
Analysis of object tracking algorithms performance on event-based datasets

Alexandra-Claudia Olaru
Supervisor(s): Nergis Tömen, Ombretta Strafforello, Xin Liu

EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering

Abstract

The event-based camera represents a revolutionary
concept, having an asynchronous output. The
pixels of dynamic vision sensors react to the
brightness change, resulting in streams of events at
very small intervals of time. This paper provides
a model to track objects in neuromorphic datasets,
using clustering. In addition, a non-linear filter
is applied to correct the estimation of the object
position. Both single and multi-object tracking
algorithms are provided and their performance
is analyzed using different metrics, including
the clustering evaluation scores and the tracking
accuracy. The accuracy is over 0.6 for multi-target
tracking and more than 0.7 for single object
tracking. Besides the proposed model1, a com-
parison between different possible approaches for
event-based data tracking is provided.

Keywords: Event-based data, single object
tracking, multi-target tracking, Particle Filter,
clustering

1 Introduction
Computer vision on dynamic scenes, described by high
motion, is considered a challenge due to the limited clarity
of the images. An innovative solution is an event-based
camera, inspired by the human retina. Each pixel adjusts
and reacts to temporal brightness changes, the output being
an asynchronous event with the pixel address, characterized
by an accurate timestamp. An event is identified by a tuple
(x, y, t, p), representing the intensity change at the pixel
with location (x, y) and time t, with polarity p ∈ {0, 1},
showing whether the intensity is increased or decreased. The
advantages of using Dynamic Vision Sensors (DVS) are:
very high temporal resolution and low latency, very high
dynamic range and low power consumption [1]. Another
important benefit is the fact that the size of the data set
generated by the sensor is small, allowing for the usage of
DVS in embedded real-time systems [2].

Being a relatively new concept, these asynchronous
sensors are mainly used within the robotics community, and
the research in other computer vision areas is restricted.
Furthermore, the asynchronous output which depends on
both the scene brightness change and the motion between the
scene and camera raises concerns about the usage of classic
algorithms [1]. Consequently, the available algorithms
developed for this technology, as well as the datasets, are
limited and the extent to which the event-based datasets can
be used reliably to perform object detection and tracking is
not well known.

Considering the restricted data and algorithms, this

1The code for this paper is available on Github at https://github.
com/aolaru11/Object-tracking-using-event-based-camera

research aims to show that computer vision with event-
based cameras can perform as well as the algorithms used
with frame-based datasets. More specifically, this paper
intends to answer the question ”How well can single and
multiple object tracking perform using event-based data?”.

To answer the question proposed in this paper, the
research was divided into multiple sub-tasks:

• What is the general distribution of events constructing
the objects? How does the linearity of the system
influence the algorithm?

• How can objects be detected and how can the objects be
differentiated from the noise?

• What would the best characterization of an object be to
track it?

• How can we estimate the trajectory and correct detection
error?

• What is the difference between single and multi-object
tracking for event-based data?

The main contributions of this research are:

• Propose a model to track objects in time, using a
clustering algorithm to detect the moving objects and a
non-linear filter to smooth their trajectory

• Analyse the model on the Neuromorphic-MNIST
database, which was created using an Asynchronous
Time-based Image Sensor (ATIS) [3]

The theoretical aspects of this model are provided, as well
as the code and datasets used, aiming to contribute to the
event-based vision research.

The outline of the paper is as follows: Section 2 presents
the existing research related to event-based computer vision.
In Section 3, several methodologies used to detect and
track objects are presented, followed by the contribution and
results in Section 4. Section 5 analyses the results and present
the limitations of this research. Lastly, the ethical aspects of
this research are described in Section 6, and Section 7 ends
this paper.

2 Related work
The recent development of dynamic vision sensors influenced
neuromorphic vision, and new methods are being proposed
for object tracking [4]. In this section, prior work on event-
based computer vision is described.

