

Delft University of Technology

### Transport processes in the production of organic acids from lignocellulosic feedstocks by Aspergillus niger

Da Fonte Lameiras, Francisca

DOI 10.4233/uuid:38c1fd73-bff2-4660-aa40-48a4c28e16f7

**Publication date** 2018 **Document Version** 

Final published version

### Citation (APA)

Da Fonte Lameiras, F. (2018). *Transport processes in the production of organic acids from lignocellulosic feedstocks by Aspergillus niger*. [Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:38c1fd73-bff2-4660-aa40-48a4c28e16f7

### Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

**Takedown policy** Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

## Transport processes in the production of organic acids from lignocellulosic feedstocks by Aspergillus niger

### Dissertation

for the purpose of obtaining the degree of doctor at Delft University of Technology, by the authority of the Rector Magnificus Prof.dr.ir. T.H.J.J. van der Hagen, chair of the Board for Doctorates to be defended publicly on Monday 9 April 2018 at 10:00 o'clock

by

### Francisca DA FONTE LAMEIRAS

Master of Science in Biological Engineering, Minho University, Portugal born in Guimarães, Portugal

This dissertation has been approved by the

Promotor: Prof. dr. ir. J.J. Heijnen Copromotor: Dr. W.M. van Gulik

Composition of the doctoral committee:

| Rector Magnificus,          | chairperson |
|-----------------------------|-------------|
| Prof. dr. ir. J.J. Heijnen, | promotor    |
| Dr. W.M. van Gulik,         | copromotor  |

| Independent members:            |                                          |
|---------------------------------|------------------------------------------|
| Prof. dr. J. Teixeira           | Minho University, Portugal               |
| Prof. dr. M. de Mey             | Ghent University, Belgium                |
| Prof. dr. J. Teixeira de Mattos | University of Amsterdam, The Netherlands |
| Dr. ir. S. Hartmans             | DSM                                      |
| Prof. dr. H.J. Noorman          | TNW, TU Delft                            |
|                                 |                                          |
| Reserve member:                 |                                          |
| Prof. dr. W.R. Hagen            | TNW, TU Delft                            |

The research presented in this thesis was performed at the Cell Systems Engineering section, Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology (The Netherlands).

This project was carried out within the research programme of BE-BASIC Foundation.

ISBN: 978-94-6299-902-2

Copyright © 2018 by Francisca Lameiras

Cover illustration designed by Igor Mekhtiev

Printing: Ridderprint, the Netherlands

Transport processes in the production of organic acids from lignocellulosic feedstocks by Aspergillus niger



| List of abbreviations |                                                               | vii |
|-----------------------|---------------------------------------------------------------|-----|
| Summary/Same          | nvatting                                                      | ix  |
| Chapter 1             | General Introduction                                          | 1   |
| Chapter 2             | Tools for quantitative metabolomics of Aspergillus niger      | 25  |
|                       | chemostat cultures                                            |     |
| Chapter 3             | Stoichiometry and kinetics of single and mixed substrate      | 51  |
|                       | uptake in Aspergillus niger                                   |     |
| Chapter 4             | Metabolic network analysis and transport mechanisms of        | 79  |
|                       | lignocellulosic substrates in Aspergillus niger               |     |
| Chapter 5             | Transport insights on citric and itaconic acid in Aspergillus | 105 |
|                       | niger                                                         |     |
| Chapter 6             | A metabolomics study in Aspergillus niger reveals a putative  | 141 |
|                       | amino acid transporter                                        |     |
| Chapter 7             | Concluding Remarks and Outlook                                | 163 |
| Supplementary ı       | material                                                      | 171 |
| References            |                                                               | 219 |
| Acknowledgeme         | ents                                                          | 235 |
| Curriculum vitae      |                                                               | 239 |
| List of Publicatio    | ns                                                            | 241 |

### List of abbreviations

| aa Amino acid                                                                   | MeOH Methanol                                                  |
|---------------------------------------------------------------------------------|----------------------------------------------------------------|
| Ala Alanine                                                                     | Met Methionine                                                 |
| Asn Asparagine                                                                  | Mtoe Million tonnes of oil equivalent                          |
| Asp Aspartic acid                                                               | Phe Phenylalanine                                              |
| Btu British thermal unit                                                        | <b>pH</b> <sub>in</sub> Intracellular pH                       |
| <b>Cit</b> Citric acid                                                          | <b>pH</b> <sub>out</sub> Extracellular pH                      |
| $\mathbf{C}_{\mathbf{x}}$ Biomass concentration inside the reactor              | <b>pka</b> Acid dissociation constant                          |
| $\boldsymbol{C}_{\boldsymbol{x},out}$ Biomass concentration outside the reactor | PPP Pentose phosphate pathway                                  |
| Cys Cysteine                                                                    | Pro Proline                                                    |
| <b>D</b> Dilution rate (h <sup>-1</sup> )                                       | ${\bf q}_{\rm i}$ Biomass specific conversion rate of compound |
| $\mathbf{E}_{pmf}$ proton motive force                                          | i (mol <sub>i</sub> /h)/Cmol <sub>x</sub> )                    |
| <b>F</b> Faraday constant (96.5 kJ/v e <sup>-</sup> mol)                        | <b>R</b> Gas constant (8.314x10 <sup>-3</sup> kJ/molK)         |
| <b>G</b> Gibbs free energy                                                      | ${f R}_i$ Rate of compound i (Cmol/h)                          |
| g <sub>DW</sub> Grams of dry cell weight                                        | <b>T</b> Temperature (in K or °C)                              |
| GIn Glutamine                                                                   | TCA Tricarboxylic acid cycle                                   |
| Glu Glutamic acid                                                               | Thr Threonine                                                  |
| Gly Glycine                                                                     | TOC total organic carbon                                       |
| Glyc Glycolytic metabolites                                                     | <b>Trp</b> Tryptophan                                          |
| H <sup>+</sup> Proton                                                           | <b>Tyr</b> Tyrosine                                            |
| His Histidine                                                                   | Val Valine                                                     |
| Ile Iso-Leucine                                                                 | Z Charge of transported molecule                               |
| Ita Itaconic acid                                                               | $\mu$ Growth rate (h <sup>-1</sup> )                           |
| Leu Leucine                                                                     | $\boldsymbol{\mathtt{X}}_i$ Degree of reduction of compound i  |
| Lys Lysine                                                                      | $oldsymbol{\psi}$ Membrane potential (V)                       |

### Summary

Filamentous fungi, especially from the genus *Aspergillus*, are well known for the production of organic acids in fermentation industry. Nonetheless, in present time the competing chemical conversion routes are still more profitable, leaving space for further investigations and improvement on the biological routes.

In view of the known high citric acid production capacity of *Aspergillus niger*, this fungus should be well suited as a cell factory for the production of other industrially relevant acids as succinic, fumaric, itaconic and malic. In addition, it is known that *A. niger* grows on decaying fruits and plant material thereby enzymatically degrading lignocellulosic constituents into a mixture of mono- and oligosaccharides. Therefore *A. niger* is well suited to be cultivated on plant waste material. However, so far little is known about the mechanisms of sugar import and organic acid export in *A. niger*. Thus more knowledge on substrate uptake and organic acid export mechanisms and their kinetics, will contribute to exploit *A. niger* as a cell factory for organic acid production from lignocellulosic feedstocks.

As a tool for the fundamental studies of substrate uptake and product excretion, we have first defined a continuous cultivation protocol, and a rapid sampling platform for intracellular metabolite quantification (**chapter 2**). Quantitative metabolomics is an important *omics* tool in a synthetic biology approach to develop *A. niger* for the production of the mentioned acids. Such studies require well defined and tightly controlled cultivation conditions and proper rapid sampling, sample processing and analysis methods. In **chapter 2** we present the development of a chemostat for homogeneous steady state cultivation of *A. niger*, equipped with a new dedicated rapid sampling device. In addition, a quenching method for quantitative metabolomics in *A. niger* based on cold methanol was evaluated and optimized with the aim of avoiding metabolite leakage during sample processing. The optimization was based on measurements of the intermediates of the glycolysis, TCA and PPP pathways and amino acids, using a material balancing approach. Leakage was found to be absent at -

 $20^{\circ}$  C for a 40% (v/v) methanol concentration in water. Under these conditions the average metabolite recovery was close to 100%.

Once the cultivation setup and metabolic platform were settled, we focused at the import mechanisms and kinetics of substrate uptake (**chapters 3 and 4**) and product transport (**chapters 5 and 6**).

To investigate the kinetics and stoichiometry of growth of this fungus on lignocellulosic sugars, in **chapter 3** we carried out batch cultivations on six representative monosaccharides (glucose, xylose, mannose, rhamnose, arabinose and galacturonic acid) and a mixture of these. Growth on these individual substrates was characterized in terms of biomass yields, oxygen/biomass ratios and specific conversion rates. Interestingly, in mixtures, some of the carbon sources were consumed simultaneously and some sequentially. With a sequential chemostat cultivation experiment performed on a feed mixture of the six substrates, we found that the uptake of glucose, xylose and mannose could be described with Michaelis-Menten type kinetics. However, these carbon sources seem to be competing for the same transport systems, while the uptake of arabinose, galacturonic acid and rhamnose appeared to be repressed by the presence of other substrates.

As a follow up of previous stoichiometric and kinetic studies, in **chapter 4** we open the black box model of the previous chapter. We have measured intracellular and extracellular concentrations of the six selected substrates which allowed the assessment of the most probable import mechanism for these substrates. For glucose, xylose, arabinose, mannose and rhamnose it was found that proton symporter was the most plausible transporter, while galacturonic acid was assumed to enter the cells through passive diffusion at a cultivation pH of 2.5. In addition, the results from eleven carbon-limited chemostat steady states of *A. niger* on a mixture of six substrates at different growth rates were used as input for a flux analysis from which we obtained estimations of ATP costs and NADPH requirements for biomass growth on these

lignocellulosic sugars. The energetics of growth of *A. niger* were based on well-known pathways for some substrates and most plausible pathways for others.

Regarding the product related study, in **chapter 5** we focused on the transport of two organic acids: citric acid, essential for the food and beverage industries; and itaconic acid, used in the chemical and polymer industries. A. niger as a cell factory is capable of producing citric acid in high quantities, but can also produce itaconic acid when metabolically engineered. The objective of this work was to study the membrane transport of these acids in A. niger and focus on two important aspects at industrial scale: high product concentrations (close to the solubility limit) and a low cultivation pH, which is beneficial for the downstream processing (facilitating acid recovery and avoiding the use of titrants and production of waste materials). We performed steady state chemostat experiments at low (2.5) and high (5.5) cultivation pH, using xylose as the substrate whereby either citric acid or itaconic acid was added to the feed medium. We observed that citric acid uptake at pH=2.5 was much higher than at pH=5.5. Interestingly, the calculated permeability coefficient for the undissociated citric acid appeared far below expectation, which indicates the presence of a transport protein. From intra- and extracellular acid levels, the most plausible uptake mechanism appeared to be proton antiport. Itaconic acid uptake, however, was very low at both conditions, and inhibited xylose uptake. Furthermore, we investigated at pH = 2.5 the transport and metabolism of itaconic acid in itaconic acid producing and nonproducing strains at high concentrations of this acid. From measurements of intra- and extracellular itaconic acid levels we found that export of the produced itaconic acid in the producing strain is most likely through a proton antiport mechanism.

In addition to previous findings, in **chapter 6**, we applied quantitative metabolomics tools in dynamic chemostat experiments to disclose the function of a putative fumaric acid transporter (*fumT*) isolated from *Rhizopus delemar*, which was overexpressed in *A. niger*. It was found that under aerobic xylose limited continuous cultivation, amino acids were imported into the cellular space in the mutant strains which carry *fumT*. From the metabolomics analysis and an amino acid pulse experiment, it appeared that

this transporter might be a high affinity general amino acid permease using a proton symport system as the transport mechanism.

### Samenvatting

Filamenteuze schimmels, vooral van het geslacht *Aspergillus*, zijn bekend om de productie van organische zuren, met name ciroenzuur, in de fermentatie-industrie. Gezien de grote citroenzuur productiecapaciteit van *Aspergillus niger*, zou deze schimmel goed geschikt moeten zijn voor de productie van andere industrieel relevante zuren zoals barnsteenzuur, fumaarzuur, itaconzuur en appelzuur. Op dit moment zijn de concurrerende chemische productieroutes van deze zuren echter nog winstgevender, waardoor er noodzaak is voor verder onderzoek ter verbetering van de biologische routes.

Verder is het bekend dat *A. niger* groeit op rottend fruit en ander plantenmateriaal, door enzymatische afbraak van lignocellulosische bestanddelen tot een mengsel van mono- en oligosacchariden, die vervolgens worden opgenomen. Daarom is *A. niger* van nature geschikt om op plantenafvalmateriaal te worden gekweekt. Er is echter tot nu toe weinig bekend over de mechanismen voor import van mono- en oligosacchariden en de export van organische zuren in *A. niger*. Meer kennis over substraat import- en product exportmechanismen en hun kinetiek zal daarom bijdragen aan het exploiteren van *A. niger* als industrieel micro-organisme voor de productie van organische zuren uit plantenafval.

Om goed gedefinieerde studies van substraatopname en productuitscheiding te kunnen uitvoeren werden allereerst een chemostaat protocol, een snelle bemonsteringsmethode en een analytisch platform voor kwantitatieve metaboloom analyse ontwikkeld. Kwantitatieve metaboloom analyse is een belangrijk stuk gereedschap binnen een synthetische biologie-benadering gericht op het ontwikkelen van *A. niger* stammen voor efficiënte productie van genoemde zuren. Dergelijke studies vereisen goed gedefinieerde en streng gecontroleerde kweekomstandigheden en snelle bemonstering, monsterverwerking en analysemethoden. In hoofdstuk 2 wordt de ontwikkeling van een aangepast chemostaat systeem voor de homogene steady-state kweek van *A. niger*, uitgerust met een nieuw ontwikkeld snel

bemonsteringsapparaat, beschreven. Daarnaast werd een fixatiemethode voor onmiddellijke stopzetting van alle metabole activiteit in *A. niger* op basis van een koud methanol/water mengsel ontwikkeld. Deze methode werd geoptimaliseerd om metabolietlekkage tijdens de fixatie en monsterverwerking te minimaliseren. Deze optimalisatie was gebaseerd op metingen van metabolieten van de glycolyse-, TCA- en PPP-routes en aminozuren in het totale monster, het cel pellet en het filtraat en het opstellen van massabalansen voor de verschillende metabolieten. Lekkage bleek afwezig te zijn bij fixatie van de monsters in 40% (v/v) methanol/water bij een temperatuur van -20°C. Onder deze omstandigheden bleek de gemiddelde metaboliet recovery bijna 100%.

Vervolgend werd, gebruik makend van de ontwikkelde methoden, onderzoek gedaan naar substraat opname (hoofdstuk 3 en 4) en product transport (hoofdstuk 5 en 6).

Om de kinetiek en stoichiometrie van de groei van deze schimmel op diverse substraten te onderzoeken werden batch fermentaties uitgevoerd op zes representatieve monosacchariden (glucose, xylose, mannose, rhamnose, arabinose en galacturonzuur) en een mengsel hiervan (hoofdstuk 3). Groei op deze substraten werd gekarakteriseerd in termen van biomassaopbrengst, zuurstof consumptie/biomassa productie verhoudingen en biomassa specifieke omzettingssnelheden. Interessant is dat, in combinatie, sommige van de koolstofbronnen tegelijkertijd en enkele sequentieel werden geconsumeerd. Door het uitvoeren van een koolstof gelimiteerd, stapsgewijs uitgevoerd chemostaat experiment op een mengsel van de zes substraten bij elf verschillende groeisnelheden, vonden we dat de opname van glucose, xylose en mannose beschreven kon worden met Michaelis-Menten-type kinetiek. Uit de resultaten bleek dat deze substraten lijken te concurreren voor dezelfde transportsystemen, terwijl de opname van arabinose, galacturonzuur en rhamnose geremd leek te zijn door de aanwezigheid van andere substraten.

Als een vervolg op vorige stoichiometrische en kinetische studies, openen we in hoofdstuk 4 het Black Box-model van het vorige hoofdstuk. Metingen van de

intracellulaire en extracellulaire concentraties van de zes geselecteerde substraten werden uitgevoerd om, in combinatie met thermodynamische analyse, tot een uitspraak te komen welke importmechanisme voor deze substraten de meest voor de hand liggende zijn. Voor glucose, xylose, arabinose, mannose en rhamnose bleek dit proton symport te zijn terwijl werd aangenomen dat bij een cultivatie pH van 2.5 galacturonzuur wordt geïmporteerd via passieve diffusie van het ongedissocieerde zuur. Daarnaast werden de resultaten van het stapsgewijs uitgevoerde chemostaat experiment gebruikt als input voor een metabole fluxanalyse waaruit we schattingen van ATP- en NADPH- behoeften voor groei op de zes verschillende plantensuikers konden verkrijgen. In het gebruikte stoichiometrische model voor de groei van A. niger werden in een aantal gevallen bekende metabole routes voor het metabolisme van de substraten geïncorporeerd, terwijl in sommige gevallen aannames moesten worden gedaan.

Met betrekking tot het product gerelateerde onderzoek hebben we ons in hoofdstuk 5 gericht op het transport van twee organische zuren, namelijk citroenzuur, essentieel voor de voedings- en drankenindustrie; en itaconzuur, gebruikt in de chemische en polymeerindustrie. Zoals gezegd is A. niger in staat om grote hoeveelheden citroenzuur te produceren, maar kan, na genetische modificatie, ook itaconzuur produceren. Het doel van het onderzoek was om het membraantransport van deze zuren in A. niger te bestuderen en ons daarbij te concentreren op twee belangrijke aspecten op industriële schaal: hoge productconcentraties (dichtbij de oplosbaarheidslimiet) en een lage cultivatie-pH, wat gunstig is voor de product opwerkingsstap (vermijden van het gebruik van titranten en daardoor vermijden van productie van afvalmaterialen). Daartoe werden steady state chemostaat experimenten uitgevoerd bij lage (2.5) en hoge (5.5) cultivatie-pH, met gebruik van xylose als het substraat waarbij citroenzuur of itaconzuur aan het voedingsmedium werden toegevoegd. Hierbij werd waargenomen dat de opname van citroenzuur door de cellen bij pH = 2.5 veel hoger was dan bij pH = 5.5. Interessant was dat de berekende permeabiliteitscoëfficiënt voor het niet-gedissocieerde citroenzuur veel lager was dan verwacht, wat zou kunnen duiden op de aanwezigheid van een

transporteiwit voor de import van citroenzuur. Uit gemeten intra- en extracellulaire zuurniveaus bleek het meest plausibele opnamemechanisme proton antiport te zijn. De opname van itaconzuur was echter onder beide condities erg laag terwijl de xyloseopname geremd werd door de aanwezigheid van dit zuur. Verder hebben we bij pH = 2.5 het transport en metabolisme van itaconzuur in itaconzuur producerende en nietproducerende stammen bij hoge concentraties van dit zuur onderzocht. Uit metingen van intra- en extracellulaire itaconzuur niveaus bleek dat export van het geproduceerde itaconzuur in de producerende stam waarschijnlijk gebeurt via een proton antiport mechanisme.

Gebruik makend van metaboloom metingen tijdens steady state en dynamische chemostaat experimenten werd de functie van een vermeende fumaarzuur transporter (*fumT*), geïsoleerd uit *Rhizopus delemar*, die tot overexpressie werd gebracht in *A. niger*, onthuld (hoofdstuk 6). Hierbij werd gebruik gemaakt van quantitatieve metaboloom analyses in combinatie met dynamische chemostaat experimenten. Er werd gevonden dat in aërobe xylose gelimiteerde chemostaat experimenten aminozuren werden geïmporteerd door de *fumT* bevattende mutanten. Uit de resultaten van metaboloom analyses uitgevoerd tijdens steady state cultivaties en een aminozuurpuls experiment bleek dat deze transporter waarschijnlijk een aminozuur permease is met hoge affiniteit, welke een groot aantal verschillende aminozuren importeert met behulp van proton symport als transportmechanisme.



In this chapter, an overview of the state of the art of fungal biotechnology can be found, as well as basic concepts of cellular transport mechanisms. In the end, the scope and overview of the thesis are presented.

# Chapter 1

General introduction



### 1.1. Bio-based production of fuels and chemicals

Our planet still relies largely on coal, natural gas and petroleum, extracted from the earth's crust, for production of energy, fuels and chemicals. These three fossil sources have covered more than 80% of the energy demand of the US in the last 100 years (EIA, 2016) - Fig. 1.1.



Fig. 1.1. Energy consumption (Btu: British thermal unit) in the United States between 1776 and 2015 (Source: EIA, 2016).

With respect to the total worldwide energy demand, the situation is very similar. Currently only a small part of the total energy consumption is covered by sustainable sources such as wind, solar, biofuels and biomass (IEA, 2015) - Fig. 1.2.

The combustion of fossil fuels results in carbon and hydrogen oxidation leading to the production of carbon dioxide, water and heat. Invariably and virtually inevitably the process results in the production of sulphur oxides and due to incomplete combustion. The emission of these compounds (mainly carbon dioxide and methane) results in a steady supply of greenhouse gases to the atmosphere (Sengupta, 2010) leading to climate changes. Thus, this problem needs to be addressed.



Fig. 1.2. World total energy coverage from 1971 to 2013 by fuel in Mtoe (Million Tonnes of Oil Equivalent) (Source: IEA, 2015).

Organizations and world leaders are encouraged to come up with alternative resources for production of energy, fuels and chemicals. Biomass emerged in the 1970's as an alternative resource which can be used for the same purposes with some modifications to the existing processes.

Biomass is classified as "all organic matter on the earth's surface derived from recent biological material" (Sengupta, 2010), being mainly plant waste streams including vegetation, agricultural crops and algae, organic waste and animal manure.

One way of valorization of plant waste streams is their use as a substrate for microorganisms (fermentation) for the production of biofuels, which are subsequently combusted to carbon dioxide and water, yielding useful energy, similarly as discussed above, with the advantage that carbon is recycled at a much faster pace (photosynthesis) when compared to fossil fuels.

The use of microorganisms, such as bacteria, yeast or filamentous fungi for the production of goods is a very ancient practice, emerging from the Neolithic ages where fermented beverages were produced. Nevertheless, the discovery of microorganisms occurred only in 1674 by Antonie van Leeuwenhoek in Delft, upon the invention of the microscope. Since then, microorganisms and their products have been broadly applied in Biotechnology to realize a bio-based and sustainable production of fuels and chemicals.

Bio-based production uses biomass as a substrate in a biochemical conversion process, and includes fermentative conversion routes. Whereas in chemical production each conversion implies a different industrial process, in fermentation based biochemical production each conversion might involve a different enzymatic step within the same microbial cell (Straathof, 2014).

In addition, production by biological (i.e. enzymatic conversions) yields very (stereo)specific compounds. Although organic acids represent only a small part of the potential products' scope of microorganisms, they have countless applications and a significant impact on our daily lives, as discussed in the following section. Organic acids such as malic acid, fumaric acid, itaconic acid and succinic acid are currently produced on an industrial scale by chemical synthesis. Malic acid is obtained by double hydration of maleic anhydride; fumaric acid is produced by isomerization of maleic acid; succinic acid is obtained from partial hydrogenation of maleic acid, oxidation of 1,4-butanediol and carbonylation of ethylene glycol; and itaconic acid is produced by the distillation of citric acid.

This work addresses a bio-based alternative for production of organic acids from sustainable feedstocks by a fermentative route in filamentous fungi.

### **1.2. Production of organic acids by filamentous fungi**

Filamentous fungi, especially from the genus *Aspergillus*, are well-known for the production of organic acids, which can be classified in two groups: TCA cycle derived acids (citric, itaconic, malic, fumaric, succinic and oxalic acid) and glucose derived acids (gluconic and kojic acid) – Fig. 1.3.

For most of the organic acids, excretion from the cells requires a plasma membrane transporter, except for gluconic acid which is oxidized extracellularly by glucose oxidase.



Fig. 1.3. Organic acids production in the genus Aspergillus (adapted from Witteveen, 1993).

For efficient production of the TCA cycle related acids there are four important aspects to consider: a high substrate import rate; a high flux through the glycolysis and TCA cycle; the ATP, redox cofactors and electrical charge should be balanced intracellularly; and the acids and corresponding protons must be transported through the plasma membrane to the extracellular environment (Witteveen, 1993).

A list of the most common filamentous fungi used for production of organic acids can be found in Table 1.1.

As listed, the genus *Aspergillus* contains the workhorses of the fungal fermentation industry for production of organic acids. Nonetheless, to date the competing chemical conversion routes are still more cost-effective.

 Table 1.1. Organic acid production by filamentous fungi

 (Goldberg et al., 2006; Kubicek et al., 2010; Liaud et al., 2014).

| Organic acid  | Filamentous fungi                                                | Applications                                                                                |
|---------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Citric acid   | Aspergillus niger<br>Yarrowia lipolytica                         | Preservative, pH adjustment in<br>food, beverage, pharmaceutical<br>and cosmetic industries |
| Gluconic acid | Aspergillus niger<br>Penicillium spp.                            | Food additive<br>Glass and metal cleaning                                                   |
| Itaconic acid | Aspergillus terreus<br>Aspergillus itaconicus<br>Ustilago maydis | Co-polymer and detergents                                                                   |
| Oxalic acid   | Aspergillus niger                                                | Cleaning and bleaching                                                                      |
| Kojic acid    | Aspergillus oryzae<br>Aspergillus flavus                         | Precursor for food additives and<br>cosmetic industry                                       |
| Succinic acid | Aspergillus flavipes                                             | Food additive<br>Precursor of polymers, resins and<br>solvents                              |
| Malic acid    | Aspergillus spp.                                                 | Food additive<br>Synthesis of polymers                                                      |
| Fumaric acid  | Aspergillus niger<br>Rhizopus delemar                            | Food additive<br>Synthesis of polymers                                                      |

Organic acids, when compared to the antibiotics penicillin or  $\beta$ -lactam from *Penicilium spp*, seem to have a lower impact on human well-being and are considered as "high volume-low value" products, but they are the most interesting from a production point of view: their production is the most efficient in terms of yield and productivity: the efficiency of glucose converted to citric acid is higher than 80% (Magnuson and Lasure, 2004).

The species *Aspergillus niger*, subject of study in this project, is a common filamentous fungus which grows aerobically on decaying plant organic matter in soil and litter, and is usually recognized by its dark coloured spores, and hence often known as the "black mold". This microorganism (Fig. 1.4.) is able to grow within broad ranges of temperature ( $6 - 47^{\circ}$ C) and pH (1.4 - 9.8) (Schuster *et al.*, 2002).

*A. niger* became famous in industrial Biotechnology for the production of citric acid, since the early 1900s. This organic acid is the main acidulant used in food industry and the process has obtained a GRAS (Generally Regarded As Safe) status (Schuster *et al.*, 2002).

*A. niger* is able to convert glucose to citric acid with more than 80% efficiency and can reach a titer of up to 300 g/l. A cause for the high production of citric acid is believed to be the fact that *A. niger* did not evolve tight regulatory mechanisms to control acid production, as the natural environment of this organism includes low substrate concentrations (Magnuson and Lasure, 2004). Thus, in artificial high sugar concentrations, the acid production is reckless. This acid production ability, the chelation capacity of citric acid, as well as the high solubility of metals in it, may allow *A. niger* to grow in environments where metals are limited, conferring a competitive advantage for this filamentous fungus (Karaffa and Kubicek, 2003).



Fig. 1.4. Aspergillus niger microscopic image collection.

Apart from citric acid, *A. niger* has been used in industry for production of other organic acids such as gluconic and oxalic acid, although the market sizes are considerably smaller for the latter. Other species of *Aspergillus* (such as *A. terreus*) are able to produce itaconic acid up to 80 g/l in large scale bioprocesses (Okabe *et al.*, 2009; Willke and Vorlop, 2001). *A. niger*, although not a natural producer of itaconic acid, has also been shown to produce this acid (with a titer of 7.1 g/l) when engineered to express heterologous cis-aconitate decarboxylase (van der Straat *et al.*, 2014, 2013). Several other non-producing host microorganisms have been metabolically engineered

for the production of itaconic acid with titers ranging from 14.5 mg/l to 7.8 g/l (van der Straat and de Graaff, 2016). Their efforts, however, did not result in an organism which can compete with the natural producer *A. terreus*, with respect to TRY (titer, rate and yield).

There are numerous studies addressing the production process of organic acids, but a real understanding as to how *A. niger* is able to produce citric acid at such high concentrations is still lacking.

The study of the uptake mechanisms of different substrates (see section 1.3.), as well as the identification of the transporters of substrates and organic acids (see section 1.4.) are important approaches towards process improvement, which will be addressed in this study. Such understanding will allow exploitation of this fungus for the production of other organic acids. In this project, glucose, xylose, arabinose, galacturonic acid, mannose and rhamnose were the studied substrates and citric and itaconic acid were the studied organic acids.

### 1.3. Substrate uptake versatility of A. niger

For a process to be successful at large scale, a high titer, rate and yield in itself are not sufficient. The costs of the used substrate and the downstream processing are also important parameters for the overall economic feasibility of the process. A high substrate cost and an expensive purification of the product can easily absorb the advantage of a high productivity obtained (Sauer *et al.*, 2008).

Therefore, cheaper substrates like second generation feedstocks, have been addressed. However, the change of white/industrial biotechnology from expensive artificial highly refined carbohydrate substrates to more sustainable and cheaper second generation feedstocks, such as lignocellulosic hydrolysates, represents a challenge in the transition from single-sugar to mixed-substrate utilization (van Maris *et al.*, 2006).

Second generation feedstocks do not compete with food supplies and are cheaper, but are much more complex with respect to biochemistry and microbiology than first generation ones. They consist of different fermentable sugars from plant biomass of agricultural crops waste, which are currently insufficiently used. Of the global  $200 \times 10^9$  tons per year of plant biomass produced, over 90% is lignocellulose. About  $8-20 \times 10^9$  tonnes of this plant biomass is potentially accessible but remains unexploited (Lin and Tanaka, 2006).

Lignocellulose is composed of three structural heteropolysaccharides: cellulose (40% to 50%), hemicellulose (25% to 35%) and lignin (15% to 20%) (de Souza *et al.*, 2011). Besides glucose, sugar monomers in hemicellulose can include xylose, mannose, rhamnose, arabinose, and small amounts of galacturonic acid. Pectins on the other hand are rich in galacturonic acid.

Fortunately, using *A. niger* as a cell factory has benefits in the use of mixed-substrates from plant cell wall debris as feedstock, due to its good fermentation capabilities of both C5 and C6 sugars and secretion of high levels of enzymes. Specifically, the extensive variety of excreted enzymes which allow degradation of plant cell wall polysaccharides plays an important role on the dynamic uptake of different carbon sources (Gouka *et al.*, 1997; de Vries *et al.*, 2001).

Rumbold *et al.*, 2009 tested the performance of six common industrially relevant microorganisms by submitting them to growth conditions that they encounter in a second generation production process (mixture of sugars, inhibitors, extreme pH, etc.). The generated data were used to rank the organisms by relative performance. Hereby *A. niger* has scored the highest, contributing for a stronger motivation for the use of this microorganism in second generation feedstocks (Rumbold *et al.*, 2009).

Monitoring and controlling the growth of microorganisms and their behaviour towards substrates and productivity needs careful kinetic studies, since a high concentration of substrate or product can lead to inhibitory effects, decreasing fermentation rates (Sivakumar, 1994). In addition, multiple and simultaneous substrate uptake is desired to facilitate the use of second generation feedstocks where different monomers are present at low (limiting) concentrations (Lendenmann *et al.*, 1996).

### 1.4. Transport processes

For the proper functioning of a living cell, the cell membrane and embedded transport proteins are essential (Ramos *et al.*, 2016), as the transport system enables the metabolic homeostasis of the cell by uptaking nutrients, excreting unwanted products and establishing electrochemical gradients.

All eukaryotic cells contain a wide range of plasma membrane proteins which ensure the exchange (import and export) of molecules with the environment. To understand whether a compound can cross the plasma membrane freely, it is important to know that this membrane has a lipophilic nature. This means that charged and hydrophilic molecules need a mediator (transport protein).

### 1.4.1. Mechanisms

The transport systems can be divided in two types: non-coupled transport, and coupled transport – Fig. 1.5.

In case of a non-coupled mechanism no transporter protein is involved (passive diffusion), lipophilic and non-charged molecules like oxygen, carbon dioxide, ethanol and small undissociated organic acids can be exchanged across the membrane with as the only driving force the membrane concentration gradient. In case of facilitated diffusion, a membrane protein is present to mediate the non-coupled transport. In case of a non-charged molecule, only the membrane concentration gradient determines the transport rate. However, when a charged molecule is transported by a protein, the transport rate depends on the electrochemical gradient, influenced by the internal potential.



Fig. 1.5. Cellular transport mechanisms.

When the solubility of a molecule (charged, hydrophilic) in the lipid membrane is insufficient, or the transport has to occur against a concentration gradient, both a transporter and energy input (coupled transport) are needed. Coupled transport requires ATP (reaction-transport) or energy derived from a H<sup>+</sup> gradient or gradient of another molecule or ion over the membrane (transport-transport). Examples of reaction-transport are the ATP-binding cassette (ABC) transporter and the phospho transferase system (PTS). In case of a transport-transport system the molecule is either translocated in the same direction together with one or more protons or another molecule (symport) or in opposite directions (antiport). The proton gradient involved in proton coupled transport needs to be balanced in terms of charge and therefore this mechanism involves the proton motive force (pmf). Finally, the H<sup>+</sup> balance needs to be restored by H<sup>+</sup>\_ATPase.

### 1.4.2. Thermodynamics

The described transport processes need to be accessed in terms of energetics. The Gibbs energy of the H<sup>+</sup> coupled export of a charged compound (charge z) such as  $C_{in}^{z}$  +  $nH_{in}^{+} \Leftrightarrow C_{out}^{z}$  +  $nH_{out}^{+}$  can be written as:

$$\Delta_T G = \left[ RT ln\left(\frac{c_{out}^2}{1}\right) + 0 + nRT ln\left(\frac{H_{out}^2}{1}\right) + 0 \right] - \left[ RT ln\left(\frac{c_{in}^2}{1}\right) + ZF\psi + nRT ln\left(\frac{H_{in}^1}{1}\right) + nF\psi \right]$$
(1.1.)

Where  $\ln(C^{z}/1)$  and  $\ln(H^{+}/1)$  are the correction terms for concentrations different from 1 mol/L, R = 8.314x10<sup>-3</sup> kJ/molK, T is the temperature in Kelvin (K); n is the number of protons (H<sup>+</sup> co-exported); and  $ZF\psi$  is the correction for the electrical potential (Z is the charge of the transported molecule, F is the Faraday constant = 96.5 kJ/v e<sup>-</sup>mol and  $\psi$  is the inside membrane potential in volt).

The intracellular space has an electrical potential (the extracellular space has  $\psi = 0$  by definition), of which the value depends on the extracellular pH to maintain a constant proton motive force ( $E_{pmf}$ ). The relation between the electrical potential and the extracellular pH can be written as:

$$\psi = \frac{2.303RT}{F} (pH_{in} - pH_{out}) - E_{pmf}$$
(1.2.)

In this relation  $E_{pmf}$  and  $pH_{in}$  are homeostatic at values of  $E_{pmf}$  = 0.15 V and  $pH_{in}$  = 7.6 (Hesse *et al.*, 2002). With these assumptions,  $\psi$  only depends on the extracellular pH and becomes negative for high  $pH_{out}$ , and positive for low  $pH_{out}$ .

Assuming  $\Delta_T G = 0$  in equation 1.1., one can calculate the logarithm of the equilibrium out/in equilibrium concentration ratio of the charged species of the transported compound according to equation 1.3.

$$\log \frac{c_{out}^Z}{c_{in}^Z} = z(pH_{out} - pH_{in}) + \frac{(n-z)(-Epmf)F}{2.303 RT}$$
(1.3.)

This ratio is the thermodynamic maximum value of the out/in ratio for a proton coupled export system.

### 1.4.3. Maximal out/in ratios of total acids

Organic acids can occur in a charged form depending on their  $pk_a$  value(s) and the ambient pH. Depending on the molecule to be transported, its charge (z), the mechanism (n) and the set extracellular pH, different scenarios have to be considered.

To achieve high extracellular concentrations of organic acids in a fermentation process, it is imperative to consider the presence of an efficient (high out/in ratio) exporter as well as metabolic reprogramming of the cell. Insufficient export results in intracellular accumulation and compromises the cell's homeostasis. The mechanisms of the transport process, and specially how much energy is demanded, is a research field in its own (Burgstaller, 2006; Karaffa and Kubicek, 2003; van Maris *et al.*, 2004).

Depending on the pH, there is an equilibrium between the four different species of tricarboxylic acids such as citric acid (H<sub>3</sub>A, H<sub>2</sub>A<sup>-</sup>, HA<sup>2-</sup>, A<sup>3-</sup>), and three species for dicarboxylic acids as itaconic acid (H<sub>2</sub>A, HA<sup>-</sup>, A<sup>2-</sup>).

It is therefore important to calculate, as function of the pH (Fig. S1.1.), the concentration ratios of the charged species with respect to the total acid – Fig. 1.6. In this figure the intersections between different species represent the values of the acid dissociation constants (citric acid:  $pka_1=3.13$ ,  $pka_2=4.76$ ,  $pka_3=6.39$ ; itaconic acid:  $pka_1=3.85$ ,  $pka_2=4.45$ ).



Fig. 1.6. Citric acid (left) and itaconic acid (right) fractions of different charged species depending on extracellular pH.

At the intracellular pH of A. niger (pH = 7.6), these carboxylic acids are near fully dissociated. In case of citric acid, 94% of the acid is fully dissociated ( $A^{3-}$ ) and 6% of the acid is present in as the H $A^{2-}$  species. For itaconic acid, 99.9% of the acid is fully dissociated  $A^{2-}$  and 0.1% in the H $A^{-}$  species. Although different charged species of the acids can be exported, but given their abundance, the most likely exported species are the fully dissociated ones, which we will consider from this point on.

This also means that there is a metabolic production of  $H^+$  which must be exported as well:  $3H^+$  per  $A^{3-}$  and  $2H^+$  per  $A^{2-}$  for citric and itaconic acid respectively. Depending on the transport mechanism (uniport, symport, double symport and antiport), there could be export of additional  $H^+$  required.

It is important to understand the role of the extracellular pH and the different energy requirements (ATP expense) when considering different transport mechanisms. Fig. 1.7. shows the ATP cost of the export of  $A^{3-}$  and  $A^{2-}$  species for citric acid and itaconic acid respectively, depending on the type of mechanism.



Fig. 1.7. Energy requirements for different export mechanisms in citric acid (upper panel) and itaconic acid (lower panel).

The ATP cost follows from the number of exported protons, using the eukaryotic  $H^+$ \_ATPase with a stoichiometry 1. When one proton ( $H^+$ ) is imported, then there is a possible ATP benefit, assuming  $1H^+$  per ATP synthesized.

Depending on the pH out, different transport mechanisms will achieve different out/in ratios (Fig. 1.8.).

At neutral pH<sup>out</sup> the uniport mechanism can achieve a high ratio  $(A_{out}/A_{in})$  of about 10<sup>6</sup> when transporting the species A<sup>3-</sup> of citric acid, but at the expense of 3 ATP. The symport system achieves lower ratios (10<sup>3</sup>) but with less ATP expense.



**Fig. 1.8.** Calculated equilibrium ratios of total acid ( $A_{out}/A_{in}$ ) of citric acid (left) and itaconic acid (right) for fully dissociated transported species ( $A^{3-}$  and  $A^{2-}$ ) by different transport mechanisms depending on the pH<sub>out</sub>

However, at low  $pH^{out} = 2$  (pH < pka) high out/in ratios require an antiport system, leading to the highest ATP expenses. Similar conclusions are obtained for the  $A^{2^{-1}}$  species of itaconic acid: to obtain high ratios out/in at low pH, an antiport mechanism is desired, but at higher ATP cost.

### 1.4.4. Organic acid solubility

A high organic acid titer in a fermentation process with a high producing industrial microorganism equipped with an efficient export system may result in acid

concentrations which approach, or even cross, the solubility limit. It is therefore important to consider these solubility limits.

The solubility of organic acids can be increased with increasing temperature (Fig. 1.9.).

At the pH where the acid is present predominantly in the undissociated form, the solubility limit of the undissociated acid is reached (Fig. 1.9.). At 25°C citric acid reaches this solubility limit of 3.366 M at pH 2, and itaconic acid reaches this limit (1.298 M) at pH 3. Below these pH values, the organic acids enter their solid state, which makes the low-pH approach very interesting from the recovery point of view (downstream processing).



Fig. 1.9. Solubility of citric acid and itaconic acid depending on the temperature (upper panel) and pH (lower panel) (Sources: Kfivnkovi *et al.*, 1992; Mullin, 2001).
At low pH and temperature, not only the organic acids are closer to their solubility limits, which is economically advantageous because less alkali is required for pH control during the fermentation (no acidification is required in the downstream processing and as a result less waste salts are produced), but also because at low solubility the osmotic stress for the cells is less.

#### 1.4.5. Futile cycle

It should also be noticed that in their undissociated form ( $H_3A$  for citric acid, and  $H_2A$  for itaconic acid), organic acids could diffuse freely over the cellular membrane. However, once imported into the cell and exposed to the intracellular pH which is close to neutral, weak acids dissociate into their fully charged species and  $H^+$ . To maintain cell homeostasis and balance the charge intracellularly, the charged species are transported back by a required active export, generating a futile cycle – Fig. 1.10. This leads to extra energy consumption, hence more  $O_2$  consumption, and thus lower yield and productivity.



Fig. 1.10. Futile cycling of citric acid.

Unravelling the transport mechanisms is then crucial for the optimization of efficiency and economy of the process, and can help designing and developing strains better suites for the production of organic acids (Jamalzadeh, 2013).

The rate of diffusion of an undissociated acid as shown in Fig. 1.10. follows as:

$$q_{acid} = k \frac{\delta V}{d} \left( C_{acid out} - C_{acid in} \right) \tag{1.4.}$$

Where q<sub>acid</sub> is the biomass specific uptake of the undissociated acid through passive diffusion (mol/h/Cmol), k is the permeability coefficient of the acid (m/h), V is the cell volume of A. niger ( $32.8 \times 10^{-6} \text{ m}^3/\text{Cmol}$ ), d is the cell diameter ( $10 \times 10^{-6} \text{ m}$ ), C<sub>acid out</sub> is the extracellular concentration of undissociated acid in mol/m<sup>3</sup>, and Cacid in seglected (= 0) as the intracellular concentration of undissociated acid is very low at  $pH_{in}$  = 7.6 (Hesse et al., 2002).

The cell volume was estimated to be 1.2 ml/g<sub>DW</sub> in *A. niger* (Ruijter and Visser, 1996), and the biomass molecular weight used was  $27.3 \pm 0.17$  (Lameiras *et al.*, 2015), leading to V =  $32.8 \times 10^{-6}$  m<sup>3</sup>/Cmol. The diameter of fungal hyphae varies between 5  $\mu$ m to 15  $\mu$ m, and therefore an average of 10  $\mu$ m was considered in this approach (Geitmann and Emons, 2000). Note that in case of a solubility limit, there is a maximal rate  $q_{acid,max} = k \frac{6V}{d} C_{acid out sol}.$ 

## 1.4.6. Substrate transport mechanisms

For carbohydrate substrates, the eukaryotic fungal transport system has been extensively studied in Saccharomyces cerevisiae (Andre, 1995; Leandro et al., 2009). The yeast hexose transporter (HXT family) contains at least 20 different proteins involved in the transport of glucose, and some of these transporters also have a broad specificity for other hexoses, as well as for pentoses. The main hexose transporters HXT1-7 and Gal2 from S. cerevisiae, are acting by facilitated diffusion (Flagfeldt et al., 2009). In the filamentous fungus Aspergillus nidulans there are at least 17 putative HXT transporters identified in its genome (Wei et al., 2004).

For *A. niger*, despite the 461 putative transporters from the major facilitator superfamily (MFS), from which 19 seem to be transporting glucose, only very few transporters have been identified and confirmed (genome sequencing reported by Pel *et al.*, 2007). A high affinity glucose/proton symporter MSTA was identified (van Kuyk *et al.*, 2004)., as well as two other glucose proton symporters, MSTG and MSTH (Sloothaak *et al.*, 2015). In addition, a galacturonic acid transporter (unknown mechanism) GATA (Martens-Uzunova and Schaap, 2008; Sloothaak *et al.*, 2014), a fructose proton symporter FSY1 (Coelho *et al.*, 2013), a rhamnose proton symporter RHTA (Sloothaak *et al.*, 2016a) and three xylose transporters (unknown mechanism) XLTA, XLTB and XLTC (Sloothaak *et al.*, 2016b) were identified.

Details on the characteristics of some transporters of *A. niger* and their mechanisms are given in Table 1.2. It appears that substrate transporters are usually of the high affinity type using a proton symport mechanism, and are not specific for a single substrate.

| Transporter(s)<br>name | Mechanism        | Comment                                                                                                                                                                                                                    | Reference                                                            |  |
|------------------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|--|
| n/a                    | unknown          | High affinity glucose transporter (K <sub>m</sub> 0.39 mM) at low<br>concentrations and low-affinity transporter (K <sub>m</sub> 3.67<br>mM) when grown on high concentration                                              | Torres <i>et al.,</i> 1996                                           |  |
| MSTA                   | Proton symporter | Transports fructose ( $K_m 4.5 \pm 1.0 \text{ mM}$ ),<br>xylose ( $K_m 0.3 \pm 0.1 \text{ mM}$ ),<br>mannose ( $K_m 0.06 \pm 0.02 \text{ mM}$ ),<br>and glucose ( $K_m 0.025 \pm 0.01 \text{ mM}$ ).                       | van Kuyk <i>et al.,</i> 2004                                         |  |
| FSY1                   | Proton symporter | two FSY1homologues transport fructose $(K_m 0.066 \pm 0.011 \text{ mM} \text{ and } 0.10 \pm 0.011 \text{ mM})$                                                                                                            | Coelho <i>et al.,</i> 2013                                           |  |
| GATA                   | unknown          | Galacturonic acid transporters                                                                                                                                                                                             | Martens-Uzunova and<br>Schaap 2008;<br>Sloothaak <i>et al.,</i> 2014 |  |
| MSTG<br>MSTH           | Proton symporter | MSTG transports glucose ( $K_m 0.5 \pm 0.04 \text{ mM}$ ), but also<br>galactose. mannose and sucrose<br>MSTH transports glucose ( $K_m 0.06 \pm 0.005 \text{ mM}$ ), but also<br>galactose, mannose, sucrose and fructose | Sloothaak <i>et al.,</i> 2015                                        |  |
| RHTA                   | Proton symporter | Rhamnose transporter                                                                                                                                                                                                       | Sloothaak et al., 2016a                                              |  |
| XLTA<br>XLTB<br>XLTC   | unknown          | Xylose transporters                                                                                                                                                                                                        | Sloothaak <i>et al.,</i> 2016b                                       |  |

Table 1.2. Summary of the known transporters and their mechanism in A. niger.

Nevertheless, there are at present no transporters described for the import of other 2<sup>nd</sup> generation feedstock monomers such as arabinose; however, the sequencing data from Pel and co-workers reveal many other potential transporters to be discovered (Pel *et al.*, 2007).

#### 1.5. Scope and outline of this thesis

The aim of this project is to contribute to the knowledge of *A. niger* as a cell factory in the production of organic acids, in order to improve existing processes and to facilitate new ones. To this aim, fundamental studies were performed in two parts: the substrate and the product.

The objective of the former part is to understand the mechanism of uptake of different C5 and C6 substrates and how they interact in a simulated second generation feedstock mixture. For this, also the growth stoichiometry is relevant.

The objective of the product study is to address two important issues of industrial large scale production of organic acids: fermentation at low pH (pH<pk<sub>a</sub>), which is desired because it allows cheaper downstream processing and avoids the consumption of expensive alkali and hence absence of stoichiometric salt production (Fig. 1.9.); and the achievement of high extracellular concentrations (high titers) which can be energetically demanding for the cell due to ATP dissipating futile cycling.

In Fig. 1.11., the scheme resumes the scope and flow of this thesis. In this study, both substrates and products of *A. niger* were studied. For that purpose, experimental approaches had to be designed and established.

Throughout this chapter (chapter 1), *A. niger* is the preferred filamentous fungus in fungal biotechnology. Although its cultivation under submerged fermentation had been shown possible by Kluyver's group in Delft (Kluyver and Perquin, 1932), there have been few process studies in the last 8 decades. One of the reasons is the difficulty of cultivation of this filamentous fungi: the high viscosity and pellet formation results in an insufficient mixed heterogeneous culture and low nutrient supply (Krull *et al.*, 2010). This issue is tackled in **chapter 2**, where a pellet-free homogeneous and well-defined continuous cultivation of *A. niger* was established in a dedicated bioreactor.



Fig. 1.11. Scope of this thesis.

Furthermore, to enable fundamental studies such as kinetics and transport characterizations with accurate quantification of inside and outside concentrations, a new rapid sampling and quenching protocol to obtain reliable intracellular metabolite levels was optimized (**chapter 2**), in order to obtain insights on both the intracellular and extracellular metabolome under steady state conditions.

Once all experimental protocols and tools were established for *A. niger*, we focused on the substrate uptake and growth stoichiometry (**chapter 3** and **4**) and organic acid excretion and uptake (**chapter 5** and **6**).

Regarding the substrate uptake, in **chapter 3** we have characterized the growth of *A*. *niger* on different carbon sources from second generation feedstocks in single and mixed cultures with respect to growth stoichiometry and substrate uptake kinetics. In **chapter 4**, we have studied the stoichiometry of the metabolism of these sugars using stoichiometric modelling and metabolic flux analysis, together with an insight on the transport system of these molecules.

In **chapter 5** we study the impact of high concentrations and low pH of citric and itaconic acid on the uptake/secretion and transport energetics in two strains: *A. niger NW185*, a parental strain, and *A. niger C3*, an itaconic acid producer. Citric acid is a key product in Biotechnology being exploited for the last 120 years. Nevertheless, the transporters of this organic acid haven't been found and the effective extracellular acid accumulation it is still a mystery. Itaconic acid, has also its interest as it has been named one of the 12 top value added building blocks which can be obtained from biomass substrates (Werpy *et al.*, 2004). The production routes of both acids are relatively similar and their uptake/secretion, metabolism and transport are addressed in chapter 5.

**Chapter 6**, is related to a particular group of organic acids: the amino acids. In this chapter we disclose the function of a putative transporter and characterize it in *A*. *niger*. The transporter, which initially was hypothesized to be excreting carboxylic acids, was empirically revealed to be importing amino acids at low pH and low amino acid concentration (high affinity).

Finally, in **chapter 7**, general conclusions and guidelines for future research are explored, based on the obtained insights.

In this chapter, a continuous cultivation of Aspergillus niger was optimized in a dedicated bioreactor. A platform for metabolomics analysis was also tested and optimized using a cold methanol quenching method.

# Chapter 2

Tools for quantitative metabolomics of *Aspergillus niger* chemostat cultures



# Abstract

Given the high citric acid production capacity of Aspergillus niger, it should be well suited as a cell factory for the production of other relevant acids such as succinic, fumaric, itaconic and malic acid. Quantitative metabolomics is an important -omics tool in a synthetic biology approach to develop A. niger for the production of these acids. Such studies require well defined and tightly controlled cultivation conditions and proper rapid sampling, sample processing and analysis methods. In this study we present the development of a chemostat for homogeneous steady state cultivation of A. niger, equipped with a new dedicated rapid sampling device. A quenching method for quantitative metabolomics in A. niger based on cold methanol was evaluated and optimized with the aim of avoiding metabolite leakage during sample processing. The optimization was based on measurements of the intermediates of the glycolysis, TCA and PPP pathways and amino acids, using a balance approach. Leakage was found to be absent at  $-20^{\circ}$  C for a 40% (v/v) methanol concentration in water. Under these conditions the average metabolite recovery was close to 100%. When comparing A. niger and P. chrysogenum metabolomes, under the same cultivation conditions, similar metabolite fingerprints were found in both fungi, except for the intracellular citrate level which was higher for A. niger.

# Keywords

Aspergillus niger, chemostat, rapid sampling, cold methanol quenching, quantitative metabolomics

## 2.1. Introduction

Filamentous fungi like *Aspergillus niger*, form a key step in the global carbon cycle by their capacity to degrade plant wastes efficiently, as they have one essential advantage: the massive secretion of enzymes that are capable of degrading plant cell wall constituents. In this manner sugars become available which can subsequently be taken up by the cells. This fungal characteristic is already exploited industrially for the production of enzymes such as glucoamylases and hemicellulases. Moreover, *A. niger* is applied in large scale industrial fermentations for the production of citric acid.

Considering the high citric acid production capacity of *A. niger* at low pH, it should be well suited for the production of other relevant organic acids, such as itaconic, succinic, fumaric and malic acid. Bio-based fermentative production of these acids from plant waste streams using *A. niger*, is an attractive alternative to their petroleum-based production. Moreover, the above mentioned dicarboxylic acids have a good potential as chemical building blocks in polymer synthesis (Werpy *et al.*, 2004). Overproduction of dicarboxylic acids in *A. niger* requires metabolic engineering of the fungus, not only with respect to the product pathway but also with respect to the import of lignocellulosic sugars (glucose, xylose, arabinose, etc.) and the export of the produced acids.

A. niger as a cell factory exhibits a flexible metabolism which enables growth on a wide range of substrates. Furthermore, its genome has been fully sequenced (Pel *et al.*, 2007) which facilitates metabolic engineering efforts for the development of strains for the production of new compounds and subsequent strain and process improvement. Hence, a systems biology approach can be applied for identifying and removing bottlenecks by combining different *–omics* levels.

Steady state as well as dynamic quantitative metabolomics with and without stable isotope labelling can be applied to identify kinetic and capacity bottlenecks in the product pathway, substrate import and product export. Such metabolomics studies

require well defined and tightly controlled cultivation conditions and proper rapid sampling, sample processing and analysis methods (van Gulik et al. 2000).

Unfortunately, the filamentous growth-form of A. niger poses problems, especially in bench-scale fermentors, due to the tendency of the organism to grow as pellets and to accumulate on the walls and probes of the fermentor, as well as in the outflow system in case of chemostat cultivation (Larsen et al., 2004; Schrickx et al., 1993). This should be avoided as a homogeneous culture is a prerequisite for proper metabolomics/fluxomics studies. Due to these practical difficulties, little work has been done with respect to chemostat cultivation of *A. niger*.

In one of the few chemostat studies on A. niger, changes in mycelium morphology and conidia formation were studied as a function of the growth rate (Schrickx et al., 1993). In the same work a *Teflon* covered ring bar magnet was used, which could be moved over the wall with an external horseshoe magnet, to remove wall growth. With a similar purpose, Swift et al. 1998 tried to reduce biomass accumulation on internal surfaces by periodically increasing the stirrer speed for 5 to 10 min.

Larsen et al. 2004 suggested the use of a custom made variomixing bioreactor, in which intermittently rotating baffles reduce the surface area susceptible to wall growth and probes were inserted below the surface level of the culture to prevent mycelium accumulation between the probes. With this technically complex bioreactor, wall growth was significantly reduced in batch cultivations of Aspergillus oryzae. Later on, this reactor was successfully used for steady state chemostat cultivation of A. niger (Jørgensen et al., 2007). With the purpose of minimization of wall growth, Jørgensen et al. 2011 cooled the glass surface of the headspace of the bioreactor. Another problem when growing A. niger is its aggregation as pellets. It has been reported that when inoculating a culture with spores at pH values of 3.5 or higher, pellets were formed whereas free mycelium was formed when inoculation was done at pH 2.5 (Pedersen et al., 2000).

In addition to a homogeneous cultivation, accurate sampling is required for quantitative metabolome analysis. Over the years, different rapid sampling devices have been developed (Schädel and Franco-Lara, 2009), to allow fast sampling of biomass from bioreactors for intracellular metabolomics studies. When constructing a sampling device, the residence time for the cells to pass from the reactor to a quenching fluid has to be considered and compared to the consumption rate of the available substrate (and oxygen for respiration-related processes). This residence time should be short enough to prevent any change in limitation to occur and thus to prevent changes in metabolite levels during sampling. Additionally, dead zones within the equipment must be avoided and the construction must permit aseptic use (Larsson and Törnkvist, 1996). In most of the described sampling devices the dead volume has been reduced by using channels with a small internal volume such as HPLC capillaries.

Currently, there is a sampling device built in house (Lange *et al.*, 2001), designed for *Saccharomyces cerevisiae*. This sampling device has been used for other metabolomics studies in different organisms, *e.g. Escherichia coli, Pichia pastoris* and even the filamentous *Penicillium chrysogenum* (Carnicer *et al.* 2012; Taymaz-Nikerel *et al.* 2009; de Jonge *et al.* 2012). However, *A. niger*, being a filamentous fungi, is not suited for the usage of such a device comprehending a sampling tube of 0.8 mm, and thus blocking the system due to the long hyphae (up to 100  $\mu$ m) of the organism (Swift *et al.*, 1998).

Any changes in the environment of the cells directly influences their metabolism and thus also the outcome of a metabolome analysis. It is known that the turnover times of intracellular metabolites are generally small, in the order of seconds, considering their conversion rates and intracellular concentrations. Hence, quenching of cellular metabolism within a fraction of a second upon sampling is required, in order to avoid further (inter)conversion of metabolites and obtain a proper snapshot of the metabolic state.

The most critical assumption in quenching methods which allow separation of cells and extracellular medium and washing of the biomass, such as the cold methanol/water

method (de Koning and van Dam, 1992) is that intracellular metabolites will remain inside the cells during quenching, separation and washing. However it is known that some metabolites can leak from the cells into the quenching solution, which is later discarded, thus underestimating intracellular levels (Canelas *et al.*, 2008). For eukaryotic microorganisms, leakage can be avoided by adaptation of the composition of the quenching fluid (Carnicer *et al.* 2012; de Jonge *et al.* 2012; Canelas *et al.* 2008). Apart from quenching, also a proper extraction procedure is crucial, as it is not desired that the metabolites of interest are (inter)converted and/or degraded during this procedure. Only very few studies have been performed on the optimization of quenching and extraction procedures for metabolomics of *A. niger*.

Ruijter and Visser (1996) performed rapid sampling of *A. niger* cultures in a quenching solution of 60% aqueous methanol at -45°C and metabolite extraction was performed using a cold chloroform/methanol method. In this study it was stated that metabolites do not leak from the cells, as no significant concentrations were detected in the quenched filtrate. However, the detection limits of the analysis were not specified, and leakage cannot be quantified from intracellular concentrations only, as one needs to compare external and intracellular metabolite amounts. Jernejc (2004) evaluated different quenching methods and different extraction methods for metabolite recovery in *A. niger*. Quenching in liquid nitrogen or in a 60% methanol water solution at -40°C, gave similar results. For metabolite extraction, acid and alkali extractions were considered better methods than ethanol extraction, though recoveries of the different methods were not checked. In these previous protocols, the absence of leakage was not validated.

Here we describe the successful development of a chemostat protocol for homogeneous steady state cultivation of *A. niger*, based on a conventional turbine stirred bioreactor. We equipped the reactor with a dedicated rapid sampling device for fast and reproducible withdrawal of mycelium samples, allowing quantitative metabolome analysis. To obtain reliable snapshots of the metabolome, a cold methanol/water based quenching procedure was optimized and validated for absence of leakage for *A. niger* using the metabolite balance approach as described by Canelas *et al.*, 2008. To this end, we quantified an extensive set of metabolites with different physicochemical properties in different sample fractions, using isotope dilution mass spectrometry (Mashego *et al.*, 2004; Wu *et al.*, 2005).

#### 2.2. Materials and Methods

#### 2.2.1. Strain and Inoculum

A. niger NW185 (cspA1 short conidiospores, fwA1 fawn coloured spores, goxC17 glucose oxidase negative and prtF28 oxalate non-producing) was used throughout. The conidial inocula for chemostat cultivation were obtained from cultures on complete medium agar plates at pH 6 containing 9 g/l glucose monohydrate as carbon source, 6 g/l NaNO<sub>3</sub> as N-source, 1.5 g/l KH<sub>2</sub>PO<sub>4</sub>, 0.5 g/l KCl, 0.5 g/l MgSO<sub>4</sub>.7H2O, 2 g/l meat peptone, 1 g/l yeast extract, 1 g/l tryptone and 15 g/l agar.

The agar medium was supplemented with 1 ml/l of trace elements solution, containing 10 g/l EDTA, 4.4 g/l ZnSO<sub>4</sub>.7H<sub>2</sub>O, 1.0 g/l MnCl<sub>2</sub>.4H<sub>2</sub>O, 0.32 g/l CoCl<sub>2</sub>.6H<sub>2</sub>O, 0.32 g/l CuSO<sub>4</sub>.5H<sub>2</sub>O, 0.22 g/l (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>.4H<sub>2</sub>O, 1.47 g/l CaCl<sub>2</sub>.2H<sub>2</sub>O and 1.0 g/l FeSO<sub>4</sub>.7H<sub>2</sub>O (Vishniac and Santer, 1957) and 1 ml/l of vitamins solution (containing 0.05 g/l Dbiotin, 1 g/l CaD(+)panthotenate, 1 g/l nicotinic acid, 25 g/l myo-inositol, 1 g/l thiamine chloride hydrochloride, 1 g/l pyridoxol hydrochloride, 0.2 g/l p-aminobenzoic acid). Media were sterilized at 121°C for 20 min and the glucose solution was sterilized separately at 110°C. The trace elements and vitamin solutions were added sterile to the culture media by filtration through a 0.2 µm cartridge filter (Whatman FP 30/0.2 CA-S).

One week prior to inoculation of the fermentor cultures, the medium plates were inoculated with conidia from a stock culture kept at 4°C. Plates were incubated at 30°C for 4 days and then stored at 4°C. Spores were harvested and washed with saline solution containing 0.9% NaCl and 0.05% Tween 80 to enhance the release of the spores from the plates.

#### 2.2.2. Fermentor set up

A 7 litre turbine-stirred bioreactor was used (Applikon, Delft, The Netherlands). The bioreactor was set up and operated as described in Nasution *et al.* (2006) with the following adaptations.

The broth level was chosen such that the baffles were completely covered (working volume of  $4.5 \pm 0.01$  litre). A cooling tubing (4°C) was wrapped around the headspace of the fermentor to minimize growth of the fungus on the glass surface above the liquid. The exhaust gas of the fermentor was passed through a condenser (4°C) and a Nafion dryer (Permapure, Toms River, USA) before entering a NGA 2000 offgas analyser (Rosemount Analytical, Anaheim, USA) for measurement of the oxygen and carbon dioxide contents. Data acquisition was performed with MFCS/win 3.0 software.

The bioreactor was equipped with pH, temperature and dissolved oxygen probes, inserted in the metal bottom part of the fermentor, below the broth level.

The cultivation temperature was kept constant at 30.0°C ( $\pm$  0.1), and the pH (*Mettler Toledo InPro*<sup>°</sup> 3030/120) was controlled at 3.0 ( $\pm$  0.1) by addition of 4 M NaOH.

Sterile air was supplied via a mass flow controller (Brooks 58505 calibration at 0°C and 1 bar) at 1 l/min through a bottom sparger. Dissolved oxygen was monitored with an *AppliSens Z010011020* probe.

To avoid biofilm formation on the wall, continuous media inflow was supplied at the bottom of the fermentor, along with the air supply. An overpressure of 0.3 bar was applied.

# 2.2.3. Batch cultivation

The fermentor, containing 4.5 kg of minimal medium, was inoculated with a conidial suspension to give a final concentration of  $1 \times 10^6$  spores/ml, along with 0.003% (wt/wt) of yeast extract to induce conidia germination (Jørgensen *et al.*, 2011).

The glucose-limited minimal medium contained 0.5 g/l (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 0.3 g/l KH<sub>2</sub>PO<sub>4</sub>, 3 g/l NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub>, 0.5 g/l MgSO<sub>4</sub>.7H<sub>2</sub>O and 1 ml/l trace elements solution (composition as described above), with a final pH of 4.6. Sterilization of the medium was performed by passing it through a 0.2  $\mu$ m filter (*Sartorius stedim Sartopore 2*). The substrate concentration was 7.5 g/l of glucose monohydrate and the fermentor pH was controlled at 2.5 to prevent pellet formation.

Oxygen-sufficient growth was ensured by preventing the dissolved oxygen (DO) to decrease below 50%, of air saturation by automatic DO control through progressively increasing the stirrer speed from initial 100 rpm to a maximum of 450 rpm at the end of batch fermentation.

### 2.2.4. Chemostat cultivation

Continuous cultivation was started in the late exponential phase of the batch culture, approximately 30 hours after inoculation, by starting the medium feed. The composition of the chemostat medium was the same as the batch medium. Effluent was removed discontinuously via a pneumatic valve in the bottom of the reactor and a peristaltic effluent pump controlled by the broth weight. During chemostat cultivation the stirrer speed was kept constant at 450 rpm.

### 2.2.5. Sampling and analytical procedures

When a steady state was reached (after five residence times), at least 6 samples were taken for quantification of cell dry weight, concentrations of extracellular compounds and TOC (total organic carbon) content.

Broth samples for determination of the biomass dry weight concentration were taken from three different sections of the fermentation setup: the regular sampling port aside the fermentor vessel, the sampling port of the rapid sampling device and the outflow tube upstream the effluent vessel. In all cases, biomass dry weight was determined by filtration over glass fiber filters (47 mm, type A/E, Pall, USA), subsequent washing with water and drying at 70°C until constant weight. All samples were analysed in triplicate.

Filtrate samples were obtained by quickly (within 3 s) withdrawing 5 ml of broth, via the over-pressure on the fermentor, into a syringe containing cooled steel beads (-20°C) to bring the sample temperature down to  $0^{\circ}$ C (Mashego *et al.* 2003). The broth was then immediately pressed through a 0.45 µm cartridge filter (Millex-HV durapore PVDF membrane) into a sampling tube, which was directly frozen in liquid nitrogen.

The total organic carbon content of the filtrate samples was quantified with a total organic carbon analyser (type TOC-L, Shimadzu, Kyoto, Japan). With this method, both total carbon (TC) and inorganic carbon (TIC) were measured. The latter representing the content of dissolved carbon dioxide and carbonic acid salts. Subtracting the inorganic carbon from the total carbon, yields the TOC.

The morphology of the hyphae was inspected by microscopy (Axiostarplus, Carl Zeiss, Jena, Germany) using a 10x objective, and biomass elemental composition was determined by combustion and subsequent gas analysis (carbon dioxide, water vapour and nitrogen mass fractions), gas chromatography (oxygen) and ICP-MS (phosphorus and sulphur) of washed and dried cells (Energy Research Centre of the Netherlands).

#### 2.2.6. Rapid Sampling and quenching

A new customized rapid sampling device (Fig. 2.1.A and 2.1.B) designed such that pellet formation and/or long mycelia would not result in blockage of the device was built in house. The working principle is shown in Fig. 2.1.C.

Via a loop with an internal diameter of 8 mm and a peristaltic pump (Masterflex L/S, Cole-Parmer), the broth was pumped from the fermentor through the sampling device and back into the fermentor at a flow rate of 40 ml/s. The broth residence time in the part of the loop between the fermentor broth outflow and the sampling port was 0.25s. The broth residence time in the entire loop was 1.3 s. Whenever metabolite dynamics had to be performed, the highest frequency of this device was 3 s, at which samples could be sequentially taken.



Fig. 2.1. Custom-made rapid sampling device and its working principle.

When sampling, the piston of the sampling device is pushed down and up again by a two-way pneumatic cylinder, removing a constant volume of broth from the loop. This constant volume is then pushed into a sampling vial containing the cold quenching fluid, by a constant flow of sterile air.

# 2.2.6.1. Rapid sampling and quenching for intracellular metabolome quantification

The procedure is described for the standard 60% aqueous/methanol quenching solution (at -40°C), however, the same procedure was applied for 50% (at -20°C) and 40% (at -20°C) aqueous/methanol mixtures (Fig. 2.2.).

37



Fig. 2.2. Rapid sampling and quenching procedure of A. niger.

Two aliquots of 0.76 ( $\pm$  0.04) g of broth was rapidly withdrawn from the broth loop with the sampling device and injected (< 1 s) into the same vial containing 10 ml of 60 % aqueous methanol (v/v) solution pre-cooled to -40°C. The exact sample weight was determined by weighing each tube before and after sampling. The content of each tube was quickly mixed by vortexing (1 s) and the tube was placed back in a cryostat (Lauda, Germany) at -40°C. A set of 3 replicates were taken within one minute.

The quenched cold mycelia samples were harvested and washed by cold filtration, according to a previously described method (Douma *et al.*, 2010) which was slightly modified. Filtration was performed using glass fiber filter disks (PALL glass fibre type E). To cool down the filter and filter unit, 20 ml of 60% aqueous methanol (v/v) solution pre-cooled to  $-40^{\circ}$ C was poured onto the filter. Immediately thereafter the quenched mycelium sample was poured into the cold aqueous methanol on the filter. Then the vacuum pump was turned on and after the filter fell dry, 20 ml of cold (-40 C) 60% methanol was poured on the filter for a first washing followed by 40 ml of cold 60% methanol for a second washing of the mycelium sample.

## 2.2.6.2. Rapid sampling and quenching for extracellular metabolite quantification

Two aliquots of 0.76 ( $\pm$  0.04) g of broth, withdrawn with the rapid sampling device, was quickly filtered through a syringe containing cooled steel beads (-20°C) and a 0.45  $\mu$ m cartridge filter (Millex-HV durapore PVDF membrane) directly into the same tube containing 10 ml 40% methanol (v/v) at -20°C. The exact sample weights were determined by weighing all tubes before and after sampling.

#### 2.2.6.3. Rapid sampling and quenching for metabolite quantification in whole broth

Sampling was done as for intracellular metabolites, by quenching two aliquots of 0.76 ( $\pm$  0.04) g of broth in 10 mL of 40 % aqueous methanol (v/v) solution pre-cooled to - 20°C, but the quenched cell suspension was not filtered. The exact sample weights were determined by weighing all tubes before and after sampling.

#### 2.2.6.4. Extraction method

Boiling ethanol extraction was performed to ensure complete cell disruption and inactivation of enzyme activity, according to a method modified from Lange *et al.* 2001. The three sample fractions (described in 2.2.6.1. – 2.2.6.3.) were extracted immediately after sampling and quenching. For intracellular samples, the cooled filter paper with quenched mycelium was placed in a falcon tube containing 25 mL of 75% ethanol (pre-heated at 75°C), along with 100  $\mu$ l of U-<sup>13</sup>C-labeled cell extract of *S. cerevisiae* as internal standard. Each tube was immediately vortexed and placed in a water bath at 95°C. After 3 min each tube was placed on ice, and later stored at -80°C. Extracellular and total broth fractions were also submitted to the same process, by adding the whole volume of quenched solution into 25 ml of 75% ethanol, with 100  $\mu$ l of U-<sup>13</sup>C-labeled yeast extract, and boiled for 3 min at 95°C, as described for intracellular fractions.

#### 2.2.6.5. Ethanol evaporation

All extracts were evaporated to dryness in a Rapid-Vap (Labconco, Kansas City, MO) under vacuum for 240 min, based on the protocol from Mashego *et al.* 2004. After evaporation, the residues were resuspended in 500  $\mu$ l of water, and centrifuged at 1000 g to remove cell debris. The supernatants were stored at -80°C until further analysis.

## 2.2.6.6. Metabolite quantification

The concentrations of the metabolic intermediates from glycolytic, TCA and PPP pathways and aminoacids were measured by isotope dilution mass spectrometry (LC-IDMS/MS and GC-IDMS) according to the protocols of van Dam *et al.* 2002, de Jonge *et al.* 2011 and Cipollina *et al.* 2009 (Table S2.1.).

## 2.2.7. Balances, biomass specific rates and data reconciliation

From compound balances, the rates of substrate consumption ( $R_s$ ), biomass formation ( $R_x$ ), oxygen consumption ( $R_{02}$ ), carbon dioxide production ( $R_{CO2}$ ) and by-products production ( $R_{TOC}$ ) were calculated. From these rates, carbon and degree of reduction recoveries (equations 2.1. and 2.2.) were calculated wherein possible excretion of by-products was quantified by measurements of the total organic carbon content of the culture filtrate.

Carbon recovery (%) = 
$$\frac{R_X + R_{CO2} + R_{TOC}}{R_S} \times 100$$
 (2.1.)

Degree of reduction (%) = 
$$\frac{Y_X R_X + Y_{TOC} R_{TOC} + Y_{O2} R_{O2}}{Y_S R_S} \times 100$$
 (2.2.)

The biomass specific net conversion rates (i.e. growth rate), glucose and oxygen consumption rates and carbon dioxide and TOC production rates, were calculated from the primary measurements of concentrations in gas and liquid phases, as well as gas and liquid flow rates, using the corresponding steady state mole balances. Data reconciliation was applied to obtain the best estimates of the measurements, within

their error margins, using the elemental and charge conservation relations as constraints (Verheijen, 2010).

#### 2.2.8. Metabolite consistency check

The extent of metabolite leakage was evaluated by a metabolite balance approach according to Canelas *et al.* 2008. Each metabolite was quantified in different sample fractions, that is, in the mycelium fraction (intracellular; IC), the culture filtrate (extracellular; EC) and in the whole broth (WB). As the <sup>13</sup>C internal standard mix was added upstream the extraction step, any metabolite losses due to partial degradation could be corrected for. For each metabolite i, the following metabolite balances should be satisfied, if leakage of i from the cells into the quenching solution is absent:

$$M_i(TB) = M_i(IC) + M_i(EC)$$
 (2.3.)

Here, Mi is the total amount of metabolite present per gram biomass dry weight.

If leakage occurs, the amount released from cells into the quenching solution can be calculated from:

$$M_{i}(\text{leakage}) = M_{i}(TB) - M_{i}(IC) - M_{i}(EC)$$
(2.4.)

Finally, the metabolite recovery can be calculated as:

Recovery (%) = 
$$\frac{M_i(IC)}{M_i(TB) - M_i(EC)} \times 100$$
 (2.5.)

# 2.3. Results and Discussion

## 2.3.1. Chemostat cultivation of A. niger

#### 2.3.1.1. Development of the chemostat protocol

*A. niger* was grown in a 7 litre turbine stirred bioreactor, specifically constructed for chemostat cultivation of filamentous fungi. The reactor vessel consisted of a glass upper part and a stainless steel bottom part in which all probes were inserted. The

stirrer was driven from the bottom, by means of a magnetic coupling. Feed medium was supplied continuously from the top of the reactor while effluent removal was discontinuous, accomplished with a pneumatic outflow device and a peristaltic pump which were controlled by broth weight.

Despite these features, a homogeneous steady state chemostat culture could not be achieved in this reactor, due to massive wall growth and accumulation of biomass in the headspace of the reactor (Fig. S2.1.), as also experienced in other studies (Larsen *et al.*, 2004; Schrickx *et al.*, 1993).

In order to obtain a homogeneous cultivation, avoiding accumulation of mycelium above the liquid surface and on the glass wall, as well as avoiding pellet formation, both the chemostat system and the way of operation had to be adapted.

As massive mycelium growth occurred in the headspace of the reactor below the medium inlet, which was positioned in the lid of the vessel, the medium inflow was moved to the sterile air supply, at the bottom of the fermentor. The broth level was chosen such that it covered the baffles to prevent biomass adhesion (4.5 litre working volume) and a cooling coil (4°C) was wrapped around the headspace of the fermentor with the same purpose. Moreover, a low cultivation pH (2.5) was used to prevent pellet formation.

During the preceding batch phase, the stirrer speed was progressively increased from 100 rpm to a maximum of 450 rpm through DO control (setpoint 50%), which minimized splashing and consequently biofilm formation on the fermentor wall. With these adaptations, homogeneous steady state chemostat cultivations could be achieved without significant wall growth. An illustrative figure can be found in the supplementary material Fig. S2.2.

Effluent broth was discontinuously removed via an 8 mm diameter tubing to assure homogeneous withdrawal of broth, where the biomass concentration in the broth outflow and in the fermentor should be the same. To verify this, in a previous chemostat study at dilution rates of 0.045 h<sup>-1</sup> and 0.087 h<sup>-1</sup> (results not shown), the biomass concentration was measured in the outflow ( $C_{x,out}$ ) and compared with the biomass concentration ( $C_x$ ) inside the fermentor (Table S2.2.), showing no significant difference. Consequently, the important condition for a proper chemostat cultivation, that is,  $C_x = C_{x,out}$ , was satisfied.

### 2.3.1.2. Batch and chemostat cultivations

Using the optimized fermentor set up, *A. niger* was grown in aerobic glucose-limited chemostat culture. During the preceding batch phase, the pH was controlled at 2.5, which avoided the formation of pellets and assured exponential growth. The batch maximum growth rate on glucose was 0.26 ( $\pm$  0.01) h<sup>-1</sup>. This value is somewhat lower than the value of 0.29 h<sup>-1</sup> reported in Jørgensen *et al.* 2007, for a different strain of *A. niger*.

During the late exponential phase, chemostat cultivation was initiated. Four different dilution rates were applied. Cultivations were assumed to be in steady state after 5 residence times under glucose limitation, which was verified by the measured carbon dioxide (Fig. S2.3.) and oxygen concentrations in the offgas being constant in time.



 Table 2.1. Applied chemostat effluent flow rates and resulting dilution rates and obtained steady state

 biomass concentrations and respective biomass morphology.

For all dilution rates, the biomass concentration was determined by dry weight, and the mycelium was examined microscopically, revealing no differences in morphology (Table 2.1.), showing polarized growth of each hyphal tip and an increasing number of branches, resulting in freely dispersed mycelia in all cases.

#### 2.3.1.3. Steady state and data reconciliation

For all dilution rates, residual glucose, biomass concentration, oxygen and carbon dioxide concentrations in the offgas were measured. In addition, the total organic carbon (TOC) concentration of the culture filtrate was determined in order to verify whether significant amounts of by-products were formed. From these measurements, it appeared that recoveries of the carbon and degree of reduction were on average > 90% and thus the biomass specific rates were calculated and reconciled (Table 2.2.). Moreover, the biomass elemental composition was determined from several chemostat samples and shown to be  $27.3 \pm 0.2$  g/mol (C<sub>1</sub>H<sub>1.8</sub>N<sub>0.12</sub>O<sub>0.6</sub>) (Table S2.3.).

 Table 2.2. Biomass specific net conversion rates and carbon and redox recoveries of steady state

 chemostat cultivations carried out at different dilution rates.

| Dilution rate (h <sup>-1</sup> )     | 0.043        |            | 0.089        |            | 0.134        |             | 0.205        |             |
|--------------------------------------|--------------|------------|--------------|------------|--------------|-------------|--------------|-------------|
|                                      | Unreconciled | Reconciled | Unreconciled | Reconciled | Unreconciled | Reconciled  | Unreconciled | Reconciled  |
| Carbon recovery (%)                  | 99 ± 3       | -          | 94 ± 3       |            | 96 ± 2       |             | 92 ± 2       |             |
| Redox recovery (%)                   | 95 ± 2       | -          | 89 ± 4       | -          | 90 ± 3       | -           | 88 ± 3       | -           |
| <b>q</b> <sub>x</sub> (mCmol/h)/Cmol | 42.9 ± 0.6   | 42.9 ± 0.2 | 89.5 ± 1.4   | 89.5 ± 0.3 | 133.5 ± 1.8  | 133.5 ± 0.2 | 205.3 ± 3.8  | 205.3 ± 0.4 |
| <b>q</b> <sub>S</sub> (mmol/h)/Cmol  | 14.6 ± 0.3   | 14.9 ± 0.1 | 28.3 ± 0.5   | 26.7 ± 0.1 | 40.4 ± 0.7   | 38.8 ± 0.1  | 60.7 ± 1.1   | 55.0 ± 0.1  |
| q <sub>o2</sub> (mmol/h)/Cmol        | 34.7 ± 1.5   | 37.0 ± 0.2 | 57.1 ± 2.0   | 53.0 ± 0.2 | 81.8 ± 2.7   | 82.6 ± 0.3  | 111.7 ± 3.4  | 101.1 ± 0.4 |
| q <sub>co2</sub> (mmol/h)/Cmol       | 37.7 ± 1.5   | 39.4 ± 0.3 | 61.8 ± 2.0   | 55.4 ± 0.2 | 90.4 ± 2.3   | 81.3 ± 0.2  | 118.5 ± 3.5  | 90.1 ± 0.2  |
| q <sub>TOC</sub> (mCmol/h)/Cmol      | 6.1 ± 2.5    | 6.2 ± 2.2  | 8.8 ± 4.0    | 8.4 ± 3.3  | 7.9 ± 3.2    | 7.7 ± 2.8   | 11.4 ± 47    | 10.6 ± 3.8  |

In further analysis, the *Herbert-Pirt* equation was obtained for this typical example of aerobic growth, whereby the yield and the maintenance coefficients were estimated (Fig. S2.4.) with respective values of  $0.270 \pm 0.002 \text{ mol}_{s}/\text{Cmol}_{x}$  and  $2.6 \times 10^{-3} \pm 0.3 \times 10^{-3} \text{ mol}_{s}/\text{h}.\text{Cmol}_{x}$  (= 0.1 mmol<sub>s</sub>/h.g<sub>DW</sub>). These values are of the same order of magnitude with another glucose-limited chemostat study, where Y<sub>x/s</sub> and m<sub>s</sub> were reported as 2.14 µmol/g<sub>DW</sub> ( $\approx 0.2 \text{ mol}_{s}/\text{Cmol}_{x}$ ) and 0.16 µmol/h.g<sub>DW</sub> (= 0.5 mmol<sub>s</sub>/h.g<sub>DW</sub>) respectively (Jørgensen *et al.*, 2007). In another study (Roels 1983), the maintenance coefficient for several microorganisms was also shown to be in the same order of magnitude as presented here.

Growth conditions were truly glucose-limited (residual glucose concentration around 0.6  $\mu$ Cmol/l at 0.043 h<sup>1</sup>) and aerobic, however TOC measurements revealed that the culture filtrates contained a significant amount of organic carbon, corresponding to 2-7 % of the carbon supplied as glucose (15.8 mCmol/l at 0.043 h<sup>-1</sup>). Higher TOC percentages were found for lower dilution rates (Fig. S2.5.). As the concentrations of residual glucose were considerably lower, the measured residual carbon was credited to cell lysis and excreted enzymes, since no significant amounts of organic acids were detected extracellularly (results not shown).

#### 2.3.2. Rapid Sampling and quenching

### 2.3.2.1. Performance of the rapid sampling device

A proper sampling procedure is essential for unbiased quantification of the intracellular metabolome. Therefore, a sampling device that enables fast withdrawal of homogeneous broth samples which can in principle be operated at high sampling rates on a sub second scale was constructed (see materials and methods). High sampling rates are desired for future experiments, for capturing the short term dynamics of metabolite intermediates in response to pulse experiments. To avoid the risk of blocking of the system if clump or pellet formation would occur, the sampling device was connected to a fast broth loop with an internal diameter of 8 mm. With this sampling device a constant volume of broth (1 ml) could be removed from the loop.

The circulation speed of the broth in the loop was chosen such that the travel time of the broth through the sampling device was approximately 0.25 s. It was calculated that the change in the concentration of glucose was negligible within this time interval (Fig. S2.6.).

To test the functioning of the rapid sampling system the biomass concentrations in samples taken with the sampling device  $(C_{x,SD})$  were compared with the biomass concentrations  $(C_x)$  in samples directly withdrawn from the fermentor (Table S2.4.). It was observed that even though the chamber size is 1 ml, the amount of liquid sampled

with the device is smaller because air is taken along. The average amount of liquid withdrawn was 0.76 ( $\pm$  0.04) g. Remarkably, the biomass concentration was slightly lower (6-8%) in the samples withdrawn with the rapid sampling device. Therefore, the biomass concentrations determined in these samples were used to express metabolite levels per gram dry cell weight.

#### 2.3.2.2. Optimization of cold methanol quenching fluid to avoid leakage in A. niger

The main purpose of this study was to develop a reliable, leakage free, quenching method for quantification of intracellular metabolites in *A. niger*, applicable to steady state chemostat cultivations as well as future dynamic pulse response experiments.

We choose the cold methanol based quenching procedure as this enables to remove extracellular metabolites, through cold centrifugation or filtration and subsequent washing with cold quenching solution. The centrifugation-based procedure for mycelia separation and washing appeared impracticable for *A. niger*, because no proper cell pellet was formed (results not shown). Therefore a quenching protocol based on cold filtration was developed, based on a previously developed procedure for *P. chrysogenum* (Douma et al., 2010).

Most importantly, the cold filtration based quenching and washing procedure, described in detail in the materials and methods section, enabled a significantly reduced contact time of the cells to the cold methanol compared to cold centrifugation, which should minimize possible leakage of metabolites. Furthermore, filtration compared to centrifugation, allows a much more efficient removal of the extracellular metabolites from the mycelium (Douma *et al.*, 2010).

Different variations (methanol concentration and temperature) of the filtration-based cold methanol quenching fluid were applied to samples withdrawn from glucose-limited chemostats carried out at dilution rates of  $0.043h^{-1}$  and  $0.089h^{-1}$ .

