
Online Agent-Based Aerial
Patrol Planning for Wildlife
Surveillance
Master of Science Thesis

Karel Dhoore

D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no

lo
gy



Online Agent-Based Aerial Patrol
Planning for Wildlife Surveillance

Master of Science Thesis

by

Karel Dhoore

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended on October 12th, 2020

Student number: 4220587
Date: October 12, 2020
Project duration: March 2019 – October 2020
Thesis committee: Asst. prof. dr. B.F. Santos Delft University of Technology Chair

Asst. prof. dr. O.A. Sharpanskykh Delft University of Technology Supervisor
Asst. prof. dr. D.M. Pool Delft University of Technology External member

An electronic version of this thesis is available at repository.tudelft.nl.

Cover image courtesy of the ”Thermal Wildlife Drones” YouTube channel

https://repository.tudelft.nl/


Preface

One and a half years ago, I was approached by a friend of mine. He co-founded a startup that aimed to
protect wildlife and farm animals in Africa by means of drone surveillance. The team envisioned a highly
autonomous system, where a UAV would fly over many square kilometres of land looking for animals
and poachers and report on its observations. However, finding poachers is a difficult task. In order
to spend less time looking for poachers and more time finding them, they wanted to know the optimal
route for the drone. As a result, I chose to research this problem in the context of my master’s thesis.
Working on this assignment was an interesting and strenuous experience. I learned a lot about writing
code, I’ve experienced the main aspects of doing academic research, and I got to know the world of
wildlife protection and ”AI for Good”. I worked with the motivation to make the outcome of this research
useful for further research in the field of wildlife surveillance, with the hope that the knowledge can be
applied in practice in the not-to-distant future. I am thankful to have had the opportunity to support this
cause, and I am proud to have achieved the results presented in this report.

This assignment is the conclusion of three years of learning, experiencing, and researching in the
field of air transport and operations. It was a very exciting period that I will never forget, and where I
have learned more than I could think of. It is also a period where I realised that there is infinitely more
knowledge to be gained. It motivates me to never stop learning in the future and to continue to be
curious and critical of what life brings.

Finally, I have a lot of people to thank for bringing me where I am now. First of all, I am grateful
for all the time, support, and understanding from friends and family. I am especially thankful to my
parents, who made it possible for me to do what I like at my own pace.
I would like to thank Alexei, my teacher and supervisor, for the ever-motivating atmosphere, his knowl-
edge and understanding of what it took to work on this graduation assignment. His dedication to quality
in research and education is truly admirable.
Last but not least, I am thankful to Jamie and the rest of the team at Eyeplane for coming to me with
this interesting research problem and supporting me throughout this project.

Karel Dhoore
Delft, October 2020
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Wildlife Surveillance

K. Dhoore

Supervisor: dr. O.A. Sharpanskykh
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Kluyverweg 1, 2629HS Delft, The Netherlands

Abstract—Wildlife conservation efforts are constrained by a
limited amount of resources available for surveillance activities.
UAVs are used increasingly to assist rangers in patrol tasks.
Effectively patrolling wildlife parks requires detailed knowledge
of the environment and its threats, which is not always available.
Previous work in Green Security Games (GSGs) that aims
to develop defensive strategies to deter adversaries relies on
historical poaching data to train machine learning models.
Recent advancements in the field have led to the development of
an online learning framework that does not require prior data.
However, the defensive strategies resulting from this approach
are focused on foot patrols by rangers, which do not have the
same mobility as UAVs, or do not take into account spatio-
temporal constraints associated with patrolling in a real-world
situation at all. To address the desire of using UAVs for wildlife
surveillance, this paper proposes MEOMAPP, a model that
extends on the online learning approach by incorporating a
patrol planning algorithm more suitable for aerial patrol. It also
includes an evaluative algorithm that considers a human expert
next to the online learning expert and balances the application
of their strategies based on the observed performance of each
expert. By simulating MEOMAPP in a realistic environment, the
research demonstrates that the model is suitable to determine
aerial surveillance strategies for wildlife conservation.

Index Terms—Green Security Games; Game Theory; Online
Learning; Adversarial Bandits; Agent-Based Modelling; Aerial
Surveillance; Wildlife Conservation

I. INTRODUCTION

Poaching is still a major problem in large parts of the world.
It threatens efforts in wildlife conservation, which negatively
impacts biodiversity and possibly results in damaged ecosys-
tems [1]. There is also a large economic cost in the form of
reduced income from wildlife tourism and trophy hunters. Cur-
rently, the cost of measures to keep animals protected and safe
from poachers is not economically viable [2]. Simultaneously,
protecting wildlife is not always without risks either. In Africa
alone, 349 rangers have died on duty since 2012, although it
is thought these figures are substantially higher due to lack of
reporting [3].

These high costs are a driver for cost-effective and innov-
ative measures in the wildlife protection domain. Notably,
the use of artificial intelligence (AI) has shown potential
for detecting animals and poachers with object and image
recognition [4, 5], and it can also assist in determining optimal
patrol routes based on historical poaching data. Moreover,

the deployment of drones is increasingly popular for the
conservation of protected areas in general. Their capability to
perform surveillance in a relatively low-cost risk-free manner
on a high spatio-temporal resolution with a diverse range of
sensors makes them a desirable addition to the tools already in
place [6, 7]. In the future, it will be possible to develop truly
autonomous surveillance systems by coupling current autopilot
capabilities of UAVs with AI-driven image recognition tools
and surveillance strategies.

A frequently used framework that focuses on developing
solutions for the surveillance planning problem is the for-
mulation of a Green Security Game (GSG) [8], a type of
Stackelberg Security Game (SSG). In this format, the inter-
actions between patrollers (defenders) and poachers (attack-
ers)are modelled as a repeated single-shot game. The attacker
carries out one or multiple attacks, while simultaneously the
defender defends according to a specific strategy. The payoff
for the defender depends on where the attacker attacked at that
round. Multiple repetitions of this single-shot game, which
we consider a single round in an infinite game, allow the
defender and the attacker to learn and subsequently adapt their
strategies. The resulting defender strategy can be used to define
where surveillance should take place on the terrain.

A key characteristic of most AI methods is their dependence
on large amounts of data to train their internal models.
Next to common problems associated with data sets, like
imperfections, incompleteness, and data bias [9, 10], an often
overlooked fact is that data is not always available in the first
place. Especially when developing models to predict optimal
patrol routes for wildlife surveillance, there is no guarantee
that specific information is available or will be available in
the future. This information is about where which animals are
at a certain time, where and how many poachers are active on
the terrain, and how many attacks have taken place historically.
The absence of this knowledge makes it difficult to determine
patrol routes for computers and humans alike.

The majority of previously proposed models require historic
attack data and/or a complete attacker model with various
defining features, such as a specific behaviour model and
full knowledge of the attacker’s payoff structure [11–18].
However, it is even recognised that usually the attacker’s
payoffs are unknown to the defender [19, 20]. Moreover, the
defender might not even know its own payoffs due to too much
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Figure 1. Patrol planning with a time-unrolled graph as by the MINION
model [23].

uncertainty in nature. For example, if the payoffs are based on
the amount and type of animals at a certain location, they can
be random and/or variable, making it difficult to estimate the
value of the payoffs.

Recent research by Xu et al. [21] tries to tackle the problems
posed by uncertainty by proposing an online learning al-
gorithm to develop a surveillance strategy without prior know-
ledge. The model, called the Follow the Perturbed Leader with
Uniform Exploration (FPL-UE), is an adaptation of the method
proposed by Neu and Bartók [22]. It makes no assumptions
about adversary behaviour nor defender payoffs while still
guaranteeing an efficient theoretical performance. Specifically,
it assumes an arbitrary attacker and puts no assumptions on
their behaviour or payoff structure. It then chooses between
exploring (learning which strategy works best) and exploiting
(maximising utility with gathered knowledge).

the FPL-UE algorithm was further developed by Gholami
et al. [23] to take into account spatio-temporal planning
constraints proper to patrol rangers, like limited walking time
or distance and limited selection of accessible targets. This
made the algorithm more applicable for surveillance by foot
patrol in the real world. It calculated a feasible patrol route by
selecting a starting point at a patrol post and solving an equally
distributed time-unrolled graph of adjoining accessible targets
on a grid constraint by a specific time horizon (see Figure 1).
However, this method is not practical for determining a surveil-
lance flight performed by a drone, since a drone is not bound
by flying between adjoining targets. Additionally, Gholami
et al. [23] introduces an expert-selection method to evaluate the
online learning expert (based on FPL-UE) and a decision tree-
based machine learning expert during the game and selecting
the best performing expert. However, this approach has its
limitations. First of all, since no data is available to train the
machine learning expert, a static probability map substitutes as
a simulation of the decision tree algorithm’s results. Secondly,
the expert-selection method proposed by Gholami et al. [23]
already starts evaluating both experts at the start of the game.
This means that the online learning expert is evaluated before
it had the chance to learn.

We propose a novel approach to the patrol planning problem
where we take advantage of patrolling with a drone. Continu-
ing on the work by Xu et al. [21], we adopt the same com-
binatorial adversarial online learning problem formulation to

determine a preliminary set of targets for a defender strategy.
We formulate the flight path planning as an Orienteering
Problem (OP) constrained by the practical limitations of the
drone. The solution to the OP results in the final strategy.
Inspired by Gholami et al. [23], the model, aptly named
the Multi-Expert Online Model for Aerial Patrol Planning
(MEOMAPP), also incorporates an expert-selection algorithm
that allows evaluating its performance with a second expert.
Contrary to Gholami et al. [23], the experts are not evaluated
right away, but only after the online expert has had a chance
to learn.

In this paper, we present an agent-based model developed
for evaluating MEOMAPP’s performance. The model repres-
ents a simplified wildlife surveillance system, composed of
a domain to be surveilled (the environment), the drone that
performs the surveillance flights (the defender agent), and
one or multiple poachers (the attacker agents). The defender
behaves according to the strategies determined by MEOMAPP.
We selected two common attacker models to take it up against
MEOMAPP: (i) a simple stochastic model with predefined
attack probabilities per cell, and (ii) a Quantal Response model
[13], which is a state of the art adaptive attacker model
with bounded rationality. For a second expert, we assumed a
realistic practical scenario where a person familiar with the
domain to be surveilled gives every target an attackability
score that is used for a probability-based mixed defender
strategy.

The question we want to address with this research is
whether an FPL-UE algorithm in a multi-expert learning
model with a planning method suitable for drones is a viable
application for determining wildlife surveillance strategies. To
answer this question, we test MEOMAPP using an agent-based
model on a real-life wildlife surveillance case. For this case,
we develop defender strategies for the Aloegrove Safari Park in
Namibia against simulated attackers and with a human expert
as a competing strategy method. The test results are inspected
for convergence of performance over time and performance
variations of MEOMAPP following changes of operational
and environmental parameters of the model. The suitability
of the model is valid if the convergence behaviour is similar
to previous research.

The paper is organised as follows: section II covers addi-
tional related work, section III provides a detailed account of
the problem formulation, section IV lays out the agent-based
model including the specifications of MEOMAPP, section V
describes the numerical evaluation by means of the real-
world case study. The results are discussed in section VI
and we draw a conclusion in section VII. Finally, we present
recommendations for future research in section VIII.

II. RELATED WORK

In this section, we address further how our research com-
pares to prior literature regarding GSGs and online learning
methods for wildlife surveillance, matheuristics for path plan-
ning, and the agent-based modelling and simulation paradigm.
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A. Adversary Modelling in Green Security Games
It is understood that assuming a perfectly rational, value-

maximising adversary is not ideal for addressing human ad-
versaries [24]. Subsequently, two competing approaches have
emerged to address human bounded rationality in SSGs and
subsequently GSGs. One approach departed from the idea that
attackers behave according to specific parametric models of
human decision-making of which the parameters could be
learned by fitting them to historical data, and subsequently
deriving a defender strategy based on the probability where
an attacker would attack next. These models include the
BRQR algorithm [11] and MATCH [12], based on a Quantal
Response (QR) model for adversary behaviour [13]. Based on
a new attacker model with an added Subjective Utility function
to the QR model (SUQR) [14], algorithms SU-BRQR [14],
PAWS [15, 16] and SHARP [17] were developed, followed
up by CAPTURE [18]. These models use parameter estim-
ation methods like Maximum Likelihood Estimation (MLE)
or Estimation Maximisation (EM) to determine the adversary
model’s parameters. The underlying data for the estimations
comes from real-world experiments or simulations with actual
human players.

The other approach is to intentionally avoid adversary mod-
elling and instead focusing directly on reward maximised route
optimization based on the individual targets. These methods
usually make use of data-driven machine learning techniques.
Models like INTERCEPT [25] and others by Gurumurthy
et al. [26] and Gholami et al. [27, 28] are based on decision
trees that use the target’s environmental characteristics and
historical attack data to predict the attackability of individual
targets. APE, the algorithm by Park et al. [29] uses a variety
of classification algorithms in combination with live GPS
data of animals and patrol rangers alike to determine real-
time dynamic patrol strategies. A black box optimization with
neural networks has also been presented by Gurumurthy et al.
[26]. These methods all require extensive (historic) data sets,
preliminary data manipulation, and extensive knowledge of the
terrain.

The recent models proposed by Xu et al. [21] and Gholami
et al. [23] also avoid adversary modelling. However, instead of
looking at target characteristics for attackability determination,
they define a game-theoretic behaviour model for the defender
that does not require prior data. The defender does learn an
optimal defensive strategy during the game though, regardless
of the behaviour the attacker exhibits. This research continues
on this specific online approach while avoiding adversary
modelling.

B. Matheuristic Path Planning
When the question is asked "what is the optimal route for

a vehicle given a specific set of constraints?" the resulting
problem is always a variant of the Vehicle Routing Problem
(VRP) [30]. The case of a single vehicle maximising its reward
over a closed route (i.e. returning to the starting point) is
known as the Orienteering Problem (OP). The OP, which
is NP-hard, is a well-studied problem, and many exact and

(meta)heuristic methods have been proposed to solve it [31].
The problem is formulated as an integral problem where a path
has to be found on a graph of nodes connected by arcs. All
nodes have a certain reward that is collected when the node
is visited, and the arcs induce a certain cost when they are
part of the route. In the aerial surveillance case, the graph is
considered complete, meaning all nodes are interconnected.

Even though the aerial wildlife surveillance problem is
presented as a GSG, the planning aspect is considered an OP
that has to be solved repeatedly on a graph with rewards that
change every round. However, since GSGs assume a defender
with limited resources (i.e., it cannot defend all targets in a
single round), the possible solution space for the OP is limited.
This makes the combination of the defender strategy algorithm
and the path planning algorithm in MEOMAPP a method con-
sidered a matheuristic for solving routing problems [32]. More
specifically, it can be classified as a two-phase decomposition
approach [33], where the first phase is considered selecting
a subset of the nodes in the graph and the second phase is
solving the OP on the reduced graph.

This research does not focus on improving solution methods
for an OP but it was considered noteworthy that this work is
on the intersection between GSGs and operations research.

C. Agent-Based Modelling and Simulation
In the majority of referenced literature in this paper, the

wildlife surveillance problem is represented as a Multi-Agent
System (MAS), wherein GSGs provide a framework to model
the agent’s interactions. The presence of autonomous actors
in the system that interact with each other makes Agent-
Based Modelling and Simulation (ABMS) the most appropri-
ate technique to implement and study this model. The ABMS
technique enables us to model a natural representation of
a system, provide flexibility to modify the system model,
and examine emergent outcomes resulting from interactions
between autonomous, individual entities with dynamic, adapt-
ive behaviours and heterogeneous characteristics [34]. This
is a suitable modelling framework for wildlife conservation
in general since models can be specified realistically and
dynamically, including changes in environmental conditions
and animal movements [35]. This enables them to study
externalities related to natural resource management [36].

III. PROBLEM FORMULATION

In this section, we describe the conceptual formulation
of the practical problem of aerial wildlife surveillance. The
formulation is similar to the problem formulation by Xu et al.
[21] and Gholami et al. [23], as this research aims to extend
their proposed solution model.

A. Game Setup
The components of the gamified system are the wildlife area

that is to be surveilled (the "targets"), the drone that performs
the surveillance flights (the "defender"), and the poachers the
drone aims to observe (the "attackers"). The entire area is
discretized by square grid cells, resulting in set [N ] consisting
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of N targets. The diagonal of the grid cells is assumed to be
the width of the drone camera’s Field of View (FoV) in order
to always entirely cover a target when choosing it for the
route. We assume the drone’s height to be constant, ensuring
a constant FoV.