2.1 e-TLD (Tracking Learning-Detection):
Event-based Framework for Dynamic Object
Tracking

An object tracking model [5] uses a local search to track
the object, and in case of failure, it does a global search to
localize the object. Online learning, which is a technique to
update the estimations when new data arrives, is required in
this approach to consider the changes in object appearance.
For the tracker, a binary classifier, which uses the online
learning approach, is implemented and it is modified when

1

https://github.com/aolaru11/Object-tracking-using-event-based-camera
https://github.com/aolaru11/Object-tracking-using-event-based-camera

Figure 1: e-TLD model: Detector flowchart [5]

the region of interest is classified as an object. More specif-
ically, when a region of interest is classified as an object,
padding is created to extend the search area and the position
of the object is updated with the region of interest having the
highest score. If the tracker loses the object, a global sliding
window search is performed to detect the object. Since the
global sliding window search is more time-consuming than
the local sliding window update of the tracker, it is used only
when the tracking algorithm loses the object. Figure 1 shows
the tracking model flowchart.

2.2 Real-time clustering and multi-target tracking
using event-based sensors

Barranco et al. [6] proposed a model, which analyzes the
event in real-time, using the Mean-Shift Clustering algo-
rithm to determine the position of an object and the Kalman
Filter to smooth the trajectory. The mean-shift method calcu-
lates the mean of the data distribution in the neighborhood of
each point, shifting the computed mean until the processing
converges. The events are processed in parallel, in batches,
reducing the computational resource requirements. The tra-
jectory of the center of mass is influenced by the number of
events triggered, therefore a correction algorithm is required.
The Kalman Filter is proposed, which uses a state vector (x,y)
and velocity (vx, vy) for each center of mass, estimating the
state vector from a measurement vector zk, containing the
position returned by the clustering algorithm. This model
is highly influenced by the accuracy of the measured veloc-
ity, which depends on the type of Dynamic Vision Sensor.
The clustering method has an F-score of over 0.9, reducing
the computation cost by 88% compared to the frame-based
method. The F-score is the harmonic mean between the pre-
cision 1 and the recall 2. Overall, the tracking error was 2.5
pixels.

Precision =
True Positive

True Positive+ False Positive
(1)

Recall =
True Positive

True Positive+ False Negative
(2)

Figure 2: Algorithm proposed in [2]

2.3 Event-based Particle Filtering for Robot
Self-Localization

The model proposed by Weikersdorfer et al. [2] uses a
non-linear filter, namely a Particle Filter, to estimate the
state of an observed system in time. For every step k, the
algorithm, described in figure 2, maintains a list of particles,
characterized by a score, which indicates how well the
particles approximate the observation. The position of each
particle is updated according to the motion model, which
is a random diffusion with a normal distribution with zero
mean and variance δ2, depending on the features of the used
sensor. Although this model can run in real-time, having
minimal memory requirement, it does not consider all the
features of events, such as the change of intensity.

Although multiple approaches are available for tracking
objects in the event-based dataset, having good results, the
models can be improved. Multiple objects can be tracked,
computing clusters from the events which take place in a
fixed time interval, similar to the approach presented in
section 2.2. In addition, a non-linear filter, such as the
Particle Filter can be applied to correct the trajectory of the
centroids, which can be estimated with an error caused by
the variation of the number of events available in time. The
main advantage of using a non-linear filter is the fact that no
real system is completely linear, a non-linear estimation has
better results to approximate the observations in a real system.

Furthermore, the number of events generated for each
object varies over time, a clustering method analyzing the
events in real-time is a better approach, compared with the
search within sliding windows [5] due to the robustness
provided by the clustering method. More specifically, the
clustering algorithm calculates the distance for each iteration
without depending on the number of events generated in
a given time frame, as the padding of a region-of-interest
can do. A time frame is an event-based representation that
encodes the events in a 2D map, using the following method:
the coordinates (x, y) of an event are the indexes on the 2D
map and the timestamp t represents the value.

3 Methodology
Object tracking has significant implications in computer
vision, representing the approximation of the trajectory of

2

an object in the image plane over time [7]. An object is
represented by multiple points, which are the events mapped
to a 2D representation, with the event’s coordinates (x, y) as
the index on the 2D map and the timestamp t as the actual
value. In order to perform the object tracking task, the center
of mass of each object is computed and tracked over time.
The center of mass, known as the centroid, is tracked instead
of each point of the object because the number of events
varies within time frames and a general description, which is
guaranteed to be maintained in time, should be used.

