A linear classifier
is expected to give a good enough measure for the amount of overfitting that has occurred.
Future work could perform a more rigorous analysis of the classifier’s choice effect on the
optimal β by weighing the classifier’s computational cost against the increased quality of
the returned optimal β and robustness of the algorithm to getting stuck in local minimums.
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Algorithm 1: Data-Driven Soft Discriminant Map
Data:
DF ull The full labeled dataset
a Initial underbound
c Initial upperbound
ϵ stopping criterion: accuracy
Result: β̂ Optimal β
begin

τ ←−
√

5−1
2

β1 ←− a+ (1− τ)(c− a)
β2 ←− a+ τ(c− a)
Error1 ←−getSDMTestError(β1)
Error2 ←−getSDMTestError(β2)
while |c− a| > ϵ do

if Error1 < Error2 then
c←− β2
β2 ←− β1
Error2 ←− Error1
β1 ←− a+ (1− τ)(c− a)
Error1 ←−getSDMTestError(β1)

else if Error1 > Error2 then
a←− β1
β1 ←− β2
Error1 ←− Error2
β2 ←− a+ τ(c− a)
Error2 ←−getSDMTestError(β1)

if Error1 < Error2 then
β̂ ←− β1

else if Error1 > Error2 then
β̂ ←− β2

Algorithm 2: GetSDMTestError
Data:
Dfull The full labeled dataset
β The β to be evaluated
N1/N2 Relative size training- and test dataset
Folds Number of repetitions
K Number of dimensions in reduced dataset
C Classifier used
Result: Error : The mean test error
begin

for i←− 1 : Folds do
[Dtrain,Dtest]←− splitDataset(Dfull, N1/N2)
Ω←− applySDM(Dtrain, β, K)
DRed.train ←− DtrainΩ
DRed.test ←− DtestΩ
DecisionRule = trainClassifier(DRed.train,C)
TestErrorArray(i) ←− applyDecisionRule(DRed.test, DecisionRule)

Error ←− mean(TestErrorArray)
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Chapter 4

Experiments

This chapter will describe all performed experiments along with the datasets used. The
next chapter, Chapter 5, will present and interpret the results. First, all used datasets are
described in section 4-1 and in section 4-2 all experiments are defined and motivated.

4-1 Datasets

Three different datasets are used throughout the thesis: two real-world datasets and one
artificial dataset. This section describes the inherent characteristics of the datasets and
the way the datasets were generated.

4-1-1 IMS-RBDS

One of the real-world datasets considered in this thesis will be the Imaging Mass Spec-
trometry Rat brain Dataset (IMS-RBDS). The dataset originates from an Imaging Mass
Spectrometry (IMS) experiment measuring the molecular contents from a rat brain tissue
section. A microscopy image of this slice is shown in Figure 4-1a.

Scientists have aimed to simulate Parkinson’s disease by depriving the rat’s dopamine
receptors in one hemisphere of the brain. The other hemisphere is untouched and acts as
a control. After the brain was harvested from the rat, the tissue was frozen and sectioned
into 10 µm sections. Matrix-Assisted Laser Desorption Ionization (MALDI) is used as
the ionization method, and a 15T Fourier transform ion cyclotron resonance (FT-ICR)
mass analyzer performed the mass spectral measurements. Verbeeck et al. [45] give a
comprehensive description of the procedure. The acquired m/z-range is set from 1300 to
24000 with approximately 21000 pixels. The full-spectrum dataset is peak-picked after the
measurements are taken, resulting in a dataset with 809 m/z-peaks. The mass spectrum
of pixel 4500 is shown in Figure 4-1c and the ion image corresponding to m/z = 5611 is
shown in Figure 4-1b.
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(a) Microscopy image (b) Ion image at m/z 5611

(c) Mass spectrum of pixel 4500

Figure 4-1: Visualizations of the rat brain dataset

4-1-2 IMS-MKDS

The second real-world dataset describes the kidney of a mouse. The mouse is infected with
Staphylococcus aureus, a common bacteria that causes a diverse array of diseases such
as skin infection, pneumonia, and meningitis. The bacteria can form tissue abscesses,
which visually represent the immune response of the mouse. By applying IMS on this
tissue, the goal is to characterize molecularly the host-pathogen interactions present in
the abscesses. The dataset was acquired by William Perry at the Vanderbilt University
located in Nashville, Tennessee under the supervision of Eric Skaar, Jeffrey Spraggins and
Richard Caprioli

The mouse was 6-8 weeks old and euthanized 96 hours post-infection. The organs were
snap-frozen in liquid nitrogen, cryosectioned in 12µm thick sections, and thaw mounted
on a glass slide. A microscopy image of the tissue is shown in Figure 4-2a. The matrix 1,5-
diaminonaphthalene was applied using a TM-Sprayer. The ionization process is MALDI
and the m/z-intensities are measured using a prototype timsToF fleX mass spectrometer
(Bruker Daltonik, Brement, Germany)[68]. The pixel size is 25 µm and the range of mea-
sured m/z-values is set to 400-1400 Da. The dataset consists of a total of approximately
150000 pixels. The dataset considered in this thesis is pre-processed with a peak-picking
procedure resulting in 152 distinct m/z-peaks. Example ion images corresponding to m/z-
values 920 and 629 are shown in Figures 4-2b and 4-2c respectively. A mass spectrum of
a pixel 80000 of this dataset is shown in 4-2d.
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(a) Microscopy image (b) Ion image at m/z 920 (c) Ion image at m/z 629

(d) Mass spectrum of pixel 80000

Figure 4-2: Visualizations of the mouse kidney dataset

4-1-3 Artificial dataset

A drawback of using real-world datasets is that it is unknown a priori which m/z-values
contain biological patterns and which values carry technical variation, noise, or are other-
wise irrelevant to the task at hand.
In this thesis, an artificial dataset is constructed to understand the ability of a linear feature
extraction method to filter out the m/z-values that are distinctive for class differences
and discard noise. By constructing the ‘biological’ patterns ourselves in this dataset, it
is known beforehand which m/z-values should definitely be kept and which should be
discarded in the newly constructed feature-space. To quantify this ability, we propose a
new performance metric called Peak Conservation Score (PCS), defined in section 4-2-4.

Spatial class distribution The artificial dataset is created to have similar characteristics
to that of a real-world IMS dataset. However, accurately modelling IMS-datasets from
first principles is beyond the scope of this thesis, and therefore no quantitative conclusions
are drawn from the experiments performed on this dataset. However, by comparing the
performance of Soft Discriminant Map (SDM) to Principal Component Analysis (PCA)
in terms of PCS, conclusions can be made about the difference general behaviour of the
methods. The parameters of the artificial dataset can be varied to study the effect on the
PCS, such as the number of training data points, number of classes and dimensionality.
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The human-specified spatial layout of our artificial dataset is shown in Figure 4-3. The
dataset consists of data points divided into two classes: class 1 and class 2. Each square
in the figure represents a pixel of a real-world dataset, each containing a feature vector
with m/z measurements.

Figure 4-3: Spatial class distribution of the artificial dataset The artificial dataset
consists of two classes: class 1 and class 2. Class 1 is located at the left of the dataset,
class 2 is located at the right.

Full spectrum generation The features corresponding to each data point are constructed
in a way that resembles the intensity measurements of distinct m/z-values corresponding
to each pixel in an IMS dataset. This section will describe the process used to construct
the full artificial mass spectra of each data point.Each full spectrum is build up as a
summation of several mass spectra as seen in Figure 4-4. This approach is based on the
work of Verbeeck [69].
The first spectrum is a class-specific spectrum that models the biological information
that represents a class, for example the molecular characteristics of an abscess in the
Imaging Mass Spectrometry Mouse Kidney Dataset (IMS-MKDS), in a real-world dataset.
Ideally, a dimensionality reduction technique should conserve the features resulting from
this spectrum. Figure 4-4a shows an example of a class-specific spectrum. These spectra
will be denoted as Pω1 and Pω2 for class 1 and class 2 respectively.
First, a spectral axis is defined between Mass-over-charge ratio (m/z) 1 and 10. The
profile consists of a series of synthetic ion peaks, modelled as Gaussian probability density
curves, the means of which are uniformly randomly distributed across the m/z-range. In
experiment 4, described in section 4-2-4, a standard deviation of 0.015 is used. The profiles
are normalized to be within the intensity interval [0,1]. The amplitude of the resulting
profiles are distributed between [0.5-1] to simulate a spread of intensities.
The second spectrum used in the summation is called a background spectrum. This spec-
trum will be the same for both classes. Dimensionality reduction methods should ideally
discard the features resulting from this spectrum since they are not indicative for the class
differences. Figure 4-4b shows a background spectrum and will be denoted as Pb. The
background spectrum is generated in the same way as the class specific spectrum: nor-
malized, Gaussian probability density functions with a standard deviation of 0.015 and
uniformly distributed means between 1 and 10.
To simulate uncertainties in the datasets such as measurement noise, a noise profile Pn is
added. The noise is generated from a Gaussian probability distribution with mean 0 and
standard deviation 0.1. The absolute value is taken to prevent negative intensities, which
is physically impossible in mass spectral measurements. Since dimensionality reduction
methods that are robust against noise are naturally preferred, the features resulting from
this profile should ideally be discarded.
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(a) Class-specific spectrum

(b) Background spectrum

(c) Additive noise

(d) Total spectrum

Figure 4-4: Composition of the mass spectrum of a data point in the artificial
dataset A mass spectrum from a data point in the artificial dataset consists of the
addition of a class-specific, background, and noise spectrum.
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As a final step, spatial variance in intensity between data points is modeled by multiplying
the class-specific and background spectra with a factor denoted as ai,j

ω and ai,j
b respectively.