The surveillance planning problem is regarded as an in-
finitely repeated security game between an attacker and a
defender. Each round t, m attackers each choose a target to
attack. Simultaneously, the defender chooses a surveillance
flight to cover k targets specified according to a strategy
vt ∈ {0, 1}N . Vector vt is a binary vector denoting waypoints
of the surveillance path by entry i = 1 if target i is selected
as a waypoint for the flight path. The targets that are observed
resulting from this strategy are indicated by binary vector ct
with |ct| ≥ k. Targets that are only partially observed due to
the nature of the flight path have a chance of being included in
ct equal to the ratio of grid cell area covered by the defender.
Similarly to vt, the attacker strategy is denoted as at, where
entry i = 1 if target i is attacked by the attacker. The path the
attacker takes is not taken into account. Also, it is assumed that
the attacker remains at the same location for the entire duration
of the round. Given that target i is attacked, the defender gets
utility U ci if target i is covered by the defender, and Uui if i
is not covered by the defender. It is assumed that covering a
target is better than not covering it, which we formalise by
stating U ci > Uui .

B. Information Access and Player Behaviour

In wildlife surveillance, it is usually unknown to the de-
fender and the attacker what the specific value of a target
is as it depends on unknown and/or variable environmental
factors and actor-specific preferences. Also, the other players’
behaviour is difficult to predict completely, as players can
have different knowledge or behave irrationally. Given this
information gap, the approach taken for this and previous
models is to assume that the defender is unaware of prior
information regarding payoffs and attacker behaviour. It can
only observe utilities of targets when they are observed. Also,
there is no behaviour model of the attacker required for the
defender to learn a strategy, since it will adapt to any kind of
attacker behaviour. Furthermore, it is required for the attacker
that he can only observe the defender when being observed by
the defender himself in the current round. That way he is not
able to evade the defender during the same round. Finally, we
assume a perfect observation from the defender, meaning once
the defender covers 100% of an attacked target, the attacker
is observed.

C. Utility and Game Objective

Given the attacker strategy at and the defender observations
ct in round t, the defender’s utility at round t is defined as

u (ct, at) =
∑
i∈N

ct,iat,iU
c
i +

∑
i∈N

(1− ct,i) at,iUui (1)

where the first term denotes the utility of the covered targets
and the second term the utility of the uncovered targets. Both
terms are dependent on at. The equation can be rewritten as

u (ct, at) = ctrt (at) + C (at) (2)

with rt,i = at,i [U
c
i − Uui ] and C (at) =

∑
i∈[n] at,iU

u
i .

This notation helps understanding that the defender’s utility
at round t is dependent on the attacker’s moves during that
round. The objective of the security game is to minimise the
overall total regret RT of the defender, defined by

RT = max
c∈C

T∑
t=1

u (c, at)− E

[
T∑
t=1

u (ct, at)

]

= max
c∈C

T∑
t=1

rtc− E

[
T∑
t=1

rt · ct

] (3)

The first term is the utility of the optimal strategy for round t
in hindsight, with C being the set of all possible observation
vectors c. The second term is the expected value of the
defender’s utility. This notation is consistent with previous
online learning theory literature. As noted in Xu et al. [21],
the underlying notion of this regret formulation is that it is
typically impossible to learn the optimal (adaptive) defender
strategy vt. The reason for this is that the attacker can choose
at independent from previous actions or even adversarially to
the defender. Therefore, the optimal strategy at round t can
be independent from history. Without complete knowledge of
the attacker behaviour or the environment, there is no way
to predict the optimal strategy vt and it is thus impossible to
learn the optimal adaptive strategy.

However, with access to previous observations, it is possible
to learn the best strategy in hindsight. The idea behind this
problem formulation is that after more and more rounds,
the performance of the best strategy in the next round will
be affected less and less by at, no matter how adversarial
(i.e. only caring about minimising the defender’s utility) the
attacker plays.

IV. AGENT-BASED MODEL

The agent-based model forms the framework for the dif-
ferent methods used to solve the formulated problem. These
methods and their parameters are represented by the character-
istics of the environment and the agents’ inputs, internal states,
and cognitive models. The representations of the models in
Xu et al. [21] and Gholami et al. [23] serve as the baseline of
the model formulation. A diagram providing an overview of
the agent-based model is given in Figure 2. The following
subsections present the properties of the environment and
all agents in the model as well as the agents’ interactions.
Verification of the model is discussed in the last subsection.

A. Environment Specification
The environment is defined by a space and time wherein

the agents are situated. In this model, one time step equals
one round of the GSG, where the attacker attacks one target
and the defender performs one surveillance flight.
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Environment

Defender

Human Expert

Stategy	according	to
static	HE	coverage
probability,	disturbed
by	error	factor	ε

Path Planning

Using	linear	integer	programming,	calculates	solution	to
Orienteering	Problem	resulting	from	targets	selected	by	experts

Expert selection

Selects	Online	Learner	or	Human	Expert	based	on	past	performance

Observation Model

Geometrically	determines	which	targets	are	covered	by	the	defender
and	where	an	attacker	was	observed

Grid	consisting	of	possible	targets.	Stores	information	about:							

Utility	U	
Estimated	reward	r̂t
Ground	truth	of	attack	probability	pGT
Human	Expert	coverage	probability	phe	

Holds	static	attack
probability	qi	based	on	pGT

Calculates	dynamic
attack	probability	qi	
based	on	pGT	and
rationality	factor	λ

Attacker
attacks	target

-	Covers	selected	targets
-	GR	updates	r̂t	

If	QR,	attacker	knows
it	is	observed

Defender	observes	
attacker	in	environment

-	OL	observes	U	and	r̂t
-	HE	observes	phe	

Attacker
observes	pGT

Attacker

Online Learner

Chooses	explorative	or	exploitative
strategy	according	to	FPL-UE
If	attacker	is	observed,	GR	algorithm
updates	estimated	rewards	regardless
of	expert

QR Attacker                 OR                 STC Attacker

Figure 2. Diagram of the components of the Agent-Based Model and their interactions that occur during one round.

As stated in the previous section, the environment space
is discretized by a rectangular grid. The grid cells that
result from this representation are all potential targets for an
attacker to attack and the defender to defend. The targets i are
modelled as patches in the ABM, meaning they are stationary
agents. We define [N ] to be the set of all targets i. One target
is assigned to be the base, which means it is the location
where the defender will start and end its patrol strategy.
When the model is initialised, every target is assigned four
numerical characteristics:

1) Utility: Every cell is assigned a utility U ci for when
it is covered and a utility Uui for when it is uncovered. We
assume that the utilities are unknown for the defender and
that U ci > Uui . For normalisation, we define the values of
U ci and Uui to be within [−0.5, 0.5]. This way the maximum
regret of the defender per round of the game is at most 1 for
each attacker.

2) Estimated reward: The estimated reward r̂t,i for cell i
at round t is initialised as r̂1,i = 0 and indicates the estimated
reward of covering that cell in the following step of the
game. As explained further down, the estimated reward of a
target is incrementally updated by the drone’s Online Learner
algorithm at every step (see Figure 2), and thus the order of
magnitude of the estimations increases gradually throughout
the game. It is therefore only compared to the estimated
reward of other targets during that same round.

3) Attackability score: The downside of an online learning
algorithm without historical data is that it takes time for
a model to learn and perform as desired. However, more
information about the area to be surveilled is sometimes
available in the form of human expertise based on knowledge

of the area and the people that live there [26]. We make use
of this information in the form of an attackability score. The
attackability score is an integer between 0 and 3 assigned to
each cell by an expert who is familiar with the environment.
It is a positive ratio scale determined with the expert that
indicates the likelihood of attacker presence on a specific cell.
We convert this score to an attack probability by modifying
the standard normalised exponential function (left in Equa-
tion 4) to a version that takes into account the variation of
discretization (right).

σ(z)i =
eβzi∑K
j=1 e

βzj
=⇒ p(a)GT,i =

√
N
ai∑

j∈[N ]

√
N
aj (4)

R. D. Luce [37] first used the normalised exponential
function in decision theory for relative preferences in his
Choice Axiom. It has seen multiple applications in psychology
[38] and game theory [39, 40] relating to human choices
and utility representation [41]. The general idea behind it is
that humans have an initial intuition to map numbers onto
space logarithmically. We propose setting β = log

(√
N
)

,
which is equivalent to using N (total number of targets) as
base of the exponentiation instead of e. This concentrates
the probability distribution more around the positions of the
largest input values. Taking a base that varies according to
the number of cells also prohibits the higher probabilities to
dilute when the grid is discretized further. We chose to select√
N instead of N since humans’ tendency to logarithmically

project numerals is based on a linear distribution. Therefore
we linearize the increase of N , which exhibits quadratic
growth when we linearly increase the dimensions of the grid.
The resulting probability distribution pGT is the ground truth
for the behaviour models for attackers, further explained in
Section IV-C, and for the defence strategies of the Human
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Expert (HE), explained hereafter.

4) Human Expert Coverage Probability: The MEOMAPP
algorithm incorporates a self-evaluation procedure for the
defender where it compares the performance of an online
learning expert with the performance of a human expert
(HE). To simulate the performance of a human expert defence
strategy, we propose the following. The human expert strategy
consists of a set St of n targets selected based on the
probability distribution phe. This distribution is used in the
defender’s path planning algorithm to calculate a patrol route.
To represent the different levels of inaccuracy of the human
expert, we approximate a probability distribution phe with a
certain mean absolute error (MAE) as follows:

phe,i(ε) = pGT,i ± ε , ε ∼ N (ε, ε/4) (5)

with a resulting MAE of the probability distribution approx-
imately equal to ε. Error factor ε is drawn from a normal
distribution N (ε, ε/4) with mean ε and variance ε/4. The +
or − is as such that phe,i ∈ [0, 1], with a random choice if
both options are viable.

B. Defender Specification

The defender is a reactive although complex agent. It is
characterised by the range R or the total distance it can
travel in a single round. The defender always departs and
returns to the base target, Furthermore, it incorporates four
cognitive models: 1) an online learning game-theoretic expert
(OL) that calculates the reaction to the attacker’s moves, 2)
a mathematical integer linear program to calculate a spatially
optimised patrol route within its planning constraints, 3) an
observation model, and 4) an expert selection algorithm that
chooses between a human expert and the OL expert as the
preferred choice for next round’s strategy.
A theoretical argument for the defender’s parameter values is
presented at the end of this subsection.

1) Online Learner: The online learning algorithm presen-
ted in Algorithm 1 is capable of generating a defender strategy
without any prior knowledge. It is based on the FPL-UE
algorithm proposed by Xu et al. [21], wherein a "Follow the
Perturbed Leader" and a "Uniform Exploration" element can
be distinguished.
The FPL element evaluates the perturbed estimated reward
r̃t,i for each target i at round t. Let r̂t be the vector of the
pure estimate rewards at round t, and let zt = (zt,1, . . . , zt,n)
be a random noise vector such that each zt,i ∼ exp(η) is
independently drawn from the exponential distribution exp(η).
At each round, the algorithm then chooses n targets, from
all targets [N ], with the highest perturbed estimated reward
r̃t,i = r̂t,i + zt,i, as formulated by Equation 6. This set is
called St.

St = argmax
S⊂[N ]

{∑
i∈S

r̃t,i

∣∣∣∣ |S| = n

}
(6)

In this case, the noise vector zt,i represents the uncertainty of
the reward estimation and thereof dependent target selection.
It also results in unique estimated reward values for every
target, which prohibit that the MILP solver selects identical
sequences of targets (especially in the first rounds when most
targets have r̂t,i = 0). The FPL element is the exploitative
element of the defender strategy.

The UE element, which is the explorative element of the
defender strategy, also selects n targets to form St but does
it randomly and uniformly. For the randomly selected targets
in St, a noise vector zt is drawn independently from exp(η)
as well for the same reasons as for the exploitative strategy.
Since these targets were selected regardless of the value of
their estimated reward, the perturbed estimated reward is
set to equal the noise factor: r̃t,i = zt,i. In every round,
taking a random explorative step happens with probability γ,
resulting in a complementary probability (1− γ) to pursue an
exploitative strategy. The goal of the exploitative element is
to maximise the total utility over time, whereas the goal of
the explorative element is to learn which strategy is the best
against a particular attacker.

Up to now, the online learner follows the FPL-UE algorithm
to determine a set of nodes St at every round by either
following an exploitative or an explorative strategy. The set
St is used by the MILP to calculate the flight path strategy
vt (as described in section IV-B2), where the targets in St
are potential waypoints for the flight path. Once flight path
strategy vt is determined and applied at round t, we define set
Ot as the targets where the defender observed an attack when
executing the strategy during round t.

Knowing this, we can now update the estimated reward
values for the next round r̂t+1,i as follows:

r̂t+1,i = r̂t,i +
rt,i
pt,i

I(t, i) ∀i ∈ Ot (7)

where pt,i is the probability that target i was observed by the
defender within round t and I(t, i) is an indicator function
indicating if a target was observed by the defender, with
I(t, i) = 1 if target i was observed and I(t, i) = 0 oth-
erwise. In online literature, the term rt,i

pt,i
I(t, i) is preferred

over directly using rt,iI(t, i), since it is an unbiased estimator
of rt,i: E

[
rt,i
pt,i

I(t, i)
]
= rt,i. Note that this corresponds to

updating the estimated reward for targets that were attacked
and defended, and keeping the estimated reward for the other
targets the same in the next round.

To efficiently estimate pt,i, which is unknown and hard
compute exactly, Neu and Bartók [22] proposed a method to
calculate the value of 1/pt,i called Geometric Re-sampling
(GR), presented in Algorithm 2. The method works by
simulating defender strategies until the targets that were
attacked and defended in round t are defended again by the
simulated round. The number of simulations required until
target i is defended for the first time follows a geometric
distribution with mean 1/pt,i. The probability of observation
pt,i is thus estimated by the number of simulations it requires
to defend target i. However, theoretically, the number of
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simulations can be infinitely large, so the GR algorithm
truncates the number of simulations with a finite quantity M .

Algorithm 1 Online Learner

Parameters: γ ∈ [0, 1], n ∈ N, η ∈ R+,M ∈ Z+

1: for t = 1, . . . , T do
2: Sample α ∈ 0, 1 such that α = 0 with prob. γ
3: if α = 0 then
4: Let St ⊂ [N ] be a set of n randomly selected targets
5: Draw r̃t,i ∼ exp(η) independently for all i ∈ St
6: else
7: Draw zt,i ∼ exp(η) independently for all i ∈ [N ]
8: Set r̃t,i ← r̂t,i + zt,i
9: Let St ⊂ [N ] be the set of n targets with max(r̃t,i)

10: end if
11: Let vt be P(St)
12: Adversary picks rt ∈ [0, 1]n and defender plays vt
13: Defender observes Ot
14: Run GR(η,M, r̂, t): estimate 1

pt,i
as K(t, i)

15: Update r̂i ← r̂i +K(t, i)rt,i;
16: end for

Algorithm 2 Geometric Resampling

Input: η ∈ R+,M ∈ Z+, r̂ ∈ Rn, t ∈ N
Output: K(t) := {K(t, 1), . . . ,K(t, n)} ∈ Zn

1: Initialize ∀i ∈ [N ] : K(t, i) = 0; k = 1
2: for s = 1, 2, . . . ,M do
3: Repeat lines 2 - 13 in alg. 1 once to produce Õ as a

simulation of Ot with at.
4: for all i ∈ Ot do
5: if s < M and i ∈ Õ and K(t, i) = 0 then
6: Set K(t, i) = s;
7: else if s =M and K(t, i) = 0 then
8: Set K(t, i) =M ;
9: end if

10: end for
11: if K(t, i) > 0 for all i ∈ Ot then break
12: end for

2) Path Planning: The patrolling strategy vt is calculated
as a solution to a symmetric Orienteering Problem, formulated
by the mathematical program P(S) in Equation 8. It is an
integer linear programming problem applied to targets i in St,
which represent the nodes of a network where the perturbed
estimated rewards r̃t,i represent the profits collected if a node
is visited. The network’s edges are defined as the arcs ai,j
between targets i and j, with a length of di,j . Equation 8.a
limits the total distance travelled by the defender to its range
R. To every target the defender goes, it also has to leave
from, which is constrained by Equation 8.b. A target can
only be visited once, meaning only two arcs can connect to
it. This is constrained by Equation 8.c. Constraint 8.d ensures
that no subtours (i.e., tours that are not part of the tour that

includes the base) are included in the solution. If an arc ai,j is
selected, the difference between ui and uj is exactly -1 if arc
ai,j is selected in the strategy, where ui and uj are the orders
at which the targets are visited. Subscript base indicates
the target where the defender starts and ends its round. that
target’s inclusion in the path is ensured by constraints 8.e
and 8.f. These are not strictly speaking necessary when
Equation 8.d is applied (where the base is the only target left
that can "close" the loop), but they increase the computational
performance.

vt = argmax
v∈V

∑
i,j∈St

ai,j r̃i (8)

subject to∑
i,j∈St ai,jdi,j ≤ R i 6= j (a)∑
i∈St ai,j = aj,i ∀j ∈ St; i 6= j (b)

ai,j + aj,i ≤ 1 ∀i, j ∈ St; i 6= j (c)

ui − uj ≤ |St| (1− ai,j)− 1 ∀i, j ∈ St; i 6= j 6= base (d)∑
i∈St ai,base = 1 i 6= base (e)∑
i∈St abase,i = 1 i 6= base (f)

0 1 2 3 4 5 6

0

1

2

3

Figure 3. Coverage between target (1, 1) and (5, 2).