Tracking a single object can be divided into two main
sub-task, namely locating the object and determining its
trajectory over time. However, a real system is usually rep-
resented by multiple objects and for this reason, multi-target
tracking (MTT) is done. This task can be divided into three
main parts: find the initial location, keep the identity of each
object, and calculate the trajectory [8].

For this research both approaches were taken for object
tracking, analyzing the Neuromorphic-MNIST dataset [3].
Firstly, the tracking algorithm was used for a single object
in the image plane, described in Section 3.1, followed by a
more general approach with multi-target tracking, presented
in Section 3.2. A clustering algorithm was used to detect
the moving objects and the event-based Particle Filter was
applied to correct the position over time.

3.1 Single object tracking

In this section, the algorithm used to perform single object
tracking will be described. A fixed time frame is used for the
visualization of the object, multiple events recorded in the
specified time frame representing the points of the object.
Although the image plane contains one object, noise can be
present and a clustering algorithm was used to detect the
exact object, removing the noise.

A. Object detection

Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) allows the detection of clusters with var-
ious shapes, being a non-parametric algorithm that assumes
that a cluster is found in the high-density area [9]. The
concept of this approach is the fact that a cluster is ”a set of
core samples, each close to each other (measured by some
distance measure) and a set of non-core samples that are
close to a core sample (but are not themselves core samples)”
[10] [11], where a core sample represents a high-density
area. The density linked to a point is computed by counting
the points around that specific point, within a specified range.
Clusters are represented by the points with a density above
a given threshold [12]. One of the advantages of using this
clustering algorithm is that it does not require a predefined
number of clusters and it can discover clusters with arbitrary
shapes.

In this paper, the scikit-learn Python library2 was used
for the implementation of DBSCAN. This implementation
uses as a parameter a threshold value, epsilon, which
represents the maximum distance between two samples to
be considered neighbors. The parameter is approximated
using the Nearest Neighbor algorithm. More specifically,
the distances between each point and all the other points
are computed, and the distances between each point and its
closest neighbor are used to determine the optimal value of
the epsilon parameter.

Initially, the events are divided into windows depend-
ing on a specified time interval. To detect the object in the
image plane, the events, described by a location (x, y), a
timestamp t, specified in microseconds, and a polarity p,
which has the value 1 if there exists a change of brightness
and 0 otherwise, are clustered. Each cluster represents an
object and a predefined label is used to mark the noise. The
aim of this clustering algorithm for single object detection
is the fact that it can separate the noise from the actual
object. More specifically, the event which is part of the
object is assigned a cluster label, and the noise events are
not considered in the cluster, having the predefined noise
label. The centroid of a cluster, which is also an object, is
computed using the formulas:

xcentroid =
xmin + xmax

2
(3)

ycentroid =
ymin + ymax

2
(4)

where (xmin, ymin), (xmax, ymax) represents the position of
the events with the minimum, respective the maximum value
of coordinates in a cluster and (xcentroid, ycentroid) is the
position of the centroid for a given cluster. The centroid with
coordinates (xcentroid, ycentroid) characterizes the object
and it is tracked in time.

B. Tracking algorithm

The detection algorithm analyzes sets of events within
a time frame and the number of events varies in time, leading
to possible missing detection. For this reason, the position of
the object, as well as its trajectory, should be corrected using
an estimator. Most of the real systems are non-linear and a
non-linear estimator, such as the Particle Filter, is preferred
over a linear one, like the Kalman Filter, because it allows for
a better approximation of non-linear systems. Furthermore,
Particle Filter performs better for systems with non-Gaussian
distribution and its estimation error can converge to zero,
with the increase of the number of particles [13]. Also, it is
important to notice that adaptation of the Kalman Filter exists
to estimate non-linear systems, but their estimation errors
do not converge to zero. The advantages of using a Particle
Filter are important for event-based object tracking due to the
representation of events in time frames, which can generate a

2https://scikit-learn.org/stable/modules/generated/sklearn.
cluster.DBSCAN.html

3

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

different number of events, with various distributions, which
can be represented by non-linear systems.

The Particle Filter, which implements a Bayesian esti-
mator was applied in this research A Bayesian estimator
is based on the Bayes’ Rule, aiming to approximate the
conditional probability density function of a state based on
some measurements [13]. The filter algorithm maintains a
set of particles, which are the hypothetical system states, to
produce an estimation for the measurements. The hypothet-
ical system states represent the points used to approximate
some observations.