The superscript i, j denotes the pixel’s index and is not an exponent. The factor is named
pixel-variation factor.

For each pixel, two pixel-variation factors are generated, ai,j
ω and ai,j

b , from two distinct
uniform probability distributions. Both ai,j

ω1 and ai,j
ω2 are drawn between 0 and 1. The

background pixel-variation factor ai,j
b is drawn between 0 and 5. The upper-bound of ai,j

ω1
and ai,j

ω2 will be varied between 0 and 5 in experiment 4 (section 4-2-4).

The full spectrum Pi,j of pixel i, j as shown in Figure 4-4d for class 1 can be denoted as
follows:

Pi,j = ai,j
ω1Pω1 + ai,j

b Pb + Pn (4-1)

Peak-picking The real-world datasets described earlier are pre-processed with a peak-
picking procedure. A peak picker is an algorithm that detects the m/z values with a
peak in a single full-spectrum mass spectrum (such as the spectrum in Figure 4-4d). The
artificial dataset was also peak-picked to mimic the real-world datasets.

Since an IMS dataset consists of a vast amount of spectra (one for every pixel) and the
peak-picker works on a single spectrum, a representative spectrum has to be produced.
Multiple strategies to accomplish this are used in literature, such as taking the mean,
sum and maximum of all spectra. From these options, the maximum spectrum managed
to identify the most peaks corresponding to class-specific and background peaks and is
therefor used in the experiments.

The MATLAB function mspeaks was used with the default settings to perform the peak-
picking. An example of the result of a peak-picking procedure is shown in Figure 4-5. The
blue line represents the maximum spectrum retrieved from the spectra of all data points
in the artificial dataset. At the m/z-value of the vertical orange lines, the peak-picker
identified a peak. Using the list of m/z-values returned from the peak-picker, a peak-
picked dataset is constructed by retrieving the intensities according to these m/z values
from the spectrum of every pixel.

Constructing the ground truth In the full spectrum, it is known which Gaussian density
function corresponds to which class. We developed a method to retain this information
through the peak-picking procedure.

Each Gaussian density function corresponds to either class 1, class 2 or the background
spectrum. They all have a mean µ and standard deviation σ . For each peak in a full-
spectrum,z an interval is defined referred to as the "hitwindow" corresponding to that
Gaussian:

[µ− σ;µ+ σ]

If a picked peak lies within one standard deviation of the mean, the peak is labelled
corresponding to that profile. In Figure 4-5, the hitwindows are visualized by arrows. The
bottom Figure shows a zoomed-in version of the top Figure. When an orange vertical
line lies between two arrows, the peak is labelled according to the corresponding profile.
Note that it is possible that a picked m/z-value hits multiple hitwindows and therefore
corresponds to multiple classes. To keep the number of distinct classes small, all such
cases are given the label ωz. All possible labels are summarized in Table 4-1.
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Table 4-1: All possible labels of the profile-peaks with their description

Label Description
ω1 the m/z value corresponds to class 1.
ω2 the m/z value corresponds to class 2.
ωb the m/z value corresponds to the background profile.
ωz the m/z value corresponds to multiple profiles.
ωn the m/z value does not correspond to any class.

Figure 4-5: Peak-picking procedure and labelling for the artificial dataset
A peak picking algorithm is applied on the maximum of the full-spectrum artificial
dataset.Afterwards, a labelling procedure assign each peak to a class when the picked
m/z value lies within one standard deviation of the means of the original Gaussian peak.
This interval is named a hitwindow. The second row is a zoomed-in version of the first
row to make the hitwindows better visible.

The peak picker succeeds in finding the peaks represented by the Gaussian distributions.
The picker also picks m/z-values generated by the noise. The final dataset is an artifi-
cial dataset which is peak-picked and similar to the real-world datasets. All m/z-values
that remain after the peak-picking procedure have a label indicating whether the peak
corresponds to a ‘biological pattern’ that is class-specific, part of the common background
profile, or noise. Using this information, SDM can be evaluated in its ability to conserve
the class-specific m/z-values.

4-2 Experiment descriptions

The main research goals of this thesis can be stated as four main questions:

1. When applied to a real-world IMS dataset, how does the classification performance
after applying Soft Discriminant Map (SDM) compare to after applying Principal
Component Analysis (PCA) or Linear Discriminant Analysis (LDA)?
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2. What is the sensitivity of the classification performance to the value of the parameter
β in SDM?

3. How can β be set in a automated, data-driven way that maximizes classification
performance for a given dataset? How efficient is golden section search compared to
grid search?

4. Is SDM able to conserve features that are class-specific and discard features that
have similar values between classes?

These questions are examined using the experiments defined in this section. In the follow-
ing subsections, the research question to be answered, the motivation for performing this
experiment, and the experiment design are stated.

4-2-1 Experiment 1: Classification performance

As described in chapter 2-3, applying Dimensionality Reduction (DR) is not only a way to
reduce the computational costs in building a classifier. The classification performance can
also be improved by reducing the "curse of dimensionality" as discussed in section 2-3-1-1.
Furthermore, overfitting can also be diminished by reducing the dataset’s dimensionality,
resulting in higher accuracy. This experiment aims to compare SDM to benchmark DR
methods PCA and LDA.

The research question that this experiment aims to answer is "When applied to a real-world
IMS dataset, how does the classification performance after applying SDM compare to after
applying PCA or LDA?"

The classification performance will be quantified using the training error and test error,
which are obtained as described in section 3-2. Primarily the test error is a useful metric
for ensuring the classifier learned the underlying biological patterns. The test error is
compared to the training error since a big difference between the two indicates that the
model was prone to overfitting (as discussed in section 2-3-1-3).

The dimensionality reduction methods will reduce the number of features in the full dataset
DF ull ∈ RN×M into a reduced set of features in the reduced dataset DRed ∈ RN×K . By
varying the number of variables K in the reduced dataset and calculating corresponding
error rates, the DR methods are compared in the number of features needed for the
corresponding error rates.

It is expected that SDM is less prone to overfitting than LDA when the dimensionality
is high. By minimizing within-class variance by LDA, the generalization capability de-
creases[9] caused by overfitting. Since SDM uses label information and PCA does not,
we hypothesize that SDM needs fewer features (a lower value for K) to reach its optimal
classification performance.

Three versions of SDM with different values for β are considered. First, Data-Driven Soft
Discriminant Map (DD-SDM) is used to find the optimal value for β. Then the other β
values are taken lower and higher than this optimal value.

The experiment parameters are shown in Table 4-2. Note that only one classifier type is
considered. It would make sense to evaluate the effect of different classifiers in follow-up
research.
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Table 4-2: Parameters of experiment 1

Parameters Experiment 1
dataset IMS-RBDS
number of classes 2
dimensionality M 809
classifier K-Nearest Neighbours
observations in trainingset N1 800

4-2-2 Experiment 2: Sensitivity of β with regard to classification performance

The research question that this experiment aims to answer is as follows: What is the
sensitivity of the classification performance to the value of the parameter β in SDM?

By tuning β in SDM, the relative importance of within-class variance against between-class
distance can be controlled to reduce overfitting and improve classification performance. A
low β (close to zero) maximizes the distance between class-means. A high β minimizes
the variance of data points within a class in the reduced dataset Dred.

Since this parameter β needs to be set beforehand, the effect of a change in this parameter
should be investigated. In the previous experiment, only three values are considered for β.
In the current experiment, β will be varied for a wide range of β from 0 to 100. This ex-
periment aims to interpret the consequence of varying β to the classification performance,
the two-dimensional class distributions of the data points in Dred ∈ RN×2 and ion images
when used on an IMS-dataset.

The results are visualized in multiple ways. The relation between β and the training and
test errors is plotted, and a latent variable false-colour image is generated by scoring all
pixels in the new feature space. These images show areas within the tissue that have
similar values in the reduced feature space. Hopefully, different classes, and therefor the
different abscesses in the mouse kidney tissue, have distinct values. Lastly, the data points
of the reduced dataset are plotted in a scatter plot. Together these visualizations aim to
show the consequence of setting β on the training- and test error rate as described in
section 3-2.

We consider two cases, a high dimensional dataset is used in experiment 2a and a low
dimensional dataset is considered in experiment 2b. Experiment 2a represents the case
where the number of data dimensions M of the training dataset Dtrain ∈ RN1×M is higher
than the number of data points N1, so the case where M > N . As explained in section
2-3-3-3, the risk of overfitting is high when β is set at a high value to minimize within-
class variance. In this setting, the within class-variance can be reduced to an artificially
low value value which causes the projected training dataset to be unrepresentative for the
projected data points in the test dataset[9]. Therefore, the hypothesis for this experiment
is that this feature space will not generalize.

In experiment 2b, the number of training data points N1 is higher than the number of
features M . This case will be referred to as the M < N case. In this case, the risk
of overfitting is lower since the feature space is more densely filled with data points as
explained in 2-3-1-1. This experiment aims to research the behaviour of SDM in this
data setting. It is expected that setting a high value for β no longer necessarily results in
overfitting. This case was not considered in the original paper from Liu and Gillies [9].