3) Observation Model: After vt has been calculated by
the path planning algorithm, it is necessary to determine
which targets are covered and whether an attacker has been
observed. Based on the assumption that the defender’s view
is as wide as the diagonal of a cell, we draw a rectangle of
width w =

√
2l2, where l is the width of a target, and length

di,j + w, where dij is the distance between targets i and j,
so that arc ai,j coincides with the longest centerline of the
rectangle. Afterwards, for every target that has an overlap
with this rectangle, the fraction fraci of the observed area
of the target over the total area of the target is calculated.
The exemptions to this are the starting point i and the
targets right next to i and j that are not in the line of the
path, in order to prevent them to be counted twice. As an
example, a schematic of coverage between target (1, 1) and
(5, 2) is shown in Figure 3, where fraci > 0 for targets
(2, 0), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3) and (5, 2).
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This is done for all arcs ai,j that are part of the solution
calculated by the path planning algorithm in Equation 8,
resulting in a set Ct consisting of targets i that have been
(partially) covered by the defender at round t.
The probability that an attacker is observed by the defender
on target i, if an attacker was on that target, is equal to
the fraction of the area observed. In other words, target i is
considered to be in set Ot (targets where an attack has been
observed at round t) following the next equation:

P (i ∈ Ot|i ∈ Ct ∩At) = fraci (9)

where At is the set of targets i that are attacked.

4) Expert Selection: The following expert selection
algorithm is proposed to enable MEOMAPP to select the
best performing expert to decide on a strategy. Formulation
wise, it is wrapped around the core algorithms 1 and 2 as
presented in algorithm 3. First, a constant θ is defined which
is compared to the value of variable γ. Only after the value
of γ drops below threshold θ (line 4) we consider the online
learning algorithm to have learned enough to compare it
to the HE. We chose γ as a threshold measure because it
depends on k and m as well, which allows us to maintain the
same value for θ throughout different game settings.
To compare both the experts’ performance, cumulative reward
values rol and Rhe are initialised as 0 and updated after every
round t. The performance is then evaluated by comparing the
average reward over the number of rounds where that expert
has been selected, nol and nhe. If the human expert is chosen
to be the best expert, St is determined by phe as presented
in Section IV-A3. If the online learning expert is selected,
St is determined by Algorithm 1. The patrol strategy vt is
then determined by P(St) resulting in observed attacked
targets Ot and the collected rewards are updated accordingly
for each expert. Note that until γ reaches the threshold θ
the performance of the human expert, which has not been
evaluated by then, is synchronised with the performance of
the online learning expert (lines 20 - 22).
The idea behind this expert selection algorithm is that given
the online learner expert has learned sufficiently, the algorithm
will be able to decide whether it is more successful to follow
the human expert or the online expert. In this case, it will
differentiate between the human expert, whose performance
results from the potentially imperfect interpretation of the
environment and/or historical data, and the online learner
without any prior knowledge.

Defender’s parameter values: From the theoretical proper-
ties of the FPL-UE algorithm stated by Xu et al. [21], we
know that the total regret RT (i.e., the difference between the
performance of FPL-UE and that of the best fixed patrol path
in hindsight) is proven to be upper bounded as:

RT ≤ γmT +2Tke−M
γ

[N] +
k(logN + 1)

η
+ηmT min(m, k)

(10)

Algorithm 3 The MEOMAPP Algorithm

Parameters: γ ∈ [0, 1], n ∈ N, η ∈ R+,M ∈ Z+, θ ∈ R+

1: Initialise r̂ = 0, rol = 0, rhe = 0, nol = 0, nhe = 0
2: Pick a value θ as a threshold for γ for which the Online

Learner is considered good enough;
3: for t = 1, . . . , T do
4: if γ ≥ θ or rol

nol
> rhe

nhe
then

5: Let St be computed by lines 2 - 10 in alg. 1;
6: nol ← nol + 1
7: f = 0
8: else
9: Let St be determined by the HE where r̃t,i = phe,i;

10: nhe ← nhe + 1
11: f = 1
12: end if
13: Let vt be P(St);
14: Adversary picks rt ∈ [0, 1]n and defender plays vt;
15: Defender observes attackers at Ot;
16: for i ∈ Ot do
17: rhe ← rhe + fri
18: rol ← rol + (1− f)ri
19: end for
20: if γ ≥ θ then
21: nhe ← nhe + 1
22: rhe ← rol
23: end if
24: Run GR(η,M, r̂, t): estimate 1

pt,i
as K(t, i);

25: Update r̂i ← r̂i +K(t, i)rt,i;
26: end for

where upper bound O(
√
kmT min{m, k} logN) can be ob-

tained by taking η =
√

k(logN+1)
mT min{m,k} , γ =

√
k√
mT

and

M = N
√

mT
k log(Tk). This means that the values of η, γ and

M depend on the total number of targets (N ), the number of
attackers (m), the number of intentionally protected targets (k),
and the number of rounds T that have passed, the contribution
of the latter resulting in a gradual decline of the values of η and
γ over time. This can be interpreted as a decline in uncertainty
because of the decline in noise zt and the lower probability
of engaging in an explorative strategy respectively.
The number of intentionally protected targets k is the number
of targets that are selected as waypoints in the flight path |vt|.
This value is not known beforehand, but since the first round is
explorative regardless, any number larger than 0 can be chosen
as an initial value. After the first round, k is calculated as the
average value of |vt| over time.
In theory, the value of M , the maximum number of simulations
in the GR algorithm, is very high relative to T and can result
in extremely long running times. For example, for a 500-
step simulation with N = 100,m = 5 and k = 15, the
GR algorithm runs up to M = 11, 519 times in the worst-
case scenario. However, as Neu and Bartók [22] theorise
a lower expected number of samples in practice, we limit
the maximum amount of GR simulations to 100. During the
experiments, this number of samples was never reached.
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C. Attacker Specification
To simulate attacker behaviour we chose two commonly

seen behaviour models: Stochastic behaviour (STC) and Quan-
tal Response behaviour (QR) [14].
The STC attacker model chooses to attack target i based on
a stationary attack probability qi per target i. We assume this
probability to be equal to the ground truth attack probability
pGT,i of target i presented as the basis for the human expert
in Section IV-A3, as this is the best information available.

qi = pGT,i (11)

The QR attacker model simulates non-stationary attacker be-
haviour by observing and responding to the defender strategy.
The probability that an attacker will attack target i at round t
is given by:

qi =
eλU

a
i∑

j∈[N ] e
λUaj

=
eλ(xiP

a
i +(1−xi)Rai )∑

j∈[N ] e
λ(xjPaj +(1−xj)Raj )

(12)

Parameter λ ∈ [0,∞] represents the rationality level of the
attacker. A lower value for λ indicates lower rationality (result-
ing in a more uniform qi) and a higher value indicates higher
rationality (resulting in a reward maximising qi). Parameter
Uai = xiP

a
i +(1− xi)Rai is the attacker’s expected utility for

target i. It depends on the likelihood the target is defended
xi, and on the reward Rai and penalty P ai for the attacker
associated with the target. Rai is obtained by normalising the
GT probability pGT to a value between [0, 10] in accordance
with QR experiment settings in previous literature [11]. We
assume penalty P ai = −10 for all targets since getting caught
by the defender is the worst that can happen on any target.

The likelihood xi that target is defended is not the same as
probability pi estimated by the GR algorithm, but a likelihood
calculated by the attacker based on how often it is caught
on target i. Previous literature does not explain how xi is
calculated. We propose to initialise xi = 0 and to recalculate
it at every round t as:

xi =

∑T
t=1 at,iI(t, i)

T
∀i ∈ [N ] (13)

where we note that this only holds because we make the
additional assumptions: (i) The attacker is not initially aware
of the fact that the area is under surveillance. (ii) The attacker
does not know where or when the defender has been if the
attacker was not observed by the defender. (iii) If an attacker
was observed in any previous round, all attackers know about
this in the next round.
For both models, after the probability qi of the attacker
choosing a target i in round t is determined, one target is
picked per attacker based on that likelihood. Furthermore, it
is important to note that the attacker is modelled to visit only
one target in a single round, meaning no route to and from
the target are simulated.
The fact that pGT is used as a foundation to calculate qi for
both attacker models as well as the coverage preference phe
of the HE means that the accuracy ε of the HE relates to how
good the human expert is in assessing the attacker behaviour.

D. Validation and Verification
As for agent-based models in general, the bottom-up nature

of the building process of MEOMAPP led to validation being
applied during the model construction itself [42]. To assure the
validity of the model as a whole, every model component was
validated individually, including its output of information to
other components. The goal of this research is to evaluate the
application of an online learning defender strategy for GSG
in a simulated environment to estimate its performance in a
realistic scenario. The representation of the environment, the
attackers, and the defender in the agent-based model has been
performed with the support of wildlife surveillance experts
whose contribution ensured further validity of the model. It is
important to note that a higher validity could be obtained for
more specific cases depending on the information available.
The ultimate test to validate the model would be to perform
experiments in the real environment.

Verification of the model was performed at different levels.
At the code level, compiler errors were resolved within Spyder,
the integrated development environment (IDE) chosen for this
research. At the unit level, error-oriented testing [43] has been
performed by plausibility tests [44] on parameter values and
on results of intermediate computation mechanisms. Attention
has also been paid to avoid issues arising from floating-
point arithmetic within the computations. At the system level,
conceptual verification was performed by observing whether
the results matched expectations regarding convergence.

V. NUMERICAL EVALUATION

This section describes how we implemented the proposed
model, the real-world case we simulated, the simulation setup,
the derivation of the model’s parameter values for this specific
case, and the results from the simulations.

A. Algorithm Implementation
The simulation model was written in Python using Mesa,

a Python-specific agent-based modelling framework [45]. The
code is written on compliance with the PEP 8 style guide
for Python code [46]. It is available in the Delft University
of Technology Gitlab repository. For the ILP component, the
open-source module PuLP [47] was used to generate the
problem file. To solve the ILP problem, the Gurobi™[48]
solver was called using an academic licence. It is however
interchangeable with open-source solvers readily available in
the PuLP toolkit. All simulations that are discussed later have
been run using a machine with a 1.2 GHz Intel® Core™
i7-3610QM CPU with 7 available cores and 12GB RAM.
The runtime for the presented experiments can be found in
Table III.

B. Case Study
To examine the performance of MEOMAPP, we selected

a case together with industry experts to simulate wildlife
surveillance in a real-world setting. The domain to surveil is
the Aloegrove Safari Park in Namibia and is approximately
10 by 10 km in size (see Figure 4). The attackability values
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Figure 4. Schematic of Aloegrove Safari Park and its implementation into MEOMAPP (image from Google Earth - CNES/Airbus Maxar Technologies).

have been assigned by an expert familiar with the domain. The
expert based the attackability values on his interpretation of
the accessibility of the terrain, location of fences or barrier,
and the location of animal enclosures or water holes. The
colour scheme on the map is purely for illustrative purposes.
Contrary to simulations in previous research where the values
for utilities U ci and Uui are randomly selected, we chose to
define U ci = 0.5 and Uui = −0.5. The reasoning behind this is
that we consider the utility to be a result primarily of whether
a poacher has been observed or not. This is regardless of the
damage the poacher has or could have done. Also, defining the
utility values specifically eliminates a random factor from the
regret equation, which makes the results less prone to random
variations.

The drone range is 25 km and we chose to have the
algorithm select 20 possible waypoints for a surveillance flight
path at every round (n = 20). It is not important to determine
when or how long a surveillance flight takes place, as long
as we assume that the attacker(s) remain(s) at the attacked
location(s) for the duration of the surveillance flight. For a grid
discretization of 10 by 10 cells we assume a field of view of the
drone of approximately 1.4 km wide. For a grid discretization
of 20 by 20 cells, the field of view is considered 0.7 km wide,
which in practice means that the drone flies lower with a lower
resolution camera and therefore has a reduced field of view.

C. Key Performance Indicators

To evaluate MEOMAPP’s performance, we look at the
following three indicators. These are the average regret over
time, the average distribution of employed strategies, and the
average distribution of observed attacks.
As in previous research, the overall performance is measured
by the average regret over time RT /T . Since we chose to
limit the values of U ci and Uui to 0.5 and −0.5 respectively,
the regret value directly relates to the number of targets
attacked. Since every attacker attacks one target every round,
the regret can be at most m. and at least 0. Experiment results
expressed as regret from previous research [21, 23] cannot be
used to directly compare MEOMAPP’s regret values for two
reasons. First of all, information about their specific payoff
structure and attacker behaviour is incomplete. Without that
information, it is not possible to reproduce their experiments.
Secondly, we chose a specific utility structure with extreme
values, which will produce relatively higher regret values for
any experiment setup. Additionally, the grid discretization used
by Gholami et al. [23] was only 5x5 cells, which we deem
insufficient for real-world approximations.

Furthermore, we look at the distribution of employed
strategies: explorative, exploitative, or defined by the human
expert. This indicates which expert is superior in which
situation, and gives an insight into whether the expert selection
algorithm works.
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Finally, in order to evaluate the accuracy of MEOMAPP we
look at the distribution of observed attacks that took place on
intentionally visited targets (the waypoints of routes selected
by the HE and the exploitative OL) and on coincidentally
visited targets (explorative routes and the targets between
waypoints).

D. Simulation Setup
The parameter space can be varied in seven dimensions:
1) Grid size/discretization
2) ε of the HE
3) Attacker type (STC or QR with different λ)
4) Number of attackers m
5) Number of possible waypoints n
6) Expert selection parameter θ
7) Drone range R

Since it is impractical to evaluate all possible combinations, we
select a base setting with parameters that remain constant and
manipulate the remaining parameters to deduce their impact
on MEOMAPP’s performance.

The parameters that remain constant throughout all ex-
periments are n and θ. The number of possible waypoints
n = 20 is an arbitrary choice. The logic behind it is that it
should not be too large for 1) computational reasons and 2) a
twisty trajectory which is impractical for the drone. It should
also not be too small in order to evaluate enough points of
interest for the surveillance strategy. After some iterations,
we chose n = 20 as it satisfied both accounts. Variations
in n and the planning algorithm in general, are included as
recommendations for future research.

For the baseline model we propose the following: The
attacker types are an input that would not be required in a
real-world setting. Therefore we decide to test the performance
with an STC attacker as an example of stationary behaviour,
and with one QR attacker with a specific λ as an example of
adaptive non-stationary behaviour. To choose a value for λ,
ten games with one QR attacker’s λ value ranging from 0.1 to
1.0 with 0.1 increments were simulated without the HE. The
0.1 to 1.0 range was chosen to include λ values found and
used in previous research by Nguyen et al. [14] and Gholami
et al. [23]. Additionally, one game with an STC attacker was
simulated as well. Each simulation lasted 500 steps and the
results are presented in Table I. It can be observed that the
final average regret is inversely related to the value of λ. This
means that the performance of MEOMAPP is better the more
rational the attacker is.

Table I
AVERAGE RT FOR SIMULATIONS WITH N = 100, m = 1, T = 500 FOR

VARYING λ OF QR ADVERSARY AGAINST OL EXPERT.

λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 STC

RT 0.70 0.66 0.60 0.52 0.48 0.43 0.39 0.35 0.35 0.30 0.50

Also, the OL’s performance against the QR attacker with
λ = 0.4 is similar to the performance against the STC attacker.

To confirm this similarity, four additional simulations were
performed for both attacker types. The results of the additional
simulations, shown in Table II, indicate that the performance
is comparable. We therefore decided to use a QR attacker
with λ = 0.4 as the basis for the remaining experiments for
to reasons. If any changes in the total average regret occur
for those experiments, the difference in attacker type has less
influence on the result. Furthermore, the resulting average
regret value of 0.52 allows observing changes in the average
regret value in both directions when the other parameters of
the model are evaluated.