Metabolite amounts were quantified in the mentioned sample fractions (intracellular, extracellular and total broth). For accurate quantification of leakage, the fraction of the washing solution should also be taken into account, however this measurement was shown to be impractical as the concentrations were too low to be quantified. Since the <sup>13</sup>C labelled internal standard was added to the fractions before the extraction step in 75% ethanol at 95°C, possible partial degradation of metabolites was corrected for.

Quantification was carried out using LC-MS/MS and GC-MS based on isotope dilution mass spectrometry (IDMS) (Canelas *et al.*, 2009). To enable comparison of metabolite amounts in different sample fractions, all amounts are expressed in  $\mu$ mol per gram biomass dry weight.

In a preliminary testing phase, 100% aqueous methanol (v/v) solution, as used by Canelas *et al.* 2008 for *S. cerevisiae*, was also tested, giving low recoveries, significant leakage and low intracellular metabolite amounts (results not shown). Therefore, this option was abandoned and for further optimization we zoomed in on methanol concentrations between 40% and 60%.

In Fig. 2.3., intracellular metabolite amounts are compared for quenching in different methanol concentrations (40%, 50% and 60%), at both dilution rates tested. Additional results can be found in the Tables S2.5. and S2.6. Clearly the intracellular metabolite level slightly dropped at 60% methanol, compared to 40% and 50%.

The extent of metabolite leakage brought about by the cold methanol quenching and washing of the mycelium was examined by carrying out metabolite measurements in different sample fractions (whole broth, extracellular and intracellular space). All the fractions were analysed in triplicate for this evaluation and the metabolite recoveries were calculated according to equation (2.5.). The results for the two dilution rates are shown in Tables S2.5. and S2.6.



**Fig. 2.3.** Measured intracellular metabolite amounts for different methanol concentrations of the quenching solution for *A. niger* grown at dilution rates of 0.043 h<sup>-1</sup> (upper panel) and 0.089 h<sup>-1</sup> (lower panel).

Comparing different methanol concentrations, the average metabolite recovery and respective standard error was 79% ( $\pm$  10%) for 40% aqueous methanol (v/v), 77% ( $\pm$  9%) for 50% aqueous methanol (v/v), and 67% ( $\pm$  9%) for 60% aqueous methanol (v/v) for 0,043 h<sup>-1</sup> dilution rate. For the higher dilution rate (0.089 h<sup>-1</sup>), the recoveries were: 95% ( $\pm$  4%) for 40% aqueous methanol (v/v), 93% ( $\pm$  5%) for 50% aqueous methanol (v/v), and 89% ( $\pm$  4%) for 60% aqueous methanol (v/v). Thus, for both dilution rates the recoveries were highest for the 40% aqueous methanol solution.

These results show that quenching at  $-20^{\circ}$ C in 40% aqueous methanol (v/v) appears to be the best quenching procedure for *A. niger* intracellular metabolomics. From previous studies it can be inferred that the optimal cold methanol quenching conditions are quite different for different eukaryotic microorganisms, as it has been found that for *S. cerevisiae*, *P. pastoris and P. chrysogenum* leakage was minimal for methanol concentrations of 100% (-40°C), 60% (-27°C) and 40% (-20°C) respectively (Canelas *et al.*, 2008; Carnicer *et al.*, 2012; de Jonge *et al.*, 2012). Remarkably, the optimal quenching condition found for *A. niger* in this study is the same as has been reported for *P. chrysogenum*.

Comparing the metabolite levels of the different dilution rates it is clear that the higher dilution rate leads to higher metabolite amounts, which is to be expected due to higher fluxes. Similar results were found in *S. cerevisiae* (Canelas *et al.*, 2009).

The levels of intra- and extracellular metabolites determined for *A. niger* grown in an aerobic glucose-limited chemostat at a dilution rate of  $0.043h^{-1}$ , were compared with the levels reported for *P. chrysogenum* grown under similar chemostat conditions (D =  $0.05h^{-1}$ ), but at a significantly higher pH 6.5 (de Jonge *et al.*, 2012) (Fig. 2.4.). For *A. niger* the measured metabolite levels were between 0.02 (GAP) and 67 µmol/g DW (Tre) a difference of 4 orders of magnitude (Table S2.6.). Similarly, the published values for *P. chrysogenum* also vary 4 orders of magnitude between 0.09 (Met) and 12 µmol/g<sub>DW</sub> (Cit).

Nevertheless, intracellular metabolite pools of both *A. niger* and *P. chrysogenum* are comparable. This is to be expected because, as both organisms were cultured at similar growth rates in glucose-limited chemostats, the fluxes in central metabolism in both systems should be very similar. Remarkable differences between both fungi are the intracellular levels of citrate, of which the level is 5 times higher in *A. niger* and threonine and aspartic acid, which are 5 and 6 times higher in *P. chrysogenum*. Citric acid is a known product in *A. niger* species as mentioned before, and threonine was found in other Penicillium studies, in the same range of intracellular amount here compared (Nasution *et al.*, 2006; Nasution, 2007).

For both organisms the extracellular metabolite amounts are considerably lower than the intracellular ones, with exception of citric acid and succinic acid which were both present in considerable amounts in the extracellular space of *P. chrysogenum*.



Fig. 2.4. Intra- and extracellular metabolite comparison of *A. niger* and *P. chrysogenum* at a comparable dilution rate. The bubble areas are proportional to the pool sizes of the metabolites (μmol/g<sub>DW</sub>).

## 2.4. Conclusions

The purpose of this work was to develop a chemostat protocol for homogeneous steady state cultivation of A. niger in a conventional turbine stirred bioreactor, to develop and validate a robust rapid sampling device for filamentous fungi, and to perform a systematic investigation of cold methanol quenching combined with cold filtration to enable quantitative metabolomics studies of this organism. We demonstrated that A. niger is able to grow as homogeneous, finely dispersed mycelium in steady state glucose-limited chemostat cultures without significant wall growth. Furthermore, we developed a rapid sampling device and an efficient cold methanol quenching method combined with rapid cold filtration for rapid sampling, harvesting and washing of the mycelium enabling accurate quantitative metabolomics studies. A 40% (v/v) aqueous methanol mixture at -20°C resulted in minimal metabolite leakage. A comparison with published metabolome data of P. chrysogenum, grown in a similar chemostat, revealed similar metabolome profiles and some interesting differences. Overall, with this work we now have validated techniques for metabolomics studies of A. niger, as a starting point for further metabolomics and metabolite transport studies.

In this chapter, we have characterized the growth of A. niger on different carbon sources from second generation feedstocks in single and mixed cultures with respect to growth stoichiometry and substrate uptake kinetics.

# Chapter 3

Stoichiometry and kinetics of single and mixed substrate uptake in *Aspergillus niger* 



# Abstract

In its natural environment the filamentous fungus *Aspergillus niger* grows on decaying fruits and plant material thereby enzymatically degrading the lignocellulosic constituents (lignin, cellulose, hemicellulose and pectin) into a mixture of mono- and oligosaccharides. To investigate the kinetics and stoichiometry of growth of this fungus on lignocellulosic sugars, we carried out batch cultivations on six representative monosaccharides (glucose, xylose, mannose, rhamnose, arabinose and galacturonic acid) and a mixture of these. Growth on these substrates was characterized in terms of biomass yields, oxygen/biomass ratios and specific conversion rates. Interestingly, some of the carbon sources were consumed simultaneously and some sequentially. With a previously developed protocol, a sequential chemostat cultivation experiment was performed on a feed mixture of the six substrates. We found that the uptake of glucose, xylose and mannose could be described with a Michaelis-Menten type kinetics. However these carbon sources seem to be competing for the same transport systems, while the uptake of arabinose, galacturonic acid and rhamnose appears to be repressed by the presence of other substrates.

## Keywords

Aspergillus niger, plant waste streams, substrate uptake, kinetics, stoichiometry
# 3.1. Introduction

In white biotechnology, the feedstock represents the highest cost factor in the production of bulk chemicals. Therefore, there is an increasing interest in using cheaper biomass streams as feedstock for industrial biotechnology processes, the so called second generation feedstocks.

Second generation feedstocks have the advantage that they do not compete with food supplies but have the disadvantage that they are much more complex than first generation ones. Second generation feedstocks consist of mixtures of different fermentable carbon sources from plant biomass of agricultural crops waste, which are currently insufficiently used. Of the global  $200 \times 10^9$  tons per year of plant biomass produced, over 90% is lignocellulose. About  $8-20 \times 10^9$  tons of this biomass is potentially accessible but remains unexploited (Lin and Tanaka, 2006).

Rumbold *et al.*, 2009 tested the performance of six industrially relevant microorganisms by submitting them to growth conditions that they may encounter in a second generation feedstock based production process (mixture of substrates, inhibitors, extreme pH, etc.). The generated data were used to rank the organisms by relative performance, and *Aspergillus niger* scored the highest, leading to a stronger motivation for the use of this microorganism in second generation feedstocks (Rumbold *et al.*, 2009).

*A. niger* is known to grow on hexose as well as pentose substrates, and can also hydrolyse plant material due to high levels of excreted enzymes having the capacity to degrade the plant cell wall polysaccharides: mainly lignocellulose and pectin (Gouka, Punt and Van Den Hondel, 1997).

Lignocellulose contains three structural polysacharides: cellulose (40% to 50%), hemicellulose (25% to 35%) and lignin (15% to 20%) (de Souza *et al.*, 2011). Besides glucose, sugar monomers in hemicellulose can include xylose, galactose, mannose and arabinose; pectins on the other hand are rich in galacturonic acid and rhamnose.

The shift of industrial biotechnology from highly refined sugar syrups (first generation feedstocks) to more sustainable and cheaper carbon and energy sources, requires a shift from single substrate to mixed substrate use (van Maris *et al.*, 2006).

To obtain a better understanding of the uptake of individual substrates in a complex mixture as well as the stoichiometry and kinetics of growth and product formation under those conditions, careful kinetic studies are required. Generally, the uptake and metabolism of different carbon sources in heterotrophic microorganisms is controlled through carbon catabolite repression (CCR). In many cases glucose is the preferred substrate for growth and thus the presence of glucose will repress the uptake and metabolism of other available carbon sources. Glucose repression was first studied in the bacterium *Escherichia coli* (Moses and Prevost, 1966) and later on also in yeasts and filamentous fungi (Ronne, 1995).

In this work we studied the capacity of *A. niger* for uptake of six selected monosaccharides present in lignocellulosic biomass, that is, three C6 sugars (glucose, mannose and rhamnose) two C5 sugars (xylose and arabinose) and a sugar acid (galacturonic acid). We investigated the stoichiometry and kinetics of substrate uptake and aerobic growth on these different carbon sources, under substrate-limited (sequential chemostat cultures) as well as substrate excess conditions (shake flask and batch cultivations), using single and mixed substrate feedstocks. With the application of *A. niger* for the production of organic acids in mind, we used a strain (*A. niger* NW185) not capable of producing gluconic and oxalic acid and carried out all cultivations at pH 2.5 for reasons outlined in the Materials and Methods.

# 3.2. Materials and Methods

# 3.2.1. Strain and Inoculum

A. niger NW185 (cspA1 short conidiospores, fwA1 fawn coloured spores, goxC17 glucose oxidase negative and prtF28 oxalate non-producing) was used throughout. Unless stated otherwise, the hyphal inocula for batch and continuous cultivations were

obtained from shake flask cultures. Spores for pre inoculum were grown on agar plates and harvested as described in Lameiras *et al.*, 2015. A concentration of  $1\times10^6$ spores/ml was pre-inoculated in a 250 ml shake flask containing 100 ml of PM medium and 100 mM of sorbitol (Ruijter, van de Vondervoort and Visser, 1999) at pH 4.5. Sorbitol was used as a pre-substrate as it does not induce or repress any catabolic system (Sloothaak *et al.* 2014).

The shake flask was incubated overnight at 30°C in an orbital shaker (CERTOMAT BS-1, Sartorius group) at 250 rpm. The resulting mycelia suspension, was separated by centrifugation (*Heraeus Biofuge Stratos, Thermo Scientific,* USA) for 2 min at 10000 G, 4°C and washed two times with 50 ml PM medium without carbon source at room temperature and subsequently used to inoculate the bioreactor (one shake flask per bioreactor).

## 3.2.2. Shake flask cultivation

*A. niger* was inoculated in 250 ml shake flasks, containing 100 ml minimal medium (0.5 g/l (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub>, 0.3 g/l KH<sub>2</sub>PO<sub>4</sub>, 3 g/l NH<sub>4</sub>H<sub>2</sub>PO<sub>4</sub> and 0.5 g/l MgSO<sub>4</sub>.7H<sub>2</sub>O), at initial pH 2.5. The pH 2.5 for growth in continuous cultivation has high advantages in terms of morphology and broth homogeneity (Lameiras *et al.*, 2015) but is also highly relevant because we are interested in organic acid production.

In each shake flask, the medium was supplemented with one single carbon-source, such that the added amount of carbon was the same (total 228 mCmol/l), namely 38 mM of D-glucose, D-galacturonic acid, L-rhamnose and D-mannose; and 45.6 mM of D-xylose and L-arabinose. Furthermore, 1 ml/l of trace elements solution was added, containing 10 g/l EDTA, 4.4 g/l ZnSO<sub>4</sub>.7H<sub>2</sub>O, 1.0 g/l MnCl<sub>2</sub>.4H<sub>2</sub>O, 0.32 g/l CoCl<sub>2</sub>.6H<sub>2</sub>O, 0.32 g/l CuSO<sub>4</sub>.5H<sub>2</sub>O, 0.22 g/l (NH<sub>4</sub>)<sub>6</sub>Mo<sub>7</sub>O<sub>24</sub>.4H<sub>2</sub>O, 1.47 g/l CaCl<sub>2</sub>.2H<sub>2</sub>O and 1.0 g/l FeSO<sub>4</sub>.7H<sub>2</sub>O (Vishniac and Santer, 1957).

Medium was sterilized at 121°C for 20 min and the carbon-source solutions were sterilized separately at 110°C. The trace elements were added sterile to the culture

media by filtration through a 0.2  $\mu$ m cartridge filter (Whatman FP 30/0.2 CA-S).

One set of shake flasks was inoculated with spores and the second set with washed mycelia from one shake flask previously grown in PM medium as described above.

Cultures were incubated for 50 hours in an orbital shaker at 30°C and 250 rpm (CERTOMAT BS-1, Sartorius group).

#### 3.2.3. Single carbon source batch cultivation

Batch cultivations were operated in a 2 litre bioreactor with 1 litre working volume (Applikon, Schiedam, The Netherlands), on minimal medium (section 3.2.2.) supplemented with either 38 mM D-glucose, 38 mM D-galacturonic acid, 38 mM L-rhamnose, 38 mM D-mannose, 45.6 mM of D-xylose or 45.6 mM L-arabinose.

The bioreactor was equipped with pH, temperature and dissolved oxygen probes. Throughout the cultivation, the pH was kept at 2.5 ( $\pm$  0.1) by controlled addition of 1M NaOH and the temperature was controlled at 30°C ( $\pm$  0.1).

Sterile air was supplied via a mass flow controller (Brooks 58505 calibration at 0°C and 1 bar) at 0.22 vvm through a bottom sparger, and an overpressure of 0.3 bar was applied.

The exhaust gas of the fermentor was passed through a condenser (4°C) and a Nafion dryer (Permapure, Toms River, USA) before entering a NGA 2000 offgas analyser (Rosemount Analytical, Anaheim, USA) for measurement of the oxygen and carbon dioxide contents. Data acquisition was performed with MFCS/win 3.0 software.

# 3.2.4. Mixture of carbon sources batch cultivation

Fermentation conditions and control were carried out as described for the single substrate batch fermentations (section 3.2.3.), with the difference that the minimal medium was supplemented with equimolar concentrations of carbon of six different carbon sources (6.3 mM D-glucose, 6.3 mM D-galacturonic acid, 6.3 mM L-rhamnose,

6.3 mM D-mannose, 7.6 mM of D-xylose and 7.6 mM L-arabinose), to a total of 228 mCmol/l.

# 3.2.5. Sequential chemostat cultures

In contrast to the batch fermentations (sections 3.2.3 and 3.2.4), the sequential chemostat cultures experiment was performed in a 7 litre bioreactor with a working volume of 4.5 litres. Fermentor set up and operating conditions were the same as described in Lameiras *et al.*, 2015, and temperature and pH were the same as the batch experiments.

The reactor was inoculated with pre grown and washed mycelia into minimal media supplemented with 12.6 mM D-glucose, 12.6 mM D-galacturonic acid, 12.6 mM L-rhamnose, 12.6 mM D-mannose, 15.2 mM of D-xylose and 15.2 mM L-arabinose. After the batch phase was finished, the feed was initiated with a starting dilution rate of  $0.04h^{-1}$ . Subsequently, the dilution rate was increased to  $0.21h^{-1}$  in eleven steps ( $0.04h^{-1}$ ,  $0.06 h^{-1}$ ,  $0.08 h^{-1}$ ,  $0.09 h^{-1}$ ,  $0.11 h^{-1}$ ,  $0.13 h^{-1}$ ,  $0.14 h^{-1}$ ,  $0.16 h^{-1}$ ,  $0.17 h^{-1}$ ,  $0.19 h^{-1}$  and  $0.21 h^{-1}$ ).

# 3.2.6. Sampling and analytical procedures

During batch cultivations (both single and mixture of substrates), at least 6 samples were taken for quantification of cell dry weight, biomass elemental composition, extracellular metabolites, and total organic carbon (TOC), during the exponential phase and at the end of the batch. During the sequential chemostat cultures experiment, a minimum of triplicate samples were withdrawn after 2 residence times, at each dilution rate.

Biomass dry weight was determined by filtration of 5 ml of broth over glass fiber filters (47 mm, type A/E, Pall, USA), subsequent washing with 10 ml of water and drying at  $70^{\circ}$ C until constant weight. All samples were analysed in quadruplicate.

Biomass elemental composition was determined by combustion and subsequent gas analysis (carbon dioxide, water vapour and nitrogen mass fractions), gas chromatography (oxygen) and ICP-MS (phosphorus and sulphur) from washed and dried cells (Energy Research Centre of the Netherlands).

Filtrate samples were obtained by quickly (within 3 s) withdrawing 5 ml of broth, via the over-pressure on the fermentor, into a syringe containing cooled steel beads (- $20^{\circ}$ C) to bring the sample temperature down to  $0^{\circ}$ C (Mashego *et al.* 2003). The broth was then immediately pressed through a 0.45 µm cartridge filter (Millex-HV durapore PVDF membrane) into a sampling vial, which was directly frozen in liquid nitrogen.

The total organic carbon content of filtrate samples was quantified with a total organic carbon analyser (type TOC-L, Shimadzu, Kyoto, Japan). With this method, both total carbon (TC) and inorganic carbon (TIC) were measured. The latter representing the content of dissolved carbon dioxide and carbonic acid salts. Subtracting the inorganic carbon from the total carbon, yielded the TOC in filtrate.

The residual concentration of the different carbon sources was measured by different methods.

For the batch cultivation on single substrates (section 3.2.3), analyses were implemented by a HPLC method, using a  $H^+$  exchange column at 60°C (Bio-Rad HPX-87H 300\*7.8mm), employing phosphoric acid 1.5 mmol/l in Milli-Q water at 70°C as mobile phase with a refractive index detection (Waters 2414; sens =1024; temp = 30°C) and UV detection (Waters 2489; 210 nm).

For the mixture of carbon sources (section 3.2.4) both GC-IDMS/MS and HPLC methods were used. The concentrations of the sugars measured by isotope dilution mass spectrometry (GC-IDMS/MS) was according to the protocols of (Niedenführ *et al.*, 2016) with the following changes: temperature gradient was slower in order to have a better separation for xylose and arabinose and the temperature was increased to 5°C/min instead of 10°C/min. Glucose<sup>13</sup>, xylose<sup>13</sup>, mannose<sup>13</sup> and arabinose<sup>13</sup> were

added as internal standards (IS) for the same <sup>12</sup>C compounds, while for rhamnose and galacturonic acid, glucuronic acid and fumarate were used as IS respectively. The HPLC method used for the same measurements was performed in an ion exchange column in Lead (Pb) form column at 85°C (Bio-Rad HPX-87P300\*7.8mm), employing milliQ water at 70°C as mobile phase with a refractive index detection (Waters 2414; sens =1024; temp = 30°C) and UV detection (Waters 2489; 210 nm).

The samples from the sequential chemostat cultivation experiment (section 3.2.5.) were analysed with a Dionex ICS – 5000 HPIC system with AS-AP sampler, SP pump, Carbopac PA-20 3\*150 mm column and Aminotrap 3\*30 mm precolumn employing 2 mM NaOH isocratic (for 17.5 min followed by a cleaning step of 5 min with 200 mM and equilibration for 15 min), 20 mM NaOH isocratic (15 min followed by 5 min cleaning with 200 mM NaOH and equilibration for 15 min) or gradient: 15 min 10 mM NaOH followed by a linear increase to 200 mM in 15 min, then a linear gradient in 20 min with 0.5 M sodium acetate in 200 mM NaOH from 4% to 40 % v/v, followed by a cleaning step of 5 min 200 mM NaOH and equilibration for 15 min (for acidic sugars). All eluents with a flow of 0.5 ml/min at 30°C. The detection was by electrochemical pulse at 15°C.

# **3.2.7.** Balances, biomass specific rates and data reconciliation during single carbon source batch cultivation

Using the gas phase balances ( $O_2$  and  $CO_2$ ) and liquid phase balances (biomass and substrate), the batch cumulative amounts of consumed  $O_2$  and substrate and produced  $CO_2$  and biomass were calculated.

Subsequently, because the carbon and degree of reduction balances were close to 100%, the element reconciled cumulative amounts were calculated as function of time, as described in Cruz *et al.* 2012.

These reconciled amounts were used to calculate the maximum biomass specific conversion rates ( $\mu^{max}$ ,  $q_s^{max}$ ,  $q_{co2}^{max}$ ,  $q_{o2}^{max}$ , i.e. the biomass specific conversion rates of

biomass, substrate, carbon dioxide and oxygen respectively) and the growth stoichiometric values.

The biomass elemental composition was analysed for each substrate and taken into account for the data reconciliation.

# **3.2.8.** Balances, biomass specific rates and data reconciliation during sequential chemostat cultivation

Using the steady state mole balances, the rates of substrate ( $R_s$ ), biomass ( $R_x$ ), carbon dioxide ( $R_{co2}$ ), oxygen ( $R_{o2}$ ) and by-products in the culture filtrate ( $R_{ToC}$ ), were calculated from the primary measurements of concentrations in gas and liquid phases, as well as gas and liquid flow rates. From these rates, carbon and degree of reduction recoveries (equations 3.1. and 3.2.) were calculated.

Carbon recovery (%) = 
$$\frac{R_x + R_{CO2} + R_{toc}}{\Sigma R_s} \times 100$$
 (3.1.)

Degree of reduction (%) = 
$$\frac{Y_x R_x + Y_{toc} R_{toc} + Y_{02} R_{02}}{\Sigma Y_s R_s} \times 100$$
 (3.2.)

 $\Sigma R_s$  is the weighted sum of all consumed carbon sources in Cmol/I, and  $R_{TOC}$  is the residual total organic carbon resulted from the subtraction of the concentration of the residual substrates to the measured TOC. After checking absence of relevant carbon and degree of reduction gaps, data reconciliation was applied to obtain the best estimates of the measurements, within their error margins, using the elemental and charge conservation relations as constraints (Verheijen, 2010).

# 3.2.9. Substrate uptake kinetics

Microbial growth studies report several different equations to define substrate uptake kinetics. The simplest and widely used equations follow the hyperbolic Michaelis-Menten model of enzyme kinetics (equation 3.3.).

$$q_S = q_{Smax} \times \frac{c_S}{\kappa + c_S} \tag{3.3.}$$

In a first approach of this study, the data obtained from the sequential chemostat cultivations were fitted to a Michaelis-Menten equation. When  $C_s=K_s$ , the value of  $q_s$  corresponds to 50% of the  $q_s^{max}$ .

Depending on the outcome of the fitting of equation 3.3., two situations were considered: competition for the same transport system; or catabolite repression from other substrates.

To model the uptake of competing sugars, we assumed that these sugars are taken up by the same import systems and that their uptake could be described by competition, according to Schäuble *et al.*, 2013 - equation 3.4.

$$v_{1=\frac{v_{max1}s_1}{K_{m1}\left(1+\sum_{l=2}^{n}\frac{S_l}{K_{ml}}\right)+s_1}}$$
(3.4.)

Where,  $S_1$  competes with n-1 substrates  $S_2$ ,...,n for the binding site of the enzyme. The variables  $K_{mi}$  describe the Michaelis-Menten affinity constant for each subtract  $S_i$ .

Catabolite repression of the uptake/metabolism of different carbon sources can be described by a so called switch function, based on the Hill kinetics (equation 3.5.), whereby the expression of an enzyme (e.g. transport protein or rate controlling enzyme of a catabolic pathway) is repressed by the presence of another carbon source:

$$v_{max}(R) = v_{max}(U)(\frac{1}{1+(\frac{R}{K_{R}})^{n}})$$
(3.5.)

Herein  $v_{max}(R)$  and  $v_{max}(U)$  are respectively the repressed and unrepressed enzyme rates, R is the repressor concentration and K<sub>R</sub> the repression constant.

# 3.3. Results and Discussion

#### 3.3.1. Shake flask cultivations on single carbon sources

As a preliminary experiment to investigate which carbon sources would sustain growth and whether growth on different carbon sources would lead to different morphologies, *A. niger* was cultivated on minimal medium in shake flasks with six different substrates. Two sets of shake flasks cultivations were carried out. The first set was inoculated with spores, while the second set was inoculated with mycelia pregrown on the same minimal medium with sorbitol as the carbon source (Fig. 3.1.).



Fig. 3.1. A. niger morphology after 50h of growth in minimal media inoculated with spores (upper panel) and washed mycelia (lower panel). From left to right: glucose, xylose, arabinose, galacturonic acid, rhamnose and mannose.

After 50h of incubation, all shake flask cultures showed evident growth with the exception of rhamnose. This carbon source did not seem to induce spore germination

nor further growth of pre-grown mycelia. Nevertheless, growth has been observed on L-rhamnose as a sole carbon source for *A. niger* in minimal media (Fries and Kallstromer, 1965; Sloothaak *et al.*, 2016a).

Further comparison between the sets of shake flask cultivations indicated that inoculation with spores generates heterogeneity in the morphology of the mycelia among the different carbon sources with sometimes the formation of pellets, while inoculation with mycelia induces a uniform and similar, pellet free, morphology for all the different carbon sources (Fig. 3.1.). Such pellet free morphology is preferred in kinetic studies to avoid diffusion limitation.

## 3.3.2. Bioreactor batch cultivations on single carbon sources

To be able to study growth and substrate uptake of *A. niger*, batch cultures were performed on each single substrate, in 2 litres' bench scale bioreactors. All bioreactor cultures were inoculated with washed mycelia pre-grown on minimal media with sorbitol as the carbon source. During the batch cultivations samples were taken for quantification of the concentrations of biomass and residual carbon source. The concentrations of  $O_2$  and  $CO_2$  in the offgas were measured online for the calculation of the  $O_2$  consumption and  $CO_2$  production rates as a function of time. The obtained profiles for the different batch cultures are shown in Fig. 3.2.

In contrast to what was observed for the shake flask cultivations, *A. niger* did grow on minimal media with rhamnose as sole carbon source in the bioreactor.

The first striking differences between the batch cultivations carried out on the different carbon sources were the duration of the lag phase and the total duration of the batch. The rhamnose cultivation had the longest lag phase (around 50 hours, and therefore explaining the absence of growth in shake flasks) and longest duration (85 hours). In contrast, the glucose, arabinose and mannose cultivations had short or no lag phases and were finished after about 30 hours.

65



Fig. 3.2. Carbon dioxide production and oxygen consumption rates (upper panel) and biomass production right axis - and carbon source consumption - left axis (lower panel) during batch phase using single different carbon sources.

It should be realized that the degree of reduction of the used carbon sources is not the same for all of them (Roels, 1983). For the sugars glucose, mannose, xylose and arabinose, the generalized degree of reduction is 4 electrons per Cmol ( $\gamma_s = 4e^-/C$ ). However, galacturonic acid is more oxidized ( $\gamma_s = 3.333 e^-/C$ ) and rhamnose is more reduced ( $\gamma_s = 4.333 e^-/C$ ). This can clearly be seen from the respiratory quotients (Table 3.1.), i.e. the ratios of the biomass specific carbon dioxide production ( $q_c^{max}$ ) and oxygen consumption ( $q_0^{max}$ ) rates. As expected, for the substrates with a degree of reduction of 4 e<sup>-</sup>/C the respiratory quotients have a value slightly higher than one, however, for the more oxidized substrate galacturonic acid the value is significantly higher than one.

The obtained measurements show in general that carbon and degree of reduction balances have recoveries of more than 90% (Table 3.1.), indicating that by-product formation is either absent or insignificant.

The cumulative  $O_2$ ,  $CO_2$ , substrate and biomass data obtained during exponential growth (Fig. S3.1.) were used to obtain the best estimates of the biomass yield and

biomass specific conversion rates (Table 3.1.) using data reconciliation (method explained in section 3.2.7). The biomass elemental composition was analysed for each substrate and taken into account for the data reconciliation (Table S3.1.).

 Table 3.1. Carbon and degree of reduction recoveries. reconciled biomass yield and maximum biomass specific conversion rates for different carbon sources in *A. niger*. in single batch cultivation.

| Carbon<br>source | RQ<br>Respiratory<br>Quotient | Carbon<br>balance<br>(%) | Degree of<br>reduction<br>balance<br>(%) | Y <sub>X/S</sub><br>Biomass yield<br>(Cmol <sub>x</sub> /Cmol <sub>s</sub> ) | μ <sup>max</sup><br>max.<br>growth rate<br>(h <sup>-1</sup> ) | ${f q_S}^{max}$ max. substrate<br>uptake rate<br>(mols/h)/(Cmol <sub>x</sub> ) | <b>q</b> o <sup>max</sup><br>max. O <sub>2</sub><br>uptake rate<br>(mol <sub>o2</sub> /h)/(Cmol <sub>x</sub> ) | <b>q</b> <sub>C</sub> <sup>max</sup><br>max. CO <sub>2</sub><br>production rate<br>(mol <sub>co2</sub> /h)/(Cmol <sub>x</sub> ) |  |
|------------------|-------------------------------|--------------------------|------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| Glucose          | $1.03 \pm 0.04$               | 94 ± 2                   | 94 ± 2                                   | $0.68 \pm 0.03$                                                              | $0.221 \pm 0.004$                                             | $0.054 \pm 0.001$                                                              | $0.101 \pm 0.003$                                                                                              | $0.104 \pm 0.003$                                                                                                               |  |
| Xylose           | $1.02 \pm 0.07$               | 87 ± 2                   | 83 ± 2                                   | $0.77 \pm 0.06$                                                              | $0.149\pm0.007$                                               | $0.039 \pm 0.002$                                                              | $0.044 \pm 0.002$                                                                                              | $0.045 \pm 0.002$                                                                                                               |  |
| Arabinose        | $1.01 \pm 0.04$               | 98±3                     | 94 ± 5                                   | $0.47 \pm 0.01$                                                              | $0.097 \pm 0.001$                                             | $0.041 \pm 0.001$                                                              | $0.108 \pm 0.003$                                                                                              | $0.109 \pm 0.003$                                                                                                               |  |
| Gal acid         | $1.53 \pm 0.07$               | 93 ± 4                   | 88 ± 10                                  | $0.50 \pm 0.06$                                                              | $0.092 \pm 0.005$                                             | $0.031 \pm 0.001$                                                              | $0.060 \pm 0.002$                                                                                              | $0.092 \pm 0.003$                                                                                                               |  |
| Mannose          | $1.00 \pm 0.06$               | 96 ± 2                   | 92 ± 2                                   | $0.68 \pm 0.03$                                                              | 0.151±0.004                                                   | 0.037 ± 0.001                                                                  | 0.072 ± 0.003                                                                                                  | 0.072 ± 0.003                                                                                                                   |  |
| Rhamnose         | $0.79 \pm 0.05$               | 101 ± 5                  | 96 ± 7                                   | 0.67 ± 0.03                                                                  | $0.116\pm0.003$                                               | $0.029 \pm 0.001$                                                              | 0.072 ± 0.003                                                                                                  | 0.057 ± 0.003                                                                                                                   |  |

Large differences in biomass yields and maximum biomass specific conversion rates were observed for the different single substrate cultivations. Glucose, xylose and mannose were the substrates on which the highest biomass yield, maximum growth rate, and maximum substrate uptake rate were obtained.

From Table 3.1., the growth stoichiometry for unlimited exponential growth on the different substrates can be obtained by dividing the biomass specific conversion rates of substrate, oxygen, biomass (= maximum growth rate) and carbon dioxide by the maximum growth rate. This yields the overall reaction equations for the formation of 1mol of biomass from substrate and oxygen:

-0.24 Glucose -0.46 O<sub>2</sub> + 1 Biomass + 0.47 CO<sub>2</sub>

-0.26 Xylose -0.30 O<sub>2</sub> + 1 Biomass + 0.30 CO<sub>2</sub>

-0.42 Arabinose -1.11 O<sub>2</sub> + 1 Biomass + 1.12 CO<sub>2</sub>

-0.34 Galacturonic acid -0.65 O<sub>2</sub> + 1 Biomass + 1 CO<sub>2</sub>

-0.25 Mannose -0.48 O<sub>2</sub> + 1 Biomass + 0.48 CO<sub>2</sub>

-0.25 Rhamnose -0.62 O<sub>2</sub> + 1 Biomass + 0.49 CO<sub>2</sub>

From an energy point of view, looking at the consumed oxygen per produced biomass, it is observed that xylose has the lowest oxygen consumption (about 0.30  $mol_{02}/mol_{biomass}$ ). Glucose and mannose have a higher oxygen requirement (about 0.47  $mol_{02}/mol_{biomass}$ ) while galacturonic acid and rhamnose have an even higher oxygen demand of respectively 0.65 and 0.62  $mol_{02}/mol_{biomass}$ . Finally, arabinose has the highest oxygen consumption of 1.1  $mol_{02}/mol_{biomass}$ . These differences representing the differences in net energy expenditure for the formation of biomass for these different substrates, maybe due to different metabolic pathways. In case of arabinose, the energy and oxygen requirements are quite puzzling when compared to xylose, as this substrate has a very similar assimilation pathway in *A. niger*. These outputs ought to be further explored and confirmed by metabolic flux analysis.

#### 3.3.3. Bioreactor batch cultivations on a mixture of carbon sources

The metabolic versatility of *A. niger* was investigated during growth on a mixture of all six carbon sources. Remarkably, in this cultivation, the  $CO_2$  profile resembled the typical pattern of diauxic growth (Fig. 3.3.). This could indicate that some of the substrates were taken up and metabolised simultaneously, while the uptake and metabolism of other substrates was repressed and occurred only after the repressing substrates were depleted, as explored later.

Quantification of the residual concentrations of the different carbon sources at different time points during the batch cultivation was carried out with two methods (HPLC and GC-IDMS/MS), which gave essentially the same results. Here, we only show the results obtained with GC-IDMS/MS. We plotted each substrate in a different graph to facilitate visualization (Fig. 3.3.). From these plots it can be seen that glucose consumption started immediately, while the other carbon sources were not consumed during the first 10 hours after inoculation, indicating that the presence of glucose repressed the metabolism of all other carbon sources. The repression of the transport and metabolism of less preferred substrates in the abundance of a sugar which is easily metabolized, e.g. glucose, is a well-known phenomenon amongst

microorganisms, also in case of filamentous fungi (Flipphi *et al.*, 2003; Schneider and Wiley, 1971 and Portnoy *et al.*, 2011).



Fig. 3.3. Carbon dioxide production rate and carbon source and biomass concentrations during batch phase in a mixture of six carbon sources.

After glucose was almost depleted, mannose consumption started. At the sixth sample point, when mannose was depleted, consumption of arabinose, galacturonic acid and xylose occurred. Finally, rhamnose consumption started only after 20 hours of cultivation when all other carbon sources were depleted, which coincided with a sharp decrease of the  $O_2$  consumption and  $CO_2$  production rates. In the period during which

rhamnose was consumed, the respiration rate increased again for a short period of time and decreased sharply after depletion of this last substrate.

During the batch cultivation the specific growth rate could be obtained from the online measurement of the respiration rate, that is either oxygen consumption or carbon dioxide production. During exponential growth the respiration rate also increases exponentially and thus from a plot of the natural logarithm of e.g. the  $CO_2$  production rate, the growth rate can be obtained. From this it was calculated that during the initial 10 hours of the batch cultivation, when glucose was the only carbon source consumed, the specific growth rate was  $0.264 \pm 0.005 \text{ h}^{-1}$ . Between 10 and 18 hours, during the consumption of mannose, arabinose, galacturonic acid and xylose, the growth rate was  $0.201 \pm 0.005 \text{ h}^{-1}$  (Fig. S3.2.). The initial growth rate during the first 10 hours on glucose was slightly higher than measured in the single substrate batch cultivation, while the growth rate obtained during consumption of mannose, arabinose, galacturonic acid and xylose was significantly higher than the growth rates obtained from the single substrate batches (Table 3.1.). This suggests that these carbon sources have individual uptake systems, which act in parallel.

#### 3.3.4. Sequential chemostat cultures

To obtain a more detailed insight in the kinetics of substrate uptake in *A. niger* at low carbon source concentrations, a carbon-limited sequential chemostat experiment was performed on a mixture of the six substrates used for the single and mixed substrate batch cultivations. The experiment was carried out in a 7 litres bioreactor designed for homogeneous chemostat cultivation of *A. niger*, without pellet formation and/or wall growth (Lameiras *et al.*, 2015). The feed medium of the chemostat was minimal medium complemented with an equimolar mixture of the six carbon sources as described in section 3.2.5.

After achieving steady state, the dilution rate was increased stepwise and the chemostat was run until a new steady state was obtained. The initial dilution rate was  $0.04 \text{ h}^{-1}$  which was sufficiently lower than the lowest maximum growth rate

determined for the single substrate batch cultivations (Table 3.1.), to enable growth on all carbon sources in carbon-limited chemostat cultures.



Fig. 3.4. Residual concentration of carbon sources for different dilution rates during sequential chemostat cultures.

For all dilution rates, measurements of the concentrations of residual substrates (Fig. 3.4. and Table S3.3.), biomass dry weight, and oxygen and carbon dioxide levels (Fig. 3.5.) were performed. In addition, the total organic carbon (TOC) contents of the culture filtrate samples were determined. From these values the measured amounts of residual substrates were subtracted to calculate the residual filtrate organic carbon, to verify whether amounts of by-products were formed (Fig. S3.3.). It was found that the in this way, determined residual carbon in the filtrate samples did not increase with increasing dilution rate, and was equal to an average value of  $32 \pm 8 \text{ mCmol/l}$ , which was about 7% of the carbon supplied as mixed substrate to the culture. No attempts were undertaken to analyse the composition of the released carbon, as it was assumed that it mainly consisted of cell lysis products.

From the mentioned measurements (substrate, biomass, oxygen and carbon dioxide), it appeared that recoveries of carbon and degree of reduction were higher than 90%

and thus the biomass specific rates were calculated and reconciled (Table 3.2. and Table S3.2.).

From the quantification of the residual concentrations of the carbon sources in the chemostat it can be seen that during the first four steady states, up to a dilution rate of 0.093 h<sup>-1</sup>, all six carbon sources were consumed simultaneously (Fig. 3.4.). From the fifth steady state (D = 0.11 h<sup>-1</sup>) the residual concentrations of rhamnose, arabinose and galacturonic acid started to increase, from D=0.127 h<sup>-1</sup> also xylose, from D=0.16 h<sup>-1</sup> mannose and finally at D=0.194 h<sup>-1</sup> also glucose started accumulating.



Fig. 3.5. Oxygen and carbon dioxide consumption/production rates, biomass concentration (■) and number of residence times (#τ) during sequential chemostat cultivation.

At increasing dilution rate of the sequential chemostat fermentation the increase of the residual concentrations of the different carbon sources occurred in the reverse order as the consumption of substrates in the multi substrate batch fermentation. In these fermentations, L-rhamnose was only consumed after all other substrates were depleted, and appeared as the first increasing substrate at increasing dilution rate in the sequential chemostat cultivation. The observed increases of residual carbon source concentrations also imply that the total amount of residual carbon source released from the chemostat via the effluent gradually increased with increasing dilution rate, and thus the amount of consumed carbon gradually decreased. The result of this was that after an initial increase, the biomass specific respiration rate and steady state biomass concentration levelled off, and finally decreased with increasing dilution rate (Fig. 3.5.).

 Table 3.2. Biomass concentration, respiratory quotient, carbon and degree of reduction recoveries, and

 reconciled biomass specific net conversion rates at different dilution rates.

| Dilution rate (h <sup>-1</sup> )                           | 0.04            | 0.06            | 0.08            | 0.09            | 0.11            | 0.13            | 0.14            | 0.16            | 0.17            | 0.19            | 0.21            |
|------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Biomass<br>(g <sub>DW</sub> /Kg <sub>broth</sub> )         | 4.30 ± 0.13     | 4.92 ± 0.06     | 5.03 ± 0.07     | $5.42 \pm 0.14$ | $5.15 \pm 0.11$ | 4.63 ± 0.16     | 4.63 ± 0.29     | 4.48 ± 0.30     | $4.44 \pm 0.14$ | 2.66 ± 0.17     | $2.01 \pm 0.14$ |
| RQ                                                         | $1.03 \pm 0.04$ | $1.04 \pm 0.04$ | $1.07 \pm 0.04$ | $1.09 \pm 0.04$ | $1.10 \pm 0.04$ | $1.11 \pm 0.04$ | $1.14 \pm 0.04$ | $1.18 \pm 0.04$ | $1.19 \pm 0.04$ | $1.20 \pm 0.05$ | $1.16 \pm 0.04$ |
| Carbon balance<br>(%)                                      | 92 ± 2          | 95 ± 1          | 94 ± 1          | 91 ± 2          | 92 ± 1          | 89 ± 2          | 92 ± 2          | 93 ± 3          | 98 ± 1          | 97 ± 2          | 99 ± 1          |
| Degree of reduction<br>recovery (%)                        | 86 ± 3          | 93 ± 2          | 88 ± 2          | 83 ± 3          | 87 ± 2          | 83 ± 2          | 87 ± 5          | 90 ± 3          | 97 ± 2          | 98 ± 2          | 102 ± 2         |
| Q <sub>Glucose</sub><br>(mmol/h)/Cmol <sub>x</sub>         | 3.05 ± 0.07     | 4.00 ± 0.06     | $5.14 \pm 0.09$ | 5.22 ± 0.09     | $6.62 \pm 0.11$ | 7.08 ± 0.09     | 8.78 ± 0.17     | 10.32 ± 0.21    | 12.66 ± 0.30    | 22.81 ± 1.12    | 31.39 ± 1.92    |
| q <sub>Xylose</sub><br>(mmol/h)/Cmol <sub>x</sub>          | 3.67 ± 0.08     | $4.81\pm0.07$   | $6.19 \pm 0.11$ | 6.27 ± 0.11     | 7.91 ± 0.13     | 8.23 ± 0.11     | 10.09 ± 0.20    | 11.32 ± 0.25    | 11.41 ± 0.39    | 12.53 ± 1.26    | 15.72 ± 2.17    |
| Q <sub>Arabinose</sub><br>(mmol/h)/Cmol <sub>x</sub>       | 3.67 ± 0.08     | 4.80 ± 0.07     | $6.16 \pm 0.11$ | $6.21 \pm 0.11$ | 7.56 ± 0.13     | 7.54 ± 0.10     | 9.25 ± 0.18     | 9.38 ± 0.20     | 8.50 ± 0.25     | 5.98 ± 0.51     | 5.90 ± 0.76     |
| <b>q</b> <sub>Gal.acid</sub><br>(mmol/h)/Cmol <sub>x</sub> | 2.80 ± 0.06     | 3.67 ± 0.06     | 4.70 ± 0.08     | 4.71 ± 0.09     | 5.83 ± 0.10     | 6.43 ± 0.09     | 7.46 ± 0.15     | 8.25 ± 0.18     | 8.56 ± 0.24     | 7.90 ± 0.61     | 2.21 ± 1.07     |
| q <sub>Mannose</sub><br>(mmol/h)/Cmol <sub>x</sub>         | 3.31 ± 0.07     | 4.34 ± 0.07     | 5.58 ± 0.10     | 5.65 ± 0.10     | 7.17 ± 0.12     | 7.66 ± 0.10     | 9.50 ± 0.18     | 11.05 ± 0.22    | 13.48 ± 0.32    | 21.74 ± 1.12    | 25.60 ± 1.85    |
| <b>q</b> <sub>Rhamnose</sub><br>(mmol/h)/Cmol <sub>x</sub> | 3.35 ± 0.07     | 4.38 ± 0.07     | 5.59 ± 0.10     | 5.57 ± 0.10     | $6.07 \pm 0.11$ | 3.75 ± 0.09     | $3.24 \pm 0.13$ | 2.83 ± 0.14     | 1.75 ± 0.35     | 2.11 ± 0.71     | 3.97 ± 1.06     |
| q <sub>O2</sub><br>(mmol/h)/Cmol <sub>x</sub>              | 57.8 ± 2.1      | 72.7 ± 1.7      | 93.9 ± 2.6      | 85.2 ± 2.8      | 97.1 ± 2.9      | 78.1 ± 1.1      | 93.3 ± 3.6      | 95.0 ± 3.8      | 99.3 ± 3.7      | 129.4 ± 7.5     | 134.5 ± 9.2     |
| q <sub>CO2</sub><br>(mmol/h)/Cmol <sub>x</sub>             | 60.3 ± 2.1      | 76.1 ± 1.7      | 98.3 ± 2.6      | 89.9 ± 2.8      | 103.4 ± 2.9     | 86.5 ± 1.2      | 103.8 ± 3.7     | 3.7 ± 3.9       | 112.6 ± 3.9     | 143.8 ± 8.0     | 144.1 ± 9.4     |
| <b>q</b> <sub>X</sub><br>(mmol/h)/Cmol <sub>x</sub>        | 42.5 ± 0.0      | 59.1 ± 0.0      | 76.6 ± 0.0      | 93.5 ± 0.0      | 109.7 ± 0.0     | 127.4 ± 0.0     | 143.9 ± 0.0     | 159.7 ± 0.0     | 172.0 ± 0.0     | 193.8 ± 0.0     | 209.2 ± 0.0     |
| q <sub>TOC</sub><br>(mmol/h)/Cmol,                         | 8.9 ± 0.2       | 11.1 ± 0.2      | 12.9 ± 0.2      | 5.9 ± 0.1       | 18.3 ± 0.5      | $14.4 \pm 0.8$  | 22.9 ± 1.2      | 1.2 ± 1.9       | 33.7 ± 3.6      | 82.4 ± 12.0     | 133.8 ± 20.4    |

The observed increases of the residual concentrations of the different carbon sources, indicates that the supply rate becomes higher than the uptake rate by the cells. In case of rhamnose, arabinose, galacturonic acid and xylose this already happened at biomass specific uptake rates of only 20% of the maximum value determined in the single substrate batch cultivations (see Table 3.1. and Table 3.2.). In principle this could have been caused by a very low affinity of the import systems for these substrates, however, it is to be expected that under carbon-limited chemostat conditions high affinity importers are expressed. Other possible explanations are catabolite repression and/or competition of multiple substrates for the same import system(s).

As mentioned above, glucose repression is likely to have occurred in the multi substrate batch cultivations, as only after glucose was almost depleted the consumption of the other carbon sources started. In the carbon-limited chemostat cultivation, however, the residual glucose concentration was very low until a dilution rate of about 0.17 h<sup>-1</sup> (Fig. 3.4.). Nevertheless, the residual glucose concentration increased with increasing dilution rate (= growth rate) from 0.0125 mM at the lowest growth rate of 0.043 h<sup>-1</sup> to 1.4 mM at the highest growth rate of 0.21 h<sup>-1</sup> (Table S3.3.). If glucose repression would have been responsible for the limited uptake of the other carbon sources, this would imply that already at very low glucose concentrations repression of the uptake of the other substrates occurs. In Ilyés *et al.*, 2004 it was reported that in glucose-limited chemostat cultivations of *Aspergillus nidulans* CreA mediated carbon catabolite repression increased with increasing dilution rate and thus specific growth rate. However, it follows from chemostat theory that the residual concentration of the growth limiting substrate increases with increasing dilution rate (Herbert, Elsworth and Telling, 1956). It can therefore not be excluded that the observed CreA mediated carbon catabolite repression at higher dilution rates observed by Ilyés *et al.*, 2004 was in fact caused by the onset of glucose repression due to the increase of the residual glucose concentration.

As the last substrate which was depleted, before rhamnose consumption started in the multi substrate batch was arabinose (Fig. 3.3.), and the second substrate appearing with rhamnose was also arabinose (Fig. 3.4.), arabinose is a possible candidate repressor of L-rhamnose transport/metabolism. It has indeed been observed that in *Aspergillus nidulans* the  $\alpha$ -L-rhamnosidase genes are strongly repressed by arabinose but also by glucose, ethanol and sorbitol through a CreA independent mechanism (Tamayo-Ramos *et al.*, 2012; Sloothaak *et al.* 2016a). It might be that the uptake and/or metabolism of the other substrates (arabinose, galacturonic acid, xylose and mannose) is repressed by glucose only, via a CreA dependent mechanism. However, from the results of the multi substrate batch cultivations it appears that also mannose represses the metabolism of xylose, arabinose and galacturonic acid. A better zoom in on the kinetics and putative catabolite repression systems is advanced in the following section.

# 3.3.5. Substrate uptake kinetics

To obtain a clearer picture on possible catabolite repression in *A. niger*, the biomass specific uptake rates of the different substrates in the sequential chemostat cultivations are plotted as a function of the residual substrate concentration (Fig. 3.6.).



Fig. 3.6. Biomass specific uptake rate of different substrates against residual substrate concentration during sequential chemostat cultivation. Maximum substrate uptake specific rate fitting using the Michaelis-Menten equation. Dotted line represents Vmax.

In these plots the maximum specific substrate uptake rate measured in the single substrate batch cultivations is indicated with a broken line. A Michaelis-Menten function (equation 3.3.) was fitted to the data to obtain apparent  $V_{max}$  and  $K_m$  values

for uptake of the different carbon sources in the multi carbon source chemostat cultivation.

It can be seen from these plots that for all carbon sources the maximum uptake rate is lower than observed in the single carbon source batch cultivations. Especially the uptake/metabolism of galacturonic acid, arabinose and rhamnose seems to be repressed, as at a certain point the uptake rates of these carbon sources level off far below their qs<sup>max</sup> values and subsequently decrease at increasing substrate concentration. In case of glucose, mannose and xylose, repression does not seem to take place, however, with increasing substrate concentration, the specific substrate uptake does not reach the determined qs<sup>max</sup>. A possibility could be that glucose, mannose and xylose are taken up by the same transport systems, resulting in competition between those substrates for the same transporters. Until now three glucose import systems of A. niger have been characterized, namely MSTA, MSTG and MSTH. MSTA ( $K_{m,glucose}$  0.025 ± 0.010 mM) also imports mannose ( $K_m$  0.06 ± 0.02 mM) and xylose ( $K_m 0.3 \pm 0.1 \text{ mM}$ ) (van Kuyk *et al.*, 2004). MSTG ( $K_{m,glucose} 0.50 \pm 0.04 \text{ mM}$ ), also imports mannose and possibly xylose, while MSTH ( $K_{m,glucose} 0.06 \pm 0.005$  mM) also imports mannose and fructose (Sloothaak et al., 2015). In addition, also three xylose import systems have been identified in A. niger, namely XTLA, XTLB and XTLC (Sloothaak et al., 2016b). XTLA ( $K_m$  0.09  $\pm$  0.03 mM) also imports glucose ( $K_m$  0.07  $\pm$ 0.01 mM) with the same  $V_{max}$  as for xylose. XTLB seems specific for xylose (K<sub>m</sub> 15.0 ± 4.50 mM) and XTLC ( $K_m$  4.71 ± 1.04 mM) imports glucose with a much higher affinity ( $K_m$  0.11 ± 0.02 mM) and a roughly ten times higher  $V_{max}$  and should therefore be called a glucose importer.

From the published kinetic information on the sugar transporters of *A. niger* characterized to date, it appears that five of them are not very specific and import several sugars. Therefore, to model the uptake of glucose, mannose and xylose, we assumed that these sugars are taken up by the same import systems and that their uptake could be described by competition (equation 3.4.). Also in other filamentous fungi and yeasts, transport systems have been characterized that import several

monosaccharides. In *Aspergillus nidulans* the xylose transporter XTRD also imports glucose, galactose and mannose (Colabardini *et al.* 2014) while the glucose transporters HXTB, HXTC and HXTE also import fructose, mannose and galactose (dos Reis *et al.* 2013). A functional survey carried out by Young *et al.* 2011 found that the hexose transporter HXT7 and galactose transporter GAL2 of *Saccharomyces cerevisiae* are able to import glucose, xylose, galactose, fructose and mannose while GAL2 in addition also imports ribose. Similar results were obtained for the sugar importers GXF1 and GXS1 of Candida intermedia, DEHA0D02167 and XylHP of *Debaryomyces hansenii* and XUT1 and XUT3 of *Scheffersomyces stipites*.

To model the uptake of glucose, mannose and xylose, we assumed that these sugars are taken up by the same import systems and that their uptake could be described by competition (equation 3.4). Both the specific uptake rate of glucose and mannose could be described well with this equation. For the specific uptake of xylose, no good fit could be obtained, indicating that besides competition probably also catabolite repression of xylose uptake and/or metabolism occurred (Fig. S3.4.).

The switch function (equation 3.5.) was used to model glucose repression of the uptake of xylose, arabinose, galacturonic acid and rhamnose in the sequential chemostat cultivation. The specific uptake rates of xylose, arabinose and galacturonic acid could be described reasonably well by glucose repression (Fig. S3.5.), however, no fit could be obtained for the uptake of rhamnose (result not shown). As it is known that in *A. nidulans* the  $\alpha$ -L-rhamnosidase genes are strongly repressed by arabinose (Tamayo-Ramos *et al.*, 2012), the same switch function (equation 3.5.) was used to describe the repression of rhamnose uptake/metabolism by arabinose, which gave a reasonable fit (Fig. S3.5.). Further experiments using simultaneous substrate cultivation, i.e. with and without competitor/repressing substrates, would be advantageous to validate the mentioned hypothesis.

# 3.4. Conclusions

Large differences in qSmax and  $\mu$ max for individual substrates was observed, but in combination, some carbon sources were consumed simultaneously and some sequentially. We found that the uptake of glucose, xylose and mannose seems to be competing for the same transport systems, while the uptake of arabinose, galacturonic acid and rhamnose appeared to be repressed by the presence of other substrates.

The stoichiometric and kinetic parameters of growth on different carbon sources, and the role of substrates as repressors or competitors during cultivation, should be taken into account in the design of a fermentation process based on plant waste feedstocks. In addition, the transition from simple carbon sources to more complex substrate mixtures requires careful attention.

In this chapter, we construct a stoichiometric model and perform flux analysis based on estimations of import mechanisms for six carbon sources, and on the steady state data from a carbon-limited chemostat experiment.

# Chapter 4

Metabolic network analysis and transport mechanisms of lignocellulosic substrates in *Aspergillus niger* 



# Abstract

As a follow-up of previous stoichiometric and kinetic studies, we open in this chapter the black box model of chapter 3. In addition, we measured intracellular and extracellular concentrations of the six selected substrates which allowed an assessment of the most plausible import mechanism for the substrate transport systems, based on measured in/out ratios. A proton symport mechanism seems to be the most likely importer for all substrates with exception of galacturonic acid. The results from eleven carbon-limited chemostat steady states of *Aspergillus niger* on a mixture of six substrates at different growth rates were used as input for a flux analysis from which we obtained estimations of ATP costs for mycelium growth. The energetics of growth of *A. niger* were based on well-known pathways for some substrates and possible pathways for others. Finally, the metabolic flux analysis revealed a much higher flux into the oxidative PPP branch with the mixed substrate sequential chemostat cultivation as compared to carbon-limited chemostat cultivations on glucose as the sole carbon and energy source.

# Keywords

Aspergillus niger, metabolic network, flux analysis, growth energetics, transport

## 4.1 Introduction

Metabolic network analysis enables insights in the ATP stoichiometry of growth and product formation and metabolic flux distributions through different pathways of an organism. In *Aspergillus niger*, a large metabolic network has been reconstructed by integration of the genome, metabolome and reactome (Andersen *et al.*, 2008; David *et al.* 2003), which were supported by the genome sequencing of two *Aspergillus niger* strains (Pel *et al.*, 2007; Andersen *et al.*, 2011). These *omics* analyses provided information on metabolic fluxes, storage compounds and available machinery in the cell (Kromer, Nielsen and Blank, 2014). However, the transportome, i.e. the transporters and channels which regulate influx and efflux of molecules to and from the cell, has not yet been included in current metabolic network models of *A. niger*.

A cell's survival depends on its membrane and transporters (Ramos, Sychrová and Kschischo, 2016), as the transport system enables the cell to obtain metabolic homeostasis by uptaking up nutrients, excreting unwanted products and establishing electrochemical gradients across membranes. The eukaryotic fungal transport system has been extensively studied in *Saccharomyces cerevisiae* (Andre, 1995; Leandro, Fonseca and Goncalves, 2009). As an example, the yeast hexose transporters (HXT family) consist of at least 20 different proteins involved in the transport and sensing of glucose, while some of these transporters also have a broad specificity for other hexoses, as well as for pentoses. The main hexose transporters HXT1-7 and Gal2 from *S. cerevisiae*, are acting by facilitated diffusion (Flagfeldt *et al.*, 2009).

In the filamentous fungi *Aspergillus nidulans* there are at least 17 putative HXT transporters identified in its genome (Wei *et al.*, 2004). However, for *A. niger*, despite the reported 461 putative transporters from the MFS family (major facilitator superfamily), from which 19 seem to be transporting glucose (Pel *et al.*, 2007), only very few transporters have been identified and confirmed. A high affinity glucose/proton symporter MSTA was identified (van Kuyk *et al.*, 2004), as well as two other glucose proton symporters, MSTG and MSTH (Sloothaak *et al.*, 2015). In

addition, a galacturonic acid transporter (unknown mechanism) GATA (Martens-Uzunova and Schaap, 2008; Sloothaak *et al.*, 2014), a fructose proton symporter FSY1 (Coelho *et al.*, 2013), a rhamnose proton symporter RHTA (Sloothaak *et al.*, 2016a) and three xylose transporters (unknown mechanism) XLTA, XLTB and XLTC (Sloothaak *et al.*, 2016b) were identified. A summary of the known transporters of *A. niger* and their mechanisms was already given in Table 1.2. (chapter 1). It appears that substrate transporters are most of the time of the high affinity type using a proton symport mechanism, and are generally not specific for a single substrate.

In addition to the insufficient knowledge on transport systems, also metabolic pathways for the used substrates are not completely unraveled. *A. niger* has the ability to grow on the most abundant lignocellulosic monomers, i.e. glucose, xylose, arabinose, galacturonic acid, mannose and rhamnose (chapter 3). In addition, this fungus has been shown to be able to metabolize xylose and arabinose (Witteveen *et al.*, 1989), apart from glucose. Later, Mojzita *et al.* 2010 identified the reductase genes of D-xylose and L-arabinose in *A. niger*. Both sugars are able to induce the expression of the genes of the pentose phosphate pathway (Mojzita, Penttilä and Richard, 2010). Martens-Uzunova and Schaap 2008 proposed a galacturonic acid degradation pathway in filamentous fungi (Martens-Uzunova and Schaap, 2008). Mannose and rhamnose pathways, on the other hand, have not been confirmed or characterized in *A. niger*.

Having in mind the metabolic pathway gaps and little knowledge on the substrate transport systems in *A. niger*, in this study we focused on these two topics.

To this aim, we measured intra- and extracellular substrate concentrations during a sequential chemostat experiment on a mixture of six lignocellulosic substrates (see chapter 3) and we calculated the corresponding in/out ratio's. From a comparison with the thermodynamic equilibrium ratio's the most plausible import mechanism for each substrate could be identified.

Subsequently we constructed a simplified version of a metabolic network for *A. niger*, based on the genome scale stoichiometric model published by David *et al.* 2003. The

thus obtained model was extended with the pathways for the metabolism of six lignocellulosic carbon sources and their most plausible import mechanisms. Using a dataset obtained from a carbon-limited sequential chemostat cultivation on a mixture of these six lignocellulosic substrates at eleven different dilution rates, a metabolic flux analysis was performed for each growth rate. The results of the flux analysis were used to obtain more insight in the ATP requirements for growth and maintenance of the cells, the stoichiometry of growth on each single substrate and to identify possible metabolic bottlenecks for the simultaneous consumption of lignocellulosic carbon sources in *A. niger*.

# 4.2 Materials and Methods

#### 4.2.1. Sequential chemostat cultivation

#### 4.2.1.1. Strain, inoculum and fermentation

The strain used was *A. niger* NW185 (*cspA1 short conidiospores, fwA1 fawn coloured spores, goxC17 glucose oxidase negative, prtF28 oxalate non-producing*). The hyphal inocula for continuous cultivation were obtained from shake flask cultures. Spores for initiating the pre inoculum were obtained by growing the fungus on agar plates and the spores were harvested as described in Lameiras *et al.*, 2015. A concentration of 1x10<sup>6</sup> spores/ml was pre-inoculated in a 250 ml shake flask containing 100 ml of PM media with 100 mM of sorbitol (Ruijter, van de Vondervoort and Visser, 1999) at pH 4.5. The shake flask was incubated overnight at 30°C in an orbital shaker (CERTOMAT BS-1, Sartorius group) at 250 rpm. The resulting mycelial suspension, was separated by centrifugation (*Heraeus Contifuge stratos* for 2 min at 10000G, 4°C) washed two times with 50 ml PM medium without carbon source at room temperature and subsequently used to inoculate the bioreactor.

A sequential chemostat cultivation was performed in a 7 litres bioreactor with a working volume of 4.5 litres. Fermentor set up and operating conditions were the same as described in Lameiras *et al.*, 2017.

The reactor was inoculated with pre grown and washed mycelia into minimal media supplemented with a mixture of 12.6 mmol/L D-glucose, 12.6 mmol/L D-galacturonic acid, 12.6 mmol/L L-rhamnose, 12.6 mmol/L D-mannose, 15.2 mmol/L of D-xylose and 15.2 mmol/L L-arabinose (note that each sugar represents 76 mmol/L of carbon). After the batch phase was finished, the feed was initiated with a starting dilution rate of 0.04h<sup>-1</sup>. Subsequently, the dilution rate was increased to 0.21h<sup>-1</sup> in eleven steps (0.04h<sup>-1</sup>, 0.06 h<sup>-1</sup>, 0.08 h<sup>-1</sup>, 0.09 h<sup>-1</sup>, 0.11 h<sup>-1</sup>, 0.13 h<sup>-1</sup>, 0.14 h<sup>-1</sup>, 0.16 h<sup>-1</sup>, 0.17 h<sup>-1</sup>, 0.19 h<sup>-1</sup> and 0.21 h<sup>-1</sup>), as described in Lameiras *et al.*, 2017.

#### 4.2.1.2. Rapid sampling and quenching for extracellular substrate quantification

For each dilution rate, after steady state was reached (observed from the constant  $CO_2$  and  $O_2$  levels in the offgas of the chemostat), filtrate samples were obtained by quickly (within 3 s) withdrawing 5 ml of broth, via the over-pressure on the fermentor, into a syringe containing cooled steel beads (-20°C) to bring the sample temperature quickly down to 0°C (Mashego *et al.* 2003). The broth was then immediately pressed through a 0.45  $\mu$ m cartridge filter (Millex-HV durapore PVDF membrane) into a filtrate sampling vial, which was directly frozen in liquid nitrogen.

#### 4.2.1.3. Rapid sampling and quenching for intracellular substrate quantification

For each dilution rate, after steady state was reached, intracellular samples were obtained by a rapid sampling, quenching and washing method previously developed for filamentous broth, with the difference that the customized rapid sampling device described in Lameiras *et al.*, 2015, was now substituted by another one with the same working principle but a bigger sampling chamber, allowing higher volumes of broth to be withdrawn (1.4 g of broth), in comparison with the old device (0.7g of broth).

1.4 g of broth was rapidly withdrawn from the broth loop with the sampling device and injected (< 1 s) into a vial containing 10 ml of 40 % aqueous methanol (v/v) solution pre-cooled to -40°C. The exact sample weight was determined by weighing each tube before and after sampling. The content of each tube was quickly mixed by vortexing (1

s) and the tube was placed back in a cryostat (Lauda, Germany) at -40°C. A set of 3 replicates were taken within one minute. The quenched cold mycelia samples were harvested and washed in two steps by cold filtration, according to a previously described method Lameiras *et al.*, 2015. It has been shown previously that the washing efficiency of this method was sufficient for *S. cerevisiae* (Shah, 2016) and *P. chrysogenum* (Douma *et al.*, 2010).

After the rapid sampling, washing and quenching procedure, samples were submitted to boiling ethanol extraction, evaporation and concentration, as described in Lameiras *et al.*, 2015.

## 4.2.1.4. Analytical procedures and data reconciliation

In addition to intracellular and extracellular substrate quantification, during each steady state, at least 3 samples were taken for quantification of cell dry weight (four replicates) and total organic carbon (TOC) content of the culture filtrate. Furthermore, the oxygen and carbon dioxide volume percentage in the offgas of the chemostat were measured continuously (Lameiras *et al.*, 2017).

Both the intracellular and extracellular concentrations of each substrate were determined with a Dionex ICS – 5000 HPIC system with AS-AP sampler, SP pump, Carbopac PA-20 3\*150 mm column and Aminotrap 3\*30 mm precolumn employing 2 mM NaOH isocratic, 20 mM NaOH isocratic or gradient with 0.5 M sodium acetate in 200 mM NaOH (for acidic sugars) as eluents with a flow of 0.5 ml/min at 30°C. The detection was by electrochemical pulse at 15°C. A factor of 1.2 ml intracellular volume/g dry weight was used to calculate intracellular concentrations from the extracted amounts of metabolites (Ruijter and Visser, 1996).

Using the steady state mole balances, the net conversion rates (mol/h) of substrate ( $R_s$ ), biomass ( $R_x$ ), carbon dioxide ( $R_{CO2}$ ), oxygen ( $R_{O2}$ ) and TOC in the culture filtrate ( $R_{TOC}$ ), and the corresponding covariance matrix were calculated from the primary measurements of concentrations in the gas and liquid phases, as well as gas and liquid

flow rates. From these rates, carbon and degree of reduction recoveries were calculated according to the description in Lameiras *et al.*, 2017. After checking absence of relevant carbon and degree of reduction gaps, data reconciliation was applied to obtain the best estimates of the measurements, within their error margins, using the elemental and charge conservation relations as constraints (Verheijen, 2010).

#### 4.2.2. Thermodynamics of uptake processes

An extensive elucidation on the thermodynamics of transport mechanisms was already given in chapter 1. Summarising, when the solubility of a molecule (charged, hydrophilic) in the lipid membrane is insufficient, or the transport has to occur against a concentration gradient, then a transporter and energy input (coupled transport) are needed. These transport processes need to be accessed in terms of energetics. The Gibbs energy of the H<sup>+</sup> coupled import of a charged compound (charge z) such as  $C_{out}^{z} + nH_{out}^{+} \Leftrightarrow C_{in}^{z} + nH_{in}^{+}$  can be written as:

$$\Delta_r G = \left[ RTln\left(\frac{c_{in}^z}{1}\right) + ZF\psi + nRTln\left(\frac{\mu_{in}^z}{1}\right) + nF\psi \right] - \left[ RTln\left(\frac{c_{o\ t}^z}{1}\right) + 0 + nRTln\left(\frac{\mu_{out}^z}{1}\right) + 0 \right]$$
(4.1.)

Where  $\ln(C^2/1)$  and  $\ln(H^*/1)$  are the correction term for concentrations different from 1 mol/L, R = 8.314x10<sup>-3</sup> kJ/(mol.K), T is the temperature in Kelvin (K); n is the number of protons (H<sup>+</sup> co-imported); and  $ZF\psi$  is the correction for the intracellular electrical potential (Z is the charge of the transported molecule, F is the Faraday constant = 96.5 kJ/v e<sup>-</sup>mol and  $\psi$  is the inside membrane potential in volt).

The intracellular space has an electrical potential (the extracellular space has  $\psi = 0$  by definition), of which the value depends on the extracellular pH to maintain a constant proton motive force ( $E_{pmf}$ ). The relation between the electrical potential and the extracellular pH was already shown in chapter 1 (equation 1.2.). In that relation  $E_{pmf}$  and pH<sub>in</sub> are homeostatic at values of  $E_{pmf} = 0.15$  V and pH<sub>in</sub> = 7.6 (Hesse *et al.*, 2002). Therefore,  $\psi$  only depends on the extracellular pH and becomes negative for high pH<sub>out</sub>, and positive for low pH<sub>out</sub>.

Assuming  $\Delta rG = 0$  in equation 4.1., one can calculate the logarithm of the in/out equilibrium concentration ratio of the charged species of the imported compound according to equation 4.2.

$$\log \frac{c_{in}^{Z}}{c_{out}^{Z}} = z(pH_{in} - pH_{out}) - \frac{(n-z)(-Epmf)F}{2.303 R}$$
(4.2.)

This ratio is the thermodynamic maximum value of the out/in ratio for a proton coupled import system.

In case of glucose, xylose, arabinose, mannose and rhamnose, there is no charge on the molecules, which means that the in/out ratio is not dependent on the pHout. Equation 4.2. simplifies then to:

$$\log \frac{c_{in}}{c_{out}} = \frac{n \times Epmf \times F}{2.303 \, RT}$$
(4.3.)

The equilibrium in/out ratios for these five carbon sources can be estimated for the different transport mechanisms.

Antiport n=-1 
$$\log \frac{c_{in}}{c_{out}} = -1 \times 2,57 \equiv \frac{c_{in}}{c_{out}} = 10^{-2.57} = 0.003$$

Uniport n=0  $log \frac{c_{in}}{c_{out}} = 0 \times 2,57 \equiv \frac{c_{in}}{c_{out}} = 10^0 = 1$ 

Symport n=1 
$$log \frac{c_{in}}{c_{out}} = 1 \times 2,57 \equiv \frac{c_{in}}{c_{out}} = 10^{2.57} = 372$$

In case of galacturonic acid, depending on the pH, this sugar acid can dissociate  $(pk_a=3.48)$  and therefore different species can coexist (Fig. S4.1.). At pHout = 2.5 about 90% of the acid is present in its undissociated form (HA) and 10% of the acid in its protonated form (A<sup>-</sup>). It could therefore be that the undissociated acid is imported by passive diffusion.

#### 4.2.3. Metabolic Network Analysis

## 4.2.3.1. Data Processing and metabolic flux analysis

From the sequential chemostat cultivations, the primary measurements (concentrations in the liquid and gas phase and liquid and gas flow rates) for each steady state were used to calculate the net conversion rates (mmol/h) and the corresponding covariance matrix, using the corresponding steady state mole balances.

The obtained conversion rates and the corresponding covariance matrix for each steady state were used as input for the flux analysis using the constructed stoichiometric model (see below) with as metabolic flux analysis software MNA PR 3.0 (van der Heijden *et al.* 1994a; van der Heijden *et al.* 1994b; Verheijen 2010).

#### 4.2.3.2. Stoichiometric model

The metabolic network used for the flux analysis was based on a published genome scale stoichiometric model for *A. niger* (David *et al.* 2003). Here a simplified version was used but the model contained all anabolic reactions from the genome scale model, furthermore the assimilation reactions for the six different sugars were incorporated. The resulting model contained 200 reactions, and 173 compounds in 3 compartments (Fig. S4.3) - see supplementary material for a complete listing of the model. The most plausible import mechanisms (see results section) for glucose, xylose, arabinose, mannose, rhamnose and galacturonic acid were incorporated in the model. The biomass formation reaction of the published genome scale model also included the hydrolysis of 61 mol ATP to ADP per kg of dry biomass produced (1.64 mol ATP per Cmol biomass) as growth dependent maintenance energy requirements (David *et al.* 2003). In our version of the model this additional ATP hydrolysis was removed from the biomass reaction, instead we used the obtained flux data to estimate this ATP demand (see results and discussion section).
# 4.3. Results and Discussion

#### 4.3.1. Sequential chemostat cultivation

A sequential chemostat experiment was performed on an equimolar carbon mixture of the six substrates. After achieving steady state, the dilution rate was increased stepwise and the chemostat was run until a new steady state was obtained. The initial dilution rate was 0.04 h<sup>-1</sup> which was significantly lower than the lowest maximum growth rate determined for the single substrate batch cultivations (Lameiras *et al.*, 2017) to enable simultaneous uptake on all carbon sources.

For all dilution rates, measurements of residual substrates, biomass dry weight, oxygen and carbon dioxide concentrations in the offgas were performed. In addition, the measured total organic carbon (TOC) concentration of the culture filtrate minus the residual concentrations of the six carbon sources was used to verify whether significant amounts of unknown by-products were formed. The extensive analysis of this experiment in terms of substrate uptake kinetics and black box stoichiometric parameters is described in chapter 3.

Fig. 4.1. presents the extracellular and intracellular concentrations of all six substrates measured in each steady state achieved at the different dilution rates of the sequential chemostat cultivation.

The observed significant increases of the extracellular concentrations of the different carbon sources, indicates that in case of rhamnose, arabinose, galacturonic acid and xylose this already happened at biomass specific uptake rates of only 20% of the maximum value determined in the single substrate batch cultivations (Lameiras *et al.*, 2017). This increase of residual concentrations occurred in the reverse order as the consumption of substrates in the multi substrate batch fermentation (Lameiras *et al.*, 2017).



Fig. 4.1. Extracellular (upper panel) and intracellular (lower panel) carbon sources concentration, at different dilution rates of the sequential chemostat cultivation in *A. niger*.

More interesting is to know what is happening simultaneously to the intracellular levels of the different carbon sources. In Fig. 4.1. it can be seen that intracellular concentrations of carbon typically increase with increasing dilution rate, except for glucose which oscillates around a concentration of 20  $\mu$ M.

#### 4.3.2. Thermodynamics of transport processes

In order to have some insight on the transport mechanism of each carbon source, we determined the in/out ratios at each dilution rate – Table 4.1. Unfortunately, the measurements of the intracellular mannose concentration were corrupted for part of the samples taken and therefore the corresponding in/out ratio's could not be estimated.

| Dilution rate (h <sup>-1</sup> ) | Glucose        | Xylose            | Arabinose      | Gal. acid       | Mannose       | Rhamnose        |
|----------------------------------|----------------|-------------------|----------------|-----------------|---------------|-----------------|
| 0.043                            | 414.0 ± 77.9   | 709.5 ± 185.4     | 72.4 ± 11.1    | $5.52 \pm 0.71$ | -             | 19.89 ± 5.12    |
| 0.059                            | 260.0 ± 45.3   | $501.1 \pm 117.8$ | $56.5 \pm 4.9$ | $2.52 \pm 0.25$ | -             | $5.69 \pm 1.07$ |
| 0.077                            | 107.6 ± 19.8   | 184.1 ± 33.3      | 25.8 ± 3.6     | $1.09 \pm 0.12$ | -             | $2.25 \pm 0.47$ |
| 0.093                            | 59.6 ± 9.7     | $36.9 \pm 6.4$    | $14.1 \pm 1.9$ | $0.36 \pm 0.02$ | -             | $0.92 \pm 0.23$ |
| 0.110                            | $25.4 \pm 2.8$ | 20.7 ± 4.1        | $4.5 \pm 0.6$  | $0.22 \pm 0.03$ | -             | $0.20 \pm 0.06$ |
| 0.127                            | 96.8 ± 9.5     | $11.2 \pm 1.0$    | $4.1 \pm 0.2$  | $0.28 \pm 0.04$ | -             | $0.27 \pm 0.04$ |
| 0.144                            | 54.7 ± 8.2     | 9.5 ± 1.5         | 4.7 ± 0.3      | $0.40 \pm 0.06$ | -             | $0.53 \pm 0.09$ |
| 0.160                            | 29.2 ± 5.6     | $5.8 \pm 0.9$     | $2.9 \pm 0.2$  | $0.25 \pm 0.05$ | 6.7 ± 0.9     | $0.73 \pm 0.20$ |
| 0.172                            | $14.6 \pm 2.4$ | $1.9 \pm 0.2$     | $1.5 \pm 0.1$  | $0.15 \pm 0.03$ | $5.1 \pm 0.8$ | $0.50 \pm 0.11$ |
| 0.194                            | $10.2 \pm 1.1$ | 1.7 ± 0.2         | $1.5 \pm 0.1$  | $0.81 \pm 0.10$ | $2.4 \pm 0.4$ | $1.00 \pm 0.13$ |
| 0.209                            | $5.4 \pm 0.6$  | $1.9 \pm 0.2$     | $1.7 \pm 0.3$  | $0.54 \pm 0.07$ | $1.5 \pm 0.3$ | $1.11 \pm 0.31$ |

 Table 4.1. In/Out ratios of different carbon sources for each dilution rate of the sequential chemostat cultivation in A. niger.

In Fig. 4.2. the substrate in/out ratios are plotted against their corresponding specific substrate uptake rates ( $q_s$ ). Note that equilibrium ratios were already discussed in the materials and methods section and galacturonic acid, being a sugar acid presents different equilibrium values.

For glucose, xylose, arabinose, mannose and rhamnose, the values plotted in Fig. 4.2. are on (or below) the expected equilibrium value of 372 for proton symport and decrease with increased flux to achieve a higher driving force, as to be expected. This is mostly in agreement with the findings stated in Table 1.2. where most of the known transporters for these substrates are indeed proton symporters.



Fig. 4.2. In/Out ratios of different carbon sources in relation to their substrate specific uptake rate (q<sub>s</sub>). Dashed lines represent the equilibrium in/out ratios for different import mechanisms.

Because at pH 2.5 90% of the galacturonic acid is present in the undissociated lipophilic form, we assume that passive diffusion is the most probable import mechanism of this sugar acid at this pH. This finding is actually confirmed by the in/out ratios, which are close to 1 (equilibrium) – Table 4.1 and Fig. 4.2.

# 4.3.3. Metabolic Network Analysis

The C5 substrates, xylose and arabinose, were well studied in *A. niger* since the late 80s (Witteveen *et al.* 1989; vanKuyk *et al.* 2001; de Groot *et al.* 2003 and de Groot *et al.* 2005). Martens-Uzunova & Schaap, 2008 have described the evolutionary conserved D-galacturonic acid metabolic pathway in *A. niger*, allowing the degradation of pectin. The degradation of mannose is a quite straightforward pathway, and well known in eukaryotes (Panneman *et al.*, 1998), although not confirmed in *A. niger*. Finally, the fungal pathway of rhamnose was described for *Pichia stipitis* and *Debaryomyces hansenii* but not yet confirmed in *A. niger* (Fries and Kallstromer 1965 and Gruben *et al.* 2014). Nevertheless, with this information (Fig. S4.2.) we

incorporated metabolic pathways for the catabolism of the six substrates studied here in the stoichiometric model of *A. niger*.

## 4.3.3.1. Model description

From the measured in/out ratio's for the different sugars measured in the sequential chemostat experiment, the most plausible transport mechanisms are proton symport for glucose, xylose, arabinose, rhamnose and mannose; and passive diffusion for galacturonic acid at the cultivation pH of 2.5. These mechanisms were incorporated in the stoichiometric model, which was based on the model of David *et al.* (2003) and was extended with the import mechanisms and the catabolic pathways of the 6 different sugars used in the sequential chemostat experiment.

# 4.3.3.2 Experimental results

In Fig. 4.3 the biomass specific uptake rates of the six different substrates are plotted as a function of the dilution rate for the sequential chemostat cultivation.



**Fig. 4.3.** Biomass specific substrate uptake rates in relation to different dilution rates (h<sup>-1</sup>).

Until a dilution rate of 0.11  $h^{-1}$  all sugars were consumed simultaneously. Above a dilution rate (D) of 0.11  $h^{-1}$  rhamnose consumption decreased. Above D = 0.16  $h^{-1}$  the consumption rates of arabinose and galacturonic acid decreased, while the biomass specific consumption rates of glucose, mannose and xylose increased.

Interestingly, in spite of the changes in the biomass specific uptake rates of the individual substrates the total substrate uptake rate, expressed in mmol carbon per Cmol biomass per hour, increased linearly with increasing dilution rate (Fig. 4.4.).



**Fig. 4.4.** Total biomass specific uptake rate of the six selected substrates in the mixed sugar sequential chemostat (closed circles) and in glucose-limited chemostat cultures (open circles) vs dilution rate (h<sup>-1</sup>).

A similar linear relation was found for the glucose-limited chemostat cultivations (data retrieved from chapter 2). However, as can be seen from Fig. 4.4 the slope of this qS vs D plot is smaller than for the mixed substrate chemostat. This indicates that the yield of biomass on glucose (expressed as Cmol biomass produced per Cmol of substrate consumed) is higher for growth on glucose than for growth on the six mixed substrates. This can have several causes. First of all, the average electron content of the mixed substrate used is slightly lower (3.94 e<sup>-</sup>/C) than for glucose (4 e<sup>-</sup>/C). Secondly, the ATP requirements for import of the different substrates can be different.

Based on our experimental data we assumed that import of glucose, xylose, arabinose, mannose and rhamnose occurred via proton symport while galacturonic acid entered the cells via passive diffusion. Having the same import system for a C5 and C6 substrate results in almost 20% higher transport costs per carbon atom for the C5 sugars. Using the metabolic network model with the estimated ATP stoichiometry parameters (see section 4.3.3.2) we calculated that the maximum yields of biomass for the different substrates ranged between 0.52 and 0.65 Cmol biomass/Cmol substrate (for galacturonic acid and rhamnose respectively) with an average yield of 0.60 for the mixed substrate, which is slightly lower than for glucose (0.62).

When the biomass specific oxygen consumption and carbon dioxide production rates  $(qO_2 \text{ and } qCO_2)$  are plotted against the dilution rate it can be seen that they only increase linearly until D = 0.127 h<sup>-1</sup> (Fig. 4.5.).



Fig. 4.5. Oxygen consumption and carbon dioxide production rates, filled symbols: mixed substrate sequential chemostat, open symbols: glucose-limited chemostat.

At higher dilution rates, the respiration rate slightly decreases in the following 3 steady states and increases again in the last two. This would indicate that at dilution rates

above 0.127h<sup>-1</sup> the growth becomes more efficient in terms of ATP requirements, e.g. due to a change in biomass composition (accumulation of storage compounds). A comparison with the biomass specific oxygen consumption and carbon dioxide production rates in a glucose-limited chemostat (see chapter 2) shows that these rates are higher in the mixed carbon source cultivation. This corresponds with the lower yield of biomass on the mixed substrate discussed above.

4.3.3.2. Metabolic flux analysis and estimation of the ATP stoichiometry parameters Kx, mATP and P/O-ratio.

Flux analysis was performed for the 11 steady states of the mixed sugar sequential chemostat experiment (Fig. S4.1. to Fig. S4.11.).

An issue is that the residual carbon (TOC - residual sugars) detected in the effluent of the chemostat, is quite significant, especially for the higher dilution rates (Fig. 4.6.). For the flux analysis it was assumed that all non identified carbon in the effluent is the result of cell lysis. So this adds up to the biomass formation rate. We can, however, not exclude that also byproducts have been excreted at higher dilution rates.



Fig. 4.6. Biomass specific rate of cell lysis, calculated from unaccounted total organic carbon content of the culture filtrate.

From the results of the flux analysis it was calculated that the operational PO-ratio was on average 2.1 mol ATP per 2 mol of electrons. The fraction of mitochondrial NADH entering the respiratory chain was about 0.62 and the fraction of cytosolic NADH and FADH was about 0.38. Using the P/O ratios used in the genome scale model of David *et al.*, (2.46 mol ATP/2 mol electrons for mitochondrial NADH and 1.64 for cytosolic NADH and FADH) the operational P/O ratio would be 0.62\*2.46 + 0.38\*1.64 = 2.15. We conclude that the operational P/O ratio calculated from the current flux analysis corresponds with the one used in the published genome scale model.

It should be realized that the anabolic ATP requirement obtained from a stoichiometric model is always an underestimation because several ATP requiring processes are not incorporated in these models, e.g. proofreading, posttranslational modification of enzymes, phosphorylation/dephosporylation and protein turnover. This additional ATP requirement can be divided in a growth dependent and a growth independent part, respectively Kx (mol ATP/Cmol biomass) and mATP (mol ATP per Cmol biomass per hour).

To estimate these parameters from the experimental data the stoichiometric model contains an ATP hydrolysis reaction which represents this additional ATP demand for growth and maintenance of the cells. If a plot is made of the rate of additional ATP hydrolysis against specific growth rate a linear relationship is expected between the growth rate and the biomass specific additional ATP demand (mol ATP per Cmol biomass per hour with slope Kx (mol ATP/Cmol biomass) and intercept mATP (mol ATP/Cmol/h). It should be noted, however, that this only holds if no significant changes in the biomass composition occur as a function of the growth rate.