The IMS-MKDS is used, containing 152 picked peaks. Section 5-2 explains the process of
constructing the labels for this dataset. Two variants of the datasets are used, the first
one having 145 training data points, the second one having 1000 data points, as shown
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in Table 4-3. The data points for each training dataset DT rain are are randomly drawn
without replacement from the full dataset Dfull in such a way that each class has an equal
number of data points. The linear Bayes normal classifier is used to compute the error
rates.

Table 4-3: Parameters of experiment 2

Parameters Experiment 2a Experiment 2b
dataset IMS-MKDS IMS-MKDS
number of classes 3 3
dimensionality 152 152
classifier Linear Bayes Normal Linear Bayes Normal
observations in trainingset 145 1000

4-2-3 Experiment 3: Data-Driven Soft Discriminant Maps Search Strategies

The research question that this experiment aims to answer is as follows: How efficient is
golden section search compared to grid search in the search for the optimal β?

Section 3-3 describes DD-SDM, a new framework to set β in a way that aims to maximize
classification performance. The search strategy used is golden-section search[67]. To
evaluate the effectiveness of golden section search, the number of iterations needed to find
the optimal β of DD-SDM is compared to a grid search approach. First, the number of
iterations by golden section search is determined. The search interval will then be divided
into the same number of sections of equal length. The best classification performance of
both methods is finally compared to conclude on the improvement golden-section search
can accomplish.

Table 4-4 summarizes the parameters used in this experiment. The training dataset
Dtrain ∈ RN1×M originates from the IMS-RBDS. The number of data points in the
training dataset N1 is 800 and the dimensionality M is 809. The stopping criterion ϵ is
set at 0.1. The initial search interval is set from 0 to 100. The number of repetitions of
the calculation of the test error per considered β Folds is set at 5 as described in section
3-3-4.

Table 4-4: Parameters of experiment 3

Parameters Experiment 3
dataset IMS-RBDS
data points in training dataset N1 800
dimensionality M 809
initial search interval 0-100
classifier Linear Bayes Normal
folds 5
stop accuracy 0.1
grid search distribution linearly distributed
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4-2-4 Experiment 4: Class-specific feature conservation

The advantage of using a supervised dimensionality reduction method as opposed to an
unsupervised approach is the ability to use class information in defining new features that
actively incorporate class-specific features of the original dataset.

To validate this statement, the research question that this experiment aims to answer is as
follows: Is SDM able to conserve features that are class-specific and discard features that
have similar values between classes in a better way than PCA?

The hypothesis is that by using the class-labels, SDM would be better capable than meth-
ods that do not use these labels such as PCA in creating features that give a high weight to
class-specific features. However, with real-world datasets, the ground truth stating which
features are ‘class-specific’ is not available.

By creating an artificial dataset from first principles as explained in section 4-1-3, it
becomes possible to construct the ground truth of stating which features are class-specific.
The construction of the ground truth was described in section 4-1-3.

Feature-weight plot The features defined by both SDM and PCA are a linear combina-
tion of the original features. This linear combination is stored in a transformation matrix
Ω as described in section 3-1. The weights of the linear combination of one latent variable
can be visualized as a feature-weight plot, an example of which is shown in Figure 4-6.
The y-axis indicates for every original data feature the weight in the new feature space
for this latent feature. These weights are directly obtained from the columns of the trans-
formation matrix Ω. In addition to the weight, the label of the peaks is also visualized
by the color of the marker. Features corresponding to class 1, class 2 and the background
are colored red, blue and green respectively. The features not belonging to any class and
were peak-picked due to the noise in the artificial dataset are colored white with a blue
outline.

Figure 4-6: Example feature-weight plot constructed with SDM The weights for
each feature as stored in transformation matrix Ω. The peaks are labelled corresponding
to their origin. Peaks corresponding to class 1 and 2 are shown in red and blue, respec-
tively. Common peaks present in both classes 1 and 2 are shown in green and referred to
as background peaks. Peaks picked due to noise are shown in white with a blue outline.
Two horizontal lines called the Peak Conservation Threshold are drawn at 0.5σ and -0.5σ.

Master of Science Thesis Thomas Cornelis Booij



4-2 Experiment descriptions 49

Peak Conservation Score Ideally, in a classification setting where class labels are known
beforehand, a pre-classification DR method should select features that discriminate be-
tween the different classes, the class-specific peaks, by giving them a high absolute weight
in these graphs. Features that are common between classes, background peaks, should be
given a low weight since those are not as useful for the classification process that will need
to follow. Besides being able to visualize this as in Figure 4-6, we also want to quantify
this goal. To this end, a threshold is defined in the feature weight plot, which is visualized
as two horizontal black lines in Figure 4-6. When a feature is given a weight higher than
this threshold (either lower than the lower threshold or higher the upper threshold), we
consider that the feature has been ‘conserved’ by the DR method. When the weight is
lower than the threshold, we consider the feature to be ‘discarded’. We propose the metric
Peak Conservation Score (PCS), which is the ratio of ‘conserved’ peaks with the same
peak label:

PCS = #peaks above PCS-threshold
total # of peaks

, (4-2)

where the numerator is the number of ‘conserved’ peaks within a peak category and
the denominator states the total number of peaks within that category. The standard
deviation of σ over all weights is calculated to construct the threshold. The threshold is
defined to be minus and positive a half standard deviation [−0.5σ, 0.5σ] of all intensity
values. Note that other values for this threshold are also possible and will effect the PCS.
Using this definition, a PCS can be calculated for every peak category. The possible peak
categories for this experiment are defined in Table 4-1. Note that the artificial dataset was
constructed in such a way that all the Gaussian profiles were picked in the peak-picking
procedure and that no picked peak belongs to multiple categories. As an example, the
PCS for class 1 can be calculated using Figure 4-6. There are a total of 20 red peaks
belonging to class 1. All the peaks lie above the black PCS-threshold. The PCS score for
class 1 of the feature computed by SDM is therefore 20/20 = 1.

Altering the artificial dataset PCA aims to find a linear combination of features that
maximize the variance in the constructed latent variables as explained in section 2-3-3-1.
When the class-specific peaks are of low intensity and therefor have low absolute variance,
we expect PCA to discard these peaks. Since SDM has access to label information, we
expect that this method will succeed in conserving class-specific peaks, even when these
peaks have a low intensity. To validate this statement, this experiment will show the effect
of height of the class-specific peaks on the PCS for both SDM and PCA.

Since an artificial dataset is used, the intensity of the class-specific features can be scaled
directly. The characteristics of the artificial dataset are provided in Table 4-5. The
procedure of scaling the class-specific peaks is visualized in Figure 4-7. Note that this
figure is different to the feature-weight plot. Figure 4-7 shows the mass spectrum of a
single data point (representing a pixel), as described in section 2-1-2. The same colors
are used as in the feature-weight plot to indicate to which category a peak belongs. As
described in section 4-1-3, each pixel has a pixel-variation factor a which the class-specific
and background peaks get multiplied with. This value is drawn from a random uniform
distribution with range [0-γ]. For the background peaks, γ is always set at 5. The value
of γ for the class-specific peaks will be varied from 0 to 5. Consequently, when γ is set
to 5 for the class-specific peaks, it has the same uniform distribution as the background
peaks. Note that the seed used in the pseudo-random generator is set to be the same to
ensure that a pixel retains the original drawn pixel-variation for each considered γ.
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As an example, Figure 4-7-a shows the mass spectrum of pixel 1 with a γ of 1. This means
that the pixel-variation factor for the class-specific peaks where drawn from a uniform
random distribution with bounds of [0-1]. Figure 4-7-b show the same pixel with γ = 3.
The only difference between the figures is the scaling of the class-specific peaks. This is the
preferred behaviour since this isolates variation in intensity of the class-specific peaks, and
therefor the variance contained in these features, in the different versions of the artificial
dataset.

By calculating the PCS for versions of the artificial dataset with different heights of class-
specific peaks for both SDM and PCA, this experiment aims to show the ability of SDM
to use class information to conserve the class-specific peaks and discard the background
peaks better than the unsupervised technique PCA.

(a) Mass spectrum with γ = 1

(b) Mass spectrum with γ = 3

Figure 4-7: Mass spectrum of pixel with index 1 belonging to class 1 for dif-
ferent values of γ
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(a) Mass spectrum with γ = 1

(b) Mass spectrum with γ = 3

Figure 4-8: Mass spectrum of pixel with index 201 belonging to class 2 for
different values of γ

Table 4-5: Parameters of experiment 4

Parameters Experiment 4
dataset Artificial dataset
m/z range [0-50]
number of full spectrum m/z bins 5000
number of picked peaks M 321
number of class 1 peaks 20
number of class 2 peaks 20
number of background peaks 20
number of data points in full dataset N 400
number of data points in training dataset N1 100
number of data points in test dataset N2 300
noise type additive Gaussian
noise standard deviation 0.1
pixel variation factor ai,j

b range background peaks 0-5
pixel variation factor ai,j

ω range class-specific peaks 0-γ
considered γ range [0-5]
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Chapter 5

Discussion and Results

This chapter will state the results of the experiments and interpret them. The order is
the same as in the experiments chapter.