Table II
AVERAGE RT FOR SIMULATIONS WITH N = 100, m = 1, T = 500 FOR
QR ATTACKER WITH λ = 0.4 AND STC ATTACKER AGAINST OL EXPERT.

Attacker 1 2 3 4 5 Average RT

QR, λ = 0.4 0,52 0,51 0,54 0,50 0,54 0,52

STC 0,50 0,54 0,53 0,51 0,50 0,52

The expert selection threshold θ is determined by inspecting
preliminary results from testing the OL model alone against
QR modelled attackers. In a simulation setup with m = 1
and n = 20, the number of waypoints for a flight path is
on average 16, meaning γ = 0.4 at t = 100. The 100 step
mark was chosen because the value to which the average regret
converges was reached at step 100 already.

We want to examine the effect of changing the remaining
five parameters through five experiments. Experiment 1 es-
tablishes the results for the baseline settings that serve as a
reference for the remaining experiments. The differences in
resulting defender behaviour against the two different attacker
types are of interest as well, so the baseline is established for
the QR and the STC attacker. Experiment 2 evaluates the
effect of range variations by setting R = 15 and R = 35. The
range is an important feature when choosing a suitable drone in
a real-world situation. Experiment 3 evaluates the difference
in performance of having a perfect HE (i.e. with ε = 0).
It aims to uncover the performance of the OL against an
expert with more precise knowledge of the attacker behaviour.
Experiment 4 evaluates the impact of having more attackers
on the domain by simulating the game with 3 and 5 attackers.
Experiment 5 evaluates the effect of discretizing the terrain
with a grid that is twice as fine, i.e. 20x20 cells versus 10x10
cells. Given the relationship between the defender’s FoV and
the grid size, it is important to analyse the effect of a different
grid discretization.
Based on the preliminary experiments that have been per-
formed for establishing the base model, we can visually
determine that a simulation duration of 500 steps is sufficient
for the average regret value to stabilise.

E. Results

In this subsection, the results for every simulation setup
discussed above are presented. All simulation settings and the
resulting values of the KPI’s at T = 500 are summarised in
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Figure 5. Simulation results from the baseline model with QR adversary (top) and STC adversary (bottom).

Table III
SUMMARY OF THE SIMULATION RESULTS WITH T = 500.

Att.
type

R ε m N Final
av. RT

Final av.
RT /m

Final
accuracy

Final
strategy

Runtime
(min.)

QR

25 0,3 1 100 0,52 0,52 0,65 OL 189

15 0,3 1 100 0,63 0,63 0,75 OL 67

35 0,3 1 100 0,44 0,44 0,48 OL 110

25 0 1 100 0,46 0,46 0,71 HE 148

25 0,3 3 100 1,77 0,59 0,58 OL 192

25 0,3 5 100 3,17 0,63 0,54 OL 193

25 0,3 1 400 0,76 0,76 0,52 OL 561

STC

25 0,3 1 100 0,55 0,55 0,65 OL 120

15 0,3 1 100 0,72 0,72 0,74 OL 79

35 0,3 1 100 0,43 0,43 0,63 OL 95

25 0 1 100 0,54 0,54 0,69 OL 193

25 0,3 3 100 1,58 0,53 0,71 OL 187

25 0,3 5 100 2,63 0,53 0,69 OL 247

25 0,3 1 400 0,80 0,80 0,23 HE 544

Table III. For every experiment, the values that are discussed
are also highlighted in a figure. All other plots can be found
in the report accompanying this paper [49].
We emphasise that, even though all these figures are the
convergence plots for one randomly generated game instance,
the general convergence trends of the KPI’s is almost the
same across the simulated instances for every setup. However,
the initial rounds in the figures may vary among different
instances.

Experiment 1 - baseline establishment: The baseline model
shows a similar trend in observation accuracy after t = 200
for the QR and STC attacker in Figure 5. Before t = 200
however, the observation accuracy against the STC attacker
was significantly worse. This also translates to a higher

average regret in the first stage of the game. As a result, the
convergence of the average regret is slower against the STC
attacker. For this particular simulation, it can be observed
that the HE was briefly superior in the average distribution of
defender strategies, but after 59 steps (i.e. 59 steps after step
100) the OL expert was trained enough to outperform it.

Experiment 2 - range variation: Comparing the results in
Figure 6 with the results for the QR attacker in Figure 5, we
can deduce the following. When the drone range is reduced
from 25 to 15 km, we observe a slower convergence of the
regret value. Furthermore, from Table III it is clear that the
final regret value is higher when the defender has a lower
range, meaning decreasing the range results in a decrease in
performance. However, we can also observe that the accuracy
of the attack observations increases, and from the average
coverage per target in Figure 7, we can deduce that the primary
reason behind this is the fact that the defender primarily
surveilled the three hot spots. The proportion of coincidentally
observed attacks is therefore also less, as most of the attacks
take place at the hot spots. Secondly, the increase in accuracy
could also result from the faster decrease of the value of γ.
With lower γ values, the defender performs less explorative
strategies in total.
Note that with a range of 15 km, the drone could not reach
all cells starting from the base at cell (4, 6), and could barely
cover the hot spots. If the hot spots would have been out of
its reach, the results could have been worse.

Not surprisingly, when the drone range is increased from
25 to 35 km, we observe a better performance. The average
final regret decreases from 0.52 to 0.44. Interestingly, similar
to the decrease in range, we can observe an inverse effect
on the observation accuracy. Increasing the range results
in a decrease in observation accuracy. The reasoning for
this behaviour is similar. With a larger range, the drone
now covers proportionally more cells, which results in more
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Figure 6. Comparison of the observation accuracy, the employed strategies and the regret for a defender with range R = 15 (top) and R = 35 (bottom)
against a QR adversary.
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Figure 7. Comparison of the average coverage per cell for a defender with a range of 15, 35, and 25 km LTR.

coincidentally observed attacks. Of course, the value of
gamma that is affected by the higher value of k results in
more explorative routes, further increasing the coincidentally
observed attacks.

Experiment 3 - Human Expert ε variation: Looking at the
average employed strategies in this experiment we distinguish
the following. As shown in Figure 8, the expert selection
algorithm chose the perfect HE with ε = 0 against the QR
attacker. This resulted in a lower final average regret than
for the baseline model where the HE’s error margin is higher
(Rt = 0.46 versus Rt = 0.52 respectfully).

Unexpectedly, the expert selection algorithm chose the OL
over the HE when facing an STC attacker. One would think
that because of the similar probability distributions qi and phe
of the STC attacker and the HE respectively, the HE would
be better suited against the STC attacker. By chance, the HE
might have performed poorly in the rounds after the expert
selection algorithm was activated and never got a chance
to redeem itself, or it is possible that the OL performed
exceptionally well. The overall performance is comparable
to the base model situation, which makes the latter situation
less probable. This indicates that either the proposed expert
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Figure 8. Simulation results from the base model with the HE’s ε = 0 against
a QR attacker (top) and an STC attacker (bottom).

selection might not function as good as intended, or that the
perfect HE’s performance against the STC attacker is not as
good as expected.
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Experiment 4 - Multiple attackers: The results from sim-
ulating the game with m = 3 and m = 5 in Figure 9 yield
the following. When adding more attackers to the model, the
γ variable reaches the threshold value θ = 0.4 faster than
the case with only a single attacker. Therefore we can see
that the expert selection algorithm is activated earlier as well.
We can also observe that the HE’s estimations are better in
the early stages of the game. The same holds for the strategy
selection against the STC attacker (not represented in a figure),
but in that case, the OL takes over earlier than against the QR
attacker.

Even though the proportion of explorative strategies is also
reduced due to the increased presence of attackers, the overall
increase in attacks and observations results nonetheless in a
fast learning process for the OL. This manifests itself in the
definitive switch from HE to OL, and the drop in average
regret that can be observed after that switch.

Note that the average regret is higher due to the higher
number of attackers, but normalised by the number of
attackers m we can observe that the performance compared
with the base models is worse in the case of QR attackers,
and better in the case of STC attackers. The reason for this
might be that the QR attackers are adaptive and are modelled
in as such that the individual attacker has the knowledge
of the collective of attackers. This means that, just as the
defender, the attackers in this model learn quicker when there
are more attackers. This could also explain the difference in
observation accuracy between the simulations against the QR
attackers and the STC attackers.
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Figure 9. Comparison of the employed strategies and regret for simulations
with 3 QR attackers (top) and 5 QR attackers (bottom).

Experiment 5 - Finer grid discretization: The finer dis-
cretization of the surveillance area results in the following.
First of all, as can be observed in Figure 10, the spatial
distribution of the attacks on a 20x20 grid is similar to the
spatial distribution on a 10x10 grid. This reveals that the
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Figure 10. Comparison of attack distribution of a QR attacker with λ = 0.4
on a 10x10 grid (left) and a 20x20 grid (right).

model’s calculation of qi based on ground truth pGT is not
affected by a finer discretization on the same area. In turn,
this means that the normalisation of the attackability score
a to pGT is scalable. Secondly, the overall performance of
MEOMAPP is worse, with Rt = 0.76 and Rt = 0.80
against the QR and STC attacker respectively. This is not
unexpected as the overall area that is covered by the defender
every round is smaller due to the halving of the drone’s FoV.
Furthermore, comparing the two simulations on a 20x20 grid
with each other in Figure 11, it is important to note that
the initial performance of both simulations is very different
and can be a reason for the difference in performance during
the rest of the game. Playing against the STC adversary,
MEOMAPP did not find the attacker until round 37. This
significantly delayed the start of the learning process and
possibly results in the choice to use the HE strategy for the
rest of the game. Against the STC attacker, the observation
accuracy is relatively low and the average coverage per target
is more evenly distributed compared with the other coverage
distributions obtained so far. Against the QR attacker, the
coverage distribution of the defender is visually traceable to
the distribution of estimated rewards per cell. That distribution
is not directly relatable to the distribution of attacks per
cell, which is more straightforward for the simulation results
against the STC attacker. The observation accuracy playing
against the QR attacker is significantly higher compared to
the STC attacker. The increase in observation accuracy as of
step 327 seems to result from the switch to the OL strategies.

VI. DISCUSSION

In this section, we discuss the main findings of this research
and the implications of assumptions on its results.

A. Reflection on overall performance

In general, the findings resulting from this study show that
MEOMAPP exhibits adaptive behaviour when faced with dif-
ferent attacker types and different game settings. Performance-
wise, MEOMAPP’s regret converges within 500 steps for
all presented game settings. Also, when presented with two
experts, each proposing different defender strategies, MEO-
MAPP can choose the expert that performs best on average
at any given time. This is consistent with the work from
Xu et al. [21] and Gholami et al. [23], even though we
chose to use a different but more realistic and reproducible
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Figure 11. Simulation results from the baseline model on a 20x20 cell grid against a QR attacker (top) and an STC attacker (bottom).

experimental setup. Unfortunately, because of the different
setup, it is not possible to directly compare the results, and thus
we cannot state with certainty whether MEOMAPP performs
better or worse than the stand-alone FPL-UE model [21] or the
MINION model [23]. However, the similar trends compared
with previous results show that the FPL-UE algorithm can be
combined with a route planning algorithm more suitable for
UAVs. Therefore, it is expected that MEOMAPP is a more
comprehensive solution for aerial surveillance. Additionally,
the simulation setup and results from this research can be used
as a benchmark for future studies.

B. Reflection on limitations

It is important to put the findings in the perspective of
specific limitations resulting from assumptions made for the
model and from the specific simulations settings. Even though
MEOMAPP is designed for and evaluated by a real-world
situation, the simulated attacker behaviour and human expert
defender strategies only approximate what a realistic setting
would be. For a definitive verdict on MEOMAPP’s per-
formance and applicability in real-world wildlife surveillance
settings, a field test validating the agent-based model and its
simulations is highly recommended. It is important to keep in
mind that for a real-world test, the notion of regret cannot be
used to evaluate the model. The reason for this is that the regret
is calculated using complete information of defender utility,
which is not always available. For example: if no attacks are
observed by the drones, it is not always possible to know if
there was an attack and the drone missed it, or if there was
no attack at all.

In this subsection, we elaborate on some important assump-
tions made for this agent-based model simulation and the
limitations they represent.

The definition of the exploration/exploitation variable γ in
FPL-UE assumes any adversary behaviour, but only as long
as it is constant. The effect of changing adversary behaviour,

or the introduction of more or new attackers, in a later stage
of the game has not been investigated. In reality, however, this
is not an unimaginable scenario.

The model assumes that attackers remain stationary at the
attacked target for the whole duration of the defender’s surveil-
lance flight, or at least until they are observed. This assumed
temporal relation between attacker and defender might heavily
influence the real-world performance of MEOMAPP. Also,
realistically attackers are present at other locations in the
environment before and after attacking a certain target. This
is also not reflected in the model. Furthermore, attackers
are modelled as independent agents, meaning that attacker
cooperation for an attack is not taken into account. Note
that QR-based attackers are modelled as having collective
knowledge after they were observed, but not as cooperative
attackers before an attack.

The observational capabilities of the defender are assumed
to be perfect within its modelled observational range. This
means that the practical consequences of observing while
flying are not taken into account, like bank angles when
turning, speed variations, altitude variations, and influences
from the weather.

The area that is surveilled is modelled as a two-dimensional,
static environment. Changes to the environment and therefore
possible variations in attacker and defender payoffs are not
taken into account in this model.

It is important to note that even though MEOMAPP was
evaluated using a specific real-world scenario, the online
learner model does not make any specific assumptions about
the park wherein it was simulated. MEOMAPP can be used
in any wildlife park whatsoever.

VII. CONCLUSION

This research investigated if it is possible to apply an
FPL-UE algorithm in a multi-expert learning model with a
planning method suitable for drones to determine wildlife
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surveillance strategies. We proposed MEOMAPP, a Multi-
Expert Online Model for Aerial Patrol Planning that compares
the performances of a defender strategy by the online learner
FPL-UE and a defender strategy by a human expert, and uses
the defender strategy to plan a flight path for a surveillance
drone. We evaluated MEOMAPP using the agent-based mod-
elling and simulation paradigm, using the real-world case of
Aloegrove Safari Park in Namibia as an experimental setup
for simulations. We demonstrated that MEOMAPP achieves
convergence against two typical attacker models in a variety of
simulation settings concerning the environment, the attackers,
and the defender. The main contributions of this paper are:

1) The integration of a path planning algorithm for aer-
ial vehicles and a game-theoretic defender strategy al-
gorithm

2) An updated expert selection algorithm that allows the
OL to mature before being evaluated

3) The evaluation of the ensemble of algorithms in a
reproducible realistic simulation

Despite the agent-based model being a simplification of a
real system, MEOMAPP is deemed a suitable algorithm for
determining aerial surveillance strategies for wildlife surveil-
lance.

VIII. RECOMMENDATIONS FOR FUTURE RESEARCH

The proposed model and its simulation setup can serve
as a foundation for future research in the field of Green
Security Games and path planning for wildlife surveillance.
The initial assumptions about the wildlife surveillance system
made constrained components of the model resulting from
this research. These components can be investigated in future
research:

A. Attacker model

The following characteristics of the attacker are interesting
for future research.
Even though a group of QR attackers could benefit from the
collective knowledge, further research into attacker coordin-
ation could be done.
During the round, attackers are considered stationary. Includ-
ing attacker routes would be a more realistic representation
of the system.
If attacker data would be available, it is possible to evaluate
MEOMAPP to a more realistic attacker. This data can
be used to include a more realistic game-theoretic model
of attacker behaviour, like SUQR [14], CAPTURE [18] or
SHARP [17].
This does not mean that MEOMAPP will require prior know-
ledge, only that it could be evaluated against realistic players
that are modelled using real attacker data.
More information about attackers can also be used for a
different temporal model than the defender.

B. Defender model

Currently, the defender is a single drone. However, in
reality, wildlife surveillance is not done by a drone alone.

Coordination with rangers and other defensive agents is an
interesting research field to elaborate on in the future.

C. Path planning

The path planning algorithm now takes into account the
most simple drone model for its constraints. Including con-
straints related to flight dynamics can give insights in the
actual flight path.
Even though the online learner’s GR algorithm can learn from
the coincidental observations, a path planning algorithm that
includes estimated rewards of the arcs, as well as rewards of
the nodes, could produce more optimised flight paths.
If more defenders enter the game, Multi-Agent Path Finding
algorithms could be studied in the context of GSGs.
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1
Introduction

This document contains the literature review and subsequent project plan for an optimisation research
project about drone surveillance mission planning in wildlife conservation. The following chapter intro-
duces the domains of drone surveillance and wildlife conservation, as well as the motivation for this
particular project.
Furthermore, the problem that will be investigated is broken down in sub-problems, which are the back-
bone of the literature review.