When such a plot of additional ATP consumption against growth rate ( $\mu$  + qlysis) was made based on the results of the metabolic flux analysis for the sequential chemostat cultivation on the mixed substrate a linear relationship was only obtained for the first 6 steady states (Fig. 4.7.). From these data a Kx of 1.53 ± 0.21 mol ATP/Cmol biomass (about 56 ± 8 mmol ATP/gDW) and an mATP of 0.157 ± 0.021 mol ATP/Cmol.h (about

99

 $5.6 \pm 0.8 \text{ mmol/gDW/h}$  can be estimated. Compared to the values published by David *et al.* (Kx = 61 mmol ATP/gDW and mATP = 1.9 mmol/gDW/h), the estimated Kx is somewhat lower while mATP is higher.



Fig. 4.7. Additional ATP consumption (mol ATP/Cmol/h) vs growth rate (µ + qlysis).

# Calculation of the stoichiometry of batch growth

Using the estimated values for the growth dependent and independent maintenance parameters Kx and mATP (see above), the stoichiometric model was used to calculate the overall reactions for the formation of one mol biomass from the six different substrates during growth in batch culture at the corresponding maximum growth rates.

> -0.29 Glucose -0.66 O2 + 1 biomass + 0.74 CO2 -0.38 Xylose -0.80 O2 + 1 biomass + 0.88 CO2 -0.41 Arabinose -0.99 O2 + 1 biomass + 1.07 CO2 -0.39 Galacturonic acid -0.87 O2 + 1 biomass + 1.34 CO2 -0.30 Mannose -0.72 O2 + 1 biomass + 0.81 CO2

-0.30 Rhamnose -0.85 O2 + 1 biomass + 0.79 CO2

It was calculated from the standard errors of the estimated values of Kx and mATP that the standard errors of the stoichiometric coefficients for substrate, oxygen and carbon dioxide are approximately  $\pm$  5%,  $\pm$  10% and  $\pm$  8% respectively. If we now compare the above obtained stoichiometric relations with the ones obtained from the single substrate batch cultivations (see chapter 3) only the one for arabinose as substrate corresponds with the one derived from the batch culture data. In all other cases the substrate and oxygen requirement and the carbon dioxide produced are lower in substrate excess batch cultivations than could be estimated from the ATP stoichiometry obtained from the carbon-limited multi substrate sequential chemostat cultivation. This could be caused by a different biomass composition, e.g. containing more storage materials, in unlimited batch cultures compared to C-limited chemostat cultivations. Since the synthesis of storage compounds generally costs less ATP, the substrate and oxygen requirement as well as carbon dioxide production for the synthesis of biomass with a high storage content is lower.

#### PPP pathway flux

Several of the six substrates in the feed of the sequential chemostat culture require NADPH for their metabolism. Per mol of arabinose this is 2 mol NADPH while 2 mol NADH is produced, for xylose this is 1 NADPH while 1 NADH is produced, for galacturonic acid this is 2 NADPH with no production of NADH while metabolism of rhamnose requires 2 NADPH and produces 1 NADH (see supplementary material Fig. S4.2). Therefore, due to the simultaneous consumption of arabinose, xylose, galacturonic acid and rhamnose the NADPH demand in the sequential chemostat experiment is large.

The main source of cytosolic NADPH is the oxidative branch of the pentose phosphate pathway (PPP). Therefore, it follows from the metabolic flux analysis that the flux into the oxidative PPP branch must be much higher in the mixed substrate sequential chemostat cultivation as compared to carbon-limited chemostat cultivations on glucose as the sole carbon source (Fig. 4.8).

101

The oxidative PP branch connects to the glucose-6-phosphate (G6P) node which has an inflow from glucose and outflows to the oxidative PPP branch and the glycolysis. In the mixed substrate sequential chemostat cultivation only one sixth of the carbon is supplied in the form of glucose, which implies that the inflow into the G6P pool is only one sixth compared to the situation where glucose is the sole carbon source. This means that due to the fact that in the mixed substrate cultivation the flux towards the oxidative PPP is large while the influx into the G6P pool is small an additional influx is required, which can only come from fructose-6-phosphate, requiring a reversal of 4.9.) while phosphoglucose isomerase (PGI) (Fig. the fluxes through phosphofructokinase and fructose bisphosphate aldolase are strongly reduced. This is not observed for the flux distributions calculated for the carbon-limited chemostat cultivations where glucose is the sole carbon source (chapter 2).



Fig. 4.8. PPP flux as a function of dilution rate in the mixed carbon source sequential chemostat (filled circles) and glucose-limited chemostat (open triangles).

It can be seen from Fig. 4.8. that the highest flux from F6P to G6P through PGI occurs at a steady state eight, at a dilution rate of 0.16  $h^{-1}$ , just before the steep increase in the biomass specific consumption rates of glucose and mannose, which do not require

NADPH to be metabolized, and the decrease in the consumption rates of arabinose, galacturonic acid, rhamnose and to a lesser extent, xylose (Fig. 4.3.).



Fig. 4.9. Reversed PGI flux, F6P → G6P (mmol/Cmol/h) vs dilution rate in the mixed carbon source sequential chemostat.

The imbalance between inflow into the G6P pool in the form of glucose and outflow towards the oxidative PPP branch is also seen from the PPP split ratio, which is the ratio between the PPP outflow and the glucose inflow which is between 3.5 and 4 for the first eight steady states (until  $D = 0.16 \text{ h}^{-1}$ ) and steeply decreases at higher dilution rates (Fig. 4.10.) due to the decrease of the relative contribution of substrates which require NADPH for their metabolism (Fig. 4.3.).

However, for all steady states of the sequential chemostat experiment the PPP split ratio is much higher compared to carbon-limited chemostat cultivations on glucose as the sole carbon source.



**Fig. 4.10.** Ratio between the flux entering the pentose phosphate pathway (glucose 6 phosphate dehydrogenase and the flux entering the glycolysis (hexokinase) in the mixed carbon source sequential chemostat (filled circles) and glucose-limited chemostat (open triangles).

## 4.4. Conclusions

By the use of metabolomics tools, we have estimated the most plausible import mechanism for six selected substrates, based on measured in/out ratios. In addition to the predicted import system, and data from eleven carbon-limited chemostat steady states, we have built a stoichiometric model and carried out metabolic flux analysis for *A. niger* growth on a mixture of six different carbon sources. We have observed a different ATP stoichiometry for the first six steady states compared to the five last ones, possibly due to changes in biomass composition and/or the accumulation of storage compounds. The batch stoichiometry (chapter 3) obtained from the estimated ATP stoichiometry for the first six steady states obtained at relatively low growth rates, appeared different from the experimental one except for arabinose. Also this could have been caused by changes in the biomass composition. Based on the flux analysis, we observed a large pentose pathway flux and reversal of PGI during growth on a mixture of lignocellulosic sugars, due to a strongly increased NADPH demand.

In this chapter, we study the impact of high concentrations and low pH of citric and itaconic acid on the uptake/secretion and transport energetics in two different strains.

# Chapter 5

Transport insights on citric and itaconic acid in Aspergillus niger



# Abstract

In this study we focused on two organic acids: citric acid, essential for the food and beverage industries; and itaconic acid, used in the chemical and polymer industries. Aspergillus niger, as a cell factory, is capable of producing citric acid in high quantities, but can also produce itaconic acid when metabolically engineered. The objective of this work was to study the membrane transport of these acids in *A. niger* and focus on two important aspects at industrial scale: high product concentrations and a low cultivation pH, which is beneficial for the downstream processing (facilitating acid recovery and avoiding the use of titrants and associated massive waste production). Using an optimized continuous cultivation protocol for a 7 litres lab scale bioreactor (Chapter 2), we performed acid addition experiments with citric and itaconic acid at pH 2.5 and 5.5. We observed that citric acid uptake at pH=2.5 was much higher than at pH=5.5, which points to passive diffusion. However, the calculated permeability was a factor 100 higher than the expected value based on the octanol water partition coefficient, indicating that active uptake could have played a role. Itaconic acid uptake, on the other hand, was very low both at high and low cultivation pH, probably due to the absence of a pathway for the metabolism of this acid. Nevertheless, itaconic acid accumulated in the cells to levels which were affecting the physiology of the cells and resulted in increased levels of the growth limiting substrate in chemostat cultivations. Furthermore, we investigated the uptake and metabolism of itaconic acid in an itaconic acid producing and non-producing strain at high concentrations of this acid and low pH (2.5). Measurements of the in/out ratios of the acid and thermodynamic considerations indicated that export of the produced itaconic acid in the producing strain is most likely through a proton antiport mechanism.

# Keywords

*Aspergillus niger*, chemostat, passive diffusion, citric acid, itaconic acid, thermodynamics of transport mechanisms

# 5.1. Introduction

Organic acids are important chemical building blocks because their functional groups are extremely valuable as starting materials for the production of polymers and resins. To move from petroleum-based production of these acids to a more sustainable industry, requires the use of renewable feedstocks.

Organic acids produced from microorganisms are divided in two groups: the TCA cycle derived acids (citric, itaconic, malic, fumaric, succinic and oxalic acid) and the glucose derived acids (gluconic and kojic acid). For high production of TCA cycle related organic acids there are four important aspects to consider: a high substrate import rate; a high flux through glycolysis and TCA cycle; the ATP, redox cofactors and electrical charge should be balanced intracellularly; and the produced acids and protons must be exported efficiently and at a high rate through the plasma membrane (Witteveen, 1993). In this work we focus on membrane transport of two organic acids: citric and itaconic acid.

Citric acid is applied in the food and beverage industries as an acidulant, and a flavouring and chelating agent. For the last 120 years, citric acid is a key product in Biotechnology and has been produced from *Aspergillus niger* submerged fermentations. *A. niger* converts glucose to citric acid with more than 80% efficiency and a titer of 300 g/l can be obtained. A reason for the efficient production of citric acid in this filamentous fungus is still not completely clear but believed to reside in the fact that *A. niger* did not evolve tight regulatory mechanisms to control acid production, as the substrate concentration in the natural environment of this organism is generally low (Magnuson and Lasure, 2004). Furthermore, the acid production capacity is thought to confer a competitive advantage for this organism, because of the chelation capacity of citric acid which facilitates the solubility of metals, and allows *A. niger* to grow in environments where metals are limited (Karaffa and Kubicek, 2003). Citric acid production by *A. niger* has been reviewed by several authors (Karaffa and Kubicek, 2003; Papagianni, 2007; Sauer *et al.*, 2008; Max *et al.*, 2010).

Itaconic acid is a dicarboxylic acid which also has industrial interest: it is among the top 12 value added building blocks which can be produced from biomass substrates (Werpy *et al.*, 2004). Itaconic acid is used for synthesis of resins, plastics, rubbers, surfactants and oils. Itaconic acid is naturally produced by *Aspergillus terreus* with a titer of up to 80 g/l on glucose (Okabe *et al.*, 2009). Since citric acid is the metabolic precursor for itaconic acid biosynthesis, many research efforts have focused on *A. niger* as a potential itaconic acid producer. This requires the heterologous expression of the enzyme cis-aconitate decarboxylase (cadA) from *A. terreus*, the introduction of a mitochondrial and a plasma membrane transporter and re-routing of central carbon metabolism (van der Straat and de Graaff, 2016).

The production processes of these acids are relatively similar and can be conducted in the same manufacturing facility. Both low pH and high extracellular concentrations are relevant for industrial scale production of organic acids. In this work we have focussed on membrane transport of these acids and studied the uptake of citric acid and production and uptake of itaconic acid in *A. niger* in aerobic chemostat cultures at low and high pH, and in the presence of high extracellular acid concentrations in a non transformed strain and in an itaconic acid producing strain of *A. niger*. The membrane transport and metabolism of the acids was investigated by measuring intracellular and extracellular concentrations of these acids as well as the intermediates of central metabolism. Import/export of these acids is studied as well to obtain insight on their possible transport mechanism, based on experimental data and thermodynamic considerations.

# 5.2. Materials and Methods

# 5.2.1. Strains and Inoculum

The strains used in this study were A. niger NW185 (cspA1, goxC17, prtF28, fwA1), and an itaconic acid producing strain A. niger C3 (cspA1, goxC17, prtF28,  $\Delta$ argB, mfsA, mttA, cadA) containing the enzyme cis-aconitate decarboxylase (cadA) and a mitochondrial and a plasma membrane transporter from *A. terreus (mttA* and *mfsA*) (van der Straat *et al.*, 2013, 2014).

Spores for pre inoculum were grown on agar plates and harvested as described in Lameiras *et al.*, 2015, with the difference that strain *C3* required addition of arginine (0.2 g/l). All fermentations were inoculated with a concentration of  $1 \times 10^6$  spores/ml.

# 5.2.2. Chemostat cultivations

A 7 litre turbine-stirred bioreactor with 4.5 litre working volume was used (Applikon, Delft, The Netherlands). To obtain a homogeneous and pellet free suspension, a special protocol was developed. The media composition, bioreactor set up and operation are described in Lameiras *et al.*, 2015.

Two sets of aerobic chemostat fermentations were performed at an intended dilution rate (D) of  $0.1h^{-1}$ . In experiments A and B (Fig. 5.1.), carried out with *A. niger NW185*, either citric or itaconic acid was added to the glucose based feed medium to study their uptake at pH 2.5 and 5.5 – as described below in section 5.2.2.1., while in experiments C and D (Fig. 5.2.) the cultivation pH was kept at 2.5 and itaconic acid was added to the xylose based feed medium to study possible itaconic acid uptake and metabolism in two different strains (non-producing strain *A. niger NW185* and producing strain *A. niger C3*) - section 5.2.2.2.

5.2.2.1. Experiments A and B: Citric and itaconic acid uptake studies at pH 2.5 and 5.5 (A. niger NW185)

Two experimental set ups were designed for the study of the uptake of citric and itaconic acid in *A. niger NW185* - Fig. 5.1. For the preceding batch phase minimal medium (Lameiras *et al.*, 2015) was supplemented with 38 mM of glucose. Temperature and pH were  $30 \pm 0.1$  °C and  $2.5 \pm 0.05$  respectively.

In these experiments continuous cultivation was initiated at the late exponential part of the batch phase by starting the medium feed at a dilution rate of 0.1  $h^{-1}$ . After the

first steady state was achieved using medium containing 38 mM glucose as the growth limiting carbon source, the medium was exchanged for a medium of which, on a carbon basis, 50% of the glucose was replaced by citric acid and which was otherwise identical (experiment A). A similar experiment was carried out with itaconic acid in the feed medium (experiment B). In both experiments the pH was initially controlled at 2.5 to be sure that both acids were predominantly present in the fully undissociated form. After the second steady state was achieved and measurements were carried out, the cultivation pH was increased to 5.5 and a third steady state was obtained.





5.2.2.2. Experiments C and D: Itaconic acid production and uptake at pH 2.5 (A. niger NW185 and A. niger C3)

In order to further investigate the membrane transport of itaconic acid in *A. niger*, we compared the non-producing strain *A. niger NW185* with the itaconic acid producing strain *A. niger C3* (Fig. 5.2.). In these experiments the minimal medium used for the chemostat cultivation as well as the preceding batch phase was supplemented with 45.6 mM of xylose, thereby supplying the same amount of carbon source as in experiments A and B. The reason that xylose was used instead of glucose was that the promotor of the CAD gene in the *C3* strain is xylose induced.

Both batch and continuous cultivation were run at temperature and pH of  $30 \pm 0.1$  °C and  $2.5 \pm 0.1$  respectively. Continuous cultivation was started in the late exponential phase of the batch culture by starting the medium feed at a dilution rate of  $0.1 \text{ h}^{-1}$ . For *A. niger NW185* (experiment C), the feed composition was changed, after obtaining a first steady state, by adding 100 mmol/l of itaconic acid to the feed. Later on the itaconic acid concentration was increased further to 200 mmol/l. In case of the itaconic acid producing strain (experiment D), after cultivation with 100 mmol/l and 200 mmol/l of itaconic acid in the feed, the concentration was raised further to 300 mmol/l (fourth steady state).



**Fig. 5.2.** Experiments C and D: chemostat design for the study of itaconic acid production and uptake using a stepwise increase in the itaconic acid feed concentration. Two strains were compared: *A. niger NW185* (Exp C) and the itaconic acid producer *A. niger C3* (Exp D), at pH 2.5, using xylose as the limiting carbon source.

# 5.2.3. Sampling and analytical procedures

During each steady state at least 3 samples were taken for quantification of biomass dry weight, filtrate TOC (total organic carbon) content, and concentrations of extracellular and intracellular compounds.

Biomass dry weight was determined by filtration over glass fibre filters (47mm, type A/E, Pall, USA), subsequent washing with water and drying at 70°C until constant weight. All samples were analysed in four replicates.

Filtrate samples were obtained by quickly (within 3 s) withdrawing 5 ml of broth, via the over-pressure (0.3 bar) of the fermentor, into a syringe containing a proper amount of cooled steel beads (-20 °C) to bring, within a fraction of a second, the sample temperature down to 0°C (Mashego *et al.* 2003). The cold broth was then immediately pressed through a 0.45  $\mu$ m cartridge filter (Millex-HV durapore PVDF membrane) into a sampling tube, which was directly frozen in liquid nitrogen. Total organic carbon content and extracellular concentrations of organic acids (citric and itaconic acid) were measured from these filtrate samples.

The total organic carbon content of the filtrate samples was quantified with a total organic carbon analyser (type TOC-L, Shimadzu, Kyoto, Japan). With this method, both total carbon (TC) and inorganic carbon (TIC) were measured. The latter representing the content of dissolved carbon dioxide and carbonic acid salts. Subtracting the inorganic carbon from the total carbon, yields the TOC.

Extracellular concentrations of organic acids (citric and itaconic acid) were measured with a HPLC method, using a  $H^+$  exchange column at 60°C (Bio-Rad HPX-87H 300\*7.8mm), employing phosphoric acid 1.5 mmol/l in Milli-Q water at 70°C as mobile phase. Quantification was performed with refractive index (Waters 2414; sens =1024; temp = 30°C) and UV detection (Waters 2489; 210 nm).

Samples for extracellular and intracellular metabolites were obtained by rapid sampling at -20° C in a 40% (v/v) methanol concentration in water, by the use of a custom-made sampling device. Both the protocol for rapid sampling and quenching, as well as the function of the sampling device are described in Lameiras *et al.*, 2015. The concentrations of the metabolic intermediates from glycolytic, TCA and PPP pathways were measured by isotope dilution mass spectrometry (LC-IDMS/MS and GC-IDMS/MS) according to the protocols of van Dam *et al.* 2002, de Jonge *et al.* 2011 and Cipollina *et al.* 2009.

#### 5.2.4. Balances, biomass specific rates and data reconciliation

From the primary data (concentrations and flow rates) and compound balances, the biomass specific rates  $((mol/h/)Cmol_X)$  of limiting substrate ( $q_{substrate}$ , representing glucose or xylose), organic acids ( $q_{organic acid}$ , representing citric or itaconic acid), and oxygen ( $q_{02}$ ), and production rates of biomass ( $q_{biomass}$ ), carbon dioxide ( $q_{c02}$ ), cell lysis products ( $q_{lysis}$ ), and organic acid ( $q_p$ ) were calculated. From these biomass specific rates, carbon and degree of reduction recoveries (equations 5.1. and 5.2.) were calculated.

Carbon recovery (%) = 
$$\frac{q_{\text{biomass}+q_{C02}+q_{\text{lysis}+q_P}}{q_{\text{substrate}+q_{\text{organic acid}}} \times 100$$
 (5.1.)

Degree of reduction (%) = 
$$\frac{\gamma_{\text{biomass}} q_{\text{biomass}} + \gamma_{\text{lysis}} q_{\text{lysis}} + \gamma_{\text{O2}} q_{\text{O2}} + \gamma_{P} q_{P}}{\gamma_{\text{substrate}} + \gamma_{\text{organic acid}} q_{\text{organic acid}}} \times 100$$
(5.2.)

 $q_{organic\ acid}$  is the consumed organic\ acid whereas the  $q_P$  represents acid production. The biomass composition used was the same as measured in chapter 3. For  $\chi_{lysis}$  we used the degree of reduction of the biomass, assuming that unknown carbon came from biomass lysis. The produced  $q_P$  applies to the itaconic acid producing strain *A. niger C3*.

When recoveries of carbon and degree of reduction were close to 100%, data reconciliation was applied to obtain the best estimates of the measurements, within their error margins, using the elemental and charge conservation relations as constraints (Verheijen, 2010).

In addition, we estimated the ratio (here denominated  $\beta$ ) between the flux of electrons transferred to the electron acceptor oxygen and the flux of electrons supplied by the electron donor, using the degree of reduction concept, according to equation 5.3.

$$\beta = \frac{\gamma_{O2} \times q_{O2}}{\gamma_{glucose \, or \, xylose \, \times \, qglucose \, or \, xylose \, + \, \gamma_{organic \, acid \, \times \, qorganic \, acid}} \tag{5.3.}$$

In this relation the denominator represents the electrons available for growth and catabolism, which is corrected for the electrons associated with organic acid production (or consumption).

This ratio gives relevant information on extra energy dissipation that might happen in case of organic acid uncoupling effect (futile cycling principles discussed in chapter 1).

# 5.2.5. Thermodynamics of transport mechanisms

From the acid dissociation constants (citric acid: pka1 = 3.13, pka2 = 4.76, pka3 = 6.39; itaconic acid: pka1 = 3.85, pka2 = 4.45), the extracellular pH and the acid dissociation equilibria, the fractions of the four species of citric acid ( $H_3A$ ,  $H_2A^-$ ,  $HA^{2-}$ ,  $A^{3-}$ ) and the three species of itaconic acid ( $H_2A$ ,  $HA^-$ ,  $A^{2-}$ ) can be calculated – Fig. 1.6 (chapter 1). In Table 5.1. the fractions of different species of citric acid and itaconic acid that coexist at pH 2.5., 5.5 and 7.6. (the relevant pH values in this study) are given.

|          | (      | Citric acid |                  |                 |
|----------|--------|-------------|------------------|-----------------|
|          | H₃A    | $H_2A^2$    | HA <sup>2-</sup> | A <sup>3-</sup> |
| pH = 2.5 | 80.9%  | 19.0%       | 0.1%             | 0.0%            |
| pH = 5.5 | 0.1%   | 13.9%       | 76.2%            | 9.8%            |
| pH = 7.6 | 0.0%   | 0.0%        | 5.8%             | 94.2%           |
|          |        |             |                  |                 |
|          | Itacon | ic acid     |                  |                 |
|          | $H_2A$ | HA⁻         | A <sup>2-</sup>  |                 |
| pH = 2.5 | 95.7%  | 4.3%        | 0.0%             |                 |
| pH = 5.5 | 0.2%   | 8.2%        | 91.6%            |                 |
| pH = 7.6 | 0.0%   | 0.1%        | 99.9%            |                 |

 Table 5.1. Fractions of different species of citric acid (upper panel)

 and itaconic acid (lower panel) for pH 2.5, 5.5 and 7.6.

Depending on the pH, different species are present and can be transported, possibly along with protons  $(H^{+})$  in order to maintain homeostasis of the intracellular pH. To

enable calculations on possible transport mechanisms, intracellular and extracellular conditions must be first defined.

# 5.2.5.1. Uptake by passive diffusion and permeability coefficient – pH<sub>out</sub> 2.5

At an extracellular pH of 2.5, approximately 81% of citric acid and 96% of the itaconic acid are present in their undissociated forms (Table 5.1.), which are thus likely candidate species to be imported into the cell by passive diffusion due to their lipophilic properties. Note that at pH=5.5 the extracellular concentration of undissociated acid is so low (approx. 0.1%) that passive diffusion can be neglected as a transport mechanism.

For passive diffusion, the influx of an acid can be calculated by the following equation:

$$q_{acid} = k \frac{6V}{d} \left( C_{acid out} - C_{acid in} \right)$$
(5.4.)

Where  $q_{acid}$  is the biomass specific influx of the undissociated acid through passive diffusion (mol/h/Cmol), k is the permeability coefficient of the acid (m/s), V is the cell volume of *A. niger* (32.8x10<sup>-6</sup> m<sup>3</sup>/Cmol), d is the cell diameter (10x10<sup>-6</sup> m), C<sub>acid out</sub> is the extracellular concentration of undissociated acid in mol/m<sup>3</sup>, and C<sub>acid in</sub> is neglected (= 0) as the intracellular undissociated acid concentration is virtually zero at pH<sub>in</sub> = 7.6 (Hesse *et al.*, 2002). The cell surface area per Cmol biomass follows then as 154 m<sup>2</sup>/Cmol.

The cell volume was estimated to be 1.2 mL/g<sub>DW</sub> in *A. niger* (Ruijter and Visser, 1996), and the biomass molecular weight used was 27.3  $\pm$  0.17 g/Cmol Lameiras *et al.*, 2015), leading to V = 32.8x10<sup>-6</sup> m<sup>3</sup>/Cmol. The diameter of fungal hyphae varies between 5  $\mu$ m to 15  $\mu$ m, and therefore an average of 10  $\mu$ m was used for the permeability calculation (Geitmann and Emons, 2000).

However, at pH 2.5, also significant fractions of  $H_2A^-$  and  $HA^-$  are present for both citric acid and itaconic acid: 19% and 4% respectively (Table 5.1.). It should be realized that negatively charged molecules cannot passively diffuse over the membrane, so for

import/export a transport protein has to be present, as we elaborate in following section.

# 5.2.5.2. Import of charged organic acids across a cell membrane – pH<sub>out</sub> 5.5 and 2.5

In case the extracellular pH is 5.5, it should be noticed (Table 5.1.) that for citric acid 76% of the acid is present as the  $HA^{2-}$  species, 14% as  $H_2A^{-}$  species and 10% as the fully dissociated form ( $A^{3-}$  species); for itaconic acid 8% of the acid is present as the HA<sup>-</sup> species and 92% is present in the fully dissociated form (A<sup>2-</sup> species). This means that the most abundant species are charged and cannot passively diffuse over the membrane, therefore a transporter protein has to be present. The anionic species (charge z) can be imported together with  $nH^{+}$  according to the import process  $C_{out}^{z}$  +  $nH_{out}^{+} \Leftrightarrow C_{in}^{z} + nH_{in}^{+}$  with n representing the different possible transport mechanisms. For uniport n=0, symport n=1, double symport n=2, antiport n=-1 (Fig. 1.5. - chapter 1).

At pH<sub>out</sub>=5.5, we will consider that the mono- and di-anions (the most abundant ones) are the imported species, that is  $H_2A^-$  and  $HA^{2-}$  in case of citric acid and  $HA^-$  and  $A^{2-}$  in case of itaconic acid.

The thermodynamic driving force for the transport of a double anion (z=-2) linked to  $H^+$ transport across the cell membrane can be defined according to equation 5.5.

$$\Delta_r G = 2.303 RT \log \left(\frac{A_{in}^{2}}{A_{out}^2}\right) - 2.303 nRT (pH_{in} - pH_{out}) + (n-2)F\psi$$
(5.5.)

We have described previously (chapter 1) how the membrane potential  $\psi$  depends on the extracellular pH (equation 1.2.). Rearranging equation 5.5., by elimination of  $\psi$ , leads to an expression (equation 5.6.) giving the in/out ratio  $A_{in}^{2}/A_{out}^{2}$  for different transport mechanisms as a function of  $pH_{out}$  and temperature for  $\Delta_r G=0$  (equilibrium). Herein n represents the stoichiometry of proton coupled transport, that is n=-1, -2 etc. for proton antiport, n=0 for uniport and n=1, 2, etc. for proton symport.

$$\log \frac{A_{in}^{2-}}{A_{out}^{2-}} = 2(pH_{in} - pH_{out}) - \frac{(n-2)(-Epmf)F}{2.303\,RT}$$
(5.6.)

For the case of transport of an anion (z=-1) (pH=2.5), equations similar to 5.5 and 5.6 can be derived to obtain the  $A_{in}^{-}/A_{out}^{-}$  ratio. The total in/out equilibrium ratio of the acid is related to the in/out ratio of the transported double anion  $A^{2-}$  and follows from the dissociation relations, e.g. for itaconic acid (Fig. S1.1.):

$$\frac{A_{in}}{A_{out}} = \left(\frac{10^{pka1+pka2-2pHin}+10^{pka2-pHin}+1}{10^{pka1+pka2-2pHout}+10^{pka2-pHout}+1}\right) \left(\frac{A_{in}^{2}}{A_{out}^{2}}\right)$$
(5.7.)

Equation 5.7 can be applied in an experimental context, as the measured in/out ratio's represent total acid ratio's.

A similar equation can be derived for citric acid, with as only difference that three anionic species have to be taken into account:

$$\frac{A_{in}}{A_{out}} = \left(\frac{10^{pka1+pka2-2pHin} + 10^{pka2-pHin} + 10^{pHin} - pka3+1}{10^{pka1+pka2-2pHout} + 10^{pHout} - pka3+1}\right) \left(\frac{HA_{in}^2}{HA_{out}^2}\right)$$
(5.8.)

In table 5.2. the total in/out equilibrium ratios of the acids (obtained from equations 5.6 and 5.7 or 5.8) can be found for  $pH_{out}$  values of 2.5 and 5.5, for proton coupled transport mechanisms with different H<sup>+</sup> stoichiometries for the transported species  $H_2A^-$  and  $HA^{2-}$  (citric acid) and  $HA^-$  and  $A^{2-}$  (itaconic acid) and according to the thermodynamic relations elaborated. Here,  $pH_{in} = 7.6$  (Hesse *et al.*, 2002), T = 303 K (30°C),  $E_{pmf} = 0.15$  V, R = 8.314x10<sup>-3</sup> kJ/molK and F = 96.5 kJ/v e<sup>-</sup>mol.

Because also passive diffusion can be considered as a relevant transport mechanism at low pH (section 5.2.5.1.), the in/out equilibrium ratios for passive diffusion of the fully undissociated species are included in Table 5.2 for an extracellular pH of 2.5.

At  $pH_{out}$ =2.5, in/out ratios of total acid higher than one are calculated for import of  $H_2A^{-}$  via double symport for citric acid and import of HA<sup>-</sup> via single and double symport for itaconic acid, which shows that these are feasible import mechanisms for this pH. At  $pH_{out}$ =5.5, in/out ratios of total acid higher than one are calculated for single and double symport of HA<sup>2-</sup> for citric acid and A<sup>2-</sup> for itaconic acid, showing that these are feasible import mechanisms at pH 5.5.

 Table 5.2. Equilibrium in/out ratios of total acid for pH<sub>in</sub> = 7.6, considering import of the undissociated and mono-anionic species of citric and itaconic acid at pH<sub>out</sub> = 2.5 and the mono and di-anionic species of citric and itaconic acid at pH<sub>out</sub>.

|                      |                                       | A <sub>in</sub> /A <sub>out</sub> (p               | H <sub>out</sub> = 2.5)               |                                      |
|----------------------|---------------------------------------|----------------------------------------------------|---------------------------------------|--------------------------------------|
|                      | Citri                                 | c acid                                             | Itacon                                | ic acid                              |
| Transport mechanism  | imported<br>species: H <sub>3</sub> A | imported<br>species: H <sub>2</sub> A <sup>-</sup> | imported<br>species: H <sub>2</sub> A | imported<br>species: HA <sup>-</sup> |
| Antiport n = -1      | -                                     | 2.9 x 10 <sup>3</sup>                              | -                                     | 78                                   |
| Uniport n = 0        | -                                     | 9.1 x 10 <sup>5</sup>                              | -                                     | 2.4 x 10 <sup>4</sup>                |
| Symport n = 1        | -                                     | 2.9 x 10 <sup>8</sup>                              | -                                     | 7.6 x 10 <sup>6</sup>                |
| Double symport n = 2 | -                                     | 8.9 x 10 <sup>10</sup>                             | -                                     | 2.4 x 10 <sup>9</sup>                |
| Passive diffusion    | 2.9 x 10 <sup>8</sup>                 | -                                                  | 7.6 x 10 <sup>6</sup>                 | -                                    |

| _                    |                                                    | A <sub>in</sub> /A <sub>out</sub> (p  | H <sub>out</sub> = 5.5)              |                                      |
|----------------------|----------------------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|
|                      | Citrio                                             | c acid                                | Itacor                               | iic acid                             |
| Transport mechanism  | imported<br>species: H <sub>2</sub> A <sup>-</sup> | imported<br>species: HA <sup>2-</sup> | imported<br>species: HA <sup>-</sup> | imported<br>species: A <sup>2-</sup> |
| Antiport n = -1      | 2.1                                                | 6.8 x 10 <sup>-3</sup>                | 0.15                                 | 4.8 x 10 <sup>-4</sup>               |
| Uniport n = 0        | 6.7 x 10 <sup>2</sup>                              | 2.1                                   | 47                                   | 0.15                                 |
| Symport n = 1        | 2.1 x 10 <sup>5</sup>                              | 6.7 x 10 <sup>2</sup>                 | 1.5 x 10 <sup>4</sup>                | 47                                   |
| Double symport n = 2 | 6.5 x 10 <sup>7</sup>                              | 2.1 x 10 <sup>5</sup>                 | 4.5 x 10 <sup>6</sup>                | 1.5 x 10 <sup>4</sup>                |

# 5.2.5.3. Export of organic acids – pH<sub>in</sub> 7.6

Weak acids inside the cell will dissociate because of the near neutral intracellular pH. At an intracellular pH of 7.6 (Hesse *et al.*, 2002) almost all acid, approximately 94.2% of the citric acid and 99.9% of the itaconic acid are present in their fully dissociated form:  $A^{3-}$  and  $A^{2-}$  respectively (Table 5.1). Therefore, we assume that only the fully dissociated species are exported.

In the case of itaconic acid, the export can be described by:

$$A_{in}^{2-} + nH_{in}^{+} \Leftrightarrow A_{out}^{2-} + nH_{out.}^{+}$$

Similarly to what was derived in the previous section for acid import, we can obtain a relation for the out/in ratio of total acid at equilibrium if the di-anionic species of itaconic acid is exported.

$$\Delta_r G = 2.303 RT \log(A_{out}^{2-}/A_{in}^{2-}) - 2.303 nRT (pH_{out} - pH_{in}) - (n-2)F\psi$$
(5.9.)

$$\log \frac{A_{out}^{2}}{A_{in}^{2}} = 2(pH_{out} - pH_{in}) + \frac{(n-2)(-Epmf)F}{2.303\,RT}$$
(5.10.)

$$\frac{A_{out}}{A_{in}} = \left(\frac{10^{pka1+pka2-2pHout}+10^{pka2-pHout}+1}{10^{pka1+pka2-2pHin}+10^{pka2-pHout}+1}\right) \left(\frac{A_{out}^2}{A_{in}^{2-}}\right)$$
(5.11.)

An analogous equation can be derived for export of the triple anionic species of citric acid.

$$\Delta_r G = 2.303 RT \log(A_{out}^{3-}/A_{in}^{3-}) - 2.303 nRT (pH_{out} - pH_{in}) - (n-3)F\psi$$
(5.12.)

Which can be rewritten as:

$$\log \frac{A_{out}^3}{A_{in}^3} = 3(pH_{out} - pH_{in}) + \frac{(n-3)(-Epmf)F}{2.303\,RT}$$
(5.13.)

And further as:

$$\frac{A_{out}}{A_{in}} = \left(\frac{10^{pka1+pka2+pka3-3pHout}+10^{pka2+pka3-2pHout}+10^{pka3-pHout}+1}{10^{pka1+pka2+pka3-3pHin}+10^{pka2+pka3-2pHin}+10^{pka3-pHout}+1}\right) \left(\frac{A_{iut}^{3-}}{A_{in}^{3-}}\right)$$
(5.14.)

In table 5.3 the total acid out/in ratios at equilibrium can be found for the exported species ( $A^{3-}$  and  $A^{2-}$  for citric and itaconic acid respectively) for different transport mechanisms, and according to the thermodynamic relations here elaborated. Here,  $pH_{in} = 7.6$  (Hesse *et al.*, 2002), T = 303 K (30°C), Epmf = 0.15 V, R = 8.314x10<sup>-3</sup> kJ/molK and F = 96.5 kJ/v e<sup>-</sup>mol.

**Table 5.3.** Equilibrium out/in ratios of total acid considering export of the anionic species  $A^{3^{\circ}}$  and  $A^{2^{\circ}}$  for citricand itaconic acid respectively at pHout =2.5 and pHout = 5.5.

| -                    | A <sub>out</sub> /A <sub>in</sub> (p                | 0H <sub>out</sub> = 2.5)                              | A <sub>out</sub> /A <sub>in</sub> (p                | 0H <sub>out</sub> = 5.5)                              |
|----------------------|-----------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|
| Transport mechanism  | Citric acid<br>exported<br>species: A <sup>3-</sup> | Itaconic acid<br>exported<br>species: A <sup>2-</sup> | Citric acid<br>exported<br>species: A <sup>3-</sup> | Itaconic acid<br>exported<br>species: A <sup>2-</sup> |
| Antiport n = -1      | 33                                                  | 4.0                                                   | 4.6 x 104                                           | 2.1 x 10 <sup>3</sup>                                 |
| Uniport n = 0        | 1.1x 10 <sup>-1</sup>                               | 1.3 x 10 <sup>-2</sup>                                | 1.5 x 10 <sup>2</sup>                               | 6.7                                                   |
| Symport n = 1        | 3.4 x 10 <sup>-4</sup>                              | 4.1 x 10 <sup>-5</sup>                                | 0.47                                                | 2.1 x 10 <sup>-2</sup>                                |
| Double symport n = 2 | 1.1 x 10 <sup>-6</sup>                              | 1.3 x 10 <sup>-7</sup>                                | 1.5 x 10⁻³                                          | 6.9 x 10 <sup>-5</sup>                                |

It is obvious that for a significant extracellular accumulation of both acids at low  $pH_{out}$  (2.5), at least an antiport system is needed (total acid out/in ratio's significantly above 1). At moderate  $pH_{out}$  (5.5) a uniport system could work for both acids.

From these thermodynamic calculations it can be inferred that the export of the fully dissociated species of these organic acids at low pH must be accompanied by the export of 3 to 4 protons (for itaconic and citric acid respectively). Considering a  $H^+/ATP=1$  stoichiometry of the plasma membrane  $H^+_ATP$  as this goes at the expense of 3 to 4 mol of ATP per mol of acid exported, which is very significant (the ATP cost associated to each transport mechanism is explored in more detail in chapter 1).

# 5.3. Results and Discussion

# 5.3.1. Experiments A and B: Citric and itaconic acid uptake studies at pH 2.5 and 5.5

Two carbon-limited chemostat fermentations were carried out in parallel (Fig. 5.1.), indicated as experiments A and B. The strain *A. niger NW185* was cultivated on chemically defined medium with glucose as the limiting carbon and energy source. The chemostat phase was started in the late exponential part of the preceding batch phase by starting the medium feed at an intended dilution rate of  $0.1h^{-1}$ .

In experiment A, the pH was initially controlled at 2.5, and after the first steady state on glucose as the only carbon source was achieved, the feed medium was changed to a feed medium containing, with respect to the amount of carbon, an equimolar mixture of glucose and citric acid, which was otherwise identical to the previous one. Subsequently, when a second steady state was reached, measurements and samples were taken as described in the Materials and Methods. Next, the pH setpoint was changed from 2.5 to 5.5 and the chemostat was run until a third steady state was reached and another set of samples and measurements could be taken.

Experiment B was carried out in the same way, but now citric acid was substituted by itaconic acid (Fig. 5.1.).

## 5.3.1.1. General observations

In both experiments A and B, the biomass concentration was measured at least four times during each steady state and the concentrations of  $O_2$  and  $CO_2$  in the offgas were measured online for the calculation of the  $O_2$  consumption and  $CO_2$  production rates (Fig. 5.3.).



Fig. 5.3. Biomass concentration (right axis) and molar rates of carbon dioxide and oxygen (left axis) in experiment A (upper panel) and B (lower panel).

In addition, the total organic carbon (TOC) content of the filtrate samples was quantified as well as the concentrations of glucose and organic acids - Fig S5.1. In the first steady state (no organic acid present), the difference between TOC and glucose carbon was used to calculate the rate of cell lysis (see also Lameiras *et al.*, 2015).

In the three steady states, the carbon balance using TOC filtrate indicates that there is no other by-product formation. Therefore, the TOC concentration of the filtrate samples (TOC<sub>filtrate</sub>) should equal the carbon sum of the residual concentration of the limiting substrate ( $C_{glucose out}$ ), the organic acid concentration ( $C_{organic acid out}$ ), and cell lysis products ( $C_{lysis}$ ), according to the equation:

$$TOC_{filtrate} = C_{glucose out} + C_{organic acid out} + C_{lysis} (in mCmol/L)$$
(5.15.)

In the first steady state of experiment A and B, where only glucose was present, the measured concentration of lysis products ( $C_{lysis}$ ) was around 11 mCmol/l and 14 mCmol/l of carbon respectively, which is in agreement with what was measured previously (12 mCmol/l of cell lysis products with glucose as sole carbon source and the same feed concentration at dilution rate  $0.1h^{-1}$ )(Lameiras *et al.*, 2015). These concentrations of lysis products correspond to biomass specific rates of  $q_{lysis} = 9.75$  (mCmol/h)/Cmol and 7.95 (mCmol/h)/Cmol for experiments A and B.

Based on this result, we consider the biomass specific rate of cell lysis products  $(q_{lysis})$  constant during the chemostat cultivations, i.e. during the following two steady states for each experiment A and B.

Evaluating the HPLC measurements of organic acids (in light red) in relation to the measured filtrate TOC, it was found that these were in most cases overestimated and in addition contained significant standard errors. Therefore, we chose to estimate more realistic values for the organic acid concentrations (C\*<sub>arganic acid out</sub>), from the TOC measurements represented in light green in Fig. S5.1.

In this relation  $C_{lysis}$  was calculated using a constant  $q_{lysis}$  as discussed before. From this point on, we consider the residual organic acids concentration as estimated from TOC measurements ( $C^*_{organic acid out}$ ).

The data set of all primary measurements (concentration and flow rates), before and after reconciliation, as well as the molar rates, carbon and redox balances can be found in Tables S5.1. and S5.2.

From the substrate, biomass,  $O_2$ ,  $CO_2$ , and TOC measurements, it was calculated that the recoveries of carbon and degree of reduction were close to 100% and thus the best estimates of the biomass specific rates were calculated using data reconciliation (Table 5.4.).

Table 5.4. Concentrations of residual biomass organic acid and glucose; biomass specific net conversionrates, respiratory quotient and ratio  $\beta$  of steady state chemostat cultivations in experiment A (upper panel)and experiment B (lower panel) chemostats.

|                                                                              |                   |                   | Exp A                           |                    |                                                                         |                   |
|------------------------------------------------------------------------------|-------------------|-------------------|---------------------------------|--------------------|-------------------------------------------------------------------------|-------------------|
|                                                                              | 38mM Glucose      | ilucose           | 19mM Glucose + 19mM citric acid | 19mM citric acid   | 19mM Glucose + 19mM citric acid                                         | 19mM citric acid  |
|                                                                              | pH 2.5            | 2.5               | pH 2.5                          | 2.5                | pH 5.5                                                                  | 5.5               |
|                                                                              | Unreconciled      | Reconciled        | Unreconciled                    | Reconciled         | Unreconciled                                                            | Reconciled        |
| Cbiomass (g/I)                                                               | $3.19\pm0.05$     | 3.32±0.03         | 2.86±0.03                       | 2.83 ± 0.03        | $1.60 \pm 0.06$                                                         | $1.90 \pm 0.03$   |
| C* <sub>citric acid</sub> out (mmol/l)                                       | $0.00 \pm 0.00$   | $0.00 \pm 0.00$   | $2.43 \pm 0.92$                 | 1.57 ± 0.32        | $15.38 \pm 0.14$                                                        | $15.79 \pm 0.13$  |
| C <sub>glucose</sub> out (mmol/l)                                            | 0.29±0.08         | $0.35 \pm 0.08$   | $0.18 \pm 0.06$                 | $0.16 \pm 0.06$    | $0.14 \pm 0.02$                                                         | $0.15 \pm 0.02$   |
| q <sub>co2</sub> (mmol/h)/Cmol                                               | 69.6±19.4         | 78.5±1.0          | $100.7 \pm 1.5$                 | $102.9 \pm 1.3$    | 88.2±1.3                                                                | 79.4±1.0          |
| q <sub>o2</sub> (mmol/h)/Cmol                                                | -79.2±14.9        | $-77.1 \pm 1.0$   | -78.8±16.7                      | -76.2 ± 1.0        | $-99.8 \pm 30.1$                                                        | -71.7±1.0         |
| q <sub>biomass</sub> (mmol/h)/Cmol                                           | 98.4±1.4          | $98.4 \pm 1.0$    | $98.6 \pm 1.1$                  | 98.7 ± 1.1         | 98.6±3.5                                                                | 98.6±1.5          |
| q <sub>lysis</sub> (mCmol/h)/Cmol                                            | 9.75±0.44         | 9.73±0.42         | $9.75 \pm 0.44$                 | 9.69 ± 0.50        | 9.75±0.44                                                               | 9.22±0.73         |
| q <sub>citric acid</sub> (mmol/h)/Cmol                                       | 0.00±0.00         | $0.00 \pm 0.00$   | $-17.79 \pm 0.12$               | $-16.93 \pm 0.31$  | -5.76±1.41                                                              | $-4.26\pm0.19$    |
| gglucose (mmol/h)/Cmol                                                       | -32.40±0.08       | $-31.11\pm0.07$   | $-18.12 \pm 0.06$               | -18.29 ± 0.07      | $-31.91 \pm 0.30$                                                       | $-26.95 \pm 0.04$ |
| RQ (R <sub>co2</sub> /R <sub>o2</sub> )                                      | 0.88±0.21         | $1.02 \pm 0.02$   | $1.28 \pm 0.27$                 | 1.35 ± 0.02        | 0.88±0.27                                                               | $1.11 \pm 0.02$   |
| β (X <sub>02</sub> /X <sub>glucose</sub> +X <sub>citric acid</sub> )         | $0.41 \pm 0.08$   | $0.41 \pm 0.01$   | $0.42 \pm 0.09$                 | $0.41 \pm 0.01$    | $0.46 \pm 0.14$                                                         | $0.40 \pm 0.01$   |
|                                                                              |                   |                   |                                 |                    |                                                                         |                   |
|                                                                              |                   |                   | Exp B                           |                    |                                                                         |                   |
|                                                                              | 38mM (            | 38mM Glucose      | 19mM Glucose + 22               | .8mM itaconic acid | 19mM Glucose + 22.8mM itaconic acid 19mM Glucose + 22.8mM itaconic acid | 8mM itaconic acid |
|                                                                              | Hq                | pH 2.5            | pH 2.5                          | 2.5                | pH 5.5                                                                  | 5.5               |
|                                                                              | Unreconciled      | Reconciled        | Unreconciled                    | Reconciled         | Unreconciled                                                            | Reconciled        |
| Cbiomass (g/l)                                                               | 3.45±0.04         | 3.47±0.03         | $1.87 \pm 0.06$                 | $1.95 \pm 0.03$    | $1.93 \pm 0.06$                                                         | $1.82 \pm 0.03$   |
| C* <sub>itaconic acid</sub> out (mmol/l)                                     | $0.00 \pm 0.00$   | $0.00 \pm 0.00$   | $18.94 \pm 0.17$                | $19.39 \pm 0.16$   | $19.47 \pm 0.18$                                                        | $19.59 \pm 0.17$  |
| Cglucose out (mmol/l)                                                        | $0.13 \pm 0.02$   | $0.13 \pm 0.02$   | $0.13 \pm 0.02$                 | $0.14 \pm 0.02$    | $0.19 \pm 0.03$                                                         | $0.19 \pm 0.03$   |
| q <sub>co2</sub> (mmol/h)/Cmol                                               | $66.2 \pm 1.0$    | 67.9±0.7          | $66.6 \pm 1.0$                  | 64.0±0.8           | 64.0 ± 0.9                                                              | $65.4 \pm 0.8$    |
| q <sub>o2</sub> (mmol/h)/Cmol                                                | $-72.8 \pm 13.8$  | -66.6±0.7         | -74.9 ± 25.9                    | -60.3±0.8          | -73.9 ± 25.0                                                            | -62.0±0.9         |
| q <sub>biomass</sub> (mmol/h)/Cmol                                           | 95.3±1.0          | 95.4±0.7          | $101.5 \pm 3.0$                 | $101.6 \pm 1.3$    | 95.1 ± 3.0                                                              | 95.2±1.2          |
| q <sub>lysis</sub> (mCmol/h)/Cmol                                            | $7.95 \pm 0.23$   | 9.70±0.23         | 7.95 ± 0.46                     | $10.09 \pm 0.41$   | $7.95 \pm 0.41$                                                         | $10.92 \pm 0.41$  |
| qitaconic acid (mmol/h)/Cmol                                                 | $0.00 \pm 0.00$   | $0.00 \pm 0.00$   | -5.83 ± 1.32                    | -4.57±0.22         | -4.24 ± 1.23                                                            | $-4.01 \pm 0.23$  |
| q <sub>glucose</sub> (mmol/h)/Cmol                                           | $-29.23 \pm 0.06$ | $-28.83 \pm 0.03$ | -28.60 ± 0.28                   | -25.47±0.04        | -25.59 ± 0.32                                                           | $-25.23 \pm 0.05$ |
| RQ (R <sub>co2</sub> /R <sub>o2</sub> )                                      | $0.91 \pm 0.17$   | $1.02 \pm 0.01$   | $0.89 \pm 0.31$                 | $1.06 \pm 0.02$    | 0.87 ± 0.29                                                             | $1.05 \pm 0.02$   |
| $\beta$ (X <sub>02</sub> /X <sub>glucose</sub> +X <sub>itaconic acid</sub> ) | 0.42±0.08         | 0.39±0.00         | $0.38 \pm 0.13$                 | $0.35 \pm 0.00$    | 0.43 ± 0.15                                                             | $0.37 \pm 0.01$   |

Using an optimized rapid sampling and quenching protocol (Chapter 2), intra- and extracellular concentrations of glucose and organic acids were determined in order to obtain insight in their transport mechanisms (Table 5.6.). The thermodynamics of different possible transport systems, using these measurements, is explored in more detail in section 5.3.3. Additionally, the metabolome, in terms of glycolytic, TCA and PPP intermediates, was also quantified, both with respect to intra- and extracellular concentrations, for experiments A and B (Fig. S5.3. and Fig. S5.4.).

In the following two subsections, experiments A and B are explored individually in terms of offgas profiles (Fig. 5.3.), biomass specific uptake and production rates (Table 5.4.); while intra- and extracellular concentrations, as well as the related thermodynamics of transport mechanisms are presented in section 5.3.3. (Table 5.6.).

#### 5.3.1.2. Experiment A: Citric acid uptake in A. niger NW185

In the first steady state of experiment A, recovery of carbon and degree of reduction are close to 100% (Table S5.1) and the respiratory quotient  $(CO_2/O_2)$  is slightly above one, as expected for glucose being the only electron donor. The concentration of biomass was consistently measured around  $3.19 \pm 0.05 \text{ g}_{DW}/\text{Kg}_{broth}$ , close to what was observed in previous comparable experiments:  $3.25 \pm 0.04 \text{ g}_{DW}/\text{Kg}_{broth}$  (chapter 2). Analysing Table 5.4., residual glucose is found to be below 1 mM. In fact, in all three steady states, the extracellular levels of glucose are very low, indicating that glucose is the growth limiting nutrient and is practically fully consumed in all cases.

During the second steady state at pH 2.5, glucose and citric acid were fed to the chemostat in equal amounts with respect to their carbon content. A first observation of the offgas measurements (Fig. 5.3.) indicated that citric acid is consumed as the respiratory quotient is significantly higher than one. This is expected because citric acid is a more oxidized substrate ( $3 e^{-}/C$ ) than glucose ( $4 e^{-}/C$ ). Also in this case no significant gaps were found in the carbon and degree of reduction balances. Another clear evidence of citric acid uptake is the low residual concentration and estimated high uptake rate (16.9 mmol/h)/Cmol), which is nearly the same as the glucose uptake
rate (18.2 mmol/h)/Cmol) - Table 5.4. The glucose uptake rate was 43% lower than during the previous steady state and not 50%, which would have been expected because the glucose concentration in the feed was also a factor two lower. However, the biomass concentration, and thus the yield of biomass on the mixed substrate, was also lower (15%). An explanation for the decreased biomass yield in the second steady state is that in spite of the fact that the same amount of carbon is supplied, the supply of electrons is less. Because 4 e<sup>-</sup>/C are supplied in case of glucose and 3 e<sup>-</sup>/C in case of citric acid, feeding a 1:1 mixture of glucose and citric acid results in the supply of 3.5 e<sup>-</sup>/C. This represents 12.5% less electrons than for glucose as the sole carbon and electron source, which is very well reflected in the decreased biomass concentration.

In the last steady state of experiment A, the pH<sub>out</sub> setpoint was increased to 5.5 without changing the medium feed composition (thus no change in the feed concentrations of glucose and citric acid). The calculated carbon and degree of reduction recoveries do not show evidence of gaps (Fig. S5.1). The offgas profile indicates some consumption of citric acid, as the carbon dioxide production and oxygen consumption rates were slightly higher than half of what was observed for the first steady state (Fig. 5.3.). In addition, the residual concentration of citric acid (Table 5.4.), was estimated to be 17% lower than the concentration in the feed, showing that indeed at pH 5.5 some consumption of citric acid occurred. The biomass specific uptake rate of citric acid was estimated to be 4.26 (mmol/h)/Cmol (Table 5.4.), which is 4 fold lower than at pH=2.5. Also in this case, the increased value of the RQ compared to growth on glucose only, indicates consumption of citric acid as carbon and energy source.

In table 5.4. it is shown that the ratios of catabolized electrons ( $\beta$ ) are very similar in all three steady states of experiment A (0.41, 0.41 and 0.39), which suggests that there is no extra energy dissipation due to uncoupling related to the presence of citric acid (19 mM) – second and third steady states. This would imply that the citric acid which is taken up is fully metabolized into biomass and is not exported (which would create a futile cycle). Also, the metabolome data supports this observation (see below).

#### 5.3.1.3. Experiment B: Itaconic acid uptake in A. niger NW185

In experiment B, citric acid was substituted by itaconic acid. In the first steady state, with glucose as the only substrate, the results with respect to measured concentrations of biomass, substrate,  $O_2$  and  $CO_2$  and calculated biomass specific conversion rates are very similar as obtained for experiment A, as expected.

In this experiment, the most interesting steady states are the last two where glucose and itaconic acid are fed in an equimolar carbon ratio at pH 2.5 and 5.5. Looking at the carbon dioxide production and oxygen consumption rates, there might be a small consumption of itaconic acid, both at pH 2.5 and 5.5, which is also visible from the  $O_2$ and  $CO_2$  rates (Fig. 5.3.) which are both slightly higher than half that of the first steady state. The same holds for the measured biomass concentration (Fig. 5.3.). These indications that itaconic acid is taken up is also supported by the estimations of residual itaconic acid in the filtrate samples (Table 5.4.). The biomass specific uptake rate of this acid was estimated to be 4.6 and 4.0 (mmol/h)/Cmol at pH 2.5 and 5.5 respectively. In contrast with previous experiment (exp A), the extracellular pH does not seem to have a large effect on the uptake rates of the acid.

Comparing the  $\beta$  ratio, these values for all three steady states (0.38, 0.34 and 0.36) are very close to the ones calculated in experiment A, rejecting any hypothesis of acid uncoupling, and thus extra energy dissipation.

The above presented evidence indicated that itaconic acid is taken up in *A. niger NW185* at low rates. However, there is no pathway known in *A. niger* for itaconic acid metabolism. In *Pseudomonas sp.*, itaconic acid is metabolized by activation trough itaconyl-CoA hydratase or itaconate-CoA transferase, followed by hydration and cleavage to acetyl-CoA and pyruvate (Cooper and Kornberg, 1964) – Fig. S5.7. Here in this work we did not investigate further on the possible degradation pathway of itaconic acid.

#### 5.3.2. Experiments C and D: Itaconic acid production and uptake at pH 2.5

In order to further investigate itaconic acid transport and possible metabolism in *A. niger*, two chemostat fermentations were run in parallel (Fig. 5.2.) with two different strains: *A. niger NW185* (experiment C) and the itaconic acid producing strain *A. niger C3* (experiment D). Both strains were cultivated on minimal medium in the presence of xylose. Subsequently, high levels of itaconic acid were added to the chemostat feed. The chemostat phase was started in the late exponential phase of the batch by starting the feed at an intended dilution rate of  $0.1h^{-1}$  while the pH was controlled at 2.5 +/- 0.05.

## 5.3.2.1. General observations

In both experiments, the first steady state was obtained on xylose as the only carbon source, while during the following two itaconic acid was added to the feed media at concentrations of 100 and 200 mM, respectively. In experiment D, a fourth steady state was achieved by increasing the itaconic acid concentration further to 300 mM. In both experiments C and D, the biomass concentration was measured at least four times during each steady state and the concentrations of O<sub>2</sub> and CO<sub>2</sub> in the offgas were measured online for the calculation of the O<sub>2</sub> consumption and CO<sub>2</sub> production rates as a function of time (Fig. 5.4.).

In addition, total organic carbon was quantified from filtrate samples and compared to the measured carbon residuals of xylose and itaconic acid - Fig S5.2. Similarly to experiment A and B, also here the biomass specific rate of lysis products was considered constant throughout each experiment ( $q_{lysis} = 17 (mCmol/h)/Cmol$  in experiment C and 15 (mCmol/h)/Cmol in experiment D). The concentration of itaconic acid ( $C^*_{itaconic acid out}$ ) was obtained from the TOC measurements as explained previously.

$$C^*_{itaconic acid out} = TOC_{filtrate} - C_{xylose out} - C_{lysis} (in mCmol/L)$$
(5.17.)

The complete data set of all primary measurements, before and after reconciliation, as well as the molar rates, carbon and redox balances can be found in Tables S5.3. and S5.4.



Fig. 5.4. Biomass concentration (right axis) and molar rates of carbon dioxide and oxygen (left axis) in experiment C (upper panel) and D (lower panel).

From the substrate, biomass,  $O_2$ ,  $CO_2$ , and TOC measurements, it was calculated that the recoveries of carbon and degree of reduction were close to 100% and thus the biomass specific rates were calculated using data reconciliation (Table 5.5.).

Finally, using an optimized rapid sampling and quenching protocol, intra- and extracellular concentrations of xylose and organic acids were determined in order to get an insight in their transport mechanisms (Table 5.6.). The thermodynamics of transport systems is explored in detail in section 5.3.3. In addition, the metabolome, in terms of glycolytic, TCA and PPP intermediates, was also evaluated for experiments C and D (Fig. S5.5. and Fig. S5.6.).

In the following two subsections, these two experiments are explored individually in terms of offgas profiles (Fig. 5.4.), biomass specific uptake and production rates (Table 5.5.); Intra- and extracellular concentration levels, as well as thermodynamics of transport mechanisms are addressed in section 5.3.3. (Table 5.6.).

#### 5.3.2.2. Experiment C: Itaconic acid uptake in A. niger NW185

The same strain used in experiments A and B was also used in C but with xylose as a carbon source. The idea behind this set up was to investigate whether the increase of the itaconic acid concentration (from 19 mM to 200 mM) would trigger higher uptake of itaconic acid at pH 2.5.

The first steady state in experiment C is similar to the first steady state of experiments A and B; this is validated by the comparable data on offgas profiles, biomass concentration, and  $\beta$  ratios. After the first steady state, xylose was fed at the same concentration of 45.6 mM, but now together with itaconic acid which was increased from 100 mM (second steady state) to 200 mM. The last condition however (200 mM), was not considered further for biomass specific rate analysis or transporter calculations, as a steady state was not obtained. Although we did not consider this last condition further, the measured concentrations can be found in the appendix (Table S5.3.).

|                                                                       |                   | Exp C             |                   |                                     |
|-----------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------------------------|
|                                                                       | 45.6m             | 45.6mM Xylose     | 45.6mM Xylose + 1 | 45.6mM Xylose + 100mM itaconic acid |
|                                                                       | a                 | pH 2.5            | Hd                | pH 2.5                              |
|                                                                       | Unreconciled      | Reconciled        | Unreconciled      | Reconciled                          |
| Cbiomass (g/I)                                                        | 3.28±0.05         | 3.22±0.04         | 2.97 ± 0.07       | 2.97 ± 0.07                         |
| C* itaconic acid out (mmol/l)                                         | $0.00 \pm 0.00$   | $0.00 \pm 0.00$   | 97.90 ± 2.45      | 97.55 ± 1.83                        |
| C <sub>xylose</sub> out (mmol/l)                                      | $0.29 \pm 0.04$   | $0.28 \pm 0.04$   | 8.77 ± 2.22       | 8.53 ± 1.77                         |
| q <sub>co2</sub> (mmol/h)/Cmol                                        | 83.3±1.2          | 84.1±1.1          | 76.2 ± 1.1        | 76.2 ± 1.1                          |
| q <sub>o2</sub> (mmol/h)/Cmol                                         | -85.6±14.7        | -83.6±1.2         | -73.7 ± 17.0      | -74.8 ± 1.4                         |
| q <sub>biomass</sub> (mmol/h)/Cmol                                    | 92.0±1.3          | 92.0±1.4          | 121.3 ± 2.9       | $121.3 \pm 3.0$                     |
| q <sub>lysis</sub> (mCmol/h)/Cmol                                     | $17.29 \pm 3.60$  | $3.92 \pm 1.71$   | 17.29 ± 5.23      | $17.07 \pm 5.05$                    |
| <pre>qitaconic acid (mmol/h)/Cmol</pre>                               | $0.00 \pm 0.00$   | $0.00 \pm 0.00$   | -0.96 ± 2.97      | -1.45 ± 1.98                        |
| q <sub>xylose</sub> (mmol/h)/Cmol                                     | $-35.12 \pm 0.07$ | $-35.99 \pm 0.08$ | $-41.14 \pm 2.54$ | $-41.46 \pm 1.95$                   |
| RQ (Rco2/Ro2)                                                         | $0.97 \pm 0.17$   | $1.01 \pm 0.02$   | $1.03 \pm 0.24$   | $1.02 \pm 0.02$                     |
| β (X <sub>02</sub> /X <sub>xylose</sub> +X <sub>itaconic acid</sub> ) | $0.49 \pm 0.08$   | $0.46 \pm 0.01$   | $0.35 \pm 0.08$   | 0.35 ± 0.02                         |

|                                                                      | 45.6mM Xylose     | Xylose            | 45.6mM Xylose +   | 45.6mM Xylose + 100mM itaconic acid   45.6mM Xylose + 200mM itaconic acid   45.6mM Xylose + 300mM itaconic acid | 45.6mM Xylose +   | 200mM itaconic acid | 45.6mM Xylose + 3 | 800mM itaconic acid |
|----------------------------------------------------------------------|-------------------|-------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|---------------------|-------------------|---------------------|
|                                                                      | pH 2.5            | 2.5               | đ                 | pH 2.5                                                                                                          | đ                 | pH 2.5              | đ                 | pH 2.5              |
|                                                                      | Unreconciled      | Reconciled        | Unreconciled      | Reconciled                                                                                                      | Unreconciled      | Reconciled          | Unreconciled      | Reconciled          |
| Cbiomass (g/l)                                                       | 2.37±0.04         | 2.29±0.04         | $3.31 \pm 0.20$   | 2.95 ± 0.12                                                                                                     | 3.39±0.09         | $3.11 \pm 0.08$     | $1.75 \pm 0.10$   | $1.66 \pm 0.09$     |
| C* itaconic acid out (mmol/l)                                        | $17.92 \pm 1.04$  | $10.68 \pm 0.70$  | 99.62±0.88        | $100.57 \pm 0.74$                                                                                               | $197.96 \pm 0.77$ | 196.28 ± 0.63       | 283.53 ± 2.87     | 297.04±0.90         |
| C <sub>xylose</sub> out (mmol/l)                                     | $3.75 \pm 0.51$   | $1.60 \pm 0.47$   | $0.11 \pm 0.01$   | $0.11 \pm 0.01$                                                                                                 | $1.50 \pm 0.23$   | $1.27 \pm 0.22$     | $17.93 \pm 1.54$  | $15.26 \pm 1.04$    |
| q <sub>co2</sub> (mmol/h)/Cmol                                       | $115.3 \pm 1.7$   | $120.8 \pm 1.4$   | $75.4 \pm 1.1$    | 90.0 ± 1.0                                                                                                      | 80.9±1.2          | 90.6 ± 1.0          | $61.6 \pm 0.9$    | 66.7±0.9            |
| q <sub>02</sub> (mmol/h)/Cmol                                        | $-124.6 \pm 19.7$ | $-127.2 \pm 1.3$  | $-80.9 \pm 14.1$  | -89.5 ± 0.9                                                                                                     | $-84.0 \pm 13.8$  | -90.5 ± 0.9         | $-70.1 \pm 27.1$  | -73.2±0.8           |
| q <sub>biomass</sub> (mmol/h)/Cmol                                   | $105.2 \pm 1.7$   | $105.2 \pm 1.8$   | $101.9 \pm 6.1$   | $101.9 \pm 4.1$                                                                                                 | $105.2 \pm 2.9$   | $105.0 \pm 2.7$     | $105.2 \pm 6.0$   | $105.2 \pm 6.0$     |
| q <sub>lysis</sub> (mCmol/h)/Cmol                                    | $15.17 \pm 4.54$  | $12.96 \pm 3.90$  | $15.17 \pm 3.15$  | 13.72 ± 3.22                                                                                                    | $15.17 \pm 3.18$  | 4.89 ± 2.86         | $15.17 \pm 6.14$  | $10.00 \pm 6.02$    |
| ditaconic acid (mmol/h)/Cmol                                         | $22.08 \pm 1.28$  | $13.74 \pm 0.91$  | $-1.04 \pm 0.76$  | -2.09 ± 0.71                                                                                                    | $-2.62 \pm 0.75$  | 0.75 ± 0.62         | -9.39 ± 4.81      | $-14.13 \pm 1.50$   |
| q <sub>xylose</sub> (mmol/h)/Cmol                                    | $-51.32 \pm 0.63$ | $-56.33 \pm 0.61$ | $-38.33 \pm 0.04$ | $-43.01 \pm 0.05$                                                                                               | $-37.07 \pm 0.20$ | -40.83 ± 0.22       | -43.38 ± 2.57     | $-50.52 \pm 1.83$   |
| RQ (R <sub>co2</sub> /R <sub>o2</sub> )                              | $0.92 \pm 0.15$   | $0.95 \pm 0.01$   | $0.93 \pm 0.16$   | $0.99 \pm 0.01$                                                                                                 | $0.96 \pm 0.16$   | $1.00 \pm 0.01$     | $0.88 \pm 0.34$   | $0.91 \pm 0.02$     |
| β (X <sub>O2</sub> /X <sub>xylose</sub> +X <sub>itaconic</sub> acid) | $0.35 \pm 0.06$   | $0.37 \pm 0.01$   | $0.41 \pm 0.07$   | 0.40 ± 0.00                                                                                                     | $0.43 \pm 0.07$   | $0.45 \pm 0.01$     | $0.27 \pm 0.11$   | $0.23 \pm 0.01$     |
|                                                                      |                   |                   |                   |                                                                                                                 |                   |                     |                   |                     |

**Table 5.5.** Concentrations of residual biomass itaconic acid and xylose; biomass specific net conversion rates,respiratory quotient and ratio  $\beta$  of steady state chemostat cultivations in strains A. niger NW185 (upperpanel) and A. niger C3 (lower panel).

It was noticed that the residual xylose concentration strongly increased with the increase of the itaconic acid concentration in the fermentor (Fig. 5.5), which indicates that high concentrations of itaconic acid have an inhibitory effect on xylose uptake and/or on the metabolism as a whole (Table S5.3.).

From the offgas measurements (Fig. 5.4.) the same conclusion can be drawn, as the  $CO_2$  production and  $O_2$  consumption rates decreased with increased itaconic acid concentrations in the feed. This can also be seen from the biomass concentration, which decreased due to the decreased substrate uptake. High extracellular itaconic acid concentrations result in high intracellular itaconic acid levels, up to 800 mM (Fig. 5.5.), which somehow interferes with the metabolism of the cells.



Fig. 5.5. Experiment C: Residual xylose as a function of the itaconic acid concentration in the fermentor (left) and intracellular itaconic acid concentration (right).

The uptake rate of itaconic acid by *A. niger NW185* at an extracellular acid concentration of 100 mM appeared to be insignificant at pH 2.5 (Table 5.5). However, a high level of intracellular itaconic acid was present, showing that the acid entered the cells and accumulated intracellularly, without being metabolized.

The observation that the itaconic acid uptake rate remains small and insensitive to the extracellular itaconic acid concentration at pH=2.5, provides further evidence that a metabolic pathway for itaconic acid metabolism seems absent in *A. niger NW185*.

#### 5.3.2.3. Experiment D: Itaconic acid production and uptake in A. niger C3

In experiment D we used an itaconic acid producing strain (*A. niger C3*) in the same experimental set up as in experiment C, although we increased the concentration of itaconic acid in the feed to a higher final level of 300 mM – fourth steady state.

In the presence of xylose as the only carbon source, the first observation is the production of itaconic acid at a titer of 11 mM. The itaconic acid yield is about 0.2 mol<sub>itaconicacid</sub>/mol<sub>xylose</sub>. In addition, the biomass concentration decreased when compared to experiment C, which is to be expected as 23% of the carbon fed ends up in itaconic acid. Itaconic acid production also leads to an increased substrate uptake rate, high energy demand (high  $q_{02}$ ) and an increased consumption of the supplied electrons in catabolism ( $\beta$ =0.58) - Table 5.5.

The observed itaconic acid production rate of 14 mmol/h/Cmol requires, assuming export by proton antiport and H<sup>+</sup>/ATP=1, an extra ATP demand of 3 x 14 = 42 mmol<sub>ATP</sub>/h/Cmol, which is equivalent to an extra oxygen consumption (assuming P/O = 1.25) of 42/2.5 = 17 mmol/h/Cmol This could explain partially the very high  $q_{02}$  in the first steady state of experiment D.

During the first steady state there was significant itaconic acid production while the extracellular concentration of the acid in the chemostat was about 11 mM. However, increasing the extracellular concentration to 100 mM (second steady state) and further to 200 mM (third steady state) completely stopped itaconic acid production, while at the final concentration of 300 mM (fourth steady state) there appeared to be some itaconic acid uptake - Table 5.5.

These low itaconic acid uptake rates are in agreement with the results of experiment C. Most remarkable is the observation that, at higher extracellular itaconic acid concentrations (increase from 11 mM to 100 and 200 mM), the itaconic acid production stops. The fourth steady state shows that in the presence of 300 mM of itaconic acid, the residual xylose level strongly increases, which agrees with the

observed inhibitory effect of high itaconic acid concentrations in the non-producing strain, although in the producer *A. niger C3* inhibition only occurs at the highest itaconic acid concentration of 300 mM - Table S5.4. The  $\beta$  ratios at 100 and 200 mM of itaconic acid are about 0.42 and are the same as in experiments A and B, and do not indicate uncoupling due to itaconic acid uptake and export.

# 5.3.3. Transport mechanisms

To characterize membrane transport systems for import of substrates (either glucose, xylose, citric or itaconic acid depending on the considered experiment), in/out ratios were calculated from the measured intra- and extracellular concentrations (Table 5.6.).

| Table 5.6. In/out ratios estimation from intra- and extracellular concentrations (mM) of glucose, xylose, citric |
|------------------------------------------------------------------------------------------------------------------|
| acid and itaconic acid.                                                                                          |

|                |              |           | Experiment A                    |                                 |
|----------------|--------------|-----------|---------------------------------|---------------------------------|
|                |              | Glucose   | Glucose + 18 mM citric acid     | Glucose + 18 mM citric acid     |
|                |              | pH2.5     | pH2.5                           | pH5.5                           |
|                | IC           | 4.57      | 7.72                            | 2.38                            |
| Glucose        | EC           | 0.35      | 0.16                            | 0.15                            |
|                | in/out ratio | 13        | 48                              | 16                              |
|                | IC           | -         | 34.78                           | 91.07                           |
| Citric acid    | EC           | -         | 1.38                            | 15.68                           |
|                | in/out ratio | -         | 25                              | 6                               |
|                |              |           | Experiment B                    |                                 |
|                |              | Glucose   | Glucose + 22.8 mM itaconic acid | Glucose + 22.8 mM itaconic acid |
|                |              | pH2.5     | pH2.5                           | pH5.5                           |
|                | IC           | 5.62      | 6.69                            | 8.27                            |
| Glucose        | EC           | 0.13      | 0.13                            | 0.18                            |
|                | in/out ratio | 44        | 51                              | 46                              |
|                | IC           | -         | 28.70                           | 14.14                           |
| taconcic acio  |              | -         | 19.20                           | 19.43                           |
|                | in/out ratio | -         | 1.50                            | 0.73                            |
|                |              | Experimer |                                 |                                 |
|                |              | Xylose    | Xylose + 100 mM itaconic acid   |                                 |
|                |              | pH2.5     | pH2.5                           |                                 |
|                | IC           | 20.70     | 30.00                           |                                 |
| Xylose         | EC           | 0.28      | 8.02                            |                                 |
|                | in/out ratio | 73        | 4                               |                                 |
|                | IC           | -         | 462.2                           |                                 |
| aconcic acid   |              | -         | 97.0                            |                                 |
|                | in/out ratio | -         | 4.8                             |                                 |
|                |              |           | Experimen                       |                                 |
|                |              | Xylose    | Xylose + 100 mM itaconic acid   | Xylose + 200 mM itaconic acid   |
|                |              | pH2.5     | pH2.5                           | pH2.5                           |
|                | IC           | 27.44     | 21.13                           | 28.26                           |
| Xylose         | EC           | 1.60      | 0.11                            | 1.30                            |
|                | in/out ratio | 17        | 195                             | 22                              |
|                | IC           | 19        | 267                             | 478                             |
| Itaconcic acio |              | 10.68     | 100.77                          | 196.58                          |
|                | in/out ratio | 1.8       | 2.7                             | 2.4                             |

Regarding glucose and xylose transport, it is useful to plot the in/out ratios against the substrate uptake rate (Fig. 5.6.). The values are below the expected equilibrium value of 372 (for proton symport – described in chapter 4) and decrease with increased flux (leading to a higher driving force), as expected.



Fig. 5.6. In/out ratios of imported carbon limiting substrates: glucose (left) and xylose (right), against their biomass specific uptake rate (mmol/h)/Cmol<sub>x</sub>. Dashed line represents equilibrium in/out ratios of H<sup>+</sup> symport.

The transport of citric acid was studied in experiment A. Assuming passive diffusion of the undissociated species we calculated the permeability coefficient as  $k = 1.9 \times 10^{-7}$  m/s at pH 2.5. This leads to a log k value of -6.7. The octanol/water partition coefficient for undissociated citric acid equals 0.02, leading to a log kow of -1.7 (INCHEM, 2017).

We can compare the obtained permeability coefficient for citric acid with values for different mono- and di-carboxylic acids (Shah *et al.,* 2016) and a published correlation between Log k and Log Kow for a variety of different compounds (Escher *et al.,* 2008), see Fig. 5.7. It can be seen from this figure that the monocarboxylic acids have higher permeability coefficients than the dicarboxylic acids.

According to the correlation the k-value for passive diffusion of undissociated citric acid (log Kow = -1.7) can be estimated to be around  $10^{-10}$  m/s. This is about three

orders of magnitude smaller than the above calculated value. This would indicate that citric acid uptake does not occur by passive diffusion of undissociated acid only, but could be mediated by a transporter as well. The most abundant dissociated species of citric acid at pH 2.5 is the mono anion  $H_2A^-$  (19%), while at pH 5.5 the most abundant species are  $H_2A^-$  (14%) and  $HA^{2-}$  (76%). These are therefore candidate species to be transported by a protein.

The total acid in/out ratio's at equilibrium for the transport of these species are listed in Table 5.2. Comparing the obtained in/out ratio of 25 at pH 2.5 (Table 5.6.) with the theoretical in/out ratios for the species  $H_2A^-$  (Table 5.2.), a possible import mechanism could be a proton antiporter of  $H_2A^-$ .



Fig. 5.7. Permeability coefficient (Log k, k is in m/s) with the water octanol partition coefficient (Log kow) for benzoic acid, phenylacetic acid, propanoic acid, fumaric acid, and succinic acid (in blue) - data retrieved from Shah, 2016; in comparison with citric acid and itaconic acid in this study (in orange).

The itaconic acid uptake rates calculated from the reconciled data vary a lot and show little relation to the pH and extracellular itaconic acid concentration. This is caused by the fact that probably *A. niger* lacks the pathway to metabolize itaconic acid.

However, Table 5.6 shows that in absence of extracellular itaconic acid, the intracellular itaconic acid is absent and in the presence of extracellular itaconic acid at pH = 2.5, high intracellular levels of itaconic acid are found.

This shows that itaconic acid is transported over the membrane, but probably is not metabolized. From the intracellular itaconic acid levels, an uptake rate can be calculated as well as a k value, assuming passive diffusion (Fig. S5.8). This gives  $k = 3.5 \times 10^{-9}$  m/s, or log k = -8.5 for itaconic acid which has an octanol/water coefficient partition of kow = 0.46, or log kow = -0.34 (Verviers, 2012). Fig. 5.7 shows that this result is not far from the correlation, thus, passive diffusion of itaconic acid is a possible import mechanism.

Table 5.6 (experiments B and C) shows that at pH=2.5 the in/out ratios of itaconic acid are in the range 1.5 to 4.8 which is very far away from the equilibrium ratio for passive diffusion of the undissociated acid (Table 5.2) indicating the import is diffusion limited.

In experiment D an itaconic acid transporter was present which should facilitate the export of the produced itaconic acid. Comparing the out/in ratio of itaconic acid (first steady state) of 1/1.8 = 0.56 (Table 5.6) with the possible export mechanisms (Table 5.2), it is clear that a proton antiport mechanism of the fully dissociated species with a maximal out/in ratio of 4 can act as the exporter. As above discussed, this transport mechanism represents substantial energy load (3 ATP per mol of itaconic acid). Moreover, because of the reversibility, it can be understood that production changes to zero at high extracellular itaconic acid levels.

Finally, the metabolite analysis (Fig. S5.3 to S5.6) shows that in experiment D (compared to A-C), very high levels of other dicarboxylic acids (succinic, fumaric and malic) occur, indicating that the itaconic acid transporter, implemented in strain C3,

may be a general dicarboxylic acid transporter. More detailed analysis can be found in the supplementary material.

# 5.4. Conclusions

Continuous cultivation of *A. niger* enables fundamental studies on this cell factory, such as the study and understanding of its substrate and product transport mechanisms, in order to improve/develop industrial processes.

From four different chemostat set ups we studied the transport of citric and itaconic acid at low and high pH and compared producing and non-producing itaconic acid strains at high extracellular concentrations of the acid. We observed that citric acid uptake was much higher at pH 2.5 when compared to pH 5.5 (Exp A), which would indicate that the uptake was through passive diffusion of the undissociated acid. However, the calculated permeability coefficient appeared to be much higher than expected from the octanol/water partition coefficient, indicating the presence of another transport mechanism. Uptake of itaconic acid, on the other hand, was low both at pH 2.5 and 5.5 (Exp B).

Additionally, the production rate of itaconic acid decreased at higher intracellular itaconic acid concentration. We concluded that at low pH and high itaconic acid concentrations (Exp C and D), passive diffusion is most likely the import mechanism in *A. niger*.

In addition, the transporter engineered in *A. niger C3* is acting as a  $A^{2-}$  proton antiporter in the production phase of experiment D. The production showed a yield of about 0.2 mol/mol and a q<sub>itaconicacid</sub> = 14 mmol/h/Cmol. From observed extracellular accumulation of other dicarboxylic acids, it follows that the transporter seems a general dicarboxylic acid transporter.

Finally, regarding the probable transport mechanisms acting on the uptake of glucose and xylose, a proton symporter appeared to be the most plausible mechanism in both cases, in agreement with previous findings.

In this chapter, by the use of a metabolomics approach and a dynamic pulse experiment, we disclose the function of a putative transporter of Rhizopus delemar, which was overexpressed in A. niger.

# Chapter 6

A metabolomics study in *Aspergillus niger* reveals a putative amino acid transporter

This work was done in collaboration with Wageningen University, and partly published as Odoni *et al.* 2017



# Abstract

Together with metabolic engineering approaches, metabolomics studies are a powerful tool in the characterization of microbial processes. *Aspergillus niger*, as a cell factory for the production of organic acids like fumaric acid, requires efficient import and export mechanisms for substrate and product respectively. With help of quantitative metabolomics tools and dynamic experiments, we aimed to disclose the function of a putative fumaric acid transporter (*fumT*) isolated from *Rhizopus delemar*, which was overexpressed in *A. niger*. It was found that under aerobic xylose-limited continuous cultivation, amino acids were imported into the cellular space in the mutant strains which carry *fumT*. From the metabolomics analysis and an amino acid pulse experiment, we hypothesized that this transporter might be a high affinity general amino acid permease using a proton symport system.

# Keywords

Aspergillus niger, chemostat pulse, rapid sampling, amino acid, transporter

## 6.1. Introduction

The use of *Aspergillus niger* for production of organic acids (like citric and glutamic acids) and enzymes (glucoamylases and hemicellulases) is a well-known industrial application (Kubicek, Punt, & Visser, 2010; de Vries, Visser, Ronald, de Vries, R., & P., 2001; Pedersen, Beyer, & Nielsen, 2000).

Additionally, this organism is known to be a well suited host for production of heterologous proteins (Punt *et al.*, 2002). Recently, production of other organic acids such as itaconic acid was accomplished in *A. niger* by overexpressing cis-aconitate carboxylase from *Aspergillus terreus* (van der Straat *et al.*, 2013). Considering the capacity of *A. niger* to produce citric acid and its tolerance to low pH, it would in principle be a suitable host for the production of such other organic acids.

An important aspect in the metabolic engineering of *A. niger* for the overproduction of organic acids is to realize efficient import of the substrate into and export of the produced acid from the cells. Unfortunately, little is known about transport systems in *A. niger*, as discussed extensively in chapters 4 and 5. For this reason, and aiming for the possible production of fumaric acid and its efficient export in *A. niger*, the potential of another filamentous fungus, *Rhizopus delemar*, was considered.

The industrial production of fumaric acid in *R. delemar* (former *R. oryzae*), dates from 1989, when duPont patented a fermentation process for the production of fumaric and other carboxylic acids by dissolved oxygen control (Lorraine and Thomas, 1989). Nevertheless, *R. delemar* has disadvantages as a production host in large scale fermentations, which is related to the high broth viscosity (Zhou *et al.*, 2000).

That said, studies on transport systems which aim at improved industrial productivities, are our research objective. To achieve fumaric acid production in *A. niger* (or other organisms), its exporter needs to be identified. In this study we investigated a putative fumaric acid transporter (*fumT*) obtained from the natural producer *R. delemar.* This transporter was then expressed in *A. niger*. By using an

homogeneous and pellet-free continuous cultivation protocol, as well as a metabolomics analytical platform previously optimized (Lameiras *et al.*, 2015), we provide insight on the function of this putative fumaric acid transporter.

#### 6.2. Materials and Methods

#### 6.2.1. R. delemar growth conditions and RNA sequencing

Pre-cultures of *R. delemar* ATCC 20344 were grown in shake flasks on a chemically defined medium containing 1% (w/v) D-glucose, 0.21% (w/v) urea, 0.06% (w/v) KH<sub>2</sub>PO<sub>4</sub>, 0.05% (w/v) MgSO<sub>4</sub>.7H<sub>2</sub>O and 0.0018% (w/v) ZnSO<sub>4</sub>.7H<sub>2</sub>O. Approximately 10<sup>6</sup> spores/mL were inoculated in 1 litre Erlenmeyer flasks containing 500 ml of pre-culture medium and cultivations were carried out at 35°C and 250 rpm for 24 hours. Subsequently the obtained mycelium ( $\approx$  25 g of wet biomass) was washed with demineralized water and transferred to production medium, containing 10% (w/v) D-glucose, 0.06% (w/v) KH<sub>2</sub>PO<sub>4</sub>, 0.05% (w/v) MgSO<sub>4</sub>.7H<sub>2</sub>O, 0.0018% (w/v) ZnSO<sub>4</sub>.7H<sub>2</sub>O, and 1% (w/v) CaCO<sub>3</sub> (used as a neutralizing agent). Batch fermentations were performed at 35°C and 600 rpm in 2.5 litres fermentors (Applikon, Schiedam, the Netherlands), with a working volume of 1.75 litres. Before inoculation, 85 µL antifoam 204 (Sigma Aldrich) were added to each fermentor. The fermentation medium was gassed with either with air (aerobic condition) or N<sub>2</sub> gas (anaerobic condition) at a gassing rate of 1.75 l/min and pH 7.

#### 6.2.1.1. RNA seq and quality check

RNA extraction of *R. delemar* ATCC 20344 was performed by submerging frozen mycelium ( $\approx$  100 mg) in 1 ml of Trizol reagent in a 2 ml tube, prefilled with a mix of glass beads with the following diameters: 0.1 mm (0.37 g), 1 mm (0.25 g) and 5 mm (1 bead). Mycelium samples were disrupted using a FastPrep-24 Instrument (MP Biomedicals). After disruption, 200 µl of chloroform were added and the mix was homogenated for 10 seconds. The mix was poured into phase-lock gel tubes (2 ml), and centrifuged at maximum speed in a table-top centrifuge. The RNA present in the

water phase was purified using the RNeasy Mini Kit (Qiagen), following the manufacturer's instructions. RNA integrity was assessed with an Experion system (Bio-Rad), and only high quality samples (RIN value  $\geq$  8) were selected for whole transcriptome shotgun sequencing.