5-1 Experiment 1: Classification performance

In the first experiment, the classification performance on Imaging Mass Spectrometry Rat
brain Dataset (IMS-RBDS) dataset is considered to answer the following research question:
"When applied to a real-world Imaging Mass Spectrometry (IMS) dataset, how does the
classification performance after applying Soft Discriminant Map (SDM) compare to after
applying Principal Component Analysis (PCA) or Linear Discriminant Analysis (LDA)?"
Three different Dimensionality Reduction (DR) methods were applied on the dataset to
create a reduced feature space:SDM,PCA, and LDA.
The full dataset DF ull ∈ RN×M is transformed into a reduced set of features in the reduced
dataset DRed ∈ RN×K . The dimensionality of the constructed subspace K is varied in
this experiment to compare the DR methods in the number of features needed for their
corresponding error rates.
In other words, a classifier is trained on reduced datasets Dred with varying dimensionality
K. The classifier used in this experiment is the same as used by Liu and Gillies [9];K
Nearest Neighbours (K-NN). This classifier assigns a test data point to the class of the K
nearest training data points in DRed. This parameter K should not be confused with the
dimensionality of the reduced dataset. The implementation used is the routine knnc from
toolbox PRTools [70], a pattern recognition library created by Ela Pekalska and Robert
P.W. Duin, which sets the number of neighbours automatically in a way that maximizes
classification performance.
In Figure 5-1 the resulting error curves are shown. The x-axis denotes the dimensionality
of the subspace (K) generated by the DR method. The y-axis denotes the achieved error
rates, both the training and test errors. Naturally, a low error rate is desirable overall.
The methods considered are PCA, LDA and SDM with three different values for β: the β
determined with DD-SDM (β = 1.8), a lower value (β = 0.2), and a higher value (β = 10).
The training and test errors are obtained as described in section 3-2.
The test errors are denoted with the dotted lines and are considered a good measure for
the classification model’s generalization capability and they are therefor the errors we want
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Figure 5-1: Comparison of classification errors The training- and test errors with
varied dimensionality of the subspace generated by three methods: PCA,LDA, and SDM.
Three different values of β are considered, one of which (β = 1.8) is set by Data-Driven
Soft Discriminant Map (DD-SDM).

to minimize. As seen in Figure 5-1, DD-SDM achieves the lowest test-error overall. For
K = 1, SDM with β = 1.8 scores best, followed by LDA, SDM with β = 0.2, PCA, and
lastly SDM with β = 10.

Overfitting The key issue that SDM aims to solve is illustrated by comparing LDA to
DD-SDM. The training error of LDA is lower, but at the cost of a higher test error. This
bigger difference between the two errors indicates that the LDA-defined subspace and its
subsequent classification is victim of overfitting on the training data. As explained in
section 3-1, SDM affects the amount of overfitting by tuning β. The difference between
train and test error is smaller for SDM with β = 1.8 indicating that the method success-
fully reduces the amount overfitting resulting in better generalization capability for the
classification model trained downstream.

Number of classes In the used rat brain dataset, there are two classes as described in
section 4-1-1. As mentioned earlier, LDA constructs a subspace with dimension K <=
C − 1, with C the number of classes, so for this dataset LDA delivers a subspace with
K = 1. As seen in Figure 5-1, the error of SDM similarly does not improve after the first
feature has been found. PCA, however, reaches its lowest test error only at a subspace
with K = 15. This hints already that the class-differentiating information in the PCA
subspace is spread over several principal components, rather than being grasped by the
first subspace dimension. This is to be expected, since PCA is an unsupervised method,
and does not take class information into account. Moreover, with values of K higher than
15, the test error rises for PCA again, suggesting that the components added beyond that
point are making classification more difficult and could lead to overfitting.

This result extends the case examined by Liu and Gillies [9], who only looked at datasets
where the number of classes C is higher than the highest considered K.
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Considerations The error-curves of Figure 5-1 are generated with the K-NN classifier.
The natural question arises for which classifier types DD-SDM will out-perform other
methods, and so in future work more classifiers could be considered. In this thesis, SDM
is only benchmarked against PCA and LDA. A natural followup would be to compare
SDM to other families of DR methods such as non-linear methods. The optimal β obtained
is still dependent on some parameters set in DD-SDM, which are the number of training
samples and the classifier type used to obtain the errors (which will usually match the
classifier type that will be used subsequent to the DR-part of the processing pipeline).
The current β found by the method described in section 3-3 outperforms PCA and LDA
in this experiment. However, it is possible that using other approaches to determine β
within DD-SDM could result in an even better performing β.

5-2 Experiment 2: Sensitivity of β with regard to classification
performance

In their paper introducing SDM, Liu and Gillies [9] explain that in high dimensional
datasets, the within-class variance should be reduced rather than increased to avoid
overfitting. In this experiment, the Imaging Mass Spectrometry Mouse Kidney Dataset
(IMS-MKDS) is used to visualize the effects of varying the parameter β in SDM to control
the bias towards maximizing between-class variance and minimizing within-class variance.
Next to studying the effect of β, this experiment also aims to visualize the effect of the
number of data points in the training dataset N1 relative to the dimensionality M of the
full dataset DF ull ∈ RN×M . Remember that N2 denotes the number of data points in the
test dataset and N1 +N2 = N .

Dataset creation To obtain a labelled dataset, masks are defined as shown in Figure 5-2.
The blue, orange and purple masks indicate the regions where abscesses are present. The
green mask represents a patch of non-abscess ‘healthy’ tissue. The pixels that lie within
the masks are assigned to separate classes with labels. The pixels (e.g. data points)
within the masks are stored in the full dataset Dfull together with a class-label for each
pixel denoting the tissue patch it belongs to. Note that the pixels outside the masks are
discarded and are therefore not used as input for SDM.

To generate Figure 5-3, DF ull was split into two parts, DT rain and DT est, and SDM was
applied to DT rain only to determine the dimensionally reduced subspace. In constructing
DT rain, the number of data points per class are kept equal to avoid introducing a bias
towards one of the classes. The transformed data points are shown in a scatter plot in
Figure 5-3. Note that the points in the left and middle abscess have substantial overlap.
This overlap suggests that these tissue structures can not successfully be separated using
these two latent variables and possibly need an extra latent variable. To make the effect
of β more clearly visible, in the remainder of this experiment the left and middle abscess
will be combined into one class. By having three classes, the number of latent variables
will be C − 1 = 2, making it possible to fully visualize all variables in a 2-D scatter plot.
The left and middle abscesses will be denoted with abscesses 1 and 2 respectively. The
right abscess will be denoted with abscess 3.
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Figure 5-2: Masks indicating the classes in the IMS-MKDS Labels are assigned to
four regions within the kidney tissue. Three abscesses are visually detected and marked
with a mask. A sample of the remaining tissue has been masked with green. All regions
are assigned to a different class in the classification pipeline.
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Figure 5-3: Scatter plot of the two first SDM-loadings of the IMS-MKDS The
four classes are plotted in a scatter plot with the two first SDM-loadings. The left and
middle abscesses have high overlap.

5-2-1 Experiment 2a: High dimensionality

In the first case we consider, the number of data points N1 in the training set is chosen to be
smaller than the dimensionality M , the number of features in each original measurement.
This case represents high-dimensional datasets with relatively few observations compared
to the number of features. This is also the case Liu and Gillies [9] considered for all their
datasets, claiming that SDM reduces the risk of overfitting in this scenario.

As seen in Figure 5-4, the error rates are repeatedly computed while varying β between
zero and 1000. An upper bound of 1000 was chosen since the results beyond this value did
not significantly change. The train and test errors are computed as explained in Section
3-2, where number of reduced features K is set to be C − 1 = 2, where C is the number
of classes (in this C = 3). For a high β value, the test error rises, while the training
error goes to zero. This is an indication of overfitting. Interestingly, there are two local
minimums present. In the following section, the minimum with the lowest β is considered
at β = 1.87.

Optimal β The first local minimum is found at β = 1.87. Figure 5-5 shows the corre-
sponding scatter plots. Figure 5-5a shows the data points of the training set projected into
the coordinate system found by SDM. The three classes are separated from each other,
and there is still variance present within the classes. The separation that determines the
test error however, is in the same plot for the data points in the test set shown in Figure
5-5-b. The plot shows that the classes are still separated quite well, making it possible for
the classifier to achieve a low test error.

The value that each pixel has for the latent variables provided by SDM can be used to
create false-colour images similar to the ion images described in Section 2-1-2. Note that
all pixels, not only the ones included in the masks, are now transformed into the new
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(a) Zoomed-in (b) Zoomed-out

Figure 5-4: The effect of β on the classification errors using the Linear Bayes
Normal Classifier The training dataset consists of 145 samples (N1).

coordinate system created by SDM. When looking at the false-colour image of SDM
latent variable 1 in Figure 5-8a, note that the abscesses are mainly yellow, indicating a
high score on Latent variable 1, which corresponds to what can be seen in the scatter
plots. Latent variable 2 separates the left and middle abscesses from the right one as seen
in Figure 5-8b, which also matches the scatter plots where the abscesses are spread over
the vertical axis representing the second latent variable.

Decreasing β The scatter plots resulting from setting β to a lower than optimal value at
0.001 are shown in Figure 5-6. In this case, the test data points are separated well similarly
to the optimal β, resulting in a low test error rate. Note that by setting β close to zero,
the distance between class-means is maximized and no weight is given to minimizing the
variance within the classes. Therefore, the data points lie in a bigger range, which can
be seen by comparing the axis of Figures 5-6 and 5-5. The variance within the classes in
the training set are higher than in the optimal case. This case resembles the behaviour
of PCA, which aims to maximize the variance of all data points in the reduced feature
space. Figures 5-8c and 5-8d show the corresponding false colour images. When the false
colour image of SDM latent variable 1 in Figure 5-8c is compared with the optimal case
of Figure 5-8a, we observe that the colors are flipped. Since flipping a coordinate system
does not influence the variance of the projected data points, SDM can show this flipping
behaviour. However, this behaviour does not influence classification performance.