1.1. Motivation for Research

Applications of drone surveillance
Unmanned Aerial Vehicles, also known as ”drones” or ”UAVs” have become more and more popular
in the past few decades. While kids and hobbyists have been having fun with small low range and low
endurance devices since a long time, the number of professional applications for drones have seen
an ever-increasing inclination the latest years. Especially the unique bird’s-eye view that a UAV has is
a major characteristic that makes them very interesting as carriers of visual sensors, mainly cameras
and infra-red sensors. This effectively removes the need of a human pair of eyes in the sky, with the
added advantages that most drones are smaller than human-carrying aircraft and can fly in conditions
that are not preferable for humans.
The use of drones for military surveillance is well known and goes back a long time, but the continuous
decrease in costs and increase in availability of reliable (semi-)automated flight control systems has
made drones available to the public as well, which are used widely in the movie and photography
industry. Also, visual inspection of high-voltage cables, windmills, pipelines and other equipment that
is hard to reach is increasingly done by UAVs.
Drone surveillance in the non-military domain is coming up as well. UAVs can cover large surfaces
quickly and even autonomously, which reduces the number of staff. This can be applied in the security of
large industrial sites or events, surveillance of traffic or maritime zones, and also in wildlife conservation.
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Wildlife Conservation
Wildlife on Earth is facing the largest threats of human presence ever. More and more forests are
destroyed for logging and farming, the ocean’s fish reserves are depleting, ice caps are melting, and
animals are being poached to extinction. Furthermore, water levels and temperature changes are
impacting habitats in such a way that the growth of food and keeping livestock becomes difficult and
leads to cattle and land theft, pollution and diversion of water sources, illegal fishing and grazing, etc.
These events, whether caused by human activity or not, need to be observed and studied in order
to be understood and managed. Multiple organisations are devoted to this, in any domain mentioned
above. The majority of these organisations, however, does not have the resources necessary to fulfil
their goals at 100%, but their activities are more important than ever and any improvement in their
resources and efficiency will help their causes.

The Eyeplane Case
One of the new developments in wildlife conservation is the use of drones to surveil protected natural
areas. These areas are usually several square kilometres and are hard to protect. Drones can be
useful to locate animals, spot fires and other natural hazards, or to detect poachers and other security
breaches. Next to conservation parks, large farms also suffer the same problems. Farmers in sparsely
populated areas in Africa have to deal with cattle theft and killing, as well as the presence of natural
predators on their domains.
These problems were also identified by Eyeplane, an organisation that aims to protect farms and wildlife
parks by means of drone surveillance1. Eyeplane is also a partner for this research. The scale of
Eyeplane’s wildlife surveillance is unprecedented in the domain and consists of large fixed-wing UAVs
that can fly autonomously for multiple hours in a range of hundreds of square kilometres. This new
application of such type of surveillance is challenging and requires innovative approaches to efficiently
manage the operations in order to effectively address the problems for which it aims to be a solution.
One of the tasks involved in drone surveillance is making a flight plan. For wildlife conservation, this
means that the flight plan must be so that the amount of useful observations by the drone (ranging
from detecting poachers to counting animals) is maximised within the operational limits, whether they
depend on the drone’s capabilities or on the available resources. The task can be summarised as to
know where to fly at what time, and to do that as efficiently as possible.

1.2. Problem Analysis
The focus domain of this research will be the apprehension of poachers over farmland and wildlife parks
in Namibia. Practically, the research will be tailored to the operational situation of Eyeplane in order to
be able to conduct tests to verify, validate and evaluate the theory and models that will be developed.
Adaptation of the theory and models to other situations in the wildlife conservation domain and beyond
will be considered as well. The operational situation for this research can be described as follows.
The plots of land that will be protected measure 80 𝑘𝑚ኼ on average and are distributed in a region with
a radius of approximately 100 𝑘𝑚 around a single base of operations. Surveillance will be done by a
fixed-wing UAV with a sufficient range and endurance to operate in the described area. The drone will
fly at an altitude of 100 to 200 𝑚 going at 80 𝑘𝑚/ℎ and is equipped with a camera and an infra-red
sensor that can be positioned in different angles.

1For more information about Eyeplane, the reader is invited to visit www.eyeplane.com

www.eyeplane.com
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In order to conduct a comprehensive literature review for the research, the problem is broken down
by means of sub-questions that need to be answered. The main question that needs to be answered
is:

How to plan the flight path for a UAV on a surveillance mission in order to minimise the number of
missed observations of attacks given its operational constraints?

A flight path, which is the route followed by an aircraft through the air, is usually composed of at least
an origin, a destination, and a route between both. The route between both is defined by selected way-
points. For conventional air travel, these waypoints are navigational beacons that guide aircraft through
selected airspace, but for surveillance, this is not the case. Moreover, the origin and destination are
often the same. The first subquestion will thus be

1. How to determine when and where to surveil?

For the surveillance problem, this translates to the question where surveillance should be performed
and which points are of interest to keep an eye on. This leads to the following questions:

(a) How should a waypoint be defined?

(b) How to evaluate the importance of surveillance of every point in the area?

Furthermore, there are multiple ways to fly between the different waypoints. The order in which they
appear in the route will determine how efficient the flight path is.

2. How to determine the optimal flight path between interesting points of surveillance?

This question, in turn, leads to the following subquestions:

(a) What is the most efficient way to calculate the optimal flight path?

(b) How is the flight path constrained?

Also, the desire to make use of the agent-based modelling paradigm results in a third subquestion:

3. How to represent this system of actors and their environment that need surveillance as an agent-
based model?

The first question is addressed in chapter 2 and the second question is addressed in chapter 3. The
choice of paradigm for this optimization research will be further elaborated upon in chapter 4. Finally,
the results of this literature review are summarised and form the basis of a research plan presented in
chapter 9.



2
Security: Where to Surveil

In this chapter, existing literature where similar security problems have been addressed is analysed.
The insight gathered by this analysis assists in defining what is required to find a solution for the security
problem.

2.1. Related Work
The security problem has been addressed multiple times in the wildlife domain. Currently, it focuses
mainly on delivering assistance in determining a patrol route or patrol strategy for foot patrols, in a rare
case assisted by a short-range drone [21], to intercept poachers and find traps/snares. However, the
main part of the security problem which is deciding where to patrol is applicable to the problem pre-
sented in this study as well.
Below, nine models with different takes on the problem are summarised. For each model, the summary
contains a description of the structure, the output and the expected quality of the results. It is impor-
tant to note that the majority of the models (in chronological order: PAWS, CAPTURE, INTERCEPT,
DTB+MRF, iWare-E, MINION) was developed based on the results each of them produced when ap-
plied to Uganda’s Queen Elizabeth National Park (QENP).
All models approach the problem by dividing the area that needs protection in square grid cells and try
to define the expectation of an attack (”attackability”) on every cell. Differences in the models can be
observed in the following aspects:

• Variable and invariable data that characterises every cell

• Application of data pre-processing

– If applied, what kind of pre-processing

• Method for estimating attackability

• Application of patrol planning

– If applied, the presence of constraints

– If applied, the method for patrol planning

25
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Sometimes some of the aspects can be tackled simultaneously within the model, like the estimation of
observability of an attack, which can be applied during the data pre-processing, or during attackability
estimations.
An overview of model characteristics is given in Table 2.1 and the data that every model assigns to
each cell in order to compute attackability and/or patrol routes is summarised in Table 2.2.
The presented models can be assigned to two groups, namely models that apply game theory for
attacker behaviour modelling, and models that integrated the attacker behaviour in the attackability.
This grouping has been adhered to below.

Models With Game-Theoretic Attacker Behaviour
The following three models use game-theoretic models to determine attacker behaviour. Game theory
as a straightforward method to model thy dynamics of the relation between a defender and an attacker,
since it allows to study the decision making of both based on their expected utilities, but the outcome
might not be the intention of any of the agents [23].

PAWS
First presented in 2014 by Yang et al. [26], PAWS is the first application of security games and learning
adversary behaviour in the field of wildlife conservation. The main problem that PAWS aims to solve
is the efficient allocation of resources in patrols in order to find traps and snares set by poachers. In
order to do so, PAWS consists of a model based on Subjective Utility Quantal Response Model (SUQR)
that captures behavioural uncertainty of a population of poachers by learning from identified (where the
poacher is known) and anonymous (where the poacher is unknown) data, after which it applies Stack-
elberg Security Games (SSG) as a framework to adapt patrol strategies to the poachers’ behavioural
model, which marked the start of so-called Green Security Games (GSG).
The data used by PAWS consisted of observations of animals and suspected illegal activity reported
by park rangers in QENP which spans an area of approx 2500 sq. km. The parameters of the poacher
data are estimated by Maximum Likelihood Estimation (MLE) by using identified data to correctly dis-
tribute the parameters over the anonymous data. The data is discretized locally in squares of 1km x
1km and the time is defined in ”game rounds”, which depend on when patrols take place and how long
they take (up to multiple days).
After testing PAWS in QENP development continued and improvements to PAWS have been presented
by Fang et al. [6]. Regarding poacher behaviour improvements were made by adding more complex
topographic features and handling uncertainties in species distribution. Regarding planning and prac-
tical applications of the model, improvements were made to ensure scalability and to adhere to patrol
schedules. The last version of PAWS was tested in Malaysian forests with a more complex terrain with
an average patrol visiting 22.67 grid cells in 4.67 days.

CAPTURE
CAPTURE is developed as an improvement of PAWS by Nguyen et al. [19]. Differences with PAWS
are the incorporation of imperfect observations by rangers, the temporal dependence of poachers’
behaviour on their past activities, and further enriching the set of data features that PAWS used.
CAPTURE’s behavioural model exists of two layers of which the first calculates the probability that a
target i will be attacked at a certain time t and the second layer computes the probability that the attack
is observed if the attack has taken place and the target was patrolled consecutively.
Furthermore, instead of an MLE, it uses an Expectation Maximisation (EM) method to estimate the
behavioural model’s parameters because an imperfect observation probability is available too. It also
introduces two new heuristics to reduce the computational costs of using an EM procedure to less
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than one-sixth of the original run time. These heuristics are based on reducing complexity by exploring
intrinsic properties of this specific game, namely the possibility to compute the attack probability and
the observation probability separately. Additionally, it is assumed that neighbouring cells with similar
properties will have similar parameters.
The patrols are planned by a game-theoretic model for single-step and multi-step patrolling. The single-
step patrol is solved by piecewise linear approximation of the utility function and the multi-step patrol
strategy is solved by non-convex solvers. This complexity is due to the temporal dependence and
detection uncertainty that complicate the utility functions. CAPTURE has also been tested on historical
QENP data and was found to outperform strategies based on SUQR, Maximin and historical real-world
strategies. For CAPTURE, the QENP data was further enriched and categorised in types of poaching
activity (commercial and non-commercial, animal, fishing, plants, etc.), grouped in one of four seasons,
and included net primary productivity (NPP).

MINION
Gholami et al. [10] presents the latest model for patrol route planning based on GSG’s. It stands
out between the other models presented in this literature review because of its ability to construct an
attacker behaviour model without the need of prior (error-prone) data ánd generating a constraint-aware
patrol schedule simultaneously.
MINION consists of two patrol planning algorithms that define a strategy. One is an online1 learning
algorithm called MINION-sm (”Sub Module”) and the other one is an ML-based algorithm presumably
similar to iWare-E by Gholami et al. [9]. MINION-sm is based on the FPL-UE algorithm (follow-the-
perturbed-leader with uniform exploration) [25] which frames the GSG as an adversarial combinatorial
bandit problemwith a trade-off at every round between exploration and exploitation of the domain based
on expected payoffs.
MINION itself evaluates the expected payoffs of both algorithms (although perturbed by artificial noise)
every round and chooses the best performing one.
To evaluate MINION it was compared with stand-alone versions of its two submodels. All models have
been tested with both a stochastic (stationary) and aQR (non-stationary) adversary behaviour model for
different mean absolute errors and rationality parameters respectively. For all the stochastic models, the
MINION algorithm’s results were superior. For the QR models, the MINION-sm algorithm outperforms
the others. The ML-based performs worst of the three since it relies only on prior knowledge and does
not take into account behavioural change of the attacker during the game.
The training and test data for MINION and its sub-models are from QENP, but the algorithm has not
yet been tested in the field.

Models With Integrated Attacker Behaviour
The models below directly calculate the attackability of cells without representing attackers separately.
The estimations are based on either regression or classification methods.

APE
Park et al. [21] introduce an algorithm that aims to find a coordinated route for rangers and drones
(short-range quadcopter drones) to protect a maximal number of animals in a game park at any given
point in time. In order to do so, they predict future locations of the animals as well as locations that
poachers would typically target. These predictions are used as input for the algorithm which produces
routes for the rangers with additional instruction on where to fly their drones. The routes are updated
1Online meaning that it has to make decisions and allocate resources with incomplete knowledge of the future, see Karp [15] for
more information.
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daily with hourly data, meaning that a prediction is made today for where rhinos will be on each hour
tomorrow.
APE was developed as two heuristic algorithms, one of which is local search-based and one that builds
on that by leveraging results using a genetic algorithm. The algorithms use Spatio-temporal graph
(STG) methods to define routes for the rangers and their drones and probabilistic Spatio-temporal
graphs (pSTG) to predict animal movements. Finding the optimal route is a process of spatio-temporal
optimisation (STO) The poachers are not modelled as agents and their behaviour is assumed to be
included in an attackability prediction model that assigns a probability of attack to a certain place on a
certain time of day based on Gaussian process regression (GPR).
The models are based on large and relatively precise sets of data about animal locations (GPS-tracked
rhino’s) and poacher attacks. Expert knowledge was also heavily introduced in the probability predic-
tions to estimate time-of-day of attacks.

INTERCEPT
In a different take to PAWS and CAPTURE, INTERCEPT was developed by Kar et al. [14] with a focus
on future attacks instead of finding past attacks. Furthermore, it improves on CAPTURE’s shortcom-
ings by taking a different modelling approach: instead of a complex game-theoretic behavioural model
that considers temporal relationships, it applies a democratic ensemble of five different decision trees
(DT) to model adversary behaviour. Advantages of this approach are the increased interpretability of
the model and the reduction of computational effort. Furthermore, even though DT’s do not usually
capture spatial correlations, a spatially-aware decision tree algorithm was developed in order to iden-
tify hot spots and use them as a variable for future predictions.
Apart from the invariable terrain features variable data as patrol effort and observed illegal human activ-
ity are collected as well for every grid cell. A cell is deemed attackable if the cell has ever been attacked
before, meaning that the time span of the training set is a factor that influences the result directly, and
that – contrary to CAPTURE – INTERCEPT lacks a fine temporal element in the behaviour prediction.
INTERCEPT was evaluated by comparing prediction results of CAPTURE (and some CAPTURE vari-
ants presented in the paper) and several machine learning methods with the data set of QENP used
previously for PAWS and CAPTURE. INTERCEPT performs significantly better for attackability pre-
diction while simultaneously being a faster and more interpretable method. The model has also been
evaluated during a period of one month in a real-world deployment over two areas of approximately
9 sq. km where the reported observations were higher than in historical data. It is important to note
that INTERCEPT does not provide detailed patrol planning, but only an attack prediction module. Fur-
thermore, it only determines if a target will be attacked or not, it does not provide a probability of being
attacked other then 0% or 100%.

Multiple Decision Tree Model
Gurumurthy et al. [11] presents another model based on decision trees to predict the attackability of grid
cells. The model presented in the paper relies on extensive topographic data, historic patrol data, and
positive (non-zero poaching activity), negative and unknown poaching activity data. The imbalance in
the data is addressed by artificial data augmentation and by eliciting information from domain experts,
which give threat level scores to clusters of cells (determined by k-means clustering) in the domain.
These aggregated scores are then used as another data point per cell.
The model consists of 1000 DT’s which each train on a different version of 10% of the total training
data. Their aggregated scores produce an attack probability for every cell. For evaluation different
data augmentation techniques have been used for differentiation between models, of which the version
that applied data duplication (DD), negative sampling (NS), and positive sampling (PS) proved to be
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the best performing one. Data duplication is the practice of duplicating positive examples in order to
balance the data set. For negative sampling, a portion of the unlabelled data is classified as negative
since most of the unlabelled data will be negative, and positive sampling adds unlabelled points with
a possible positive label to the positive data set based on the experts’ scores. Applying DD proved
crucial for good performance, and NS and PS only had a positive influence when added together.
An early version of the model augmented by DD and NS only was applied for patrol planning in the
Huang Ni He National Nature Reserve (75 sq. km) and was proven successful.