Illumina RNA sequencing (RNA seq) using the Casava pipeline version 1.8.2 and subsequent quality analysis of the FASTQ sequence reads was performed by BaseClear (Leiden, the Netherlands). The number of reads obtained was 20'539'199 for the aerobic and 24'519'028 for the anaerobic condition, with an average quality score (Phred) of 37.59 and 37.91, respectively. The raw data has been submitted to the EMBL-EBI database, and can be found under the accession number PRJEB14210.

#### 6.2.1.2. RNA seq data processing

The RNA seq reads were filtered using SortMeRNA v1.9 (Kopylova *et al.*, 2012), cutadapt v1.2.1 (Martin, 2011) and PRINSEQ v0.20.2 (Schmieder and Edwards, 2011). De novo assembly of the reads that passed the quality filtering was performed using the IDBA-UD assembler v1.1 (Peng *et al.*, 2012). Read mapping and transcript coverage calculations were performed using Bowtie2 v 2.2.2 (Langmead and Salzberg, 2012) and BEDTools (Quinlan 2010).

## 6.2.2. A. niger strain construction

The background strain used for the genetic constructions was *A. niger* NW186 (*cspA1* short conidiospores, ΔargB arginine auxotrophic, pyrA6 phosphopantetheine binding, goxC17 glucose oxidase negative, prtF28 oxalate non-producing), which is a derivative strain of *A. niger* NW185 (*cspA1* short conidiospores, fwA1 fawn coloured spores, goxC17 glucose oxidase negative, prtF28 oxalate non-producing).

Two transformant strains were constructed. The control strain (872.11emp) was transformed with plasmid pGW635, carrying the *pyrA* gene of *A. niger*. This complements the *pyrA6* transformation marker and restores the uridine prototrophy,

so that it only keeps the arginine auxotrophy (due to the  $\Delta argB$  mutation). The other strain was transformed with the plasmid pFB401, carrying both the *R. delemar fumT* transporter coding gene, and the *pyrA* gene of *A. niger*. The construction of the pFB401 plasmid was performed by cloning an *A. niger* codon optimized version of the *fumT* gene in the expression vector pWA423, under the control of the *A. niger xlnD* promoter and terminator. One *A. niger* transformant carrying the empty vector pGW635 and two *A. niger* transformants (T2 and T5) carrying the pFB401 plasmid were selected for the experiments (strains 872.11emp, 872.11T2 and 872.11T5).

## 6.2.3. Chemostat cultivations

The negative control strain (872.11emp) was first compared to one transformant strain containing the putative fumaric acid transporter (872.11T5) – experiment A; and thereafter compared to another transformant (872.11T2) – experiment B. At the end of experiment B also a pulse experiment was performed (Fig. 6.1.).



Fig. 6.1. Overview of used strains, chemostat cultivations and dynamic pulse experiments performed in both experiments A and B.

In all experiments, a 7 litres turbine-stirred bioreactor, with 4.5 litre working volume, was used (Applikon, Delft, The Netherlands). The aerobic bioreactor was set up, inoculated and operated as described in Lameiras *et al.*, 2015. Minimal medium was complemented with 38 mM of xylose as a substrate (because the heterologous

transporter is xylose induced). The temperature and pH were 30.0  $\pm$  0.1 °C and 3.0  $\pm$  0.1 respectively. The applied dilution rate was 0.05h<sup>-1</sup>.

Continuous cultivation was started in the late exponential phase of the batch culture, approximately 100 hours after inoculation, by starting the medium feed.

# 6.2.4. Sampling and analytical procedures during steady state

When steady state was reached (after five residence times), at least 6 samples were taken for quantification of cell dry weight, 3 samples for concentrations of intra and extracellular compounds, and 3 samples for filtrate TOC (total organic carbon) content.

Biomass dry weight was determined by filtration over glass fiber filters (47 mm, type A/E, Pall, USA), subsequent washing with water and drying at 70°C until constant weight. All samples were analysed in triplicate.

Filtrate samples were obtained by quickly (within 3 s) withdrawing 5 ml of broth, via the over-pressure on the fermentor, into a syringe containing cooled steel beads (-20 °C) to bring the sample temperature down to  $0^{\circ}$ C, within a fraction of a second (Mashego *et al.* 2003). The cool filtrate was then immediately pressed through a 0.45  $\mu$ m cartridge filter (Millex-HV durapore PVDF membrane) into a sampling tube, which was directly frozen in liquid nitrogen.

In addition, for the metabolome analysis, intracellular samples were obtained by rapid sampling at  $-20^{\circ}$ C in a 40% (v/v) methanol/water quenching solution, followed by a two-step washing procedure. The protocol is described in Lameiras *et al.*, 2015. A factor of 1.2 ml intracellular volume/g dry weight was used to calculate intracellular concentrations from the extracted amounts of metabolites (Ruijter and Visser, 1996).

Both intra- and extracellular concentrations of the metabolic intermediates from glycolytic, TCA and PPP pathways and amino acids, were measured by isotope dilution mass spectrometry (LC-IDMS/MS and GC-IDMS) according to the protocols of van Dam *et al.* 2002, de Jonge *et al.* 2011 and Cipollina *et al.* 2009.

The total organic carbon content of the filtrate samples was quantified with a total organic carbon analyser (type TOC-L, Shimadzu, Kyoto, Japan). With this method, both total carbon (TC) and total inorganic carbon (TIC) were measured. The latter representing the content of dissolved carbon dioxide and carbonate acid salts. Subtracting the inorganic carbon from the total carbon, yields the TOC of the filtrate.

#### 6.2.5. Balances, biomass specific rates and data reconciliation

Using steady state mole balances, the rates of substrate ( $R_s$ ), biomass ( $R_x$ ), carbon dioxide ( $R_{CO2}$ ), oxygen ( $R_{O2}$ ) and wherein possible by-products (excretion or cell lysis) in the culture filtrate ( $R_{TOC}$ ) were calculated from the primary measurements of concentrations in gas and liquid phases, as well as gas and liquid flow rates. From these rates, carbon and degree of reduction recoveries (equations 6.1. and 6.2.) were calculated.

Carbon recovery (%) = 
$$\frac{R_x + R_{CO2} + R_{toc}}{R_s} \times 100$$
 (6.1.)

Degree of reduction (%) = 
$$\frac{Y_x R_x + Y_{toc} R_{toc} + Y_{02} R_{02}}{Y_s R_s} \times 100$$
 (6.2.)

Data reconciliation was applied to obtain the best estimates of the measurements, within their error margins, using the elemental and charge conservation relations as constraints (Verheijen, 2010).

The biomass composition used was the same as measured in Lameiras *et al.*, 2017 for xylose chemostat cultivations. The  $Y_{TOC}$  used was the degree of reduction of the biomass, assuming that filtrate TOC generates from biomass lysis.

#### 6.2.6. Pulse experiment

After steady state was achieved, a concentrated pulse containing a mixture of 18 amino acids (alanine, asparagine, aspartic acid, cysteine, glutamine, glutamic acid, glycine, histidine, iso-leucine, methionine, leucine, lysine, phenylalanine, proline,

threonine, tryptophan, tyrosine and valine) was given in both fermentations of experiment B (872.11emp and 872.11T2 strains).

All amino acids were dissolved in 0.1M HCl aqueous solution with exception of asparagine, glutamine and tryptophan which were dissolved in MilliQ water. From this concentrated amino acid solution (Table 6.1.), 40 ml was quickly injected into the bioreactor, bringing the extracellular levels of amino acids roughly ten times higher than the steady-state extracellular concentrations measured before addition.

Table 6.1. Amino acid concentration in pulse solutions (40ml).

|                       | Ala      | Gly      | Val      | Leu      | lle      | Pro      | Thr      | Met      | Asp      | Phe      | Cys      | Glu      | Lys      | Asn      | Gin      | Tyr      | His      | Trp      | Total added<br>(mCmol/Kg) |
|-----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------------------|
| Concentration (mM)    | 19.5     | 60.5     | 8.0      | 10.4     | 5.1      | 2.3      | 10.4     | 1.1      | 10.3     | 4.3      | 1.0      | 10.5     | 10.3     | 7.8      | 14.1     | 5.8      | 5.2      | 1.3      |                           |
| A. niger<br>872.11emp | ±<br>0.7 | ±<br>2.4 | ±<br>0.3 | ±<br>0.2 | ±<br>0.2 | ±<br>0.1 | ±<br>0.4 | ±<br>0.0 | ±<br>0.3 | ±<br>0.2 | ±<br>0.0 | ±<br>0.4 | ±<br>0.4 | ±<br>0.2 | ±<br>0.5 | ±<br>0.4 | ±<br>0.2 | ±<br>0.0 | 6.9                       |
| Concentration (mM)    | 15.9     | 48.5     | 6.5      | 8.9      | 4.1      | 1.9      | 8.5      | 0.9      | 8.2      | 3.5      | 0.9      | 8.4      | 8.4      | 6.2      | 11.2     | 4.5      | 4.0      | 1.0      |                           |
| A. niger<br>872.11T2  | ±<br>2.3 | ±<br>7.2 | ±<br>1.0 | ±<br>1.2 | ±<br>0.6 | ±<br>0.3 | ±<br>1.2 | ±<br>0.1 | ±<br>1.2 | ±<br>0.5 | ±<br>0.1 | ±<br>1.2 | ±<br>1.3 | ±<br>0.9 | ±<br>1.7 | ±<br>1.7 | ±<br>0.6 | ±<br>0.2 | 5.6                       |

Time zero (steady state) samples were collected before the pulse. After the pulse, samples for extracellular amino acid measurements, using the rapid sampling and quenching protocol described below, were collected with the following time schedule (in minutes): 0.08, 0.17, 0.25, 0.33, 0.42, 0.67, 1, 2, 5, 10, 20, 40, 60, 120, 180, 270 and 330. Intracellular samples were collected less frequently (in minutes): 0.08, 0.25, 1 and 2.

# 6.3. Results and Discussion

## 6.3.1. Identification of the putative fumaric acid transporter in R. delemar

The *R. delemar* ATCC 20344 strain was cultured in high (aerobic) and low (anaerobic) fumarate production conditions in order to identify candidate fumaric acid exporters, of which we assumed that these would be significantly upregulated under fumaric acid producing conditions. The largest difference in fumarate yield ( $g_{product}/g_{substrate}$ ) was observed 24 hours after mycelium transfer, being 0.35 ± 0.06 g/g in the aerobic condition, and 0.03 ± 0.02 g/g in the anaerobic condition (Odoni *et al.* 2017). At this

point, mycelium samples were obtained for RNA isolation and RNAseq analysis. A full description of the RNA seq analysis can be found elsewhere (Odoni *et al.* 2017).

Based on the differential expression profile of *R. delemar* transporter proteins under high and low fumarate producing conditions, we selected a promising candidate (here named *fumT*) as putative fumarate exporter. *fumT* is classified as a member of the sodium-dicarboxylate symporter family (SDF), which belongs to the DAACS (dicarboxylate amino acid:cation symporter) family of transporters. The members of the DAACS family catalyse Na<sup>+</sup> and/or H<sup>+</sup> symport together with: a Krebs cycle dicarboxylate (malate, succinate, or fumarate); a dicarboxylic amino acid (glutamate or aspartate); a small, semipolar, neutral amino acid (Ala, Ser, Cys, Thr); both neutral and acidic amino acids; or most zwitterionic and dibasic amino acids (TCDB.org, 2016).

The *fumT* gene was expressed in *A. niger*, under the control of the strong and inducible promoter  $xlnD_p$  to verify whether this transporter indeed functioned as a fumaric acid exporter, and if not, which compound(s) it would transport other than fumaric acid.

## 6.3.2. Chemostat cultivation of A. niger

Using the optimized fermentor set up, three transformed strains of *A. niger* (872.11emp (x2), 872.11T2 and 872.11T5) were grown in four aerobic xylose-limited chemostat cultures. All four fermentations were characterized by a very long lag phase of approximately 100 hours preceding the batch phase. This was not observed in previous xylose cultivations with similar strains of *A. niger* (Lameiras *et al.*, 2017) where the lag phase typically took about 30 hours.

The fermentation profiles characterization during steady state can be found in Fig. 6.2. The estimated dilution rate was equivalent for all four fermentations, which enables a direct comparison of strains and experiments. The offgas data obtained during steady state are also shown in Fig. 6.2. Due to anomalies in the offgas analyser, in the strain 872.11T5 of experiment A, the oxygen concentration could not be measured.

For all fermentations, measurements of residual xylose ( $C_s$ ), biomass concentration ( $C_x$ ), oxygen and carbon dioxide concentrations in the offgas were performed. In addition, the total organic carbon concentration ( $C_{TOC}$ ) of the culture filtrate was determined in order to verify whether significant amounts of by-products were excreted.



Fig. 6.2. Fermentation characterization and steady-state profiles for different experiments.

The main differences found were in biomass and TOC concentrations. For the control strain of experiment B the steady state biomass concentration was on average 30% higher in comparison with the other three fermentations, while the TOC concentration measured in the filtrate was significantly lower. These two observations could be explained by a lower extent of cell lysis in the chemostat cultivation of the control strain of experiment B.

From the substrate, biomass,  $CO_2$ ,  $O_2$  and TOC measurements, it was estimated that the recoveries of carbon and degree of reduction were larger than 90% and thus the biomass specific rates were calculated using data reconciliation (Table 6.2.). Due to anomalies in the oxygen measurements of the experiment with transformant 5, it was not possible to calculate the redox balance, nevertheless the carbon balance closed satisfactory (Table 6.2.). Notice that even though oxygen measurements were not available for transformant 5, we have used the reconciled data to estimate RQ values, as well as the redox balance.

|                 |                                                                                                                                             | A. niger 8.                                                                                                                              | 72.11emp                                                                                                        | A. niger a                                                                                                                               | A. niger 872.11T5                                                                 |  |  |  |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|--|--|--|
|                 |                                                                                                                                             | Unreconciled                                                                                                                             | Reconciled                                                                                                      | Unreconciled                                                                                                                             | Reconciled                                                                        |  |  |  |  |
|                 | Carbon recovery (%)                                                                                                                         | 100 ± 2                                                                                                                                  | -                                                                                                               | 110±7                                                                                                                                    | -                                                                                 |  |  |  |  |
|                 | Redox recovery (%)                                                                                                                          | 102 ± 3                                                                                                                                  | -                                                                                                               | -                                                                                                                                        | -                                                                                 |  |  |  |  |
|                 | Respiratory Quotient                                                                                                                        | $0.96 \pm 0.05$                                                                                                                          | $0.97 \pm 0.30$                                                                                                 | -                                                                                                                                        | $0.97 \pm 0.30$                                                                   |  |  |  |  |
|                 | Cs (mmol/L)                                                                                                                                 | $0.028 \pm 0.001$                                                                                                                        | $0.028 \pm 0.001$                                                                                               | 0.185±0.037                                                                                                                              | $0.168 \pm 0.037$                                                                 |  |  |  |  |
| Experiment<br>A | C <sub>TOC</sub> (mCmol/L)                                                                                                                  | 22.26±0.33                                                                                                                               | 22.31±0.33                                                                                                      | 31.84±0.17                                                                                                                               | $31.76 \pm 0.17$                                                                  |  |  |  |  |
| Ŷ               | D (mCmol/h)/Cmol                                                                                                                            | $45.2 \pm 0.1$                                                                                                                           | $45.2 \pm 0.1$                                                                                                  | 47.0±0.1                                                                                                                                 | 47.0±0.1                                                                          |  |  |  |  |
|                 | q <sub>s</sub> (mmol/h)/Cmol                                                                                                                | 22.0±0.4                                                                                                                                 | $21.7 \pm 0.3$                                                                                                  | 23.8±0.4                                                                                                                                 | $25.1 \pm 0.4$                                                                    |  |  |  |  |
|                 | q <sub>o2</sub> (mmol/h)/Cmol                                                                                                               | $51.4 \pm 16.1$                                                                                                                          | $51.1 \pm 1.3$                                                                                                  | -                                                                                                                                        | $59.3 \pm 1.5$                                                                    |  |  |  |  |
|                 | q <sub>co2</sub> (mmol/h)/Cmol                                                                                                              | 53.8±1.6                                                                                                                                 | 52.6±1.3                                                                                                        | 55.3±1.6                                                                                                                                 | $61.0 \pm 1.5$                                                                    |  |  |  |  |
|                 | q <sub>τοc</sub> (mCmol/h)/Cmol                                                                                                             | $10.8 \pm 0.3$                                                                                                                           | $10.6 \pm 0.2$                                                                                                  | $16.8 \pm 0.3$                                                                                                                           | 17.6±0.3                                                                          |  |  |  |  |
|                 |                                                                                                                                             | A. niger 8                                                                                                                               | 72 11amn                                                                                                        | A. niger a                                                                                                                               | 070 1170                                                                          |  |  |  |  |
|                 |                                                                                                                                             | A. IIIYEI 8.                                                                                                                             | 72.11emp                                                                                                        | A. IIIYEI G                                                                                                                              | 5/2.1112                                                                          |  |  |  |  |
|                 |                                                                                                                                             | Unreconciled                                                                                                                             | Reconciled                                                                                                      | Unreconciled                                                                                                                             | Reconciled                                                                        |  |  |  |  |
|                 | Carbon recovery (%)                                                                                                                         | -                                                                                                                                        | · ·                                                                                                             | -                                                                                                                                        |                                                                                   |  |  |  |  |
|                 | Carbon recovery (%)<br>Redox recovery (%)                                                                                                   | Unreconciled                                                                                                                             | · ·                                                                                                             | Unreconciled                                                                                                                             |                                                                                   |  |  |  |  |
|                 | ,,,,                                                                                                                                        | Unreconciled<br>97 ± 4                                                                                                                   | · ·                                                                                                             | Unreconciled<br>93±5                                                                                                                     |                                                                                   |  |  |  |  |
|                 | Redox recovery (%)                                                                                                                          | Unreconciled<br>97 ± 4<br>98 ± 3                                                                                                         | Reconciled<br>-<br>-                                                                                            | Unreconciled<br>93±5<br>95±3                                                                                                             | Reconciled<br>-<br>-                                                              |  |  |  |  |
| Experiment      | Redox recovery (%)<br>Respiratory Quotient                                                                                                  | Unreconciled<br>97 ± 4<br>98 ± 3<br>0.94 ± 0.33                                                                                          | Reconciled<br>-<br>-<br>0.96 ± 0.04                                                                             | Unreconciled<br>93 ± 5<br>95 ± 3<br>0.92 ± 0.26                                                                                          | Reconciled<br>-<br>-<br>0.97 ± 0.04                                               |  |  |  |  |
| Experiment<br>B | Redox recovery (%)<br>Respiratory Quotient<br>Cs (mmol/L)                                                                                   | Unreconciled<br>97±4<br>98±3<br>0.94±0.33<br>0.015±0.004                                                                                 | Reconciled<br>-<br>-<br>0.96±0.04<br>0.015±0.004                                                                | Unreconciled<br>93 ± 5<br>95 ± 3<br>0.92 ± 0.26<br>0.021 ± 0.001                                                                         | Reconciled<br>-<br>-<br>0.97±0.04<br>0.021±0.001                                  |  |  |  |  |
|                 | Redox recovery (%)<br>Respiratory Quotient<br>Cs (mmol/L)<br>C <sub>TOC</sub> (mCmol/L)                                                     | Unreconciled<br>97±4<br>98±3<br>0.94±0.33<br>0.015±0.004<br>12.32±1.00                                                                   | Reconciled<br>-<br>-<br>0.96±0.04<br>0.015±0.004<br>12.90±0.95                                                  | Unreconciled<br>93±5<br>95±3<br>0.92±0.26<br>0.021±0.001<br>23.21±0.68                                                                   | Reconciled<br>-<br>-<br>0.97±0.04<br>0.021±0.001<br>23.93±0.67                    |  |  |  |  |
|                 | Redox recovery (%)<br>Respiratory Quotient<br>Cs (mmol/L)<br>C <sub>roc</sub> (mCmol/L)<br>D (mCmol/h)/Cmol                                 | Unreconciled<br>97±4<br>98±3<br>0.94±0.33<br>0.015±0.004<br>12.32±1.00<br>46.9±0.1                                                       | Reconciled<br>-<br>$0.96 \pm 0.04$<br>$0.015 \pm 0.004$<br>$12.90 \pm 0.95$<br>$46.9 \pm 0.1$                   | Unreconciled<br>$93 \pm 5$<br>$95 \pm 3$<br>$0.92 \pm 0.26$<br>$0.021 \pm 0.001$<br>$23.21 \pm 0.68$<br>$50.6 \pm 0.1$                   | Reconciled<br>-<br>0.97±0.04<br>0.021±0.001<br>23.93±0.67<br>50.6±0.1             |  |  |  |  |
|                 | Redox recovery (%)<br>Respiratory Quotient<br>Cs (mmol/L)<br>C <sub>roc</sub> (mCmol/L)<br>D (mCmol/h)/Cmol<br>q <sub>s</sub> (mmol/h)/Cmol | Unreconciled<br>$97 \pm 4$<br>$98 \pm 3$<br>$0.94 \pm 0.33$<br>$0.015 \pm 0.004$<br>$12.32 \pm 1.00$<br>$46.9 \pm 0.1$<br>$18.2 \pm 0.4$ | Reconciled<br>-<br>$0.96 \pm 0.04$<br>$0.015 \pm 0.004$<br>$12.90 \pm 0.95$<br>$46.9 \pm 0.1$<br>$17.7 \pm 0.2$ | Unreconciled<br>$93 \pm 5$<br>$95 \pm 3$<br>$0.92 \pm 0.26$<br>$0.021 \pm 0.001$<br>$23.21 \pm 0.68$<br>$50.6 \pm 0.1$<br>$25.7 \pm 0.6$ | Reconciled<br>-<br>0.97±0.04<br>0.021±0.001<br>23.93±0.67<br>50.6±0.1<br>23.6±0.4 |  |  |  |  |

 Table 6.2. Carbon and redox recoveries, and biomass specific net conversion rates during steady state

 chemostat cultivations, using xylose as a carbon source.

As shown in Table 6.2., and in agreement with previous discussion, the  $q_{TOC}$  rate is considerably lower in the control strain of experiment B, suggesting that lysis is the explanation for the lower biomass concentrations in the other cultivations. Another

remarkable difference in the control strain of experiment B is the substrate conversion rate q<sub>s</sub>, which is higher in the experiments where lysis is present.

To confirm the different behaviour of the control strain in experiment B, we plotted the biomass specific rates of oxygen consumption, carbon dioxide production and substrate consumption as a function of the true growth rate  $\mu$ =D+qTOC (Fig. 6.3.). Hereby it was assumed that the measured filtrate total organic carbon only consisted of cell lysis products and thus the biomass specific TOC production rate, qTOC, equaled the cell lysis rate. It can be seen from figure 6.3. that the *A. niger* 872.11emp strain from experiment B clearly deviates from the cluster of the three other strains.



Fig. 6.3. Herbert-Pirt relations for all four chemostat cultivations.

## 6.3.2.1. Metabolomics

Recalling the initial objective of the expression of *fumT* in *A. niger*, we wanted to confirm whether this putative organic acid transporter would function as a fumaric acid exporter. To this end, we analysed and compared both the endo- and exometabolome of the control and mutant strains during steady state chemostat cultivation.

For all four fermentations, after a steady state was reached, both the levels of intraand extracellular metabolites were quantified by isotope dilution mass spectrometry. Initially, using the rapid sampling and quenching protocol, we compared the metabolomics results obtained for both fermentations with the control strain 872.11emp of experiment A and B, which should appear as replicate experiments. The fermentation of experiment B consistently showed much lower extracellular amino acid concentrations (2 to 5 fold, Fig 6.4.). This might have been caused by the lower extent of cell lysis in this cultivation. The same difference was observed for the group of metabolites from glycolytic, TCA and PPP pathways (results not shown). Because only experiments with a comparable extent of cell lysis can be compared, we did not include the results of the control strain of experiment B in the analysis described below.



Fig. 6.4. Comparison of amino acid levels in A. niger 872.11 + empty in experiment A and B.

Therefore, the results obtained with both mutant strains (from experiments A and B) were compared with the results obtained with the control strain from experiment A, (Fig. 6.5. and 6.6.).

With respect to the intracellular glycolytic, TCA and PPP metabolites (Fig. 6.5.), no significant differences were found for all three strains. This is expected because intracellular fluxes were the same. More specifically, both transformant strains carrying the fumT did not show different levels (not inside nor outside) of fumaric acid or other organic acids compared with the control strain, indicating that ability of fumT to export organic acids is at least questionable.



Fig. 6.5. Comparison of glycolytic (upper panel), TCA (middle panel) and PPP (lower panel) metabolites between different strains *A. niger* 872.11emp (experiment A), *A. niger* 872.11T5 (experiment A) and *A. niger* 872.11T2 (experiment B).

Surprisingly, the extracellular levels of free amino acids showed significant differences (Fig. 6.6.). In both mutant strains T2 and T5 containg *fumT*, the extracellular levels of almost all amino acids were considerably lower than for the control strain. In spite of this the intracellular amino acid levels in both strains were very similar (Table 6.2.), which is again to be expected because fluxes in the amino acid pathways are the same.

Comparing both transformant strains (Fig. 6.6.), the intracellular amino acid concentrations in T2 and T5 are nearly the same. Concentration differences between transporters (T2 and T5) can be due to different transporter levels in different transformants.



Fig. 6.6. Comparison of amino acid levels between different strains *A. niger* 872.11emp (experiment A), *A. niger* 872.11T5 (experiment A) and *A. niger* 872.11T2 (experiment B).

Considering these differences, we hypothesize that the expressed transporter is a general amino acid permease which imports amino acids into the cell, resulting as a

consequence, in significantly lower extracellular concentrations of amino acids during chemostat cultivation.

From the fact that for both mutant strains the extracellular amino acid concentrations are in the micromolar range, it can be concluded that it must be a high affinity transporter.

## 6.3.3. Transporter characterization

# 6.3.3.1. Import ratios of amino acids

To obtain some indication about the mechanism of this transporter, we calculated the in/out ratios of all amino acids for the empty plasmid strain (experiment A) and compared them to the averages of the in/out ratios obtained for transformants 5 and 2 (Table 6.3.).

|      | Er      | npty plasmic | ł      |         |             | 1      | Fransformar | nts          |        |         |  |  |  |
|------|---------|--------------|--------|---------|-------------|--------|-------------|--------------|--------|---------|--|--|--|
|      | 872     | .11 emp (Exp | A)     | 872     | .11 T5 (Exp | A)     | 87          | 2.11 T2 (Exp | B)     | Average |  |  |  |
|      | IC (mM) | EC (μM)      | In/out | IC (mM) | ΕC<br>(μM)  | In/out | IC (mM)     | EC (μM)      | In/out | In/out  |  |  |  |
| Ala  | 17.319  | 19.359       | 895    | 22.665  | 3.143       | 7212   | 17.080      | 3.585        | 4764   | 5988    |  |  |  |
| Gly  | 1.548   | 41.923       | 37     | 1.827   | 10.253      | 178    | 2.201       | 21.276       | 103    | 141     |  |  |  |
| Val  | 1.212   | 8.443        | 144    | 1.739   | 0.483       | 3601   | 1.390       | 0.533        | 2607   | 3104    |  |  |  |
| Leu  | 0.462   | 10.367       | 45     | 0.652   | 0.562       | 1161   | 0.742       | 0.388        | 1911   | 1536    |  |  |  |
| lle  | 0.249   | 5.091        | 49     | 0.338   | 0.220       | 1535   | 0.316       | 0.221        | 1429   | 1482    |  |  |  |
| Pro  | 0.965   | 2.295        | 420    | 1.280   | 0.787       | 1626   | 1.177       | 0.705        | 1668   | 1647    |  |  |  |
| Thr  | 5.666   | 6.911        | 820    | 7.296   | 1.130       | 6453   | 7.699       | 1.574        | 4892   | 5673    |  |  |  |
| Meth | 0.152   | 1.088        | 140    | 0.203   | 0.271       | 751    | 0.277       | 0.117        | 2360   | 1556    |  |  |  |
| Asp  | 29.259  | 9.590        | 3051   | 44.328  | 5.625       | 7880   | 38.317      | 7.587        | 5051   | 6466    |  |  |  |
| Phe  | 0.142   | 4.393        | 32     | 0.193   | 0.223       | 867    | 0.211       | 0.188        | 1122   | 995     |  |  |  |
| Cys  | 0.138   | 0.758        | 182    | 0.099   | 0.104       | 945    | 0.160       | 0.493        | 325    | 635     |  |  |  |
| Glu  | 43.390  | 9.528        | 4554   | 54.320  | 3.952       | 13743  | 45.607      | 6.150        | 7415   | 10579   |  |  |  |
| Lys  | 1.624   | 10.733       | 151    | 1.964   | 0.661       | 2969   | 2.564       | 0.684        | 3751   | 3360    |  |  |  |
| Asn  | 2.565   | 5.967        | 430    | 2.883   | 0.521       | 5536   | 3.636       | 0.866        | 4197   | 4867    |  |  |  |
| Gln  | 64.620  | 8.556        | 7552   | 74.894  | 5.454       | 13733  | 80.829      | 8.876        | 9106   | 11420   |  |  |  |
| Tyr  | 0.158   | 6.275        | 25     | 0.231   | 0.290       | 799    | 0.233       | 0.310        | 752    | 776     |  |  |  |
| His  | 1.848   | 4.489        | 412    | 2.559   | 0.358       | 7151   | 2.359       | 0.480        | 4913   | 6032    |  |  |  |
| Trp  | 0.040   | 0.976        | 41     | 0.056   | 0.051       | 1099   | 0.050       | 0.085        | 585    | 842     |  |  |  |

 Table 6.3. Comparison between empty plasmid strain and transformants: intracellular and extracellular concentrations and respective in/out ratios.

From these calculations it appeared that the in/out ratios for all amino acids are consistently lower for the empty plasmid strain compared to the transformants, confirming its possible role as general amino acid permease. Because in/out ratios are for most amino acids larger than 1000 it must be an active transporter, more specifically a proton symporter, confirming the characteristics of a transporter from the DAACS family (see section 6.3.1.).

#### 6.3.3.2. Amino acid Pulse experiment

To further shed light on the amino acid related properties of the transporter, a shortterm pulse experiment was performed. In experiment B, an amino acid pulse was injected in the bioreactor during steady state cultivation of both the empty plasmid strain and transformant 2. The total amount of carbon (in the amino acid pulse) was calculated to be 40-50% in addition to the substrate feed, in terms of carbon uptake rate.

The temporal profiles of oxygen and carbon dioxide before and after the pulse are represented in Fig. 6.7. The pulse clearly resulted in similar temporary decrease in the oxygen and increase in the carbon dioxide levels of the offgas for the mutant strain and transformant, showing metabolism of the supplied amino acids after the pulse, for both strains.

Sampling from a fermentor with the aim to capture highly dynamic changes of intracellular metabolites in a pulse response experiment is achieved by rapid sampling and subsequent fast quenching, as described in the materials and methods section. With this method, samples were collected during a period of five hours after injection of the amino acid pulse.

Fig. S6.1. presents the dynamic of the intracellular and extracellular profiles of the 18 amino acids measured. It is seen that half of the amino acids in both strains have similar amino acid uptake rates which generally slow down at amino acid concentrations of the order  $10-100\mu$ M. However, in the other half of the amino acids,

the empty plasmid strain has a higher uptake rate as the extracellular amino acids levels decrease more rapidly. The above mentioned putative amino acid transporter clearly has no contribution at high amino acid levels, as both strains perform similarly. This suggests that the putative transporter only transports amino acids at a low rate (low capacity). Considering the low extracellular amino acid levels during the preceding steady state chemostat phase of the transformant, the expressed transporter could be of a high affinity and low capacity type.





From the pulse experiment and analysis of Fig. S6.1., the decreasing slope in amino acid concentrations suggests the activity of a low affinity high capacity transporter. This exporter might be acting in the pulse experiment in both strains (872.11emp and 872.11T2), explaining the fast uptake in both strains. Thus, as a hypothesis, the high affinity amino acid uptake transporter expressed, is not evident in this pulse experiment.

# 6.4. Concluding Remarks

By the use of metabolomics tools and dynamic experiments we have gained information on the function of a putative fumaric acid transporter expressed in *A. niger*. The transporter is not a dicarboxylic acid carrier, but is probably a high affinity general amino acid permease. The putative production of amino acids in *A. niger* can be achieved by the metabolic reprogramming of this filamentous fungi. Nevertheless, here we show the importance of the presence of an efficient transport system, as the intrinsic capacity of a certain organism to excrete the targeted product can become a barrier when improving productivity. Adding up to the performed experiments, it would be necessary to carry on validation experiments and confirm the function of the amino acid transporter.
In this chapter, we list the main findings of this thesis and try to answer the remaining questions, as well as to give a projection of future research

areas.

# Chapter 7

Concluding Remarks and Outlook



This work represents an effort on the study of a non-conventional organism (i.e. not *Saccharomyces cerevisiae*, nor *Escherichia coli*) aimed at its use as an industrial workhorse for the production of organic acids. This implies a lot of technical challenges and the development of new tools. Nevertheless, one should recognize the necessity of exploring new platforms and the natural advantages of a non-conventional microorganisms such as *Aspergillus niger*.

Throughout this chapter we pinpoint the remaining open questions and different directions for further research, by focusing on five main topics:

- Fermentation technology, quenching and analytical protocols;
- Mycelia heterogeneity, apical growth, lysis and single cell studies;
- Second generation feedstocks;
- Production of organic acids;
- Intracellular and extracellular conditions Thermodynamics assumptions;

#### Fermentation technology, quenching and analytical protocols

In chapter 2, using a 7 litres bench scale bioreactor, we have successfully optimized a continuous cultivation at pH 2.5 with a pellet-free and homogeneous *A. niger* mycelia. The most important feature on the chemostat protocol was the implementation of the feed solution along with the air sparger in the bottom of the bioreactor, and thus avoid splashing and wall growth. In addition, we developed a dedicated rapid sampling device for intracellular metabolite analysis, specifically suited for filamentous fungi, which was crucial for the transport studies elaborated in this thesis. However, when proceeding to industrial processes, the scale up would need careful attention and readjustment of these protocols.

In order to predict cellular systems behaviour, quantitative evaluations are required. That being said, in chapter 2 we also focused on developing a rapid sampling and quenching protocol which we optimized for *A. niger NW185*. For our strain, and for the conditions applied, quenching the cells in a 40% methanol/aqueous solution at  $-20^{\circ}$ C turned out to be optimal. At these conditions leakage of intracellular metabolites was absent and 95 ± 4 % of the metabolome was found back. Nevertheless, different organisms, or even different strains, require different quenching solutions, and therefore, these protocols ought to be validated for other microorganisms/strains. The reason for the variations in the optimal quenching conditions for different microbes is not well known, but most probably related to differences in membrane composition.

#### Mycelia heterogeneity, apical growth, lysis and single cell studies

A critical assumption we did in this study was to consider homogeneity throughout *A. niger*'s mycelia, while it is known that the secretion of proteins and growth are located at the tips of growing hyphae (apical growth) (Wösten *et al.*, 1991). This leads us to assume that organic acid secretion is probably also site dependent, and concentration gradients of intracellular metabolites throughout the hyphae should not be despised.

In case of single cell studies, this heterogeneity should be taken into account and further investigated. For the very reason that we see heterogeneity in eukaryotic and prokaryotic populations, observations obtained from bulk cultivations will not reveal unknown but interesting mechanisms and thus studies more and more aim at investigating the single cell level (Altschuler and Wu, 2010) to reveal culture heterogeneity.

Another direction for further studies is to investigate cell lysis. Throughout this work, we continuously faced an existing and unknown amount of filtrate (possibly excreted?) carbon which we attributed to cell lysis. What is the reason for the observed lysis which seem to be somehow predetermined and growth rate dependent? Understanding this mechanism with the aim to find ways to minimize cell death and subsequent lysis would increase productivities and decrease costs.

#### Second generation feedstocks

In many microbial ecosystems, the availability of carbon and energy sources are usually limited, and their uptake capacity and kinetics determine the microbial growth performance. The carbon-limited chemostat cultivations at low dilution rate are therefore resembling these natural environments, and help us to understand microorganisms' intrinsic characteristics. Also, the ability to take up several carbon sources simultaneously is an important asset for microbial fitness and survival.

Following this insight, in chapters 3 and 4 we have studied different carbon sources that can be found in lignocellulosic feedstocks. We obtained insights on the stoichiometry and kinetics of these substrates in single and mixed substrate conditions, and found that in the latter case, some substrates are consumed simultaneously and some sequentially. We also obtained some perceptions on repression systems acting on the uptake of arabinose, galacturonic acid and rhamnose. The stoichiometric and kinetic characterization of growth on different carbon sources, and the role of substrates as repressors or competitors during cultivation, should be included when it comes to designing a fermentation process based on plant waste feedstocks.

To better grasp the repression phenomena at the substrate level, we propose experiments of two substrates at the time. This implies that 15 fermentations are required when studying six substrates. In addition, one should realize the difference between repression and inhibition. In short, repression can be measured by gene expression at the mRNA or protein levels, while inhibition happens at the enzyme level only.

We suggest as follow-up of this work, to test the same six substrates, but in the actual ratios and concentrations as found on lignocellulosic feedstocks. Keeping in mind the fact that their proportion also changes seasonally, makes this a rather complex study to tackle. Finally, and ideally, one should substitute synthetic substrates for real lignocellulosic waste crops in a substrate uptake study.

#### Production of organic acids

Nine of the twelve building blocks identified by the US Department of Energy, are organic acids (Werpy *et al.*, 2004), which illustrate the industrial relevance of these molecules in the last decade. However, large scale fermentative production has seldomly been applied, as these processes are economically still not competing with current petro-chemical production routes of organic acids. Future metabolic engineering strategies for improvement of production of organic acids in *A. niger* should focus more on quantitative proteomics and transcriptomics studies, in order to establish a suitable platform for investigation of transport systems.

In chapter 5 we have seen that itaconic acid can be taken up in *A. niger*, but it is unknown how it is metabolized (if even possible). Most probably this itaconic acid is accumulated rather than assimilated. Nevertheless, we suggested a plausible metabolic route which is known for certain bacteria, that for *A. niger* still needs to be confirmed. For that purpose, we suggest <sup>13</sup>C labelled experiments where labelled itaconic acid would be fed to the culture, followed by a full scan analysis of the central carbon intermediates.

As discussed both in chapters 1 and 5, a low pH is preferred for organic acid production, however one should be aware that passive diffusion can happen under these conditions and therefore quantification of futile cycling is extremely relevant to improve yield and productivity. As we have seen in chapter 5, permeabilities were shown to be very low, indicating that a protein acting a transporter is required. In addition, as we have been discussing throughout this thesis, one important challenge for organic acid production is implementing an efficient transport protein for product export in order to achieve high out/in ratios. Studies on the molecular biology and the use of genetic engineered strains with efficient proton antiport mechanisms are paramount of this approach.

#### Intracellular and extracellular conditions - Thermodynamics assumptions

For the investigation of transport systems and determine out/in (or in/out) ratios, it is very important to define the intracellular and extracellular conditions of the cell. Since these conditions cannot be known in all details however, one should be aware of the limitations/weaknesses of the thermodynamic assumptions.

The proton motive force and intracellular pH are here assumed to be homeostatic at 0.15V and 7.6 respectively. In case of the pmf this is not constant throughout the membrane, nor independent of the extracellular pH. Therefore, studies for *in vivo* determination of the proton motive force are required. With respect to the intracellular pH, it is expected that at low extracellular pH, its value is expected to be lower. However, in this thesis (and in other studies), independently of the extracellular pH, a constant intracellular pH is assumed. Therefore, efforts for better estimations and *in vivo* measurements of these values are a subject for further investigation. It should be borne in mind that variations on both pmf and pH<sub>in</sub> affect thermodynamically calculated in/out ratios.

Another subject for further research is cellular compartmentalization. In this study we determine the out/in ratios to have insights on the transport mechanism, however we did not consider compartmentalization, neither metabolic pools.

Figures and Tables supplementary

to the thesis chapters

# Appendix

Supplementary material



Figure S1.1. Calculation of concentration ratio of charged acid species to total acid.

 $\frac{A^{2-}}{A} = \frac{10^{2pHout-pka1-pka2}}{1+10^{pHout-pka1}+10^{2pHout-pka1-pka2}}$ 

$$\frac{H_2A^-}{A} = \frac{10^{pHout-pka1}}{1+10^{pHout-pka1}+10^{2pHout-pka1-pka2}+10^{3pHout-pka1-pka2-pka3}}$$
$$\frac{HA^{2-}}{A} = \frac{10^{2pHout-pka1-pka2}}{1+10^{pHout-pka1}+10^{2pHout-pka1-pka2}+10^{3pHout-pka1-pka2-pka3}}$$
$$\frac{A^{3-}}{A} = \frac{10^{3pHout-pka1}+10^{2pHout-pka1-pka2-pka3}}{1+10^{pHout-pka1}+10^{2pHout-pka1-pka2}+10^{3pHout-pka1-pka2-pka3}}$$
$$\frac{H_2A}{A} = \frac{1}{1+10^{pHout-pka1}+10^{2pHout-pka1-pka2}}$$
$$\frac{HA^-}{A} = \frac{10^{pHout-pka1}+10^{2pHout-pka1-pka2}}{1+10^{pHout-pka1}+10^{2pHout-pka1-pka2-pka3}}$$

**Citric** acid

 $\frac{H_3A}{A} = \frac{1}{1 + 10^{pHout - pka1} + 10^{2pHout - pka1 - pka2} + 10^{3pHout - pka1 - pka2 - pka3}}$ 

## Appendix Chapter 1

# Appendix Chapter 2

|    | Metabolite                     | Abbr.       | PubChem<br>CID | Method                       | Derivate                      | Quantification ion <sup>12</sup> C<br>(precursor/product)<br>[ <i>m</i> /z] | Quantification ion<br>internal standard <sup>13</sup> C<br>(precursor/product)<br>[m/z] |
|----|--------------------------------|-------------|----------------|------------------------------|-------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 1  | 2-phosphoglycerate             | 2PG         | 59             | Cipollina <i>et al.</i> 2009 | 4TMS                          | 459.1                                                                       | 462.1                                                                                   |
| 2  | 3-phosphoglycerate             | 3PG         | 724            | Cipollina et al. 2009        | 4TMS                          | 459.1                                                                       | 462.1                                                                                   |
| 3  | 6-phosphogluconate             | 6PG         | 91493          | Van Dam <i>et al.</i> 2002   | n.a.                          | 275/96.7                                                                    | 281/96.7                                                                                |
| 4  | Ketoglutarate                  | aKG         | 51             | Cipollina et al. 2009        | 2TMS 1MOX                     | 304.0                                                                       | 309.0                                                                                   |
| 5  | Alanine                        | Ala         | 5950           | de Jonge <i>et al.</i> 2011  | 2TBDMS                        | 260.1                                                                       | 263.1                                                                                   |
| 6  | Asparagine                     | Asn         | 6267           | de Jonge <i>et al.</i> 2011  | 3TBDMS                        | 417.2                                                                       | 421.2                                                                                   |
| 7  | Aspartic acid                  | Asp         | 424            | de Jonge <i>et al.</i> 2011  | 3TBDMS                        | 418.2                                                                       | 422.2                                                                                   |
| 8  | Citrate                        | Cit         | 311            | Cipollina et al. 2009        | 4TMS                          | 465.1                                                                       | 471.1                                                                                   |
| 9  | Cysteine                       | Cys         | 5862           | de Jonge <i>et al.</i> 2011  | 3TBDMS                        | 406.1                                                                       | 409.1                                                                                   |
| 10 | Dihydroxyacetone<br>phosphate  | DHAP        | 668            | Cipollina et al. 2009        | 3TMS 1MOX                     | 400.1                                                                       | 403.1                                                                                   |
| 11 | Erythrose-4-phosphate          | E4P         | 122357         | Cipollina et al. 2009        | 4TMS 1MOX                     | 357.1                                                                       | 359.1                                                                                   |
| 12 | Fructose-6-phosphate           | F6P         | 69507          | Cipollina et al. 2009        | 6TMS 1MOX                     | 459.1                                                                       | 462.1                                                                                   |
| 13 | Fructose-1,6-bis<br>phosphate  | FBP         | 10267          | Van Dam <i>et al.</i> 2002   | n.a.                          | 339/96.7                                                                    | 345/96.7                                                                                |
| 14 | Fumaric acid                   | Fum         | 44972          | Cipollina et al. 2009        | 2TMS                          | 245.0                                                                       | 249.0                                                                                   |
| 15 | Glycerol-3-phosphate           | G3P         | 754            | Van Dam <i>et al.</i> 2002   | n.a.                          | 171/78.8                                                                    | 174/78.8                                                                                |
| 16 | Glucose-6-phosphate            | G6P         | 5958           | Cipollina <i>et al.</i> 2009 | 6TMS 2MOX                     | 471.0                                                                       | 475.0                                                                                   |
| 17 | Glyceraldehyde-3-<br>phosphate | GAP         | 729            | Cipollina et al. 2009        | 3TMS 1MOX                     | 400.1                                                                       | 403.1                                                                                   |
| 18 | Glucose                        | Glc         | 79025          | Cipollina et al. 2009        | 5TMS 1MOX                     | 319.1                                                                       | 323.1                                                                                   |
| 19 | Glutamine                      | Gln         | 5961           | de Jonge <i>et al.</i> 2011  | <b>3TBDMS</b>                 | 431.2                                                                       | 436.2                                                                                   |
| 20 | Glutamic acid                  | Glu         | 611            | de Jonge <i>et al.</i> 2011  | <b>3TBDMS</b>                 | 474.3                                                                       | 479.4                                                                                   |
| 21 | Glycine                        | Gly         | 750            | de Jonge <i>et al.</i> 2011  | 2TBDMS                        | 246.1                                                                       | 148.1                                                                                   |
| 22 | Histidine                      | His         | 6274           | de Jonge <i>et al.</i> 2011  | 3TBDMS                        | 440.3                                                                       | 446.3                                                                                   |
| 23 | isocitrate                     | iCit        | 1198           | Cipollina et al. 2009        | ollina et al. 2009 4TMS 465.1 |                                                                             | 471.1                                                                                   |
| 24 | isoleucine                     | lle         | 6306           | de Jonge <i>et al.</i> 2011  | 2TBDMS                        | 274.1                                                                       | 279.1                                                                                   |
| 25 | Leucine                        | Leu         | 74840          | de Jonge <i>et al.</i> 2011  | 2TBDMS                        | 274.1                                                                       | 279.1                                                                                   |
| 26 | Lysine                         | Lys         | 5962           | de Jonge <i>et al.</i> 2011  | <b>3TBDMS</b>                 | 431.3                                                                       | 437.1                                                                                   |
| 27 | Malate                         | Mal         | 525            | Cipollina et al. 2009        | 3TMS                          | 335.0                                                                       | 339.0                                                                                   |
| 28 | Methionine                     | Meth        | 6137           | de Jonge <i>et al.</i> 2011  | 2TBDMS                        | 320.1                                                                       | 325.1                                                                                   |
| 29 | Phosphoenolpyruvate            | PEP         | 1005           | Van Dam <i>et al.</i> 2002   | n.a.                          | 167/78.8                                                                    | 170/78.8                                                                                |
| 30 | Phenylalanine                  | Phe         | 6140           | de Jonge <i>et al.</i> 2011  | 2 TBDMS                       | 336.2                                                                       | 345.2                                                                                   |
| 31 | Proline                        | Proline Pro |                | de Jonge <i>et al.</i> 2011  | 2 TBDMS                       | 286.1                                                                       | 291.1                                                                                   |

#### Table S2.1. Parameters of the 43 metabolites identified in the investigated samples.

|    | Metabolite                    | Abbr.  | PubChem<br>CID | Method                                       | Derivate      | Quantification ion <sup>12</sup> C<br>(precursor/product)<br>[ <i>m</i> /z] | Quantification ion<br>internal standard <sup>13</sup> C<br>(precursor/product)<br>[ <i>m/z</i> ] |
|----|-------------------------------|--------|----------------|----------------------------------------------|---------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 32 | Ribose-5-phosphate            | Rib5P  | 21115541       | Cipollina et al. 2009                        | 5TMS 1MOX     | 459.1                                                                       | 462.1                                                                                            |
| 33 | Ribulose-5-phosphate          | Ribu5P | 439184         | Cipollina et al. 2009                        | 5TMS 1MOX     | 357.1                                                                       | 359.1                                                                                            |
| 34 | Sedoheptulose-7-<br>phosphate | S7P    | 165007         | Cipollina et al. 2009                        | 7TMS 1MOX     | 471.1                                                                       | 475.1                                                                                            |
| 35 | Serine                        | Ser    | 5951           | de Jonge <i>et al.</i> 2011                  | 3 TBDMS       | 390.2                                                                       | 393.2                                                                                            |
| 36 | Succinate                     | Succ   | 160419         | Van Dam <i>et al.</i> 2002                   | n.a.          | 117/72.7                                                                    | 121/75.7                                                                                         |
| 37 | Trehalose6-phosphate          | T6P    | 122336         | Van Dam <i>et al.</i> 2002                   | n.a.          | 421.2/78.8                                                                  | 433.2/78.8                                                                                       |
| 38 | Threonine                     | Thr    | 6288           | de Jonge <i>et al.</i> 2011                  | <b>3TBDMS</b> | 404.2                                                                       | 408.2                                                                                            |
| 39 | Trehalose                     | Tre    | 7427           | Cipollina et al. 2009                        | 8TMS          | 361.1                                                                       | 367.1                                                                                            |
| 40 | Tryptophan                    | Trp    | 6305           | de Jonge <i>et al.</i> 2011                  | 2TBDMS        | 375.2                                                                       | 386.2                                                                                            |
| 41 | Tyrosine                      | Tyr    | 6057           | de Jonge <i>et al.</i> 2011                  | <b>3TBDMS</b> | 466.3                                                                       | 475.3                                                                                            |
| 42 | Valine                        | Val    | 6287           | de Jonge <i>et al.</i> 2011                  | 2TBDMS        | 288.1                                                                       | 293.1                                                                                            |
| 43 | Xylulose-5-phosphate          | Xyl5P  | 5459820        | Cipollina <i>et al.</i> 2009 5TMS 1MOX 357.0 |               | 359.0                                                                       |                                                                                                  |

Table S2.1. Parameters of the 43 metabolites identified in the investigated samples (cont.).







Figure S2.1. *A. niger* wall growth accumulation in the fermentor during fermentation (A) and before cleaning (B).



**Figure S2.2.** Top view of the fermentor. Massive aggregation of biomass with a conventional fermentor set up (A) in comparison to a biofilm-free bioreactor after optimization of the fermentor setup (B).

Table S2.2. Biomass concentration.

| Dilution rate (h <sup>-1</sup> ) | $C_x (g_{DW}/I_{broth})$ | $C_{x.out}(g_{DW}/I_{broth})$ |
|----------------------------------|--------------------------|-------------------------------|
| 0.045                            | $3.04 \pm 0.03$          | 3.03 ± 0.03                   |
| 0.087                            | $3.68 \pm 0.04$          | 3.57 ± 0.05                   |



Figure S2.3. CO<sub>2</sub> profile during chemostat phase: consecutive steady states.

# Table S2.3. Average biomass elemental composition of A. niger (calculation based on three different chemostats).

|                                   | C (mol <sub>c</sub> /Cmol <sub>x</sub> ) | H (mol <sub>H</sub> /Cmol <sub>X</sub> ) | N (mol <sub>N</sub> /Cmol <sub>X</sub> ) | O (mol <sub>o</sub> /Cmol <sub>x</sub> ) | P (mol <sub>P</sub> /Cmol <sub>X</sub> ) | MW      |
|-----------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|---------|
| Chemostat 1 D=0,05h <sup>-1</sup> | 1.0000                                   | 1.8062                                   | 0.1125                                   | 0.6624                                   | 0.0080                                   | 26.2529 |
| Chemostat 2 D=0,05h <sup>-1</sup> | 1.0000                                   | 1.8249                                   | 0.1120                                   | 0.6594                                   | 0.0074                                   | 26.1982 |
| Chemostat 2 D=0,10h <sup>-1</sup> | 1.0000                                   | 1.8331                                   | 0.1164                                   | 0.6284                                   | 0.0080                                   | 25.7915 |
| Chemostat 3 D=0,10h <sup>-1</sup> | 1.0000                                   | 1.8480                                   | 0.1389                                   | 0.6082                                   | 0.0099                                   | 25.8566 |
| Average                           | 1.0000                                   | 1.8280                                   | 0.1200                                   | 0.6396                                   | 0.0083                                   | 26.0248 |
| Standard error                    | 0.0000                                   | 0.0087                                   | 0.0064                                   | 0.0130                                   | 0.0005                                   | 0.1172  |







Figure S2.5. Distribution of carbon supplied as substrate (glucose).

Device specifications: Length of the loop: 105 cm Diameter: 8 mm Volume of the loop:  $\pi \times 0.4^2 \times 105 \approx 52$  ml Volume between broth inflow in loop and sampling device:  $\pi \times 0.4^2 \times 20 \approx 10$  ml Applied flow rate: 40 ml/s Residence time in whole loop:  $\tau = \frac{V}{F} = \frac{52 \text{ m}l}{40 \text{ ml/s}} = 1.3 \text{ s}$ Residence time between fermentor and sampling device:  $\tau = \frac{V}{F} = \frac{10 \text{ m}l}{40 \text{ ml/s}} = 0.25 \text{ s}$ Is glucose depleted during the circulation in the fast loop? D = 0.043 h<sup>-1</sup>(flow rate 0.193 l/h) [Glu]<sub>ex</sub> = 0.74 mg/l (at 0.043h<sup>-1</sup>) Consumption rate of glucose is calculated as R<sub>Glu</sub> = C<sub>S in</sub> x F<sub>in</sub> - C<sub>S out</sub> x F<sub>out</sub> = 7.5 g/l x 0.193 l/h - 0.74E-3 g/l x 0.193 l/h = 1.45 g/h  $t = \frac{0.74 \times 10^{-3} \text{g} \times 4.5 \times 3600 \text{ s}}{1.45 \text{ g}} = 8.27 \text{ s}$ 3% of the residual glucose was consumed during the 0.25 s in the loop.

Figure S2.6. Example calculation of glucose depletion in the broth loop.

Table S2.4. Biomass concentration inside the fermentor  $C_x$  and in samples from the sampling device  $C_{x,SD}$ .

| Dilution rate (h <sup>-1</sup> ) | $C_x (g_{DW}/I_{broth})$ | C <sub>x.SD</sub> (g <sub>DW</sub> /I <sub>broth</sub> ) |
|----------------------------------|--------------------------|----------------------------------------------------------|
| 0.043                            | 3.02 ± 0.03              | 2.84 ± 0.08                                              |
| 0.089                            | $3.25 \pm 0.04$          | $3.02 \pm 0.04$                                          |

**Table S2.5.** Measured metabolite amounts in different sample fractions ( $\mu$ mol/g<sub>DW</sub>) at dilution rate 0.043 h<sup>-1</sup>.Averages and standard errors of triplicate samples are shown. In light grey are measurements which werejudged to be inconsistent due to concentrations being close to the detection limit, and in (<), measurements</td>below the detection limit.

|       | IC 40%         | IC 50%                         | IC 60%                         | EC                     | WB                              | WB-EC                  | Recovery 40%             | Recovery 50%     | Recovery 60%     |
|-------|----------------|--------------------------------|--------------------------------|------------------------|---------------------------------|------------------------|--------------------------|------------------|------------------|
| G1P   | 0,070 ± 0,004  | 0,068 ± 0,006                  | 0,058 ± 0,005                  | 0,016 ± 0,001          | 0,103 ± 0,005                   | 0,086 ± 0,005          | 81,642 ± 6,563           | 78,582 ± 8,096   | 67,715 ± 6,727   |
| G6P   | 3,482 ± 0,131  | 3,452 ± 0,120                  | 2,955 ± 0,150                  | 0,302 ± 0,002          | 4,523 ± 0,368                   | 4,221 ± 0,368          | 82,484 ± 7,823           | 81,776 ± 7,673   | 70,000 ± 7,052   |
| F6P   | 0,843 ± 0,040  | 0,887 ± 0,024                  | 0,779 ± 0,052                  | 0,534 ± 0,013          | 1,695 ± 0,139                   | 1,161 ± 0,140          | 72,672 ± 9,379           | 76,473 ± 9,428   | 67,169 ± 9,254   |
| FBP   | 0,212 ± 0,023  | 0,167 ± 0,006                  | 0,112 ± 0,009                  | 0,035 ± 0,002          | 0,248 ± 0,032                   | 0,213 ± 0,032          | 99,601 ± 18,440          | 78,751 ± 12,288  | 52,682 ± 9,084   |
| GAP   | 0,018 ± 0,003  | 0,023 ± 0,004                  | 0,023 ± 0,002                  | 0,010 ± 0,001          | 0,060 ± 0,008                   | 0,050 ± 0,009          | 35,789 ± 8,122           | 45,340 ± 10,797  | 45,197 ± 8,526   |
| DHAP  | 0,238 ± 0,025  | 0,247 ± 0,011                  | 0,224 ± 0,024                  | 0,287 ± 0,010          | 0,701 ± 0,059                   | 0,414 ± 0,060          | 57,463 ± 10,380          | 59,611 ± 9,074   | 54,268 ± 9,806   |
| 3PG   | 0,542 ± 0,043  | 0,561 ± 0,052                  | 0,490 ± 0,044                  | 0,544 ± 0,009          | 1,322 ± 0,100                   | 0,778 ± 0,101          | 69,663 ± 10,568          | 72,105 ± 11,494  | 62,960 ± 9,909   |
| 2PG   | 0,049 ± 0,003  | 0,055 ± 0,003                  | 0,046 ± 0,005                  | 0,019 ± 0,001          | 0,086 ± 0,006                   | 0,067 ± 0,006          | 73,193 ± 7,450           | 81,908 ± 8,526   | 67,770 ± 9,495   |
| PEP   | 0,054 ± 0,007  | 0,067 ± 0,006                  | 0,060 ± 0,005                  | 0,015 ± 0,000          | 0,138 ± 0,010                   | 0,123 ± 0,010          | 43,535 ± 7,035           | 54,650 ± 6,748   | 48,826 ± 6,039   |
| Tre   | 66,730 ± 3,377 | 67,127 ± 1,542                 | 61,249 ± 1,947                 | 1,121 ± 0,005          | 76,736 ± 5,724                  | 75,614 ± 5,724         | 88,251 ± 8,036           | 88,776 ± 7,023   | 81,002 ± 6,651   |
| T6P   | 0,061 ± 0,007  | 0,062 ± 0,005                  | 0,046 ± 0,003                  | 0,015 ± 0,003          | 0,113 ± 0,013                   | 0,098 ± 0,014          | 62,261 ± 11,135          | 63,398 ± 10,084  | 46,708 ± 7,374   |
| G3P   | 0,147 ± 0,005  | 0,156 ± 0,004                  | 0,130 ± 0,005                  | 0,511 ± 0,004          | 0,652 ± 0,052                   | 0,141 ± 0,052          | 104,486 ± 39,061         | 110,344 ± 41,186 | 91,982 ± 34,451  |
| 6PG   | 0,283 ± 0,015  | 0,251 ± 0,014                  | 0,244 ± 0,013                  | 0,104 ± 0,005          | 0,533 ± 0,029                   | 0,430 ± 0,030          | 65,955 ± 5,744           | 58,370 ± 5,172   | 56,765 ± 4,923   |
| Rbu5P | 0.144 ± 0.003  | 0,149 ± 0,012                  | 0,126 ± 0,005                  | 0,087 ± 0,006          | 0,213 ± 0,014                   | 0.126 ± 0.016          | 114.314 ± 14.641         | 118,308 ± 17,863 | 100,426 ± 13,297 |
| Rib5P | 0,329 ± 0,010  | 0,311 ± 0,007                  | 0,260 ± 0,014                  | 1,958 ± 0,080          | 2,574 ± 0,224                   | 0,616 ± 0,238          | 53,375 ± 20,695          | 50,531 ± 19,558  | 42,269 ± 16,504  |
| XyI5P | 0,252 ± 0,009  | 0,255 ± 0,005                  | 0,206 ± 0,006                  | 0,046 ± 0,001          | 0,295 ± 0,035                   | 0,249 ± 0,035          | 101,262 ± 14,548         | 102,284 ± 14,390 | 82,799 ± 11,756  |
| S7P   | 1,102 ± 0,041  | 1,077 ± 0,031                  | 0,932 ± 0,041                  | 0,348 ± 0,005          | 1,639 ± 0,132                   | 1,291 ± 0,133          | 85,316 ± 9,309           | 83,419 ± 8,896   | 72,148 ± 8,063   |
|       | 0,008 ± 0,000  | 0,009 ± 0,000                  | 0,007 ± 0,000                  | 0,004 ± 0,000          | 0,010 ± 0,001                   | 0,006 ± 0,001          | 142,377 ± 26,536         | 153,965 ± 28,829 | 132,143 ± 24,980 |
| Cit   | 15,982 ± 0,723 | 16,012 ± 0,352                 | 13.579 ± 0.524                 | 0,310 ± 0,016          | 19,038 ± 1,549                  | 18,728 ± 1,549         | 85.337 ± 8.046           | 85,497 ± 7,318   | 72,507 ± 6,620   |
| iCit  | 0.215 ± 0.010  | 0.219 ± 0.007                  | 0.177 ± 0.004                  | 0,090 ± 0,003          | 0,344 ± 0,035                   | 0.255 ± 0.035          | 84.225 ± 12.134          | 85.897 ± 12.080  | 69.310 ± 9.600   |
| aKG   | 0,906 ± 0,087  | 0,926 ± 0,086                  | 0,828 ± 0,071                  | 0,051 ± 0,001          | 1,627 ± 0,133                   | 1,576 ± 0,133          | 57,504 ± 7,350           | 58,763 ± 7,380   | 52,511 ± 6,335   |
| Succ  | 0.649 ± 0.025  | 0,572 ± 0,026                  | 0.481 ± 0.030                  | 0,276 ± 0,046          | 0,944 ± 0,084                   | 0.667 ± 0.096          | 97,226 ± 14,436          | 85,756 ± 12,880  | 72,047 ± 11,270  |
| Fum   | 0,844 ± 0,034  | 0,740 ± 0,008                  | 0,762 ± 0,117                  | < ± 0,241              | 1,007 ± 0,087                   | - ± -                  | 83,855 ± 7,968           | 73,504 ± 6,394   | 75,731 ± 13,359  |
| Mal   | 3,203 ± 0,131  | 2,993 ± 0,018                  | 2,615 ± 0,150                  | 0,212 ± 0,018          | 4,009 ± 0,345                   | 3,797 ± 0,345          | 84,351 ± 8,414           | 78,825 ± 7,188   | 68,877 ± 7,412   |
| His   | 1,351 ± 0,050  | 1,339 ± 0,022                  | 1,127 ± 0,054                  | < ± <                  | 1,565 ± 0,156                   | - ± -                  | 86,307 ± 9,167           | 85,594 ± 8,643   | 72,036 ± 7,963   |
| lle   | 0,181 ± 0,003  | 0,174 ± 0,002                  | 0,145 ± 0,008                  | 0,014 ± 0,000          | 0,221 ± 0,018                   | 0,207 ± 0,018          | 87,145 ± 7,872           | 83,767 ± 7,482   | 69,909 ± 7,344   |
| Leu   | 0,272 ± 0,005  | 0,261 ± 0,002                  | 0.221 ± 0.013                  | 0.034 ± 0.007          | 0,342 ± 0,026                   | 0,308 ± 0,027          | 88,382 ± 8,095           | 84.848 ± 7.600   | 71,595 ± 7,704   |
| Lys   | 1,106 ± 0,032  | 1,106 ± 0,009                  | 0,934 ± 0,039                  | < ± <                  | 1,381 ± 0,184                   | - ± -                  | 80,075 ± 10,913          | 80,106 ± 10,692  | 67,633 ± 9,436   |
| Meth  | 0,106 ± 0,005  | 0,100 ± 0,002                  | 0,087 ± 0,004                  | 0,038 ± 0,002          | 0,151 ± 0,006                   | 0,113 ± 0,007          | 93,828 ± 6,949           | 88,556 ± 5,594   | 77,036 ± 5,541   |
| Phe   | 0,156 ± 0,005  | 0,146 ± 0,001                  | 0,127 ± 0,009                  | 0,021 ± 0,002          | 0,180 ± 0,014                   | 0,160 ± 0,007          | 97,708 ± 9,447           | 91,702 ± 8,513   | 79,716 ± 9,203   |
| Thr   | 1,636 ± 0,045  | 1,523 ± 0,031                  | 1,345 ± 0,072                  | 0,143 ± 0,004          | 2,149 ± 0,159                   | 2,006 ± 0,159          | 81,555 ± 6,832           | 75,949 ± 6,210   | 67,039 ± 6,414   |
| Trp   | 0,034 ± 0,001  | 0,032 ± 0,001                  | 0,028 ± 0,002                  | 0,145 ± 0,005<br>< ± < | 0,039 ± 0,003                   | - ± -                  | 86,784 ± 8,056           | 82,719 ± 7,581   | 71,458 ± 8,360   |
| Val   | 0,508 ± 0,016  | 0,473 ± 0,001                  | 0,410 ± 0,025                  | 0,000 ± 0,000          | 0,651 ± 0,055                   | 0,651 ± 0,056          | 78,065 ± 7,180           | 72,600 ± 6,334   | 63,031 ± 6,705   |
| Ala   | 8,068 ± 0,169  | 6,823 ± 0,003                  | 6,161 ± 0,406                  | 0,000 ± 0,000<br>< ± < | 11,271 ± 0,931                  | 0,031 ± 0,030<br>- ± - | 71,583 ± 6,100           | 60,531 ± 5,011   | 54,659 ± 5,777   |
| Asn   | 1,360 ± 0,061  | 1,405 ± 0,029                  | 1,169 ± 0,070                  | 0,055 ± 0,001          | 1,868 ± 0,151                   | 1,813 ± 0,151          | 74,980 ± 7,108           | 77,459 ± 6,657   | 64,477 ± 6,628   |
| Asp   | 6,707 ± 0,325  | 6,504 ± 0,117                  | 5.861 ± 0.401                  | 0,055 ± 0,001<br>< ± < | 9,954 ± 0,756                   | 1,815 ± 0,151<br>- ± - | 67.377 ± 6.069           | 65.336 ± 5.098   | 58,874 ± 6,015   |
| Cys   | 0,057 ± 0,001  | 0,054 ± 0,003                  | 0,047 ± 0,003                  | 0.025 ± 0.002          | 0,069 ± 0,005                   | 0.044 ± 0.005          | 129,281 ± 15,266         | 120,888 ± 15,720 | 106,447 ± 14,347 |
| GIn   | 26,219 ± 1,076 | 24,998 ± 0,548                 | 22,433 ± 1,291                 | 0,025 ± 0,002          | 36,259 ± 2,986                  | 0,044 ± 0,005          | 72,312 ± 6,654           | 68,944 ± 5,876   | 61,869 ± 6,216   |
| Glu   | 31,990 ± 1,683 | 30,454 ± 1,127                 | 26,904 ± 1,399                 | < ± <                  | 42,592 ± 3,537                  | · ± ·                  | 75,107 ± 7,383           | 71,502 ± 6,500   | 63,167 ± 6,189   |
| Gly   | 1,090 ± 0,052  | 0,953 ± 0,004                  | 0,845 ± 0,098                  | < ± <<br>< ± <         | 42,592 ± 3,537<br>1,675 ± 0,110 | · ± ·                  | 65,096 ± 5,280           | 56,888 ± 3,748   | 50,459 ± 6,730   |
| Pro   | 0,531 ± 0,018  |                                | 0,845 ± 0,098<br>0,431 ± 0,030 |                        | 0,771 ± 0,060                   |                        |                          | 58,679 ± 5,938   |                  |
| Ser   | 2,707 ± 0,125  | 0,488 ± 0,008<br>2,527 ± 0,045 | 2,265 ± 0,204                  | 0,060 ± 0,001<br>< ± < | 0,771 ± 0,060<br>> ± >          | 0,711 ± 0,060<br>- ± - | 74,664 ± 6,820           | - ± -            | 60,657 ± 6,652   |
|       |                |                                |                                |                        |                                 |                        | - ± -<br>104,288 ± 9,303 |                  |                  |
| Tyr   | 0,110 ± 0,003  | 0,104 ± 0,001                  | 0,090 ± 0,007                  | 0,017 ± 0,004          | 0,123 ± 0,008                   | 0,105 ± 0,009          | 104,200 I 9,303          | 98,720 ± 8,581   | 85,187 ± 10,012  |
|       |                |                                |                                |                        |                                 | Total                  | 79 + 10                  | 77 + 9           | 67 + 9           |

Total 79 ± 10 77 ± 9 67 ± 9

**Table S2.6.** Measured metabolite amounts in different sample fractions  $(\mu mol/g_{DW})$  at dilution rate 0.089 h<sup>-1</sup>. Averages and standard errors of triplicate samples are shown. In light grey are measurements which were judged to be inconsistent due to concentrations being close to the detection limit, and in (<), measurements

| . 1   | IC 40%          | IC 50%          | IC 60%          | EC            | WB              | WB-EC           | Recovery 40%      | Recovery 50%      | Recovery 60%      |
|-------|-----------------|-----------------|-----------------|---------------|-----------------|-----------------|-------------------|-------------------|-------------------|
| G1P   | 0,186 ± 0,005   | 0,178 ± 0,006   | 0,179 ± 0,006   | 0,025 ± 0,004 | 0,229 ± 0,014   | 0,204 ± 0,014   | 91,081 ± 6,937    | 87,160 ± 6,799    | 87,872 ± 6,892    |
| G6P   | 4,531 ± 0,031   | 4,277 ± 0,049   | 4,065 ± 0,090   | 0,355 ± 0,018 | 5,106 ± 0,077   | 4,751 ± 0,079   | 95,363 ± 1,721    | 90,024 ± 1,826    | 85,558 ± 2,367    |
| F6P   | 1,085 ± 0,016   | 1,016 ± 0,020   | 1,014 ± 0,023   | 0,278 ± 0,016 | 1,467 ± 0,050   | 1,189 ± 0,052   | 91,234 ± 4,228    | 85,419 ± 4,091    | 85,289 ± 4,206    |
| FBP   | 0,513 ± 0,019   | 0,533 ± 0,023   | 0,467 ± 0,001   | 0,077 ± 0,007 | 0,597 ± 0,027   | 0,520 ± 0,027   | 98,549 ± 6,308    | 102,506 ± 7,049   | 89,735 ± 4,740    |
| GAP   | 0,020 ± 0,001   | 0,022 ± 0,001   | 0,022 ± 0,002   | 0,015 ± 0,002 | 0,077 ± 0,005   | 0,062 ± 0,006   | 31,932 ± 3,815    | 35,898 ± 3,476    | 35,521 ± 4,257    |
| DHAP  | 0,391 ± 0,010   | 0,366 ± 0,014   | 0,447 ± 0,036   | 0,224 ± 0,017 | 0,734 ± 0,015   | 0,510 ± 0,022   | 76,673 ± 3,873    | 71,691 ± 4,228    | 87,634 ± 8,119    |
| 3PG   | 0,303 ± 0,006   | 0,294 ± 0,013   | 0,282 ± 0,002   | 0,347 ± 0,025 | 0,602 ± 0,011   | 0,255 ± 0,028   | 119,039 ± 13,208  | 115,258 ± 13,622  | 110,847 ± 12,144  |
| 2PG   | 0,078 ± 0,002   | 0,076 ± 0,002   | 0,084 ± 0,001   | 0,014 ± 0,002 | 0,097 ± 0,003   | 0,083 ± 0,003   | 94,320 ± 4,316    | 92,365 ± 4,517    | 101,596 ± 4,097   |
| PEP   | 0,218 ± 0,010   | 0,232 ± 0,014   | 0,264 ± 0,003   | 0,029 ± 0,005 | 0,273 ± 0,010   | 0,243 ± 0,011   | 89,398 ± 5,923    | 95,427 ± 7,124    | 108,293 ± 5,204   |
| Tre   | 74,253 ± 0,988  | 72,164 ± 1,252  | 72,346 ± 1,185  | 1,708 ± 0,214 | 73,848 ± 0,882  | 72,140 ± 0,908  | 102,929 ± 1,885   | 100,033 ± 2,144   | 100,286 ± 2,071   |
| T6P   | 0,248 ± 0,005   | 0,226 ± 0,003   | 0,206 ± 0,003   | 0,015 ± 0,001 | 0,281 ± 0,005   | 0,266 ± 0,005   | 93,365 ± 2,531    | 85,150 ± 1,830    | 77,655 ± 1,788    |
| G3P   | 0,876 ± 0,019   | 0,849 ± 0,026   | 0,906 ± 0,020   | 0,236 ± 0,012 | 1,076 ± 0,025   | 0,841 ± 0,028   | 104,278 ± 4,084   | 100,984 ± 4,535   | 107,835 ± 4,253   |
| 6PG   | 1,008 ± 0,046   | 0,972 ± 0,120   | 0,978 ± 0,012   | 0,238 ± 0,010 | 1,345 ± 0,019   | 1,107 ± 0,021   | 91,063 ± 4,526    | 87,783 ± 10,969   | 88,295 ± 2,035    |
| Rbu5P | 0,174 ± 0,008   | 0,173 ± 0,006   | 0,172 ± 0,012   | 0,053 ± 0,004 | 0,235 ± 0,004   | 0,182 ± 0,006   | 95,666 ± 5,240    | 95,117 ± 4,374    | 94,279 ± 7,347    |
| Rib5P | 0,385 ± 0,010   | 0,383 ± 0,007   | 0,366 ± 0,005   | 1,044 ± 0,034 | 1,492 ± 0,012   | 0,448 ± 0,036   | 85,851 ± 7,264    | 85,410 ± 7,021    | 81,569 ± 6,644    |
| XyI5P | 0,363 ± 0,013   | 0,366 ± 0,004   | 0,338 ± 0,007   | 0,056 ± 0,002 | 0,429 ± 0,005   | 0,373 ± 0,006   | 97,402 ± 3,836    | 98,147 ± 1,890    | 90,496 ± 2,309    |
| S7P   | 1,161 ± 0,004   | 1,116 ± 0,008   | 1,063 ± 0,015   | 0,191 ± 0,008 | 1,396 ± 0,020   | 1,205 ± 0,022   | 96,366 ± 1,776    | 92,567 ± 1,799    | 88,231 ± 2,045    |
| E4P   | 0,007 ± 0,000   | 0,008 ± 0,000   | 0,007 ± 0,001   | 0,002 ± 0,000 | 0,009 ± 0,000   | 0,007 ± 0,000   | 104,554 ± 6,401   | 111,946 ± 7,809   | 106,608 ± 10,800  |
| Cit   | 26,420 ± 0,274  | 25,289 ± 0,532  | 24,267 ± 0,242  | 0,641 ± 0,124 | 26,509 ± 0,387  | 25,868 ± 0,406  | 102,134 ± 1,920   | 97,761 ± 2,567    | 93,810 ± 1,744    |
| iCit  | 0.851 ± 0.014   | 0,835 ± 0,015   | 0,770 ± 0,015   | 0,045 ± 0,005 | 0,868 ± 0,014   | 0.823 ± 0.015   | 103,449 ± 2,550   | 101,439 ± 2,555   | 93,625 ± 2,462    |
| aKG   | 1,758 ± 0,025   | 1,647 ± 0,064   | 1,646 ± 0,044   | 0,050 ± 0,002 | 2,371 ± 0,044   | 2,321 ± 0,044   | 75,755 ± 1,798    | 70,984 ± 3,083    | 70,908 ± 2,332    |
|       | 1,921 ± 0,063   | 1,837 ± 0,081   | 1,643 ± 0,006   | 1,168 ± 0,462 | 1,698 ± 0,039   | 0,530 ± 0,464   | 362,502 ± 317,603 | 346,629 ± 303,876 | 310,072 ± 271,482 |
| Fum   | 1,054 ± 0,007   | 0,978 ± 0,008   | 0,920 ± 0,028   | 0,113 ± 0,022 | 1,119 ± 0,015   | 1,005 ± 0,027   | 104,844 ± 2,880   | 97,252 ± 2,716    | 91,532 ± 3,691    |
| Mal   | 3,871 ± 0,055   | 3,706 ± 0,028   | 3,389 ± 0,019   | 0,183 ± 0,050 | 4,313 ± 0,080   | 4,130 ± 0,094   | 93,737 ± 2,521    | 89,741 ± 2,162    | 82,060 ± 1,931    |
| His   | 4,090 ± 0,052   | 4,099 ± 0,053   | 4,039 ± 0,042   | < ± <         | 3,947 ± 0,139   | < ± <           | 103,629 ± 3,880   | 103,857 ± 3,896   | 102,340 ± 3,756   |
| lle   | 0,543 ± 0,015   | 0,576 ± 0,032   | 0,503 ± 0,011   | 0,053 ± 0,013 | 0,562 ± 0,014   | 0,509 ± 0,019   | 106,612 ± 4,918   | 113,104 ± 7,504   | 98,716 ± 4,267    |
| Leu   | 0,926 ± 0,016   | 0,965 ± 0,057   | 0,894 ± 0,020   | 0,098 ± 0,023 | 0,947 ± 0,021   | 0,849 ± 0,031   | 109,007 ± 4,357   | 113,585 ± 7,814   | 105,196 ± 4,475   |
| Lys   | 2,468 ± 0,079   | 2,375 ± 0,078   | 2,294 ± 0,055   | < ± <         | 2,281 ± 0,115   | < ± <           | 108,193 ± 6,488   | 104,156 ± 6,280   | 100,595 ± 5,626   |
| Meth  | 0,692 ± 0,016   | 0,663 ± 0,019   | 0,611 ± 0,025   | 0,184 ± 0,035 | > ± >           | - ± -           | - ± -             | - ± -             | - ± -             |
| Phe   | 0,342 ± 0,010   | 0,392 ± 0,038   | 0,351 ± 0,008   | 0,063 ± 0,014 | 0,331 ± 0,010   | 0,269 ± 0,017   | 127,355 ± 9,010   | 145,887 ± 16,789  | 130,535 ± 8,874   |
| Thr   | 4,814 ± 0,078   | 4,458 ± 0,072   | 4,164 ± 0,068   | 0,401 ± 0,047 | > ± >           | - ± -           | - ± -             | · ± ·             | - ± -             |
| Trp   | 0,123 ± 0,004   | 0,138 ± 0,007   | 0,129 ± 0,003   | < ± <         | 0,123 ± 0,003   | - ± -           | 100,718 ± 4,454   | 112,464 ± 6,702   | 105,547 ± 3,931   |
| Val   | 1,569 ± 0,028   | 1,523 ± 0,046   | 1,370 ± 0,023   | 0,189 ± 0,054 | 1,733 ± 0,035   | 1,544 ± 0,064   | 101,599 ± 4,602   | 98,649 ± 5,083    | 88,728 ± 3,980    |
| Ala   | 23,343 ± 0,620  | 21,152 ± 0,177  | 19,074 ± 0,591  | 1,646 ± 0,221 | 28,767 ± 0,823  | 27,121 ± 0,852  | 86,070 ± 3,542    | 77,990 ± 2,535    | 70,328 ± 3,103    |
| Asn   | 2,985 ± 0,079   | 2,729 ± 0,073   | 2,570 ± 0,057   | 0,197 ± 0,023 | 3,389 ± 0,051   | 3,192 ± 0,056   | 93,525 ± 2,969    | 85,494 ± 2,744    | 80,510 ± 2,265    |
| Asp   | 19,937 ± 0,725  | 17,965 ± 0,412  | 17,199 ± 0,605  | 0,754 ± 0,081 | 22,729 ± 0,556  | 21,975 ± 0,562  | 90,726 ± 4,033    | 81,752 ± 2,808    | 78,267 ± 3,404    |
| Cys   | 0,195 ± 0,010   | 0,184 ± 0,004   | 0,170 ± 0,005   | 0,025 ± 0,003 | 0,124 ± 0,006   | 0,099 ± 0,006   | 196,338 ± 16,445  | 185,142 ± 12,605  | 171,655 ± 12,416  |
| GIn   | 79,952 ± 2,407  | 74,322 ± 1,429  | 71,902 ± 2,218  | < ± <         | 88,295 ± 1,277  | - ± -           | 90,551 ± 3,025    | 84,175 ± 2,026    | 81,434 ± 2,775    |
| Glu   | 124,798 ± 2,297 | 116,271 ± 1,874 | 107,505 ± 2,757 | 3,189 ± 0,348 | 137,528 ± 2,330 | 134,339 ± 2,356 | 92,898 ± 2,362    | 86,550 ± 2,062    | 80,025 ± 2,486    |
| Gly   | 3,604 ± 0,077   | 3,512 ± 0,057   | 3,103 ± 0,021   | 0,797 ± 0,258 | 4,416 ± 0,100   | 3,619 ± 0,277   | 99,568 ± 7,902    | 97,020 ± 7,580    | 85,744 ± 6,580    |
| Pro   | 1,418 ± 0,033   | 1,328 ± 0,010   | 1,181 ± 0,025   | 0,159 ± 0,023 | 1,705 ± 0,039   | 1,546 ± 0,046   | 91,700 ± 3,433    | 85,916 ± 2,617    | 76,388 ± 2,774    |
| Ser   | 7,935 ± 0,171   | 7,670 ± 0,056   | 6,973 ± 0,128   | < ± <         | > ± >           | - ± -           | - ± -             | - ± -             | - ± -             |
| Tyr   | 0,329 ± 0,007   | 0,371 ± 0,021   | 0,334 ± 0,008   | 0,060 ± 0,016 | 0,323 ± 0,017   | 0,263 ± 0,023   | 124,909 ± 11,430  | 140,759 ± 14,746  | 126,707 ± 11,604  |
|       |                 |                 |                 |               |                 |                 |                   |                   |                   |
|       |                 |                 |                 |               |                 | Total           | 95 ± 4            | 93 ± 5            | 89 ± 4            |
|       |                 |                 |                 |               |                 | Total           |                   | 55 1 5            | 05 1 4            |

below the detection limit.



Fig. S3.1. Biomass and CO<sub>2</sub> formation and oxygen and substrate consumption profiles for maximum biomass specific conversion rates estimation during exponential batch phase in different carbon sources. Unreconciled cumulative amounts (=), reconciled rates (=).

|                   | Elemental composition                                                               | Cmol weight (g/Cmol) | Degree of reduction |
|-------------------|-------------------------------------------------------------------------------------|----------------------|---------------------|
| Glucose           | $C_1H_{1.79N_{0.14}O_{0.66}P_{0.015}S_{0.004}}$                                     | 27.93 ± 0.06         | 4.149               |
| Xylose            | $C_{1}H_{1.77}N_{0.13}O_{0.68}P_{0.014}S_{0.003}$                                   | $27.80 \pm 0.19$     | 4.108               |
| Arabinose         | ${\sf C}_1{\sf H}_{1.75}{\sf N}_{0.14}{\sf O}_{0.66}{\sf P}_{0.011}{\sf S}_{0.003}$ | $27.80 \pm 0.06$     | 4.083               |
| Galacturonic acid | $C_{1}H_{1.72}N_{0.14}O_{0.63}P_{0.011}S_{0.003}$                                   | $27.17 \pm 0.12$     | 4.113               |
| Mannose           | ${\sf C}_1{\sf H}_{1.75}{\sf N}_{0.15}{\sf O}_{0.65}{\sf P}_{0.018}{\sf S}_{0.004}$ | $28.00 \pm 0.00$     | 4.114               |
| Rhamnose          | $C_1 H_{1.67} N_{0.12} O_{0.67} P_{0.009} S_{0.003}$                                | 27.64 ± 0.10         | 4.033               |

 Table S3.1. Biomass elemental composition, molecular weight and degree of reduction for growth in six

 different carbon sources.



Fig. S3.2. Carbon dioxide production rate and oxygen consumption rate during batch phase in a mixture of six carbon sources (left) and maximum growth rate determination (right).