Increasing β By increasing β, the minimization of the within-class variance has been
given more weight. An interesting phenomenon occurs in this situation where M > N1.
As seen in Figure 5-7a, SDM aims to find a coordinate system that minimizes the within
class variance. It can be shown that when M > N1, a coordinate system can be chosen
in such a way that all data points within a class have the same feature values [9]. At
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first glance, achieving this amount of class separation makes it easy to create an effective
classification rule. However, when looking at Figure 5-7b, when the data points in the test
set are projected onto the new coordinate system, the classes have a high overlap. This
indicates that by setting β too high, overfitting can occur and result in a high test error.
In the resulting false colour images shown in Figures 5-8e and 5-8f, vast amounts of noise
are present. This will be the effect of tuning β too high in the case that M > N1.
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(a) Training dataset with 145 samples.

(b) Test dataset with 9000 samples.

Figure 5-5: Scatter plot of the data points of the IMS-MKDS in the reduced
feature space created by SDM with β = 1.87 The training dataset has N1 = 145
data points.
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(a) Training dataset with 145 samples.

(b) Test dataset with 9000 samples.

Figure 5-6: Scatter plot of the data points of the IMS-MKDS in the reduced
feature space created by SDM with β = 0.001 The training dataset has N1 = 145
data points.
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(a) Training dataset with 145 samples.

(b) Test dataset with 9000 samples.

Figure 5-7: Scatter plot of the data points of the IMS-MKDS in the reduced
feature space created by SDM with β = 1000 The training dataset has N1 = 145
data points.
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(a) Latent variable 1 with β = 1.87 (b) Latent variable 2 with β = 1.87

(c) Latent variable 1 with β = 0.001 (d) Latent variable 2 with β = 0.001

(e) Latent variable 1 with β = 1000 (f) Latent variable 2 with β = 1000

Figure 5-8: SDM latent variable images The input dataset has 145 samples and 152
m/z bins.
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5-2-2 Experiment 2b: Low dimensionality

Next, the case were M < N1 is considered. This case is not considered by Liu and Gillies
[9] and will therefor be considered here. In Figure 5-9, the effect of β on the error rates is
shown. Looking at the training error, when β rises to 26, the error keeps decreasing until
the training error is zero, meaning all training data points are classified correctly using
the SDM-provided coordinate system. Note that there is a local minimum around β = 2
and β = 23. When β goes above around 30, both the training and test error will start to
increase rapidly and converge to a high error rate of about 45% as seen in Figure 5-9b.
These effects will be further explained accompanied with visualizations in the following
paragraphs.

(a) Zoomed-in (b) Zoomed-out

Figure 5-9: The effect of β on the classification error using the Linear Bayes
Normal Classifier The training dataset consists of 1000 samples(N1).

The dataset is visualized for three β’s: the optimal β (23.1), a low β (0.001), and a high
β (1000). Similar as in experiment 2a, two visualizations are presented for each β: scatter
plots that plot the training and test dataset projected into the SDM-generated coordinate
system, and latent-variable images for both SDM-loadings.

Low β Figure 5-10 shows two scatter plots for the training and test datasets where
the number of data points in the training and test sets are N1 = 1000 and N2 = 9000
respectively. Note that since β is set at a low value of 0.001, the variance within the
class is relatively high. Also note that the training data points are representative for
the test dataset, resulting in only little overlap of the classes for the test dataset. The
resulting latent variable images are shown in Figures 5-13a and 5-13b. Both the scatter
plots and latent variable images are similar to the results in the M > N1 case for low β.
Interestingly, it seems that the results for low values for β are not so much impacted by
the relative size of the training dataset.
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Optimal β For the case with β = 23.1, Figure 5-11 shows that the variance within the
classes in the training set has decreased compared to the low-β case. This results in a
good separation in the test set, causing the test error to be the lowest of all β’s. Note that
the structure of the point-clouds have changed to an elliptical shape. The corresponding
latent variable images in Figures 5-13c and 5-13d show a clear distinction between the
classes. However, primarily in Figure 5-13d the tissue appears noisy in the "healthy"-class,
suggesting that the second latent variable does not capture the biological characteristics
of this class well. Scatter plot 5-11 confirms that most of the variance in the "healthy"
class is represented by the first variable. The explanation of this noise could also lie in the
earlier mentioned artificial ellipse shape of the scatter plots. Possibly suggesting that the
latent variables capture inherent features of the data instead of biological patterns.

High β Figure 5-9b shows that both the training and the test error blow up for high β
values. The scatter plots in Figure 5-12 show the result when β = 10000, and illustrate
the reason for this poor performance. The scatter plots show that SDM fails to achieve
class separation in the training dataset as well as in the test dataset. The resulting latent
variable images shown in Figures 5-13e and 5-13f are therefor of poor quality.

When β is set high, SDM minimizes within-class variance, instead of maximizing the
distance between the means of the classes. Since the number of data points in the training
dataset is higher than its dimensionality, there no longer exists a feature in which all points
coincide with each other as in the case shown in Figure 5-7a. Note the range of the axis
in Figure 5-12a. All points lie within a range between -3000 and 3000, this in contrast to
the low β case where the axis spans between -2 ∗ 105 and 2 ∗ 105. The severe overlap in
the high β cases clearly illustrates that minimizing within-class variance alone is a poor
method for extracting features.

Conclusion To conclude, for both cases, M > N1 and M < N1, there is an optimal
β. High values for β perform poorly in both cases but for different reasons. Low values
for β perform similar in both cases, but have higher overlap of the classes, resulting in a
suboptimal test error. It is clear that the classification performance is highly impacted
by the chosen β. In the next section, the proposed framework DD-SDM for setting β is
evaluated. DD-SDM aims to set β automatically in a way that minimizes the test error.

Master of Science Thesis Thomas Cornelis Booij



5-2 Experiment 2: Sensitivity of β with regard to classification performance 65

(a) Training dataset with 1000 samples.

(b) Test dataset with 9000 samples.

Figure 5-10: Scatter plot of the data points of the IMS-MKDS in the reduced
feature space created by SDM with β = 0.001 The training dataset has N1 = 1000
data points.
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(a) Training dataset with 1000 samples.

(b) Test dataset with 9000 samples.

Figure 5-11: Scatter plot of the data points of the IMS-MKDS in the reduced
feature space created by SDM with β = 23.10 The training dataset has N1 = 1000
data points.
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(a) Training dataset with 1000 samples.

(b) Test dataset with 9000 samples.

Figure 5-12: Scatter plot of the data points of the IMS-MKDS in the reduced
feature space created by SDM with β = 1000 The training dataset has N1 = 1000
data points.
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(a) Latent variable 1 with β = 0.001 (b) Latent variable 2 with β = 0.001

(c) Latent variable 1 with β = 23.10 (d) Latent variable 2 with β = 23.10

(e) Latent variable 1 with β = 1000 (f) SDM Latent variable 2 with β =
1000

Figure 5-13: SDM latent variable images The input dataset has 1000 samples and
152 m/z bins.
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5-3 Experiment 3: Data-Driven Soft Discriminant Maps Search
Strategies

In section 3-3, the proposed framework DD-SDM for automatically setting β is described.
In this experiment, the number of iterations needed to reach the optimal β using the golden
section search is analyzed and benchmarked against a more naive approach, grid search.
Since the upper and lower bounds of the search interval are still user-supplied parameters
within DD-SDM, we would like to have a method that scales well in terms of the number
of times SDM needs to be computed to reach the optimal β. As an illustrative example,
Figure 5-14 shows the test error dependent on β. The data points on the blue line indicate
all SDM evaluations performed using grid search, while the points on the orange line are
evaluations picked by the golden section method. To quantify the certainty of the test
error, every β is evaluated 5 times, with 5 different randomly selected subsets of the full
dataset Dfull. The data points in these subsets serve as training dataset DT rain and are
randomly selected without replacement from the full dataset DF ullwhere each class has
the same number of data points. The line goes through the averages and the error bars
are constructed using one standard deviation up and down.

To find the optimal value of β with an accuracy of 0.1, with a search space between 0 and
100, grid-search would need to evaluate the test error (100−0)

0.1 = 1000 times. The golden
section method picks the to-be-evaluated β′s in a more efficient way, resulting in needing
only 17 iterations (Table 5-1), to reach the optimum with an accuracy of 0.1.

Figure 5-14: Comparison grid search versus golden section method The test error
rate is computed for different values of β. The blue error bars are evaluations of linear
grid search. The orange bars are β′s considered by the golden-section method. The error
bars indicate one standard deviation above and below the average test error rate over five
repetitions.
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Table 5-1: Number of iterations needed to reach the optimal β

Iterations Grid search Golden section
Exp. 1 1000 17

Fair comparison Another way to visualize the performance difference between grid search
and the golden section method, is shown in Figure 5-15. First, the golden section method
(shown in orange) is applied, finding the optimal βof 1.83 in 17 iterations with a test error
rate of 10%. Next, grid search is applied with an equal number of iterations (17), with
the lowest test error rate found at β = 7.14 with a test error rate of 18%. This shows that
the golden section method is more efficient in finding the optimal value of β.