Neural Network
In the same paper, Gurumurthy et al. [11] also proposed amodel bagging 100 neural networks for attack
probability estimation. The networks had three layers, the first one having eight neurons, the second
one having four neurons and a single neuron for the final layer giving the probability. The same data
and data augmentation techniques were used to train and test the neural network as for the Multiple
Decision Tree model. The application of all data augmentation techniques (DD, NS and PS) also yield
the best results for the neural network method, although the performance is very poor compared to the
DT method.

Decision Tree Bagging + MRF Augmentation
Another example of the use of decision trees to determine poaching threats is presented by Gholami
et al. [8]. A novelty for this model, however, is a second layer of data processing with a spatio-temporal
model based on Markov Random Fields (MRF) which improves the prediction results relative to INTER-
CEPT and other well-known machine learning techniques. To estimate the MRF model’s parameters
Estimation Maximisation (EM) is used (similar to CAPTURE).
For experimentation with the MRF, the data was divided into time steps of one year each, and training
sets consisted of three consecutive years of data. Furthermore, different models were compared with
each other. A difference was made between a global model with one set of local parameters, and a
geo-clustered model with multiple sets of local parameters throughout the area. Both sets have been
applied to an MRF with spatial effects that took into account the effect of neighbouring cells and an
MRF without spatial effects. the best performing version was the geo-clustered data set with spatial
effects.
It is important to keep in mind that the MRF is only an augmentation of the prediction for targets that
are continually monitored, meaning that the targets have a data point for every time step in the time
span of the data set. Consequently, for a good performing model of this type, a large amount of data
is required, and the computational costs are still significant (see Table 2.1). The time span of the data
sets is multiple years, and one time step equals one year.
Next to being developed with the QENP dataset, the DT bagging + MRF hybrid model has been tested
extensively in real-life applications. The model was used in QENP over an area of 243 sq. km during
eight months, and proved to be successful with a catch per unit effort (CPUE) (observations of illegal
activities per 1 km patrolled) of 0.12 compared to the historical 0.04 in QENP.

iWare-E
Gholami et al. [9] present another model to address shortcomings from the model presented in Gholami
et al. [8]. Most notably, the model adheres to the temporal discretisation of three months instead of
one year. Also the run time for running this model with a finer discretisation almost eight times shorter
compared to the hybrid model (also run with a finer discretisation).
The iWare-E model also addresses the issue of imperfect observation and does that by training a set of
weak learners with different patrol effort thresholds. Since observations where deemed more reliable
the higher the patrol effort was, different patrol effort thresholds for weak learners result in different
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predictions. A votes power matrix is constructed based on the weak learner’s qualifications and is ap-
plied to determine a weighted average of the predictions to construct a final prediction of attackability
for every grid cell.
The data set is compiled in a combined matrix form including a predictive feature for every cell at every
time step and the corresponding variable and invariable characteristics of each cell.
Furthermore, iWare-E also presents a planning algorithm that first approximates the (black box) ML
through the use of piecewise linear (PWL) functions, to subsequently solve a mixed-integer linear pro-
gram (MILP) that maximises the probability of detecting attacks. Solving it as a GSG was considered
too, but for the continuous predictions that iWare-E provides using a GSG would either result in a loss
in solution quality for a coarse discretisation or very large run times for a fine discretisation.
iWare-E has been tested with a DT-bagging ensemble (noted as DTB and as a Support Vector Ma-
chine (SVM) bagging ensemble (noted as SVB) as weak learners. Both versions of the model were
compared against pure SVB, DTB and MRF models, and against the DTB-MRF hybrid model from the
previous section. For the aforementioned QENP data set, both iWare-E versions produced better or
similar results than the other models, but the version with DTB as weak learners was 7.5x faster than
the SVB version.

Overview and Discussion of Model Characteristics
This subsection contains two tables that summarise information about the models presented above.
Table 2.1 gives an overview of different model characteristics, and Table 2.2 gives an overview of input
data associated with each cell. With these tables and the summaries presented in the previous sec-
tions, it is possible to differentiate models based on the different problem characteristics and expected
results.

The first question that can be asked is whether enough data is available to calculate attack probabilities.
All but one model heavily rely on an initial data set that enables them to estimate correct parameters for
the predictions, and even the model that offers the ability not to rely on data is enhanced by the use of
it. It can be stated that if no data is available, an online game-theoretic model inspired by MINION-sm
would be an optimal choice to determine where to allocate the resources to protect them. Gathering
data during deployment is vital to improve future performance, and integration with an ML or proba-
bilistic model to generate predictions would enhance the performance of the overall model.

If data is available, the attackability results by CAPTURE versus the results of INTERCEPT, the DTB
+ MRF Hybrid model, and iWare-E prove that using relatively simple combinations of ML methods are
a faster and more reliable way than game-theoretic methods to model which cells are possible targets
and which are not. Depending on the available computational time more or fewer relations can be inte-
grated into the data. It is important to note that there are a lot of different classification and regression
techniques and that these consist of multiple parameters and variables that can be modified, meaning
that the results can vary heavily depending on the setup (for example, notice the difference in the ap-
plication of DTB’s by Gurumurthy et al. [11] and Gholami et al. [8]). All of the papers which applied an
ML technique, however, resulted in using DTB as the preferred method.
Furthermore, the effects of data pre-processing on the final results cannot be underestimated, as shown
by Gurumurthy et al. [11].
Next, it is important to evaluate what kind of data to use. Similarities in the state-of-the-art are the reg-
istration of distances to settlements, patrol posts, and sources of water, the slope of the terrain, and not
surprisingly the registration of animals and previous attacks and presence of hostile actors. Interesting
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to see is the estimation of connectivity and the probability of attack during a certain time of day that is
applied by APE. It can be suggested that these parameters are specifically interesting to ensure good
results on a fine temporal mesh.

This brings us to the topic of expected results. The presented models are all used for patrol by foot,
which is a significantly slower observation method then flying a drone. Furthermore, together with the
fact that finding snares is probably easier than catching poachers red-handed, this results in the fact
that time discrepancy is not required to be more precise than a few days (the time for a single patrol)
to a few months (the time for a seasonal patrol strategy) and often is only dependant on updating the
input data. APE is an exception, but for that model, the focus was more on real-time protection of a
specific number of animals on a relatively small area with the availability of very fine-grained data. It
is important to take into account the coarseness of input data to ensure a required level of temporal
and spatial discretisation in the results while taking into account that processing more data will always
result in larger computational complexity and longer computational times.
As can be seen in Table 2.1, it is hard to compare the performance of all models. There is no stan-
dardised metric that analyses the performance of the entire system. This is because of the differences
in (presence of) model components, which makes it hard to compare different models with each other.
Where possible, the model performance has been expressed relative to other models. It is important to
keep in mind that all aspects of a model can heavily influence its performance, therefore it is necessary
to select the components best suited for the situation and build a model with those components. After
all, the research is about optimisation.

At last, some of the models combine the calculation of the actual patrol route with optimising expected
results of the patrol. Both topics can be separated, but the combination proved to be efficient since
the patrol itself is an extra constraint that can help to eliminate non-feasible options in the solution space.
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2.2. Solution Techniques for Drone Surveillance
The following section makes a decision on which solution components would be best suited for the
drone surveillance security problem based on its differences with foot patrol route planning.

The Effect of Differences Between Foot Patrols and Drone Surveillance
The differences in the problems of the presented models and the drone surveillance problem are obvi-
ous. Where foot patrols travel at slow speed on the terrain itself, the drone will fly at an altitude ranging
between 150m and 200m at a minimum speed of 80 km/h. Furthermore, the area’s that are considered
for the models above are large conservation park measuring up to 2,500 square km with little internal
borders. The patrols, however, take place only over a few square km every time and are on the ground.
The environment for drone surveillance in the case with Eyeplane will consist of multiple, possibly dis-
persed, enclosed farms or private game parks of eight by ten square km on average within a region
approximated by a circle with a radius of 50 to 100 km. This will result in differences in the following
parts of the solver:

Temporal and Spatial Discretisation
The speed at which drone surveillance can be done will require an input that has a higher temporal
discretisation, but hopefully, its observations will also result in a higher level of discretisation than what
has been available for the ranger patrol models.
Spatial discretisation will depend on the problem size that can be handled within a certain computa-
tional time, but possibly also by the dimensions of the observation frame of the drone and the ability
to narrow down attacker locations (eg. due to their presence on roads, next to terrain borders, near
hiding spots, etc.)
Furthermore, it is important that the difference in speed with human beings will also result in a differ-
ence in rhythm of actions, in other words meaning that a drone can patrol every hour, but an attacker
might not be able to attack every hour.

Data
The ability to quickly scan the area to surveil allows to regularly generate precise data about the location
of animals relatively fast. Also, changes in the environment are noticed rapidly, for example regarding
the location of water.
It is important to realise that the areas are used commercially and can be very well documented and/or
will see relatively more human activity than large conservation areas.
The drone will also allow performing surveillance flights during the night, which might make it interesting
to add data regarding nighttime to the data set, e.g. moon phase [12].
Furthermore, the role of rangers, being the defenders in all presented models, will also have to be
evaluated to take into account their effect when surveilling attackers by drone.

Observabillity
Naturally, the method of observation is different for a human being than for a drone. The advantage of a
large overview, infra-red sensors and the ability to move faster than an attacker also knows downsides
like not being able to see through vegetation and other obstacle and being further away from the target.
It will not be possible to spot hidden snares or other small signs of human presence from high up in the
sky, meaning that actually seeing attackers is the only way to gather data about the attacker.
Next to observability by the drone, there is also the case of observability of the drone. This phe-
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nomenon is already introduced by Bondi [4] and will have to be investigated further.

Patrol Planning
Although the actual route between targets chosen to surveil is the main subject of the next chapter, it
is important to realise that the rapid rate of information gathering by a drone might be of use to adapt
flight route in real-time, for which the addition of real-time variable parameters is required.

Preferred Solution Model Components for Drone Surveillance
Given the expected differences presented above, the different aspects of a drone surveillance model
will be characterised as follows.

Data
For invariable data, similar types of data will be collected. This data is largely available as open-source
data on Google Earth and can be collected on-site.
Regarding variable data, it is expected that if available, initial poaching data for the development of this
model is not sufficient nor uniformly available for the total area to surveil. However, the fast expected
rate of patrol might result in rapid acquisition variable data that can subsequently be used.

Data (pre-)processing
Given that no poaching data is available initially, pre-processing the data to balance the positive and
negative data is not necessary. However, when data will be collected, initial class imbalances will exist
and will have to be taken into account.
The practice of spatial clustering of data that Gholami et al. [8] apply will be suitable considering that the
area that needs protection is composed of different smaller areas with their own distinct characteristics
(economic activity, accessibility, animal population, etc.).

Attacker Behaviour Model
The lack of initial poaching data narrows down the choice of approach that can be taken to solve the
problem. Consequently, the first step to model attacker behaviour will probably be most successful
when assuming no data is available and to develop a model inspired by MINION-sm. This means that
the problem will have to be formulated as a GSG adapted to the differences identified above.
An issue with this approach is that there is no comparable data to evaluate MINION’s results or run
time.
As observations of animals and poachers will occur over time, an algorithm that takes the new data
categories into account needs to be available as well. Given the expected fine-grained temporal dis-
cretisation of the data, it will be an option to estimate a real-time location of animals and to take that
data into account for a parallel probabilistic attackability model to enhance the results obtained by the
game-theoretic behaviour model.

2.3. Conclusion
Previously developed models that aimed at estimating place and/or time of attacks on wildlife conserva-
tion zones to assist in patrol planning are diverse in pre-processing data, methods of modelling attacker
behaviour, and planning the actual patrol route. Their similarities lie in the fact that all discretise the
are in a similar way, have been developed for slow, long-term patrols or even patrol strategies.
The main part of every model is the calculation of the probability of attack. This is either based on a
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game-theoretic model consisting of attackers and defenders, or by a probabilistic calculation that inte-
grates attacker behaviour merely as previous attacks. When little data is available, the game-theoretic
approach is deemed more successful. When large quantities of data are available, classic regression
or classification techniques provide a satisfactory result in a significantly shorter time.

To apply the presented techniques to the use of drone surveillance, notable differences need to be
taken into account regarding temporal and spatial discretisation, available types of data, relative speed
differences between attackers and defenders, observability and patrol planning. Adaptation of the
presented techniques is necessary and will result in an approach that combines game theory and clas-
sification/regression techniques, and provides fast adaptation to new input data.



3
Path Planning: How to Fly

A flight path of an aircraft is the trajectory that it follows through space as a function of time. Conven-
tional air travel which has as a purpose to transport goods or people usually has a flight path originating
in a certain point 𝐴 with as destination a certain point 𝐵. However, the actual path between those points
rarely is a straight line connecting both, but it is influenced by wind or air currents, dedicated (no-)fly
zones and other air traffic. This chapter will elaborate on the problem formulation of the flight path for
drone surveillance and how to solve that problem.

3.1. Flight Path for Drone Surveillance
Contrary to conventional air travel, the goal of surveillance is not transportation from 𝐴 to 𝐵, but rather
observation over several points, routes, or even zones, and the origin and destination of the aircraft
are usually the same. Based on the outcomes of the security problem in chapter 2 it can be stated
that the flight path will have to cover a certain number of high-risk grid cells in the region. It is yet not
possible to determine how exactly these points will be distributed, and there is also no possibility to
say how they will not be distributed. The range of possible relative locations is large, especially since
conditions can vary constantly and because the expected trade-off between exploration and exploitation
of the terrain does not allow for a confident intuitive estimate of a flight path. The most suiting general
schematic approximation of the flight path problemwould therefore be the Travelling Salesman Problem
formulation.

Travelling Salesman Problem
The Travelling Salesman Problem (TSP) figuratively addresses the following question: ”What is the
shortest possible route in a set of cities that visits each city once and returns to the starting city?”. This
problem is NP-hard and has been studied extensively as it is a good benchmark for optimization meth-
ods in a variety of applications. In general, the problem is modelled as a graph where the ”cities” are
the vertices, the ”paths” are the edges, and the distance is the edge’s weight (both sets of vocabulary
are used). The objective is to minimise the combined weights of all edges on the route.
The TSP can be modelled as a symmetric or an asymmetric graph. A symmetric graph has the same
weight connecting 𝐴 to 𝐵 as connecting 𝐵 to 𝐴, but an asymmetric graph might give a different weight
to travelling in the opposite direction. TSP’s can also be modelled with or without triangle inequality.

37
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A graph consisting of vertices 𝐴, 𝐵 and 𝐶 all connected to each other satisfies triangle inequality if the
direct route from 𝐴 to 𝐵 has lower or equal weight than the route from 𝐴 to 𝐵 through 𝐶.
There are different variations to the TSP that add specific requirements to the problem. The bottleneck
TSP tries to find the route with the minimal weight of the weightiest edge and the maximum scatter
TSP maximises the minimum edge weight. The generalised TSP, or ”travelling politician problem” is
formulated as ”states” with multiple ”cities” and one city of every state has to be visited. The partial
TSP solves a route for a certain amount of cities in the total set. In the prize-collecting TSP, every
vertex is also associated with a penalty, which becomes an added variable in the minimisation of the
total weight. Similar but more advanced is the travelling purchaser problem, where a purchaser has to
buy a set of products in several cities while minimising the total cost. Not all products are for sale in all
cities, and the cost per product can vary in every city.

Depending on the additional variables that will have to be taken into account for the drone surveillance
in Eyeplane’s case or for generalisation of the problem, the TSP-based problem formulation might vary.
For example, taking into account the wind and its changes over time might change the weights between
vertices in a way that the graphical representation of the problem becomes an asymmetrical graph that
does not satisfy the triangle inequality. Operational requirements or customer’s requests might result
in the addition of extra weights or costs to edges or vertices.
The choice of TSP formulation will also influence the choice of solution methods since not all solution
methods apply to all problem formulations.

3.2. Solution Methods for the Travelling Salesman Problem
In the long time that the TSP has been studied, multiple solution methods have been presented to solve
this NP-hard problem. The three main categories of solutions methods are exact solution methods,
approximation methods and heuristic methods. Depending on the specific TSP for which they have
to find a solution their relative performance will be different. The performance of the solution methods
is usually measured in time complexity and solution approximation. Time complexity is a function of
the inputs (often denoted with the Big 𝑂 method) and the solution approximation is the fraction of the
achieved solution over the optimal solution.
Furthermore, humans appear to be relatively good at producing solutions for the TSP as well.