Fig. S3.3. Carbon concentration of residual carbon sources and calculated residual filtrate TOC for different dilution rates during sequential chemostat cultures.

| Table S3.2. Unreconciled and reconciled primary data at different dilution rates in the sequential chemostat |
|--------------------------------------------------------------------------------------------------------------|
| cultures.                                                                                                    |

|   |                               | Dilution rate (h <sup>-1</sup> ) |       |          |       |          |       |                   |                |                 |                |                  |       |                |       |          |       |         |       |                 |       |                 |                |
|---|-------------------------------|----------------------------------|-------|----------|-------|----------|-------|-------------------|----------------|-----------------|----------------|------------------|-------|----------------|-------|----------|-------|---------|-------|-----------------|-------|-----------------|----------------|
|   |                               | 0.0                              | 43    | 0.0      | 59    | 0.0      | 77    | 0.0               | 93             | 0.1             |                | ilution r<br>0.1 |       | ")<br>0.1      | 44    | 0.1      | 60    | 0.1     | 72    | 0.1             | 94    | 0.2             | 09             |
|   | Fout (L/h)                    | 0.191                            | 0.000 | 0.266    | 0.000 | 0.345    | 0.000 | 0.421             | 0.000          | 0.494           | 0.000          | 0.573            | 0.000 | 0.648          | 0.000 | 0,719    | 0.000 | 0.774   | 0.000 | 0.872           | 0.000 | 0.941           | 0.000          |
|   | Fin (L/h)                     | 0.190                            | 0.000 | 0.264    | 0,000 | 0.342    | 0,000 | 0.418             | 0,000          | 0.490           | 0,000          | 0.569            | 0,000 | 0.643          | 0,000 | 0.714    | 0,000 | 0,770   | 0,000 | 0.869           | 0,000 | 0.939           | 0.000          |
|   | Fgas (mmol/h)                 | 2678,6                           | 26.8  | 2678.6   | 26,8  | 2678.6   | 26.8  | 2678.6            | 26.8           | 2678.6          | 26.8           | 2678,6           | 26.8  | 2678.6         | 26.8  | 2678.6   | 26.8  | 2678.6  | 26,8  | 2678,6          | 26.8  | 2678.6          | 26,8           |
|   | Foffgas (mmol/h)              | 2679.8                           | 27.6  | 2680.8   | 27.6  | 2683.1   | 28.3  | 2685.4            | 27.6           | 2686.3          | 27.6           | 2687.9           | 26.9  | 2689.8         | 27.7  | 2692.3   | 27.7  | 2692.2  | 27.7  | 2689.5          | 27.7  | 2685.2          | 27.7           |
|   | 02_in (%)                     | 20.950                           | 0.000 | 20.950   | 0.000 | 20.950   | 0.000 | 20.950            | 0.000          | 20.950          | 0.000          | 20.950           | 0.000 | 20.950         | 0.000 | 20.950   | 0.000 | 20.950  | 0.000 | 20.950          | 0.000 | 20.950          | 0.000          |
|   | 02_out (%)                    | 19,367                           | 0,194 | 18,817   | 0,188 | 18,353   | 0,184 | 18.034            | 0,180          | 17,895          | 0.179          | 17,783           | 0.002 | 17,800         | 0.178 | 17,938   | 0,179 | 18,203  | 0,182 | 18,814          | 0,188 | 19,342          | 0,193          |
|   | CO2 in (%)                    | 0.048                            | 0.000 | 0.049    | 0.000 | 0.051    | 0.184 | 0.054             | 0.001          | 0.052           | 0.001          | 0.054            | 0.000 | 0.052          | 0.001 | 0.051    | 0.001 | 0.051   | 0.001 | 0.050           | 0.000 | 0.047           | 0.000          |
|   | CO2_out (%)                   | 1.667                            | 0.033 | 2.247    | 0.045 | 2,781    | 0.056 | 3,170             | 0.063          | 3.334           | 0.067          | 3,495            | 0.001 | 3.531          | 0.071 | 3.467    | 0.069 | 3,199   | 0.064 | 2,506           | 0.050 | 1.852           | 0.037          |
|   | Caluin (mmol/L)               | 12.615                           | 0,126 | 12.615   | 0.126 | 12,615   | 0.126 | 12.615            | 0.126          | 12,615          | 0.126          | 12.615           | 0.126 | 12,615         | 0.126 | 12,615   | 0.126 | 12,615  | 0.126 | 12.615          | 0,126 | 12,615          | 0.126          |
| - | Cxylin (mmol/L)               | 15,187                           | 0.152 | 15,187   | 0.152 | 15,187   | 0.152 | 15,187            | 0.152          | 15,187          | 0.152          | 15,187           | 0.152 | 15,187         | 0.152 | 15,187   | 0.152 | 15,187  | 0.152 | 15,187          | 0.152 | 15,187          | 0.152          |
|   | Carain (mmol/L)               | 15,187                           | 0.152 | 15,187   | 0.152 | 15,187   | 0.152 | 15,187            | 0.152          | 15,187          | 0.152          | 15,187           | 0.152 | 15,187         | 0.152 | 15,187   | 0.152 | 15,187  | 0.152 | 15,187          | 0.152 | 15,187          | 0.152          |
| 7 | Coalin (mmol/L)               | 11.620                           | 0.116 | 11.620   | 0,116 | 11.620   | 0.116 | 11.620            | 0.116          | 11.620          | 0.116          | 11.620           | 0.116 | 11.620         | 0.116 | 11.620   | 0.116 | 11.620  | 0.116 | 11.620          | 0.116 | 11.620          | 0.116          |
|   | Cmanin (mmol/L)               | 13.723                           | 0.137 | 13,723   | 0.137 | 13.723   | 0.137 | 13,723            | 0.137          | 13.723          | 0.137          | 13,723           | 0.137 | 13,723         | 0.137 | 13,723   | 0.137 | 13,723  | 0.137 | 13,723          | 0.137 | 13.723          | 0.137          |
|   | Crhain (mmol/L)               | 13,877                           | 0,139 | 13,877   | 0,139 | 13,877   | 0,139 | 13,877            | 0,139          | 13,877          | 0,139          | 13,877           | 0,139 | 13,877         | 0,139 | 13,877   | 0,139 | 13,877  | 0,139 | 13,877          | 0,139 | 13,877          | 0,139          |
|   | Ctoc (mCmol/L)                | 36,250                           | 0.372 | 34,542   | 0.362 | 31,236   | 0.343 | 13,984            | 0.257          | 33.674          | 0.733          | 22.832           | 1.243 | 31,869         | 1,463 | 37.029   | 1.870 | 30.414  | 3,512 | 38,904          | 6,081 | 46.028          | 7.320          |
|   | Caluout (mmol/L)              | 0,012                            | 0,002 | 0,015    | 0,002 | 0,025    | 0,004 | 0,043             | 0,004          | 0,085           | 0,003          | 0,054            | 0,004 | 0,053          | 0,004 | 0,079    | 0,008 | 0,152   | 0,012 | 0,547           | 0,022 | 1,393           | 0,054          |
|   | Caylout (mmol/L)              | 0.004                            | 0.000 | 0.005    | 0.001 | 0.013    | 0.000 | 0.084             | 0.009          | 0.206           | 0.017          | 0.584            | 0.045 | 0.728          | 0.089 | 1.402    | 0,153 | 3,821   | 0.332 | 8.218           | 0,715 | 9,445           | 0.822          |
|   | Caraout (mmol/L)              | 0,024                            | 0,001 | 0,039    | 0,001 | 0,095    | 0,000 | 0,231             | 0,003          | 0,870           | 0,013          | 1,795            | 0,052 | 1,926          | 0,033 | 3,764    | 0,014 | 6,761   | 0,101 | 11,950          | 0,179 | 13,032          | 0,195          |
|   | Cgalout (mmol/L)              | 0,050                            | 0,002 | 0,066    | 0,002 | 0,111    | 0,004 | 0,291             | 0,010          | 0,582           | 0,022          | 0,785            | 0,026 | 0,942          | 0,002 | 1,569    | 0,103 | 3,157   | 0,111 | 7,366           | 0,258 | 10,784          | 0,377          |
|   | Cmanout (mmol/L)              | 0,030                            | 0,002 | 0,033    | 0,006 | 0,056    | 0,005 | 0,107             | 0,015          | 0,138           | 0,015          | 0,131            | 0,010 | 0,126          | 0,012 | 0,293    | 0,032 | 0,448   | 0,052 | 2,160           | 0,269 | 4,529           | 0,439          |
|   | Crhaout (mmol/L)              | 0,028                            | 0,001 | 0,069    | 0,004 | 0,173    | 0,002 | 0,455             | 0,013          | 2,310           | 0,067          | 6,289            | 0,143 | 9,120          | 0,137 | 10,332   | 0,100 | 11,911  | 0,345 | 12,594          | 0,365 | 12,393          | 0,359          |
|   | Cdw (g/L)                     | 4,300                            | 0,127 | 4,917    | 0,062 | 5,027    | 0,068 | 5,415             | 0,143          | 5,147           | 0,105          | 4,632            | 0,156 | 4,625          | 0,288 | 4,480    | 0,302 | 4,437   | 0,141 | 2,658           | 0,168 | 2,013           | 0,138          |
|   | Mw (g/Cmol)                   | 27,300                           | 0,170 | 27,300   | 0,170 | 27,300   | 0,170 | 27,300            | 0,170          | 27,300          | 0,170          | 27,300           | 0,170 | 27,300         | 0,170 | 27,300   | 0,170 | 27,300  | 0,170 | 27,300          | 0,170 | 27,300          | 0,170          |
|   | Fout (L/h)                    | 0,191                            | 0,000 | 0,266    | 0,000 | 0,345    | 0,000 | 0,421             | 0,000          | 0,494           | 0,000          | 0,573            | 0,000 | 0,648          | 0,000 | 0,719    | 0,000 | 0,774   | 0,000 | 0,872           | 0,000 | 0,941           | 0,000          |
|   | Fin (L/h)                     | 0,190                            | 0,000 | 0,264    | 0,000 | 0,342    | 0,000 | 0,418             | 0,000          | 0,490           | 0,000          | 0,569            | 0,000 | 0,643          | 0,000 | 0,714    | 0,000 | 0,770   | 0,000 | 0,869           | 0,000 | 0,939           | 0,000          |
|   | Fgas (mmol/h)                 | 2723,6                           | 25,3  | 2717,0   | 24,7  | 2693,7   | 26,2  | 2723,0            | 25,7           | 2727,7          | 25,5           | 2524,2           | 18,3  | 2690,2         | 26,6  | 2686,0   | 26,6  | 2684,1  | 26,5  | 2680,8          | 26,7  | 2678,9          | 26,8           |
|   | Foffgas (mmol/h)              | 2725,6                           | 25,3  | 2719,8   | 24,7  | 2697,4   | 26,2  | 2727,7            | 25,6           | 2733,5          | 25,4           | 2532,7           | 18,4  | 2699,8         | 26,5  | 2696,5   | 26,6  | 2694,2  | 26,5  | 2687,4          | 26,7  | 2682,1          | 26,8           |
|   | 02_in (%)                     | 20,950                           | 0,000 | 20,950   | 0,000 | 20,950   | 0,000 | 20,950            | 0,000          | 20,950          | 0,000          | 20,950           | 0,000 | 20,950         | 0,000 | 20,950   | 0,000 | 20,950  | 0,000 | 20,950          | 0,000 | 20,950          | 0,000          |
|   | 02_out (%)                    | 19,280                           | 0,026 | 18,713   | 0,029 | 18,007   | 0,049 | 17,791            | 0,051          | 17,633          | 0,052          | 17,775           | 0,002 | 17,703         | 0,065 | 17,818   | 0,065 | 18,084  | 0,059 | 18,689          | 0,049 | 19,243          | 0,039          |
|   | CO2_in (%)                    | 0,048                            | 0,000 | 0,049    | 0,000 | -0,243   | 0,070 | 0,054             | 0,001          | 0,052           | 0,001          | 0,054            | 0,000 | 0,052          | 0,001 | 0,051    | 0,001 | 0,051   | 0,001 | 0,050           | 0,000 | 0,047           | 0,000          |
|   | CO2_out (%)                   | 1,775                            | 0,025 | 2,368    | 0,029 | 2,808    | 0,053 | 3,347             | 0,051          | 3,538           | 0,051          | 3,493            | 0,001 | 3,579          | 0,064 | 3,490    | 0,063 | 3,213   | 0,058 | 2,506           | 0,048 | 1,849           | 0,036          |
|   | g Cgluin (mmol/L)             | 12,550                           | 0,125 | 12,557   | 0,125 | 12,592   | 0,126 | 12,540            | 0,125          | 12,523          | 0,125          | 12,576           | 0,125 | 12,587         | 0,126 | 12,594   | 0,126 | 12,597  | 0,126 | 12,604          | 0,126 | 12,613          | 0,126          |
|   | 8 Cxylin (mmol/L)             | 15,107                           | 0,151 | 15,116   | 0,151 | 15,159   | 0,152 | 15,096            | 0,151          | 15,075          | 0,151          | 15,140           | 0,151 | 15,152         | 0,152 | 15,161   | 0,152 | 15,164  | 0,151 | 15,173          | 0,151 | 15,184          | 0,152          |
|   | p Carain (mmol/L)             | 15,107                           | 0,151 | 15,116   | 0,151 | 15,159   | 0,152 | 15,096            | 0,151          | 15,075          | 0,151          | 15,140           | 0,151 | 15,152         | 0,152 | 15,161   | 0,152 | 15,164  | 0,151 | 15,173          | 0,151 | 15,184          | 0,152          |
| 7 | 🗧 Cgalin (mmol/L)             | 11,564                           | 0,116 | 11,571   | 0,115 | 11,602   | 0,116 | 11,557            | 0,116          | 11,543          | 0,115          | 12,134           | 0,102 | 11,596         | 0,116 | 11,603   | 0,116 | 11,605  | 0,116 | 11,612          | 0,116 | 11,618          | 0,116          |
|   | 🗧 Cmanin (mmol/L)             | 13,645                           | 0,136 | 13,654   | 0,136 | 13,696   | 0,137 | 13,634            | 0,136          | 13,614          | 0,136          | 13,677           | 0,136 | 13,689         | 0,137 | 13,698   | 0,137 | 13,701  | 0,136 | 13,710          | 0,137 | 13,720          | 0,137          |
|   | 🖁 Crhain (mmol/L)             | 13,797                           | 0,138 | 13,806   | 0,137 | 13,848   | 0,138 | 13,784            | 0,138          | 13,763          | 0,137          | 13,439           | 0,135 | 13,841         | 0,138 | 13,850   | 0,138 | 13,853  | 0,138 | 13,862          | 0,138 | 13,873          | 0,138          |
|   | Ctoc (mCmol/L)                | 36,347                           | 0,371 | 34,623   | 0,361 | 31,265   | 0,343 | 14,037            | 0,257          | 34,202          | 0,728          | 25,205           | 1,220 | 32,522         | 1,450 | 37,829   | 1,846 | 32,883  | 3,109 | 43,362          | 4,893 | 47,657          | 5,424          |
|   | Cgluout (mmol/L)              | 0,013                            | 0,002 | 0,015    | 0,002 | 0,025    | 0,004 | 0,043             | 0,004          | 0,085           | 0,003          | 0,054            | 0,004 | 0,053          | 0,004 | 0,079    | 0,008 | 0,152   | 0,012 | 0,548           | 0,022 | 1,393           | 0,054          |
|   | Cxylout (mmol/L)              | 0,004                            | 0,000 | 0,005    | 0,001 | 0,013    | 0,000 | 0,084             | 0,009          | 0,208           | 0,017          | 0,589            | 0,045 | 0,740          | 0,089 | 1,428    | 0,153 | 3,931   | 0,324 | 8,520           | 0,670 | 9,540           | 0,761          |
|   | Caraout (mmol/L)              | 0,024                            | 0,001 | 0,039    | 0,001 | 0,095    | 0,000 | 0,231             | 0,003          | 0,871           | 0,013          | 1,800            | 0,052 | 1,928          | 0,033 | 3,764    | 0,014 | 6,771   | 0,101 | 11,969          | 0,179 | 13,037          | 0,195          |
|   | Cgalout (mmol/L)              | 0,050                            | 0,002 | 0,066    | 0,002 | 0,111    | 0,004 | 0,291             | 0,010          | 0,585           | 0,022          | 0,759            | 0,026 | 0,942          | 0,002 | 1,583    | 0,103 | 3,171   | 0,110 | 7,407           | 0,255 | 10,797          | 0,369          |
|   | Cmanout (mmol/L)              | 0,030<br>0.028                   | 0,002 | 0,033    | 0,006 | 0,056    | 0,005 | 0,108<br>0,456    | 0,015<br>0.013 | 0,139<br>2,336  | 0,015<br>0.067 | 0,131<br>6,756   | 0,010 | 0,126<br>9,154 | 0,012 | 0,294    | 0,032 | 0,451   | 0,052 | 2,211<br>12.695 | 0,265 | 4,562<br>12,419 | 0,426<br>0,352 |
|   | Crhaout (mmol/L)<br>Cdw (g/L) | 4,711                            | 0.001 | 5.005    | 0.058 | 5.070    | 0.002 | 6.021             | 0.098          | 2,336           | 0.067          | 6.026            | 0,139 | 5,555          | 0,136 | 5,244    | 0,100 | 4.582   | 0,332 | 2,783           | 0,357 | 2.034           | 0,352          |
|   |                               | 27.171                           | 0,036 | 27,179   | 0,050 | 27.251   | 0,067 | 27.111            | 0,036          | 5,545<br>27.086 | 0,060          | 26,931           | 0,070 | 27.234         | 0,105 | 27.253   | 0,105 | 4,502   | 0,103 | 27,287          | 0,134 | 27.298          | 0,123          |
|   | Mw (g/Cmol)                   | 41,111                           | 0,168 | : 21,113 | 0,167 | : 41,251 | 0,169 | ; <u>6</u> f, []] | 0,107          | : 2 r,086       | U, 166         | 20,331           | 0,100 | : 21,234       | 0,163 | : 21,253 | 0,163 | :21,264 | 0,168 | 21,287          | 0,170 | : 21,238        | 0,170          |

| Dilution rate<br>(h <sup>-1</sup> ) | Glucose (mM) |   |       | Xylose (mM) |   |       | Arabin | Arabinose (mM) |       |        | cid ( | mM)   | Manı  | nose | (mM)  | Rhamnose (mM) |   |       |
|-------------------------------------|--------------|---|-------|-------------|---|-------|--------|----------------|-------|--------|-------|-------|-------|------|-------|---------------|---|-------|
| 0.043                               | 0.012        | ± | 0.002 | 0.004       | ± | 0.000 | 0.024  | ±              | 0.001 | 0.050  | ±     | 0.002 | 0.030 | ±    | 0.002 | 0.028         | ± | 0.001 |
| 0.059                               | 0.015        | ± | 0.002 | 0.005       | ± | 0.001 | 0.039  | ±              | 0.001 | 0.066  | ±     | 0.002 | 0.033 | ±    | 0.006 | 0.069         | ± | 0.004 |
| 0.077                               | 0.025        | ± | 0.004 | 0.013       | ± | 0.000 | 0.095  | ±              | 0.000 | 0.111  | ±     | 0.004 | 0.056 | ±    | 0.005 | 0.173         | ± | 0.002 |
| 0.093                               | 0.043        | ± | 0.004 | 0.084       | ± | 0.009 | 0.231  | ±              | 0.003 | 0.291  | ±     | 0.010 | 0.107 | ±    | 0.015 | 0.455         | ± | 0.013 |
| 0.110                               | 0.085        | ± | 0.003 | 0.206       | ± | 0.017 | 0.870  | ±              | 0.013 | 0.582  | ±     | 0.022 | 0.138 | ±    | 0.015 | 2.310         | ± | 0.067 |
| 0.127                               | 0.054        | ± | 0.004 | 0.584       | ± | 0.045 | 1.795  | ±              | 0.052 | 0.785  | ±     | 0.026 | 0.131 | ±    | 0.010 | 6.289         | ± | 0.143 |
| 0.144                               | 0.053        | ± | 0.004 | 0.728       | ± | 0.089 | 1.926  | ±              | 0.033 | 0.942  | ±     | 0.002 | 0.126 | ±    | 0.012 | 9.120         | ± | 0.137 |
| 0.160                               | 0.079        | ± | 0.008 | 1.402       | ± | 0.153 | 3.764  | ±              | 0.014 | 1.569  | ±     | 0.103 | 0.293 | ±    | 0.032 | 10.332        | ± | 0.100 |
| 0.172                               | 0.152        | ± | 0.012 | 3.821       | ± | 0.332 | 6.761  | ±              | 0.101 | 3.157  | ±     | 0.111 | 0.448 | ±    | 0.052 | 11.911        | ± | 0.345 |
| 0.194                               | 0.547        | ± | 0.022 | 8.218       | ± | 0.715 | 11.950 | ±              | 0.179 | 7.366  | ±     | 0.258 | 2.160 | ±    | 0.269 | 12.594        | ± | 0.365 |
| 0.209                               | 1.393        | ± | 0.054 | 9.445       | ± | 0.822 | 13.032 | ±              | 0.195 | 10.784 | ±     | 0.377 | 4.529 | ±    | 0.439 | 12.393        | ± | 0.359 |

 Table S3.3. Residual substrate concentration for six carbon sources at different dilution rates in the sequential chemostat cultivation.



Fig. S3.4. Biomass specific uptake rates of glucose (A), mannose (B) and xylose (C) in the multi substrate sequential chemostat cultivation, plotted against their respective residual concentrations. The solid lines represents the modelling of the uptake rates of the three substrates according to competition for the same transport system.



Fig. S3.5. The biomass specific uptake rates of xylose (A), arabinose (B) galacturonic acid (C) and rhamnose
(D) in the multi substrate sequential chemostat cultivation, plotted against their respective residual concentrations. The solid lines represent the modelling of the uptake rates according to catabolite repression by glucose (in case of xylose, arabinose and galacturonic acid) and arabinose (in case of rhamnose).

# **Appendix Chapter 4**



Fig. S4.1. Galacturonic acid fraction of different species depending on extracellular pH.



Fig. S4.2. Fungal catabolic pathway of glucose, xylose, arabinose, galacturonic acid, mannose and rhamnose.

## **Table S4.1.** Input data and flux analysis results for dilution rate $D = 0.043h^{-1}$ .

|                  | te or the | fluxes (  | mmol/h)  | Input rates  | (mmol/h)  |           | Corresp    | onding         | covarian | ce matri | x          |          |          |          |         |         |
|------------------|-----------|-----------|----------|--------------|-----------|-----------|------------|----------------|----------|----------|------------|----------|----------|----------|---------|---------|
| v est 1          | Values    | Variances | Serr     | r_m 1        | Values    |           | Pm 1       | ara:ext        | BIOMasp: | CO2:ext  | D-galac:ex | glc:ext  | Lrha:ext | mann:ext | O2:ext  | xyl:ext |
| ATP GTP Ptrans   | 6.21E-02  | 4.87E-06  | 0.002207 | ara:ext      | -2.868    |           | ara:ext    | 0.011          |          | 0        |            |          | 0.00482  | 0.00475  | 0       |         |
| C120syn          | 2.77E-03  | 9.69E-09  | 9.84E-05 | BIOMasp:cyt  | 37.01     |           | BIOMasp:   | -0.0673        | 1.71     | 0        | -0.0512    | -0.0558  | -0.0615  | -0.0606  | 0       | -0.067  |
| C140syn          | 3.22E-03  | 1.31E-08  | 0.000114 | CO2:ext      | 43.4      |           | CO2:ext    | 0              | 0 0      | 2.02     | 0          | 0        | 0        | 0        | -0.235  |         |
| C141syn          | 1.39E-03  | 2.42E-09  | 4.92E-05 | D-galac:ext  | -2.183    |           | D-galac:e: | 0.00401        | -0.0512  | 0        | 0.00627    | 0.00333  | 0.00367  | 0.00362  | 0       | 0.0040  |
| C160syn          | 2.27E-02  | 6.50E-07  | 0.000806 | glc:ext      | -2.379    |           | glc:ext    | 0.00437        | -0.0558  | 0        | 0.00333    | 0.00684  | 0.004    | 0.00394  | 0       | 0.0043  |
| C161syn          |           |           | 0.000115 | Lrha:ext     | -2.622    |           | Lrha:ext   | 0.00482        | -0.0615  | 0        |            | 0.004    | 0.00762  | 0.00434  | 0       |         |
| C162syn          | 9.24E-04  | 1.08E-09  | 3.28E-05 | mann:ext     | -2.584    |           | mann:ext   | 0.00475        | -0.0606  | 0        | 0.00362    | 0.00394  | 0.00434  | 0.00749  | 0       | 0.0047  |
| C180syn          | 1.04E-01  | 1.35E-05  | 0.003678 | O2:ext       | -42.16    |           | 02:ext     | 0              | 0 0      | -0.235   | 0          | 0        | 0        | 0        | 42.9    | 1       |
| C181CoA syn      |           |           | 0.000434 | xyl:ext      | -2.872    |           | xyl:ext    | 0.00528        |          | 0        | 0.00402    | 0.00438  | 0.00483  | 0.00476  | 0       |         |
| C181syn          |           |           | 0.003558 |              |           |           |            |                |          |          |            |          |          |          |         |         |
|                  |           |           |          | Description  |           | -1/1-1    | C          | and the second |          |          |            |          |          |          |         |         |
| C182syn          |           |           | 0.001532 | Reconciled   | rates (mm | ioi/n)    | Corresp    | onding         | covarian | ce matri | x          |          |          |          |         |         |
| C183syn          |           |           | 0.000133 |              |           |           |            |                |          | <u>.</u> |            |          |          |          | a       |         |
| C200syn          |           |           | 2.46E-05 | r_m est 1    | Values    |           | Pr_m 1     | ara:ext        |          | CO2:ext  |            |          | Lrha:ext |          |         | xyl:ext |
| CLsyn            | 1.72E-03  | 3.75E-09  | 6.12E-05 | ara:ext      | -2.713    |           | ara:ext    | 0.008166       | -0.05968 | -0.04575 | 0.001912   | 0.002123 | 0.002387 | 0.002347 | 0.0401  | 0.00244 |
| DAGLYsyn         |           |           | 0.001718 | BIOMasp:cyt  | 36.58     |           | BIOMasp:   | -0.05968       | 1.689    | 0.1283   | -0.04555   | -0.04976 | -0.05497 | -0.05414 | 0.02938 | -0.0597 |
| DGDG syn         | 7.75E-03  | 7.59E-08  | 0.000275 | CO2:ext      | 46        |           | CO2:ext    | -0.04575       | 0.1283   | 1.219    | -0.03399   | -0.03629 | -0.03923 | -0.0388  | -1.194  | -0.045  |
| GDPMANsyn        | 6.21E-02  | 4.87E-06  | 0.002207 | D-galac:ext  | -2.067    |           | D-galac:e: | 0.001912       | -0.04555 | -0.03399 | 0.004717   | 0.001666 | 0.001869 | 0.001841 | 0.02645 | 0.0019  |
| MAGLYsyn         | 5.71E-02  | 4.12E-06  | 0.00203  | glc:ext      | -2.256    |           | glc:ext    | 0.002123       | -0.04976 | -0.03629 | 0.001666   | 0.005058 | 0.002071 | 0.002035 | 0.03155 | 0.0021  |
| MGC181 syn       | 1.22E-02  | 1.88E-07  | 0.000434 | Lrha:ext     | -2.488    |           | Lrha:ext   | 0.002387       | -0.05497 | -0.03923 | 0.001869   | 0.002071 | 0.005532 | 0.002277 | 0.03558 | 0.00239 |
| MGDG syn         | 3.74E-02  | 1.77E-06  | 0.001329 | mann:ext     | -2.452    |           | mann:ext   | 0.002347       | -0.05414 | -0.0388  | 0.001841   | 0.002035 | 0.002277 | 0.005453 | 0.03362 | 0.00235 |
| r1.1             |           | 0.005058  |          | O2:ext       | -42.15    |           | O2:ext     | 0.0401         |          | -1.194   |            | 0.03155  |          |          | 1.188   |         |
| r1.2             | -7.048    |           | 0.258786 | xyl:ext      | -2.716    |           | xyl:ext    | 0.002443       |          | -0.0458  |            |          | 0.002394 |          |         |         |
| r1.3             | 3.041     |           | 0.115585 |              |           |           |            |                |          |          |            |          |          |          |         |         |
|                  |           |           |          | Calculated   | ator Imm  | ol /h     | Correct    | onding         | couprise | co motol | ~          |          |          |          |         |         |
| r1.4             | 3.041     |           | 0.115585 | Calculated r | aces (mm  | 01/11)    | corresp    | Jonding        | covarian | ce matri | •          |          |          |          |         |         |
| r1.5             | 11.63     | 0.07783   |          |              |           |           | _          |                |          |          |            |          |          |          |         |         |
| r1.6             | 11.63     | 0.07783   |          | r_c est 1    | Values    |           | Pr_c1      | H:ext          |          | NH4:ext  |            | SO4:ext  |          |          |         |         |
| r1.7             | 11.21     |           | 0.276442 | H:ext        | 1.672     |           | H:ext      | 0.01765        |          |          |            | -0.00023 |          |          |         |         |
| r1.8             | 11.21     | 0.07642   |          | H2O:ext      | 55.21     |           | H2O:ext    | 0.06171        |          | -0.06707 | -0.00192   | -0.00079 |          |          |         |         |
| r1.9             | 10.87     |           | 0.274991 | NH4:ext      | -4.064    |           | NH4:ext    | -0.01918       |          | 0.02085  |            | 0.000245 |          |          |         |         |
| r10.1            | 192.1     | 26.39     | 5.13712  | Pi:ext       | -0.116    |           | Pi:ext     | -0.00055       | -0.00192 | 0.000595 | 1.70E-05   | 6.99E-06 |          |          |         |         |
| r10.10           | 0.1028    | 1.33E-05  | 0.003651 | SO4:ext      | -0.04774  |           | SO4:ext    | -0.00023       | -0.00079 | 0.000245 | 6.99E-06   | 2.88E-06 |          |          |         |         |
| r10.11           | 16.47     | 0.1324    | 0.363868 |              |           |           |            |                |          |          |            |          |          |          |         |         |
| r10.12           | 37.83     | 1.124     | 1.060189 |              |           |           |            |                |          |          |            |          |          |          |         |         |
|                  |           |           |          | Best estima  | to of the | fluxos (n | nmol/h)    | continue       | od       |          |            |          |          |          |         |         |
| r10.13           |           |           | 0.005594 | Destestina   | te or the | iuxes (ii | 111101/11) | continu        | eu       |          |            |          |          |          |         |         |
| r10.14           | 4.821     |           | 0.171289 |              |           |           |            |                |          |          |            |          |          |          |         |         |
| r10.15           |           |           | 0.003651 | v est 1      |           | Variances |            |                | vest 1   |          | Variances  | Serr     |          |          |         |         |
| r10.16           |           |           | 0.012398 | r16.13       |           | 8.60E-05  |            |                | r4.7     | 11.07    |            | 0.363731 |          |          |         |         |
| r10.17           |           |           | 0.004941 | r16.14       | 4.35E-02  |           | 0.001546   |                | r4.8     | 11.07    |            | 0.363731 |          |          |         |         |
| r10.18           |           |           | 0.003807 | r16.15       | 4.35E-02  | 2.39E-06  | 0.001546   | i              | r4.9     | 11.07    | 0.1323     | 0.363731 |          |          |         |         |
| r10.19           | 0.1827    | 4.21E-05  | 0.00649  | r16.16       | 9.90E-03  | 1.24E-07  | 0.000352   | 2              | r5.1     | 1.21     | 0.001846   | 0.042965 |          |          |         |         |
| r10.3            | 154.6     | 16.65     | 4.080441 | r16.2        | 1.10E-01  | 1.54E-05  | 0.003922   | 2              | r5.2     | 3.77     | 0.01794    | 0.13394  |          |          |         |         |
| r10.5            | 191.5     | 26.4      | 5.138093 | r16.3        | 0.1164    | 1.71E-05  | 0.004135   | ;              | r5.3     | 4.317    | 0.02352    | 0.153362 |          |          |         |         |
| r10.6            | 1.051     | 0.001393  | 0.037323 | r16.4        | 0.1164    | 1.71E-05  | 0.004135   | 5              | r6.1     | 52.53    | 1.979      | 1.406769 |          |          |         |         |
| r10.7            | 0.1072    | 1.45E-05  | 0.003807 | r16.5        | 5.33E-02  | 3.58E-06  | 0.001892   |                | r6.2     | 19.97    | 0.2161     | 0.464866 |          |          |         |         |
| r10.8            | 0.5045    | 0.000321  | 0.017922 | r16.6        | 5.33E-02  | 3.58E-06  | 0.001892   |                | r6.3     | 11.07    | 0.1323     | 0.363731 |          |          |         |         |
| r10.9            |           |           | 0.003651 | r16.7        | 5.33E-02  |           | 0.001892   |                | r6.4     | 181.3    |            | 4.781213 |          |          |         |         |
| r11.1            | 2.943     |           | 0.104547 | r16.8        |           | 3.13E-06  |            |                | r7.12    |          | 0.008166   |          |          |          |         |         |
| r11.10           |           | 3.09E-05  |          | r16.9        |           | 3.09E-06  |            |                | r7.13    |          | 0.008166   |          |          |          |         |         |
| r11.10           |           |           | 0.001696 | r17.2        |           | 0.000472  |            |                | r7.14    |          | 0.008166   |          |          |          |         |         |
|                  |           |           |          |              |           |           |            |                |          |          |            |          |          |          |         |         |
| r11.12           |           |           | 0.001696 | r17.3        |           | 3.98E-05  |            |                | r7.16    |          | 0.005453   |          |          |          |         |         |
| r11.13           |           |           | 0.000968 | r17.4        | 0.1776    |           | 0.006309   |                | r7.17    |          | 0.005453   |          |          |          |         |         |
| r11.14           |           |           | 0.000968 | r17.5        |           | 0.003151  |            |                | r7.18    |          | 0.004717   | 0.06868  |          |          |         |         |
| r11.15           |           | 5.30E-07  |          | r17.6        | 3.95E-02  | 1.97E-06  |            |                | r7.19    | 2.067    | 0.004717   | 0.06868  |          |          |         |         |
| r11.16           |           | 0.000555  |          | r17.7        | 3.95E-02  | 1.97E-06  |            |                | r7.2     | 5.07E-02 | 3.24E-06   | 0.0018   |          |          |         |         |
| r11.17           | 5.42E-02  | 3.71E-06  | 0.001927 | r17.8        | 2.96E-01  | 0.000111  | 0.010517   | 1              | r7.20    | 2.07E+00 | 0.004717   | 0.06868  |          |          |         |         |
| r11.18           |           |           | 0.009255 | r2.1         | 7.684     | 0.05595   | 0.236538   | 3              | r7.21    |          | 0.004717   | 0.06868  |          |          |         |         |
| r11.19           | 0.2333    | 6.87E-05  | 0.008287 | r2.2         | 7.684     | 0.05595   | 0.236538   | 3              | r7.22    | 2.067    | 0.004717   | 0.06868  |          |          |         |         |
| r11.2            | 1.014     | 0.001298  | 0.036028 | r2.3         | 4.476     | 0.01558   | 0.12482    |                | r7.23    | 1.615    | 0.003849   | 0.06204  |          |          |         |         |
| r11.20           |           |           | 0.002578 | r2.4         | 3.06      | 0.01289   | 0.113534   | 1              | r7.24    | 1.612    | 0.003844   | 0.062    |          |          |         |         |
| r11.21           |           |           | 0.003651 | r2.5         | 4.476     | 0.01558   |            |                | r7.25    |          | 0.005532   |          |          |          |         |         |
| r11.22           |           |           | 0.009523 | r2.6         | 4.476     | 0.01558   |            |                | r7.26    |          | 0.005532   |          |          |          |         |         |
| r11.23           |           |           | 0.011432 | r2.7         | 4.013     | 0.01247   |            |                | r7.27    |          | 0.005532   |          |          |          | -       | -       |
| r11.24           |           | 2.44E-05  |          | r23.1        | 1.022     | 0.001318  |            |                | r7.28    | 2.488    |            |          | -        |          |         | 1       |
| r11.24           |           | 4.21E-05  |          | r23.10       | 2.92E-03  |           |            |                | r7.29    | 2.488    |            |          |          |          |         |         |
| r11.25           |           | 4.21E-05  |          | r23.10       | 2.92E-03  |           |            |                | r7.30    |          | 0.005532   |          |          |          |         |         |
| r11.20<br>r11.27 |           |           | 0.005927 |              |           |           | 0.000104   |                |          |          |            |          |          |          |         |         |
|                  |           |           |          | r23.12       | 2.92E-03  |           |            |                | r7.6     | 2.716    |            | 0.090333 |          |          |         |         |
| r11.28           |           |           | 0.002876 | r23.14       | 2.92E-03  |           | 0.000104   |                | r7.7     | 5.429    |            | 0.145637 |          |          |         |         |
| r11.29           |           | 3.57E-06  |          | r23.15       | 1.61E-02  |           | 0.000573   |                | r7.8     | 5.429    |            | 0.145637 |          |          |         |         |
| r11.3            |           |           | 0.004066 | r23.16       |           | 2.58E-05  |            |                | r8.1     |          | 1.31E-05   |          |          |          | · · · · |         |
| r11.30           |           |           | 0.001161 | r23.17       |           | 0.000177  |            |                | r8.2     |          | 2.64E-07   |          |          |          |         |         |
| r11.31           |           |           | 0.005282 | r23.18       |           | 8.50E-05  |            |                | r8.3     |          | 6.04E-06   |          |          |          |         |         |
| r11.32           | 5.32E-02  | 3.57E-06  | 0.00189  | r23.19       | 2.03E-02  | 5.20E-07  | 0.000721   |                | r8.4     |          | 2.59E-06   |          |          |          |         |         |
| r11.4            | 1.07E-01  | 1.45E-05  | 0.003807 | r23.2        | 1.46E-01  | 2.68E-05  | 0.005181   |                | r8.5     | 4.53E-02 | 2.59E-06   | 0.00161  |          |          |         |         |
| r11.5            | 0.1072    | 1.45E-05  |          | r23.21       | 0.9866    | 0.001229  | 0.035057   | /              | r9.1     | 1.46E+01 | 0.1602     | 0.40025  |          |          |         |         |
| r11.6            |           |           | 0.003807 | r23.22       |           | 0.001229  |            | ,              | r9.15    | 55.21    |            | 1.169188 |          |          |         |         |
| r11.7            |           |           | 0.006001 | r23.23       |           | 0.001229  |            |                | r9.19    |          |            | 0.090333 | -        |          |         |         |
| r11.8            |           |           | 0.006001 | r23.3        |           | 2.02E-05  |            |                | r9.2     |          |            | 0.004123 |          |          |         |         |
| r11.9            |           |           | 0.015007 | r23.4        |           | 1.15E-05  |            |                | r9.3     |          |            | 0.07112  |          |          |         |         |
|                  |           |           |          |              |           |           |            |                |          |          |            |          |          |          | 1       |         |
| r13.1            |           |           | 0.001229 | r23.6        |           | 1.08E-08  |            |                | r9.32    |          |            | 0.06868  |          |          |         |         |
| r13.2            |           |           | 0.000558 | r23.7        |           | 1.08E-08  |            |                | R9.35    |          |            | 0.144395 |          |          |         |         |
| r13.3            |           |           | 0.000672 | r23.8        |           | 1.08E-08  |            |                | r9.36    |          |            | 0.090366 |          |          |         |         |
| r13.4            |           |           | 0.001002 | r4.1         | 1.57E+01  |           | 0.357771   |                | r9.37    |          |            | 0.073844 |          |          |         |         |
| r13.5            |           |           | 0.000558 | r4.10        | 11.23     |           | 0.362353   |                | r9.38    |          | 0.005532   |          |          |          |         |         |
| r13.6            |           |           | 0.000558 | r4.11        | 15.54     |           | 0.356511   |                | r9.4     |          | 2.88E-06   |          |          |          |         |         |
| r13.7            | -3.76E-02 | 1.78E-06  | 0.001334 | r4.2         | 15.54     |           | 0.356511   |                | r9.6     | 4.22E+01 | 1.188      | 1.089954 |          |          |         |         |
| r13.8            |           |           | 0.00161  | r4.3         | 11.77     |           | 0.35805    |                | r9.7     | 46       | 1.219      | 1.104083 |          |          |         |         |
| r13.9            |           |           | 0.056241 | r4.4         | 10.19     |           | 0.373229   |                | TAGLYsyn | 9.95E-03 | 1.25E-07   | 0.000353 |          |          |         |         |
| r15.1            | 161.6     |           | 5.457105 | r4.5         | 0.5317    | 0.000357  |            |                |          | 1.32E-01 |            |          |          |          |         |         |
|                  |           |           | 0.000537 | r4.6         |           |           | 0.037323   |                | g        |          |            |          |          |          |         | -       |

### **Table S4.2.** Input data and flux analysis results for dilution rate $D = 0.059h^{-1}$ .

| Best estimat           | e of the             | fluxes    | mmol/h)              | Input rates (       | mmol/h)              | )                    | Corresp             | onding   | ovarian        | ce matri  | x                    |                   |          |          |         |          |
|------------------------|----------------------|-----------|----------------------|---------------------|----------------------|----------------------|---------------------|----------|----------------|-----------|----------------------|-------------------|----------|----------|---------|----------|
| v est 1                |                      | Variances |                      | r_m 1               | Values               |                      |                     |          | BIOMasp:       |           |                      |                   |          | mann:ext |         | xyl:ext  |
| ATP GTP Ptrans         | 9.42E-02             | 6.17E-06  | 0.002483             | ara:ext             | -4                   |                      | ara:ext             | 0.0224   |                | 0         |                      | 0.00935           | 0.0103   | 0.0102   | 0       | 0.0113   |
| C120syn                | 4.20E-03             | 1.23E-08  | 0.000111             | BIOMasp:cyt         | 57.1                 |                      | BIOMasp:            | -0.159   | 2.77           | 0         | -0.121               | -0.132            | -0.145   | -0.144   | 0       | -0.1     |
| C140syn                | 4.88E-03             |           | 0.000129             | CO2:ext             | 58.93                |                      | CO2:ext             | 0        |                | 1.9       | 0                    | 0                 | 0        |          | 0.918   |          |
| C141syn                | 2.10E-03             |           |                      | D-galac:ext         | -3.04                | -                    | D-galac:ex          |          | -0.121         | 0         |                      | 0.00711           | 0.00782  | 0.00772  | 0       | 0.00859  |
| C160syn<br>C161syn     | 3.44E-02             |           | 0.000907             | glc:ext<br>Lrha:ext | -3.32                |                      | glc:ext<br>Lrha:ext | 0.00935  |                | 0         |                      | 0.014             | 0.00853  | 0.00843  | 0       | 0.00937  |
| C161syn                |                      |           | 3.69E-05             | mann:ext            | -3.65                |                      | mann:ext            | 0.0103   |                |           |                      | 0.00833           | 0.00136  |          | 0       | 0.0103   |
| C180syn                |                      |           | 0.004138             | O2:ext              | -56.72               |                      | O2:ext              | 0.0102   |                | 0.918     | 0.00772              | 0.00045           | 0.00520  | 0.0134   | 39.4    | 0.0102   |
| C181CoA syn            | 1.85E-02             |           | 0.000488             | xyl:ext             | -4.01                |                      | xyl:ext             | 0.0113   |                | 0.510     |                      | 0.00937           | 0.0103   | 0.0102   | 0       | 0.0225   |
| C181syn                | 0.1518               | 1.60E-05  | 0.004004             |                     |                      |                      |                     |          |                |           |                      |                   |          |          |         |          |
| C182syn                | 6.54E-02             | 2.97E-06  | 0.001724             | Reconciled r        | ates (mn             | nol/h)               | Corresp             | onding   | ovarian        | ce matri  | x                    |                   |          |          |         |          |
| C183syn                | 5.67E-03             | 2.24E-08  | 0.000149             |                     |                      |                      |                     | -        |                |           |                      |                   |          |          |         |          |
| C200syn                | 1.05E-03             | 7.66E-10  | 2.77E-05             | r_m est 1           | Values               |                      | Pr_m 1              | ara:ext  | BIOMasp:       |           |                      |                   |          | mann:ext | O2:ext  | xyl:ext  |
| CLsyn                  | 2.61E-03             |           | 6.88E-05             | ara:ext             | -3.81                |                      | ara:ext             | 0.01385  |                |           | 0.002261             |                   |          |          |         | 0.002759 |
| DAGLYsyn               | 7.33E-02             |           | 0.001932             | BIOMasp:cyt         | 55.45                |                      | BIOMasp:            |          |                | 0.5419    |                      | -0.07382          |          |          | -0.3396 |          |
| DGDG syn               | 1.18E-02             |           |                      | CO2:ext             | 60.52                |                      | CO2:ext             | -0.06205 | 0.5419         | 1.281     | -0.0462              |                   | -0.05296 |          | -1.216  |          |
| GDPMANsyn              | 9.42E-02<br>8.66E-02 |           | 0.002483             | D-galac:ext         | -2.899               |                      | D-galac:ex          | 0.002261 |                |           |                      | 0.002117 0.008644 | 0.002423 |          | 0.03375 | 0.002288 |
| MAGLYsyn<br>MGC181 syn | 1.85E-02             |           | 0.002284             | glc:ext<br>Lrha:ext | -3.488               |                      | glc:ext<br>Lrha:ext | 0.002383 |                |           |                      | 0.00274           | 0.00274  |          |         | 0.002992 |
| MGDG syn               | 5.67E-02             |           | 0.000488             | mann:ext            | -3.449               |                      | mann:ext            | 0.002984 |                |           |                      | 0.00274           | 0.00308  |          |         | 0.002992 |
| r1.1                   |                      |           | 0.092973             | O2:ext              | -54.78               |                      | O2:ext              | 0.05422  |                | -1.216    |                      | 0.0423            |          |          | 1.179   |          |
| r1.2                   | -10.53               |           | 0.309839             | xyl:ext             | -34.78               |                      | xyl:ext             | 0.002759 |                |           | 0.002288             |                   |          | 0.002985 | 0.05404 |          |
| r1.3                   | 3.827                |           | 0.126452             |                     | 5.02                 | -                    | ,                   |          |                |           |                      |                   |          |          |         |          |
| r1.4                   | 3.827                |           | 0.126452             | Calculated r        | ates (mm             | nol/h)               | Corresp             | onding   | ovarian        | ce matri  | x                    |                   |          |          |         |          |
| r1.5                   | 15.49                |           |                      |                     |                      | , .,                 |                     |          |                |           | -                    |                   |          |          |         |          |
| r1.6                   | 15.49                | 0.09439   |                      | r_c est 1           | Values               |                      | Pr_c1               | H:ext    | H2O:ext        | NH4:ext   | Pi:ext               | SO4:ext           |          |          |         |          |
| r1.7                   | 14.85                |           | 0.300932             | H:ext               | 2.769                |                      | H:ext               | 0.02233  |                |           | -0.00069             |                   |          |          |         |          |
| r1.8                   | 14.85                |           | 0.300932             | H2O:ext             | 74.72                |                      | H2O:ext             | 0.116    |                | -0.126    | -0.0036              | -0.00148          |          |          |         |          |
| r1.9                   | 14.35                |           | 0.296547             | NH4:ext             | -6.16                |                      | NH4:ext             | -0.02427 | -0.126         |           |                      | 0.00031           |          |          |         |          |
| r10.1                  | 248.2                |           | 5.059644             | Pi:ext              | -0.1759              |                      | Pi:ext              | -0.00069 |                |           |                      |                   |          |          |         |          |
| r10.10                 | 0.1558               |           | 0.004106             | SO4:ext             | -0.07237             |                      | SO4:ext             | -0.00029 | -0.00148       | 0.00031   | 8.85E-06             | 3.64E-06          |          |          |         |          |
| r10.11                 | 22.03                |           | 0.392173             |                     |                      |                      |                     |          |                |           |                      |                   |          |          |         |          |
| r10.12                 | 48.54                |           | 1.032473             | -                   |                      |                      |                     |          |                |           |                      |                   |          |          |         |          |
| r10.13                 | 0.2387               |           | 0.006293             | Best estima         | te of the            | fluxes (I            | mmol/h)             | continu  | ed             |           |                      |                   |          |          |         |          |
| r10.14                 | 7.308                |           | 0.192666             |                     |                      |                      |                     |          |                |           |                      |                   |          |          |         |          |
| r10.15                 | 0.1558               |           | 0.004106             | v est 1             |                      | Variances            | Serr                |          | vest 1         |           | Variances            | Serr              |          |          |         |          |
| r10.16<br>r10.17       | 0.529                |           | 0.013946             | r16.13<br>r16.14    | 3.96E-01<br>6.60E-02 | 1.09E-04<br>3.02E-06 |                     |          | r4.7<br>r4.8   | 13.85     |                      | 0.342929          |          |          |         |          |
| r10.17                 | 0.2108               |           | 0.005559             | r16.14              | 6.60E-02             |                      | 0.001739            |          | r4.8           | 13.85     |                      | 0.342929          |          |          |         |          |
| r10.18                 | 0.1624               |           | 0.004283             | r16.15              | 1.50E-02             |                      |                     |          | r4.9           | 1.833     |                      | 0.048343          |          |          |         |          |
| r10.15                 | 200.2                |           | 4.036087             | r16.2               | 1.67E-02             |                      | 0.000330            |          | r5.2           | 5.715     |                      | 0.150698          |          |          |         |          |
| r10.5                  | 247.5                |           | 5.056679             | r16.3               | 0.1764               |                      | 0.004652            |          | r5.3           | 6.543     |                      | 0.172511          |          |          |         |          |
| r10.6                  |                      |           | 0.041988             | r16.4               | 0.1764               |                      | 0.004652            |          | r6.1           | 67.88     |                      | 1.388164          |          |          |         |          |
| r10.7                  | 0.1624               | 1.83E-05  | 0.004283             | r16.5               | 8.07E-02             | 4.53E-06             | 0.002128            |          | r6.2           | 26.73     | 0.2638               | 0.513615          |          |          |         |          |
| r10.8                  | 0.7647               | 0.000407  | 0.020162             | r16.6               | 8.07E-02             | 4.53E-06             | 0.002128            |          | r6.3           | 13.84     | 0.1176               | 0.342929          |          |          |         |          |
| r10.9                  | 0.1558               | 1.69E-05  | 0.004106             | r16.7               | 8.07E-02             | 4.53E-06             |                     |          | r6.4           | 234.9     | 22.38                | 4.73075           |          |          |         |          |
| r11.1                  | 4.462                |           | 0.117644             | r16.8               | 7.55E-02             |                      |                     |          | r7.12          | 3.81      |                      | 0.117686          |          |          |         |          |
| r11.10                 | 0.2372               |           | 0.006255             | r16.9               | 7.50E-02             |                      | 0.001976            |          | r7.13          | 3.81      |                      | 0.117686          |          |          |         |          |
| r11.11                 |                      |           | 0.001908             | r17.2               | 9.27E-01             |                      | 0.024436            |          | r7.14          | 3.81      |                      | 0.117686          |          |          |         |          |
| r11.12                 |                      |           | 0.001908             | r17.3               | 0.2692               |                      | 0.007097            |          | r7.16          | 3.449     |                      | 0.096426          |          |          |         |          |
| r11.13<br>r11.14       |                      |           | 0.001089<br>0.001089 | r17.4<br>r17.5      | 0.2692               |                      | 0.007097            |          | r7.17<br>r7.18 | 3.449     |                      | 0.096426          |          |          |         |          |
| r11.14                 |                      |           | 0.001089             | r17.6               | 5.98E-02             |                      | 0.003131            |          | r7.19          | 2.899     |                      | 0.090244          |          |          |         |          |
| r11.16                 |                      | 0.000703  |                      | r17.7               | 5.98E-02             |                      | 0.001577            |          | r7.2           | 7.68E-02  |                      | 0.002025          |          |          |         |          |
| r11.17                 | 8.22E-02             |           | 0.002167             | r17.8               | 4.49E-01             |                      | 0.011828            |          | r7.20          | 2.90E+00  |                      | 0.090244          |          |          |         |          |
| r11.18                 | 3.95E-01             |           | 0.010412             | r2.1                | 11.25                |                      | 0.285657            |          | r7.21          | 2.899     |                      | 0.090244          |          |          |         |          |
| r11.19                 | 0.3536               | 8.69E-05  | 0.009323             | r2.2                | 11.25                | 0.0816               | 0.285657            |          | r7.22          | 2.899     | 0.008144             | 0.090244          |          |          |         |          |
| r11.2                  | 1.537                |           | 0.040534             | r2.3                | 6.451                |                      | 0.152414            |          | r7.23          | 2.214     |                      | 0.082589          |          |          |         |          |
| r11.20                 | 0.11                 |           |                      | r2.4                | 4.57                 |                      | 0.136894            |          | r7.24          | 2.209     |                      |                   |          |          |         |          |
| r11.21                 | 0.1558               |           | 0.004106             | r2.5                | 6.451                |                      | 0.152414            |          | r7.25          | 3.488     |                      | 0.096644          |          |          |         |          |
| r11.22                 | 0.4063               |           | 0.010714             | r2.6                | 6.451                |                      | 0.152414            |          | r7.26          | 3.488     |                      | 0.096644          |          |          |         |          |
| r11.23<br>r11.24       | 0.4877               |           | 0.012861             | r2.7                | 5.749                |                      | 0.137913            |          | r7.27          | 3.488     |                      | 0.096644          |          |          |         |          |
| r11.24<br>r11.25       | 0.2108               |           | 0.005559             | r23.1<br>r23.10     | 1.549<br>4.42E-03    |                      | 0.040841            |          | r7.28<br>r7.29 | 3.488     |                      | 0.096644          |          |          |         |          |
| r11.25<br>r11.26       | 0.2769               |           | 0.007301             | r23.10              | 4.42E-03<br>4.42E-03 |                      | 0.000117            |          | r7.29<br>r7.30 | 3.488     |                      | 0.096644          |          |          |         |          |
| r11.20                 | 0.2709               |           | 0.007301             | r23.12              | 4.42E-03             |                      | 0.000117            |          | r7.6           | 3.460     |                      | 0.118195          | -        |          |         |          |
| r11.27                 | 0.1227               |           | 0.003236             | r23.14              | 4.42E-03             | 1.36E-08             |                     |          | r7.7           | 7.63      |                      | 0.182592          |          |          |         |          |
| r11.29                 | 8.06E-02             |           | 0.002126             | r23.15              | 2.44E-02             |                      | 0.000644            |          | r7.8           | 7.63      |                      | 0.182592          |          |          |         |          |
| r11.3                  |                      |           | 0.004573             | r23.16              | 2.17E-01             |                      | 0.005709            |          | r8.1           | -0.1543   |                      | 0.004067          |          |          |         |          |
| r11.30                 |                      |           | 0.001307             | r23.17              | 0.5683               | 0.000225             | 0.014983            |          | r8.2           | -2.19E-02 | 3.34E-07             | 0.000578          |          |          |         |          |
| r11.31                 |                      |           | 0.005942             | r23.18              | 0.3933               |                      | 0.010368            |          | r8.3           | 1.05E-01  | 7.65E-06             | 0.002766          |          |          |         |          |
| r11.32                 |                      |           | 0.002126             | r23.19              | 3.08E-02             |                      | 0.000811            |          | r8.4           |           | 3.28E-06             |                   |          |          |         | -        |
| r11.4                  |                      |           | 0.004283             | r23.2               |                      | 3.40E-05             |                     |          | r8.5           |           | 3.28E-06             |                   |          |          |         |          |
| r11.5                  |                      |           | 0.004283             | r23.21              |                      |                      | 0.039433            |          | r9.1           | 2.10E+01  |                      | 0.479062          |          |          |         |          |
| r11.6                  |                      |           | 0.004283             | r23.22              |                      |                      | 0.039433            |          | r9.15          | 74.72     |                      | 1.301153          |          |          |         | -        |
| r11.7<br>r11.8         |                      |           | 0.006751             | r23.23<br>r23.3     |                      |                      | 0.039433            |          | r9.19<br>r9.2  | 3.82      |                      | 0.118195          |          |          |         |          |
| r11.8<br>r11.9         |                      |           | 0.006751             | r23.3<br>r23.4      | 0.1915               | 2.55E-05             | 0.00505             |          | r9.2<br>r9.3   |           | 2.15E-05<br>0.008644 |                   |          |          |         |          |
| r11.9<br>r13.1         |                      |           | 0.0010885            | r23.6               |                      | 1.45E-05<br>1.36E-08 |                     |          | r9.32          |           | 0.008044             |                   |          |          |         |          |
| r13.1                  |                      |           | 0.0001383            | r23.7               |                      |                      | 0.000117            |          | R9.35          |           | 0.008144             |                   |          |          |         |          |
| r13.2                  |                      |           | 0.000827             | r23.8               |                      |                      | 0.000117            |          | r9.36          |           | 0.02838              |                   |          |          |         |          |
| r13.4                  |                      |           | 0.001127             | r4.1                | 2.09E+01             |                      | 0.37855             |          | r9.37          |           | 0.009298             |                   |          |          |         |          |
| r13.5                  |                      |           | 0.000627             | r4.10               | 14.08                |                      | 0.342491            |          | r9.38          |           | 0.00934              |                   |          |          |         |          |
| r13.6                  | 2.38E-02             | 3.94E-07  | 0.000627             | r4.11               | 20.62                |                      | 0.375366            |          | r9.4           |           | 3.64E-06             |                   |          |          |         |          |
| r13.7                  |                      |           | 0.001501             | r4.2                | 20.62                |                      | 0.375366            |          | r9.6           | 5.48E+01  |                      | 1.085818          |          |          |         |          |
| r13.8                  |                      |           | 0.001811             | r4.3                | 14.91                |                      | 0.342053            |          | r9.7           | 60.52     |                      | 1.131813          |          |          |         |          |
| r13.9                  | 2.40E+00             |           | 0.063269             | r4.4                | 12.51                |                      | 0.347131            |          |                |           | 1.58E-07             |                   |          |          |         |          |
| 15.1                   | 201.1                | 34.61     | 5.883026             | r4.5                |                      | 0.000452             | 0.021249            |          | UDPglc4e       | 2.00E-01  | 2.77E-05             | 0.005262          |          |          |         |          |
| 15.1                   |                      |           | 0.000604             |                     |                      |                      | 0.041988            |          |                |           |                      |                   |          |          |         |          |

### **Table S4.3.** Input data and flux analysis results for dilution rate $D = 0.077 h^{-1}$ .

| Bestestima       | te of the | fluxes   | (mmol/h)                 | Input rate  | s (mmol              | /h)                  | Corresp    | onding   | covarian | ce matri         | x          |          |          |          |         |          |
|------------------|-----------|----------|--------------------------|-------------|----------------------|----------------------|------------|----------|----------|------------------|------------|----------|----------|----------|---------|----------|
| v est 1          | Values    | Variance | s Serr                   | r m 1       | Values               |                      | Pm 1       | ara:ext  | BIOMasp: | CO2:ext          | D-galac:e) | glc:ext  | Lrha:ext | mann:ext | O2:ext  | xyl:ext  |
| ATP GTP Ptrans   | 1.23E-01  |          |                          | ara:ext     | -5.17                |                      | ara:ext    | 0.0338   |          | 0                |            |          |          |          |         |          |
| C120syn          | 5.47E-03  | 2 19E-0  | 8 0.000148               | BIOMasp:cyt | 74.26                |                      | BIOMasp:   |          |          | 0                |            | -0.202   | -0.219   | -0.219   |         |          |
| C140syn          | 6.36E-03  | 2.96E-0  | 8 0.000172               | CO2:ext     | 73.25                |                      | CO2:ext    | 01212    |          |                  | 0.101      | 0        | 0        |          |         |          |
| C141syn          | 2.73E-03  |          | 9 0.000074               | D-galac:ext | -3.94                |                      | D-galac:ex |          |          | 0                | 0.0197     | 0.0108   | 0.0117   | 0.0117   |         |          |
| C160syn          | 4.48E-02  |          | 5 0.001213               | glc:ext     | -4.31                | -                    | glc:ext    | 0.0125   |          | 0                | 0.0108     | 0.0234   | 0.0117   |          |         |          |
| C161syn          | 6.38E-03  |          | 8 0.000173               | Lrha:ext    | -4.69                |                      | Lrha:ext   | 0.0154   |          | 0                | 0.0117     | 0.0128   | 0.0281   | 0.0139   |         |          |
| C162syn          |           |          | 9 4.93E-05               | mann:ext    | -4.68                |                      | mann:ext   | 0.0154   |          | 0                | 0.0117     | 0.0128   | 0.0231   | 0.0133   | 0       |          |
| C180svn          |           |          | 5 0.005531               | O2:ext      | -68.85               |                      | O2:ext     | 0.0155   |          |                  | 0.0117     | 0.0120   | 0.0135   | 0.0277   |         |          |
|                  |           |          | 7 0.000652               |             | -08.85               |                      |            | 0.017    | -0.243   | -1.50            | 0.013      | 0.0142   | 0.0155   | 0.0154   |         |          |
| C181CoA syn      |           |          |                          | xyl:ext     | -5.2                 |                      | xyl:ext    | 0.017    | -0.245   | 0                | 0.013      | 0.0142   | 0.0155   | 0.0154   | 0       | 0.034    |
| C181syn          |           |          | 5 0.005351               |             |                      |                      | -          |          |          |                  |            |          |          |          |         |          |
| C182syn          | 8.51E-02  |          | 5 0.002304               | Reconcile   | d rates (            | mmol/h)              | Corresp    | onding   | covarian | ce matri         | х          |          |          |          |         |          |
| C183syn          | 7.38E-03  |          |                          |             |                      |                      |            |          |          |                  |            |          |          |          |         |          |
| C200syn          | 1.37E-03  | 1.37E-0  | 9 0.000037               | r_m est 1   | Values               |                      | Pr_m 1     |          | BIOMasp: | CO2:ext          | D-galac:ex | glc:ext  | Lrha:ext | mann:ext | O2:ext  | xyl:ext  |
| CLsyn            | 3.40E-03  | 8.47E-0  | 9 9.2E-05                | ara:ext     | -4.917               |                      | ara:ext    | 0.02435  | -0.1655  | -0.1441          | 0.005828   | 0.006229 | 0.006555 | 0.006562 | 0.1279  | 0.007485 |
| DAGLYsyn         | 9.54E-02  | 6.67E-0  | 5 0.002583               | BIOMasp:cyt | 72.2                 |                      | BIOMasp:   | -0.1655  | 3.819    | 1.188            | -0.1267    | -0.1383  | -0.1475  | -0.1483  | -0.819  | -0.166   |
| DGDG syn         | 1.53E-02  | 1.72E-0  | 7 0.000414               | CO2:ext     | 77.34                |                      | CO2:ext    | -0.1441  | 1.188    | 3.23             | -0.1087    | -0.12    | -0.1341  | -0.1332  | -3.09   | -0.145   |
| GDPMANsyn        | 1.23E-01  | 1.10E-0  | 5 0.00332                | D-galac:ext | -3.75                |                      | D-galac:ex | 0.005828 | -0.1267  | -0.1087          | 0.01441    | 0.00491  | 0.005084 | 0.005162 | 0.08639 | 0.00588  |
| MAGLYsyn         | 1.13E-01  | 9.32E-0  | 5 0.003053               | glc:ext     | -4.1                 |                      | glc:ext    | 0.006229 |          | -0.12            | 0.00491    | 0.01685  | 0.005435 | 0.005523 | 0.1064  | 0.006276 |
| MGC181 syn       | 2.41E-02  | 4.25E-0  | 7 0.000652               | Lrha:ext    | -4.454               |                      | Lrha:ext   | 0.006555 | -0.1475  | -0.1341          | 0.005084   | 0.005435 | 0.01982  | 0.005723 | 0.1268  | 0.006596 |
| MGDG syn         | 7.38E-02  |          | 5 0.001998               | mann:ext    | -4.447               |                      | mann:ext   | 0.006562 |          |                  | 0.005162   | 0.005523 | 0.005723 | 0.01962  | 0.1186  | 0.006603 |
| r1.1             | 4.1       |          | 5 0.129808               | O2:ext      | -69.85               |                      | O2:ext     | 0.1279   | -0.819   | -3.09            | 0.08639    | 0.1064   | 0.1268   | 0.1186   |         | 0.1287   |
| r1.2             | -13.75    |          | 0.421782                 | xyl:ext     | -4.946               |                      | xyl:ext    | 0.007485 |          |                  | 0.00588    |          |          | 0.006603 |         |          |
| r1.3             | 4.862     |          | 5 0.187776               |             | 4.540                |                      | ,          |          | 0.100    | 0.145            |            |          |          |          |         |          |
|                  |           |          |                          | Calculater  | rater (              | nmol/b)              | Corroca    | onding   | ovarian  | co motol         | ×          |          |          |          |         |          |
| r1.4             | 4.862     |          | 5 0.187776               | Calculated  | a races (f           | innoi/n)             | corresp    | onuing ( | covarian | ce matri         | ^          |          |          |          |         |          |
| r1.5             | 19.89     |          | 2 0.474552               |             | 14.1                 |                      |            |          | 1120     |                  |            |          | ļ        |          |         |          |
| r1.6             | 19.89     |          | 2 0.474552               | r_cest 1    | Values               |                      | Pr_c1      | H:ext    |          | NH4:ext          |            | SO4:ext  |          |          |         |          |
| r1.7             | 19.05     | 0.217    |                          | H:ext       | 3.63                 |                      | H:ext      | 0.0399   |          |                  | -0.00124   |          |          |          |         |          |
| r1.8             | 19.05     | 0.217    |                          | H2O:ext     | 95.86                |                      | H2O:ext    | 0.2289   |          |                  | -0.0071    | -0.00292 | ļ        |          |         |          |
| r1.9             | 18.39     |          | 4 0.459783               | NH4:ext     | -8.021               |                      | NH4:ext    | -0.04337 | -0.2487  |                  | 0.001346   |          |          |          |         |          |
| r10.1            | 316.2     | 65.3     | 8.082079                 | Pi:ext      | -0.229               |                      | Pi:ext     | -0.00124 | -0.0071  | 0.001346         | 3.84E-05   | 1.58E-05 |          |          |         |          |
| r10.10           | 0.2028    |          | 5 0.005489               | SO4:ext     | -0.09423             |                      | SO4:ext    | -0.00051 | -0.00292 | 0.000554         | 1.58E-05   | 6.51E-06 |          |          |         |          |
| r10.11           | 28.2      | 0.3      | 8 0.616441               |             |                      |                      |            |          |          |                  |            |          |          |          |         |          |
| r10.12           | 61.74     | 2.72     | 8 1.651666               |             |                      |                      |            |          |          |                  |            |          |          |          |         |          |
| r10.13           | 0.3108    | 7 08F-0  | 5 0.008412               | Best estin  | nate of t            | he fluxes (m         | mol/h) c   | ontinue  | d        |                  |            |          |          |          |         |          |
| r10.14           | 9.515     |          | 3 0.257546               | Destestin   | are or c             | ne maxes (m          |            | ontinue  |          |                  |            |          |          |          |         |          |
| r10.15           | 0.2028    |          | 5 0.005489               | v est 1     | Values               | Variances            | Serr       | l        | v est 1  | Values           | Variances  | Serr     |          |          |         |          |
| r10.15<br>r10.16 |           |          | 3 0.005489<br>3 0.018644 | r16.13      | 5.15E-01             | 0.0001945            |            |          |          | 17.54            | 0.2962     |          |          |          |         |          |
|                  |           |          |                          |             |                      | 5.40E-06             |            | 1        | r4.7     |                  |            |          |          |          |         |          |
| r10.17           | 0.2745    |          |                          | r16.14      | 8.59E-02             |                      |            |          | r4.8     | 17.54            | 0.2962     |          |          |          |         |          |
| r10.18           | 0.2115    |          | 5 0.005725               | r16.15      | 8.59E-02             | 5.40E-06             |            |          | r4.9     | 17.54            | 0.2962     | 0.544243 |          |          |         |          |
| r10.19           | 0.3605    |          | 5 0.009759               | r16.16      | 1.96E-02             | 2.80E-07             |            |          | r5.1     | 2.387            |            |          |          |          |         |          |
| r10.3            | 255.1     |          | 9 6.441273               | r16.2       | 2.18E-01             | 3.48E-05             |            | 1        | r5.2     | 7.442            | 0.04057    | 0.20142  |          |          |         | -        |
| r10.5            | 315.2     |          | 8 8.076509               | r16.3       | 0.2297               | 3.87E-05             |            |          | r5.3     | 8.52             | 0.05318    |          |          |          |         |          |
| r10.6            | 2.074     | 0.0031   | 5 0.056125               | r16.4       | 0.2297               | 3.87E-05             |            |          | r6.1     | 86.44            | 4.937      | 2.221936 |          |          |         |          |
| r10.7            | 0.2115    | 3.28E-0  | 5 0.005725               | r16.5       | 1.05E-01             | 8.09E-06             | 0.002845   |          | r6.2     | 34.28            | 0.6098     |          |          |          |         |          |
| r10.8            | 0.9957    | 0.00072  | 5 0.02695                | r16.6       | 1.05E-01             | 8.09E-06             | 0.002845   |          | r6.3     | 17.54            | 0.2962     | 0.544243 |          |          |         |          |
| r10.9            | 0.2028    | 3.01E-0  | 5 0.005489               | r16.7       | 1.05E-01             | 8.09E-06             | 0.002845   |          | r6.4     | 299.3            | 57.07      | 7.554469 |          |          |         |          |
| r11.1            | 5.809     | 0.0247   | 3 0.157258               | r16.8       | 9.83E-02             | 7.08E-06             | 0.00266    |          | r7.12    | 4.917            | 0.02435    | 0.156045 |          |          |         |          |
| r11.10           | 0.3089    | 6.99E-0  | 5 0.008361               | r16.9       | 9.76E-02             | 6.98E-06             | 0.002642   |          | r7.13    | 4.917            | 0.02435    | 0.156045 |          |          |         |          |
| r11.11           | 9.42E-02  |          |                          | r17.2       | 1.21E+00             | 0.001067             | 0.032665   |          | r7.14    | 4.917            | 0.02435    |          |          |          |         |          |
| r11.12           | 9.42E-02  |          |                          | r17.3       | 0.3505               | 9.00E-05             |            |          | r7.16    | 4.447            | 0.01962    |          |          |          |         |          |
| r11.13           |           |          | 5 0.001455               | r17.4       | 0.3505               | 9.00E-05             |            |          | r7.17    | 4.447            |            | 0.140071 |          |          |         |          |
| r11.14           |           |          | 5 0.001455               | r17.5       | 3.119                | 0.007126             |            |          | r7.18    | 3.75             |            | 0.120042 |          |          |         |          |
| r11.14           |           |          | 5 0.001455               | r17.6       | 7.79E-02             | 4.45E-06             |            |          | r7.19    | 3.75             |            | 0.120042 |          |          |         |          |
| r11.15<br>r11.16 |           |          |                          | r17.6       | 7.79E-02<br>7.79E-02 | 4.45E-06<br>4.45E-06 |            |          | r7.19    | 3.75<br>1.00E-01 |            | 0.120042 |          |          |         |          |
|                  |           |          | 5 0.03544                |             |                      |                      |            | <u></u>  |          |                  |            |          |          |          |         |          |
| r11.17           |           |          | 5 0.002897               | r17.8       | 5.84E-01             | 0.00025              |            |          | r7.20    | 3.75E+00         |            | 0.120042 |          |          |         |          |
| r11.18           |           |          | 0.013918                 | r2.1        | 14.65                | 0.1565               |            |          | r7.21    | 3.75             |            | 0.120042 |          |          |         |          |
| r11.19           |           |          | 5 0.012462               | r2.2        | 14.65                | 0.1565               |            | ļ        | r7.22    | 3.75             | 0.01441    |          |          | -        |         | -        |
| r11.2            |           |          | 5 0.054185               | r2.3        | 8.377                | 0.04479              |            | l        | r7.23    | 2.858            |            | 0.108904 | L        |          |         |          |
| r11.20           | 0.1432    |          | 5 0.003877               | r2.4        | 5.978                | 0.03552              | 0.188468   |          | r7.24    | 2.851            | 0.01184    |          |          |          |         |          |
| r11.21           | 0.2028    |          | 5 0.005489               | r2.5        | 8.377                | 0.04479              |            |          | r7.25    | 4.454            | 0.01982    |          |          |          |         |          |
| r11.22           |           |          | 5 0.014318               | r2.6        | 8.377                | 0.04479              |            |          | r7.26    | 4.454            | 0.01982    |          |          |          |         |          |
| r11.23           |           |          | 5 0.017187               | r2.7        | 7.464                | 0.03686              | 0.19199    |          | r7.27    | 4.454            |            | 0.140784 |          |          |         |          |
| r11.24           | 0.2745    |          |                          | r23.1       | 2.017                | 0.002981             |            |          | r7.28    | 4.454            | 0.01982    |          |          |          |         |          |
| r11.25           |           |          | 5 0.009759               | r23.10      | 5.76E-03             | 2.43E-08             |            |          | r7.29    | 4.454            |            | 0.140784 |          |          |         |          |
| r11.26           | 0.3605    | 9.52E-0  | 5 0.009759               | r23.11      | 5.76E-03             | 2.43E-08             |            |          | r7.30    | 4.454            | 0.01982    | 0.140784 |          |          |         |          |
| r11.27           |           |          | 5 0.008913               | r23.12      | 5.76E-03             | 2.43E-08             |            |          | r7.6     | 4.946            | 0.02442    | 0.156269 |          |          |         |          |
| r11.28           | 0.1598    | 1.87E-0  | 5 0.004324               | r23.14      | 5.76E-03             | 2.43E-08             | 0.000156   |          | r7.7     | 9.863            | 0.06374    | 0.252468 |          |          |         |          |
| r11.29           | 1.05E-01  | 8.08E-0  | 5 0.002842               | r23.15      | 3.18E-02             | 7.42E-07             | 0.000861   |          | r7.8     | 9.863            | 0.06374    | 0.252468 |          |          |         |          |
| r11.3            | 2.26E-01  |          | 5 0.006113               | r23.16      | 2.82E-01             | 5.82E-05             | 0.007631   |          | r8.1     | -0.2008          | 2.96E-05   | 0.005436 |          |          |         |          |
| r11.30           | 6.45E-02  |          | 5 0.001747               | r23.17      | 0.74                 | 0.0004011            |            |          | r8.2     | -2.85E-02        |            |          |          |          |         |          |
| r11.31           |           |          | 5 0.007943               | r23.18      | 0.5121               | 0.0001921            | 0.01386    | 1        | r8.3     | 1.37E-01         |            |          |          |          | ĺ       |          |
| r11.32           |           |          | 5 0.002842               | r23.19      | 4.01E-02             |                      | 0.001085   | 1        | r8.4     | 8.95E-02         |            | 0.002421 |          |          | i       |          |
| r11.4            |           |          | 5 0.005725               | r23.2       | 2.88E-01             |                      | 0.007791   | 1        | r8.5     |                  | 5.86E-06   |          |          |          |         |          |
| r11.5            |           |          | 5 0.005725               | r23.21      | 1.947                |                      | 0.052707   |          | r9.1     |                  | 0.4484     |          | -        |          |         |          |
| r11.5            |           |          | 5 0.005725               | r23.22      | 1.947                |                      | 0.052707   |          | r9.15    | 95.86            |            | 2.01097  |          |          |         |          |
| r11.6            |           |          |                          | r23.22      | 1.947                |                      | 0.052707   |          | r9.15    |                  |            |          |          | -        |         | 1        |
| r11.7<br>r11.8   |           |          | 5 0.009024               | r23.23      | 0.2494               |                      |            |          | r9.19    |                  | 0.02442    |          |          |          |         |          |
|                  |           |          | 5 0.009024               |             |                      |                      | 0.00675    |          |          |                  |            | 0.006199 |          |          |         |          |
| r11.9            |           |          | 9 0.022568               | r23.4       | 0.188                |                      | 0.005087   |          | r9.3     | 4.1              |            | 0.129808 |          |          |         |          |
| r13.1            |           |          | 5 0.001848               | r23.6       | 5.76E-03             |                      | 0.000156   |          | r9.32    | 3.75             |            | 0.120042 |          |          |         |          |
| r13.2            |           |          | 7 0.000838               | r23.7       | 5.76E-03             |                      | 0.000156   |          | R9.35    | 8.021            |            | 0.217117 |          |          |         |          |
| r13.3            |           |          | 5 0.00101                | r23.8       | 5.76E-03             |                      | 0.000156   |          | r9.36    | 4.917            |            | 0.156045 |          |          |         |          |
| r13.4            |           |          | 5 0.001507               | r4.1        | 2.67E+01             |                      | 0.598749   |          | r9.37    |                  | 0.01962    |          |          |          |         |          |
| r13.5            | 3.10E-02  | 7.03E-0  | 7 0.000838               | r4.10       | 17.85                | 0.2963               | 0.544334   |          | r9.38    |                  |            | 0.140784 |          |          |         |          |
| r13.6            |           |          | 7 0.000838               | r4.11       | 26.37                | 0.3538               | 0.594811   |          | r9.4     |                  |            | 0.00255  |          |          |         |          |
| r13.7            | -7.41E-02 | 4.02E-0  | 5 0.002006               | r4.2        | 26.37                | 0.3538               | 0.594811   |          | r9.6     | 6.99E+01         | 2.999      | 1.731762 |          |          |         |          |
| r13.8            |           |          | 5 0.002421               | r4.3        | 18.93                |                      | 0.545619   |          | r9.7     | 77.34            |            | 1.79722  |          |          |         |          |
| r13.9            |           |          | 2 0.084569               | r4.4        | 15.8                 |                      | 0.546168   |          | TAGLYsyn | 1.96E-02         |            |          |          |          |         |          |
| r15.1            | 254.8     |          | 8.049224                 | r4.5        | 1.049                |                      |            |          |          | 2.60E-01         |            |          |          |          | 1       |          |
|                  |           |          | 7 0.000807               | r4.6        | 2.074                |                      | 0.056125   |          |          |                  |            |          |          |          | i       |          |