The general Particle Filter algorithm is computed by 5
steps:

• Randomly draw N particles pki from a uniform distribu-
tion, with equal score ski

• At each step k:

– Predict the position of pki using a predefined motion
model

– Update the score ski , computing the probability
pr(sk1i |yk), where yk is the observation

– Resample if necessary
– Estimate the current position using the weighted

average of particles coordinates

In the proposed model, a set of N particles pi, representing
the hypotheses over the current state of the system, is main-
tained. Each particle pi is characterized by 2 parameters: lo-
cation with coordinate (x, y) and a rotation value. Also, for
each particle, a score is memorized and computed. The score
shows how well the particles approximate the observation.
Initially, the particles are randomly selected from a uniform
distribution and they have an equal score. At each step k,
their new position is estimated, considering a motion model,
and the score is updated, using the distance between each par-
ticle and the observed point. The motion model follows the
equation described in the paper [?] and it is a random diffu-
sion using a normal distribution N(a2) with zero mean and
variance a2. The average velocity of events is included in the
motion model, to guarantee the movement of the particles.

pk+1
i = pki +M(pi) + α (5)

M(pi) = (N(δ2r), N(δ2r), N(δ2θ))
T (6)

where δr represents the average moved distance for one
event, depending on the sensor features, and δθ is the average
rotation per event. α depends on the velocity of events on the
x and y axes.

One important step in this algorithm is resampling be-
cause it ensures that particles with low scores are not used
for the estimation of the observation. The normalized
value of the score is used in the resampling and the result
of resampling is a set with high score particles, which is
a more accurate representation of the distribution. The

duplication within particles is decreased by the usage of a
normal distribution in the predict step, which can be seen
as added noise. Sampling Importance Resampling was
used, which involves a systematic resample algorithm. This
method divides the samples into segments and it uses a single
random offset to choose where to sample from all divisions,
ensuring that the samples are equally apart. The weights
are re-initialized after resampling, the particles having equal
scores. The resampling is done when the effective particle
count is smaller than a fixed proportion of the total number
of particles to guarantee that the distribution has modified
significantly.

The last step of this algorithm is to estimate the point
which was analyzed from the measurements. The result of
one iteration of this algorithm is the point calculated as the
weighted average of the particles. Since the detection part of
this model analyses events for each time frame, the Particle
Filter considers as the observation the centroids provided by
the clustering algorithm for each time frame. For this reason,
the weighted average of particles’ position represents the
actual position of each object at different time frames.

3.2 Multi target tracking
In order to consider a better representation of a real system
using event-based data, a multi-target tracking model is pro-
posed. The moving objects are computed using a clustering
algorithm, which detects the high-density areas in the image
plane. Each cluster represents a moving object, described
by the events within a time range. The centroid of each
cluster will be tracked in time, instead of tracking each point
of the object, because the events are not guaranteed to be
constant in time, as the point of a frame-based object could
be. Similar to the single object tracking from section 3.1, the
clustering algorithm detects the object and a non-linear filter,
namely the Particle Filter, is applied to smooth the trajectory
of the center of mass.

A. Object detection

One of the challenges in multi-object detection is represented
by the overlapping of objects and the order-preserving of the
clusters. To minimize these possible effects, a Mean Shift
Clustering Algorithm was used. The algorithm was selected
over the DBSCAN one for multi-targets tracking because
it does not require prior knowledge about the shape of the
objects and it has a better estimation of the center of mass
position, which represents the tracking parameter for each
object. For this clustering algorithm, the implementation
provided by Scikit-learn3 was used. This centroid-based
algorithm modifies the candidate of a centroid to be the mean
of the points from a specified area. After the clusters are
computed, the candidates are filtered to remove the near-
duplicates. The size of the searched region is represented by
a bandwidth parameter and the update for a new sample is
done by obtaining the nearest centroid for a given sample.

3https://scikit-learn.org/stable/modules/clustering.html#
mean-shift/

4

https://scikit-learn.org/stable/modules/clustering.html#mean-shift/
https://scikit-learn.org/stable/modules/clustering.html#mean-shift/

The mean shift vector computed for each centroid is the
mean of the samples within its neighborhood, as specified in
the formula:

m(xi) =

∑
xj∈A(xi)

Kernel(xj − xi) ∗ xj∑
xj∈A(xi)

Kernel(xj − xi)
(7)

where A(xi) is the neighborhood of samples in an area of a
given radius from xi.