Figure 5-15: Comparison grid search versus golden section method with an
equal number of iterations Grid search is not able to reach the optimal value of β
when the method uses an equal number of iterations as the golden section method needs
to find the optimum with an accuracy of 0.1.

Considerations The golden section method assumes that the curve will have only one
minimum. In particular with evaluating high values of β, where the errors are equally
high, the golden section method could get stuck in a local minimum as seen in Figure
5-16. A first method to overcome this is by smoothing the curve by calculating the error
over different subsets of the dataset, similarly as has been done in Figure 5-14. However,
this comes at the cost of evaluating SDM more times, which could be infeasible for big
datasets.
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Figure 5-16: Stuck in local minimum for high values of β When the upper bound
for DD-SDM is set to high, the error rates are equally high. This results in the golden
section method to be stuck in a local minimum. Grid search is also not able to achieve
the optimal value with the same number of iterations.

A second solution could be to run the golden section search with a multi-start setting. This
means that the entire method is run multiple times with different initial upper bounds,
denoting the β corresponding to the lowest test error as the global optimum. This method
will also come at the cost of extra evaluations of SDM, which is undesirable.

5-4 Experiment 4: Class-specific feature conservation

In this experiment, the artificial dataset, constructed as described in section 4-1-3, is used
in combination with the Peak Conservation Score (PCS) to compare SDM and PCA in
their ability to extract features that conserve the class-specific peaks (i.e. class-specific
features) and discard noise and peaks or features that are common between classes. For
both methods, the PCS is calculated for artificial datasets with scaled class-specific ion
intensity peaks as described in section 4-2-4.

SDM Figure 5-17 shows the analysis of the PCS of SDM with a β of 0.1. The top plot
shows the PCS score calculated for a range of scale factors of the class-specific peaks.
Ideally, the PCS for class 1 and 2 should be 100%, indicating that SDM conserves these
peaks. The PCS for the background and noise peaks should ideally be zero, indicating
that the method discards these peaks while constructing a lower-dimensional subspace.
As seen in the top figure in Figure 5-17, this scenario is realized for intensity or amplitude
scaling factors above 1.3. The corresponding feature weight plot for the subspace’s first
latent dimension is shown in the bottom right corner. Indeed, all class-specific peaks are
above the threshold and are taking part in the lower-dimensional subspace provided, while
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all noise and background-induced peaks fall below the threshold and do not participate
in the produced subspace. The thresholds, as explained in Section 4-2-4, are set at −0.5σ
and 0.5σ. When the class-specific peaks are scaled-down in intensity, however, SDM fails
to conserve the class-specific peaks and selects the non-class-specific background peaks as
part of the first dimension of the provided subspace, as seen in the bottom left figure of
Figure 5-17. This observation suggests that SDM is prone to picking common peaks when
the variance of the class-specific peaks not sufficiently high.

Figure 5-17: SDM: Peak conservation score with corresponding feature-weight
plots The top figure shows the PCS for all peak-classes with varying scale factors of the
class specific peaks. Feature-weight plots are shown for scale factors 1 and 3. The arrows
indicate which feature-weight plot corresponds to which scale factor.

PCA - Principal component 1 Figure 5-18 shows the analysis for the first principal
component, the latent variable of the PCA-produced subspace that corresponds to the
latent variable in the SDM-produced subspace. As seen in the PCS-plot at the top, for
low intensity values up to a scaling factor of around 2, the first principal component
only conserves the background peaks. This is to be expected since the background peaks
are responsible for the most variance in this scenario, and the class-specific peaks are
insufficiently high to compete with the variance of the non-class-specific background peaks.
With a scaling factor of three, however, the class-specific peaks have enough variance to
be selected for and to rise above the PCS-threshold, as seen in the feature-weight plot at
the right. However, the background peaks are still conserved as well. When the scaling
factor is 5, the desired scenario is reached where only the class-specific peaks are conserved
as shown in the feature-weight plot at the bottom, while the non-class-specific peaks are
actively deselected for in the PCA-produced subspace. Although the background peaks
lie below the threshold, the peaks still get some nonzero weight.
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Figure 5-18: Principal component 1: Peak conservation score with correspond-
ing feature-weight plots The top figure shows the PCS for all peak-classes with varying
scale factors of the class specific peaks. Feature weight plots are shown for scale factors
one, three and five. The arrows indicate which feature-weight plot corresponds to which
scale factor.

PCA - Principal component 2 Figure 5-19 shows the same analysis for the second
principal component that defines the PCA-produced subspace. For a scaling factor of zero,
this component does not conserve the class-specific peaks as expected, since they carry
no variance. Since the principal components together are generated to be orthogonal to
each other, it is expected that the background peaks are not primarily conserved when the
first component does so. This observation helps explain the behaviour of the weight plots.
The top-left feature-weight plot corresponding to a scale factor of zero reveals that this
component consists primarily of the peaks generated by noise. The top-right feature-weight
plot corresponding to a scaling factor of 1 shows the desired scenario. Only the class-
specific peaks are conserved, showing that PCA is also able to capture the class-specific
peaks in one feature in this scenario. The bottom-left feature weight plot corresponding to
a scale factor of 3 starts giving weight to the background peaks. When the scale factor is 5,
the bottom-right feature-weight plot shows that only the background peaks are conserved.
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Figure 5-19: Principal component 2: Peak conservation score with correspond-
ing feature-weight plots The top figure shows the PCS for all peak-classes with varying
scale factors of the class specific peaks. Feature weight plots are shown for scale factors
zero, one,three and five. The arrows indicate which feature-weight plot corresponds to
which scale factor.

PCA - Principal component 3 Figure 5-20 shows the analysis for the third principal
component. The top-left feature weight plot shows the case where the scaling factor is
zero. Similar to the second component, primarily the peaks due to noise are conserved.
Interestingly, when the scaling factor rises a little bit, the class-specific peaks start to
get conserved as seen in the top right feature-weight plot. For all scaling factors above
one, the third component conserves all class-specific peaks and discards all other peaks, as
shown in the bottom feature-weight plot. Previously we described this behaviour as the
ideal scenario. However, the class-specific peaks are all on the same (positive) side of the
plot, failing to distinguish between the classes. This fact makes these feature-weights less
desirable than the ones generated by SDM for high scale factors.
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Figure 5-20: Principal component 3: Peak conservation score with correspond-
ing feature-weight plots The top figure shows the PCS for all peak-classes with varying
scale factors of the class specific peaks. Feature weight plots are shown for scale factors
zero, 0.5 and three. The arrows indicate which feature-weight plot corresponds to which
scale factor.

Discussion This experiment showcases the use of the proposed analysis framework in
making conclusions about the peak height of the class-specific peaks. This framework
provides a more direct analysis of the performance of a linear feature extraction method
instead of an analysis on the classification performance alone, which is inherently also
dependent on the used classifier. When a method succeeds in conserving the class-
specific peaks and discarding the common patterns and noise while building its lower-
dimensional subspace, the resulting feature-weights have the added benefit of identifying
important features, making supervised dimensionality reduction a potentially powerful
tool for biomarker discovery.

It is clear from the PCS analysis that SDM can use class information to conserve only the
class-specific peaks with sufficient variance in the class-specific peaks. PCA is, in some
situations, also able to conserve the class-specific peaks. However, the PCA approach does
introduce a new problem in having to identify which of its principal component dimensions
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captures the class-specific behaviour of the dataset.

Note that SDM needs only one feature to conserve the class-specific peak conservation
where PCA needs multiple features. When comparing principal component 1 with prin-
cipal component 2, the change in variance of the class-specific features causes a shift in
class-specific peak conservation from the second to the first component. Hence it is hard
to determine, without available ground truth in real-world datasets, which component, if
any, captures the class-specific features.

Future work This analysis approach provides a means for research into linear feature
extraction methods. In this experiment, we have looked at the influence of height (and
therefore also variance) of the class-specific peaks on the PCS. The experiment is easy
to extend to look at a wide array of other dataset characteristics such as the number of
classes, dimensionality of the original dataset and signal to noise ratio. In this experiment,
we only looked at the comparison between SDM and PCA. However, this same approach
can be used to analyze any other linear feature extraction method as well.
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Chapter 6

Conclusions and future work

6-1 Main conclusions

In this thesis, we have explored the use of a relatively new linear feature extraction method
Soft Discriminant Map (SDM) introduced by Liu and Gillies [9]. The method was extended
to set the previously user-specified parameter β in a data-driven way, referring to the
extension as Data-Driven Soft Discriminant Map (DD-SDM).

The (extended) method was evaluated in different ways. The experiments cover the effect
on classification performance, the influence of β on the extracted features, and the com-
putational efficiency of DD-SDM in finding the optimal β for the given data. In the last
experiment, an artificial dataset is used in combination with a new performance metric,
the Peak Conservation Score (PCS), to evaluate the method on its ability to conserve
class-specific features. The following sections will state the conclusions specific to each of
the experiments.

Classification By applying SDM on a real-world Imaging Mass Spectrometry (IMS)
dataset, a comparison can be made of the classification performance between SDM and
other conventional linear feature extraction methods such as Principal Component Anal-
ysis (PCA) and Linear Discriminant Analysis (LDA). We showed that using the features
extracted with DD-SDM, a better classification performance could be achieved when the
dataset is reduced to a lower-dimensional subspace than with PCA and LDA being used
for that same purpose.