Exact Solution Methods
Exact solution methods for the TSP are able to achieve the optimal result. The most straightforward
one is to calculate all possible routes and checking which one is the cheapest, also known as brute-
force search. This method requires the calculation of the factorial of the number of cities, which makes
it impractical for even a small number of cities (e.g. a graph with 10 cities and paths between all of
them would have 10! = 10 ⋅ 9 ⋅ 8 ⋅ 7 ⋅ 6 ⋅ 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 3, 628, 800 possible solutions).
Various linear programming-based algorithms and dynamic programming algorithms can solve the
problem in less computational time. The current best program to solve the TSP is the Concorde TSP
Solver which is based on branch-and-cut methods, combining branch-and-bound methods with cutting-
plane methods which systematically reduce the number of solution candidates [1].

Approximation Methods
The algorithms above might produce an exact solution but still require large computational times. In
practice, a solution that approximates the optimal solution but does so in a significantly shorter time is
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preferable. For smaller problem sizes, it might even reach an optimal solution. Approximation methods
trade off computational time with solution precision, but still require a mathematical proof that guaran-
tees the performance of the worst-case result [24].
A simple approximation algorithm is the nearest neighbour (NN) algorithm. Being a greedy algorithm, it
chooses the locally most optimal solution every step of the way, meaning it goes to the nearest unvisited
city at every move. This quickly generates a short route, but can also generate uniquely bad results,
especially when used on asymmetric graphs [2]. A similar version is the nearest fragment algorithm,
that connects groups of unvisited cities and solves those groups internally. This reduces the risk of
costly connections when the number of remaining unvisited cities decreases.
A very well-performing approximation algorithm is Christofides’ algorithm, that is based on Euler’s The-
orem that states that in order to have a path over a graph that visits every edge exactly once, it is
required that all vertices have an even number of edges. Knowing this, an optimal Eulerian graph can
bemade by finding aminimum spanning tree andmatching the odd vertices. Finding the Eulerian graph
with the available edges is a route for the TSP as described by Christofides. This method guarantees
a lower bound of 1.5 the optimal solution.

Heuristic Methods
Heuristic methods also try to approximate the result in a faster way, but unlike approximation methods,
there is no mathematical proof for the quality of the lowest result and thus no proof of whether the
solution might succeed at all. However, they are capable of finding very precise results for graphs with
a lot of vertices.
In general, 𝑉-opt heuristics are considered to be the best performing heuristics for the TSP. Its main
principle is based on making a random tour and iteratively removing a variable number of 𝑉 edges and
reconnecting the segments to make a shorter tour. A variation of 𝑉-opt is 𝐾-opt, where the number of
replaced edges is constant.
Match Twice and Stitch by Kahng and Reda [13] is another heuristic that first makes two sequential
matchings creating two cycles and subsequently stitches both cycles to create one tour.
Insertion techniques rely on creating a tour with a subset of the available nodes and looking to include
the nodes afterwards. When considering the exclusion of nodes as well, these methods can be used
for optimal route planning with maximal time or distance constraints.
Many heuristics that are developed for combinatorial optimisation in general also can be applied suc-
cessfully to the TSP, like the tabu search methods. Also, methods inspired by natural phenomena are
applied to the TSP like genetic and evolutionary algorithms, simulated annealing algorithms, ant colony
optimisation, swarm intelligence methods and artificial neural networks.
Heuristic methods are also often used in combination with approximation methods. For example, one
of the best performing 𝑉-opt algorithms uses genetic mutation to escape possible local optimums where
the algorithm converges to.

Human Performance
When presented with a graph of 10 to 20 cities, humans tend to outperform several heuristics and can
often achieve the optimal solution. Even for graphs up to 120 cities, the performance was on average
11% above the optimal solution [17]. The performance can vary greatly from individual to individual, and
the graph geometry or distribution of the cities is suspected to play a large role as well. Nevertheless,
it can be interesting to make use of an initial solution given by humans and try to improve them using
the methods above.
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3.3. Solution Method Selection
Choosing which solution methods are best suitable for the flight path problem will greatly depend on
the constraints that will be formulated for that problem and on the results produced by the security
problem.
The constraints, that will result from technical details, drone specifications, customer requests, the
weather, etc. will determine what kind of graph is most suitable to represent the situation as a whole.
The results from the security problem will greatly influence the graph geometry [5].
Not all methods produce satisfactory results within adequate time. It is known that certain graph dis-
tributions can make the NN algorithm produce the worst results for example, and fast convergence of
genetic algorithms is not always certain.
The uncertainty in specific problem formulation and the large set of solution methods with many vari-
ations in performance regarding the problem formulation requires to better study the problem first. In
order to do that efficiently, the results from the security problem will be awaited first. Together with a
more in-depth case study with Eyeplane, the flight path problem and preferred solution method will be
studied for the testing phase.
Lastly, it is also important of evaluating the effect of the flight path on the performance of the drone
itself and the execution of the calculated security strategy.



4
Agent-Based Modelling & Simulation

4.1. Introduction to Agent-Based Modelling and Simulation
As the name suggests, agent-based modelling (ABM) is a technique for modelling a system by defin-
ing characteristics of agents in that environment. These characteristics can be a goal or an interest,
physical attributes, and movements, but also behaviour versus other agents or the environment. These
characteristics might change over time or change conditionally based on different inputs from the en-
vironment or other agents. The environment can be defined as an abstract space, but it can also be
given characteristics to the extent that it can replicate real-life complexity.

The core idea of agent-based modelling and simulation (ABMS) is to create a bottom-up multi-agent
system (MAS) in order to investigate complex phenomena by simulation of the system. These phe-
nomena consist of the emergence of global behaviour or unforeseen patterns in the system resulting
from the actions and interactions between agents and/or the environment. This approach makes an
agent-based simulation (ABS) particularly suitable to analyse complex adaptive systems and it has
been applied in a wide range of subjects in the fields of engineering, computer science and mathemat-
ics, but also psychology, biology, economics and environmental sciences [20]. In line with Klügl and
Bazzan [16], ABMS will be used to refer to the paradigm in general, ABM for the task of modelling and
ABS for the execution of the simulations.

4.2. Advantages and Limitations of Agent-BasedModelling andSim-
ulation

The main advantage of ABMS is the ability to model and study a system whose global system dynamics
are not represented by a set of equations. This ability comes with the following traits [3]:

• ABMS can capture emergent phenomena

• ABMS provides a natural representation of a system

• ABMS is flexible

This entails that ABMS has some practical advantages. The ”natural” origin of the construction of the
model makes it easy to construct and easy to translate back into practice since it is possible to eas-
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ily identify which changes to specific components result in changes to the system’s performance, or
components could easily be added or removed. This also offers direct and specific experimentation
(”what-if” experiments) to evaluate the system. Furthermore, the availability of information at the indi-
vidual level and at the system level offer more validation options. The model output can be compared
with the real system behaviour, and the definition of the agents and environment can be compared to
local observations on the actual behaviour of the components in the system that are to be represented
[22].

For simpler systems, however, or for systems where assumptions allow the system to be generalised,
ABM might be more time-consuming than an equation-based model
Also, for natural representation of large systems with a lot of different agents, a large parameter space
results in extensive work to model, simulate and validate the system. This is especially true when not
all information about agents is available, or when the individual behaviour of agents is not rational or
straightforward. Huge numbers of agents will also result in simulations that take a lot of time.
Furthermore, not every system is suitable to be modelled this way. If it is not clear how to identify
different components of a system as agents, ABMS is not an optimal choice to analyse the system.
Also, for systems with well-defined input-output relation or non-autonomous behaviour, or when an ex-
plicit model or a formal analysis of the model without simulation are required, more suitable modelling
methods are available [7].

4.3. Multi-Agent System Representation of the Mission Planning
Problem

The choice for modelling the drone surveillance mission planning problem as a multi-agent system is
straightforward when considering the different components of the problem.
However, when using ABMS some challenges will arise. These are described below.

System Components
Environment
The area where the surveillance takes place will be modelled as the environment. The discretisation
of the area will be done by means of a square grid, which result in the grid cells that have been dis-
cussed in chapter 2. In ABMS lexicon, these grid cells are called objects that together constitute the
environment and where agents can act upon.
All objects can be assigned variable and invariable characteristics, just like presented in Table 2.2.

Agents
The actors in the surveillance system are classified into three different categories:

• Assets: anything within the area that needs to be protected e.g. cattle, wildlife, civilians, etc.

• Attackers: anything that trespasses the area and can cause harm to the assets e.g. poachers,
predators, enemy soldiers, etc.

• Defenders: the ones tasked with the protection of the assets e.g. rangers, police officers, soldiers,
etc. and/or UAVs.

If the formulation of models presented in chapter 2 is closely followed, drones will also be modelled as
a type of defender. This is most probable, since the practical implementation of the drone surveillance
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will not account for control over defenders, and the observational roles between both are similar in
essence. Their existential characteristics, however, are very different, for which the choice might still
be made to model them as a completely different agent category.
All actor types have different goals and characteristics and are fairly autonomous, which makes ABMS
a suitable way to represent them.
Furthermore, Parunak et al. [22] concluded that ABMS is most appropriate for ”domains characterised
by a high degree of localisation and distribution and dominated by discrete decisions”, which is exactly
what the system of actors in this system represents.
In general, the distinction can be made between two types of agents, reactive and proactive agents.
Reactive agents solely react to changes in their environment, whereas proactive agents are also able
to process those changes with an internal model. They can also be described as having a goal and a
plan to achieve that goal. In relation with the drone surveillance problem, the assets will be sufficiently
represented by a reactive agent (or even be reduced to a characteristic of the object corresponding to
their location), whereas attackers and defenders are definitely proactive agents, enabling them among
others to interact in the ways defined by the GSG.

Inter-agent and agent-environment relations
The behaviour between the agents and the agents and the environment is only known at the local level,
and the global dynamics of the problem are not easily identifiable on first sight. ABMS will reveal what
global and individual behaviour can be expected given the information that is available about current
individual characteristics and relationships.
The relationship types in the drone surveillance problem are as follows:

• Environment - Agents
Agents can observe the environment. The exact information available to the agent and how it will
be processed will depend on the agent itself.

• Assets - Attackers, Defenders
The assets will be observable by the other agents and are able to observe each other. Whether the
assets will be able to observe the other agents and what their reaction will be is to be determined.

• Attackers - Defenders
The direct relationship between attackers and defenders is that they will be able to observe each
other. The negotiation by means of game theory is based on a combination of these observations,
observation of the environment and assets, and the subsequent predictions made based on these
observations.

Challenges when using ABMS
Solving the drone surveillance problem in ABMS will also present some challenges and disadvantages.
For one, the entire system is rather complex in reality, and determining to what level this complexity
(e.g. rationality) should be modelled is a topic that will emerge while modelling.
Furthermore, ABM’s are not easily backed up mathematically, since it might be hard or even impossible
to generalise the emergent behaviour that results from the system. This will make it different to validate
and for other parties to understand with relation to conventional stochastic models.
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5
Model Elaborations

In this chapter, more information about the agent-based model is presented. The aspects that are
elaborated upon are a more detailed account of all assumptions, in section 5.1, and a more specific
description of the observation model can be found in section 5.2.

For illustrative purposes, Figure 5.1 presents a diagram showing the specific relations between dif-
ferent parts and variables of the model.
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Figure 5.1: Diagram of the components of the Agent-Based Model and their interactions that occur during one round.

5.1. Assumptions
In this section, all specific assumptions regarding the agent-based model are listed. They are cate-
gorised according to the model component they apply to, either the environment, the defender, or the
attacker.
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Environment
1. The environment is considered two-dimensional, meaning the effect of elevation variation on the

terrain is not taken into account.

2. The environment is static throughout the duration of the game, e.g. the impact of moving animals,
changing vegetation, or amount of sunlight is not considered.

3. The discretization of the environment depends on the field of view of the drone.

Defender - drone
1. The drone flies at a constant speed.

2. The drone flies at a constant altitude.

3. The drone flies straight from waypoint to waypoint on its route.

4. The drone has a constant field of view.

5. The observational capacity of the drone is perfect. In other words, if the defender covers an entire
target where an attacker is present, the chance the attacker is observed is 100%. If the target is
only partially covered, the chance the attacker is observed is relative to the fraction of the covered
area of the target.

6. The duration of the patrol flight is the duration of the round.

7. The nature of the game implies that when an attacker attacks, the defender always defends
simultaneously.

Attacker - poacher
1. In a single round, one attacker attacks one target.

2. The attacker is located at the target it attacks for the entire duration of the round.

3. Attackers cannot attack the same target during the same round.

4. Attackers do not coordinate their attacks during the same round.

5. If multiple attackers are of the Quantal Response type, they are aware of how many times they
have been observed by the defender at a certain location previously in the game.

5.2. Details on observation algorithm
This section explains step by step how the observation model calculates which targets are covered in
a certain route by the defender and what the fraction of coverage is per cell.
In short, as explained in the paper, the algorithm draws a rectangle of width 𝑤 = √2𝑙ኼ, where 𝑙 is the
width of a target, and length 𝑑።,፣ +𝑤, where 𝑑።፣ is the distance between targets 𝑖 and 𝑗, so that arc 𝑎።,፣
coincides with the longest centerline of the rectangle. Afterwards, for every target that has an overlap
with this rectangle, the fraction 𝑓𝑟𝑎𝑐። of the observed area of the target over the total area of the target
is calculated. The exemptions to this are the starting point 𝑖 and the targets right next to 𝑖 and 𝑗 that
are not in the line of the path, in order to prevent them to be counted twice.
As an example, a schematic of coverage between target (1, 1) and (5, 2) is shown in Figure 5.2, where
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𝑓𝑟𝑎𝑐። > 0 for targets (2, 0), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3) and (5, 2). this example will be
used throughout this section. The explanation is broken down by describing the input, determining
where the rectangle is situated, and calculating what the observed fraction of the covered targets is.

0 1 2 3 4 5 6

0

1

2

3

Figure 5.2: Coverage between target (ኻ, ኻ) and (኿, ኼ).

Input
The input to the observation algorithm are the coordinates of two consecutive waypoints 𝑖 and 𝑗 deter-
mined by the path planning algorithm. These coordinates are the centerpoints of the cells that make up
the grid that represents the environment. For calculating the observed fractions of cells for the entire
route, the observation algorithm is run for every consecutive pair of cells in the flight path determined
by the path planning algorithm.

Drawing the rectangle
To draw the rectangle, the location of the corners of the rectangle has to be determined. To do that,
we first choose the cell with the lowest 𝑥 coordinate as the starting point 𝑠𝑡𝑎𝑟𝑡 and the other cell as
endpoint 𝑒𝑛𝑑 and determined the slope 𝛼 of the arc between those points in that direction relative to
the 𝑥 axis. In the example, point (1, 1) is the starting point and point (5, 2) is the endpoint.
With this information, we can calculate the location of the four corners 𝑐ኻ, 𝑐ኼ, 𝑐ኽ and 𝑐ኾ of the rectangle.
As an example, the equation for the (𝑥, 𝑦) coordinates of corner 𝑐ኻ is given in Equation 5.1

𝑐ኻ = (𝑥፬፭ፚ፫፭ −𝑤/2 ∗ √2 ∗ sin (𝛼 +
3
4𝜋) , 𝑦፬፭ፚ፫፭ +𝑤/2 ∗ √2 ∗ cos (𝛼 +

3
4𝜋)) (5.1)

In Figure 5.2, 𝑐ኻ is the corner in cell (0, 0). We call 𝑐ኼ, 𝑐ኽ and 𝑐ኾ the corners in cells (6, 1), (6, 3), and
(0, 2) respectively.
Now the line segments between the corners can be defined. They represent the boundaries of the
drone’s field of view. they are defined as follows:

Table 5.1: Starting- and endpoints for the sides of the rectangle defining the field of view of the drone between two waypoints.

Line From To In example figure
𝑙ኻ 𝑐ኻ 𝑐ኼ ’bottom’
𝑙ኼ 𝑐ኼ 𝑐ኽ ’right’
𝑙ኽ 𝑐ኽ 𝑐ኾ ’top’
𝑙ኾ 𝑐ኾ 𝑐ኻ ’left’
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Determining cell coverage
The first step is to identify all cells that are covered. This is done by calculating which cells’ centerpoints
are within distance 𝑤 of the centerline between 𝑖 and 𝑗.

Secondly, from the cells in the initial selection, cells that we choose not to take into account are identi-
fied and removed from the selection. These cells are the corner cells, other cells at the extremities of
the rectangle, and the starting points and endpoints themselves. They are marked with black crosses
in Figure 5.2. Note that in the figure, the endpoint is not discarded for illustrative purposes, showing
that the waypoints are not discarded in the final observation calculation. These are not considered
covered, since subsequent observation calculations between the last waypoint in this calculation and
the first following waypoint on the route will possibly have overlapping rectangles. We chose to make
the conservative choice of not counting them at all rather than twice. The coverage of the waypoints
themselves is added separately later on.
The corner cells are already identified in the previous subsection. The other cells at the extremities are
identified by looking at the direct neighbours of the corner cells that are also in the initial cell selection.
We assume the coverage of these discarded cells to be 0%.