The events, characterized by the location (x, y), times-
tamp t, and polarity p, are divided into time windows, and
the clusters, representing the moving objects, are computed
from these events, ensuring that the order of clusters within
consecutive time frames is maintained. Before applying the
clustering algorithm, an anomalies detector, Isolation Forest
[14], was used, and the noise is removed from the image
plane. This method constructs a tree by recursively dividing
the data and selecting a random attribute and a splitting value
until the tree has reached a height limit or all data has the
same value. The data points are sorted according to their path
length, anomalies representing the points that are ranked at
the top of the sorted list. A cleaned list containing the events,
which are not considered anomalies, is then provided to the
clustering algorithm.

B. Objects tracking

Similar to the algorithm described in Section 3.1, the
Particle Filter was implemented to smooth the trajectory of
the objects over time. Initially, a set of particles is generated
for each cluster found in the first time window, and then for
each step k, the new clusters are computed, maintaining the
initial order of objects, and the Particle Filter algorithm is
applied. The main steps of the Particle Filter implementation
are:

• For each object oi, initialize a set of particle SPi

• For each object oi:

– Predict new position of the particles in SPi

– Update the score of particles using center of mass
of oi

– Estimate the position of that object, using the
weighted average in SPi

The general tracking algorithm is provided in Algorithm
1.

4 Results
This section presents the results of both single- and multi-
object tracking, the following metrics are used: tracking
visualization, the accuracy of the model using a manually
annotated ground truth set, and different clustering evaluation
metrics, including Silhouette score, Calinski&Harabasz In-
dex, and Davies-Bouldin Index. To interpret the performance
of the provided model, the Neuromorphic-MNIST dataset
was used [1] and a new dataset containing multiple digits
as a frame was generated for the evaluation of multi-target
tracking, using the model described in [15].

Algorithm 1 Object tracking algorithm
Input: Set of events divided in B time frames
Output: Estimated position of objects in time

Compute clusters C0 for the events within the first time
frame
for each centroid ci in cluster list C0 do

Generate a set of particles SPi with particles pj and
score sj
end for
for k = 1 − > B do

Compute new clusters Ck

for each centroid ci in cluster list Ck do
1. Predict the position of each particle pj in SPi

2. Update the score sj of each particle pj in SPi

3. Resample the set of particles SPi

4. Estimate new point using the weighted average
of the particles in SPi

end for
end for

Visualization of the tracking algorithm

The results of the proposed object tracking model can
be visualized in Figure 3, which shows the evolution in time
for both a single object and multiple targets. Furthermore,
Figure 4 presents the impact of the Particle Filter on the
position estimation, showing the difference between the
computed centroid using the clustering algorithm and the
approximated centroid using a non-linear Filter. It can
be noticed that initially, the particles did not estimate the
accurate centroid of the object, but with the modification of
the particles’ scores, the approximation is improved and the
centroid of the object is correctly tracked.

Another significant aspect of the tracking visualization
technique is represented by the representation of the par-
ticles, updated for each object, and their movement. In
Figure 9, the motion of the particles, considering the average
distance moved by an event, as well as its rotation. Only
a sample of particles is shown in this figure, the arrows
describing the movement and the position of the particles
related to the objects.

Figure 3: Visualization of the multi target tracking over time

5

Figure 4: Difference between the centroid computed by the cluster
algorithm (yellow dots) and the centroid estimated by the particle
filter model (red dots).

Clustering accuracy score

Three different clustering performance metrics were
used, namely the Silhouette coefficient, Calinski&Harabasz
Index and Davies-Bouldin Index. As mentioned in Section
3.2, the DBSCAN algorithm was replaced by the Mean Shift
Algorithm due to the advantages the second one presents,
including a better computation of the centroids and the usage
of kernel density estimation. To guarantee that the Mean
Shift Algorithm performs better than the DBSCAN one, for
multi-targets detection, a comparison between the results of
each cluster approach for the same datasets was done, the
results being presented in Figure 5. For the Silhouette score
and Calinski&Harabasz Index, higher values show better
results, while for the Davies-Bouldin Index lower values are
representative of better clustering.