## **Table S4.4.** Input data and flux analysis results for dilution rate $D = 0.093h^{-1}$ .

|                | ite of the | fluxes    | mmol/h)  | Input rate  | s (mmol/   | h)           | Corresp    | onding   | covarian | ce matrix | (          |          |          |          |        |         |
|----------------|------------|-----------|----------|-------------|------------|--------------|------------|----------|----------|-----------|------------|----------|----------|----------|--------|---------|
| v est 1        | Values     | Variances | Serr     | r_m 1       | Values     |              | Pm 1       | ara:ext  | BIOMasp: | CO2:ext   | D-galac:e> | glc:ext  | Lrha:ext | mann:ext | O2:ext | xyl:ext |
| ATP GTP Ptrans |            | 2.94E-05  |          | ara:ext     | -6.25      |              | ara:ext    | 0.0288   |          |           | 0.0188     |          |          |          |        | 0.02    |
| C120syn        | 0.006735   | 5.83E-08  | 0.000242 | BIOMasp:cyt | 89.3       |              | BIOMasp:   | -0.352   | 10.2     | 0         | -0.266     | -0.296   | -0.315   | -0.32    | 0      | -0.35   |
| C140syn        | 0.007831   | 7.89E-08  | 0.000281 | CO2:ext     | 83.7       |              | CO2:ext    | 0        | 0        | 7.55      | 0          | 0        | 0        | 0        | -2.18  |         |
| C141syn        | 0.003368   | 1.46E-08  | 0.000121 | D-galac:ext | -4.73      |              | D-galac:ex | 0.0188   | -0.266   | 0         | 0.0166     | 0.0158   | 0.0168   | 0.0171   | 0      | 0.0189  |
| C160syn        | 0.05519    |           | 0.001979 | glc:ext     | -5.25      |              | glc:ext    | 0.0208   | -0.296   | 0         | 0.0158     | 0.0203   | 0.0187   | 0.0189   | 0      | 0.021   |
| C161syn        | 0.007858   | 7.94E-08  | 0.000282 | Lrha:ext    | -5.6       |              | Lrha:ext   | 0.0222   | -0.315   | 0         | 0.0168     | 0.0187   | 0.0233   | 0.0202   | 0      | 0.0224  |
| C162syn        | 0.002245   | 6.48E-09  | 8.05E-05 | mann:ext    | -5.68      |              | mann:ext   | 0.0225   | -0.32    | 0         | 0.0171     | 0.0189   | 0.0202   | 0.0238   | 0      | 0.0228  |
| C180syn        | 0.2517     | 8.15E-05  | 0.009026 | O2:ext      | -77        |              | 02:ext     | 0        | 0        | -2.18     | 0          | 0        | 0        | 0        | 39.3   | 0       |
| C181CoA syn    | 0.02968    |           | 0.001064 | xyl:ext     | -6.31      |              | xyl:ext    | 0.025    | -0.355   | 0         | 0.0189     | 0.021    | 0.0224   | 0.0228   | 0      | 0.0293  |
| C181syn        | 0.2435     |           | 0.008733 |             |            |              |            |          |          |           |            |          |          |          |        |         |
| C182syn        | 0.1048     | 1.41E-05  |          | Reconciled  | rates (r   | nmol/h)      | Correst    | onding   | ovarian  | ce matrix | (          |          |          |          |        |         |
| C183syn        | 0.009093   | 1.06E-07  |          | neconence   | a ruces (r |              | concop     | - Change |          | ce matri  | •          |          |          |          |        |         |
| C200syn        | 0.001684   | 3.65E-09  |          | r_m est 1   | Values     |              | Pr_m 1     | ara:ext  | BIOMacon | CO2:ext   | D-galacies | alc:ext  | Lrha:ext | mann:ext | 02-evt | xyl:ext |
| CLsvn          | 0.004188   | 2.26E-08  |          | ara:ext     | -5.886     |              | ara:ext    | 0.01974  |          |           | 0.01194    |          |          | 0.01421  | 0.1198 |         |
| DAGLYsyn       | 0.1175     |           | 0.004215 | BIOMasp:cyt | 88.93      |              | BIOMasp:   |          | 10.17    | 0.2463    | -0.2595    | -0.2889  | -0.3074  | -0.3122  |        |         |
| DGDG syn       | 0.01885    |           | 0.000676 | CO2:ext     | 89.97      |              | CO2:ext    | -0.1532  |          | 4.431     | -0.1162    | -0.1287  | -0.1382  | -0.14    | -4.363 |         |
| GDPMANsyn      |            | 2.94E-05  |          | D-galac:ext | -4.455     |              | D-galac:ex |          |          | -0.1162   | 0.0114     | 0.01004  | 0.0106   | 0.01083  |        |         |
| MAGLYsyn       | 0.1389     |           | 0.004982 | glc:ext     | -4.944     |              | glc:ext    | 0.01319  |          | -0.1287   | 0.01004    | 0.0139   | 0.01182  | 0.01194  | 0.1007 |         |
| MGC181 syn     | 0.02968    |           | 0.001064 | Lrha:ext    | -5.271     |              | Lrha:ext   | 0.01313  |          |           | 0.0106     | 0.01182  |          | 0.01271  | 0.1100 |         |
| MGDG syn       | 0.09093    | 1.06E-05  |          | mann:ext    | -5.347     |              | mann:ext   | 0.01421  |          | -0.14     | 0.01083    | 0.01194  | 0.01303  | 0.01622  | 0.1097 | 0.01443 |
| r1.1           | 4.944      | 0.0139    |          | 02:ext      | -80.8      |              | 02:ext     | 0.1198   | 0.7003   | -4.363    | 0.08866    | 0.1007   | 0.1102   | 0.1097   | 4.388  | 0.1212  |
| r1.1           | -16.84     | 0.3168    |          | xyl:ext     | -5.942     |              | xyl:ext    | 0.01584  | -0.3464  | -4.303    | 0.08866    | 0.01331  | 0.01412  | 0.01443  | 0.1212 |         |
| r1.2           | 5.606      |           | 0.203421 |             | -3.342     |              |            | 0.01004  | 0.0404   | -0.134/   | 0.01137    | 0.01001  | 0.01412  | 0.01443  | 0.1212 | 0.02003 |
|                |            |           |          | Coloulate   | rates /-   | mol/h        | Correct    | ondiar   | ovaria   | co moto?  |            | -        |          |          |        |         |
| r1.4           | 5.606      |           | 0.203421 | Calculated  | rates (n   | inioi/n)     | corresp    | onuing   | ovarian  | ce matrix | •          |          |          |          |        |         |
| r1.5           | 23.39      |           | 0.510979 |             | Malu       |              | De ef      | Hand     | 1120     | NUM. 1    | Disast     | CO4: -   |          |          |        |         |
| r1.6           | 23.39      |           | 0.510979 | r_c est 1   | Values     |              | Pr_c1      | H:ext    | H2O:ext  |           |            | SO4:ext  |          |          |        |         |
| r1.7           | 22.36      |           | 0.505074 | H:ext       | 4.636      |              | H:ext      | 0.1063   | 0.3194   |           | -0.0033    |          |          |          |        |         |
| r1.8           | 22.36      |           | 0.505074 | H2O:ext     | 113        |              | H2O:ext    | 0.3194   | 5.169    |           | -0.00991   | -0.00408 |          |          |        |         |
| r1.9           | 21.55      |           | 0.502295 | NH4:ext     | -9.88      |              | NH4:ext    | -0.1155  | -0.3471  |           | 0.003585   |          | ļ        |          |        |         |
| r10.1          | 364.8      |           | 9.932774 | Pi:ext      | -0.2821    |              | Pi:ext     | -0.0033  |          | 0.003585  |            |          |          |          |        |         |
| r10.10         | 0.2498     |           | 0.008958 | SO4:ext     | -0.1161    |              | SO4:ext    | -0.00136 | -0.00408 | 0.001475  | 4.21E-05   | 1.73E-05 |          |          |        |         |
| r10.11         | 33.04      |           | 0.695054 |             |            |              |            |          |          |           |            |          |          |          |        |         |
| r10.12         | 70.96      | 4.264     | 2.064946 |             |            |              |            |          |          |           |            | 2        |          |          |        |         |
| r10.13         | 0.3828     | 0.000188  | 0.013726 | Best estim  | nate of th | ne fluxes (i | mmol/h)    | continu  | ed       |           |            |          |          |          |        |         |
| r10.14         | 11.72      | 0.1767    | 0.420357 |             |            |              |            |          |          |           |            |          |          |          |        |         |
| r10.15         | 0.2498     | 8.03E-05  | 0.008958 | v est 1     | Values     | Variances    | Serr       |          | v est 1  | Values    | Variances  | Serr     |          |          |        |         |
| r10.16         | 0.8484     | 0.000926  | 0.030427 | r16.13      | 0.6346     | 0.000518     | 0.02276    |          | r4.7     | 19.91     | 0.5333     | 0.730274 |          |          |        |         |
| r10.17         | 0.3381     | 0.000147  | 0.012124 | r16.14      | 0.1058     | 1.44E-05     | 0.003793   |          | r4.8     | 19.91     | 0.5333     | 0.730274 |          |          |        |         |
| r10.18         | 0.2605     | 8.73E-05  | 0.009343 | r16.15      | 0.1058     | 1.44E-05     | 0.003793   |          | r4.9     | 19.9      | 0.5334     | 0.730342 |          |          |        |         |
| r10.19         | 0.4441     | 0.000254  | 0.015925 | r16.16      | 0.02408    | 7.46E-07     | 0.000863   |          | r5.1     | 2.94      | 0.01112    | 0.105451 |          |          |        |         |
| r10.3          | 294.7      | 61.94     | 7.870197 | r16.2       | 0.2684     | 9.26E-05     | 0.009624   |          | r5.2     | 9.166     | 0.1081     | 0.328786 |          |          |        |         |
| r10.5          | 363.6      | 98.8      | 9.939819 | r16.3       | 0.283      | 0.000103     | 0.010149   |          | r5.3     | 10.49     | 0.1416     | 0.376298 |          |          |        |         |
| r10.6          | 2.554      | 0.00839   | 0.091597 | r16.4       | 0.283      | 0.000103     | 0.010149   |          | r6.1     | 99.67     | 7.389      | 2.718272 |          |          |        |         |
| r10.7          | 0.2605     | 8.73E-05  | 0.009343 | r16.5       | 0.1294     | 2.16E-05     | 0.004642   |          | r6.2     | 40.25     | 0.7279     | 0.853171 |          |          |        |         |
| r10.8          | 1.226      | 0.001934  | 0.043977 | r16.6       | 0.1294     | 2.16E-05     | 0.004642   |          | r6.3     | 19.9      | 0.5334     | 0.730342 |          |          |        |         |
| r10.9          | 0.2498     | 8.03E-05  | 0.008958 | r16.7       | 0.1294     | 2.16E-05     | 0.004642   |          | r6.4     | 345.7     | 85.06      | 9.222798 |          |          |        |         |
| r11.1          | 7.156      | 0.06585   | 0.256613 | r16.8       | 0.1211     | 1.89E-05     | 0.004342   |          | r7.12    | 5.886     | 0.01974    | 0.140499 |          |          |        |         |
| r11.10         | 0.3805     | 0.000186  | 0.013646 | r16.9       | 0.1202     | 1.86E-05     | 0.00431    |          | r7.13    | 5.886     | 0.01974    | 0.140499 |          |          |        |         |
| r11.11         | 0.1161     | 1.73E-05  | 0.004163 | r17.2       | 1.486      | 0.002841     | 0.053301   |          | r7.14    | 5.886     | 0.01974    | 0.140499 |          |          |        |         |
| r11.12         | 0.1161     | 1.73E-05  | 0.004163 | r17.3       | 0.4317     | 0.0002397    | 0.015482   |          | r7.16    | 5.347     | 0.01622    | 0.127358 |          |          |        |         |
| r11.13         | 0.06623    | 5.64E-06  | 0.002375 | r17.4       | 0.4317     | 0.0002397    | 0.015482   |          | r7.17    | 5.347     | 0.01622    | 0.127358 |          |          |        |         |
| r11.14         | 0.06623    | 5.64E-06  | 0.002375 | r17.5       | 3.841      | 0.01898      | 0.137768   |          | r7.18    | 4.455     | 0.0114     | 0.106771 |          |          |        |         |
| r11.15         | 0.04983    | 3.19E-06  | 0.001787 | r17.6       | 0.09594    | 1.18E-05     | 0.003441   |          | r7.19    | 4.455     | 0.0114     | 0.106771 |          |          |        |         |
| r11.16         | 1.613      | 0.003345  | 0.057836 | r17.7       | 0.09594    | 1.18E-05     | 0.003441   |          | r7.2     | 0.1232    | 1.95E-05   | 0.004417 |          |          |        |         |
| r11.17         | 0.1318     | 2.24E-05  | 0.004728 | r17.8       | 0.7195     | 0.0006659    | 0.025805   |          | r7.20    | 4.455     | 0.0114     | 0.106771 |          |          |        |         |
| r11.18         | 0.6333     | 0.000516  | 0.022713 | r2.1        | 17.85      | 0.2675       | 0.517204   |          | r7.21    | 4.455     | 0.0114     | 0.106771 |          |          |        |         |
| r11.19         |            | 0.000414  |          | r2.2        | 17.85      | 0.2675       | 0.517204   |          | r7.22    | 4.455     | 0.0114     | 0.106771 |          |          |        |         |
| r11.2          | 2.466      | 0.00782   | 0.088431 | r2.3        | 10.15      | 0.06997      | 0.264518   |          | r7.23    | 3.355     | 0.006544   | 0.080895 |          |          |        |         |
| r11.20         | 0.1764     | 4.00E-05  | 0.006326 | r2.4        | 7.34       | 0.0601       | 0.245153   |          | r7.24    | 3.347     | 0.006519   | 0.08074  |          |          |        |         |
| r11.21         | 0.2498     | 8.03E-05  | 0.008958 | r2.5        | 10.15      | 0.06997      | 0.264518   |          | r7.25    | 5.271     | 0.01589    | 0.126056 |          |          |        |         |
| r11.22         | 0.6516     |           | 0.023369 | r2.6        | 10.15      | 0.06997      |            |          | r7.26    | 5.271     | 0.01589    |          |          |          |        |         |
| r11.23         | 0.7822     |           | 0.028052 | r2.7        | 9.022      | 0.05162      | 0.2272     |          | r7.27    | 5.271     | 0.01589    | 0.126056 |          |          |        |         |
| r11.24         | 0.3381     | 0.000147  | 0.012124 | r23.1       | 2.485      | 0.007939     | 0.089101   |          | r7.28    | 5.271     | 0.01589    | 0.126056 |          |          |        |         |
| r11.25         |            | 0.000254  |          | r23.10      | 0.007094   |              | 0.000254   |          | r7.29    | 5.271     | 0.01589    |          |          |          |        |         |
| r11.26         | 0.4441     | 0.000254  |          | r23.11      | 0.007094   |              | 0.000254   |          | r7.30    | 5.271     | 0.01589    | 0.126056 |          |          |        |         |
| r11.27         | 0.4056     | 0.000212  | 0.014546 | r23.12      | 0.007094   |              | 0.000254   |          | r7.6     | 5.942     | 0.02005    | 0.141598 |          |          |        |         |
| r11.28         | 0.1968     | 4.98E-05  | 0.007058 | r23.14      | 0.007094   | 6.47E-08     | 0.000254   |          | r7.7     | 11.83     | 0.07147    | 0.267339 |          |          |        |         |
| r11.29         | 0.1293     | 2.15E-05  | 0.004638 | r23.15      | 0.03919    |              | 0.001405   |          | r7.8     | 11.83     |            | 0.267339 |          |          |        |         |
| r11.3          | 0.2782     | 9.95E-05  |          | r23.16      | 0.3473     | 0.0001551    | 0.012454   |          | r8.1     | -0.2474   | 7.87E-05   |          |          |          |        |         |
| r11.30         | 0.07948    | 8.13E-06  |          | r23.17      | 0.9114     | 0.001068     | 0.03268    |          | r8.2     | -0.03514  | 1.59E-06   | 0.00126  |          |          |        |         |
| r11.31         | 0.3615     | 0.000168  |          | r23.18      | 0.6308     | 0.0005118    | 0.022623   |          | r8.3     | 0.1682    | 3.64E-05   | 0.006032 |          |          |        |         |
| r11.32         | 0.1293     | 2.15E-05  | 0.004638 | r23.19      | 0.04936    | 3.13E-06     |            |          | r8.4     | 0.1102    |            | 0.003951 |          |          |        |         |
| r11.4          | 0.2605     | 8.73E-05  | 0.009343 | r23.2       | 0.3545     | 0.0001617    |            |          | r8.5     | 0.1102    | 1.56E-05   |          |          |          |        |         |
| r11.5          | 0.2605     | 8.73E-05  | 0.009343 | r23.21      | 2.398      | 0.007399     | 0.086017   |          | r9.1     | 32.82     | 0.838      | 0.915423 |          |          |        |         |
| r11.6          | 0.2605     | 8.73E-05  | 0.009343 | r23.22      | 2.398      | 0.007399     | 0.086017   |          | r9.15    | 113       |            | 2.273543 |          |          |        |         |
| r11.7          | 0.4107     | 0.000217  | 0.014728 | r23.23      | 2.398      |              | 0.086017   |          | r9.19    | 5.942     |            | 0.141598 |          |          |        |         |
| r11.8          |            |           | 0.014728 | r23.3       | 0.3071     | 0.0001213    | 0.011014   |          | r9.2     | 0.2821    | 0.000102   | 0.010119 |          |          |        |         |
| r11.9          | 1.027      | 0.001356  | 0.036824 | r23.4       | 0.2315     | 6.89E-05     | 0.008302   |          | r9.3     | 4.944     |            | 0.117898 |          |          |        |         |
| r13.1          | 0.08411    | 9.10E-06  | 0.003016 | r23.6       | 0.007094   |              | 0.000254   |          | r9.32    | 4.455     |            | 0.106771 |          |          |        |         |
| r13.2          |            |           | 0.001368 | r23.7       | 0.007094   |              | 0.000254   |          | R9.35    | 9.88      |            | 0.35426  |          |          |        |         |
| r13.3          |            |           | 0.001648 | r23.8       | 0.007094   |              | 0.000254   |          | r9.36    | 5.886     |            | 0.140499 |          |          |        |         |
| r13.4          |            |           | 0.002459 | r4.1        | 31.22      |              | 0.680882   |          | r9.37    | 5.347     |            | 0.127358 |          |          |        |         |
| r13.5          |            |           | 0.001368 | r4.10       | 20.29      |              | 0.724983   |          | r9.38    | 5.271     |            | 0.126056 |          |          |        | -       |
| r13.6          |            |           | 0.001368 | r4.10       | 30.78      |              | 0.678307   |          | r9.4     |           | 1.73E-05   |          |          |          |        |         |
| r13.7          |            |           | 0.001308 | r4.11       | 30.78      |              | 0.678307   |          | r9.6     | 80.8      |            | 2.094755 |          |          |        |         |
| r13.8          |            |           | 0.003274 | r4.3        | 21.61      |              | 0.708308   |          | r9.7     | 89.97     |            | 2.104994 |          |          |        |         |
| r13.9          |            |           | 0.138022 | r4.4        | 17.77      |              | 0.763937   |          | TAGLYsyn |           | 7.52E-07   |          |          |          |        |         |
|                |            |           | 14.11382 | r4.5        | 1.293      |              | 0.046357   |          | UDPglc4e |           |            | 0.01148  |          |          |        |         |
| r15.1          | 288.6      |           |          |             |            |              |            |          |          |           |            |          |          |          |        |         |

### **Table S4.5.** Input data and flux analysis results for dilution rate $D = 0.110h^{-1}$ .

| Best est            | imate o              | f the flux           | kes (mmo             | l/Input rate           | (mmol/       | h)                    | Corresp               | onding             | ovarian        | ce matri           | x                    |                      |          |                     |         |                    |
|---------------------|----------------------|----------------------|----------------------|------------------------|--------------|-----------------------|-----------------------|--------------------|----------------|--------------------|----------------------|----------------------|----------|---------------------|---------|--------------------|
| v est 1             | Values               | Variances            | Serr                 |                        |              |                       | Pm 1                  | aravaut            | PIOMAcou       | COlump             | D galacia            | alcout               | Inhought | manniaut            | Olivert | multimut           |
| ATP GTP P           |                      | 3.20E-05             |                      | r_m<br>ara:ext         | -7.02        |                       | ara:ext               | ara:ext<br>0.03687 | -0.4853        | CO2:ext            |                      |                      |          | mann:ext<br>0.02967 | 02:ext  | xyl:ext<br>0.03273 |
| C120syn             |                      | 6.35E-08             |                      | BIOMasp:cyt            | 110          |                       | BIOMasp:              |                    | 11.59          | 0                  | -0.3741              |                      |          | -0.4603             | 0       |                    |
| C140syn             |                      | 8.59E-08             |                      | CO2:ext                | 88.2         |                       | CO2:ext               | 0                  | 0              | 8.386              | 0                    | 0                    |          | 0                   | -2.461  |                    |
| C141syn             |                      | 1.59E-08             |                      | D-galac:ext            | -5.41        |                       | D-galac:ex            |                    | -0.3741        | 0                  | 0.02195              |                      |          |                     | 0       |                    |
| C160syn<br>C161syn  | 6.66E-02<br>9.49E-03 |                      | 0.002065             | glc:ext<br>Lrha:ext    | -6.15        |                       | glc:ext<br>Lrha:ext   | 0.02738            | -0.4248        | 0                  | 0.0211               | 0.0278               | 0.02212  | 0.02597             | 0       |                    |
| C162syn             | 2.71E-03             |                      | 8.4E-05              | mann:ext               | -6.66        |                       | mann:ext              | 0.02967            | -0.4603        | 0                  | 0.02287              | 0.02597              | 0.02397  | 0.03272             | 0       |                    |
| C180syn             | 3.04E-01             |                      |                      | O2:ext                 | -80.3        |                       | O2:ext                | 0                  | 0              | -2.461             | 0                    | 0                    | 0        | 0                   | 39.03   |                    |
| C181CoA s           | 3.58E-02             |                      | 0.001111             | xyl:ext                | -7.35        |                       | xyl:ext               | 0.03273            | -0.5078        | 0                  | 0.02523              | 0.02865              | 0.02644  | 0.03104             | 0       | 0.03986            |
| C181syn             | 0.2941               |                      |                      | Descentiles            |              |                       | C                     | a di sa si         |                |                    |                      |                      |          |                     |         |                    |
| C182syn<br>C183syn  | 1.27E-01<br>1.10E-02 |                      | 0.003924             | Reconcileo             | i rates (n   | nmol/h)               | Corresp               | onding             | covarian       | ce matri           | x                    |                      |          |                     |         |                    |
| C200syn             | 2.03E-03             | 3.97E-09             | 6.3E-05              | r_m est 1              | Values       |                       | Pr_m 1                | ara:ext            | BIOMason       | CO2:ext            | D-galacies           | glc:ext              | Lrha:ext | mann:ext            | 02.ext  | xyl:ext            |
| CLsyn               | 5.06E-03             |                      | 0.000157             | ara:ext                | -6.614       |                       | ara:ext               | 0.02443            |                | -0.1959            | 0.01457              |                      |          | 0.01785             | 0.1552  |                    |
| DAGLYsyn            |                      |                      |                      | BIOMasp:cyt            | 107.4        |                       | BIOMasp:              |                    | 11.08          | 1.336              | -0.3137              | -0.3563              | -0.3268  | -0.3856             | -0.2698 |                    |
| DGDG syn<br>GDPMANs |                      |                      |                      | CO2:ext                | 94.85        |                       | CO2:ext               | -0.1959            | 1.336          | 4.683              | -0.1508              | -0.1709              | -0.1626  | -0.1862             | -4.504  |                    |
| GDPMANS<br>MAGLYsyr |                      |                      |                      | D-galac:ext<br>glc:ext | -5.098       |                       | D-galac:ex<br>glc:ext | 0.01457            | -0.3137        | -0.1508            | 0.01463              |                      |          |                     | 0.116   |                    |
| MGC181 s            |                      |                      |                      | Lrha:ext               | -5.322       |                       | Lrha:ext              | 0.01492            |                | -0.1626            | 0.01278              |                      | 0.01303  |                     | 0.1332  |                    |
| MGDG syr            |                      |                      | 0.003403             | mann:ext               | -6.274       |                       | mann:ext              | 0.01785            | -0.3856        | -0.1862            | 0.0138               | 0.01566              | 0.01413  | 0.02149             | 0.1476  |                    |
| r1.1                | 5.796                |                      | 0.135425             | O2:ext                 | -83.53       |                       | O2:ext                | 0.1552             | -0.2698        | -4.504             | 0.116                | 0.1352               | 0.1328   | 0.1476              | 4.432   |                    |
| r1.2                | -20.66               |                      | 0.607701 #           | # xyl:ext              | -6.926       |                       | xyl:ext               | 0.01975            | -0.4258        | -0.2045            | 0.01527              | 0.01732              | 0.01564  | 0.01871             | 0.1619  | 0.02631            |
| r1.3                | 5.868                |                      | 0.202855             | Colculated             | rates (m     | mol/h)                | Corroca               | onding             | overlan        | co motri           |                      |                      |          |                     |         |                    |
| r1.4<br>r1.5        | 5.868                |                      | 0.202855             | Calculated             | rates (m     | oi/nj                 | corresp               | onuing (           | .ovariañ       | ce matri           | ^                    |                      |          |                     |         |                    |
| r1.5<br>r1.6        | 25.96                |                      | 0.554617             | r_cest 1               | Values       |                       | Pr_c1                 | H:ext              | H2O:ext        | NH4:ext            | Pi:ext               | SO4:ext              |          |                     |         |                    |
| r1.7                | 24.72                |                      | 0.542125             | H:ext                  | 5.879        |                       | H:ext                 | 0.1157             | 0.4538         | -0.1258            | -0.00359             |                      |          |                     |         |                    |
| r1.8                | 24.72                | 0.2939               | 0.542125             | H2O:ext                | 122.9        |                       | H2O:ext               | 0.4538             |                | -0.4932            | -0.01408             | -0.00579             |          |                     |         |                    |
| r1.9                | 23.74                |                      | 0.534041             | NH4:ext                | -11.93       |                       | NH4:ext               | -0.1258            | -0.4932        | 0.1367             |                      |                      |          |                     |         |                    |
| r10.1<br>r10.10     | 373.9                |                      | 9.900505<br>0.009349 | Pi:ext<br>SO4:ext      | -0.3407      |                       | Pi:ext<br>SO4:ext     | -0.00359           |                | 0.003904           | 1.12E-04<br>4.59E-05 | 4.59E-05<br>1.89E-05 |          |                     |         |                    |
| r10.10              | 35.25                |                      | 0.009349             | JU4.eXt                | -0.1402      |                       | 504.ext               | -0.00148           | -0.00579       | 0.001006           | 4.398-05             | 1.03E-05             |          |                     |         |                    |
| r10.12              | 71.74                |                      | 2.039117             |                        |              |                       |                       |                    |                |                    |                      |                      |          |                     |         |                    |
| r10.13              |                      | 0.000205             |                      | Best estim             | ate of th    | e fluxes (            | mmol/h                | ) continu          | ued            |                    |                      |                      |          |                     |         |                    |
| r10.14              | 14.15                | 0.1924               | 0.438634             |                        |              |                       |                       |                    |                |                    |                      |                      |          |                     |         |                    |
| r10.15              | 0.3016               |                      |                      | v est 1                |              | Variances             | Serr                  |                    | v est 1        |                    | Variances            |                      |          |                     |         |                    |
| r10.16<br>r10.17    | 0.4083               | 0.001008             | 0.031749             | r16.13<br>r16.14       | 0.7664       |                       |                       |                    | r4.7<br>r4.8   | 19.39<br>19.39     | 0.4996               | 0.706824             |          |                     |         |                    |
| r10.17              | 0.3146               |                      | 0.0012655            | r16.14                 | 0.1277       |                       | 0.003959              |                    | r4.8           | 19.39              |                      | 0.706824             |          |                     |         |                    |
| r10.19              |                      | 0.000276             |                      | r16.16                 | 0.02907      |                       | 0.000901              |                    | r5.1           | 3.551              | 0.01211              |                      |          |                     |         |                    |
| r10.3               | 303.2                |                      | 7.869562             | r16.2                  | 0.3241       |                       | 0.010045              |                    | r5.2           | 11.07              | 0.1177               |                      |          |                     |         |                    |
| r10.5               | 372.4                |                      | 9.901515             | r16.3                  | 0.3417       |                       | 0.010592              |                    | r5.3           | 12.67              | 0.1543               |                      |          |                     |         |                    |
| r10.6               |                      | 0.009138             |                      | r16.4                  | 0.3417       | 0.0001122             |                       |                    | r6.1           | 101.8              | 7.331                |                      |          |                     |         |                    |
| r10.7<br>r10.8      |                      | 9.51E-05             | 0.00975              | r16.5                  | 0.1563       |                       | 0.004845              |                    | r6.2<br>r6.3   | 43.77              | 0.8396               | 0.916297             |          |                     |         |                    |
| r10.8               |                      | 0.002107<br>8.74E-05 |                      | r16.6<br>r16.7         | 0.1563       |                       | 0.004845              |                    | r6.4           | 355.5              |                      | 9.222256             |          |                     |         |                    |
| r11.1               | 8.641                |                      | 0.267806             | r16.8                  | 0.1363       |                       | 0.004531              |                    | r7.12          | 6.614              |                      | 0.156301             |          |                     |         |                    |
| r11.10              | 0.4595               | 0.000203             | 0.014241             | r16.9                  | 0.1452       | 2.02E-05              | 0.004499              |                    | r7.13          | 6.614              | 0.02443              | 0.156301             |          |                     |         |                    |
| r11.11              |                      | 1.89E-05             |                      | r17.2                  | 1.795        |                       | 0.055633              |                    | r7.14          | 6.614              |                      | 0.156301             |          |                     |         |                    |
| r11.12              | 1.40E-01             |                      |                      | r17.3                  | 0.5213       | 0.0002611             |                       |                    | r7.16          | 6.274              |                      | 0.146595             |          |                     |         |                    |
| r11.13<br>r11.14    | 8.00E-02<br>8.00E-02 |                      |                      | r17.4<br>r17.5         | 0.5213       |                       | 0.016159              |                    | r7.17<br>r7.18 | 6.274<br>5.098     | 0.02149              |                      |          |                     |         |                    |
| r11.14<br>r11.15    | 6.02E-02             | 3.48E-06             |                      | r17.5                  | 0.1159       | 1.29E-05              |                       |                    | r7.18<br>r7.19 | 5.098              | 0.01463              |                      |          |                     |         |                    |
| r11.16              |                      | 0.003643             |                      | r17.7                  | 0.1159       | 1.29E-05              |                       | -                  | r7.2           | 0.1487             | 2.13E-05             | 0.00461              |          |                     |         |                    |
| r11.17              | 1.59E-01             | 2.44E-05             | 0.004935             | r17.8                  | 0.8689       | 0.0007252             | 0.02693               |                    | r7.20          | 5.098              | 0.01463              | 0.120955             |          |                     |         |                    |
| r11.18              |                      | 0.000562             |                      | r2.1                   | 21.7         |                       | 0.572101              |                    | r7.21          | 5.098              |                      | 0.120955             |          |                     |         |                    |
| r11.19              |                      | 0.000451             |                      | r2.2                   | 21.7         |                       | 0.572101              |                    | r7.22          | 5.098              | 0.01463              |                      |          |                     |         |                    |
| r11.2<br>r11.20     |                      | 0.008517<br>4.36E-05 |                      | r2.3<br>r2.4           | 9.207        |                       | 0.294517              |                    | r7.23<br>r7.24 | 3.771              | 0.008568             |                      | -        |                     | -       |                    |
| r11.20              |                      | 8.74E-05             |                      | r2.5                   | 12.05        |                       | 0.294517              |                    | r7.25          | 5.322              |                      | 0.132401             |          |                     |         |                    |
| r11.22              | 0.7869               | 0.000595             | 0.024389             | r2.6                   | 12.05        |                       | 0.294517              |                    | r7.26          | 5.322              | 0.01753              |                      |          |                     |         |                    |
| r11.23              |                      | 0.000857             |                      | r2.7                   | 10.69        | 0.06526               |                       |                    | r7.27          | 5.322              | 0.01753              |                      |          |                     |         |                    |
| r11.24<br>r11.25    | 0.4083               |                      | 0.012653             | r23.1                  | 3            | 0.008647              | 0.092989              |                    | r7.28          | 5.322              | 0.01753              |                      |          |                     |         |                    |
| r11.25<br>r11.26    |                      | 0.000276             |                      | r23.10<br>r23.11       | 0.008566     |                       | 0.000265              |                    | r7.29<br>r7.30 | 5.322              |                      | 0.132401 0.132401    |          |                     |         |                    |
| r11.20              | 0.3363               |                      | 0.015179             | r23.11                 | 0.008566     |                       | 0.000265              |                    | r7.6           | 6.926              |                      | 0.162204             |          |                     |         |                    |
| r11.28              | 0.2377               | 5.43E-05             | 0.007366             | r23.14                 | 0.008566     |                       | 0.000265              |                    | r7.7           | 13.54              | 0.09024              |                      |          |                     |         |                    |
| r11.29              |                      | 2.34E-05             |                      | r23.15                 | 0.04733      |                       | 0.001467              |                    | r7.8           | 13.54              | 0.09024              |                      |          |                     |         |                    |
| r11.3               |                      | 0.000108             |                      | r23.16                 | 0.4193       | 0.0001689             |                       |                    | r8.1           | -0.2987            |                      | 0.009259             |          |                     |         |                    |
| r11.30<br>r11.31    |                      | 8.85E-06<br>0.000183 |                      | r23.17<br>r23.18       | 1.101 0.7617 |                       | 0.034117<br>0.023609  |                    | r8.2<br>r8.3   | -0.04243<br>0.2031 |                      | 0.001315             |          |                     |         |                    |
| r11.31              | 0.4365               | 2.34E-05             |                      | r23.18                 | 0.7617       |                       | 0.023609              |                    | r8.4           | 0.2031             |                      | 0.006296             | -        |                     |         |                    |
| r11.4               | 0.3146               |                      | 0.00975              | r23.2                  | 0.4281       | 0.0001761             |                       |                    | r8.5           | 0.133              |                      | 0.004123             |          |                     |         |                    |
| r11.5               | 0.3146               | 9.51E-05             | 0.00975              | r23.21                 | 2.896        | 0.008058              | 0.089766              |                    | r9.1           | 37.77              | 0.9949               | 0.997447             |          |                     |         |                    |
| r11.6               |                      | 9.51E-05             |                      | r23.22                 | 2.896        |                       | 0.089766              |                    | r9.15          | 122.9              |                      | 2.465968             |          |                     |         |                    |
| r11.7               |                      | 0.000236             |                      | r23.23                 | 2.896        |                       | 0.089766              |                    | r9.19          |                    |                      | 0.162204             |          |                     |         |                    |
| r11.8<br>r11.9      |                      | 0.000236             |                      | r23.3<br>r23.4         | 0.3709       | 0.0001321<br>7.51E-05 | 0.011493              |                    | r9.2<br>r9.3   |                    |                      | 0.010559             |          |                     |         |                    |
| r13.1               |                      | 9.91E-06             |                      | r23.6                  | 0.008566     |                       | 0.000265              |                    | r9.32          | 5.098              |                      | 0.133423             |          |                     | -       |                    |
| r13.2               |                      | 2.04E-06             |                      | r23.7                  | 0.008566     |                       | 0.000265              |                    | R9.35          | 11.93              |                      | 0.36973              |          |                     |         |                    |
| r13.3               | 0.05549              | 2.96E-06             | 0.00172              | r23.8                  | 0.008566     | 7.05E-08              | 0.000265              |                    | r9.36          | 6.614              | 0.02443              | 0.156301             |          |                     |         |                    |
| r13.4               |                      | 6.59E-06             |                      | r4.1                   | 33.05        |                       | 0.711407              |                    | r9.37          | 6.274              |                      | 0.146595             |          |                     |         |                    |
| r13.5               |                      | 2.04E-06             |                      | r4.10                  | 19.85        |                       | 0.702851              |                    | r9.38          | 5.322              |                      | 0.132401             |          |                     |         |                    |
| r13.6               |                      | 2.04E-06<br>1.17E-05 |                      | r4.11                  | 32.52        |                       | 0.70647               |                    | r9.4           |                    |                      | 0.004344 2.105232    | ļ        |                     |         | -                  |
| r13.7<br>r13.8      |                      | 1.17E-05<br>1.70E-05 |                      | r4.2<br>r4.3           | 32.52        |                       | 0.70647               |                    | r9.6<br>r9.7   | 83.53<br>94.85     |                      | 2.105232             |          |                     |         |                    |
| r13.8               |                      | 0.02075              |                      | r4.5                   | 16.8         |                       | 0.733962              |                    | TAGLYsyn       |                    |                      | 0.000905             |          |                     |         |                    |
| r15.1               | 281.5                |                      | 13.46105             | r4.5                   | 1.561        | 0.00234               | 0.048374              |                    | UDPglc4e       |                    |                      | 0.011979             |          |                     |         |                    |
| r16.10              | 0.04435              | 1.89E-06             | 0.001374             | r4.6                   | 3.084        | 0.009138              | 0.095593              |                    |                |                    |                      |                      |          |                     |         |                    |

### **Table S4.6.** Input data and flux analysis results for dilution rate $D = 0.127h^{-1}$ .

| Best est                | imate o              | f the flu            | xes (mmol/        | Input ra              | ates (mm         | ol/h)                 | Corresp               | onding    | covarian       | ce matri | x                   |                   |                    |          |                   |         |
|-------------------------|----------------------|----------------------|-------------------|-----------------------|------------------|-----------------------|-----------------------|-----------|----------------|----------|---------------------|-------------------|--------------------|----------|-------------------|---------|
| v est 1                 | Values               | Variances            | Serr              | r m 1                 | Values           |                       | Pm 1                  | ara:ext   | BIOMasp:       | CO2:ext  | D-galac:ex          | glc:ext           | Lrha:ext           | mann:ext | O2:ext            | xyl:ext |
| ATP GTP P               |                      | 5.43E-05             |                   | ara:ext               | -7.62            |                       | ara:ext               | 0.0453    | -0.53          | 0        |                     | 0.0346            |                    | 0.0374   | 0                 |         |
| C120syn                 | 8.56E-03             |                      |                   | BIOMasp:              |                  |                       | BIOMasp:              | -0.53     | 19.3           | 0        | -0.429              | -0.497            | -0.3               | -0.538   | 0                 |         |
| C140syn                 | 9.96E-03             | 1.46E-07             |                   | CO2:ext               | 92.5             |                       | CO2:ext               | 0.0298    | -0.429         | 9.24     | 0.0287              | 0.028             |                    | 0.0303   | -2.74             |         |
| C141syn<br>C160syn      | 4.28E-03<br>7.02E-02 |                      | 0.000164          | D-galac:e:<br>glc:ext | -0.17            |                       | D-galac:ext           | 0.0298    | -0.429         | 0        | 0.0287              | 0.028             |                    | 0.0303   | 0                 |         |
| C161syn                 | 9.99E-03             |                      | 0.000383          | Lrha:ext              | -4.3             |                       | Lrha:ext              | 0.0209    | -0.3           | 0        | 0.0169              | 0.0196            |                    |          | 0                 |         |
| C162syn                 |                      | 1.20E-08             |                   | mann:ext              | -7.74            |                       | mann:ext              | 0.0374    | -0.538         | 0        | 0.0303              | 0.0351            | 0.0212             | 0.0441   | 0                 |         |
| C180syn                 |                      | 0.000151             |                   | O2:ext                | -83.3            |                       | O2:ext                | 0         | 0              | -2.74    | 0                   | 0                 |                    | 0        | 38.8              |         |
| C181CoA s<br>C181syn    |                      | 2.10E-06<br>0.000141 | 0.001447          | xyl:ext               | -8.31            |                       | xyl:ext               | 0.0402    | -0.578         | 0        | 0.0325              | 0.0377            | 0.0228             | 0.0408   | 0                 | 0.05    |
| C182syn                 | 1.33E-01             |                      | 0.005114          | Reconc                | iled rate        | s (mmol/h             | Correct               | onding    | ovarian        | co matri | ~                   |                   |                    |          |                   |         |
| C182syn                 | 1.16E-02             |                      | 0.000444          | Reconc                | lieu rate.       | s (mmor/ n            | corresp               | onung     | covarian       | ce mach  | Î                   |                   |                    |          |                   |         |
| C200syn                 |                      | 6.74E-09             |                   | r_m est 1             | Values           |                       | Pr_m 1                | ara:ext   | BIOMasp:       | CO2:ext  | D-galac:ex          | glc:ext           | Lrha:ext           | mann:ext | O2:ext            | xyl:ext |
| CLsyn                   | 5.32E-03             |                      | 0.000204          | ara:ext               | -7.045           |                       | ara:ext               | 0.03268   | -0.5984        | -0.1756  | 0.01974             | 0.02293           | 0.01265            | 0.02472  | 0.1128            | 0.0265  |
| DAGLYsyn                |                      |                      | 0.005732          | BIOMasp:              |                  |                       | BIOMasp:              | -0.5984   | 18.81          | -0.6589  | -0.4833             | -0.5602           | -0.3454            | -0.6067  | 2.524             | -0.65   |
| DGDG syn<br>GDPMANs     |                      | 8.45E-07<br>5.43E-05 | 0.000919          | CO2:ext               | -5.711           |                       | CO2:ext<br>D-galac:ex | -0.1756   | -0.6589        | -0.1408  | -0.1408             | -0.1626           | -0.1133<br>0.01032 | -0.1767  | -6.021<br>0.08534 | -0.190  |
| MAGLYsyr                |                      |                      | 0.007387          | D-galac:e:<br>glc:ext | -6.618           |                       | glc:ext               | 0.01974   | -0.4833        | -0.1408  | 0.02067             | 0.01869           |                    | 0.02018  | 0.1035            |         |
| MGC181 s                |                      |                      | 0.001447          | Lrha:ext              | -3.924           |                       | Lrha:ext              | 0.01265   | -0.3454        | -0.1133  | 0.01032             | 0.01196           | 0.0194             | 0.0129   | 0.08416           |         |
| MGDG syr                | 1.16E-01             | 1.97E-05             | 0.004435          | mann:ext              | -7.162           |                       | mann:ext              | 0.02472   | -0.6067        | -0.1767  | 0.02018             | 0.02337           | 0.0129             | 0.03135  | 0.1128            | 0.0270  |
| r1.1                    | 6.618                |                      | 0.163707          | O2:ext                | -87.55           |                       | O2:ext                | 0.1128    |                | -6.021   | 0.08534             | 0.1036            |                    | 0.1128   | 6.186             |         |
| r1.2                    | -23.53               |                      | 0.810494          | xyl:ext               | -7.687           |                       | xyl:ext               | 0.02655   | -0.652         | -0.1901  | 0.02161             | 0.02507           | 0.01387            | 0.02707  | 0.1216            | 0.0372  |
| r1.3                    | 6.8                  |                      | 0.256359          | Colord                | ad retr          | (mm = 1 // )          | Correct               | andiar    |                |          |                     |                   |                    |          |                   |         |
| r1.4                    | 6.8                  |                      | 0.256359          | carcula               | lea ratés        | (mmol/h)              | corresp               | onaing    | ovarian        | ce matri | x                   |                   |                    |          |                   |         |
| r1.5<br>r1.6            | 29.85<br>29.85       |                      | 0.640703          | r_cest 1              | Values           | -                     | Pr_c 1                | H:ext     | H2O:ext        | NH4:ext  | Pi:ext              | SO4:ext           |                    |          |                   |         |
| r1.0                    | 29.85                |                      | 0.631902          | H:ext                 | 5.846            |                       | H:ext                 | 0.1965    | 0.4764         |          | -0.0061             |                   |                    |          |                   |         |
| r1.8                    | 28.54                |                      | 0.631902          | H2O:ext               | 129.8            |                       | H2O:ext               | 0.4764    | 6.875          | -0.5178  | -0.01479            |                   |                    |          |                   |         |
| r1.9                    | 27.51                |                      | 0.627615          | NH4:ext               | -12.56           |                       | NH4:ext               | -0.2136   | -0.5178        | 0.2322   | 0.00663             |                   |                    |          |                   |         |
| r10.1                   | 390.4                |                      | 11.90378          | Pi:ext                | -0.3587          |                       | Pi:ext                | -0.0061   |                | 0.00663  |                     |                   |                    |          |                   | -       |
| r10.10<br>r10.11        | 0.3176               |                      |                   | SO4:ext               | -0.1476          |                       | SO4:ext               | -0.00251  | -0.00608       | 0.002728 | 7.79E-05            | 3.20E-05          |                    |          |                   |         |
| r10.11                  | 36.6<br>74.02        | 0.6223               | 0.78886           |                       |                  |                       |                       |           |                |          |                     |                   |                    |          |                   |         |
| r10.12                  | 0.4867               |                      | 0.018668          | Bost os               | timate o         | f the fluxe           | (mmol                 | (h) conti | nued           |          |                     |                   |                    |          |                   |         |
| r10.13                  | 14.9                 |                      | 0.571577          | Destes                | timate 0         | i the nuxe.           | s (minor,             | inj conc  | nueu           |          |                     |                   |                    |          |                   |         |
| r10.15                  |                      | 0.000148             |                   | v est 1               | Values           | Variances             | Serr                  |           | v est 1        | Values   | Variances           | Serr              |                    |          |                   |         |
| r10.16                  | 1.079                | 0.001712             | 0.041376          | r16.13                | 0.8068           | 0.000958              | 0.030952              |           | r4.7           | 19.91    | 0.8442              | 0.918804          |                    |          |                   |         |
| r10.17                  |                      | 0.000272             |                   | r16.14                | 0.1345           |                       | 0.005158              |           | r4.8           | 19.91    | 0.8442              |                   |                    |          |                   |         |
| r10.18                  |                      | 0.000161             |                   | r16.15                | 0.1345           |                       | 0.005158              |           | r4.9           | 19.91    |                     | 0.918858          |                    |          |                   |         |
| r10.19<br>r10.3         | 0.5646 317.4         |                      | 0.021659 9.398936 | r16.16<br>r16.2       | 0.03061          | 1.38E-06<br>0.0001713 | 0.001174              |           | r5.1<br>r5.2   | 3.738    | 0.02057             | 0.143422 0.447102 |                    |          |                   |         |
| r10.5                   | 388.8                |                      | 11.92057          | r16.3                 | 0.3598           | 0.0001715             |                       |           | r5.3           | 13.34    |                     | 0.511762          |                    |          |                   |         |
| r10.6                   | 3.247                |                      | 0.124579          | r16.4                 | 0.3598           | 0.0001905             |                       |           | r6.1           | 105.1    |                     | 3.255764          |                    |          |                   |         |
| r10.7                   | 0.3312               | 0.000161             | 0.012704          | r16.5                 | 0.1646           | 3.99E-05              | 0.006313              |           | r6.2           | 47.81    | 1.031               | 1.015382          |                    |          |                   |         |
| r10.8                   |                      | 0.003577             |                   | r16.6                 | 0.1646           |                       | 0.006313              |           | r6.3           | 19.91    | 0.8443              |                   |                    |          |                   |         |
| r10.9                   | 0.3176               |                      |                   | r16.7                 | 0.1646           |                       | 0.006313              |           | r6.4           | 371.5    | 121.2               |                   |                    |          |                   |         |
| r11.1<br>r11.10         | 9.097                | 0.1218               | 0.348999          | r16.8<br>r16.9        | 0.1539<br>0.1528 |                       | 0.005905              |           | r7.12<br>r7.13 | 7.045    | 0.03268             | 0.180776          |                    |          |                   |         |
| r11.10                  |                      | 3.20E-05             | 0.00566           | r17.2                 | 1.89             |                       | 0.072491              |           | r7.14          | 7.045    |                     | 0.180776          |                    |          |                   |         |
| r11.12                  | 1.48E-01             | 3.20E-05             | 0.00566           | r17.3                 | 0.5489           | 0.0004433             | 0.021055              |           | r7.16          | 7.162    | 0.03135             | 0.177059          |                    |          |                   |         |
| r11.13                  |                      | 1.04E-05             |                   | r17.4                 | 0.5489           | 0.0004433             |                       |           | r7.17          | 7.162    |                     | 0.177059          |                    |          |                   |         |
| r11.14                  |                      | 1.04E-05             |                   | r17.5                 | 4.884            | 0.0351                |                       |           | r7.18          | 5.711    |                     | 0.143771          |                    |          |                   |         |
| r11.15<br>r11.16        | 6.34E-02             | 5.91E-06<br>0.006186 |                   | r17.6<br>r17.7        | 0.122            |                       | 0.004679              |           | r7.19<br>r7.2  | 5.711    | 0.02067<br>3.61E-05 | 0.143771          |                    |          |                   |         |
| r11.17                  | 1.68E-01             |                      |                   | r17.8                 | 0.9148           | 0.001232              |                       |           | r7.20          | 5.711    | 0.02067             |                   |                    |          |                   |         |
| r11.18                  |                      | 0.000954             |                   | r2.1                  | 25.14            |                       | 0.756968              |           | r7.21          | 5.711    | 0.02067             | 0.143771          |                    |          |                   |         |
| r11.19                  | 0.721                | 0.000765             | 0.027657          | r2.2                  | 25.14            | 0.573                 | 0.756968              |           | r7.22          | 5.711    | 0.02067             | 0.143771          |                    |          |                   |         |
| r11.2                   | 3.135                | 0.01446              | 0.12025           | r2.3                  | 13.62            |                       | 0.374166              |           | r7.23          | 4.314    | 0.0116              |                   |                    |          |                   | 2       |
| r11.20                  | 0.2243               |                      | 0.008603          | r2.4                  | 11.07            | 0.1377                |                       |           | r7.24          | 4.303    |                     | 0.107471          |                    |          |                   | -       |
| r11.21<br>r11.22        | 0.3176               | 0.000148             |                   | r2.5<br>r2.6          | 13.62<br>13.62   |                       | 0.374166              |           | r7.25<br>r7.26 | 3.924    |                     | 0.139284          |                    |          |                   |         |
| r11.22                  |                      | 0.001455             |                   | r2.7                  | 12.19            |                       | 0.323574              |           | r7.27          | 3.924    |                     | 0.139284          |                    |          |                   |         |
| r11.24                  |                      | 0.000272             |                   | r23.1                 | 3.159            |                       | 0.121161              |           | r7.28          | 3.924    | 0.0194              | 0.139284          |                    |          |                   | -       |
| r11.25                  |                      | 0.000469             |                   | r23.10                | 0.009018         |                       | 0.000346              |           | r7.29          | 3.924    |                     | 0.139284          |                    |          |                   |         |
| r11.26                  |                      | 0.000469             |                   | r23.11                | 0.009018         |                       | 0.000346              |           | r7.30          | 3.924    |                     | 0.139284          |                    |          |                   |         |
| r11.27<br>r11.28        |                      | 0.000391             |                   | r23.12<br>r23.14      | 0.009018         | 1.20E-07              |                       |           | r7.6<br>r7.7   | 7.687    | 0.03723             |                   |                    |          |                   |         |
| r11.28<br>r11.29        | 0.2502               | 9.21E-05<br>3.98E-05 | 0.009598          | r23.14<br>r23.15      | 0.009018         |                       | 0.000346              |           | r7.7<br>r7.8   | 14.73    | 0.123               |                   |                    |          |                   |         |
| r11.25                  |                      | 0.000184             |                   | r23.15                | 0.4415           | 0.0002868             |                       |           | r8.1           | -0.3145  |                     | 0.012066          |                    |          |                   |         |
| r11.30                  |                      | 1.50E-05             |                   | r23.17                | 1.159            | 0.001976              | 0.044452              |           | r8.2           | -0.04467 |                     | 0.001713          |                    |          |                   |         |
| r11.31                  | 0.4596               | 0.000311             | 0.01763           | r23.18                | 0.802            | 0.0009465             | 0.030765              |           | r8.3           | 0.2139   | 6.73E-05            | 0.008204          |                    |          |                   |         |
| r11.32                  |                      | 3.98E-05             |                   | r23.19                | 0.06275          |                       | 0.002407              |           | r8.4           | 0.1401   |                     | 0.005373          |                    |          |                   | -       |
| r11.4                   |                      | 0.000161             |                   | r23.2                 | 0.4507           |                       | 0.017292              |           | r8.5           | 0.1401   |                     | 0.005373          |                    |          |                   |         |
| r11.5<br>r11.6          |                      | 0.000161             | 0.012704          | r23.21<br>r23.22      | 3.049            |                       | 0.116962              |           | r9.1<br>r9.15  | 39.29    |                     | 2.622022          |                    |          | -                 |         |
| r11.7                   |                      | 0.000401             |                   | r23.22                | 3.049            |                       | 0.116962              |           | r9.19          | 7.687    |                     | 0.192951          |                    |          |                   | 1       |
| 11.8                    |                      | 0.000401             |                   | r23.3                 | 0.3905           | 0.0002244             |                       |           | r9.2           |          | 0.000189            |                   |                    |          |                   |         |
| r11.9                   | 1.306                | 0.002509             | 0.05009           | r23.4                 | 0.2943           | 0.0001275             | 0.011292              |           | r9.3           | 6.618    | 0.0268              | 0.163707          |                    |          |                   |         |
| r13.1                   |                      |                      |                   | r23.6                 | 0.009018         |                       | 0.000346              |           | r9.32          | 5.711    |                     | 0.143771          |                    |          |                   |         |
| r13.2                   |                      |                      |                   | r23.7                 | 0.009018         |                       | 0.000346              |           | R9.35          | 12.56    |                     | 0.481871          |                    |          |                   |         |
| r13.3<br>r13.4          |                      |                      |                   | r23.8<br>r4.1         | 0.009018         |                       | 0.000346              |           | r9.36<br>r9.37 | 7.045    | 0.03268             | 0.180776          |                    |          |                   |         |
| r13.4<br>r13.5          |                      |                      | 0.001861          | r4.1<br>r4.10         | 20.39            |                       | 0.908955              |           | r9.37          | 3.924    |                     | 0.177059          |                    |          |                   |         |
|                         | 0.04851              | 3.46E-06             | 0.001861          | r4.10                 | 33.73            |                       | 0.775951              |           | r9.4           |          | 3.20E-05            | 0.00566           |                    |          |                   |         |
| r13.6                   |                      |                      |                   | r4.2                  | 33.73            |                       | 0.775951              |           | r9.6           | 87.55    |                     | 2.487167          |                    |          |                   |         |
|                         | -0.1161              | 1.98E-05             | 0.004432          | 14.2                  | 33.73            |                       |                       |           |                |          |                     |                   |                    |          |                   |         |
| r13.6<br>r13.7<br>r13.8 | 0.1401               | 2.89E-05             | 0.005373          | r4.3                  | 22.08            | 0.769                 | 0.876926              |           | r9.7           | 100.6    |                     | 2.459675          |                    |          |                   |         |
| r13.6<br>r13.7          | 0.1401               | 2.89E-05<br>0.03523  |                   |                       |                  | 0.769<br>0.9582       |                       |           |                | 0.03075  |                     | 0.001179          |                    |          |                   |         |

### **Table S4.7.** Input data and flux analysis results for dilution rate $D = 0.144h^{-1}$ .

| Best est             | timate o             | f the flux           | kes (mmol/              | Input ra              | ates (mm        | ol/h)        | Corresp               | onding     | covarian         | ce matri       | x                    |                   |                     |          |          |         |
|----------------------|----------------------|----------------------|-------------------------|-----------------------|-----------------|--------------|-----------------------|------------|------------------|----------------|----------------------|-------------------|---------------------|----------|----------|---------|
| v est 1              |                      | Variances            | Serr                    | r_m 1                 | Values          |              | Pm 1                  | ara:ext    | BIOMasp:         | CO2:ext        | D-galac:e>           | glc:ext           | Lrha:ext            | mann:ext | 02:ext   | xyl:ext |
| ATP GTP P            | 2.44E-01             | 0.000104             |                         | ara:ext               | -8.52           |              | ara:ext               | 0.0561     | -0.7             | . 0            | 0.0371               | 0.0437            | 0.0166              |          |          | 0.0503  |
| C120syn              | 1.09E-02             |                      |                         | BIOMasp:              | 93.6            |              | BIOMasp:              | -0.7       | 58.7             | 0              |                      | -0.663            | -0.251              | -0.717   |          | -0.763  |
| C140syn<br>C141syn   | 1.26E-02<br>5.43E-03 |                      |                         | CO2:ext<br>D-galac:ex |                 |              | CO2:ext<br>D-galac:ex |            | -0.563           |                |                      | 0.0352            | 0.0133              |          |          | 0.0405  |
| C160syn              | 8.90E-02             |                      | 0.00372                 | glc:ext               | -8.08           |              | glc:ext               | 0.0437     | -0.663           | 0              |                      | 0.0332            | 0.0155              | 0.0448   |          | 0.0476  |
| C161syn              | 1.27E-02             |                      | 0.00053                 | Lrha:ext              | -3.02           |              | Lrha:ext              | 0.0166     | -0.251           | 0              | 0.0133               | 0.0157            | 0.0217              | 0.017    | 0        | 0.018   |
| C162syn              | 3.62E-03             |                      |                         | mann:ext              |                 |              | mann:ext              | 0.0473     | -0.717           | 0              |                      | 0.0448            | 0.017               | 0.0563   |          | 0.0515  |
| C180syn<br>C181CoA s |                      | 0.000288<br>4.00E-06 | 0.016965                | 02:ext                | -82.4           |              | 02:ext                | 0.0503     | -0.763           | -2.7           | 0.0405               | 0.0476            | 0.018               | 0.0515   |          | 0.0677  |
| C181COA S            |                      | 0.000269             |                         | xyl:ext               | -9.5            |              | xyl:ext               | 0.0503     | -0.765           | 0              | 0.0405               | 0.0476            | 0.018               | 0.0515   | 0        | 0.0677  |
| C182syn              | 1.69E-01             |                      |                         | Reconc                | iled rate       | s (mmol/h)   | Corresp               | onding     | ovarian          | ce matri       | x                    |                   |                     | -        |          |         |
| C183syn              | 1.47E-02             |                      |                         |                       |                 | - (          |                       |            |                  |                |                      |                   |                     |          |          |         |
| C200syn              | 2.72E-03             | 1.29E-08             | 0.000113                | r_m est 1             | Values          |              | Pr_m 1                | ara:ext    | BIOMasp:         | CO2:ext        | D-galac:e>           | glc:ext           | Lrha:ext            | mann:ext |          | xyl:ext |
| CLsyn                | 6.76E-03             |                      |                         | ara:ext               | -8.261          |              | ara:ext               | 0.04899    | -1.081           | -0.1025        | 0.03143              | 0.03704           | 0.01328             | 0.04004  |          | 0.04245 |
| DAGLYsyn<br>DGDG syn |                      |                      | 0.007923                | BIOMasp:<br>CO2:ext   | 97.56           |              | BIOMasp:<br>CO2:ext   | -1.081     | 35.94            | -4.202         | -0.8655              | -1.02             | -0.4329<br>-0.04557 | -1.106   | 7.821    | -1.184  |
|                      |                      | 0.000104             |                         | D-galac:ex            |                 |              | D-galac:ex            |            | -0.8655          |                | 0.03098              | 0.02989           | 0.01066             |          |          | 0.03424 |
|                      |                      | 8.77E-05             |                         | glc:ext               | -7.837          |              | glc:ext               | 0.03704    | -1.02            |                | 0.02989              |                   |                     | 0.038    |          |         |
| MGC181 s             | 4.79E-02             |                      | 0.002                   | Lrha:ext              | -2.9            |              | Lrha:ext              | 0.01328    | -0.4329          | -0.04557       | 0.01066              | 0.01259           | 0.02014             | 0.01361  | 0.009202 | 0.01434 |
| MGDG syr             |                      |                      |                         | mann:ext              | -8.476          |              | mann:ext              | 0.04004    | -1.106           |                |                      | 0.038             | 0.01361             | 0.0489   |          | 0.04349 |
| r1.1                 | 7.837                |                      | 0.204353                | O2:ext                | -80.49          |              | O2:ext                | -0.01168   | 7.821            | -7.555         |                      |                   |                     |          | 8.221    | -0.012  |
| r1.2<br>r1.3         | -30.86<br>6.365      |                      | 1.130929 ##<br>0.310966 | xyl:ext               | -9.014          |              | xyl:ext               | 0.04245    | -1.184           | -0.1129        | 0.03424              | 0.04025           | 0.01434             | 0.04349  | -0.012   | 0.05904 |
| r1.3<br>r1.4         | 6.365                |                      | 0.310966                | Calculat              | ted rates       | (mmol/h)     | Correct               | onding     | ovarian          | ce matri       | ×                    |                   |                     |          | ļ        |         |
| r1.4<br>r1.5         | 32.43                |                      | 0.697639                | concuid               |                 | . ,          | Sorresp               | Shang      | all              | ee matri       | ~                    |                   |                     |          | l        |         |
| r1.6                 | 32.43                | 0.4867               | 0.697639                | r_cest 1              | Values          |              | Pr_c1                 | H:ext      | H2O:ext          | NH4:ext        | Pi:ext               | SO4:ext           |                     |          |          | -       |
| r1.7                 | 30.77                |                      | 0.690435                | H:ext                 | 8.011           |              | H:ext                 | 0.3754     | 0.615            |                |                      |                   |                     |          |          |         |
| r1.8                 | 30.77                | 0.4767               | 0.690435                | H2O:ext               | 135.2           |              | H2O:ext               | 0.615      | 7.426            |                |                      | -0.00785          |                     |          |          |         |
| r1.9                 | 29.46                | 0.4755               | 0.689565                | NH4:ext               | -15.94          |              | NH4:ext               | -0.4081    | -0.6685          | 0.4435         | 0.01266              | 0.00521           |                     |          |          |         |
| r10.1                | 350                  |                      | 14.01071                | Pi:ext                | -0.4551         |              | Pi:ext                | -0.01165   | -0.01909         |                |                      |                   |                     |          |          |         |
| r10.10<br>r10.11     | 0.403                | 0.000284             | 0.016837                | SO4:ext               | -0.1872         |              | SO4:ext               | -0.00479   | -0.00785         | 0.00521        | 1.49E-04             | 6.12E-05          |                     |          |          |         |
| r10.12               | 63.33                |                      | 3.028531                |                       |                 |              |                       |            |                  |                |                      |                   |                     |          |          |         |
| r10.13               |                      | 0.000666             | 0.025801                | Best es               | timate o        | f the fluxes | (mmol/                | h) conti   | nued             |                |                      |                   |                     |          |          |         |
| r10.13               | 18.91                | 0.6241               | 0.79                    | Destes                | cimate o        | r the nuxes  | (minor)               | ing contin | laca             |                |                      |                   |                     |          |          |         |
| r10.15               |                      | 0.000284             |                         | v est 1               | Values          | Variances    | Serr                  |            | v est 1          | Values         | Variances            | Serr              |                     |          |          |         |
| r10.16               |                      | 0.003271             |                         | r16.13                | 1.024           | 0.00183      | 0.042778              |            | r4.7             | 15.07          | 1.385                | 1.17686           |                     |          |          |         |
| r10.17               |                      | 0.000519             | 0.02279                 | r16.14                | 0.1706          | 5.08E-05     |                       |            | r4.8             | 15.07          | 1.385                | 1.17686           |                     |          |          |         |
| r10.18               |                      | 0.000308             |                         | r16.15                | 0.1706          | 5.08E-05     |                       |            | r4.9             | 15.06          | 1.385                | 1.17686           |                     |          |          |         |
| r10.19<br>r10.3      | 0.7164 288.1         |                      | 0.029933 10.97269       | r16.16<br>r16.2       | 0.03884         |              | 0.001623              |            | r5.1<br>r5.2     | 4.744          |                      | 0.198192 0.617819 |                     |          |          |         |
| r10.5                | 348.1                | 120.4                | 14.05347                | r16.3                 | 0.4565          |              | 0.013033              |            | r5.3             | 16.93          |                      | 0.707319          |                     |          |          |         |
| r10.6                | 4.12                 |                      | 0.172163                | r16.4                 | 0.4565          |              | 0.019074              |            | r6.1             | 92.6           | 14.79                |                   |                     |          |          |         |
| r10.7                | 0.4203               | 0.000308             | 0.017561                | r16.5                 | 0.2088          |              | 0.008725              |            | r6.2             | 50.45          | 1.168                | 1.08074           |                     |          |          |         |
| r10.8                |                      | 0.006833             |                         | r16.6                 | 0.2088          | 7.61E-05     | 0.008725              |            | r6.3             | 15.06          | 1.385                | 1.17686           |                     |          |          |         |
| r10.9                |                      | 0.000284             |                         | r16.7                 | 0.2088          |              | 0.008725              |            | r6.4             | 336.2          |                      | 12.85302          |                     |          |          |         |
| r11.1                | 11.54                |                      | 0.482286                | r16.8<br>r16.9        | 0.1953          |              | 0.008161              |            | r7.12            | 8.261          |                      | 0.221337          |                     |          |          |         |
| r11.10<br>r11.11     |                      | 0.000658<br>6.12E-05 |                         | r16.9                 | 0.1939<br>2.398 | 0.01004      | 0.008102              |            | r7.13<br>r7.14   | 8.261          |                      | 0.221337          |                     |          |          |         |
| r11.12               |                      | 6.12E-05             |                         | r17.3                 | 0.6965          |              | 0.029102              |            | r7.16            | 8.476          |                      | 0.2211337         |                     |          | 1        |         |
| r11.13               | 1.07E-01             |                      |                         | r17.4                 | 0.6965          |              | 0.029102              |            | r7.17            | 8.476          |                      | 0.221133          |                     |          |          |         |
| r11.14               | 1.07E-01             | 1.99E-05             | 0.004464                | r17.5                 | 6.197           | 0.06705      | 0.25894               |            | r7.18            | 6.653          | 0.03098              | 0.176011          |                     |          |          |         |
| r11.15               | 8.04E-02             |                      | 0.003359                | r17.6                 | 0.1548          |              | 0.006467              |            | r7.19            | 6.653          |                      | 0.176011          |                     |          |          |         |
| r11.16               | 2.60E+00             | 0.01182              | 0.10872                 | r17.7                 | 0.1548          |              | 0.006467              |            | r7.2             | 0.1987         | 6.89E-05             |                   |                     |          |          |         |
| r11.17<br>r11.18     | 2.13E-01             | 7.90E-05<br>0.001822 | 0.008887                | r17.8<br>r2.1         | 1.161           |              | 0.048497              |            | r7.20<br>r7.21   | 6.653          |                      | 0.176011 0.176011 |                     |          |          |         |
| r11.18               |                      | 0.001822             |                         | r2.1                  | 32.34           |              | 1.045945              |            | r7.21            | 6.653          |                      | 0.176011          |                     |          |          |         |
| r11.2                | 3.978                |                      | 0.166193                | r2.3                  | 16.95           |              | 0.504678              |            | r7.23            | 4.88           | 0.01507              |                   |                     |          |          |         |
| r11.20               |                      | 0.000141             |                         | r2.4                  | 14.81           |              | 0.522015              |            | r7.24            | 4.867          |                      | 0.122434          |                     |          |          |         |
| r11.21               |                      | 0.000284             |                         | r2.5                  | 16.95           |              | 0.504678              |            | r7.25            | 2.9            |                      | 0.141915          |                     |          |          |         |
| r11.22               |                      | 0.001929             | 0.04392                 | r2.6                  | 16.95           |              | 0.504678              |            | r7.26            | 2.9            |                      | 0.141915          |                     |          | ļ        |         |
| r11.23<br>r11.24     | 1.262                | 0.00278              | 0.052726                | r2.7<br>r23.1         | 15.14           |              | 0.433128              |            | r7.27<br>r7.28   | 2.9            |                      | 0.141915          |                     |          |          |         |
| r11.24               |                      | 0.000319             | 0.02279                 | r23.10                | 0.01144         |              | 0.167481              |            | r7.28            | 2.9            |                      | 0.141915          |                     |          |          |         |
| r11.25               |                      | 0.000896             |                         | r23.11                | 0.01144         |              | 0.000478              |            | r7.30            | 2.9            |                      | 0.141915          |                     |          |          |         |
| r11.27               | 0.6543               | 0.000748             | 0.02734                 | r23.12                | 0.01144         | 2.29E-07     | 0.000478              |            | r7.6             | 9.014          |                      | 0.242981          |                     |          |          |         |
| r11.28               |                      | 0.000176             |                         | r23.14                | 0.01144         |              | 0.000478              |            | r7.7             | 17.28          |                      | 0.439204          |                     |          |          |         |
| r11.29               |                      | 7.60E-05             |                         | r23.15                | 0.06322         |              | 0.002642              |            | r7.8             | 17.28          |                      | 0.439204          | L                   |          |          |         |
| r11.3                |                      | 0.000352             |                         | r23.16                | 0.5602          |              | 0.023407              |            | r8.1             |                | 0.000278             | 0.016676          |                     |          |          |         |
| r11.30<br>r11.31     |                      | 2.87E-05<br>0.000594 |                         | r23.17<br>r23.18      | 1.47            |              | 0.061433              |            | r8.2<br>r8.3     | -0.05668       | 5.61E-06<br>0.000129 |                   |                     |          |          |         |
| r11.32               | 0.2086               |                      |                         | r23.19                | 0.07963         |              | 0.003327              |            | r8.4             | 0.1777         |                      | 0.007426          |                     |          |          |         |
| r11.4                |                      | 0.000308             |                         | r23.2                 | 0.572           |              | 0.023898              |            | r8.5             | 0.1777         |                      | 0.007426          |                     |          | ĺ        |         |
| r11.5                | 0.4203               | 0.000308             | 0.017561                | r23.21                | 3.869           | 0.02614      |                       |            | r9.1             | 45.78          | 2.326                | 1.525123          |                     |          |          |         |
| r11.6                |                      | 0.000308             |                         | r23.22                | 3.869           |              | 0.161679              |            | r9.15            | 135.2          |                      | 2.725069          |                     |          |          |         |
| r11.7                |                      | 0.000766             |                         | r23.23                | 3.869           |              | 0.161679              |            | r9.19            | 9.014          |                      | 0.242981          |                     |          |          |         |
| r11.8<br>r11.9       |                      | 0.000766 0.004792    |                         | r23.3<br>r23.4        | 0.4955          | 0.0004286    |                       |            | r9.2<br>r9.3     |                | 0.000362             |                   |                     |          |          |         |
| r13.1                |                      | 3.21E-05             |                         | r23.4                 | 0.01144         |              | 0.0015604             |            | r9.32            |                | 0.04176              |                   |                     |          |          |         |
| r13.2                |                      | 6.62E-06             |                         | r23.7                 | 0.01144         |              | 0.000478              |            | R9.35            | 15.94          |                      | 0.665958          |                     |          |          |         |
| r13.3                | 0.07414              | 9.60E-06             | 0.003098                | r23.8                 | 0.01144         |              | 0.000478              |            | r9.36            | 8.261          |                      | 0.221337          |                     |          |          |         |
| r13.4                | 0.1106               | 2.14E-05             | 0.004622                | r4.1                  | 33.32           | 0.6699       | 0.818474              |            | r9.37            | 8.476          | 0.0489               | 0.221133          |                     |          |          |         |
| r13.5                |                      | 6.62E-06             |                         | r4.10                 | 15.68           |              | 1.158447              |            | r9.38            | 2.9            |                      | 0.141915          |                     |          |          |         |
| r13.6                |                      | 6.62E-06             |                         | r4.11                 | 32.61           |              | 0.822192              |            | r9.4             |                | 6.12E-05             |                   | ļ                   |          | <u> </u> |         |
| r13.7                |                      | 3.79E-05<br>5.52E-05 |                         | r4.2<br>r4.3          | 32.61           |              | 0.822192              |            | r9.6             | 80.49<br>97.56 |                      | 2.867229          |                     |          |          |         |
| r13.8<br>r13.9       |                      | 5.52E-05<br>0.06729  |                         | r4.3<br>r4.4          | 17.82           |              | 1.096358              |            | r9.7<br>TAGLYsvn |                | 7.267<br>2.66E-06    |                   |                     |          |          |         |
|                      | 229                  |                      |                         | r4.5                  | 2.085           |              | 0.087121              |            | UDPglc4e         |                | 0.000465             |                   |                     |          |          |         |
| r15.1                |                      |                      |                         |                       | 4.12            |              | 0.172163              |            | 0.0.0            |                |                      |                   |                     |          |          |         |

### **Table S4.8.** Input data and flux analysis results for dilution rate $D = 0.160h^{-1}$ .

| Best est           | imate o              | f the flux           | (mmol/   | Input ra            | ites (mm        | ol/h)                | Corresp              | onding             | covarian       | ce matri       | x              |          |          |          |          |                    |
|--------------------|----------------------|----------------------|----------|---------------------|-----------------|----------------------|----------------------|--------------------|----------------|----------------|----------------|----------|----------|----------|----------|--------------------|
| v est 1            |                      | Variances            | Serr     | r_m                 |                 |                      | Pm 1                 | ara:ext            | BIOMasp:       |                | D-galac:ex     |          |          | mann:ext |          | xyl:ext            |
| ATP GTP P          |                      | 0.000119             |          | ara:ext             | -8.14           |                      | ara:ext              | 0.05402            |                | 0              |                |          |          |          | 0        |                    |
| C120syn            | 1.20E-02             | 2.37E-07             |          | BIOMasp:            | 145             |                      | BIOMasp:             | -0.7421            |                | 0              | -0.6528        | -0.8145  | -0.2306  | -0.8721  | 0        |                    |
| C140syn            | 1.39E-02<br>5.99E-03 | 3.21E-07<br>5.93E-08 |          | CO2:ext             | -7.17           |                      | CO2:ext              | 0.03709            |                | 9.132          | 0.04502        | 0.04071  | 0.01152  | 0.04358  | -2.396   |                    |
| C141syn<br>C160syn | 9.81E-02             | 1.59E-05             |          | D-galac:ext         | -8.95           |                      | D-galac:ext          | 0.03703            |                | 0              | 0.04302        | 0.05894  | 0.01132  | 0.05438  | 0        |                    |
| C161syn            | 1.40E-02             | 3.23E-07             | 0.000568 | Lrha:ext            | -2.49           |                      | Lrha:ext             | 0.0131             |                | 0              | 0.01152        | 0.01438  |          |          | 0        |                    |
| C162syn            | 3.99E-03             | 2.64E-08             | 0.000162 | mann:ext            | -9.59           |                      | mann:ext             | 0.04954            | -0.8721        | 0              | 0.04358        | 0.05438  | 0.01539  | 0.06835  | 0        | 0.05975            |
| C180syn            | 4.48E-01             |                      |          | 02:ext              | -78.2           |                      | 02:ext               | 0                  |                | -2.396         | 0              | 0        | 0        | 0        | 39.21    |                    |
| C181CoA s          |                      |                      | 0.002147 | xyl:ext             | -9.84           |                      | xyl:ext              | 0.05088            | -0.8955        | 0              | 0.04475        | 0.05584  | 0.01581  | 0.05979  | 0        | 0.08526            |
| C181syn            | 0.433                |                      | 0.017612 |                     |                 |                      |                      |                    |                |                |                |          |          |          |          |                    |
| C182syn            | 1.86E-01             | 5.75E-05             |          | Reconc              | iled rate       | s (mmol/h)           | Corresp              | onding             | covarian       | ce matri       | x              |          |          |          |          |                    |
| C183syn            | 1.62E-02             |                      | 0.000658 |                     |                 |                      |                      |                    |                |                | -              |          |          |          |          |                    |
| C200syn            | 2.99E-03<br>7.45E-03 |                      | 0.000122 | r_m est 1           | Values<br>-7.97 |                      | Pr_m1                | ara:ext<br>0.04891 | BIOMasp:       |                | D-galac:ex     |          |          | mann:ext |          | xyl:ext<br>0.04435 |
| CLsyn<br>DAGLYsyn  |                      |                      |          | ara:ext<br>BIOMasp: |                 |                      | ara:ext<br>BIOMasp:  | -1.148             |                | -0.08009       | 0.0324         | 0.04079  | -0.4046  | 0.0436   | -0.04174 |                    |
| DGDG syn           |                      |                      | 0.001363 | CO2:ext             | 94.79           |                      | CO2:ext              | -0.08009           |                | 7.218          | -0.07453       |          | -0.03106 | -0.09321 | -7.538   |                    |
|                    |                      | 0.000119             |          | D-galac:ex          |                 |                      | D-galac:ex           |                    |                | -0.07453       | 0.04072        | 0.03568  | 0.009587 | 0.03814  | -0.04589 |                    |
|                    |                      | 0.000101             |          | glc:ext             | -8.768          |                      | glc:ext              | 0.04079            |                | -0.08626       | 0.03568        | 0.05305  | 0.01211  | 0.048    | -0.04668 |                    |
| MGC181 s           | 5.28E-02             |                      |          | Lrha:ext            | -2.42           |                      | Lrha:ext             | 0.01098            | -0.4046        | -0.03106       | 0.009587       | 0.01211  | 0.01816  | 0.01293  | -0.00289 | 0.0131             |
| MGDG syr           |                      | 4.33E-05             |          | mann:ext            | -9.393          |                      | mann:ext             | 0.0436             |                | -0.09321       | 0.03814        | 0.048    | 0.01293  | 0.06145  | -0.04953 |                    |
| r1.1               | 8.768                |                      | 0.230326 | O2:ext              | -75.92          |                      | O2:ext               | -0.04174           |                | -7.538         | -0.04589       | -0.04668 | -0.00289 | -0.04953 | 8.312    |                    |
| r1.2               | -33.05               |                      | 1.209545 | xyl:ext             | -9.623          |                      | xyl:ext              | 0.04435            | -1.417         | -0.1015        | 0.03877        | 0.04883  | 0.0131   | 0.0522   | -0.04781 | 0.07692            |
| r1.3               | 6.508                |                      | 0.322025 | Calmilar            | - durates       | (                    | C                    | a se alt se a      |                |                |                |          |          |          |          |                    |
| r1.4               | 6.508                |                      | 0.322025 | carcula             | led rates       | (mmol/h)             | corresp              | onaing             | covarian       | ce matri       | x              |          |          |          |          |                    |
| r1.5<br>r1.6       | 33.65<br>33.65       |                      | 0.717914 | r_c est 1           | Values          |                      | Pr_c1                | H:ext              | H2O:ext        | NHAwawt        | Pi:ext         | SO4:ext  |          |          |          |                    |
| r1.6<br>r1.7       | 33.65                |                      | 0.706045 | r_cest 1<br>H:ext   | values<br>16.16 |                      | H:ext                | 0.4323             |                | -0.4698        | -0.01342       | -0.00552 |          |          |          |                    |
| r1.7               | 31.82                |                      | 0.706045 | H2O:ext             | 136.6           |                      | H2O:ext              | 0.4323             |                | -0.4698        | -0.01342       | -0.00934 |          |          |          |                    |
| r1.9               | 30.38                | 0.493                | 0.70214  | NH4:ext             | -17.57          |                      | NH4:ext              | -0.4698            |                | 0.5106         | 0.01458        |          |          | -        |          |                    |
| r10.1              | 326.1                | 200.2                | 14.1492  | Pi:ext              | -0.5017         |                      | Pi:ext               | -0.01342           | -0.0227        | 0.01458        | 4.16E-04       | 1.71E-04 |          |          |          |                    |
| r10.10             | 0.4442               |                      |          | SO4:ext             | -0.2064         |                      | SO4:ext              | -0.00552           | -0.00934       | 0.005999       | 1.71E-04       | 7.05E-05 |          |          |          |                    |
| r10.11             | 35.99                |                      | 0.810185 |                     |                 |                      |                      |                    |                |                |                |          |          |          |          |                    |
| r10.12             | 57.9                 |                      | 3.076036 |                     |                 |                      |                      |                    |                |                |                | ·        |          |          |          |                    |
| r10.13             |                      | 0.000767             |          | Best es             | timate o        | f the fluxes         | (mmol/               | h) conti           | nued           |                |                |          |          |          |          |                    |
| r10.14             | 20.84                |                      | 0.847703 |                     |                 |                      |                      |                    |                |                |                |          |          |          |          |                    |
| r10.15             | 0.4442               |                      |          | vest 1              |                 | Variances            | Serr                 |                    | vest 1         | Values         | Variances      | Serr     |          |          |          |                    |
| r10.16<br>r10.17   | 1.509                | 0.003766             |          | r16.13<br>r16.14    | 1.128           | 0.002107<br>5.85E-05 | 0.045902             |                    | r4.7<br>r4.8   | 12.64          | 1.466          |          |          |          |          |                    |
| r10.17             |                      | 0.000355             |          | r16.15              | 0.1881          | 5.85E-05             |                      |                    | r4.9           | 12.64          | 1.460          |          |          |          |          |                    |
| r10.10             | 0.7897               |                      |          | r16.16              | 0.04281         |                      | 0.001741             |                    | r5.1           | 5.229          |                | 0.212673 |          |          |          |                    |
| r10.3              | 269.7                |                      | 11.06345 | r16.2               | 0.4772          | 0.0003767            |                      |                    | r5.2           | 16.3           | 0.4395         | 0.662948 |          |          |          |                    |
| r10.5              | 323.9                | 201.6                | 14.19859 | r16.3               | 0.5032          | 0.0004189            | 0.020467             |                    | r5.3           | 18.66          | 0.5761         | 0.759013 |          |          |          |                    |
| r10.6              | 4.542                |                      | 0.184743 | r16.4               | 0.5032          | 0.0004189            |                      |                    | r6.1           | 86.2           |                | 3.887158 |          |          |          |                    |
| r10.7              |                      | 0.000355             |          | r16.5               | 0.2302          |                      | 0.009362             |                    | r6.2           | 49.84          |                | 1.077961 |          |          |          |                    |
| r10.8              |                      | 0.007868             |          | r16.6               | 0.2302          |                      | 0.009362             |                    | r6.3           | 12.63          | 1.467          |          |          |          |          |                    |
| r10.9              | 0.4442               |                      |          | r16.7               | 0.2302          |                      | 0.009362             |                    | r6.4           | 314.9          | 167.9          |          |          |          |          |                    |
| r11.1<br>r11.10    | 12.72<br>0.6765      |                      | 0.517494 | r16.8<br>r16.9      | 0.2153          |                      | 0.008757             |                    | r7.12<br>r7.13 | 7.97           | 0.04891        | 0.221156 |          |          |          |                    |
| r11.10             | 2.06E-01             | 7.05E-05             |          | r17.2               | 2.643           |                      | 0.107517             |                    | r7.14          | 7.97           |                | 0.221156 |          |          |          |                    |
| r11.12             | 2.06E-01             |                      |          | r17.3               | 0.7677          |                      | 0.031225             |                    | r7.16          | 9.393          |                | 0.247891 |          |          |          |                    |
| r11.13             | 1.18E-01             | 2.30E-05             | 0.004791 | r17.4               | 0.7677          | 0.000975             | 0.031225             |                    | r7.17          | 9.393          | 0.06145        | 0.247891 |          |          |          |                    |
| r11.14             | 1.18E-01             | 2.30E-05             | 0.004791 | r17.5               | 6.831           | 0.07719              | 0.277831             |                    | r7.18          | 7.014          | 0.04072        | 0.201792 |          |          |          |                    |
| r11.15             | 8.86E-02             | 1.30E-05             | 0.003604 | r17.6               | 0.1706          |                      | 0.006939             |                    | r7.19          | 7.014          |                | 0.201792 |          |          |          |                    |
| r11.16             | 2.87E+00             |                      | 0.116619 | r17.7               | 0.1706          |                      | 0.006939             |                    | r7.2           | 0.219          |                | 0.008908 |          |          |          |                    |
| r11.17             | 2.34E-01             |                      | 0.009535 | r17.8               | 1.279           |                      | 0.052038             |                    | r7.20          | 7.014          |                | 0.201792 |          |          |          | · · · · · ·        |
| r11.18             |                      | 0.002098             |          | r2.1                | 34.82           |                      | 1.126943             |                    | r7.21          | 7.014          | 0.04072        |          |          |          |          |                    |
| r11.19<br>r11.2    | 4.385                | 0.001682 0.03181     |          | r2.2<br>r2.3        | 34.82           |                      | 1.126943<br>0.539537 |                    | r7.22<br>r7.23 | 7.014          | 0.04072        |          |          |          |          |                    |
| r11.2              | 4.385                |                      |          | r2.4                | 17.92           |                      | 0.567362             |                    | r7.24          | 5.06           | 0.02178        |          |          |          |          |                    |
| r11.20             |                      | 0.000326             |          | r2.5                | 17.92           |                      | 0.539537             |                    | r7.25          | 2.42           |                | 0.134759 |          |          |          |                    |
| r11.22             |                      | 0.002221             |          | r2.6                | 17.92           |                      | 0.539537             |                    | r7.26          | 2.42           | 0.01816        |          |          |          |          |                    |
| r11.23             |                      | 0.003201             |          | r2.7                | 15.92           |                      | 0.462277             |                    | r7.27          | 2.42           |                | 0.134759 |          |          |          |                    |
| r11.24             |                      | 0.000598             |          | r23.1               | 4.418           |                      | 0.179694             |                    | r7.28          | 2.42           |                | 0.134759 |          |          |          |                    |
| r11.25             |                      | 0.001032             |          | r23.10              | 0.01261         |                      | 0.000513             |                    | r7.29          | 2.42           |                | 0.134759 | L        |          |          |                    |
| r11.26             | 0.7897               |                      |          | r23.11              | 0.01261         |                      | 0.000513             |                    | r7.30          | 2.42           |                | 0.134759 |          |          |          |                    |
| r11.27<br>r11.28   |                      | 0.000861             |          | r23.12<br>r23.14    | 0.01261 0.01261 |                      | 0.000513             |                    | r7.6<br>r7.7   | 9.623<br>17.59 | 0.07692 0.2145 |          |          |          |          |                    |
| r11.28<br>r11.29   | 0.35                 |                      |          | r23.14<br>r23.15    | 0.01261         |                      | 0.000513             |                    | r7.7           | 17.59          | 0.2145         |          |          |          |          | -                  |
| r11.25             |                      | 0.000405             | 0.02012  | r23.15              | 0.6175          | 0.0006308            |                      |                    | r8.1           | -0.4399        |                | 0.017891 |          |          |          |                    |
| r11.30             |                      | 3.31E-05             |          | r23.17              | 1.621           |                      | 0.065917             |                    | r8.2           | -0.06248       |                | 0.002541 |          |          |          |                    |
| r11.31             |                      | 0.000684             |          | r23.18              | 1.122           |                      | 0.045629             |                    | r8.3           | 0.2991         | 0.000148       | 0.012166 |          |          |          |                    |
| r11.32             | 0.2299               | 8.75E-05             | 0.009353 | r23.19              | 0.08777         |                      | 0.003571             |                    | r8.4           | 0.1959         |                | 0.007969 |          |          |          |                    |
| r11.4              | 0.4632               | 0.000355             | 0.018841 | r23.2               | 0.6304          | 0.0006576            | 0.025644             |                    | r8.5           | 0.1959         | 6.35E-05       | 0.007969 |          |          |          |                    |
| r11.5              |                      | 0.000355             |          | r23.21              | 4.265           |                      | 0.173465             |                    | r9.1           | 55.75          |                | 1.631257 |          | -        |          | <u> </u>           |
| r11.6              |                      | 0.000355             |          | r23.22              | 4.265           |                      | 0.173465             |                    | r9.15          | 136.6          |                | 2.754814 |          | -        |          | -                  |
| r11.7              |                      | 0.000882             | 0.0297   | r23.23              | 4.265           |                      | 0.173465             |                    | r9.19          | 9.623          |                | 0.277345 |          |          |          |                    |
| r11.8<br>r11.9     |                      | 0.000882             |          | r23.3<br>r23.4      | 0.5462          | 0.0004935            |                      |                    | r9.2<br>r9.3   | 0.5017         |                | 0.020406 |          |          |          |                    |
| r11.9<br>r13.1     |                      | 3.70E-05             |          | r23.4<br>r23.6      | 0.4116          |                      | 0.016745             |                    | r9.3<br>r9.32  | 8.768          |                | 0.230326 |          |          |          |                    |
| r13.2              |                      | 7.62E-06             |          | r23.7               | 0.01261         |                      | 0.000513             |                    | R9.35          | 17.57          |                | 0.714563 |          |          |          |                    |
| r13.3              |                      | 1.11E-05             |          | r23.8               | 0.01261         |                      | 0.000513             |                    | r9.36          | 7.97           |                | 0.221156 |          |          |          | -                  |
| r13.4              |                      | 2.46E-05             |          | r4.1                | 32.76           |                      | 0.812958             |                    | r9.37          | 9.393          |                | 0.247891 |          |          |          |                    |
| r13.5              | 0.06785              | 7.62E-06             | 0.00276  | r4.10               | 13.31           | 1.418                | 1.190798             |                    | r9.38          | 2.42           | 0.01816        | 0.134759 |          |          |          |                    |
| r13.6              | 0.06785              | 7.62E-06             | 0.00276  | r4.11               | 31.97           | 0.6673               | 0.816884             |                    | r9.4           | 0.2064         |                | 0.008395 |          |          |          |                    |
| r13.7              | -0.1623              | 4.36E-05             | 0.006603 | r4.2                | 31.97           |                      | 0.816884             |                    | r9.6           | 75.92          | 8.312          | 2.883054 |          |          |          |                    |
| r13.8              |                      | 6.35E-05             |          | r4.3                | 15.67           |                      | 1.122052             |                    | r9.7           | 94.79          |                | 2.686634 |          |          |          |                    |
| r13.9              | 6.843<br>185.4       |                      | 0.278352 | r4.4                | 8.831           |                      | 1.330413             |                    | TAGLYsyn       | 0.043          |                | 0.001749 |          |          |          | · · · · ·          |
| r15.1              |                      | 748.2                | 27.35324 | r4.5                | 2.298           |                      | 0.093483             |                    | UDPglc4e       | 0.5691         | 0.000536       | 0.02315  |          |          |          |                    |