Lastly, we look at the covered areas of the remaining cells in the selection, e.g. all cells that are
not crossed out and (partially) covered by the red rectangle in Figure 5.2. It can be observed that the
rectangle boundary always divides the cell either in (a) a triangle and an irregular pentagon, or (b) two
trapezoids. By determining the points on the cell boundaries where the rectangle and cell boundary
intersect, it is possible to determine if it is divided like (a) or like (b) and to calculate the areas of the two
parts. When the points are on parallel cell boundaries, it is situation (b), and it is situation (a) otherwise.
To determine which part of the cell is covered and which part is not, the distance from the centerpoint
of the cell to the centerline of the rectangle can be used. If the distance is > 𝑤/2 the smallest of the
two parts of the cell is covered (see cell (2, 0) in Figure 5.2). If the distance is < 𝑤/2 the largest part of
the two parts of the cell is covered (see cell (2, 1) in Figure 5.2). If the distance is exactly equal to 𝑤,
half of the cell area is covered.

After calculating the covered area of every cell, this area is divided by the total area of the cell to
arrive at the fraction of coverage of every cell. This fraction now represents the chance that an attacker
is observable if he has attacked that cell during the current round.



6
FPL-UE parameter values

This chapter discusses the proof presented for the upper regret bound of the FPL-UE algorithm by Xu
et al. [25]. More specifically, the validity of this proof for our research is argued, since we use it to
determine the values of the model parameters 𝜂, which defines the noise factor 𝑧, 𝛾, which controls
the balance between exploration and exploitation, and 𝑀, which is the number of simulations by the
Geometric Resampling (GR) estimation. These parameters are directly implemented as part of the
FPL-UE algorithm that is incorporated in the online learner. The mathematical proof for the FPL-UE
algorithm is described in the paper by Xu et al. [25]. The reader is advised to consult the proof before
reading this section.

First, the following lemma stated by Xu et al. [25] is discussed. It was proved by Neu and Bartók
[18] and recaptures the bias of estimations from the GR method.

Lemma 1:
𝔼 (𝑟፭,። ∣ ℱ፭ዅኻ) = (1 − (1 − 𝑝፭,።)

ፌ) 𝑟፭,። (6.1)

Let 𝐹፭ዅኻ denote the history information of the game by time 𝑡 (exclusive). Furthermore, as stated in this
research, 𝑟፭,። is the estimated reward of target 𝑖 at time 𝑡, 𝑝፭,። is the probability that target 𝑖 was chosen
during round that round, and 𝑟፭,። is the actual reward associated with target 𝑖 at time 𝑡.

The main difference between MEOMAPP’s OL and the FPL-UE algorithm is the addition of the path
planning algorithm. The path planning algorithm tries to find an optimal path using the targets selected
by the FPL-UE algorithm in the OL. However, not all targets put forward by the FPL-UE algorithm are
included in the path by the path planning algorithm. This results in a different 𝑝፭,። by the online learner
in this research compared to the 𝑝፭,። that would be produced without the path planner. However, we
argue that lemma 1 still holds for the OL in MEOMAPP. The estimation of 𝑝፭,። associated with those
targets is still performed by the GR algorithm. This means that 𝑝፭,። is still geometrically distributed, and
thus the proofs presented by Neu and Bartók [18] still holds. The same notion of coverage probability
is used throughout the rest of the proof by Xu et al. [25], meaning it is valid in that aspect.
Where the proof differs is in the notion of 𝑘, the number of protected cells by the defender. Xu considers
this a constant in the experiments, where 𝑘 can differ in MEOMAPP depending on howmany waypoints
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the path planning algorithm includes in its path. To achieve a smoother variation of 𝜂 and 𝛾 we choose
to average the number of selected waypoints as the game progresses to arrive at a gradually less
variating substitute value of 𝑘. Considering the similar basis of estimating 𝑝፭,። and the approximation of
𝑘, the proposed equations for 𝜂, 𝛾 and 𝑀 can be used to determine their values in MEOMAPP. Those
equations are:

𝜂 = √ 𝑘(log𝑁 + 1)
𝑚𝑇min{𝑚, 𝑘} (6.2)

𝛾 = √𝑘
√𝑚𝑇

(6.3)

𝑀 = 𝑁√𝑚𝑇𝑘 log(𝑇𝑘) (6.4)



7
Plausibility checks

This chapter treats the plausibility checks that have been performed on the agent-based model used
to simulate and evaluate MEOMAPP. Table 7.1 summarises specifically the principal tests that have
been performed on each model component.
In general, the following types of plausibility tests have been performed:

• Limiting case tests: setting parameter values to boundary values (or approximating boundary
values in case of infinity). The solutions to these limiting cases are usually straightforward and
easy to check.

• Magnitude checks: usually it is possible to determine an expected range for a certain solution. In
a magnitude check, solutions are checked to be within this range.

• Constant of motion check: verifying if expected constant values remain constant throughout the
calculations, e.g. probabilities must add up to 100% at any point in time, or the number of attacked
cells must correspond to the number of attackers.

• Visualisation: check visually on plotted data if the numerically computed results and correspond-
ing behaviour are correct.

Table 7.1: Principal plausibility checks performed on agent-based model for simulating MEOMAPP.

# Model component Performed test
1 Environment
1.1 Calculation of ground truth

probability for attackers and
human expert, based on at-
tackability score

Probabilities of all cells add up to 100%

1.2 Human expert coverage
probabilities disturbed by error
factor

Probability of individual cell is within [0,1]
1.3 MAE of total probability vector compared to the

ground truth is approximately equal to the error fac-
tor.

2 Defender
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2.1
GR algorithm

Number of samples does not reach self-imposed ar-
tificial threshold of 100 samples

2.2 Value of estimated reward gets updated with an in-
teger multiple of twice its utility

2.3 Noise factor Noise values have exponential distribution
2.4

Path planning algorithm

Length of the route was under specified range
2.5 Setting range to 0 results in only the base being

considered for the ”route”
2.6 Manual recalculation of the total estimated reward

values of a random route
2.7 Operation on simplified network with extreme esti-

mated reward values produced foreseen results
2.8 Waypoints were connected to exactly 2 arcs (deter-

mined visually)
2.9 No subtours present in calculated route (deter-

mined visually)
2.10 No crossing lines in route (determined visually)
2.11

Observation model

Manual recalculation of expected rectangle corner
locations in trivial cases

2.12 Manual recalculation of intersections between cell
and rectangle in trivial cases

2.13 Manual recalculation of covered cell areas in trivial
and non-trivial cases

2.14 Numerically calculated covered cell areas corre-
spond with with plotted rectangle (determined visu-
ally)

2.15 Particular intersection cases tested and accounted
for: rectangle gradient on 0, 90 and 270 degrees
(sin or cos values equal 0) and 45 and 315 degrees
(rectangle intersects with cell corners)

2.16 Discarded cells are selected correctly (determined
visually)

2.17 Evaluate if output of observation model corre-
sponds with the input from the path planning algo-
rithm

2.18
Expert selection algorithm

Expert selection starts at correct step (determined
visually)

2.19 Expert reward changes correspond to respective
changes in expert selection

3 Attackers
3.1 Likelihood that a target is de-

fended
Outcome corresponds to ration of observations of
the attackers by the defender over total rounds of
the game.

3.2 QR attacker attack probability Probabilities of all cells add up to 100%
3.3 No attackers on the same tar-

get in the same round
Total attacks at the end of the game is equal to the
amount of attackers time the amount of rounds
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4 General
4.1

Average regret
The average regret value is never higher than the
number of attackers

4.2 The average regret value over time shows the same
conversion trend as results in previous research
(determined visually)

4.3 Exploration / exploitation The choice between exploring and exploiting fol-
lows the change in 𝛾 (determined visually)
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Overview of experiment results

This chapter contains the plots of all experiments discussed in the research paper.
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Figure 8.1: Simulation results from the baseline model with QR adversary on the left and STC adversary on the right.
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Figure 8.2: Simulation results of the baseline model against the QR adversary with ፑ ዆ ኻ኿ on the left and ፑ ዆ ኽ኿ on the right.
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Figure 8.3: Simulation results from the base model with the HE’s ᎒ ዆ ኺ against a QR attacker on the left and an STC attacker
on the right.
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Figure 8.4: Simulation results from the baseline model with the፦ ዆ ኽ against a QR attacker on the left and an STC attacker on
the right.
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Figure 8.5: Simulation results from the baseline model with the፦ ዆ ኿ against a QR attacker on the left and an STC attacker on
the right.
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Figure 8.6: Simulation results from the baseline model on a 20x20 cell grid against a QR attacker on the left and an STC attacker
on the right.
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Original Research Plan

The original research plan was a deliverable in the initial phase of the graduation assignment and
followed on the Literature Review in Part II. It is important to note that the research plan changed
significantly during the research due to practical changes in the initial data availability and testing op-
portunities. The changes to the research plan have not been documented following the standards for
the initial deliverable, therefore only the original research plan is included in this report.

9.1. Summary of the Literature Review
This literature review gives an insight on how to provide an answer for the main question of a drone
surveillance mission planning research. The main research question reads

How to plan the flight path for a UAV on a surveillance mission in order to minimise the number of
missed observations of attacks given its operational constraints?

From this question two sub-questions were derived, which formed the backbone of this literature review:

1. How to determine when and where to surveil?

(a) How should a waypoint be defined?

(b) How to evaluate the importance of surveillance of every point in the area?

2. How to determine the optimal flight path between interesting points of surveillance?

(a) What is the most efficient way to calculate the optimal flight path?

(b) How is the flight path constrained?

Question one was treated in chapter 2. The situation has been approached as a security problem
in wildlife conservation. To provide more insight into the domain, related works about patrol planning
for wildlife parks have been studied, along with the algorithms they propose to address this type of
problem. After investigating the differences and similarities between foot patrol routes presented in
the literature and this specific drone surveillance problem, it has been concluded that the area that
has to be protected will be discretised in square cells forming a grid. The size of the cells is still to
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be determined based on the required run time and computational power. These cells are the poten-
tial waypoints, which answers question 1.(a). Furthermore, it has also been decided that establishing
which cell to surveil and which cells not to surveil is dependent on the probability they will be attacked
and on the goal of exploring the area in general. Therefore, the relationship between attacker and
defender will be formulated as a game in the class of Green Security Games (GSG) and the game will
be solved by an algorithm based on game-theoretic utility, where possible augmented by a machine
learning classification algorithm dependent on collected data. This answers question 1.(b).

Question two was treated in chapter 3. The chosen problem formulation for the flight path problem
is the Travelling Salesman Problem (TSP). While investigating different formulations of the TSP and
their solution methods, it has been observed that there is a difference in the relative performance of
the solution methods depending on the formulation of the TSP. However, the exact TSP formulation
for the flight path problem for drone surveillance cannot be determined yet. For one, this is due to the
current lack of understanding of the local situation regarding operational constraints and stakeholder
requirements. Secondly, the graphical representation of the TSP is dependent on the results of the
security problem, which are not known yet either. Therefore, question 2 has only been addressed in a
general manner, and a specific solution method will be presented during the research itself.

Furthermore, the choice to do this research based on the agent-based modelling paradigm (ABMS)
is explained in chapter 4. ABMS is the paradigm of choice since it allows to comprehensibly represent-
ing a complex system like the one that is the case for this research. Furthermore, it is a paradigm that
is capable of producing (un)expected emergent behaviour.
The representation of the drone surveillance system can be summarised as follows. The environment
is represented cell by cell as objects with their respective characteristics. It and can be observed by the
assets (animals, people, etc.), attackers (poachers, predators, etc.), and defenders (rangers, drones,
etc.) who are modelled as different agents. The different agents have their respective characteristics
and can interact with each other. Assets are expected to be reactive agents, and attackers and de-
fenders will be proactive agents capable of observing each other and advanced processing of those
observations and observations from the environment.

9.2. Knowledge Gap
Looking at the two subquestions, it is safe to say that the flight path problem can be solved optimally
with existing knowledge. The TSP is a well-researched problem for decades and its multiple variants
have been solved by a multitude of exact methods, approximation methods and heuristic methods.
The main gap is in the formulation of a GSG for drone surveillance in wildlife conservation. The effect
of its differences in speed, range and observational capacity is unknown and will be an area of interest
for new insights.
Furthermore, it can be said that the development of GSG’s for models with no historical data is at a
very early stage. It will be interesting to study the effect of the player variation on the performance of
such a game-theoretic model.

9.3. Research Questions
The objective of this Master Thesis Project is to develop a tool that aids in planning surveillance mis-
sions for UAVs to protect wildlife. More specifically, the tool is to be tested with and used by Eyeplane
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in order to optimise their surveillance missions over farms and wildlife parks in Namibia. The system
and its components are to be represented by an agent-based model.

The main question this research aims to answer is

How to plan the flight path for a UAV on a surveillance mission in order to minimise the number of
missed observations of attacks given its operational constraints?

The following questions were the basis that structured the literature review and so the preliminary
research.

1. How to determine when and where to surveil?

2. How to determine the optimal flight path between interesting points of surveillance?

With the insight provided by the literature review, some follow-up questions where derived and pre-
sented below.

1. How to determine when and where to surveil?

(a) What is the most suitable variable and invariable data to characterise targets?

(b) What is the best method to optimise historic attack data for classification?

(c) What if the effect of the faster gameplay on the Green Security Game?

(d) How will the GSG be affected by possible observation of the drone?

2. How to determine the optimal flight path between interesting points of surveillance?

(a) What is the influence of the flight path on the observation capacities of the UAV?

The implementation of this problem as an agent-based model also results in follow-up questions:

3. How to represent this system of actors and their environment that need surveillance as an agent-
based model?

(a) What is the effect of themodel complexity (or adherence to reality) on themodel performance
and the outcomes of the strategy in real-world situations?

9.4. Project Plan
The project plan is derived from the problem structure and adjusted to the available time and knowledge.
It consists of two phases of development and testing to allow for a gradual improvement of the model
with two opportunities for tests and validation.
The following sections elaborate on items in the Gantt chart as far as possible.

Literature Study
This report marks the end of the literature study.



9.4. Project Plan 61

Model Development Phase 1
The initial development of the model consists of multiple simultaneous tasks, of which the most impor-
tant is the development of the game-theoretic model representing the attacker-defender behaviour and
resulting in attack probabilities for the grid cells. At the same time, the acquisition of the right Python
programming language skills in Python to be able to model the system as an agent-based model. After
the theoretical definitions, the actual modelling and subsequent verification can start.
Furthermore, it is important to start gathering as much data as possible right away to define assump-
tions and constraints that will influence the problem space for the models and algorithms.
Given the results from the security problem, an analysis of the path planning solution methods can be
done.
It is important to have a result towards the end of development phase 1 in order to prepare implemen-
tation instructions for field tests with Eyeplane from August onward.
The goal is to deliver a working iterative model that can provide a new mission plan strategy after every
flight.

Validation Phase 1
The validation phase will start with Eyeplane implementing the new surveillance mission strategies.
Eyeplane will also be gathering data from their operations before the testing period, and the goal is that
they continue doing so. These test results can then be analysed, after which changes to the model
parameters can be done and testing can be continued with the adapted model.
At the same time, the report and presentation for the midterm evaluation can be prepared.

Development Phase 2
The goal for development phase 2 is to investigate the use of real-time observation data for real-time
flight plan adjustments. Given the familiarity with the problem, the task of modelling and the developed
algorithms, and the availability of data, a little less time is reserved for this development phase.
The goal is to deliver a workable model to Eyeplane for the subsequent testing and validation phase.

Validation Phase 2
Similar to validation phase 1, Eyeplane will implement and test the new mission plans, after which the
newly acquired data will be used to adjust parameters and validate the model.

Final Phase
The final phase is important to look back on the achieved results and synthesise them thoroughly.
Conclusions and further recommendations are the foremost contribution to the general public and serve
as a starting point for the academic community.
This phase comprises finalising the research, its report, and possibly publishable material.

Deliverables
Official deliveries for this project consist of

• The literature review report providing the direction and steps of the research

• A mid-term presentation, summarising the followed approach, presenting the first results, and
explaining the steps that still need to be taken
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• A thesis work in the form of a paper to a scientific journal, adhering to the standards of the scientific
community

Furthermore, regular (weekly or bi-weekly) progress meetings will take place with thesis supervisors,
where performed steps and future steps can be discussed.

Considering the cooperation with Eyeplane, it is also required to deliver guidelines for implementa-
tion of the models and/or their strategies. Furthermore, the publication of the final paper will be with
Eyeplane’s consultation.
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