Using the features extracted by SDM with a K Nearest Neighbours (K-NN) classifier,
resulted (in our specific setup) in an improved test error above that achieved by using
PCA or LDA as a dimensionality reduction method. The experiment showed that LDA
is more prone to overfitting than DD-SDM. This overfitting was observed by the more
significant difference between the training and test error. This observation suggests that
SDM, with a β set by our extension DD-SDM, succeeds in controlling the amount of
overfitting, successfully decreasing the test error.

The minimal test error using DD-SDM is reached with a reduced subspace of K = 1. Using
the class labels, DD-SDM succeeds in capturing the class separation data in 1 feature. This
behaviour suggests that DD-SDM behaves like LDA, which also extracts a maximum of
C − 1 number of features.
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Influence of β SDM has been applied to several real-world IMS datasets. Two scenarios
have been studied: a high dimensional setting where M > N1 and a low dimensional
setting where M < N1. The original paper by Liu and Gillies [9] did not consider the
latter scenario. In both cases, an optimal value for β has been observed in terms of the test
error. When β is set lower than the optimum determined by DD-SDM, it only maximizes
the distance between class means, allowing for overlap between classes when the variance
within classes is high.

For values above the optimum, SDM minimizes the variance within the classes, allowing the
means of the classes to become very close to each other. In the case where M > N , SDM
can extract a feature that minimizes the within-class variance to close to zero. This results
in the data points within a class in the training set to be artificially close to each other.
Therefore, when the data points in the test dataset are projected on this new feature, high
overlap occurs, indicating the SDM-produced subspace is prone to overfitting.

If M < N and β is set to a high value, SDM no longer succeeds in separating the classes in
the training dataset. By minimizing the variance within the classes, the distance between
class-means is also low, creating a high overlap of the classes in both the training- and test
dataset. We can conclude that minimizing within-class variance alone is a sub-optimal
way to extract features that separate classes well.

Data-driven Soft Discriminant maps An extension to SDM has been proposed to avoid
setting the β parameter by hand. The method calculates SDM repeatedly with different
values for β, choosing the β with the lowest test error. The values of β to be evaluated
are picked using the golden-section search method. It was shown that, using this scheme,
the number of iterations necessary to reach the optimal β was significantly reduced when
compared to a more naive grid search method. However, in this experiment, SDM still
had to be calculated 17 times to obtain the optimal β. In a real-world scenario, this could
still prove to be too computationally expensive, depending on the particularities of the
dataset at hand.

Class-specific feature conservation To evaluate SDM in terms of its ability to actively
select class-specific features while disregarding non-class-specific variation in the dataset
while constructing its subspace, a novel evaluation pipeline was constructed using a syn-
thetic dataset. A method for generating artificial peak-picked IMS datasets was described.
The dataset was constructed from first principles, mimicking the characteristics of a sim-
ple Imaging Mass Spectrometry dataset. A new performance metric was introduced to
quantify the ability of SDM to conserve class-specific peaks in this artificial dataset; the
Peak Conservation Score (PCS). SDM was compared to PCA in its ability to extract
features that conserve the class-specific peaks when these peaks are varied in intensity.
Since no guarantees can be given for the artificial dataset’s representativeness of real-
world datasets, only qualitative conclusions are made here. We concluded that SDM can
actively select for class-specific peaks and discard the background non-class-specific and
noise peaks when the variance within the class-specific peaks is sufficiently high for them
to be discerned.

6-2 Recommendations for future work

This thesis proposed and analyzed an extension to SDM to set β in a data driven manner.
The provided analysis can furthermore be extended in the following ways to gain a deeper
understanding of the performance of SDM in general:
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1. Investigate which classes of classifiers benefit the most of the extracted features of
SDM.

2. Validate the findings in this thesis by applying DD-SDM to more real-world datasets
with other characteristics, e.g. datasets with more classes.

3. Benchmark DD-SDM to other Dimensionality Reduction (DR) methods other than
PCA and LDA, e.g. with non-linear feature extraction methods.

4. Research the ability of DD-SDM to be used as a tool for biomarker discovery.

DD-SDM can possibly get stuck in a local minimum. Attempts to improve the method to
avoid that could include:

1. Use Brent’s method[67] instead of golden section search. By aiming to fit parabolas
on the minimization function, an optimum could be reached in fewer evaluations of
the test error.

2. Implement a multi-start approach to avoid getting stuck in a local minimum. DD-SDM
could be initialized with different upper bounds of the search interval and return the
β corresponding to the lowest test error.

3. Instead of a multi-start approach, the bracketing algorithm described by Press et al.
[67] could also be investigated to effectively set a reasonable initial search interval.

The implemented artificial dataset and the Peak Conservation Score (PCS) can be used
to analyze linear feature extraction techniques in general. This thesis only varied the peak
height of the class-specific peaks. However, the artificial dataset could be manipulated in
other ways to analyze other dataset characteristics’ effect on the PCS. Parameters that
could be varied are, for example:

1. Number of classes;

2. Dimensionality of the training dataset;

3. Signal-to-noise ratio;

4. Number of class-specific or background peaks;

5. The linear feature extraction method to be analyzed.

This thesis has extended the linear feature extraction method SDM to set the user-supplied
parameter β automatically. We have shown that DD-SDM successfully captures class-
specific peaks, resulting in a reduced feature space that can improve classification per-
formance when applied to a real-world IMS dataset. By improving DR methods, large
datasets, not limited to those generated by IMS, can be more successfully reduced in size
while retaining the vital information within. The resulting improved classification perfor-
mance aids in retrieving actionable information from datasets that will continue to grow
in size in the coming years.
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Appendix

A-1 Feature selection

Figure A-1: Schematic representation of feature selection Feature selection reduces
the dimensionality of the full dataset Dfull by selecting a subset of its columns and putting
them in the reduced dataset Dred ⊂ Dfull. In this example the algorithm selected three
columns (K = 3): d2,d4 and d6.

One family of Dimensionality Reduction (DR) methods is called feature selection. Figure
A-1 shows the full dataset Dfull with columns [d1,d2,d3, . . . ,dM ] ∈ RN×1. A feature
selection algorithm constructs the reduced dataset Dred with a subset of these columns:
Dred ⊂ Dfull. In this example three columns are selected by the algorithm: d2,d4 and
d6. Feature selection algorithms aim to find an optimal subset of the original features by
eliminating irrelevant, redundant and noisy features [58]. The concepts of relevance and
redundancy are further explored in section 2-3-1-5.
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Figure A-2: Overview of feature selection methods(a) Filter, (b) wrapper, and
(c) embedded feature selection methods. Filter methods perform the feature selection
independently of construction of the classification model. Wrapper methods iteratively
select or eliminate a set of features using the prediction accuracy of the classification
model. In embedded methods the feature selection is an integral part of the classification.
Source of image: Supper et al. [71]

There are many algorithms present in literature for finding the optimal subset of fea-
tures. In the following section these strategies are categorized and examples are given. In
literature there is a consensus that feature selection methods can be divided into three
[72].

1. Filters extract features from the data without any learning involved.

2. Wrappers use learning techniques to evaluate which features are useful.

3. Embedded techniques combine the feature selection step and the classifier con-
struction.

It is also possible to combine a filter and wrapper method, this is referred to as a hybrid
method.

A-1-1 Filtering methods

Characterization The filtering feature selection techniques asses the relevance of the
features by only looking at the intrinsic properties of the data [73]. In most cases, the
features are ranked on a statistical measure and the lowest ranking features are removed.
Afterwards, the top-ranking features are used as input for a classification algorithm.

Pros and cons Advantages of filter methods are that they easily scale to large datasets,
since they are computationally simple and fast. Since there is no classifier involved, the
generated feature subset is classifier independent. After the subset has been generated,
multiple classifiers can be evaluated to choose the one which performs the best. However,
the resulting prediction error will be generally lower than the following categories, since
filter methods ignore the interaction with the classifier. The fast filter methods are often
univariate, which means that feature interdependencies are ignored. The complications of
using univariate methods is further discussed in section A-1-3-2.

Categories To overcome the pitfalls of univariate methods, a number of multi-variate
filters were introduced to incorporate feature dependencies to some degree. In this the-
sis the focus will lie on dimensionality reduction techniques for supervised classification.
However, there are also unsupervised filter methods that do not use class labels to select
features to use in a clustering task.
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Examples Some commonly used univariate methods are information gain [74], reliefF
[75], and Fisher score [76]. Examples of multi-variate methods are minimum redundancy
maximum relevance (mRmR) [77], correlation-based feature selection(CFS) [78] and multi-
cluster feature selection(MCFS) [79]. The fisher score will be explored as an example in
the following section.

A-1-1-1 Example: Fisher Score

A popular example of a filter method is fisher scoring. The features are given a score
based on a statistical measure one at a time. The features are ranked according to these
scores. The top-scoring features are selected and put in a representative dataset to obtain
dimensionality reduction.

The fact that a score is calculated for every feature independently makes the fisher criterion
a univariate method. As a consequence, fisher scoring does not take feature interdependen-
cies into account. Multivariate variants of the fisher score which jointly selects features
are constructed for this reason. An example of such a variant is the generalized fisher
score [76]. A further discussion on the specific pitfalls of univariate methods is provided
in Section A-1-3-2.

Since fisher scoring is a relatively fast method, it’s performance is often used as a bench-
mark to compare against more sophisticated methods [80]. The computational complexity
of the method is O(N ×M), suggesting that the computation time scales only linearly
with the amount of dimensions and data points, making it suitable for very large datasets.
[81]

The main idea of the fisher score is to give a high score to features having large separation
between classes and small variance within classes. Since the method uses class information
it classifies as a supervised feature selection method.