Figure 5: Clustering performance evaluation for multiple objects in
the image plan. Mean Shift algorithm has a higher accuracy.

Accuracy

The accuracy of this model was tested using the man-
ually labeled ground truths for the N-MNIST dataset,
bounding boxes being created around the objects. The Eu-
clidean Distance between the center of the bounding box and
the centroid estimated by the proposed object was calculated
and the distance error for the tracking was 4.5. The accuracy
of single object tracking is 0.7 and for multi-targets tracking,
it is approximate 0.61.
The results of the Particle Filter depend on the number of
particles selected to estimate the observed position. Figure 6
shows the link between the accuracy score and the number of

Figure 6: Variation of accuracy considering different number of par-
ticles using the N-MNIST dataset. The best result for multi-target
tracking is around 0.6, generated using 100 particles for each object.
The highest accuracy for single object tracking is 0.7, 50 particles
being used to estimate each point.

particles used to estimate each centroid. The motion model
used to predict the position of the particles operates with the
average distance moved by an event, the average rotation,
and the mean velocity of objects. In Figures 8a and 8b
histograms with the velocity distribution can be observed. To
calculate the velocity, for each object, the distances between
the centroids in consecutive time frames on both x and y axes
were computed, using the formula 8 and 9. The velocity used
in the particle motion model was the mean of the histogram,
on axis x, as well as y.

vx =
|xi − xi+1|

time frame length
(8)

vy =
|yi − yi+1|

time frame length
(9)

where i is the time frame index.

Another factor which influences the accuracy of the
tracking is the time frame length. Increasing the interval of
time, more events are considered and the features of objects
are easier to be followed. The variation of accuracy relative
to the time frame length is shown in figure 7.

5 Discussion
Analyzing the results obtained for the model provided, it can
be seen that it is possible to perform object tracking on data
generated using an event-based camera. Considering that the
events generate objects with Non-Gaussian distribution, the
results show that the Particle Filter Algorithm can be used to
estimate the evolution of objects’ movement in time, using
the position of the centroids. One important aspect to notice
is the fact that several available pieces of research apply the

6

Figure 7: Variation of tracking accuracy relative to the different
frame lengths. The highest accuracy for both single and multi object
tracking is for the frame length of 48 milliseconds, with score 0.72
for single object and 0.82 for multi target tracking

Kalman Filter to smooth the trajectory of objects. However,
for this research the Particle Filter was applied due to several
advantages offered by this filter:

• It is a non-linear estimator, with better results on real
networks, which are mainly nonlinear systems

• It can estimate non-Gaussian distribution

• It approximates the tracked centroid using multiple
points, known as particles, resampling to ensure an ac-
curate distribution over time.

Although the results of the algorithms show that the tracking
algorithms can be used on an event-based dataset, with good
accuracy, a non-linear filter is more complex than a linear
one. It predicts the position using a motion model, which
depends on the velocity of events, the average distance
moved by an event, and its rotation. These variables are
influenced by the parameters of the dynamic vision sensor,
having a high impact on the accuracy of the results. For
the N-MNIST dataset, these parameters are not clearly
described, being a limitation for the implementation of these
experiments. Also, the computation of an accurate velocity
is not possible without having all the specifications of the
camera, for this research the velocity of events is estimated
using the movement of centroids. Furthermore, the results
can be influenced by the initial sampling of the particles,
which are randomly selected from a uniform distribution.
For this research, the particles are selected from a uniform
distribution within the range: (xcentroid − α, xcentroid + α),
respective (ycentroid − α, ycentroid + α). Also, multiple
resampling methods can be used for this estimator. The
one used proposed in this paper, namely the systematic
resampling, has good results compared with other tested
methods.

Another aspect that influences the overall results is the
dataset which is not a complete representation of the real
world, the analysis of the model is done on a toy dataset.
However, the accuracy of the presented results was improved
by creating a dataset with multiple randomly positioned
digits in a frame. This dataset was built using the approach
described in the paper [15]. This modified dataset shows
the results for multitarget tracking, the initial model being
updated to improve the outcome. For this research, initially,
it was decided to implement Density-Based Spatial Clus-
tering of Applications with Noise(DBSCAN) to detect the
clusters, representing the moving objects. However, as was
shown in Section 4, the Mean Shift clustering algorithm
had better accuracy compared with the DBSCAN algorithm.
Also, the Mean Shift algorithm is implemented to consider
the center of mass when dividing the clusters, providing
a better computation of the centroids, as well as a more
precise computation of the clusters considering the variation
of the number of events over time. To improve the model, in
terms of run time efficiency, batches of events were analyzed
together and divided into windows with a specific time
interval.