### **Table S4.9.** Input data and flux analysis results for dilution rate $D = 0.172h^{-1}$ .

| Best est             | timate o             | f the flu            | kes (mmol/        | Input rates          | (mmol/h    | )                    | Corresp              | onding              | ovarian              | ce matri | x                    |                      |          |          |           |         |
|----------------------|----------------------|----------------------|-------------------|----------------------|------------|----------------------|----------------------|---------------------|----------------------|----------|----------------------|----------------------|----------|----------|-----------|---------|
| v est 1              |                      | Variances            | Serr              | r_m                  |            |                      | Pm 1                 | ara:ext             | BIOMasp:             | CO2:ext  | D-galac:ex           | glc:ext              | Lrha:ext | mann:ext | O2:ext    | xyl:ext |
|                      | 2.57E-01             |                      |                   | ara:ext              | -6.46      |                      | ara:ext              | 0.0464              | -0.609               | 0        |                      |                      |          |          |           |         |
| C120syn              |                      | 1.84E-07             |                   | BIOMasp:cyt          | 149        |                      | BIOMasp:             |                     | 37.9                 | 0        |                      | -0.901               | -0.142   | -0.959   | 0         |         |
| C140syn              | 1.33E-02             |                      | 0.000498          | CO2:ext              | 84.8       |                      | CO2:ext              | 0                   | 0                    | 7.74     | 0                    |                      | 0        |          | -1.85     |         |
| C141syn              | 5.73E-03             |                      | 0.000214          | D-galac:ext          | -6.5       |                      | D-galac:ex           |                     | -0.611               | 0        | 0.0421               |                      | 0.00624  |          | 0         |         |
| C160syn              | 9.39E-02<br>1.34E-02 | 1.23E-05<br>2.50E-07 | 0.003511          | glc:ext<br>Lrha:ext  | -9.59      |                      | glc:ext              | 0.0394              | -0.901               | 0        |                      | 0.0677               | 0.0092   | 0.062    | 0         |         |
| C161syn<br>C162syn   | 1.34E-02<br>3.82E-03 |                      | 0.000143          | mann:ext             | -10.2      |                      | Lrha:ext<br>mann:ext | 0.00822             | -0.142               | 0        | 0.00824              | 0.062                | 0.00979  |          | 0         | 0.0000  |
| C180syn              |                      | 0.000257             |                   | 02:ext               | -71.2      |                      | O2:ext               | 0.0415              | 0.555                | -1.85    | 0.0122               |                      | 0.00575  |          | 39.7      |         |
| C181CoA s            |                      |                      | 0.001889          | xyl:ext              | -8.73      |                      | xyl:ext              | 0.0359              | -0.821               | 0        | 0.036                | 0.0531               | 0.00839  |          | 0         |         |
| C181syn              | 0.4144               | 0.00024              | 0.015495          |                      |            |                      |                      |                     |                      |          |                      |                      |          |          |           |         |
| C182syn              | 1.78E-01             | 4.45E-05             | 0.006672          | Reconciled           | rates (m   | mol/h)               | Corresp              | onding              | ovarian              | ce matri | x                    |                      |          |          |           |         |
| C183syn              | 1.55E-02             |                      | 0.000579          |                      |            |                      |                      |                     |                      |          |                      |                      |          |          |           |         |
| C200syn              | 2.87E-03             | 1.15E-08             | 0.000107          | r_m est 1            | Values     |                      | Pr_m 1               | ara:ext             | BIOMasp:             | CO2:ext  | D-galac:ex           | glc:ext              | Lrha:ext | mann:ext | O2:ext    | xyl:ext |
| CLsyn                |                      | 7.10E-08             |                   | ara:ext              | -6.37      |                      | ara:ext              | 0.04107             | -0.7731              | -0.08722 | 0.02143              |                      | -0.00018 | 0.03438  | 0.001807  | 0.02583 |
| DAGLYsyn             | 2.00E-01             | 5.59E-05             | 0.007479          | BIOMasp:cyt          | 151.3      |                      | BIOMasp:             |                     | 32.03                | -2.04    | -0.7711              | -1.112               | -0.3547  |          |           |         |
|                      | 3.21E-02             |                      | 0.0012            | CO2:ext              | 86.63      |                      | CO2:ext              | -0.08722            | -2.04                | 5.804    | -0.0881              | -0.1145              | -0.09252 |          | -5.931    |         |
|                      | 2.57E-01             |                      | 0.009612          | D-galac:ext          | -6.409     |                      | D-galac:ex           |                     | -0.7711              | -0.0881  | 0.03687              | 0.03266              |          |          | OTO KED I |         |
| MAGLYsyr             |                      |                      | 0.008839          | glc:ext              | -9.472     |                      | glc:ext              | 0.0325              | -1.112               | -0.1145  | 0.03266              |                      | 0.000942 |          |           |         |
| MGC181 S<br>MGDG syn | 5.05E-02             |                      | 0.001889 0.005786 | Lrha:ext<br>mann:ext | -1.36      |                      | Lrha:ext<br>mann:ext | -0.00018<br>0.03438 | -0.3547<br>-1.189    | -0.09252 | -5.23E-05<br>0.03465 | 0.000942             |          |          | 0.1015    | 0.0423  |
| r1.1                 | 9.472                |                      | 0.242384          | O2:ext               | -68.39     |                      | O2:ext               | 0.001807            | 5.281                | -5.931   | -0.01254             | -0.00959             | 0.1015   |          | 6.431     |         |
| r1.1                 | -29.62               |                      | 1.065833          | xyl:ext              | -8.562     |                      | xyl:ext              | 0.02583             | -1.137               | -0.1605  | 0.01234              |                      | -0.00381 | 0.0423   |           |         |
| r1.3                 | 7.433                |                      | 0.290431          |                      |            |                      | ,                    |                     |                      |          |                      |                      |          |          |           |         |
| r1.4                 | 7.433                |                      | 0.290431          | Calculated r         | ates (mr   | nol/h)               | Corresp              | onding              | ovarian              | ce matri | x                    |                      |          |          |           |         |
| r1.5                 | 33.36                |                      | 0.745319          |                      |            |                      |                      | <b>J</b>            |                      |          |                      |                      |          |          |           |         |
| r1.6                 | 33.36                |                      | 0.745319          | r_c est 1            | Values     |                      | Pr_c1                | H:ext               | H2O:ext              | NH4:ext  | Pi:ext               | SO4:ext              |          |          |           |         |
| r1.7                 | 31.61                |                      | 0.728766          | H:ext                | 15.47      |                      | H:ext                | 0.3346              | 0.7223               | -0.3637  | -0.01038             |                      |          |          |           |         |
| r1.8                 | 31.61                |                      | 0.728766          | H2O:ext              | 126.9      |                      | H2O:ext              | 0.7223              | 6.977                | -0.7851  | -0.02242             |                      |          |          |           |         |
| r1.9                 | 30.23                |                      | 0.719653          | NH4:ext              | -16.81     |                      | NH4:ext              | -0.3637             | -0.7851              | 0.3953   | 0.01129              |                      |          |          |           |         |
| r10.1                | 293.2                |                      | 12.36527          | Pi:ext               | -0.4801    |                      | Pi:ext               | -0.01038            |                      | 0.01129  |                      |                      |          |          |           |         |
| r10.10<br>r10.11     | 0.4251 33.39         | 0.000253             | 0.015897 0.780769 | SO4:ext              | -0.1975    |                      | SO4:ext              | -0.00427            | -0.00922             | 0.004643 | 1.33E-04             | 5.46E-05             |          |          |           | -       |
| r10.11               | 52.25                |                      | 2.680298          |                      |            |                      |                      |                     |                      |          |                      |                      |          |          |           |         |
|                      |                      |                      |                   | Deet estime          | to of the  | Auron                | num el /h)           |                     |                      |          |                      |                      |          |          |           |         |
| r10.13<br>r10.14     | 19.94                | 0.000593             | 0.024358          | Best estima          | ite or the | nuxes (              | nmoi/n)              | continu             | ea                   |          |                      |                      |          |          |           |         |
| r10.14               |                      | 0.000253             |                   | v est 1              | Values     | Variances            | Serr                 |                     | v est 1              | Values   | Variances            | Serr                 |          |          |           |         |
| r10.15               |                      | 0.002915             |                   | r16.13               | 1.08       |                      |                      |                     | r4.7                 | 11.04    | 1.073                |                      |          |          |           |         |
| r10.17               |                      | 0.000463             | 0.021515          | r16.14               | 0.18       | 4.53E-05             |                      | 1                   | r4.8                 | 11.04    | 1.073                |                      |          |          |           |         |
| r10.18               | 0.4433               | 0.000275             | 0.016577          | r16.15               | 0.18       | 4.53E-05             | 0.006731             |                     | r4.9                 | 11.04    | 1.073                | 1.035857             |          |          |           |         |
| r10.19               | 0.7557               | 0.000799             | 0.028258          | r16.16               | 0.04097    | 2.35E-06             | 0.001532             |                     | r5.1                 | 5.003    | 0.03501              | 0.18711              |          |          |           |         |
| r10.3                | 242.4                |                      | 9.682458          | r16.2                |            | 0.0002916            |                      |                     | r5.2                 | 15.6     | 0.3402               | 0.583267             |          |          |           |         |
| r10.5                | 291.2                |                      | 12.39758          | r16.3                |            | 0.0003242            |                      |                     | r5.3                 | 17.86    | 0.4459               |                      |          |          |           |         |
| r10.6                | 4.346                |                      | 0.162512          | r16.4                |            | 0.0003242            |                      |                     | r6.1                 | 78.28    | 11.7                 |                      |          |          |           |         |
| r10.7                |                      | 0.000275             |                   | r16.5                | 0.2203     |                      |                      |                     | r6.2                 | 44.43    | 1.049                |                      |          |          |           |         |
| r10.8<br>r10.9       | 2.087                | 0.00609              | 0.078038          | r16.6<br>r16.7       | 0.2203     |                      |                      |                     | r6.3<br>r6.4         | 283.5    | 1.073                |                      |          |          |           |         |
| r10.9                | 12.18                |                      | 0.455302          | r16.7                | 0.2203     |                      |                      |                     | r0.4<br>r7.12        | 283.5    | 0.04107              |                      |          |          |           |         |
| r11.10               |                      | 0.000586             |                   | r16.9                | 0.2046     |                      |                      |                     | r7.13                | 6.37     | 0.04107              |                      |          |          |           |         |
| r11.11               |                      | 5.46E-05             |                   | r17.2                | 2.529      |                      |                      |                     | r7.14                | 6.37     | 0.04107              |                      |          |          |           |         |
| r11.12               | 1.98E-01             |                      | 0.007386          | r17.3                | 0.7346     | 0.0007547            |                      |                     | r7.16                | 10.07    | 0.06808              |                      |          |          |           |         |
| r11.13               | 1.13E-01             | 1.78E-05             | 0.004214          | r17.4                |            | 0.0007547            |                      |                     | r7.17                | 10.07    | 0.06808              |                      |          |          |           |         |
| r11.14               | 1.13E-01             | 1.78E-05             | 0.004214          | r17.5                | 6.537      | 0.05975              | 0.244438             |                     | r7.18                | 6.409    | 0.03687              | 0.192016             |          |          |           |         |
| r11.15               |                      | 1.01E-05             |                   | r17.6                | 0.1633     | 3.73E-05             |                      |                     | r7.19                | 6.409    | 0.03687              |                      |          |          |           |         |
| r11.16               | 2.74E+00             |                      | 0.102616          | r17.7                | 0.1633     |                      |                      |                     | r7.2                 | 0.2096   |                      |                      |          |          |           |         |
| r11.17               |                      | 7.04E-05             |                   | r17.8                | 1.224      |                      |                      |                     | r7.20                | 6.409    | 0.03687              |                      |          |          |           |         |
| r11.18<br>r11.19     |                      | 0.001624 0.001302    |                   | r2.1<br>r2.2         | 32.39      | 1.058                |                      |                     | r7.21<br>r7.22       | 6.409    | 0.03687              |                      |          |          |           |         |
| r11.19<br>r11.2      | 4.196                |                      | 0.156908          | r2.2<br>r2.3         | 32.39      | 0.242                |                      |                     | r7.22<br>r7.23       | 4.539    | 0.0368/              |                      |          |          |           |         |
| r11.2                |                      | 0.000126             |                   | r2.4                 | 15.57      | 0.242                |                      |                     | r7.24                | 4.539    | 0.02271              |                      |          |          |           |         |
| r11.20               |                      | 0.000253             |                   | r2.5                 | 16.21      | 0.242                |                      |                     | r7.25                | 1.36     | 0.07641              |                      |          | 1        |           | -       |
| r11.22               |                      | 0.001719             |                   | r2.6                 | 16.21      | 0.242                |                      |                     | r7.26                | 1.36     | 0.07641              |                      |          |          |           |         |
| r11.23               |                      | 0.002477             |                   | r2.7                 | 14.29      | 0.1841               |                      |                     | r7.27                | 1.36     | 0.07641              |                      |          |          |           |         |
| r11.24               |                      | 0.000463             |                   | r23.1                | 4.228      | 0.025                |                      |                     | r7.28                | 1.36     | 0.07641              |                      |          |          |           |         |
| r11.25               |                      | 0.000799             |                   | r23.10               | 0.01207    |                      |                      |                     | r7.29                | 1.36     | 0.07641              |                      |          |          |           |         |
| r11.26               |                      | 0.000799             |                   | r23.11               | 0.01207    | 2.04E-07             |                      |                     | r7.30                | 1.36     | 0.07641              |                      |          |          |           |         |
| r11.27<br>r11.28     |                      | 0.000666             |                   | r23.12<br>r23.14     | 0.01207    | 2.04E-07<br>2.04E-07 |                      |                     | r7.6<br>r7.7         | 8.562    | 0.1089               | 0.33 0.44911         |          |          |           |         |
| r11.28               | 0.3349               |                      | 0.002322          | r23.14               | 0.01207    |                      |                      |                     | r7.8                 | 14.93    | 0.2017               | 0.44911              |          |          |           |         |
| r11.3                |                      | 0.000313             | 0.000225          | r23.16               | 0.5909     |                      |                      |                     | r8.1                 | -0.421   |                      |                      |          |          |           |         |
| r11.30               |                      | 2.56E-05             |                   | r23.17               | 1.551      | 0.003364             | 0.058                |                     | r8.2                 | -0.05979 |                      |                      |          |          |           |         |
| r11.31               |                      | 0.000529             |                   | r23.18               | 1.073      | 0.001611             | 0.040137             |                     | r8.3                 | 0.2863   | 0.000115             | 0.010705             |          |          |           |         |
| r11.32               |                      | 6.77E-05             |                   | r23.19               | 0.08399    |                      |                      |                     | r8.4                 | 0.1875   |                      | 0.007011             |          |          |           |         |
| r11.4                |                      | 0.000275             |                   | r23.2                | 0.6033     |                      | 0.022561             |                     | r8.5                 |          | 4.92E-05             |                      |          |          |           |         |
| r11.5                |                      | 0.000275             |                   | r23.21               |            | 0.02329              |                      |                     | r9.1                 | 52.66    |                      | 1.487952             |          |          |           |         |
| r11.6<br>r11.7       |                      | 0.000275             |                   | r23.22<br>r23.23     | 4.081      |                      | 0.152611             |                     | r9.15<br>r9.19       | 126.9    |                      | 2.641401 0.33        |          |          |           | -       |
| r11.7<br>r11.8       |                      | 0.000683             |                   | r23.23<br>r23.3      | 4.081      |                      | 0.152611             |                     | r9.19<br>r9.2        |          |                      | 0.33                 |          |          |           |         |
| r11.8                |                      | 0.000083             |                   | r23.4                |            | 0.000382             |                      |                     | r9.3                 | 9.472    |                      | 0.242384             |          |          |           |         |
| r13.1                |                      | 2.87E-05             |                   | r23.6                | 0.01207    |                      | 0.000451             |                     | r9.32                | 6.409    |                      | 0.192016             |          |          |           | 1       |
| r13.2                |                      | 5.90E-06             |                   | r23.7                | 0.01207    |                      | 0.000451             |                     | R9.35                | 16.81    |                      | 0.628729             |          |          |           |         |
| r13.3                |                      | 8.55E-06             |                   | r23.8                | 0.01207    |                      | 0.000451             |                     | r9.36                | 6.37     |                      | 0.202657             |          |          |           |         |
| r13.4                |                      | 1.90E-05             |                   | r4.1                 | 30.3       |                      | 0.768375             |                     | r9.37                | 10.07    |                      | 0.260921             |          |          |           |         |
| r13.5                |                      | 5.90E-06             |                   | r4.10                | 11.69      |                      | 1.019804             |                     | r9.38                | 1.36     |                      | 0.276424             |          |          |           |         |
| r13.6                |                      | 5.90E-06             |                   | r4.11                | 29.54      |                      | 0.767984             |                     | r9.4                 |          |                      | 0.007386             |          |          |           |         |
| r13.7                |                      | 3.38E-05             |                   | r4.2                 | 29.54      |                      | 0.767984             |                     | r9.6                 | 68.39    |                      | 2.535942             |          |          |           |         |
| r13.8                | 0.1875               | 4.92E-05             |                   | r4.3                 | 13.95      |                      | 0.96623              |                     | r9.7                 | 86.63    |                      | 2.409149             |          |          |           |         |
| r13.9<br>r15.1       | 6.549                |                      |                   | r4.4<br>r4.5         | 7.399      |                      | 1.131813             |                     | TAGLYsyn<br>UDPglc4e |          |                      | 0.001539<br>0.020367 |          |          |           |         |
|                      |                      | 555.4                | 0.002337          | r4.5<br>r4.6         | 4.346      |                      | 0.162512             |                     | SPI BICHE            | 0.3440   | 0.000415             | 0.020307             |          |          |           |         |

## **Table S4.10.** Input data and flux analysis results for dilution rate $D = 0.194h^{-1}$ .

| Best est             | timate o             | f the flu            | kes (mmol/         | Input ra             | ates (mm      | iol/h)       | Corresp              | onding   | covarian       | ce matri | x                    |                   |          |          |          |          |
|----------------------|----------------------|----------------------|--------------------|----------------------|---------------|--------------|----------------------|----------|----------------|----------|----------------------|-------------------|----------|----------|----------|----------|
| v est 1              | Values               | Variances            | Serr               | r m 1                | Values        |              | Pm 1                 | ara:ext  | BIOMasp:       | CO2:ext  | D-galac:ex           | glc:ext           | Lrha:ext | mann:ext | O2:ext   | xyl:ext  |
| ATP GTP P            |                      | 9.98E-05             |                    | ara:ext              | -2.77         |              | ara:ext              | 0.0468   |                | 0        |                      |                   |          |          |          |          |
| C120syn              | 9.44E-03             | A1006 07             |                    | BIOMasp:             |               |              | BIOMasp:             |          | 66.1           | 0        | -0.275               | -0.782            | -0.0835  | -0.749   |          |          |
| C140syn              | 1.10E-02             |                      | 0.000518           | CO2:ext              | 66.1          |              | CO2:ext              | 0        |                | 4.69     | 0                    |                   | 0        |          |          |          |
| C141syn              | 4.72E-03             |                      |                    | D-galac:ex           |               |              | D-galac:e>           |          |                | 0        | 0.0693               | 0.0244            | 0.00261  |          |          |          |
| C160syn              | 7.74E-02             |                      | 0.003648           | glc:ext<br>Lrha:ext  | -10.5         |              | glc:ext<br>Lrha:ext  | 0.0186   | -0.782         | 0        | 0.0244               | 0.0817            | 0.0074   | 0.0663   |          |          |
| C161syn<br>C162syn   | 1.10E-02<br>3.15E-03 |                      |                    | mann:ext             | -1.08         |              | mann:ext             | 0.00199  |                | 0        | 0.00281              | 0.0663            | 0.00709  | 0.00709  |          |          |
| C180syn              |                      | 0.000277             | 0.01664            | 02:ext               | -55.3         |              | 02:ext               | 0.01/0   |                | -0.824   | 0.0254               | 0.0000            | 0.00705  | 0.155    |          |          |
| C181CoA s            |                      |                      |                    | xyl:ext              | -6.03         | 7            | xyl:ext              | 0.0107   | -0.451         | 0.021    | 0.0141               | 0.04              | 0.00428  |          |          |          |
| C181syn              | 0.3413               | 0.000259             | 0.0161             |                      |               |              |                      |          |                |          |                      |                   |          |          |          |          |
| C182syn              | 1.47E-01             | 4.81E-05             | 0.006933           | Reconc               | iled rate     | s (mmol/h)   | Corresp              | onding   | covarian       | ce matri | x                    |                   |          |          |          |          |
| C183syn              | 1.28E-02             | 3.61E-07             | 0.000601           |                      |               |              |                      | _        |                |          |                      |                   |          |          |          |          |
| C200syn              | 2.36E-03             | 1.24E-08             | 0.000111           | r_m est 1            | Values        |              | Pr_m 1               | ara:ext  | BIOMasp:       | CO2:ext  | D-galac:ex           | glc:ext           | Lrha:ext | mann:ext | O2:ext   | xyl:ext  |
| CLsyn                | 5.87E-03             |                      |                    | ara:ext              | -2.729        |              | ara:ext              | 0.0454   |                | -0.02079 | 0.004322             |                   | -0.00099 | 0.01413  | -0.01821 | 0.00138  |
| DAGLYsyn             |                      |                      |                    | BIOMasp:             | 124.7         |              | BIOMasp:             | -0.4136  |                | -2.317   | -0.5889              |                   | -0.5378  |          |          |          |
| DGDG syn             |                      |                      | 0.001246           | CO2:ext              | 66.83         |              | CO2:ext              | -0.02079 |                | 4.101    | -0.03747             |                   | -0.03663 |          |          |          |
| GDPMANs              |                      |                      |                    | D-galac:ex           |               |              | D-galac:e>           |          |                | -0.03747 | 0.06568              | 0102033           | -0.00203 |          | 0.0773   | 0.00003  |
| MAGLYsyr             |                      |                      | 0.009184           | glc:ext              | -10.43        |              | glc:ext              | 0.01621  | -1.121         | -0.03925 | 0.02053              |                   | 0.002401 |          |          |          |
| MGC181 s<br>MGDG syr |                      |                      | 0.001962           | Lrha:ext<br>mann:ext | -0.996        |              | Lrha:ext<br>mann:ext | -0.00099 |                | -0.03663 | -0.00203             | 0.002401          | -0.00069 | -0.00069 |          |          |
| r1.1                 | 1.28E-01             |                      | 0.278496           | 02:ext               | -9.892        |              | 02:ext               | -0.01413 | 5.495          | -0.05635 | -0.0779              |                   | 0.04941  | -0.06728 |          |          |
| r1.1                 | -17.05               |                      | 1.111306           | xyl:ext              | -53.42        |              | xyl:ext              | 0.001821 |                | -4.274   |                      | 0.07275           |          |          |          |          |
| r1.3                 | 9.376                |                      | 0.359026           | AJILEAL              | -3.70         |              | Aynext               | 0.00130  | 1.051          | 0.1500   | 0.00005              | 0.02415           | 0.01504  | 0.01500  | 0.02002  | 0.5005   |
| r1.4                 | 9.376                |                      | 0.359026           | Calculat             | ted rates     | (mmol/h)     | Correen              | onding   | covarian       | ce matri | ×                    |                   |          |          | í        |          |
| r1.4                 | 29.47                |                      | 0.339026           | carcula              | caraces       |              | corresp              | onung    | es varidit     | ee matri | ~                    |                   |          |          |          |          |
| r1.5                 | 29.47                |                      | 0.775113           | r_c est 1            | Values        |              | Pr_c1                | H:ext    | H2O:ext        | NH4:ext  | Pi:ext               | SO4:ext           |          |          |          |          |
| r1.7                 | 23.47                |                      | 0.756902           | H:ext                | 12.74         |              | H:ext                | 0.3612   |                | -0.3926  |                      |                   |          | -        | 1        |          |
| r1.8                 | 28.03                |                      | 0.756902           | H2O:ext              | 101.7         |              | H2O:ext              | 0.793    |                | -0.8619  |                      |                   |          |          |          |          |
| r1.9                 | 26.89                |                      | 0.746525           | NH4:ext              | -13.85        |              | NH4:ext              | -0.3926  |                | 0.4267   |                      | 0.005013          |          |          | Ì        |          |
| r10.1                | 231.6                |                      | 10.83513           | Pi:ext               | -0.3954       |              | Pi:ext               | -0.01121 |                |          |                      |                   |          |          |          |          |
| r10.10               | 0.3501               | 0.000273             | 0.016517           | SO4:ext              | -0.1627       |              | SO4:ext              | -0.00461 |                | 0.005013 | 1.43E-04             | 5.89E-05          |          |          |          |          |
| r10.11               | 27.56                |                      | 0.677717           |                      |               |              |                      |          |                |          |                      |                   |          |          |          |          |
| r10.12               | 43.23                | 5.711                | 2.38977            |                      |               |              |                      |          |                |          |                      |                   |          |          |          |          |
| r10.13               | 0.5366               | 0.000641             | 0.025308           | Best es              | timate o      | f the fluxes | (mmol/               | h) conti | nued           |          |                      |                   |          |          |          |          |
| r10.14               | 16.43                |                      | 0.774919           |                      |               |              |                      |          |                |          |                      |                   |          |          |          |          |
| r10.15               | 0.3501               |                      |                    | vest 1               |               | Variances    | Serr                 |          | v est 1        |          | Variances            |                   |          |          |          |          |
| r10.16               |                      | 0.003147             |                    | r16.13               | 0.8896        |              | 0.041964             |          | r4.7           | 9.157    |                      | 0.958958          |          |          |          |          |
| r10.17               | 0.4739               | 0.0005               | 0.022354           | r16.14               | 0.1483        | 4.89E-05     |                      |          | r4.8           | 9.157    |                      | 0.958958          |          |          |          |          |
| r10.18               | 0.3652               |                      | 0.017225           | r16.15               | 0.1483        | 4.89E-05     |                      |          | r4.9           | 9.154    | 0.9198               |                   |          |          |          |          |
| r10.19<br>r10.3      | 0.6225               |                      | 8.452219           | r16.16<br>r16.2      | 0.03375       | 2.53E-06     |                      |          | r5.1<br>r5.2   | 4.122    | 0.0378               | 0.194422 0.606053 |          |          |          |          |
| r10.5                | 229.9                |                      | 10.87658           | r16.3                | 0.3762        |              | 0.017743             |          | r5.2           | 12.85    | 0.3673               |                   |          | -        |          |          |
| r10.5                | 3.58                 |                      | 0.168879           | r16.4                | 0.3966        |              | 0.018708             |          | r6.1           | 64.73    |                      | 3.009319          |          |          |          |          |
| r10.0                |                      | 0.000297             |                    | r16.5                | 0.1814        |              | 0.008559             |          | r6.2           | 30.46    |                      | 0.996594          |          |          |          |          |
| r10.8                |                      | 0.006575             |                    | r16.6                | 0.1814        |              | 0.008559             |          | r6.3           | 9.154    |                      | 0.959062          |          |          |          |          |
| r10.9                |                      | 0.000273             |                    | r16.7                | 0.1814        |              | 0.008559             |          | r6.4           | 223.5    |                      | 9.905049          |          |          |          |          |
| r11.1                | 10.03                |                      | 0.473075           | r16.8                | 0.1697        |              | 0.008005             |          | r7.12          | 2.729    |                      | 0.213073          |          |          |          |          |
| r11.10               | 0.5333               | 0.000633             | 0.025156           | r16.9                | 0.1685        | 6.32E-05     | 0.007948             |          | r7.13          | 2.729    | 0.0454               | 0.213073          |          |          |          |          |
| r11.11               | 1.63E-01             | 5.89E-05             | 0.007674           | r17.2                | 2.083         | 0.009657     | 0.09827              |          | r7.14          | 2.729    | 0.0454               | 0.213073          |          |          |          |          |
| r11.12               | 1.63E-01             | 5.89E-05             | 0.007674           | r17.3                | 0.6052        | 0.0008148    | 0.028545             |          | r7.16          | 9.892    |                      | 0.351141          |          |          |          |          |
| r11.13               | 9.28E-02             |                      |                    | r17.4                | 0.6052        | 0.0008148    | 0.028545             |          | r7.17          | 9.892    |                      | 0.351141          |          |          |          |          |
| r11.14               | 9.28E-02             |                      |                    | r17.5                | 5.385         |              | 0.253988             |          | r7.18          | 3.603    |                      | 0.256281          |          |          |          |          |
| r11.15               |                      | 1.09E-05             |                    | r17.6                | 0.1345        |              | 0.006344             |          | r7.19          | 3.603    |                      | 0.256281          |          |          |          |          |
| r11.16               | 2.26E+00             |                      | 0.10663            | r17.7                | 0.1345        |              | 0.006344             |          | r7.2           | 0.1726   |                      | 0.008143          |          |          |          |          |
| r11.17               |                      | 7.60E-05             |                    | r17.8                | 1.009         |              | 0.047571             |          | r7.20          | 3.603    |                      | 0.256281          |          | -        |          |          |
| r11.18<br>r11.19     |                      | 0.001753 0.001406    |                    | r2.1<br>r2.2         | 21.96         |              | 1.033925             |          | r7.21<br>r7.22 | 3.603    |                      | 0.256281          |          |          |          |          |
| r11.19               | 3.456                |                      | 0.163034           | r2.2                 | 10.51         |              | 0.538702             |          | r7.22          | 2.062    |                      | 0.236281          |          |          |          |          |
| r11.2                | 0.2473               |                      |                    | r2.3                 | 10.51         | 0.2902       |                      |          | r7.24          | 2.062    | 0.05637              |                   |          |          |          |          |
| r11.20               | 0.3501               |                      |                    | r2.5                 | 10.55         |              | 0.538702             |          | r7.25          | 0.996    | 0.1104               |                   |          |          |          |          |
| r11.22               | 0.9134               |                      |                    | r2.6                 | 10.51         |              | 0.538702             |          | r7.26          | 0.996    |                      | 0.332265          |          |          |          |          |
| r11.23               | 1.096                | 0.002675             | 0.05172            | r2.7                 | 8.931         |              | 0.480104             |          | r7.27          | 0.996    | 0.1104               | 0.332265          |          | ·        |          |          |
| r11.24               | 0.4739               | 0.0005               | 0.022354           | r23.1                | 3.483         | 0.02698      | 0.164256             |          | r7.28          | 0.996    |                      | 0.332265          |          |          |          |          |
| r11.25               |                      | 0.000862             |                    | r23.10               | 0.009943      |              | 0.000469             |          | r7.29          | 0.996    |                      | 0.332265          |          |          |          |          |
| r11.26               |                      | 0.000862             |                    | r23.11               | 0.009943      |              | 0.000469             |          | r7.30          | 0.996    |                      | 0.332265          |          |          |          |          |
| r11.27               |                      | 0.000719             |                    | r23.12               | 0.009943      |              | 0.000469             |          | r7.6           | 5.76     |                      | 0.605392          |          |          |          |          |
| r11.28               |                      | 0.000169             | 0.013012           | r23.14               | 0.009943      |              | 0.000469             |          | r7.7           | 8.49     |                      | 0.643972          |          |          | ļ        |          |
| r11.29               | 0.1813               |                      | 0.00855            | r23.15               | 0.05493       |              | 0.002591             |          | r7.8           | 8.49     |                      | 0.643972          |          | L        | ļ        |          |
| r11.3                | 0.3899               |                      | 0.018393           | r23.16               | 0.4867        | 0.0005271    |                      |          | r8.1           | -0.3468  |                      | 0.016355          |          |          |          |          |
| r11.30<br>r11.31     | 0.1114               | 2.76E-05<br>0.000571 | 0.005255<br>0.0239 | r23.17<br>r23.18     | 1.278         |              | 0.060258             |          | r8.2<br>r8.3   | -0.04925 | 5.40E-06<br>0.000124 | 0.002323          |          |          |          |          |
| r11.31<br>r11.32     |                      | 7.31E-05             | 0.0239             | r23.18<br>r23.19     | 0.8842        |              | 0.041/01             |          | r8.3<br>r8.4   |          | 5.31E-05             |                   |          | -        |          |          |
| r11.32               |                      | 0.000297             |                    | r23.19               | 0.06919       |              | 0.003263             |          | r8.5           | 0.1544   |                      | 0.007284          |          |          |          |          |
| r11.5                |                      | 0.000297             |                    | r23.21               | 3.362         |              | 0.158588             |          | r9.1           | 43.66    |                      | 1.591226          |          |          | i        |          |
| r11.6                |                      | 0.000297             |                    | r23.22               | 3.362         |              | 0.158588             |          | r9.15          | 101.7    |                      | 2.364107          |          |          | í        |          |
| r11.7                |                      | 0.000737             |                    | r23.23               | 3.362         |              | 0.158588             |          | r9.19          | 5.76     |                      | 0.605392          |          |          | 1        |          |
| r11.8                |                      | 0.000737             |                    | r23.3                | 0.4305        |              | 0.020308             |          | r9.2           |          |                      | 0.018652          |          |          |          |          |
| r11.9                |                      | 0.004611             |                    | r23.4                | 0.3245        |              | 0.015307             |          | r9.3           | 10.43    |                      | 0.278496          |          |          |          |          |
| r13.1                |                      | 3.09E-05             |                    | r23.6                | 0.009943      |              | 0.000469             |          | r9.32          | 3.603    | 0.06568              | 0.256281          |          |          |          |          |
| r13.2                | 0.05348              | 6.36E-06             | 0.002523           | r23.7                | 0.009943      |              | 0.000469             |          | R9.35          | 13.85    | 0.4267               | 0.653223          |          |          |          |          |
| r13.3                | 0.06442              | 9.23E-06             | 0.003038           | r23.8                | 0.009943      | 2.20E-07     | 0.000469             |          | r9.36          | 2.729    | 0.0454               | 0.213073          |          |          |          |          |
| r13.4                |                      | 2.06E-05             |                    | r4.1                 | 25.02         |              | 0.658103             |          | r9.37          | 9.892    |                      | 0.351141          |          |          |          |          |
| r13.5                |                      | 6.36E-06             |                    | r4.10                | 9.69          |              | 0.940798             |          | r9.38          | 0.996    |                      | 0.332265          |          |          |          |          |
| r13.6                |                      | 6.36E-06             |                    | r4.11                | 24.4          |              | 0.656582             |          | r9.4           |          |                      | 0.007674          |          |          |          |          |
| r13.7                |                      | 3.64E-05             |                    | r4.2                 | 24.4          |              | 0.656582             |          | r9.6           | 53.42    |                      | 2.197954          |          |          |          |          |
| r13.8                |                      | 5.31E-05             |                    | r4.3                 | 11.55         |              | 0.880114             |          | r9.7           | 66.83    |                      | 2.025093          |          |          |          |          |
| r13.9                | 5.395<br>123.8       |                      |                    | r4.4                 | 6.156         |              | 1.066771             |          | TAGLYsyn       |          |                      | 0.001599          |          |          |          | <u> </u> |
| r15.1                |                      | 525.4                | 22.87794           | r4.5<br>r4.6         | 1.812<br>3.58 |              | 0.085458 0.168879    |          | UDPglc4e       | U.4486   | 0.000448             | 0.021161          |          | -        |          |          |
## Table S4.11. Input data and flux analysis results for dilution rate D = $0.209h^{-1}$ .

| Best est             | imate o              | f the flux           | es (mmol             | / Input rates          | (mmol/            | h)                  | Corresp               | onding o            | ovarian        | e matri            | x                |                      |                     |          |          |         |
|----------------------|----------------------|----------------------|----------------------|------------------------|-------------------|---------------------|-----------------------|---------------------|----------------|--------------------|------------------|----------------------|---------------------|----------|----------|---------|
| vest 1               | Values               | Variances            | Serr                 | r_m 1                  | Values            |                     | Pm 1                  | ara:ext             | BIOMasp:       | CO2:ext            | D-galac:ex       | glc:ext              | Lrha:ext            | mann:ext | O2:ext   | xyl:ext |
| ATP GTP P            |                      | 0.000106             |                      | ara:ext                | -1.99             |                     | ara:ext               | 0.0568              | -0.143         | 0                  |                  | 0.0134               |                     |          | 0        |         |
| C120syn              | 8.65E-03             |                      |                      | BIOMasp:cyt            | 113               |                     | BIOMasp:              | -0.143              | 78.4           | 0                  |                  | -0.745               | -0.0989             |          | 0        |         |
| C140syn<br>C141syn   | 1.01E-02<br>4.32E-03 | 2.85E-07<br>5.27E-08 | 0.000534             | CO2:ext                | 48.5<br>-0.759    |                     | CO2:ext               | 0.00101             | -0.0557        | 2.52               | 0.139            | 0.00533              | 0.000694            |          | -0.229   |         |
| C160syn              | 7.08E-02             |                      |                      | D-galac:ext<br>glc:ext | -10.5             |                     | D-galac:ex<br>glc:ext | 0.0134              | -0.745         | 0                  |                  | 0.0865               | 0.00927             |          | 0        |         |
| C161syn              | 1.01E-02             | 2.87E-07             | 0.000536             | Lrha:ext               | -1.37             |                     | Lrha:ext              | 0.00178             | -0.0989        | 0                  | 0.000694         | 0.00927              | 0.133               | 0.00759  | 0        | 0.00474 |
| C162syn              | 2.88E-03             |                      |                      | mann:ext               | -8.62             |                     | mann:ext              | 0.011               | -0.61          | 0                  |                  | 0.0572               | 0.00759             |          | 0        |         |
| C180syn<br>C181CoA s |                      | 0.000294<br>4.09E-06 |                      | O2:ext<br>xyl:ext      | -41.9             |                     | O2:ext<br>xyl:ext     | 0.00688             | -0.381         | -0.229             | 0.00267          | 0.0357               | 0.00474             |          | 43       |         |
| C181c0A s            |                      | 0.000276             |                      | Ayliext                | -3.37             |                     | Ayi.ext               | 0.00088             | -0.361         | 0                  | 0.00207          | 0.0337               | 0.00474             | 0.0255   |          | 0.037   |
| C182syn              |                      | 5.11E-05             |                      | Reconciled             | rates (n          | nmol/h)             | Corresp               | onding              | ovariand       | e matri            | x                |                      |                     |          |          |         |
| C183syn              | 1.17E-02             |                      | 0.00062              |                        |                   |                     |                       |                     |                |                    |                  |                      |                     |          |          |         |
| C200syn              | 2.16E-03             |                      |                      | r_m est 1              | Values            |                     | Pr_m 1                | ara:ext             | BIOMasp:       |                    | D-galac:ex       |                      |                     | mann:ext |          | xyl:ext |
| CLsyn                | 5.38E-03             |                      |                      | ara:ext                | -1.981            |                     | ara:ext               | 0.05574             | -0.3484        | -0.00887           |                  |                      |                     | 0.006601 |          |         |
| DAGLYsyn<br>DGDG syn |                      | 6.42E-05<br>1.65E-06 |                      | BIOMasp:cyt<br>CO2:ext | 114.2<br>48.7     |                     | BIOMasp:<br>CO2:ext   | -0.3484<br>-0.00887 | 36.75          | -1.302             | -0.5652          | -1.012               | -0.6164             |          | 4.596    |         |
|                      |                      | 0.000106             |                      | D-galac:ext            | -0.73             |                     | D-galac:ex            | -0.00172            | -0.5652        | -0.02833           | 0.1317           |                      | -0.00575            |          | -0.1529  |         |
| MAGLYsyr             |                      |                      |                      | glc:ext                | -10.49            |                     | glc:ext               | 0.01198             | -1.012         | -0.01412           |                  | 0.08455              | 0.005903            |          |          |         |
| MGC181 s             |                      |                      |                      | Lrha:ext               | -1.354            |                     | Lrha:ext              | -0.00079            | -0.6164        | -0.01746           |                  |                      | 0.1266              |          | 0.03554  |         |
| MGDG syr             |                      |                      |                      | mann:ext               | -8.584            |                     | mann:ext              |                     | -1.465         | -0.03699           | -0.0071          | 0.0513               | -0.00313<br>0.03554 |          | -0.07859 |         |
| r1.1<br>r1.2         | -11.16               |                      | 0.290775             | O2:ext<br>xyl:ext      | -39.21            |                     | O2:ext<br>xyl:ext     | -0.01861            | 4.596          | -2.428             | -0.1529          | -0.06801             | -0.03554            |          | 2.979    |         |
| r1.3                 | 9.888                |                      | 0.458585             | ajiaa                  | 5.252             |                     | Africat               | 0.0055              | 2.570          | 0.00152            | 0.02510          | 0.0LLIL              | 0.02025             | 0.01511  | 0.1017   | 0.0000  |
| r1.4                 | 9.888                | 0.2103               | 0.458585             | Calculated             | rates (m          | mol/h)              | Corresp               | onding o            | ovariand       | e matri            | x                |                      |                     |          |          |         |
| r1.5                 | 25.68                | 0.6518               | 0.807341             |                        |                   |                     |                       |                     |                |                    |                  |                      |                     |          |          |         |
| r1.6                 | 25.68                |                      | 0.807341             | r_c est 1              | Values            |                     | Pr_c1                 | H:ext               | H2O:ext        |                    | Pi:ext           | SO4:ext              |                     |          |          |         |
| r1.7<br>r1.8         | 24.36<br>24.36       |                      | 0.783582             | H:ext<br>H2O:ext       | 11.67             |                     | H:ext<br>H2O:ext      | 0.3839              | 0.9676         | -0.4173            |                  |                      |                     |          |          |         |
| r1.8<br>r1.9         | 24.36                |                      | 0.783582             | H2O:ext<br>NH4:ext     | -12.68            |                     | H2O:ext<br>NH4:ext    | -0.4173             | 4.759          | -1.052             |                  |                      |                     |          |          |         |
| r10.1                | 166.9                | 75.11                | 8.666603             | Pi:ext                 | -0.3621           |                     | Pi:ext                | -0.01191            | -0.03003       | 0.01295            | 3.70E-04         | 1.52E-04             |                     |          |          |         |
| r10.10               | 0.3206               |                      | 0.017026             | SO4:ext                | -0.149            |                     | SO4:ext               | -0.0049             | -0.01236       | 0.005328           | 1.52E-04         | 6.26E-05             |                     |          |          |         |
| r10.11               | 22.25                | 0.3294               | 0.573934             |                        |                   |                     |                       |                     |                |                    |                  |                      |                     |          |          |         |
| r10.12               | 30.61                | 3.919                | 1.979646             | Dent set               |                   | . (1                |                       |                     |                |                    |                  |                      |                     |          | 2        |         |
| r10.13<br>r10.14     | 0.4913               | 0.000681             | 0.02609              | Best estim             | ate of th         | e fluxes i          | mmoi/n                | ) continu           | lea            |                    |                  |                      |                     |          |          |         |
| r10.14               | 0.3206               |                      | 0.017026             | v est 1                | Values            | Variances           | Serr                  |                     | v est 1        | Values             | Variances        | Serr                 |                     |          |          |         |
| r10.16               | 1.089                | 0.003344             |                      | r16.13                 | 0.8146            | 0.001871            | 0.043255              |                     | r4.7           | 5.395              | 0.7063           | 0.840417             |                     |          |          |         |
| r10.17               |                      | 0.000531             |                      | r16.14                 | 0.1358            | 5.20E-05            |                       |                     | r4.8           | 5.395              | 0.7063           |                      |                     |          |          |         |
| r10.18               |                      | 0.000315             |                      | r16.15                 | 0.1358            | 5.20E-05            |                       |                     | r4.9           | 5.392              | 0.7065           |                      |                     |          |          |         |
| r10.19<br>r10.3      | 0.57                 |                      | 0.030269<br>6.705967 | r16.16<br>r16.2        | 0.0309            |                     | 0.001641              |                     | r5.1<br>r5.2   | 3.774              | 0.04017          |                      |                     |          |          |         |
| r10.5                | 165.3                |                      | 8.711487             | r16.3                  | 0.3632            |                     | 0.018292              |                     | r5.3           | 13.47              |                  | 0.715262             |                     |          |          |         |
| r10.6                | 3.278                |                      | 0.174098             | r16.4                  | 0.3632            |                     | 0.019287              |                     | r6.1           | 47.31              | 5.975            |                      |                     |          |          |         |
| r10.7                |                      | 0.000315             |                      | r16.5                  | 0.1662            |                     | 0.008823              |                     | r6.2           | 23.44              |                  |                      |                     |          |          |         |
| r10.8                |                      | 0.006987             |                      | r16.6                  | 0.1662            |                     | 0.008823              |                     | r6.3           | 5.392              | 0.7065           |                      |                     | <u> </u> |          |         |
| r10.9<br>r11.1       | 0.3206               | 0.00029              | 0.017026             | r16.7<br>r16.8         | 0.1662            |                     | 0.008823              |                     | r6.4<br>r7.12  | 162.5              | 61.81<br>0.05574 |                      |                     |          |          |         |
| r11.10               |                      | 0.000673             |                      | r16.9                  | 0.1543            |                     | 0.008193              |                     | r7.13          | 1.981              | 0.05574          |                      |                     |          |          |         |
| r11.11               | 1.49E-01             | 6.26E-05             | 0.007911             | r17.2                  | 1.908             | 0.01026             | 0.101292              |                     | r7.14          | 1.981              | 0.05574          | 0.236093             |                     |          |          |         |
| r11.12               | 1.49E-01             |                      |                      | r17.3                  | 0.5541            |                     | 0.029426              |                     | r7.16          | 8.584              | 0.2157           |                      |                     |          |          |         |
| r11.13               | 8.50E-02             |                      |                      | r17.4                  | 0.5541 4.931      |                     | 0.029426              |                     | r7.17<br>r7.18 | 8.584              | 0.2157           |                      |                     | ļ        |          |         |
| r11.14<br>r11.15     | 8.50E-02<br>6.40E-02 |                      |                      | r17.5<br>r17.6         | 0.1231            | 0.06856<br>4.28E-05 | 0.26184               |                     | r7.18          | 0.73               | 0.1317           |                      |                     |          |          |         |
| r11.16               | 2.07E+00             |                      | 0.109909             | r17.7                  | 0.1231            |                     | 0.006539              |                     | r7.2           | 0.1581             |                  |                      |                     |          |          |         |
| r11.17               | 1.69E-01             | 8.08E-05             | 0.008986             | r17.8                  | 0.9236            | 0.002405            | 0.049041              |                     | r7.20          | 0.73               | 0.1317           | 0.362905             |                     |          |          |         |
| r11.18               |                      | 0.001863             |                      | r2.1                   | 16.59             |                     | 1.107249              |                     | r7.21          | 0.73               | 0.1317           |                      |                     |          |          |         |
| r11.19<br>r11.2      | 0.7279               | 0.001494             | 0.038652             | r2.2<br>r2.3           | 16.59             |                     | 0.595567              |                     | r7.22<br>r7.23 | -0.6807            | 0.1317           |                      |                     |          |          |         |
| r11.2                |                      | 0.000145             |                      | r2.4                   | 7.846             |                     | 0.593367              |                     | r7.24          | -0.6915            | 0.1233           |                      |                     |          |          |         |
| r11.21               | 0.3206               |                      | 0.017026             | r2.5                   | 8.282             |                     | 0.595567              |                     | r7.25          | 1.354              | 0.1266           |                      | 8                   | İ        |          |         |
| r11.22               |                      | 0.001973             |                      | r2.6                   | 8.282             |                     | 0.595567              | <u></u>             | r7.26          | 1.354              | 0.1266           |                      |                     |          |          |         |
| r11.23               |                      | 0.002842             | 0.05331              | r2.7                   | 6.838             |                     | 0.536843              |                     | r7.27          | 1.354              | 0.1266           |                      |                     |          |          |         |
| r11.24<br>r11.25     |                      | 0.000531             |                      | r23.1<br>r23.10        | 3.189<br>0.009105 |                     | 0.169352              |                     | r7.28<br>r7.29 | 1.354              | 0.1266           |                      |                     |          |          |         |
| r11.25               |                      | 0.000916             |                      | r23.10                 | 0.009105          |                     | 0.000484              |                     | r7.30          | 1.354              | 0.1266           |                      |                     |          |          |         |
| r11.27               |                      | 0.000764             | 0.027646             | r23.12                 | 0.009105          | 2.34E-07            | 0.000484              |                     | r7.6           | 5.292              | 0.5386           | 0.733894             |                     | ]        |          |         |
| r11.28               | 0.2526               |                      | 0.013416             | r23.14                 | 0.009105          |                     | 0.000484              |                     | r7.7           | 7.273              | 0.5878           |                      |                     |          |          |         |
| r11.29               | 0.166                |                      |                      | r23.15                 | 0.0503            |                     | 0.002671              |                     | r7.8           | 7.273              |                  | 0.766681             |                     |          |          |         |
| r11.3<br>r11.30      | 0.3571               | 0.00036<br>2.94E-05  | 0.01896              | r23.16<br>r23.17       | 0.4457            |                     | 0.023669              |                     | r8.1<br>r8.2   | -0.3175<br>-0.0451 |                  | 0.016861             |                     |          |          |         |
| r11.30               |                      | 0.000607             |                      | r23.17                 | 0.8097            | 0.003859            |                       |                     | r8.3           | 0.2159             |                  |                      |                     |          |          |         |
| r11.32               | 0.166                | 7.77E-05             | 0.008814             | r23.19                 | 0.06336           | 1.13E-05            | 0.003365              |                     | r8.4           | 0.1414             | 5.64E-05         | 0.00751              |                     | Ì        |          |         |
| r11.4                | 0.3344               | 0.000315             | 0.017757             | r23.2                  | 0.4551            | 0.000584            | 0.024166              |                     | r8.5           | 0.1414             |                  | 0.00751              |                     |          |          |         |
| r11.5                |                      | 0.000315             |                      | r23.21                 | 3.079             |                     | 0.163493              |                     | r9.1           | 40.39              |                  | 1.698234             |                     |          |          |         |
| r11.6<br>r11.7       |                      | 0.000315             |                      | r23.22<br>r23.23       | 3.079             |                     | 0.163493              |                     | r9.15<br>r9.19 | 83.18<br>5.292     |                  | 2.181513<br>0.733894 |                     |          |          |         |
| r11.7                |                      | 0.000784             |                      | r23.25                 |                   | 0.0004383           |                       |                     | r9.19          | 0.3621             |                  | 0.01923              |                     |          |          |         |
| r11.9                | 1.318                | 0.0049               | 0.07                 | r23.4                  | 0.2971            | 0.000249            | 0.01578               |                     | r9.3           | 10.49              | 0.08455          | 0.290775             | 2                   | İ        |          |         |
| r13.1                |                      | 3.29E-05             |                      | r23.6                  | 0.009105          |                     | 0.000484              |                     | r9.32          | 0.73               |                  | 0.362905             |                     |          |          |         |
| r13.2                |                      | 6.76E-06             |                      | r23.7                  | 0.009105          |                     | 0.000484              |                     | R9.35          | 12.68              |                  | 0.673424             |                     |          |          |         |
| r13.3<br>r13.4       |                      | 9.81E-06<br>2.18E-05 |                      | r23.8                  | 0.009105          |                     | 0.000484              |                     | r9.36<br>r9.37 | 1.981              |                  | 0.236093             |                     | 1        |          |         |
| r13.4<br>r13.5       |                      | 2.18E-05<br>6.76E-06 |                      | r4.1<br>r4.10          | 19.92             |                     | 0.534883              |                     | r9.37<br>r9.38 | 8.584              |                  | 0.464435             |                     |          |          |         |
| r13.6                |                      | 6.76E-06             |                      | r4.10                  | 19.35             |                     | 0.529339              |                     | r9.4           | 0.149              |                  | 0.007911             |                     |          |          |         |
| r13.7                | -0.1172              | 3.87E-05             | 0.006223             | r4.2                   | 19.35             |                     | 0.529339              |                     | r9.6           | 39.21              |                  | 1.725978             |                     | Î        |          |         |
| r13.8                |                      | 5.64E-05             |                      | r4.3                   | 7.585             | 0.5668              | 0.752861              |                     | r9.7           | 48.7               | 2.34             | 1.529706             |                     |          |          |         |
| r13.9                | 4.94                 |                      | 0.262317 21.77613    | r4.4                   | 2.647             |                     | 0.95901               |                     | TAGLYsyn       |                    | 2.72E-06         |                      |                     |          |          |         |
| r15.1                | 66.52                |                      |                      | r4.5                   | 1.659             | 0.007761            | 0.088097              |                     | UDPglc4er      | U.4108             | 0.000476         | 0.021815             |                     |          |          |         |

| Glycolysis     | List of reactions                                                                      |
|----------------|----------------------------------------------------------------------------------------|
| r1.1           | 1 ATP:cyt + 1 glc:cyt => 1 ADP:cyt + 1 g6P:cyt + 1 H:cyt                               |
| r1.2           | 1 g6P:cvt => 1 f6P:cvt                                                                 |
| r1.3           | 1 ATP:cyt + 1 f6P:cyt => 1 ADP:cyt + 1 f16P:cyt + 1 H:cyt                              |
| r1.4           | 1 f16P:cyt => 2 GAP:cyt                                                                |
| r1.5           | 1 GAP:cyt + 1 NAD:cyt + 1 Pi:cyt => 1 13PG:cyt + 1 H:cyt + 1 NADH:cyt                  |
| r1.6           | 1 13PG:cyt + 1 ADP:cyt => 1 3PG:cyt + 1 ATP:cyt                                        |
| r1.7           | 1 3PG:cyt => 1 2PG:cyt                                                                 |
| r1.8           | 1 2PG:cyt => 1 H20:cyt + 1 PEP:cyt                                                     |
| r1.9           | 1 ADP:cyt + 1 H:cyt + 1 PEP:cyt => 1 ATP:cyt + 1 pyr:cyt                               |
| Dentess she    |                                                                                        |
| r2.1           | sphate pathway                                                                         |
| r2.2           | 1 g6P:cyt + 1 H2O:cyt + 1 NADP:cyt => 1 6Pgluct:cyt + 2 H:cyt + 1 NADPH:cyt            |
| r2.3           | 1 6Pgluct:cyt + 1 NADP:cyt => 1 CO2:cyt + 1 NADPH:cyt + 1 Ribu5P:cyt                   |
| r2.4           | 1 Ribu5P:cyt => 1 Rib5P:cyt                                                            |
| r2.5           | 1 Ribu5P:cyt => 1 Xylu5P:cyt                                                           |
| r2.6           | 1 Rib5P:cyt + 1 Xylu5P:cyt => 1 GAP:cyt + 1 sed7P:cyt                                  |
| r2.7           | 1 GAP:cyt + 1 sed7P:cyt => 1 E4P:cyt + 1 f6P:cyt                                       |
|                | 1 E4P:cyt + 1 Xylu5P:cyt => 1 f6P:cyt + 1 GAP:cyt                                      |
| TCA cycle      |                                                                                        |
| r4.2           | 1 HCoA:mit + 1 NAD:mit + 1 pyr:mit => 1 AcCoA:mit + 1 CO2:mit + 1 NADH:mit             |
| r4.3           | 1 AcCoA:mit + 1 H2O:mit + 1 OAA:mit => 1 citr:mit + 1 H:mit + 1 HCoA:mit               |
| r4.4           | 1 citr:mit => 1 iCitr:mit                                                              |
| r4.5           | 1 iCitr:mit + 1 NAD:mit => 1 aKG:mit + 1 CO2:mit + 1 NADH:mit                          |
| r4.6           | 1 iCitr:mit + 1 NADP:mit => 1 aKG:mit + 1 CO2:mit + 1 NADPH:mit                        |
| r4.7           | 1 iCitr:cyt + 1 NADP:cyt => 1 aKG:cyt + 1 CO2:cyt + 1 NADPH:cyt                        |
| r4.8           | 1 aKG:mit + 1 HCoA:mit + 1 NAD:mit => 1 CO2:mit + 1 NADH:mit + 1 succCoA:mit           |
| r4.9           | 1 ADP:mit + 1 Pi:mit + 1 succCoA:mit => 1 ATP:mit + 1 HCoA:mit + 1 succ:mit            |
| r4.9<br>r4.10  | 1 FAD:mit + 1 succ:mit => 1 FADH2:mit + 1 fum:mit                                      |
|                | 1 fum:mit + 1 H2O:mit => 1 mal:mit                                                     |
| r4.11          | 1 mal:mit + 1 NAD:mit => 1 H:mit + 1 NADH:mit + 1 OAA:mit                              |
| Anaplerotic    | pathways                                                                               |
| r5.1           | 1 ATP:cyt + 1 CO2:cyt + 1 H2O:cyt + 1 pyr:cyt => 1 ADP:cyt + 2 H:cyt + 1 OAA:cyt + 1   |
| Pi:cyt<br>r5.2 |                                                                                        |
| r5.3           | 1 ATP:cyt + 1 citr:cyt + 1 HCoA:cyt => 1 AcCoA:cyt + 1 ADP:cyt + 1 OAA:cyt + 1 Pi:cyt  |
|                | 1 H:cyt + 1 NADH:cyt + 1 OAA:cyt => 1 mal:cyt + 1 NAD:cyt                              |
|                | hosphorylation                                                                         |
| r6.1<br>r6.2   | 11 H:mit + 1 NADH:mit + 0.5 02:cyt => 10 H:cyt + 1 H20:cyt + 1 NAD:mit                 |
| r6.3           | 7 H:mit + 1 NADH:cyt + 0.5 02:cyt => 6 H:cyt + 1 H20:cyt + 1 NAD:cyt                   |
|                | 1 FADH2:mit + 6 H:mit + 0.5 02:cyt => 1 FAD:mit + 6 H:cyt + 1 H20:cyt                  |
| r6.4           | 1 ADP:mit + 4 H:cyt + 1 Pi:mit => 1 ATP:mit + 3 H:mit + 1 H2O:mit                      |
| Different c    | arbon substrates                                                                       |
| r7.2           | 1 Ac:cyt + 2 ATP:cyt + 1 H20:cyt + 1 HCoA:cyt => 1 AcCoA:cyt + 2 ADP:cyt + 1 H:cyt + 2 |
| Pi:cyt         |                                                                                        |

| r7.6            | 1 H:cyt + 1 NADPH:cyt + 1 xyl:cyt => 1 NADP:cyt + 1 xol:cyt                                      |
|-----------------|--------------------------------------------------------------------------------------------------|
| r7.7            | 1 NAD:cyt + 1 xol:cyt => 1 H:cyt + 1 NADH:cyt + 1 xylu:cyt                                       |
| r7.8            | 1 ATP:cyt + 1 xylu:cyt => 1 ADP:cyt + 1 H:cyt + 1 Xylu5P:cyt                                     |
| r7.12           | 1 ara:cyt + 1 H:cyt + 1 NADPH:cyt <=> 1 arab:cyt + 1 NADP:cyt                                    |
| r7.13           | 1 arab:cyt + 1 NAD:cyt => 1 H:cyt + 1 L-xylu:cyt + 1 NADH:cyt                                    |
| r7.14           | 1 H:cyt + 1 L-xylu:cyt + 1 NADPH:cyt <=> 1 NADP:cyt + 1 xol:cyt                                  |
| r7.16           | 1 ATP:cyt + 1 mann:cyt => 1 ADP:cyt + 1 H:cyt + 1 mann6P:cyt                                     |
| r7.17           | 1 mann6P:cyt => 1 f6P:cyt                                                                        |
| r7.18           | 1 D-galac:cyt <=> 1 D-galacn:cyt                                                                 |
| r7.19           | 1 D-galacn:cyt + 1 H:cyt + 1 NADPH:cyt => 1 aldeLgal:cyt + 1 NADP:cyt                            |
| r7.20           | 1 aldeLgal:cyt => 1 23gal:cyt + 1 H20:cyt                                                        |
| r7.21           | 1 23gal:cyt => 1 glycal:cyt + 1 pyr:cyt                                                          |
| r7.22           | 1 glycal:cyt + 1 H:cyt + 1 NADPH:cyt => 1 gcl:cyt + 1 NADP:cyt                                   |
| r7.23           | 1 ATP:cyt + 1 gcl:cyt => 1 ADP:cyt + 1 g3p:cyt + 1 H:cyt                                         |
| r7.24           | 1 g3p:cyt + 1 NAD:cyt => 1 GAP:cyt + 1 H:cyt + 1 NADH:cyt                                        |
| r7.25           | 1 Lrha:cyt + 1 NADP:cyt => 1 H:cyt + 1 Lrha14lac:cyt + 1 NADPH:cyt                               |
| r7.26           | 1 H2O:cyt + 1 Lrhal4lac:cyt => 1 H:cyt + 1 Lrhant:cyt                                            |
| r7.27           | 1 Lrhant:cyt => 1 23rha:cyt + 1 H20:cyt                                                          |
| r7.28           | 1 23rha:cyt => 1 lactal:cyt + 1 pyr:cyt                                                          |
| r7.29           | 1 H2O:cyt + 1 lactal:cyt + 1 NADP:cyt => 2 H:cyt + 1 lact:cyt + 1 NADPH:cyt                      |
| r7.30           | 1 lact:cyt + 1 NAD:cyt <=> 1 H:cyt + 1 NADH:cyt + 1 pyr:cyt                                      |
|                 | f 1-C compounds                                                                                  |
| r8.1            | -                                                                                                |
| r8.2            | 1 gly:cyt + 1 NAD:cyt + 1 THF:cyt => 1 CO2:cyt + 1 METHF:cyt + 1 NADH:cyt + 1 NH4:cyt            |
| r8.3            | 1 H:cyt + 1 METHF:cyt + 1 NADH:cyt => 1 MYTHF:cyt + 1 NAD:cyt                                    |
| NADH:cyt + 1 Pi | 1 ATP:cyt + 2 H2O:cyt + 1 METHF:cyt + 1 NAD:cyt => 1 ADP:cyt + 1 FTHF:cyt + 2 H:cyt + 1<br>i:cyt |
| r8.4            | 1 ATP:cyt + 2 H2O:cyt + 1 met:cyt => 1 H:cyt + 3 Pi:cyt + 1 SAM:cyt                              |
| r8.5            | 1 H2O:cyt + 1 SAH:cyt => 1 A:cyt + 1 homcys:cyt                                                  |
| Transport       | across the plasma membrane                                                                       |
| r9.1            | 1 ATP:cyt + 1 H20:cyt => 1 ADP:cyt + 1 H:ext + 1 Pi:cyt                                          |
| r9.2            | 2 H:ext + 1 Pi:ext => 2 H:cyt + 1 Pi:cyt                                                         |
| r9.3            | 1 qlc:ext + 1 H:ext => 1 qlc:cyt + 1 H:cyt                                                       |
| r9.4            | 2 H:ext + 1 SO4:ext => 2 H:cyt + 1 SO4:cyt                                                       |
| r9.6            | 1 02:ext => 1 02:cyt                                                                             |
| r9.7            | 1 CO2:cyt => 1 CO2:ext                                                                           |
| r9.14           | 1 psacch:cyt => 1 psacch:ext                                                                     |
| r9.15           | 1 H20:cyt => 1 H20:ext                                                                           |
| r9.19           | 1 H:ext + 1 xyl:ext => 1 H:cyt + 1 xyl:cyt                                                       |
| r9.32           | 1 D-galac:ext => 1 D-galac:cyt                                                                   |
| R9.35           | 1 NH4:ext => 1 NH4:cyt                                                                           |
| r9.36           | 1 ara:ext + 1 H:ext => 1 ara:cyt + 1 H:cyt                                                       |
| r9.37           | 1 H:ext + 1 mann:ext => 1 H:cyt + 1 mann:cyt                                                     |
| r9.38           |                                                                                                  |
| 19.00           | 1 H·ext + 1 Lrba·ext => 1 H·cvt + 1 Lrba·cvt                                                     |
| 19.30           | 1 H:ext + 1 Lrha:ext => 1 H:cyt + 1 Lrha:cyt                                                     |

|                            | cross the mitochondrial membrane                                                           |
|----------------------------|--------------------------------------------------------------------------------------------|
| r10.1                      | 1 ADP:cyt + 1 ATP:mit => 1 ADP:mit + 1 ATP:cyt                                             |
| r10.3                      | 1 H2O:mit => 1 H2O:cyt                                                                     |
| r10.5                      | 1 H:cyt + 1 Pi:cyt => 1 H:mit + 1 Pi:mit                                                   |
| r10.6                      | 1 citr:cyt + 1 iCitr:mit => 1 citr:mit + 1 iCitr:cyt                                       |
| r10.7                      | 1 ctl:mit + 1 H:cyt => 1 ctl:cyt + 1 H:mit                                                 |
| r10.8                      | 1 mal:mit + 1 Pi:cyt => 1 mal:cyt + 1 Pi:mit                                               |
| r10.9                      | 1 NH4:mit => 1 NH4:cyt                                                                     |
| r10.10                     | 1 H:cyt + 1 ile:mit => 1 H:mit + 1 ile:cyt                                                 |
| r10.11                     | 1 H:cyt + 1 pyr:cyt => 1 H:mit + 1 pyr:mit                                                 |
| r10.12                     | 1 CO2:mit => 1 CO2:cyt                                                                     |
| r10.13                     |                                                                                            |
| r10.14                     | 1 fum:cyt + 1 H:cyt => 1 fum:mit + 1 H:mit                                                 |
| r10.15                     | 1 citr:mit + 1 mal:cyt => 1 citr:cyt + 1 mal:mit                                           |
| r10.16                     | 1 H:cyt + 1 thr:cyt => 1 H:mit + 1 thr:mit                                                 |
| r10.17                     | 1 glu:cyt + 1 H:cyt => 1 glu:mit + 1 H:mit                                                 |
| r10.18                     | 1 H:cyt + 1 val:mit => 1 H:mit + 1 val:cyt                                                 |
| r10.19                     | 1 gln:cyt + 1 H:cyt => 1 gln:mit + 1 H:mit                                                 |
|                            | 1 bIM:mit + 1 H:cyt => 1 bIM:cyt + 1 H:mit                                                 |
| Amino acid s               | synthesis                                                                                  |
| r11.2                      | 1 aKG:cyt + 1 H:cyt + 1 NADPH:cyt + 1 NH4:cyt => 1 glu:cyt + 1 H2O:cyt + 1 NADP:cyt        |
|                            | 1 ATP:cyt + 1 glu:cyt + 1 NH4:cyt => 1 ADP:cyt + 1 gln:cyt + 1 H:cyt + 1 Pi:cyt            |
| r11.3                      | 1 ATP:cyt + 1 glu:cyt + 2 H:cyt + 2 NADPH:cyt => 1 ADP:cyt + 1 H2O:cyt + 2 NADP:cyt + 1    |
| Pi:cyt + 1 pro:cy<br>r11.4 |                                                                                            |
| H:mit + 1 Pi:mit           | 2 ATP:mit + 1 CO2:mit + 1 gln:mit + 2 H2O:mit => 2 ADP:mit + 1 carbP:mit + 1 glu:mit + 3   |
| r11.5<br>1 H:mit + 1 NADP: | 1 ATP:mit + 1 carbP:mit + 2 glu:mit + 1 NADPH:mit => 1 ADP:mit + 1 aKG:mit + 1 ctl:mit +   |
| r11.6                      |                                                                                            |
| H:cyt + 2 Pi:cyt<br>r11.7  | 1 asp:cyt + 2 ATP:cyt + 1 ctl:cyt + 1 H2O:cyt => 2 ADP:cyt + 1 arg:cyt + 1 fum:cyt + 1     |
|                            | 1 AcCoA:cyt + 1 glu:cyt + 1 H2O:cyt + 1 NAD:cyt => 1 aAd:cyt + 1 CO2:cyt + 1 HCoA:cyt + 1  |
| NADH:cyt<br>r11.8          |                                                                                            |
| aKG:cyt + 1 H:cyt          |                                                                                            |
| r11.9                      | + 1 NADH:cyt + 2 NADP:cyt + 2 Pi:cyt                                                       |
| Pi:cyt + 1 ser:cy          | 1 3PG:cyt + 1 glu:cyt + 1 H2O:cyt + 1 NAD:cyt => 1 aKG:cyt + 1 H:cyt + 1 NADH:cyt + 1<br>t |
| r11.10                     | 1 ser:cyt + 1 THF:cyt => 1 gly:cyt + 1 H20:cyt + 1 METHF:cyt                               |
| r11.11                     | 2 ATP:cyt + 3 H:cyt + 1 H2O:cyt + 1 SO4:cyt => 1 ADP:cyt + 1 PAPS:cyt + 2 Pi:cyt           |
| r11.12                     | 1 H:cyt + 4 NADPH:cyt + 1 PAPS:cyt => 1 ADP:cyt + 3 H20:cyt + 1 H2S:cyt + 4 NADP:cyt       |
| r11.13                     | 1 AcCoA:cyt + 1 homser:cyt => 1 AcHomser:cyt + 1 HCoA:cyt                                  |
| r11.14                     | 1 AcHomser:cyt + 1 H2S:cyt => 1 Ac:cyt + 1 H:cyt + 1 homcys:cyt                            |
| r11.15                     | 1 AcCoA:cyt + 1 H2S:cyt + 1 ser:cyt => 1 Ac:cyt + 1 cys:cyt + 1 H:cyt + 1 HCoA:cyt         |
| r11.16                     | 1 glu:cyt + 1 OAA:cyt => 1 aKG:cyt + 1 asp:cyt                                             |
| r11.17                     | 1 asp:cyt + 2 ATP:cyt + 1 H2O:cyt + 1 NH4:cyt => 2 ADP:cyt + 1 asn:cyt + 2 H:cyt + 2       |
| Pi:cyt<br>r11.18           |                                                                                            |
| 1 Pi:cyt                   | 1 asp:cyt + 1 ATP:cyt + 2 H:cyt + 2 NADPH:cyt => 1 ADP:cyt + 1 homser:cyt + 2 NADP:cyt +   |
| r11.19                     | 1 ATP:cyt + 1 H2O:cyt + 1 homser:cyt => 1 ADP:cyt + 1 H:cyt + 1 Pi:cyt + 1 thr:cyt         |
| r11.20                     | 1 homcys:cyt + 1 MYTHF:cyt => 1 met:cyt + 1 THF:cyt                                        |
| r11.21                     |                                                                                            |

```
glu:mit + 2 H:mit + 1 NADPH:mit + 1 pyr:mit + 1 thr:mit => 1 aKG:mit + 1 CO2:mit + 1
H20:mit + 1 ile:mit + 1 NADP:mit
+ 1 NH4:mit
r11 22
                  1 glu:cvt + 1 pvr:cvt => 1 aKG:cvt + 1 ala:cvt
r11.23
                  2 H:mit + 1 NADPH:mit + 2 pvr:mit => 1 aKI:mit + 1 CO2:mit + 1 H2O:mit + 1 NADP:mit
r11.24
                  1 aKI:mit + 1 glu:mit => 1 aKG:mit + 1 val:mit
r11.25
                  1 AcCoA:mit + 1 aKI:mit + 1 H2O:mit => 1 bIM:mit + 1 H:mit + 1 HCoA:mit
r11.26
                 1 bIM:cvt + 1 glu:cvt + 1 NAD:cvt => 1 aKG:cvt + 1 CO2:cvt + 1 leu:cvt + 1 NADH:cvt
r11.27
                 1 ATP:cyt + 1 E4P:cyt + 1 NADPH:cyt + 2 PEP:cyt => 1 ADP:cyt + 1 chor:cyt + 1 NADP:cyt +
4 Pi:cyt
r11.28
                 1 chor:cyt + 1 glu:cyt + 1 H:cyt => 1 aKG:cyt + 1 CO2:cyt + 1 H2O:cyt + 1 phe:cyt
r11.29
                  1 chor:cyt + 1 glu:cyt + 1 NAD:cyt => 1 aKG:cyt + 1 CO2:cyt + 1 NADH:cyt + 1 tyr:cyt
r11.30
                 1 chor:cyt + 1 gln:cyt + 1 PRPP:cyt + 1 ser:cyt => 1 CO2:cyt + 1 GAP:cyt + 1 glu:cyt + 1
H:cyt + 1 H2O:cyt + 2 Pi:cyt
                  + 1 pyr:cyt + 1 trp:cyt
r11.31
                  2 ATP:cyt + 1 Ribu5P:cyt => 2 ADP:cyt + 1 H:cyt + 1 PRPP:cyt
r11.32
                  3 ATP:cyt + 1 CO2:cyt + 1 gln:cyt + 3 H2O:cyt + 2 NAD:cyt + 1 NADPH:cyt + 1 NH4:cyt + 1
Nucleotide biosynthesis
r13.1
                  1 asp:cyt + 4 ATP:cyt + 1 CO2:cyt + 2 FTHF:cyt + 2 gln:cyt + 1 gly:cyt + 2 H2O:cyt + 1
PRPF:cyt => 4 ADF:cyt + 1 fum:cyt
+ 2 glu:cyt + 8 H:cyt + 1 IMF:cyt + 6 Pi:cyt + 2 THF:cyt
r13.2
                  1 asp:cyt + 1 ATP:cyt + 1 IMP:cyt => 1 ADP:cyt + 1 AMP:cyt + 1 fum:cyt + 2 H:cyt + 1
Pi:cvt
r13.3
2 ATP:cyt + 1 gln:cyt + 3 H2O:cyt + 1 IMP:cyt + 1 NAD:cyt => 2 ADP:cyt + 1 glu:cyt + 1 GMP:cyt + 4 H:cyt + 1 NADH:cyt
                  + 2 Pi:cyt
r13.4
                  1 asp:cyt + 2 ATP:cyt + 1 gln:cyt + 2 H2O:cyt + 1 NAD:cyt + 1 PRPP:cyt => 2 ADP:cyt + 1
glu:cyt + 4 H:cyt + 1 NADH:cyt
+ 4 Pi:cyt + 1 UMP:cyt
r13.5
                  2 ATP:cvt + 1 UMP:cvt => 2 ADP:cvt + 1 UTP:cvt
r13.6
                  1 ATP:cyt + 1 gln:cyt + 1 H2O:cyt + 1 UTP:cyt => 1 ADP:cyt + 1 CTP:cyt + 1 glu:cyt + 2
H:cyt + 1 Pi:cyt
r13.7
                  2 ADP:cyt + 1 CTP:cyt => 2 ATP:cyt + 1 CMP:cyt
r13.8
                  1 A:cyt + 2 ATP:cyt => 3 ADP:cyt + 1 H:cyt
r13.9
                  1 ATP:cyt + 1 UDP:cyt => 1 ADP:cyt + 1 UTP:cyt
UDPglc4ep
                  1 UDPglc:cvt <=> 1 UDPGAL:cvt
ATP GTP Ptrans
                  1 ATP:cyt + 1 GDP:cyt <=> 1 ADP:cyt + 1 GTP:cyt
ATP-hydrolysis
r15.1
                  1 ATP:cyt + 1 H2O:cyt => 1 ADP:cyt + 1 H:cyt + 1 Pi:cyt
Synthesis of fatty acids
C120syn
                  6 AcCoA:cyt + 5 ATP:cyt + 5 H:cyt + 1 H20:cyt + 10 NADPH:cyt => 5 ADP:cyt + 1 C120:cyt +
6 HCoA:cyt + 10 NADP:cyt + 5 Pi:cyt
C140svn
                  7 AcCoA:cyt + 6 ATP:cyt + 6 H:cyt + 1 H2O:cyt + 12 NADPH:cyt => 6 ADP:cyt + 1 C140:cyt +
7 HCoA:cyt + 12 NADP:cyt + 6 Pi:cyt
C141syn
                  1 C140:cyt + 1 H:cyt + 1 NADPH:cyt + 1 02:cyt => 1 C141:cyt + 2 H20:cyt + 1 NADP:cyt
C160syn
                  8 AcCoA:cyt + 7 ATP:cyt + 7 H:cyt + 1 H20:cyt + 14 NADPH:cyt => 7 ADP:cyt + 1 C160:cyt +
8 HCoA:cyt + 14 NADP:cyt + 7 Pi:cyt
C161syn
                  1 C160:cyt + 1 H:cyt + 1 NADPH:cyt + 1 02:cyt => 1 C161:cyt + 2 H20:cyt + 1 NADP:cyt
C162syn
                 1 C161:cyt + 1 H:cyt + 1 NADPH:cyt + 1 O2:cyt => 1 C162:cyt + 2 H2O:cyt + 1 NADP:cyt
C180syn
9 AcCoA:cyt + 8 ATP:cyt + 8 H:cyt + 1 H2O:cyt + 16 NADPH:cyt => 8 ADP:cyt + 1 C180:cyt +
9 HCOA:cyt + 16 NADP:cyt + 8 Pi:cyt
C181CoA syn
```

2 ATP:cyt + 1 C181:cyt + 2 H2O:cyt + 1 HCoA:cyt => 2 ADP:cyt + 1 C181CoA:cyt + 2 H:cyt 2 Pi:cvt C181syn 1 C180:cvt + 1 H:cvt + 1 NADPH:cvt + 1 02:cvt => 1 C181:cvt + 2 H20:cvt + 1 NADP:cvt C182syn 1 C181:cyt + 1 H:cyt + 1 NADPH:cyt + 1 02:cyt => 1 C182:cyt + 2 H20:cyt + 1 NADP:cyt C183svn 1 C182:cyt + 1 H:cyt + 1 NADPH:cyt + 1 O2:cyt => 1 C183:cyt + 2 H2O:cyt + 1 NADP:cyt C200syn 10 AcCoA:cyt + 9 ATP:cyt + 9 H:cyt + 1 H20:cyt + 18 NADPH:cyt => 9 ADP:cyt + 1 C200:cyt + 10 HCoA:cyt + 18 NADP:cyt + 9 Pi:cyt CLsyn 2 CDPDAcgcl:cvt + 2 g3p:cvt + 2 H20:cvt => 1 CL:cvt + 2 CMP:cvt + 1 gcl:cvt + 2 H:cvt + 2 Pi:cyt DAGLYsvn 0.024 C120:cyt + 0.014 C140:cyt + 0.012 C141:cyt + 0.156 C160:cyt + 0.02 C161:cyt + 0.008 C162:cyt + 0.027 C180:cyt + 0.374 C181:cvt + 0.327 C182:cvt + 0.032 C183:cvt + 0.006 C200:cvt + 1 MAGLY:cvt => 1 DAGLY:cyt + 1 H2O:cyt DGDG syn 1 MGDG:cvt + 1 UDPGAL:cvt => 1 DGDG:cvt + 1 H:cvt + 1 UDP:cvt MAGLYsyn 0.024 C120:cyt + 0.014 C140:cyt + 0.012 C141:cyt + 0.156 C160:cyt + 0.02 C161:cyt + 0.008 C162:cvt + 0.027 C180:cvt + 0.374 C181:cyt + 0.327 C182:cyt + 0.032 C183:cyt + 0.006 C200:cyt + 1 gcl3P:cyt => 1 MAGLY:cyt + 1 Pi:cyt MGC181 svn 1 C181CoA:cyt + 1 H2O:cyt + 1 UDPGAL:cyt => 1 H:cyt + 1 HCoA:cyt + 1 MGC181:cyt + 1 UDP:cvt MGDG syn 1 DAGLY:cyt + 1 UDPGAL:cyt => 1 H:cyt + 1 MGDG:cyt + 1 UDP:cyt r16.10 1 PHeta:cvt + 3 SAM:cvt => 3 H:cvt + 1 PHchol:cvt + 3 SAH:cvt r16.13 3 AcCoA:cvt + 1 H:cvt + 1 H2O:cvt + 2 NADPH:cvt => 3 HCoA:cvt + 1 meva:cvt + 2 NADP:cvt r16.14 18 ATP:cyt + 5 H2O:cyt + 6 meva:cyt + 2 NADPH:cyt + 1 O2:cyt => 18 ADP:cyt + 6 CO2:cyt + 10 H:cyt + 1 lano:cyt + 2 NADP:cyt + 18 Pi:cyt r16.15 1 lano:cyt + 1 NAD:cyt + 2 THF:cyt => 1 ergo:cyt + 1 H:cyt + 2 MYTHF:cyt + 1 NADH:cyt r16.16 1 ergo:cvt + 1 olCoA:cvt => 1 ESE:cvt + 1 HCoA:cvt r16.2 1 GAP:cyt + 1 H:cyt + 1 NADH:cyt => 1 gcl3P:cyt + 1 NAD:cyt r16.3 9 AcCoA:cvt + 8 ATP:cvt + 8 H:cvt + 16 NADPH:cvt => 8 ADP:cvt + 8 HCoA:cvt + 16 NADP:cvt + 8 Pi:cyt + 1 steaCoA:cyt r16.4 1 H:cvt + 1 NADH:cvt + 1 O2:cvt + 1 steaCoA:cvt => 2 H2O:cvt + 1 NAD:cvt + 1 olCoA:cvt r16.5 1 H:cyt + 1 NADH:cyt + 1 O2:cyt + 1 olCoA:cyt => 2 H2O:cyt + 1 linCoA:cyt + 1 NAD:cyt r16.6 1 gcl3P:cyt + 1 linCoA:cyt + 1 olCoA:cyt => 2 HCoA:cyt + 1 phospht:cyt r16.7 1 CTP:cyt + 1 H2O:cyt + 1 phospht:cyt => 1 CDPDAcgcl:cyt + 2 Pi:cyt r16.8 1 CDPDAcgcl:cyt + 1 ser:cyt => 1 CMP:cyt + 1 H:cyt + 1 PHser:cyt r16 9 1 H:cvt + 1 PHser:cvt => 1 CO2:cvt + 1 PHeta:cvt r23.22 0.000223 C140:cyt + 0.00148 C160:cyt + 0.000245 C180:cyt + 0.00168 C181:cyt + 0.00166 C182:cyt + 4.7E-005 C183:cyt + 0.00175 CL:cyt + 0.00101 DAGLY:cyt + 0.00786 DGDG:cyt + 0.0341 ergo:cyt + 0.01 ESE:cyt + 0.00891 MAGLY:cyt + 0.0124 MGC181:cyt + 0.0301 MGDG:cyt + 0.0153 PHchol:cyt + 0.0348 PHeta:cyt + 0.000359 PHser:cyt + 0.0101 TAGLY:cy => 1 lipidsASP:cyt TAGLYSVD 0.024 C120:cyt + 0.014 C140:cyt + 0.012 C141:cyt + 0.156 C160:cyt + 0.02 C161:cyt + 0.008 C162:cvt + 0.027 C180:cvt + 0.374 C181:cyt + 0.327 C182:cyt + 0.032 C183:cyt + 0.006 C200:cyt + 1 DAGLY:cyt => 1 H2O:cyt + 1 TAGLY:cyt Synthesis of glycogen and polysaccharides GDPMANsyn 1 f6P:cvt + 1 GTP:cvt + 2 H:cvt + 1 H2O:cvt => 1 GDPMAN:cvt + 2 Pi:cvt r17.1 0.167 ATP:cyt + 0.167 g6P:cyt + 0.167 H2O:cyt => 0.167 ADP:cyt + 0.167 H:cyt + 0.333 Pi:cvt + 1 psacch:cyt r17. 1 AcCoA:cyt + 1 f6P:cyt + 1 gln:cyt => 1 chit:cyt + 1 glu:cyt + 1 H:cyt + 1 HCoA:cyt + 1 Pi:cvt 1 f6P:cvt + 1 H:cvt + 1 NADH:cvt => 1 m1P:cvt + 1 NAD:cvt r17.4 1 H2O:cyt + 1 m1P:cyt => 1 man:cyt + 1 Pi:cyt r17.5 1 g6P:cyt + 1 H2O:cyt + 1 UTP:cyt => 2 Pi:cyt + 1 UDPglc:cyt