If we have a full dataset Dfull ∈ RN×M with N data points with label {xi, yi}ni=1, y ∈
{1, . . . , c}.. Let ni be the number of data points in class i. Let µi and σ2

i be the mean and
variance of class i, i = 1, ..., c corresponding to the rth feature. Let µ and σ2 be the mean
and variance of all classes of feature r combined. The fisher score for feature r is given by:

Fr =
∑c

i=1 ni(µi − µ)2∑c
i=1 niσ2

i

(A-1)

The numerator becomes large when the means of the classes lie far apart. The denominator
becomes small when the variance within a class is low. The class size is present in both
terms to account for unequal class sizes.

Dimensionality reduction is achieved by choosing the top K scoring features and stacking
them to produce a reduced dataset Dreduced ∈ RN×K .

A-1-2 Wrapper methods

The second category in the feature selection domain contains the wrapper methods. This
category is characterized by the involvement of a classifier to directly evaluate feature
subsets. The search through possible feature subsets and the evaluation of them are
decoupled, making it possible to use any classifier for the evaluation.
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Search methods The most straightforward way to find the optimal subset is by evaluat-
ing all possible subsets, in the literature referred to as an exhaustive search. There are 2M

possible feature subsets possible with M being the number of features in a dataset. The
evaluation of all these possible subsets will quickly become infeasible since the number of
possible feature subsets grows exponentially with the number of features in the dataset
[56].

To prevent going through all possible subsets, different search methods are developed
in the literature. These methods can be divided into two categories: sequential and
heuristic procedures. Sequential algorithms are deterministic in nature and search the
feature space by adding or removing features sequentially. An example of a heuristic
method is Sequential Backward Selection and is discussed in section A-1-2-1.

The heuristic approaches are probabilistic in nature and are mainly evolutionary algo-
rithms such as Particle Swarm Optimization(PSO), Ant Colony Optimization, Genetic
Algorithms and others [82]. An overview of the most used search methods can be found
in [72].

Heuristic approaches generally consider a higher number of possible feature subsets. Hence,
they are more computationally expensive than sequential methods. Furthermore, they are
more sensitive to overfitting the data. However, they are less prone to obtain stuck in
a local minimum. A comparison between the deterministic sequential and probabilistic
heuristic methods is shown in Table A-1. [83]

Table A-1: Comparison between sequential and heuristic search methods Recre-
ated from Hira and Gillies [83]

.

Sequential Heuristic
Small overfitting risk High overfitting risk
Prone to local optima Less prone to local optima
Classifier dependent Classifier dependent
- Computationally intensive

Evaluation of a subset A classifier evaluates every subset generated by the search strat-
egy. Cross-validation ensures to obtain an almost unbiased estimate for the prediction
accuracy as described in Section 2-2-3-2. After each subset has received a score, the
search strategy will use this information to generate the subset for the next iteration.

Depending on the search strategy used, the algorithm will terminate after a predefined
number of features is reached, a pre-defined number of iterations is completed or when
the classification error does not increase anymore with a certain threshold amount.

Pros and Cons Since the evaluation of a feature set involves learning a classifier on the
data, wrapper methods are generally more computationally expensive than filter methods.
The chosen classifier should not be too complex to train since this has an immediate
negative effect on the computation time.

Leading to the next point: the subsets returned by the wrapper feature selection routine
depend on the classifier used. They will therefore not ensure that the subset of features
will perform equally well when used thereafter in combination with another classifier in
the learning stage. This can be seen as a positive and negative point. This also means that
the subset returned is optimized for prediction accuracy and will tend to perform better
than feature selection methods without any learning involved e.g. the Fisher scoring [83].
This is to be expected because wrapper methods do take feature interdependencies into
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account as opposed to univariate filter methods and directly use the prediction accuracy
to select features.

A-1-2-1 Sequential Backward Selection

A well-known wrapper method is called Sequential Backward Selection(SBS). This method
sequentially eliminates the worst-performing feature from the feature set. The routine will
continue until the feature set has the number of features defined a priori.

To determine the currently worst performing feature, each feature is removed from the
full set one at a time, creating M subsets with M − 1 features. Next, each subset is used
to train a classifier and evaluated using a cross-validation routine. The score obtained
is used as a performance measure to evaluate the subsets. The feature that was left out
of the best scoring subset is eliminated permanently and the subset is used in the next
iteration. When the subset reaches a pre-defined size the routine terminates and outputs
the current subset.

Once a feature is removed, it has no possibility of obtaining in the final feature set.
Therefore, the subsets generated by each step are nested:

Xk ⊂ Xk−1 ⊂ Xk−2 ⊂ Xk−... ⊂ X1 (A-2)

The nested structure increases the risk of being trapped in a sub-optimal solution [84].
In an attempt to reduce this risk, a variant of SBS was introduced by Novovicova and
Kittler in 1994 called Sequential Backward Floating Selection (SBFS) [85], which allows
the algorithm to reconsider eliminated features. This technique increases the number of
subsets considered and thereby increases the computational load.

A-1-3 Embedded methods

The final category feature selection methods are embedded methods. These techniques
try to overcome the computational load of wrapper methods by incorporating the feature
selection step with the model building step. A classifier is trained on the training data and,
dependent on the method used, the model is ’opened up’ to view which features were most
important in creating the decision boundary. The obvious advantage of this technique is
that the model has to be built once, instead of the vast amount of models that are trained
with wrapper methods. Similar to wrapper methods, the selected feature set depends on
the classifier used, making the feature set sub optimal if used with a different classifier
in the prediction stage. However, since the model hypothesis is involved in the feature
selection process, embedded methods generally perform better in terms of classification
error than filter methods.

An example of an embedded technique is feature selection via concave minimization(FSV)
[86], where the selection process is injected into the training of an SVM by a linear pro-
gramming technique. Other examples are Relevant Sample-Feature Machine (RSFM) [87]
and Random Forest [88]. The latter is explained in the following section.

A-1-3-1 Random Forest

Random forest is a popular choice of classifier since it generally provides a good predictive
performance,low overfitting and easy interpretability. The easy interpretability comes
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from the fact that it is straightforward to derive the importance of each feature on the
prediction made by the classifier.
Feature selection Random forest classifiers combine a high number of decision trees
to construct a decision boundary. Each tree is built from a random subset of features
and a random subset of data points. A decision tree is built by considering each feature
sequentially and defining the optimal threshold for that feature by optimizing its so called
impurity. In classification, the impurity measure is the Gini impurity, which is measure
for the amount of misclassified data points in a decision tree. Using this, it is possible to
calculate how much each feature decreases the impurity. The more a feature decreases the
impurity, the more important a feature is. With random forests, the impurity decrease
from each feature can be averaged across the trees to determine the final importance of a
feature. Sandri et al. [88] give a mathematical description of this process.

A-1-3-2 Comparison univariate- vs. multivariate methods

As discussed in Section A-1-1, univariate filter methods have the advantage to be compu-
tationally cheap. They are successful in ranking the features on relevance when only the
considered feature would be used in training a classifier.
However, univariate methods do not take feature interdependencies into account. The
following example retrieved from Jones et al. [5] shows that features that score under par
on univariate tests are able to separate the classes perfectly when they are combined.

Example An artificial dataset is considered with six features. In Figure A-3 the features
are shown in separate plots. In each plot the red dots indicate class A and the blue dots
class B. Univariate methods will examine these features independently and score them
based on statistical measures for separability. Under each plot three of these measures
are given. p(t) gives the p-value of a t-test, p(w) that of the Wilcoxon test and AUROC
indicates the area under the receiver operator curve. In this example, the ranking based
on the AUROC would be in decreasing relevancy: 1,3,5,6,2,4. It could be stated that only
feature one separates the classes moderately well and that the others overlap too much to
generate a reasonable decision threshold.

Figure A-3: Scatter plots for the simulated dataset of six MS peaks The six
features shown are evaluated independently based on three statistical measures for class
separability: The p-value of a t-test, p(t), the p-value of the Wilcoxon test, p(w) and the
area under the receiver operator curve (AUROC). The red dots belong to class A and the
blue dots belong to class B. Source of image: Jones et al. [5]
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However, it is shown in Figure A-4 that by combining feature 2 and 3, the classes can
be separated perfectly. This shows that univariate methods could undervalue powerful
features that score well when combined with each other.

Figure A-4: Scatter plot of features two and three When features two and three
are plotted together, the classes become fully separable. Source of image: Jones et al. [5]
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List of Acronyms

MALDI Matrix-Assisted Laser Desorption Ionization
IMS Imaging Mass Spectrometry
MS Mass Spectrometry
PCA Principal Component Analysis
TMA Tissue Microarrays
FT-ICR Fourier transform ion cyclotron resonance
TOF Time-of-Flight
SIMS Secondary Ion Mass Spectrometry
SDM Soft Discriminant Map
LDA Linear Discriminant Analysis
DR Dimensionality Reduction
PCS Peak Conservation Score
IMS-MKDS Imaging Mass Spectrometry Mouse Kidney Dataset
IMS-RBDS Imaging Mass Spectrometry Rat brain Dataset
DD-SDM Data-Driven Soft Discriminant Map
m/z Mass-over-charge ratio
K-NN K Nearest Neighbours
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