The questions mentioned in section 1, have been ana-
lyzed to analyze the performance of the object tracking
model proposed as the solution of this research. The algo-
rithms are implemented to have good results on different
data, generated from the events, including the non-linear
systems, without a Gaussian distribution, which is usually
the case of the event-based camera output. Moving targets
can be detected using the clustering method and one of the
best characterization of an object is the center of mass of the
cluster, representing that object. The centroid is tracked over
time because it can be computed from events within a time
frame, irrespective of the number of events, while tracking
each point of the object, namely each event, is not possible
because of the asynchronous behavior of dynamic vision
sensors. Analyzing the system distribution, a Particle Filter is
used for trajectory correction because it is a robust estimator.

Overall, both single and multi-target tracking can be
done on asynchronous event-based data and the results
depend on the level of noise in the image plane, which influ-
ences the clustering accuracy. Another factor influencing the
results is the motion model used to predict the movement of
particles, influencing how well the trajectory of the objects
is estimated by the Particle Filter. The datasets used to
test the provided algorithms are composed of non-Gaussian
distributions, simulating a real nonlinear system, but it does
not entirely simulate the real world.

6 Responsible Research
The model provided in this research aims to track objects in
event-based videos. The results of this model are presented in
section 4 and they are discussed in section 5. The advantages
of using the proposed model, as well as its limitation are

7

(a) Velocity x (b) Velocity y

Figure 8: Velocity variation on axes x and y for centroid for a sample
of the dataset. Mean of histogram for axis x is 0.07, and for axis y is
0.08

presented and the reasons for selecting specific algorithms
are described in detail. No ethical bias can be noticed in this
model because it analysis each event and it does not use a
pre-trained model, which can be biased. The experiments
are designed to have as input objects represented from
events, characterized by a location with coordinate (x,y),
timestamp t, and polarity p and some features cannot be eas-
ily recognized by humans because the events might be sparse.

One of the main concerns when conducting research
and implementing a model is related to the usage of existing
materials. More specifically, the created model should not
completely copy one of the available algorithms, but it
should be a new solution, which can extend known methods.
For this research, the model implemented in section 3 is built
by two existing concepts, namely the clustering algorithm
and a non-linear estimator, combining them and extending
the Particle Filter Algorithms to use it on the event-based
dataset. Consequently, no ethical issues can be derived from
the implementation of this model.

Furthermore, the dataset used for testing the model is
N-MNIST, which is released under the Creative Commons
Attribution-ShareAlike 4.0 license. For this research, the
dataset was not altered and it was mentioned as its source.
Also, it is mentioned that the construction of this dataset
was done in the absence of conflict of interests, showing
that both from the perspective of this research and the initial
construction of the database, no ethical issues are remarked.
Also, the dataset contains handwritten digits and no personal
information can be obtained from the data.

The results of this research can be reproduced follow-
ing the methods described in 3 and the dataset [1] used
for evaluating the performance of the proposed model is
publicly available. All data points and features of the dataset
were used and a pseudo-code was provided to ensure that
the approach can be correctly replicated. Moreover, the
implementation of the proposed model is available at the link
and proper documentation was added to the code, to allow
the reproduction of experiments.

7 Conclusions
An event-based model was proposed for object tracking,
analyzing its performance on both single- and multi-target
tracking. The algorithm was tested on two different datasets,
both based on the Neuromorphic-MNIST dataset, simulating
a nonlinear system, without a Gaussian distribution. The
moving objects are detected using a clustering algorithm
and an anomalies detector is applied, before computing the
clusters to eliminate the noise as much as possible. Each
cluster represents a moving object and its center of mass is
computed and tracked over time. Lastly, a non-linear estima-
tor, namely the Particle Filter is used to smooth the trajectory
of objects and correct detection errors. After an in-depth
examination of the event-based dataset, the conclusion was
made that the Mean Shift clustering algorithms can provide
better results for multi-object tracking.

Future work can be done to investigate the performance
of an object tracking model in combination with a classifica-
tion algorithm, focusing on tracing specific classes of objects.
Also, the sampling of the estimator used for tracking the
movement of the objects over time can be updated depending
on the dynamic vision sensor used and more precise analysis
of the velocity of events can be used to improve the accuracy
of the model.

References
[1] G. Gallego, T. Delbrück, G. Orchard, C. Bartolozzi,

B. Taba, A. Censi, S. Leutenegger, A. J. Davison,
J. Conradt, K. Daniilidis, et al., “Event-based vision:
A survey,” IEEE transactions on pattern analysis and
machine intelligence, vol. 44, no. 1, pp. 154–180, 2020.

[2] D. Weikersdorfer and J. Conradt, “Event-based particle
filtering for robot self-localization,” in 2012 IEEE Inter-
national Conference on Robotics and Biomimetics (RO-
BIO), pp. 866–870, 2012.

[3] G. Orchard, A. Jayawant, G. K. Cohen, and N. Thakor,
“Converting static image datasets to spiking neuro-
morphic datasets using saccades,” Frontiers in Neuro-
science, vol. 9, 2015.

[4] E. Piatkowska, A. N. Belbachir, S. Schraml, and
M. Gelautz, “Spatiotemporal multiple persons tracking
using dynamic vision sensor,” in 2012 IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition Workshops, pp. 35–40, 2012.

[5] B. Ramesh, S. Zhang, H. Yang, A. Ussa, M. Ong, G. Or-
chard, and C. Xiang, “e-tld: Event-based framework for
dynamic object tracking,” IEEE Transactions on Cir-
cuits and Systems for Video Technology, vol. 31, no. 10,
pp. 3996–4006, 2020.

[6] F. Barranco, C. Fermuller, and E. Ros, “Real-time clus-
tering and multi-target tracking using event-based sen-
sors,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 5764–5769,
IEEE, 2018.

8

[7] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A
survey,” Acm computing surveys (CSUR), vol. 38, no. 4,
pp. 13–es, 2006.

[8] W. Luo, J. Xing, A. Milan, X. Zhang, W. Liu, and T.-
K. Kim, “Multiple object tracking: A literature review,”
Artificial Intelligence, vol. 293, p. 103448, 2021.

[9] T. N. Tran, K. Drab, and M. Daszykowski, “Revised db-
scan algorithm to cluster data with dense adjacent clus-
ters,” Chemometrics and Intelligent Laboratory Sys-
tems, vol. 120, pp. 92–96, 2013.

[10] “2.3. clustering.” https://scikit-learn.org/stable/
modules/clustering.html#dbscan.

[11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in Python,” Jour-
nal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[12] D. Birant and A. Kut, “St-dbscan: An algorithm for
clustering spatial–temporal data,” Data & knowledge
engineering, vol. 60, no. 1, pp. 208–221, 2007.

[13] D. Simon, Optimal state estimation: Kalman, H infinity,
and nonlinear approaches. John Wiley & Sons, 2006.

[14] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,”
in 2008 Eighth IEEE International Conference on Data
Mining, pp. 413–422, 2008.

[15] A.-D. Manolache, “Constructing complex event-based
segmentation datasets,” 2022.

9

https://scikit-learn.org/stable/modules/clustering.html#dbscan
https://scikit-learn.org/stable/modules/clustering.html#dbscan

A Appendix
A.1 Figures

Figure 9: Sample particle movement for one of the objects in multi target tracking. In orange the trajectory to the center of mass of the object
can be seen. The movement of particles can be seen in blue and the actual position of the particles in red.

Figure 10: Sample particle movement for one object in the image plane. In orange the trajectory to the center of mass of the object can be
seen. The movement of particles can be seen in blue and the actual position of the particles in red.

10

	Introduction
	Related work
	e-TLD (Tracking Learning-Detection): Event-based Framework for Dynamic Object Tracking
	Real-time clustering and multi-target tracking using event-based sensors
	Event-based Particle Filtering for Robot Self-Localization

	Methodology
	Single object tracking
	Multi target tracking

	Results
	Discussion
	Responsible Research
	Conclusions
	Appendix
	Figures