3-phospho-glycerol

6-phosphogluconate

a-5-phosphoribosyl-pyrophosphate

r17 6 1 g6P:cvt + 1 UDPglc:cvt => 1 H:cvt + 1 t6P:cvt + 1 UDP:cvt r17.7 1 H2O;cvt + 1 t6P;cvt => 1 Pi;cvt + 1 tre;cvt r17.8 1 E4P:cyt + 1 H:cyt + 1 H2O:cyt + 1 NADH:cyt => 1 ery:cyt + 1 NAD:cyt + 1 Pi:cyt Cell Wall Components r23.1 1 UDPglc:cyt => 1 13GLUCAN:cyt + 1 H:cyt + 1 UDP:cyt r23.2 1 UDPglc:cyt => 1 14GLUCAN:cyt + 1 H:cyt + 1 UDP:cyt r23 3 1 UDPglc:cyt => 1 H:cyt + 1 PSNIG:cyt + 1 UDP:cyt r23.4 1 UDPglc:cyt => 1 H:cyt + 1 NIG:cyt + 1 UDP:cyt r23.6 1 AcCoA:cyt + 1 GA6P:cyt <=> 1 HCoA:cyt + 1 NAGA6P:cyt r23.7 1 NAGA6P:cyt <=> 1 NAGA1P:cyt r23.8 1 H2O:cvt + 1 NAGA1P:cvt + 1 UTP:cvt <=> 2 Pi:cvt + 1 UDPNAG:cvt r23.10 1 chit:cvt + 1 H2O:cvt => 1 NAG:cvt r23.11 1 H2O:cyt + 1 NAG:cyt => 1 Ac:cyt + 1 GLCN:cyt + 1 H:cyt r23.12 1 ATP:cyt + 1 GLCN:cyt + 1 H:cyt => 1 ADP:cyt + 1 GA6P:cyt r23.14 1 UDPNAG:cvt <=> 1 UDPNAGAL:cvt r23.15 1.51 H:cyt + 0.754 UDPGAL:cyt + 0.065 UDPglc:cyt + 0.181 UDPNAGAL:cyt => 1 GAG:cyt + 1 UDP:cvt r23.1 0.435 GDPMAN:cvt + 0.435 UDPGAL:cvt + 0.13 UDPqlc:cvt => 0.435 GDP:cvt + 1 GGM:cvt + 0.435 H:cvt + 0.565 UDP:cvt r23.17 2.73 13GLUCAN:cyt + 0.389 14GLUCAN:cyt + 1.62 chit:cyt + 0.043 GAG:cyt + 0.381 GGM:cyt + 0.254 NIG:cyt + 0.337 PSNIG:cyt => 1 cellwall:cyt Protein synthesis r23.18 1.03 ala:cyt + 0.413 arg:cyt + 0.209 asn:cyt + 0.628 asp:cyt + 39.7 ATP:cyt + 0.079 cys:cyt + 0.3 gln:cyt + 0.899 glu:cyt + 0.862 gly:cyt + 30.5 H2O:cyt + 0.205 his:cyt + 0.396 ile:cyt + 0.704 leu:cyt + 0.651 lys:cyt + 0.105 met:cyt + 0.312 phe:cyt + 0.441 pro:cyt + 0.628 ser:cyt + 0.503 thr:cyt + 0.126 trp:cyt + 0.205 tyr:cyt + 0.536 RNA synthesis r23.19 0.773 AMP:cyt + 7.42 ATP:cyt + 0.773 CMP:cyt + 0.931 GMP:cyt + 4.31 H20:cyt + 0.616 UMP:cyt => 7.42 ADP:cyt + 7.42 H:cyt + 7.42 Pi:cyt + 1 RNAasp:cyt Miscellaneous r23.21 0.3 ery:cyt + 7E-005 fum:mit + 0.46 gcl:cyt + 0.00039 iCitr:mit + 0.00065 mal:mit + 0.18 man:cvt + 0.00091 succ:mit + 0.04 tre:cyt => 1 poolAsp:cyt Biomass formation r23.23 0.38 cellwall:cyt + 1 lipidsASP:cyt + 1 poolAsp:cyt + 0.263 PROTASP:cyt + 0.0206 RNAasp:cyt => 37.1 BIOMasp:cyt List of compounds Name ShortName Composition 1,3-bisphosphoglycerate C3H4O10P2-4 13PG 13-b-D-GLUCAN 1 3GLUCAN C6H1005 14alphaglucan 14GLUCAN C6H1005 2-dehydro-3-deoxy-L-galactonate 23gal С6Н906-1 2-dehydro-3-deoxy-L-rhamnonate 23rha C6H905-1 2-phosphoglycerate 2PG C3H4O7P-3 3-phospho-adenosine-5-phosphosulfate PAPS C10H15N5013P2S 3-phospho-glyceraldehyde GAP C3H506P=2 3-phosphoglycerate 3 PG C3H4O7P-3

gcl3P

PRPP

6Pgluct

C3H7O6P-2

C6H10010P-3 C5H8O14P3-5

| acetate                                                                                                                    | Ac                                                                | C2H3O2-1                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| acetyl coenzyme A                                                                                                          | AcCoA                                                             | C23H34N7O17P3S-4                                                                                    |
| adenosine                                                                                                                  | A                                                                 | C10H13N5O4                                                                                          |
| adenosine-5-diphosphate                                                                                                    | ADP                                                               | C10H12N5010P2-3                                                                                     |
| adenosine-5-monophosphate                                                                                                  | AMP                                                               | C10H12N507P-2                                                                                       |
| adenosine-5-triphosphate                                                                                                   | ATP                                                               | C10H12N5013P3-4                                                                                     |
|                                                                                                                            | ala                                                               |                                                                                                     |
| alanine                                                                                                                    |                                                                   | C3H7NO2                                                                                             |
| aldehydo-L-galactonate                                                                                                     | aldeLgal                                                          | C6H1107-1                                                                                           |
| aLinolenic acid                                                                                                            | C183                                                              | C18H30O2                                                                                            |
| alpha aminoadipate                                                                                                         | aAd                                                               | C6H11NO4                                                                                            |
| alpha ketoglutarate                                                                                                        | aKG                                                               | C5H4O5-2                                                                                            |
| alpha ketoisovalerate                                                                                                      | aKI                                                               | C5H7O3-1                                                                                            |
| ammonia                                                                                                                    | NH4                                                               | H4N+1                                                                                               |
| arabinose                                                                                                                  | ara                                                               | C5H1005                                                                                             |
| Arabitol                                                                                                                   | arab                                                              | C5H12O5                                                                                             |
|                                                                                                                            |                                                                   |                                                                                                     |
| Arachidic acid                                                                                                             | C200                                                              | C20H40O2                                                                                            |
| arginine                                                                                                                   | arg                                                               | C6H15N4O2+1                                                                                         |
| asparagine                                                                                                                 | asn                                                               | C4H8N2O3                                                                                            |
| aspartate                                                                                                                  | asp                                                               | C4H6NO4-1                                                                                           |
| beta-isopropylmalate                                                                                                       | bIM                                                               | C7H1005-2                                                                                           |
| biomass aspergillus                                                                                                        | BIOMasp                                                           | CH1.73N0.11100.547P0.00308S0.00131                                                                  |
| C162                                                                                                                       | C162                                                              | C16H28O2                                                                                            |
| carbamoyl phosphate                                                                                                        | carbP                                                             | CH2N05P-2                                                                                           |
|                                                                                                                            |                                                                   |                                                                                                     |
| carbon dioxide                                                                                                             | C02                                                               | C02                                                                                                 |
| Cardiolipin                                                                                                                | CL                                                                | C81H144017P2-2                                                                                      |
| cell wall                                                                                                                  | cellwall                                                          | C37.8H63.1N1.63028.8+0.67                                                                           |
| chitine                                                                                                                    | chit                                                              | C8H13NO5                                                                                            |
| chorismate                                                                                                                 | chor                                                              | C10H806-2                                                                                           |
| citrate                                                                                                                    | citr                                                              | С6н507-3                                                                                            |
| citrulline                                                                                                                 | ctl                                                               | C6H12N3O3-1                                                                                         |
| coenzyme A                                                                                                                 | HCoA                                                              | C21H32N7O16P3S-4                                                                                    |
|                                                                                                                            |                                                                   |                                                                                                     |
| cysteine                                                                                                                   | cys                                                               | C3H7NO2S                                                                                            |
| cytidine diphosphate-diacylglyerol                                                                                         | CDPDAcgcl                                                         | C48H81N3O15P2-2                                                                                     |
| cytidine monophosphate                                                                                                     | CMP                                                               | C9H12N3O8P-2                                                                                        |
| cytidine triphosphate                                                                                                      | CTP                                                               | C9H12N3O14P3-4                                                                                      |
| D-galacturonate                                                                                                            | D-galacn                                                          | C6H907-1                                                                                            |
| D-galacturonic acid                                                                                                        | D-galac                                                           | C6H9O7-1                                                                                            |
| d-glucosamine                                                                                                              | GLCN                                                              | C6H13N05                                                                                            |
|                                                                                                                            | DAGLY                                                             |                                                                                                     |
| Diacylglycerol                                                                                                             |                                                                   | C37.8H68.905                                                                                        |
| Digalactosyl diglyceride                                                                                                   | DGDG                                                              | C49.8H92.9015                                                                                       |
| ergosterol                                                                                                                 | ergo                                                              | C28H44O                                                                                             |
| ergosterolester                                                                                                            | ESE                                                               | C46H76O2                                                                                            |
| erythritol                                                                                                                 | ery                                                               | C4H10O4                                                                                             |
| erythrose-4-phosphate                                                                                                      | E4P                                                               | C4H7O7P-2                                                                                           |
| flavine adenine dinucleotide (oxidized)                                                                                    | FAD                                                               | C27H33N9O15P2                                                                                       |
| flavine adenine dinucleotide (onlaised)                                                                                    | FADH2                                                             | C27H35N9015P2                                                                                       |
|                                                                                                                            | FTHF                                                              | C20H21N707-2                                                                                        |
| formyl tetrahydrofolate                                                                                                    |                                                                   |                                                                                                     |
| fructose-1,6-bisphosphate                                                                                                  | f16P                                                              | C6H10012P2-4                                                                                        |
| fructose-6-phosphate                                                                                                       | f6P                                                               | C6H1109P-2                                                                                          |
| fumarate                                                                                                                   | fum                                                               | C4H2O4-2                                                                                            |
| Galactoglucomanan                                                                                                          | GGM                                                               | C6H11.405+1.44                                                                                      |
| Galactosaminogalactan                                                                                                      | GAG                                                               | C6.36H13.4N0.18105+2.87                                                                             |
| GDPmannose                                                                                                                 | GDPMAN                                                            | C16H25N5016P2                                                                                       |
| Glucosamine6phosphate                                                                                                      | GA6P                                                              | C6H14N08P                                                                                           |
|                                                                                                                            |                                                                   | C6H12O6                                                                                             |
| glucose                                                                                                                    | glc                                                               |                                                                                                     |
| glucose-6-phosphate                                                                                                        | g 6 P                                                             | C6H1109P-2                                                                                          |
| glutamate                                                                                                                  | glu                                                               | C5H8NO4-1                                                                                           |
| glutamine                                                                                                                  | gln                                                               | C5H10N2O3                                                                                           |
| glyceraldehyde                                                                                                             | glycal                                                            | C3H6O3                                                                                              |
| glycerol                                                                                                                   | gcl                                                               | C3H8O3                                                                                              |
| glycerol-3-phosphate                                                                                                       | g3p                                                               | C3H706P-2                                                                                           |
| glycine                                                                                                                    | gly                                                               | C2H5NO2                                                                                             |
|                                                                                                                            |                                                                   | C10H12N5011P2-3                                                                                     |
| guanosine diphosphate                                                                                                      | GDP                                                               |                                                                                                     |
| guanosine monophosphate                                                                                                    | GMP                                                               | C10H12N508P-2                                                                                       |
| Guanosine triphosphate                                                                                                     | GTP                                                               | C10H12N5014P3-4                                                                                     |
| histidine                                                                                                                  | his                                                               | C6H9N3O2                                                                                            |
| homocysteine                                                                                                               | homcys                                                            | C4H9NO2S                                                                                            |
| homoserine                                                                                                                 | homser                                                            | C4H9NO3                                                                                             |
| hydrogen sulphide                                                                                                          | H2S                                                               | H2S                                                                                                 |
| inosine monophosphate                                                                                                      | TMP                                                               | C10H11N408P-2                                                                                       |
|                                                                                                                            |                                                                   |                                                                                                     |
| isocitrate                                                                                                                 | iCitr                                                             | C6H5O7-3                                                                                            |
| isoleucine                                                                                                                 | ile                                                               | C6H13N02                                                                                            |
| lactaldehyde                                                                                                               | lactal                                                            | C3H6O2                                                                                              |
| lactate                                                                                                                    | lact                                                              | C3H5O3-1                                                                                            |
| lanosterol                                                                                                                 | lano                                                              | C30H50O                                                                                             |
| Lauric acid                                                                                                                | C120                                                              | C12H24O2                                                                                            |
| leucine                                                                                                                    | leu                                                               | C6H13NO2                                                                                            |
| Linoleic acid                                                                                                              | C182                                                              | C18H32O2                                                                                            |
|                                                                                                                            | linCoA                                                            |                                                                                                     |
| linoleoyl coenzyme A<br>LipidsASP                                                                                          | TTUCOM                                                            | C39H62N7017P3S-4                                                                                    |
|                                                                                                                            |                                                                   | C6.4H11.5N0.050501.09P0.0505-0.000359                                                               |
|                                                                                                                            | lipidsASP                                                         |                                                                                                     |
| L-rhamnonate                                                                                                               | Lrhant                                                            | C6H1106-1                                                                                           |
|                                                                                                                            |                                                                   | C6H1106-1<br>C6H1005                                                                                |
| L-rhamnonate                                                                                                               | Lrhant                                                            | C6H1106-1                                                                                           |
| L-rhamnonate<br>L-rhamnono-1-4-lactone<br>L-rhamnose                                                                       | Lrhant<br>Lrha141ac<br>Lrha                                       | C6H1106-1<br>C6H1005                                                                                |
| L-rhamnonate<br>L-rhamnono-1-4-lactone<br>L-rhamnose<br>L-xylulose                                                         | Lrhant<br>Lrha14lac<br>Lrha<br>L-xylu                             | C6H1106-1<br>C6H1005<br>C6H1205<br>C5H1005                                                          |
| L-rhamnonate<br>L-rhamnono-1-4-lactone<br>L-rhamnose<br>L-xylulose<br>lysine                                               | Lrhant<br>Lrha141ac<br>Lrha<br>L-xylu<br>lys                      | C6H1106-1<br>C6H1005<br>C6H1205<br>C5H1005<br>C6H15N202+1                                           |
| L-rhamnonate<br>L-rhamnono-14-lactone<br>L-rhamnose<br>L-xylulose<br>lysine<br>malate                                      | Lrhant<br>Lrha141ac<br>Lrha<br>L-xylu<br>lys<br>mal               | C6H1106-1<br>C6H1005<br>C6H1205<br>C5H1005<br>C6H15N202+1<br>C4H405-2                               |
| L-rhamnonate<br>L-rhamnono-1-4-lactone<br>L-rhamnose<br>L-xylulose<br>lysine<br>malate<br>mannitol                         | Lrhant<br>Lrha141ac<br>Lrha<br>L-xylu<br>lys<br>mal<br>man        | C6H1106-1<br>C6H1005<br>C6H1205<br>C5H1005<br>C6H15N202+1<br>C4H405-2<br>C6H1406                    |
| L-rhamnonate<br>L-rhamnono-1-4-lactone<br>L-rhamnose<br>L-xylulose<br>lysine<br>malate<br>mannitol<br>mannitol-1-phosphate | Lrhant<br>Lrhal4lac<br>Lrha<br>L-xylu<br>lys<br>mal<br>man<br>mlP | C6H1106-1<br>C6H1205<br>C5H1205<br>C6H15N202+1<br>C6H15N202+1<br>C6H1405-2<br>C6H1406<br>C6H1309P-2 |
| L-rhamnonate<br>L-rhamnono-1-4-lactone<br>L-rhamnose<br>L-xylulose<br>lysine<br>malate<br>mannitol                         | Lrhant<br>Lrha141ac<br>Lrha<br>L-xylu<br>lys<br>mal<br>man        | C6H1106-1<br>C6H1005<br>C6H1205<br>C5H1005<br>C6H15N202+1<br>C4H405-2<br>C6H1406                    |

205

|                                               | mann6P          |      |                                    |
|-----------------------------------------------|-----------------|------|------------------------------------|
|                                               |                 |      | C6H1109P-2                         |
|                                               | met             |      | C5H11NO2S                          |
|                                               | MYTHF           |      | C20H23N7O6-2                       |
|                                               | METHF           |      | C20H21N706-2                       |
|                                               | meva            |      | C6H1104-1                          |
|                                               | MAGLY           |      | C20.4H38.4O4                       |
|                                               | MGDG            |      | C43.8H80.9010                      |
|                                               | MGC181<br>C140  |      | C24H4808<br>C14H2802               |
| ingribero dera                                | 0110            |      | 011112002                          |
|                                               | C141            |      | C14H26O2                           |
| n doceyr a gradobamrno                        | NAG             |      | C8H15NO6                           |
|                                               | NAGA1P          |      | C8H16NO9P                          |
|                                               | NAGA6P          |      | C8H16NO9P                          |
| nicotinamide adenine dinucleotide (oxidized)  |                 |      | C21H26N7O14P2-1<br>C21H27N7O14P2-2 |
| nicotinamide adenine dinucleotide (reduced)   | NADH            |      |                                    |
| nicotinamide adenine dinucleotide phosphate ( | oxiaizea)       | NADP | C21H25N/01/P3-4<br>C21H26N7017P3-5 |
| nicotinamide adenine dinucleotide phosphate ( | reaucea)<br>NIG |      | C6H1005                            |
|                                               | AcHomser        |      | C6H11NO4                           |
|                                               | C181CoA         |      | C39H66N7018P3S-4                   |
|                                               | C181COA<br>C181 |      | C18H34O2                           |
|                                               | olCoA           |      | C39H64N7017P3S-4                   |
|                                               | Pi              |      | H04P-2                             |
|                                               | OAA             |      | C4H2O5-2                           |
|                                               | 02              |      | 02                                 |
|                                               | C160            |      | C16H32O2                           |
|                                               | C161            |      | C16H3002                           |
|                                               | phe             |      | C9H11NO2                           |
|                                               | phospht         |      | C39H6908P-2                        |
|                                               | PHchol          |      | C44H82N08P                         |
|                                               | PHeta           |      | C41H76NO8P                         |
|                                               | PHser           |      | C42H75N010P-1                      |
|                                               | PEP             |      | C3H2O6P-3                          |
|                                               | psacch          |      | CH1.6700.833                       |
|                                               | poolAsp         |      | C4.15H10.104.11-0.00433            |
|                                               | pro             |      | C5H9NO2                            |
| proteinASP                                    | PROTASP         |      | C44H68.5N12.2014.1S0.184-0.463     |
|                                               | Н               |      | H+1                                |
| pseudonigeran                                 | PSNIG           |      | C6H1005                            |
| pyruvate                                      | pyr             |      | C3H3O3-1                           |
| ribose nucleic acid ASP                       | RNAasp          |      | C29.5H30.3N12.1O21.5P3.09-6.19     |
|                                               | Rib5P           |      | C5H9O8P-2                          |
|                                               | Ribu5P          |      | C5H908P-2                          |
|                                               | SAH             |      | C14H20N6O5S                        |
|                                               | SAM             |      | C15H23N605S+1                      |
|                                               | sed7P           |      | C7H13O10P-2                        |
|                                               | ser             |      | C3H7NO3                            |
|                                               | C180            |      | C18H36O2                           |
|                                               | steaCoA         |      | C39H66N7017P3S-4                   |
|                                               | succ            |      | C4H4O4-2                           |
|                                               | succCoA         |      | C25H35N7O19P3S-5                   |
|                                               | SO4<br>THF      |      | 04S-2<br>C19H21N706-2              |
|                                               |                 |      | C19H21N7O6-2                       |
|                                               | thr<br>tre      |      | C4H9NO3<br>C12H22O11               |
|                                               | tre<br>t6P      |      | C12H22O11<br>C12H21O14P-2          |
|                                               | TAGLY           |      | C12H21014P=2<br>C55.2H99.306       |
|                                               | trp             |      | C11H12N2O2                         |
|                                               | tvr             |      | C9H11NO3                           |
|                                               | UDPGAL          |      | C15H22N2O17P2-2                    |
|                                               | UDPNAGAL        |      | C17H27N3O17P2                      |
|                                               | UDPNAG          |      | C17H27N3O17P2                      |
|                                               | UMP             |      | C9H11N2O9P-2                       |
|                                               | UTP             |      | C9H11N2O15P3-4                     |
|                                               | UDP             |      | C9H11N2O12P2-3                     |
|                                               | UDPglc          |      | C15H22N2O17P2-2                    |
|                                               | val             |      | C5H11NO2                           |
|                                               | H20             |      | H2O                                |
|                                               | xol             |      | C5H12O5                            |
|                                               | xyl             |      | C5H1005                            |
| xylose                                        |                 |      |                                    |
|                                               | xylu            |      | C5H1005                            |

Fig. S4.3. List of reactions and compounds for the Stoichiometric model for growth of A. niger on mixtures of

glucose, mannose, arabinose, xylose, galacturonic acid and rhamnose.

206



## **Appendix Chapter 5**

Fig. S5.1. Comparison of measured residual organic acid and estimated organic acid from TOC values (citric acid in experiment A and itaconic acid in experiment B).



Fig. S5.2. Comparison of measured residual itaconic acid and estimated itaconic acid from TOC values in experiments C and D.

#### Table S5.1. Unreconciled and reconciled measurements of experiment A

|                                         |                   |                   | Ехр А             | Exp A                   |                                           |                       |  |  |  |  |  |  |  |
|-----------------------------------------|-------------------|-------------------|-------------------|-------------------------|-------------------------------------------|-----------------------|--|--|--|--|--|--|--|
|                                         | pH                | Glucose<br>2.5    | pH                | 19mM citric acid<br>2.5 | 19mM Glucose + 19mM citric acid<br>pH 5.5 |                       |  |  |  |  |  |  |  |
|                                         | Unreconciled      | Reconciled        | Unreconciled      | Reconciled              | Unreconciled                              | Reconciled            |  |  |  |  |  |  |  |
| F <sub>out</sub> (L/h)                  | 0.44290 ± 0.00003 | 0.44290 ± 0.00003 | 0.44360 ± 0.00033 | 0.44358 ± 0.00033       | 0.44350 ± 0.00003                         | $0.44350 \pm 0.00003$ |  |  |  |  |  |  |  |
| F <sub>in</sub> (L/h)                   | 0.44200 ± 0.00003 | 0.44200 ± 0.00003 | 0.44280 ± 0.00033 | 0.44282 ± 0.00033       | 0.43730 ± 0.00003                         | 0.43730 ± 0.00003     |  |  |  |  |  |  |  |
| F <sub>gas in</sub> (mmol/h)            | 2678.6 ± 26.8     | 2718.0 ± 24.7     | 2678.6 ± 26.8     | 2673.2 ± 26.3           | 2678.6 ± 26.8                             | 2708.5 ± 26.1         |  |  |  |  |  |  |  |
| F <sub>gas out</sub> (mmol/h)           | 2673.6 ± 26.7     | 2718.7 ± 24.7     | 2688.6 ± 26.9     | 2685.6 ± 26.4           | 2675.6 ± 26.8                             | 2710.9 ± 26.1         |  |  |  |  |  |  |  |
| O <sub>2out</sub> (%)                   | 19.465 ± 0.020    | 19.427 ± 0.017    | 19.524 ± 0.018    | 19.564 ± 0.012          | 20.010 ± 0.018                            | 20.133 ± 0.008        |  |  |  |  |  |  |  |
| CO <sub>2in</sub> (%)                   | $0.032 \pm 0.000$ | 0.032 ± 0.000     | 0.035 ± 0.000     | $0.035 \pm 0.000$       | 0.033 ± 0.000                             | $0.033 \pm 0.000$     |  |  |  |  |  |  |  |
| CO <sub>2out</sub> (%)                  | -                 | 1.576 ± 0.017     | 1.757 ± 0.018     | $1.783 \pm 0.014$       | 0.885 ± 0.009                             | $0.921 \pm 0.008$     |  |  |  |  |  |  |  |
| O <sub>2in</sub> (%)                    | 20.950 ± 0.000    | 20.950 ± 0.000    | 20.950 ± 0.000    | 20.950 ± 0.000          | 20.950 ± 0.000                            | 20.950 ± 0.000        |  |  |  |  |  |  |  |
| Cglucose in (mmol/L)                    | 38.000 ± 0.038    | 37.986 ± 0.038    | 19.000 ± 0.019    | $19.001 \pm 0.019$      | 19.000 ± 0.019                            | $18.997 \pm 0.019$    |  |  |  |  |  |  |  |
| C <sub>lysis</sub> (mCmol/L)            | 11.327 ± 0.514    | 11.754 ± 0.502    |                   | 9.966 ± 0.511           |                                           | 6.359 ± 0.502         |  |  |  |  |  |  |  |
| Cglucose out (mmol/L)                   | 0.286 ± 0.079     | 0.345 ± 0.077     | 0.175 ± 0.063     | 0.161 ± 0.063           | 0.141 ± 0.023                             | 0.146 ± 0.023         |  |  |  |  |  |  |  |
| C <sub>biomass</sub> (g/L)              | 3.193 ± 0.046     | 3.316 ± 0.033     | 2.855 ± 0.033     | 2.831 ± 0.032           | 1.604 ± 0.057                             | $1.780 \pm 0.029$     |  |  |  |  |  |  |  |
| Mw biomass (g/Cmol)                     | 27.930 ± 0.060    | 27.905 ± 0.060    | 27.930 ± 0.060    | 27.938 ± 0.060          | 27.930 ± 0.060                            | 27.917 ± 0.060        |  |  |  |  |  |  |  |
| C <sub>citric acid out</sub> (mmol/L)   | $0.000 \pm 0.000$ | $0.000 \pm 0.000$ | 2.429 ± 0.916     | 1.383 ± 0.315           | 15.378 ± 0.135                            | 15.683 ± 0.127        |  |  |  |  |  |  |  |
| Ccitric acid in (mmol/L)                | $0.000 \pm 0.000$ | $0.000 \pm 0.000$ | 19.000 ± 0.019    | 19.000 ± 0.019          | 19.000 ± 0.019                            | $18.994 \pm 0.019$    |  |  |  |  |  |  |  |
| R <sub>CO2</sub> (mmol/h)               | 35.80 ± 10.00     | 41.98 ± 0.51      | 46.31 ± 0.67      | 46.95 ± 0.58            | 22.79 ± 0.33                              | 24.07 ± 0.30          |  |  |  |  |  |  |  |
| Roz (mmol/h)                            | -40.74 ± 7.67     | -41.26 ± 0.52     | -36.24 ± 7.70     | -34.63 ± 0.46           | -25.77 ± 7.77                             | -21.63 ± 0.31         |  |  |  |  |  |  |  |
| R <sub>biomass</sub> (mmol/h)           | 50.64 ± 0.73      | 52.64 ± 0.52      | 45.35 ± 0.52      | 44.95 ± 0.51            | 25.47 ± 0.90                              | 28.28 ± 0.45          |  |  |  |  |  |  |  |
| R <sub>lysis</sub> (mCmol/h)            | 5.02 ± 0.23       | 5.21 ± 0.22       | 4.48 ± 0.23       | 4.42 ± 0.23             | 2.52 ± 0.23                               | 2.82 ± 0.22           |  |  |  |  |  |  |  |
| R <sub>citric acid</sub> (mmol/h)       | $0.00 \pm 0.00$   | $0.00 \pm 0.00$   | -8.18 ± 0.06      | -7.80 ± 0.14            | -1.49 ± 0.36                              | -1.35 ± 0.06          |  |  |  |  |  |  |  |
| R <sub>glucose</sub> (mmol/h)           | -16.67 ± 0.04     | -16.64 ± 0.04     | -8.34 ± 0.03      | -8.34 ± 0.03            | -8.25 ± 0.08                              | $-8.24 \pm 0.01$      |  |  |  |  |  |  |  |
| RQ (R <sub>CO2</sub> /R <sub>O2</sub> ) | 0.88 ± 0.30       | 1.02 ± 0.02       | 1.28 ± 0.27       | 1.36 ± 0.02             | 0.88 ± 0.27                               | $1.11 \pm 0.02$       |  |  |  |  |  |  |  |
| R <sub>02</sub> /R <sub>glucose</sub>   | 2.44 ± 0.46       | 2.48 ± 0.03       | 4.35 ± 0.92       | 4.15 ± 0.06             | 3.13 ± 0.94                               | 2.62 ± 0.04           |  |  |  |  |  |  |  |
| Carbon recovery (%)                     | 91 ± 1            |                   | 98 ± 1            |                         | 91 ± 2                                    |                       |  |  |  |  |  |  |  |
| Redox recovery (%)                      | 97 ± 5            |                   | 103 ± 6           |                         | 104 ± 12                                  |                       |  |  |  |  |  |  |  |

#### in strain A. niger NW185 in presence of citric acid.

# Table S5.2. Unreconciled and reconciled measurements of experiment B in strain A. niger NW185 in presence of itaconic acid.

| Exp B                                   |                   |                       |                         |                       |                                               |                       |  |  |  |  |
|-----------------------------------------|-------------------|-----------------------|-------------------------|-----------------------|-----------------------------------------------|-----------------------|--|--|--|--|
|                                         |                   | Glucose<br>2.5        | 19mM Glucose + 22<br>pH |                       | 19mM Glucose + 22.8mM itaconic acid<br>pH 5.5 |                       |  |  |  |  |
|                                         | Unreconciled      | Reconciled            | Unreconciled            | Reconciled            | Unreconciled                                  | Reconciled            |  |  |  |  |
| F <sub>out</sub> (L/h)                  | 0.42880 ± 0.00080 | $0.42880 \pm 0.00080$ | 0.45670 ± 0.00017       | $0.45670 \pm 0.00017$ | 0.42810 ± 0.00004                             | $0.42810 \pm 0.00004$ |  |  |  |  |
| F <sub>in</sub> (L/h)                   | 0.42872 ± 0.00080 | 0.42872 ± 0.00080     | 0.45630 ± 0.00017       | 0.45630 ± 0.00017     | 0.42340 ± 0.00004                             | 0.42340 ± 0.00004     |  |  |  |  |
| F <sub>gas in</sub> (mmol/h)            | 2678.6 ± 26.8     | 2691.7 ± 23.3         | 2678.6 ± 26.8           | 2695.8 ± 26.2         | 2678.6 ± 26.8                                 | 2672.5 ± 26.3         |  |  |  |  |
| F <sub>gas out</sub> (mmol/h)           | 2674.9 ± 26.7     | 2692.4 ± 23.3         | 2676.1 ± 26.8           | 2697.1 ± 26.2         | 2675.5 ± 26.8                                 | 2673.6 ± 26.3         |  |  |  |  |
| O <sub>2out</sub> (%)                   | 19.466 ± 0.026    | 19.562 ± 0.011        | 20.127 ± 0.010          | 20.194 ± 0.006        | 20.115 ± 0.016                                | 20.217 ± 0.007        |  |  |  |  |
| CO <sub>2in</sub> (%)                   | 0.029 ± 0.000     | $0.029 \pm 0.000$     | 0.028 ± 0.000           | $0.028 \pm 0.000$     | 0.028 ± 0.000                                 | $0.028 \pm 0.000$     |  |  |  |  |
| CO <sub>2out</sub> (%)                  | $1.404 \pm 0.014$ | $1.438 \pm 0.011$     | 0.777 ± 0.008           | $0.822 \pm 0.006$     | 0.772 ± 0.008                                 | $0.794 \pm 0.007$     |  |  |  |  |
| O <sub>2in</sub> (%)                    | 20.950 ± 0.000    | 20.950 ± 0.000        | 20.950 ± 0.000          | 20.950 ± 0.000        | 20.950 ± 0.000                                | 20.950 ± 0.000        |  |  |  |  |
| Cglucose in (mmol/L)                    | 38.000 ± 0.038    | 37.995 ± 0.038        | 19.000 ± 0.019          | 18.998 ± 0.019        | 19.000 ± 0.019                                | 19.002 ± 0.019        |  |  |  |  |
| Clysis (mCmol/L)                        | 12.634 ± 0.301    | 14.360 ± 0.297        |                         | 7.471 ± 0.299         |                                               | 8.052 ± 0.299         |  |  |  |  |
| Cglucose out (mmol/L)                   | 0.126 ± 0.023     | $0.128 \pm 0.023$     | 0.128 ± 0.023           | $0.131 \pm 0.023$     | 0.185 ± 0.034                                 | $0.180 \pm 0.034$     |  |  |  |  |
| C <sub>biomass</sub> (g/L)              | 3.448 ± 0.035     | 3.470 ± 0.025         | 1.869 ± 0.056           | 1.946 ± 0.027         | 1.932 ± 0.061                                 | 1.822 ± 0.029         |  |  |  |  |
| Mw biomass (g/Cmol)                     | 27.930 ± 0.060    | 27.922 ± 0.059        | 27.930 ± 0.060          | 27.924 ± 0.060        | 27.930 ± 0.060                                | 27.937 ± 0.060        |  |  |  |  |
| Citaconic acid out (mmol/L)             | $0.000 \pm 0.000$ | $0.000 \pm 0.000$     | 18.940 ± 0.172          | 19.198 ± 0.160        | 19.470 ± 0.178                                | 19.432 ± 0.166        |  |  |  |  |
| Citaconic acid in (mmol/L)              | $0.000 \pm 0.000$ | $0.000 \pm 0.000$     | 22.800 ± 0.023          | 22.795 ± 0.023        | 22.800 ± 0.023                                | 22.801 ± 0.023        |  |  |  |  |
| R <sub>CO2</sub> (mmol/h)               | 36.78 ± 0.53      | 37.95 ± 0.38          | 20.05 ± 0.29            | 21.43 ± 0.26          | 19.91 ± 0.29                                  | 20.46 ± 0.27          |  |  |  |  |
| R <sub>02</sub> (mmol/h)                | -40.46 ± 7.69     | $-37.21 \pm 0.38$     | -22.54 ± 7.78           | -20.13 ± 0.26         | -22.99 ± 7.79                                 | -19.37 ± 0.27         |  |  |  |  |
| R <sub>biomass</sub> (mmol/h)           | 52.94 ± 0.55      | 53.30 ± 0.38          | 30.55 ± 0.91            | 31.83 ± 0.43          | 29.61 ± 0.94                                  | 27.92 ± 0.44          |  |  |  |  |
| R <sub>lysis</sub> (mCmol/h)            | $4.42 \pm 0.13$   | $5.46 \pm 0.13$       | 3.33 ± 0.14             | $3.41 \pm 0.14$       | $3.44 \pm 0.13$                               | $3.45 \pm 0.13$       |  |  |  |  |
| Ritaconic acid (mmol/h)                 | $0.00 \pm 0.00$   | $0.00 \pm 0.00$       | -1.75 ± 0.40            | $-1.63 \pm 0.07$      | -1.32 ± 0.38                                  | $-1.33 \pm 0.07$      |  |  |  |  |
| R <sub>glucose</sub> (mmol/h)           | -16.24 ± 0.04     | -16.23 ± 0.02         | -8.61 ± 0.08            | -8.61 ± 0.01          | -7.97 ± 0.10                                  | -7.97 ± 0.02          |  |  |  |  |
| RQ (R <sub>CO2</sub> /R <sub>O2</sub> ) | 0.91 ± 0.17       | $1.02 \pm 0.01$       | 0.89 ± 0.31             | $1.06 \pm 0.02$       | 0.87 ± 0.29                                   | 1.06 ± 0.02           |  |  |  |  |
| R <sub>O2</sub> /R <sub>glucose</sub>   | $2.49 \pm 0.47$   | $2.29 \pm 0.02$       | $2.62 \pm 0.90$         | $2.34 \pm 0.03$       | $2.89 \pm 0.98$                               | $2.43 \pm 0.03$       |  |  |  |  |
| Carbon recovery (%)                     | 98 ± 1            |                       | 95 ± 2                  |                       | 102 ± 2                                       |                       |  |  |  |  |
| Redox recovery (%)                      | 108 ± 6           |                       | 104 ± 10                |                       | 121 ± 13                                      | 10.0                  |  |  |  |  |

|                                      |                    |                    | Ехр С              |                              |                                               |            |  |
|--------------------------------------|--------------------|--------------------|--------------------|------------------------------|-----------------------------------------------|------------|--|
|                                      |                    | VI Xylose<br>I 2.5 |                    | 100mM itaconic acid<br>H 2.5 | 45.6mM Xylose + 200mM itaconic acid<br>pH 2.5 |            |  |
|                                      | Unreconciled       | Reconciled         | Unreconciled       | Reconciled                   | Unreconciled                                  | Reconciled |  |
| F <sub>out</sub> (L/h)               | $0.414 \pm 0.001$  | $0.414 \pm 0.001$  | $0.546 \pm 0.004$  | $0.546 \pm 0.003$            | 0.532 ± 0.0002                                |            |  |
| F <sub>in</sub> (L/h)                | $0.411 \pm 0.001$  | $0.411 \pm 0.001$  | $0.539 \pm 0.004$  | $0.540 \pm 0.003$            | $0.524 \pm 0.0002$                            |            |  |
| F <sub>gas in</sub> (mmol/h)         | $2678.6 \pm 26.8$  | $2655.5 \pm 26.2$  | 2678.6±26.8        | $2678.0 \pm 26.8$            | 2678.6 ± 26.8                                 |            |  |
| Fgas out (mmol/h)                    | $2677.4 \pm 26.8$  | $2655.8 \pm 26.2$  | $2679.8 \pm 26.8$  | $2678.9 \pm 26.8$            | 2678.0 ± 26.8                                 |            |  |
| O <sub>2out</sub> (%)                | $19.224 \pm 0.048$ | $19.253 \pm 0.033$ | 19.622 ± 0.096     | $19.614 \pm 0.042$           | 20.654 ± 0.022                                |            |  |
| CO <sub>2in</sub> (%)                | $0.046 \pm 0.000$  | $0.046 \pm 0.000$  | $0.047 \pm 0.000$  | $0.047 \pm 0.000$            | $0.045 \pm 0.000$                             |            |  |
| CO <sub>2out</sub> (%)               | $1.697 \pm 0.017$  | $1.686 \pm 0.016$  | $1.415 \pm 0.014$  | $1.414 \pm 0.014$            | $0.313 \pm 0.003$                             |            |  |
| O <sub>2in</sub> (%)                 | $20.910 \pm 0.044$ | $20.886 \pm 0.033$ | $20.954 \pm 0.043$ | $20.955 \pm 0.039$           | 20.940 ± 0.013                                |            |  |
| C <sub>xylose in</sub> (mmol/L)      | $45.600 \pm 0.046$ | $45.608 \pm 0.046$ | 45.600 ± 0.046     | $45.600 \pm 0.046$           | 45.600 ± 0.046                                |            |  |
| Clysis (mCmol/L)                     | $22.154 \pm 4.608$ | $4.904 \pm 2.147$  |                    | $15.034 \pm 4.459$           | a                                             |            |  |
| C <sub>xylose out</sub> (mmol/L)     | $0.289 \pm 0.036$  | $0.284 \pm 0.036$  | 8.772 ± 2.218      | 8.023 ± 1.765                | 24.060 ± 3.776                                |            |  |
| C <sub>biomass</sub> (g/L)           | $3.278 \pm 0.046$  | $3.215 \pm 0.044$  | 2.973 ± 0.069      | $2.968 \pm 0.068$            | 0.757 ± 0.065                                 |            |  |
| Mw biomass (g/Cmol)                  | $27.800 \pm 0.190$ | $27.921 \pm 0.188$ | 27.800 ± 0.190     | $27.804 \pm 0.190$           | 27.800 ± 0.190                                |            |  |
| Citaconic acid out (mmol/L)          | $0.000 \pm 0.000$  | $0.000 \pm 0.000$  | 97.904 ± 2.453     | 96.951 ± 1.827               | 197.751 ± 5.904                               |            |  |
| Citaconic acid in (mmol/L)           | $0.000 \pm 0.000$  | $0.000 \pm 0.000$  | 100.000 ± 0.100    | $100.002 \pm 0.100$          | 200.000 ± 0.200                               |            |  |
| R <sub>CO2</sub> (mmol/h)            | $44.21 \pm 0.64$   | 43.55 ± 0.59       | 36.66±0.54         | 36.63 ± 0.52                 |                                               |            |  |
| R <sub>02</sub> (mmol/h)             | -45.39 ± 7.80      | $-43.30 \pm 0.60$  | -35.45 ± 8.19      | -35.74 ± 0.68                |                                               |            |  |
| R <sub>biomass</sub> (mmol/h)        | $48.81 \pm 0.70$   | $47.65 \pm 0.72$   | 58.39 ± 1.40       | $58.23 \pm 1.43$             |                                               |            |  |
| R <sub>lysis</sub> (mCmol/h)         | $9.17 \pm 1.91$    | $2.03 \pm 0.89$    | 8.32 ± 2.52        | $8.21 \pm 2.43$              |                                               |            |  |
| Ritaconic acid (mmol/h)              | $0.00 \pm 0.00$    | $0.00 \pm 0.00$    | -0.46 ± 1.43       | $-1.08 \pm 0.95$             |                                               |            |  |
| R <sub>xylose</sub> (mmol/h)         | $-18.63 \pm 0.04$  | $-18.65 \pm 0.04$  | -19.80 ± 1.22      | -20.24 ± 0.94                |                                               |            |  |
| $RQ (R_{CO2}/R_{O2})$                | $0.97 \pm 0.17$    | $1.01 \pm 0.02$    | $1.03 \pm 0.24$    | $1.02 \pm 0.02$              |                                               |            |  |
| R <sub>02</sub> /R <sub>xylose</sub> | $2.44 \pm 0.42$    | $2.32 \pm 0.03$    | $1.79 \pm 0.43$    | $1.77 \pm 0.09$              |                                               |            |  |
| Carbon recovery (%)                  | 110 ± 2            |                    | 106 ± 10           |                              |                                               |            |  |
| Redox recovery (%)                   | 125±8              |                    | $110 \pm 11$       |                              |                                               |            |  |

## Table S5.3. Unreconciled and reconciled measurements of experiment C with itaconic acid in strain A. niger NW185.

# Table S5.4. Unreconciled and reconciled measurements of experiment D with itaconic acid in strain A. niger C3.

| Exp D                                   |                         |                    |                         |                              |                         |                              |                                               |                    |  |  |
|-----------------------------------------|-------------------------|--------------------|-------------------------|------------------------------|-------------------------|------------------------------|-----------------------------------------------|--------------------|--|--|
|                                         |                         | VI Xylose<br>I 2.5 |                         | 100mM itaconic acid<br>1 2.5 |                         | 200mM itaconic acid<br>1 2.5 | 45.6mM Xylose + 300mM itaconic acid<br>pH 2.5 |                    |  |  |
|                                         | Unreconciled Reconciled |                    | Unreconciled Reconciled |                              | Unreconciled Reconciled |                              | Unreconciled                                  | Reconciled         |  |  |
| F <sub>out</sub> (L/h)                  | $0.473 \pm 0.0001$      | $0.473 \pm 0.0001$ | 0.459 ± 0.0001          | $0.459 \pm 0.0001$           | $0.473 \pm 0.0006$      | 0.473 ± 0.0006               | $0.473 \pm 0.0001$                            | $0.473 \pm 0.0001$ |  |  |
| Fin (L/h)                               | $0.471 \pm 0.0001$      | $0.471 \pm 0.0001$ | $0.451 \pm 0.0001$      | $0.451 \pm 0.0001$           | $0.461 \pm 0.0006$      | $0.462 \pm 0.0006$           | $0.456 \pm 0.0001$                            | $0.456 \pm 0.0001$ |  |  |
| Fgas in (mmol/h)                        | $2678.6 \pm 26.8$       | 2632.6 ± 26.4      | 2678.6 ± 26.8           | 2673.8±26.6                  | 2678.6±26.8             | 2658.5 ± 26.5                | 2678.6 ± 26.8                                 | 2670.3±26.7        |  |  |
| Fgas out (mmol/h)                       | $2675.0 \pm 26.7$       | 2630.2 ± 26.4      | 2675.6 ± 26.8           | 2673.6±26.6                  | 2676.9±26.8             | 2658.5 ± 26.5                | 2676.2 ± 26.8                                 | 2668.6±26.7        |  |  |
| O <sub>2out</sub> (%)                   | $19.069 \pm 0.003$      | $19.071 \pm 0.003$ | 19.185 ± 0.001          | $19.185 \pm 0.001$           | $19.093 \pm 0.002$      | 19.094 ± 0.002               | 19.977 ± 0.001                                | 19.978±0.001       |  |  |
| CO <sub>2in</sub> (%)                   | $0.032 \pm 0.000$       | 0.032 ± 0.000      | 0.035 ± 0.000           | $0.035 \pm 0.000$            | $0.034 \pm 0.000$       | $0.034 \pm 0.000$            | 0.033 ± 0.000                                 | $0.033 \pm 0.000$  |  |  |
| CO <sub>2out</sub> (%)                  | $1.688 \pm 0.017$       | $1.722 \pm 0.006$  | 1.544 ± 0.015           | $1.623 \pm 0.005$            | $1.691 \pm 0.017$       | $1.740 \pm 0.005$            | 0.687 ± 0.007                                 | 0.706±0.006        |  |  |
| O <sub>2in</sub> (%)                    | $20.832 \pm 0.002$      | 20.832 ± 0.002     | 20.781 ± 0.001          | $20.781 \pm 0.001$           | $20.801 \pm 0.000$      | 20.801 ± 0.000               | 20.702 ± 0.001                                | 20.702 ± 0.001     |  |  |
| C <sub>xylose in</sub> (mmol/L)         | 45.600±0.046            | 45.617 ± 0.046     | 45.600 ± 0.046          | 45.602 ± 0.046               | 45.600±0.046            | 45.608 ± 0.046               | 45.600 ± 0.046                                | 45.603±0.046       |  |  |
| Clysis (mCmol/L)                        | $12.31 \pm 3.68$        | 10.08 ± 3.03       | a                       | $14.29 \pm 3.35$             | A                       | 5.19 ± 3.03                  |                                               | 5.68±3.42          |  |  |
| C <sub>xylose out</sub> (mmol/L)        | $3.750 \pm 0.512$       | 1.602 ± 0.472      | 0.109 ± 0.014           | $0.108 \pm 0.014$            | 1.497±0.226             | $1.299 \pm 0.223$            | 17.928 ± 1.542                                | 14.891±1.037       |  |  |
| Cbiomass (g/L)                          | $2.373 \pm 0.038$       | 2.288 ± 0.037      | 3.308 ± 0.198           | $3.048 \pm 0.120$            | 3.388±0.093             | $3.146 \pm 0.080$            | 1.755 ± 0.101                                 | $1.651 \pm 0.094$  |  |  |
| Mw biomass (g/Cmol)                     | $27.800 \pm 0.190$      | 27.974 ± 0.189     | 27.800 ± 0.190          | 27.826±0.189                 | 27.800±0.190            | 27.915 ± 0.189               | 27.800 ± 0.190                                | 27.822±0.190       |  |  |
| Citaconic acid out (mmol/L)             | $17.915 \pm 1.041$      | $10.681 \pm 0.704$ | 99.623 ± 0.876          | $100.773 \pm 0.739$          | 197.962±0.771           | 196.580 ± 0.635              | 283.530 ± 2.867                               | 296.932±0.895      |  |  |
| Citaconic acid in (mmol/L)              | $0.000 \pm 0.000$       | $0.000 \pm 0.000$  | 100.000 ± 0.100         | 99.985 ± 0.100               | 200.000±0.200           | 200.091 ± 0.198              | 300.000 ± 0.300                               | 299.859±0.299      |  |  |
| R <sub>CO2</sub> (mmol/h)               | 44.29±0.64              | 44.45 ± 0.51       | 40.38 ± 0.58            | 42.45±0.45                   | 44.35±0.64              | 45.37 ± 0.48                 | 17.50 ± 0.26                                  | 17.96±0.25         |  |  |
| R <sub>02</sub> (mmol/h)                | $-47.92 \pm 7.56$       | $-46.80 \pm 0.47$  | -43.33 ± 7.57           | $-42.72 \pm 0.43$            | -46.06±7.56             | -45.38 ± 0.45                | -19.90 ± 7.70                                 | -19.67±0.21        |  |  |
| R <sub>biomass</sub> (mmol/h)           | $40.41 \pm 0.64$        | 38.72 ± 0.67       | 54.56 ± 3.27            | $50.22 \pm 1.96$             | 57.69±1.58              | 53.30 ± 1.37                 | 29.88 ± 1.72                                  | $28.09 \pm 1.61$   |  |  |
| R <sub>lysis</sub> (mCmol/h)            | $5.83 \pm 1.74$         | 4.77 ± 1.44        | 8.12 ± 1.69             | $6.55 \pm 1.54$              | 8.31±1.74               | $2.45 \pm 1.43$              | 4.30 ± 1.74                                   | 2.69±1.62          |  |  |
| Ritaconic acid (mmol/h)                 | $8.48 \pm 0.49$         | $5.06 \pm 0.33$    | -0.56 ± 0.40            | $-1.09 \pm 0.34$             | $-1.44 \pm 0.41$        | -0.56 ± 0.31                 | -2.67 ± 1.37                                  | -3.75±0.40         |  |  |
| R <sub>xylose</sub> (mmol/h)            | $-19.71 \pm 0.24$       | -20.74 ± 0.22      | -20.52 ± 0.02           | $-20.53 \pm 0.02$            | $-20.33 \pm 0.11$       | -20.45 ± 0.11                | -12.32 ± 0.73                                 | -13.76±0.49        |  |  |
| RQ (R <sub>CO2</sub> /R <sub>O2</sub> ) | $0.92 \pm 0.15$         | 0.95 ± 0.01        | 0.93 ± 0.16             | $0.99 \pm 0.01$              | $0.96 \pm 0.16$         | $1.00 \pm 0.01$              | $0.88 \pm 0.34$                               | $0.91 \pm 0.02$    |  |  |
| R <sub>OZ</sub> /R <sub>xylose</sub>    | $2.43 \pm 0.38$         | $2.26 \pm 0.03$    | 2.11 ± 0.37             | $2.08 \pm 0.02$              | 2.27±0.37               | 2.22 ± 0.03                  | $1.62 \pm 0.63$                               | $1.43 \pm 0.05$    |  |  |
| Carbon recovery (%)                     | $135 \pm 4$             |                    | 101 ± 4                 |                              | $114 \pm 4$             |                              | 71 ± 8                                        | 10 M               |  |  |
| Redox recovery (%)                      | $169 \pm 10$            |                    | 100 ± 8                 |                              | 106±7                   |                              | 117 ± 16                                      |                    |  |  |



Fig. S5.3. Intracellular (upper panel) and extracellular (lower panel) amounts of glycolytic, PPP and TCA metabolites in  $\mu$ mol/g<sub>DW</sub> in experiment A.



Fig. S5.4. Intracellular (upper panel) and extracellular (lower panel) amounts of glycolytic, PPP and TCA metabolites in µmol/g<sub>ow</sub> in experiment B.



Fig. S5.5. Intracellular (upper panel) and extracellular (lower panel) amounts of glycolytic, PPP and TCA metabolites in μmol/g<sub>DW</sub> in experiment C.



Fig. S5.6. Intracellular (upper panel) and extracellular (lower panel) amounts of glycolytic, PPP and TCA metabolites in  $\mu$ mol/g<sub>DW</sub> in experiment D.

#### Analysis of Figures S5.3 through S5.6:

In general, it was observed that the PPP metabolite levels are higher when xylose was the carbon source (experiments C and D) when compared to glucose as a carbon source (experiments A and B). This was expected because of the different metabolic pathways involved in the uptake of these two carbon sources.

Regarding intracellular metabolites, in experiment A (Fig. S5.3), higher levels of 3PG/2PG when citric acid is consumed agrees with the lower glycolytic flux  $(1/2q_{glucose})$  when compared to the first steady state). In the PPP metabolites no major changes found, but expected higher citric acid cycle intermediates concentration are found intracellularly due to its metabolism.

In experiment B (Fig. S5.4), the glucose uptake rate is nearly the same and therefore no change in the glycolytic and PPP metabolites, however there is a change on the TCA metabolites due to a pH effect (higher pH on the third steady state).

In experiment C (Fig. S5.5), the inhibition effect on xylose uptake rate is reflected in the lower glycolytic intermediates.

In experiment D (Fig. S5.6), there is much more dicarboxylic acid secreted.



Fig. S5.7. Itaconate degradation pathway in Pseudomonas sp. (Cooper and Kornberg, 1964).



Fig. S5.8. Calculation of itaconic acid uptake rate and permeability coefficient in absence of itaconic acid metabolism.

## Appendix Chapter 6



Fig. S6.1. Short-term dynamic profiles of extracellular (long and short time scale) and intracellular levels of amino acids in *A. niger* cell extracts followed an amino acid pulse in experiment B. Legends are included within each panel. *A. niger* 872.11 + empty plasmid (dark grey) and transformant 2 (light grey). Dashed line represents the beginning of the pulse (cont. 1/4).



Fig. S6.1. Short-term dynamic profiles of extracellular (long and short time scale) and intracellular levels of amino acids in *A. niger* cell extracts followed an amino acid pulse in experiment B. Legends are included within each panel. *A. niger* 872.11 + empty plasmid (dark grey) and transformant 2 (light grey). Dashed line represents the beginning of the pulse (cont. 2/4).



**Fig. S6.1.** Short-term dynamic profiles of extracellular (long and short time scale) and intracellular levels of amino acids in *A. niger* cell extracts followed an amino acid pulse in experiment B. Legends are included within each panel. *A. niger* 872.11 + empty plasmid (dark grey) and transformant 2 (light grey). Dashed line represents the beginning of the pulse (cont. 3/4).



**Fig. S6.1.** Short-term dynamic profiles of extracellular (long and short time scale) and intracellular levels of amino acids in *A. niger* cell extracts followed an amino acid pulse in experiment B. Legends are included within each panel. *A. niger* 872.11 + empty plasmid (dark grey) and transformant 2 (light grey). Dashed line represents the beginning of the pulse (cont. 4/4).

# References



**Altschuler**, S.J., Wu, L.F., **2010**. Cellular heterogeneity: do differences make a difference? Cell 141, 559-563.

**Andersen**, M.R., Nielsen, M.L. and Nielsen, J., **2008**. Metabolic model integration of the bibliome, genome, metabolome and reactome of *Aspergillus niger*. Molecular systems biology 4, 178.

Andersen, M.R., Salazar, M.P., Schaap, P.J., Van De Vondervoort, P. J.I., Culley, D., Thykaer, J., Frisvad, J.C., Nielsen, K.F., Albang, R., Albermann, K., Berka, R.M., Braus, G.H., Braus-Stromeyer, S.A., Corrochano, L.M., Dai, Z., Van Dijck, P.W.M., Hofmann, G., Lasure, L.L., Magnuson, J.K., Menke, H., Meijer, M., Meijer, S.L., Nielsen, J.B., Nielsen, M.L., Van Ooyen, A.J.J., Pel, H.J., Poulsen, L., Samson, R.A., Stam, H., Tsang, A., Van Den Brink, J.M., Atkins, A., Aerts, A., Shapiro, H., Pangilinan, J., Salamov, A., Lou, Y., Lindquist, E., Lucas, S., Grimwood, J., Grigoriev, I.V., Kubicek, C.P., Martinez, D., Van Peij, N.N.M.E., Roubos, J.A., Nielsen, J. and Baker, S.E., **2011**. Comparative genomics of citric-acid-producing *Aspergillus niger* ATCC 1015 versus enzyme-producing CBS 513.88. Genome Research 21, 885-897.

**Andre**, B., **1995**. An overview of membrane transport proteins in *Saccharomyces cerevisiae*. Yeast 11, 1575-1611.

**Burgstaller**, W., **2006**. Thermodynamic boundary conditions suggest that a passive transport step suffices for citrate excretion in *Aspergillus* and *Penicillium*. Microbiology 152, 887-893.

**Canelas**, A.B., Ras, C., Pierick, A., Dam, J.C., Heijnen, J.J., Gulik, W.M., **2008**. Leakage-free rapid quenching technique for yeast metabolomics. Metabolomics 4, 226-239.

**Canelas**, A.B., ten Pierick, A., Ras, C., van Dam, J.C., van Gulik, W.M., Heijnen, J.J., **2009**. Quantitative evaluation of intracellular metabolite extraction techniques for yeast metabolomics. Analytical Chemistry 81, 7379-7389.

**Carnicer**, M., Canelas, A.B., Ten Pierick, A., Zeng, Z., van Dam, J., Albiol, J., Ferrer, P., Heijnen, J.J., van Gulik, W., **2012**. Development of quantitative metabolomics for *Pichia pastoris*. Metabolomics 8, 284-298.

**Cipollina**, C., ten Pierick, A., Canelas, A.B., Seifar, R.M., van Maris, A.J. a, van Dam, J.C., Heijnen, J.J., **2009**. A comprehensive method for the quantification of the non-oxidative pentose phosphate pathway intermediates in *Saccharomyces cerevisiae* by GC-IDMS. Journal of Chromatography B 877, 323-6.

**Coelho**, M.A., Gonçalves, C., Sampaio, J.P., Gonçalves, P., **2013**. Extensive Intra-Kingdom Horizontal Gene Transfer Converging on a Fungal Fructose Transporter Gene. PLoS Genetics 9.

**Colabardini**, A.C., Ries, L.N.A., Brown, N.A., dos Reis, T.F., Savoldi, M., Goldman, M.H.S., Menino, J.F., Rodrigues, F., Goldman, G.H., **2014**. Functional characterization of a xylose transporter in *Aspergillus nidulans*. Biotechnology for Biofuels 7, 46.

**Cooper**, R.A. and Kornberg, H.L., **1964**. The utilization of itaconate by *Pseudomonas sp.*, The Biochemical Journal 91, 82-91.

**Cruz**, A.L.B., Verbon, A.J., Geurink, L.J., Verheijen, P.J.T., Heijnen, J.J., van Gulik, W.M., **2012**. Use of sequential-batch fermentations to characterize the impact of mild hypothermic temperatures on the anaerobic stoichiometry and kinetics of *Saccharomyces cerevisiae*. Biotechnology and Bioengineering 109, 1735-1744.

**David**, H., Åkesson, M., Nielsen, J., **2003**. Reconstruction of the central carbon metabolism of *Aspergillus niger*. European Journal of Biochemistry 270, 4243-4253.

**de Groot**, M.J.L., Prathumpai, W., Visser, J. and Ruijter, G. J. G., **2005**. Metabolic control analysis of *Aspergillus niger* L-arabinose catabolism. Biotechnology progress 21, 1610-1616.

**de Groot**, M.J.L., van de Vondervoort, P.J.I., de Vries, R.P., vanKuyk, P.A., Ruijter, G.J.G. and Visser, J., **2003**. Isolation and characterization of two specific regulatory *Aspergillus niger* mutants shows antagonistic regulation of arabinan and xylan metabolism. Microbiology 149, 1183-1191.

**de Jonge**, L.P., Buijs, N.A.A., ten Pierick, A., Deshmukh, A., Zhao, Z., Kiel, J.A.K.W., Heijnen, J.J., van Gulik, W.M., **2011**. Scale-down of penicillin production in *Penicillium chrysogenum*. Biotechnology Journal 6, 944-958.

**de Jonge**, L.P., Douma, R.D., Heijnen, J.J., van Gulik, W.M., **2012**. Optimization of cold methanol quenching for quantitative metabolomics of *Penicillium chrysogenum*. Metabolomics 8, 727-735.

**de Koning**, W., van Dam, K., **1992**. A method for the determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH. Analytical Biochemistry 204, 118-123.

de Souza, W.R., de Gouvea, P.F., Savoldi, M., Malavazi, I., de Souza Bernardes, L. a, Goldman, M.H.S., de Vries, R.P., de Castro Oliveira, J. V, Goldman, G.H., 2011.

Transcriptome analysis of *Aspergillus niger* grown on sugarcane bagasse. Biotechnology for Biofuels 4, 1-16.

**de Vries**, R.P., Visser, J., Ronald, P., de Vries, R., P., **2001**. *Aspergillus* Enzymes Involved in Degradation of Plant Cell Wall Polysaccharides. Microbiology and Molecular Biology Reviews 65, 497-522.

**dos Reis**, T.F., de Lima, P.B.A., Parachin, N.S., Mingossi, F.B., de Castro Oliveira, J.V., Ries, L.N.A., Goldman, G.H., **2013**. Identification and characterization of putative xylose and cellobiose transporters in *Aspergillus nidulans*. Biotechnology for Biofuels 9, 204.

**Douma**, R.D., de Jonge, L.P., Jonker, C.T.H., Seifar, R.M., Heijnen, J.J., van Gulik, W.M., **2010**. Intracellular metabolite determination in the presence of extracellular abundance: Application to the penicillin biosynthesis pathway in *Penicillium chrysogenum*. Biotechnology and Bioengineering 107, 105-115.

**EIA**, US Energy Information Administration, **2016**. Retrieved from https://www.eia.gov/todayinenergy/detail.php?id=26912.

**Escher**, B.I., Berger, C., Bramaz, N., Kwon, J., Richter, M., Tsinman, O., Avdeef, A., **2008**. Membrane-water partitioning, membrane permeability, and baseline toxicity of the parasiticides, ivermectin, albendazole, and morantel. Environmental Toxicology and Chemistryn 27, 909-918.

Flagfeldt, D.B., Siewers, V., Huang, L., Nielsen, J., **2009**. Characterization of chromosomal integration sites for heterologous gene expression in *Saccharomyces cerevisiae*. Yeast 26, 545-551.

**Flipphi**, M., Van de Vondervoort, P.J.I., Ruijter, G.J.G., Visser, J., Arst, H. N., Felenbok, B., **2003**. Onset of carbon catabolite repression in *Aspergillus nidulans*: Parallel involvement of hexokinase and glucokinase in sugar signaling. The Journal OF biological Chemistry 278, 11849-11857.

**Fries**, N., Kallstromer, L., **1965**. A requirement for Biotin in *Aspergillus niger* when grown on a rhamnose medium at high temperature. Physiologia Plantarum 18, 191-200.

**Geitmann**, A., Emons, A.M.C., **2000**. The cytoskeleton in plant and fungal cell tip growth. Journal of Microscopy 198, 218-245.

**Goldberg**, I., Rokem, J.S., Pines, O., **2006**. Organic acids: old metabolites, new themes. Journal of Chemical Technology and Biotechnology 81, 1601-1611.

**Gouka**, R.J., Punt, P.J., Van Den Hondel, C.A., **1997**. Efficient production of secreted proteins by *Aspergillus*: progress, limitations and prospects. Applied Microbiology and Biotechnology 47, 1-11.

**Gruben**, B.S., Zhou, M., Wiebenga, A., Ballering, J., Overkamp, K.M., Punt, P.J. and de Vries, R.P., **2014**. *Aspergillus niger* RhaR, a regulator involved in L-rhamnose release and catabolism. Applied microbiology and biotechnology 98, 5531-5540.

**Herbert**, D., Elsworth, R., Telling, R.C., **1956**. The continuous culture of bacteria; a theoretical and experimental study. Journal of general microbiology 14, 601-622.

**Hesse**, S.J.A., Ruijter, G.J.G., Dijkema, C., Visser, J., **2002**. Intracellular pH homeostasis in the filamentous fungus *Aspergillus niger*. Europena Journal of Biochemistry 269, 3485-3494.

**IEA** International Energy Agency, **2015**. Retrieved from: https://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf.

**Ilyes**, H., Fekete, E., Karaffa, L., Fekete, E., Sandor, E., Szentirmai, A., Kubicek, C.P., **2004**. CreA-mediated carbon catabolite repression of beta-galactosidase formation in *Aspergillus nidulans* in growth rate dependent. FEMS Microbiology Letters 235, 147-151.

INCHEM,2017.Citricacid.Retrievedfromhttp://www.inchem.org/documents/icsc/icsc/eics0855.htm.

Jamalzadeh, E., 2013. Transport of Dicarboxylic Acids in *Saccharomyces cerevisiae*. PhD thesis. Delft University of Technology, Delft.

**Jernejc**, K., **2004**. Comparison of different methods for metabolite extraction from *Aspergillus niger* mycelium. Acta Chimica Slovenica 51, 567-578.

**Jørgensen**, T.R., Nielsen, K.F., Arentshorst, M., Park, J., van den Hondel, C. a, Frisvad, J.C., Ram, A.F., **2011**. Submerged conidiation and product formation by *Aspergillus niger* at low specific growth rates are affected in aerial developmental mutants. Applied and Environmental Microbiology 77, 5270-5277.

Jørgensen, T.R., vanKuyk, P. a, Poulsen, B.R., Ruijter, G.J.G., Visser, J., Iversen, J.J.L., 2007. Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter. Microbiology 153, 1963-1973.

**Karaffa**, L., Kubicek, C.P., **2003**. *Aspergillus niger* citric acid accumulation: do we understand this well working black box? Applied Microbiology and Biotechnology 61, 189-196.

**Kfivnkovi**, I., Mareiinov, M., Sohnel, O., **1992**. Solubility of Itaconic and Kojic Acids Equilibrium Diagram of the Ternary System Water-Malic Acid-Tributyl Phosphate and the Influence of Temperature. Journal of Chemical and Engineering Data 37, 23-24.

**Kluyver**, A.J., Perkin, L.H.C, **1932**. Zur Methodik der Schimmelstoffwechseluntersuchung. Biochem Z, 266, 68-81.

**Kopylova**, E., Noé, L., Touzet, H., **2012**. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211-3217.

**Kromer**, J.O., Nielsen, L.K. and Blank, L.M., **2014**. Metabolic Flux Analysis. Hatfield. Human Press.

**Krull**, R., Cordes, C., Horn, H., Kampen, I., Kwade, A., Neu, T.R., No, B., **2010**. Morphology of Filamentous Fungi: Linking Cellular Biology to Process Engineering Using *Aspergillus niger*. Advances in Biochemical Engineering and Biotechnology 121, 1-21.

**Kubicek**, C.P., Punt, P., Visser, J., **2010**. Production of Organic Acids by Filamentous Fungi, Industrial Applications. 2nd edition. Heidelberg. Springer-Verlag.

**Lameiras**, F., Heijnen, J.J., van Gulik, W.M., **2015**. Development of tools for quantitative intracellular metabolomics of *Aspergillus niger* chemostat cultures. Metabolomics 11, 1253-1264.

Lameiras, F., Ras, C., ten Pierick, A., Heijnen, J.J., van Gulik, W.M., **2017**. Stoichiometry and kinetics of single and mixed substrate uptake in Aspergillus niger. Bioprocess and Biosystems Engineering 41, 157-170.

Lange, H.C., Eman, M., van Zuijlen, G., Visser, D., van Dam, J.C., Frank, J., de Mattos, M.J., Heijnen, J.J., **2001**. Improved rapid sampling for in vivo kinetics of intracellular metabolites in *Saccharomyces cerevisiae*. Biotechnology and Bioengineering 75, 406-415.

Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357-359.

**Larsen**, B., Rask Poulsen, B., Eriksen, N.T., Lønsmann Iversen, J.J., **2004**. Homogeneous batch cultures of *Aspergillus oryzae* by elimination of wall growth in the Variomixing bioreactor. Applied Microbiology and Biotechnology 64, 192-198.

**Larsson**, G., Törnkvist, M., **1996**. Rapid sampling, cell inactivation and evaluation of low extracellular glucose concentrations during fed-batch cultivation. Journal of Biotechnology 49, 69-82.

**Leandro**, M.J., Fonseca, C., Goncalves, P., **2009**. Hexose and pentose transport in ascomycetous yeasts: An overview. FEMS Yeast Research 9, 511-525.

**Lendenmann**, U., Snozzi, M., Egli, T., Egli, T., **1996**. Kinetics of the simultaneous utilization of sugar mixtures by *Escherichia coli* in continuous culture. Applied and Environmental Microbiology 62, 1493-1499.

**Liaud**, N., Giniés, C., Navarro, D., Fabre, N., Crapart, S., Gimbert, I.H., Levasseur, A., Raouche, S., Sigoillot, J.C., **2014**. Exploring fungal biodiversity: organic acid production by 66 strains of filamentous fungi. Fungal Biology and Biotechnology 1, 1-10.

Lin, Y., Tanaka, S., 2006. Ethanol fermentation from biomass resources: Current state and prospects. Applied Microbiology and Biotechnology 69, 627-642.

**Lorraine**, B.L., Thomas, K.N., **1989**. Fermentation Processes for carboxylic acids. Patent number 4877731.

**Magnuson**, J.K., Lasure, L.L., **2004**. Organic Acid Production by Filamentous Fungi. Advances in Fungal Biotechnology for Industry, Agriculture and Medicine. Richland. Kluver Academic/Plenum Publishers.

**Martens-Uzunova**, E.S., Schaap, P.J., **2008**. An evolutionary conserved d-galacturonic acid metabolic pathway operates across filamentous fungi capable of pectin degradation. Fungal Genetics and Biology 45, 1449-1457.

**Martin**, M., **2011**. Cutadapt removes adapter sequences from high-throughput sequencing reads. The European Molecular Biology Network Journal 17, 10-12.

**Mashego**, M.R., Gulik, W.M. Van, Vinke, J.L., Heijnen, J.J., **2003**. Critical Evaluation of Sampling Techniques for Residual Glucose Determination in Carbon-Limited Chemostat Culture of *Saccharomyces cerevisiae*. Biotechnology and Bioengineering 83, 395-399.

Mashego, M.R., Wu, L., Van Dam, J.C., Ras, C., Vinke, J.L., Van Winden, W. a, Van Gulik, W.M., Heijnen, J.J., 2004. MIRACLE: mass isotopomer ratio analysis of U-13C-labeled

extracts. A new method for accurate quantification of changes in concentrations of intracellular metabolites. Biotechnology and Bioengineering 85, 620-628.

Max, B., Salgado, J. M., Rodriguez, N., Cortes, S., Converti, A. and Dominguez, J. M., **2010**. Biotechnology production of citric acid. Brazilian Journal of Microbiology 41, 862-875.

**Mojzita**, D., Penttilä, M. and Richard, P., **2010**. Identification of an L-arabinose reductase gene in *Aspergillus niger* and its role in L-arabinose catabolism. The Journal of biological chemistry 285, 23622-23628.

**Moses**, V., Prevost, C., **1966**. Catabolite repression of B-galactosidase synthesis in Escherichia coli. Biochemical Journal 100, 336-352.

**Mullin**, J.W., **2001**. Crystallization. Kirk-Othmer Encyclopedia of Chemical Technology. Fourth edition. Oxford. Butterworth Heinemann Publishers.

**Nasution**, U., **2007**. A Dynamic and Steady State Metabolome Study of Central Metabolism and Its Relation with the Penicillin Biosynthesis Pathway in *Penicillium chrysogenum*. PhD thesis. Delft University of Technology, Delft.

**Nasution**, U., Gulik, W.M. Van, Kleijn, R.J., Winden, W.A. Van, **2006**. Measurement of Intracellular Metabolites of Primary Metabolism and Adenine Nucleotides in Chemostat Cultivated *Penicillium chrysogenum*. Biotechnology Advances 94, 159-166.

**Niedenführ**, S., ten Pierick, A., van Dam, P.T.N., Suarez-Mendez, C.A., Nöh, K., Wahl, S.A., **2016**. Natural isotope correction of MS/MS measurements for metabolomics and 13C fluxomics. Biotechnology and Bioengineering 113, 1137-1147.

**Odoni**, D.I., Tamayo-Ramos, J.A., Sloothaak, J., van Heck, R.G.A., Martins dos Santos, V.A.P., de Graaff, L.H., Suarez-Diez, M., Schaap, P.J., **2017**. Comparative proteomics of *Rhizopus delemar* ATCC 20344 unravels the role of amino acid catabolism in fumarate accumulation. PeerJ 5, 1-18.

**Okabe**, M., Lies, D., Kanamasa, S., Park, E.Y., **2009**. Biotechnological production of itaconic acid and its biosynthesis in *Aspergillus terreus*. Applied Microbiology and Biotechnology 84, 597-606.

**Panneman**, H., Ruijter, G.J., van den Broeck, H.C. and Visser, J., **1998**. Cloning and biochemical characterisation of *Aspergillus niger* hexokinase: the enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate. European journal of biochemistry 258, 223-232.

**Papagianni**, M., **2007**. Advances in citric acid fermentation by *Aspergillus niger*: Biochemical aspects, membrane transport and modeling, Biotechnology Advances. 25, 244-263.

**Pedersen**, H., Beyer, M., Nielsen, J., **2000**. Glucoamylase production in batch, chemostat and fed-batch cultivations by an industrial strain of *Aspergillus niger*. Applied Microbiology and Biotechnology 53, 272-277.

Pel, H.J., de Winde, J.H., Archer, D.B., Dyer, P.S., Hofmann, G., Schaap, P.J., Turner, G., de Vries, R.P., Albang, R., Albermann, K., Andersen, M.R., Bendtsen, J.D., Benen, J. a E., van den Berg, M., Breestraat, S., Caddick, M.X., Contreras, R., Cornell, M., Coutinho, P.M., Danchin, E.G.J., Debets, A.J.M., Dekker, P., van Dijck, P.W.M., van Dijk, A., Dijkhuizen, L., Driessen, A.J.M., d'Enfert, C., Geysens, S., Goosen, C., Groot, G.S.P., de Groot, P.W.J., Guillemette, T., Henrissat, B., Herweijer, M., van den Hombergh, J.P.T.W., van den Hondel, C. a M.J.J., van der Heijden, R.T.J.M., van der Kaaij, R.M., Klis, F.M., Kools, H.J., Kubicek, C.P., van Kuyk, P. a, Lauber, J., Lu, X., van der Maarel, M.J.E.C., Meulenberg, R., Menke, H., Mortimer, M. a, Nielsen, J., Oliver, S.G., Olsthoorn, M., Pal, K., van Peij, N.N.M.E., Ram, A.F.J., Rinas, U., Roubos, J. a, Sagt, C.M.J., Schmoll, M., Sun, J., Ussery, D., Varga, J., Vervecken, W., van de Vondervoort, P.J.J., Wedler, H., Wösten, H. a B., Zeng, A.-P., van Ooyen, A.J.J., Visser, J., Stam, H., 2007. Genome sequencing and analysis of the versatile cell factory *Aspergillus niger* CBS 513.88. Nature Biotechnology 25, 221-231.

**Peng**, Y., Leung, H.C.M., Yiu, S.M., Chin, F.Y.L., **2012**. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28, 1420-1428.

**Portnoy**, T., Margeot, A., Linke, R., Atanasova, L., Fekete, E., Sandor, E., Harti, L., Karaffa, L., Druzhinina, I.S., Seiboth, B., Le Crom, S., Kubicek, C.P., **2011**. The CRE1 carbon catabolite repressor of the fungus *Trichoderma reesei*: a master regulator of carbon assimilation. BMC Genomics 12, 269.

**Punt**, P.J., Van Biezen, N., Conesa, A., Albers, A., Mangnus, J., Van Den Hondel, C., **2002**. Filamentous fungi as cell factories for heterologous protein production. Trends in Biotechnology 20, 200-206.

**Quinlan,** A.R., Hall, I.M., **2010**. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841-842.

**Ramos**, J., Sychrová, H., Kschischo, M., **2016**. Yeast Membrane Transporter. Heidelberg. Springer.

**Roels**, J.A., **1983**. Energetics and Kinetics in Biotechnology. Amsterdam. Elsevier Biomedical Press BV.

Ronne, H., 1995. Glucose repression in fungi. Trends in genetics 11, 12-17.

**Ruijter**, G. J. G. and Visser, J., **1996**. Determination of intermediary metabolites in *Aspergillus niger*, Journal of Microbiological Methods 25, 295-302.

**Ruijter**, G. J., van de Vondervoort, P.J., Visser, J., **1999**. Oxalic acid production by *Aspergillus niger*: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese. Microbiology 145, 2569-2576.

**Rumbold**, K., van Buijsen, H.J.J., Overkamp, K.M., van Groenestijn, J.W., Punt, P.J., van der Werf, M.J., **2009**. Microbial production host selection for converting second-generation feedstocks into bioproducts. Microbial cell Factories 8, 1-11.

**Sauer**, M., Porro, D., Mattanovich, D., Branduardi, P., **2008**. Microbial production of organic acids: expanding the markets. Trends in Biotechnology 26, 100-108.

**Schädel**, F., Franco-Lara, E., **2009**. Rapid sampling devices for metabolic engineering applications. Applied Microbiology and Biotechnology 83, 199-208.

Schäuble, S., Stavrum, A.K., Puntervoll, P., Schuster, S., Heiland, I., **2013**. Effect of substrate competition in kinetic models of metabolic networks. FEBS Letters 587, 2818-2824.

Schmieder, R., Edwards, R., 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863-864.

**Schneider**, R.P., Wiley, W.R., **1971**. Regulation of sugar transport in *Neurospora crassa*. Journal of Bacteriology 106, 487-492.

**Schrickx**, J.M., Krave, A.S., Verdoes, J.C., van den Hondel, C. a, Stouthamer, A.H., van Verseveld, H.W., **1993**. Growth and product formation in chemostat and recycling cultures by *Aspergillus niger* N402 and a glucoamylase overproducing transformant, provided with multiple copies of the glaA gene. Journal of general Microbiology 139, 2801-2810.

**Schuster**, E., Dunn-Coleman, N., Frisvad, J.C., Van Dijck, P.W.M., **2002**. On the safety of *Aspergillus niger* - a review. Applied Microbiology and Biotechnology 59, 426-435.

**Sengupta**, D., **2010**. Integrating Bioprocesses into Industrial Complexes for sustainable development. PhD thesis, Louisiana State University and Agricultural and Mechanical College, Louisiana.

Shah, M. V., van Mastrigt, O., Heijnen, J.J., van Gulik, W.M., **2016**. Transport and metabolism of fumaric acid in *Saccharomyces cerevisiae* in aerobic glucose-limited chemostat culture. Yeast 33(4), 145-161.

**Sivakumar**, A., **1994**. Extended monod kinetics for substrate inhibited systems. Bioprocess 11, 11-14.

**Sloothaak**, J., Odoni, D.I., de Graaff, L.H., Martins dos Santos, V. a. P., Schaap, P.J., Tamayo-Ramos, J.A., **2015**. *Aspergillus niger* membrane-associated proteome analysis for the identification of glucose transporters. Biotechnology for Biofuels 8, 1-15.

**Sloothaak**, J., Odoni, D.I., Martins dos Santos, V.A.P., Schaap, P.J., Tamayo-Ramos, J.A., **2016a**. Identification of a novel L-rhamnose uptake transporter in the filamentous fungus *Aspergillus niger*. PLOS genetics 12, 1-27.

**Sloothaak**, J., Schilders, M., Schaap, P.J., de Graaff, L.H., **2014**. Overexpression of the *Aspergillus niger* GatA transporter leads to preferential use of D-galacturonic acid over D-xylose. AMB Express 4, 1-9.

**Sloothaak**, J., Tamayo-Ramos, J.A., Odoni, D.I., Laothanachareon, T., Derntl, C., Mach-Aigner, A.R., Martins dos Santos, V.A.P., Schaap, P.J., **2016b**. Identification and functional characterization of novel xylose transporters from the cell factories *Aspergillus niger* and *Trichoderma reesei*. Biotechnology for Biofuels 9, 1-15.

**Straathof**, A.J.J., **2014**. Transformation of biomass into commodity chemicals using enzymes or cells. Chemical Reviews 114, 1871-1908.

**Swift**, R.J., Wiebe, M.G., Robson, G.D., Trinci, A.P., **1998**. Recombinant glucoamylase production by *Aspergillus niger* B1 in chemostat and pH auxostat cultures. Fungal Genetics and Biology 25, 100-109.

**Tamayo-Ramos**, J. a, Flipphi, M., Pardo, E., Manzanares, P., Orejas, M., **2012**. Lrhamnose induction of *Aspergillus nidulans*  $\alpha$ -L-rhamnosidase genes is glucose repressed via a CreA-independent mechanism acting at the level of inducer uptake. Microbial cell Factories 11, 1-17.

Taymaz-Nikerel, H., de Mey, M., Ras, C., ten Pierick, A., Seifar, R.M., van Dam, J.C., Heijnen, J.J., van Gulik, W.M., **2009**. Development and application of a differential

method for reliable metabolome analysis in *Escherichia coli*. Analytical Biochemistry 386, 9-19.

**TCBD.org**, **2016**. The Dicarboxylate/Amino Acid:Cation (Na+ or H+) Symporter (DAACS) Family. Retrieved from http://tcdb.org/search/result.php?tc=2.A.23.

**van Dam**, J.C., Eman, M.R., Frank, J., Lange, H.C., van Dedem, G.W., Heijnen, S.J., **2002**. Analysis of glycolytic intermediates in *Saccharomyces cerevisiae* using anion exchange chromatography and electrospray ionization with tandem mass spectrometric detection. Analytical Chimica Acta 460, 209-218.

**Van der Heijden**, R.T.J.M., Heijnen, J.J., Hellinga, C., Romein, B., Luyben, K.C.A.M., **1994a**. Linear constraint relations in biochemical reaction systems: I. Classification of the calculability and the balanceability of conversion rates. Biotechnology and Bioengineering 43, 3-10.

**Van der Heijden**, R.T.J.M., Heijnen, J.J., Hellinga, C., Romein, B., Luyben, K.C.A.M., **1994b**. Linear constraint relations in biochemical reaction systems: II. Diagnosis and estimation of gross errors. Biotechnology and Bioengineering 43, 3-10.

van der Straat, L., de Graaff, L.H., **2016**. Optimization Strategies for Microbial Itaconic Acid Biosynthesis. Current Biotechnology 5, 1-8.

**van der Straat**, L., Tamayo-Ramos, J. a, Schonewille, T., de Graaff, L.H., **2013**. Overexpression of a modified 6-phosphofructo-1-kinase results in an increased itaconic acid productivity in *Aspergillus niger*. AMB Express 3, 1-9.

van der Straat, L., Vernooij, M., Lammers, M., van den Berg, W., Schonewille, T., Cordewener, J., van der Meer, I., Koops, A., de Graaff, L.H., **2014**. Expression of the *Aspergillus terreus* itaconic acid biosynthesis cluster in *Aspergillus niger*. Microbial cell Factories 13, 1-9.

**van Gulik**, W.M., de Laat, W.T., Vinke, J.L., Heijnen, J.J., **2000**. Application of metabolic flux analysis for the identification of metabolic bottlenecks in the biosynthesis of penicillin-G. Biotechnology and Bioengineering 68, 602-618.

**van Kuyk**, P. a, Diderich, J. a, MacCabe, A.P., Hererro, O., Ruijter, G.J.G., Visser, J., **2004**. *Aspergillus niger* mstA encodes a high-affinity sugar/H+ symporter which is regulated in response to extracellular pH. The Biochemical Journal 379, 375-383.

van Kuyk, P.A., de Groot, M.J.L., Ruijter, G.J.G., de Vries, R. P. and Visser, J., 2001. The *Aspergillus niger* D-xylulose kinase gene is co-expressed with genes encoding arabinan

degrading enzymes, and is essential for growth on D-xylose and L-arabinose. European Journal of Biochemistry 268, 5414-5423.

van Maris, A.J., Winkler, A., Porro, D., Dijken, Johannes van, Pronk, J., 2004. Homofermentstive Lactate Production Cannot sustain anerobic growth of enginneered *saccharomyces cerevisiea*: possible consequences of engery dependent lactate export. Applied and Environmental Microbiology 70, 2898-2905.

van Maris, A.J.A., Abbott, D.A., Bellissimi, E., van den Brink, J., Kuyper, M., Luttik, M.A.H., Wisselink, H.W., Scheffers, W.A., van Dijken, J.P., Pronk, J.T., **2006**. Alcoholic fermentation of carbon sources in biomass hydrolysates by *Saccharomyces cerevisiae*: Current status. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology 90, 391-418.

**Verheijen**, P.J.T., **2010**. Data Reconciliation and Error Detection. Balances and Reaction Models. In: Smolke, C. D., (Ed.), The metabolic pathway engineering handbook. CRC Press, Boca Raton

**Verviers**, M. C. A., **2012**. Extraction as improved recovery for itaconic acid. Master thesis. Delft University of Technology, Delft.

**Vishniac**, W., Santer, M., **1957**. The thiobacilli. Microbiology and Molecular Biology Reviews 21, 195-213.

**Wei**, H., Vienken, K., Weber, R., Bunting, S., Requena, N., Fischer, R., **2004**. A putative high affinity hexose transporter, hxtA, of *Aspergillus nidulans* is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation. Fungal Genetics and Biology 41, 148-156.

**Werpy**, T., Petersen, G., Aden, A., Bozell, J., **2004**. Top Value Added Chemicals from Biomass. Volume 1 - Results of Screening for Potential Candidates from Sugars and Synthesis Gas. U.S. Dep. Energy.

**Willke**, T., Vorlop, K.D., **2001**. Biotechnological production of itaconic acid. Applied Microbiology and Biotechnology 56, 289-295.

Witteveen, C.F.B., Busink, R., van de Vondervoort, P., Dijkema, C., Swart, K. and Visser, J., **1989**. L-Arabinose and D-Xylose Catabolism in *Aspergillus niger*. Journal of general microbiology 135, 2163-2171.

**Witteveen,** C.F.B., **1993**. Gluconate formation and polyol metabolism in *Aspergillus niger*. PhD thesis. Wageningen University, Wageningen.

Wösten, H.A., Moukha, A.S.M., Sietsma, J.H., Wessels, J.G., 1991. Localization of growth and secretion of proteins in Aspergillus niger. Journal of general Microbiology 137, 2017-2023.

Wu, L., Mashego, M.R., van Dam, J.C., Proell, A.M., Vinke, J.L., Ras, C., van Winden, W. a, van Gulik, W.M., Heijnen, J.J., 2005. Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. Analytical Biochemistry 336, 164-171.

Young, E., Poucher, A., Comer, A., Bailey, A., Alper, H., 2011. Functional survey for heterologous sugar transport proteins using Saccharomyces cerevisie as a host. Applied and Environmental Microbiology 77, 10.

Zhou, Y., Du, J., Tsao, G.T., 2000. Mycelial pellet formation by *Rhizopus oryzae* ATCC 20344. Applied Biochemistry and Biotechnology 84, 779-789.

#### Acknowledgements

Sef, thank you for the opportunity to work with you. I admire your capacity to be so precise and professional. You really have a gift for teaching and challenging your students. And it always amazes me how thermodynamics is simple and fun for you!

Walter, you were more than a supervisor. I was very lucky to have you by my side during these four years. I thank you for all the times you came down to the lab and showed me around; all the times you checked my calculations; and all the times you made corrections to my reports and manuscripts. I admire your perfectionism. Thank you! ©

Jenifer, you are so fun! Somehow in every group dinner we sat together and had a blast. Thank you for your efficiency with bureaucratic issues, but most importantly thank you for your confidence.

Peter, I always (in one way or another) enjoyed our meetings... thank you for the stories you have shared, for all the MATLAB help, for all the advices, and for caring so much. You made your best to push me to the finish line, but above all you were my conscience.

Sybe, Leo, Peter, Juanan, Dorett, Jasper, Laura and Kiira: the BE-Basic project brought us together and I learnt so much with all of you. The contact between us was not so frequent as we would like it to be, but I think we made the best out of it.

Angie, Cor, Johan, Patricia and Reza, even though many times you are in the backstage, you make sure the quality of our data is excellent. A big thank you to all of you.

Song, there's not enough *thank you*'s to show you how grateful I am for all your help and manpower while carrying the 50 kg vessels and fermentors. Dirk and Rob, who baptized me in my first year as the *fungi girl*, thank you for all the troubleshooting you did for me, even off hours. Apilena, Astrid and Jannie, thank you for sterilizing my fermentors at least 62 times (yes, I did some calculations), and for being so friendly.

Arno, Ruud and Marcel, I have to thank you for all the times you had to fix valves or loose bearings in my fermentation setup. More than that, you built three sampling devices from scratch for me, which were the working horses of this project.

Kiki, Elli and Stefan, you were my students but I also learned great lessons with all of you.

Jinrui, Sushil, Karel, Aljoscha, Leonor, Robin, Eleni, Yaya, Alex, Lucas and Florence, thank you for the nice moments together as a group. Everyone is so different and has a special role here. That is what makes CSE a cool group! A special thanks goes to Mihir, Anisha and Marianita. Camilo, Cristina, Angel and Manuel, you adopted me when I arrived in Delft. Thank you for the warm Latin moments in the cold days...

Katelijne and Luisa we did not have a lot of contact as you left when I arrived in the group, but you were both crucial. Luisa you were the person who influenced me to take this position, and Katelijne you taught me everything about fermentors! It was very nice to hang out again with you girls in Japan.

Hugo, my favorite Mexican drama queen, thank you for going along with my craziness about cows. A last one for you: I Thank you for teaching me so much and make sure I finish this PhD. You were there at the right moment.

Emma and Monica, you are my family here! Thank you for your shoulders, all the coffee breaks, meals, gossips, sports, travels, and friendship! You made my stay in Delft very complete.

Ritinha, Cata, Rafa and Joana, thank you for your support and kindness, and for so many advices during the common PhD life!

Kris, Ronan and Cris, you guys make us (Julien and I) want to come back to Delft! Thank you for so many nice evenings!

Thank you Pedro, living away from your friends is not easy, but true friendships always survive! Le, Mikas, Ritinha, Claudinha and Pisto, much of what I know today, we learnt it together!

Thank you to all the friends back home: Ritz, Ni, Ritinha, Rakas, Cris, Fla, Rita R., Xavi, Jo, Sergio, Nuno, Peruzzi and particularly to my dear Rafa, with whom I spent hours on skype sharing thoughts and confidences. Even though we belong to completely different fields, you have been such a great example of professionalism and efficiency to me! I am very proud of you.

In the end, it all comes down to family. I thank my brother, who has always been my idol, and who constantly and very rationally supported me in the worst moments. And thank you Rita, because next to a great man, there's always a great woman! I thank my parents too: I owe them everything. I would never have reached this place without their unconditional love, support and enthusiasm. They all believe in me, better than I do.

Finally, I thank my Julien. Thank you for sharing the same "PhD feelings" with me, for the many hours of conversation and confidence, for your eternal good mood, for all our travels, food experiments, holiday escapes and countless good moments. Thank you for making me a better and happier person.

Obrigada,

Tranairas Kaming

Delft, January 2017

## Curriculum vitae

Francisca da Fonte Lameiras was born on the 17<sup>th</sup> January 1989 in Guimarães, Portugal.

She enrolled in the Biological Engineering study program in Minho University (Braga), following the food and chemical technology track, in September 2007.



Her early interest in research started during her Bachelor studies when she obtained a

research grant from FCT (*Fundação para a Ciência e a Tecnologia*) on the topic "Modification of bacterial cellulose for biomedical applications" in 2009.

During the last year of her studies she moved to Sweden to work on her Master thesis entitled "Biobutanol production with lactic acid bacteria", at Prof. Jens Nielsen's Sys<sup>2</sup>bio group in Chalmers University of Technology, Gothenburg, where she obtained the classification 19/20.

In January 2013, Francisca moved to The Netherlands and started her PhD at Delft University of Technology, under supervision of Dr. Walter van Gulik and Prof. ir. J.J. Heijnen at the Cell Systems Engineering research group.

Currently, Francisca has a position at iCellate Medical AB as Head of Laboratory, and lives in Stockholm, Sweden.

## **List of Publications**

### ✓ Published papers

Ghiaci, P., **Lameiras, F.**, Norbeck, J., Larsson, C., **2014**. Production of 2-butanol through meso-2,3-butanediol consumption in lactic acid bacteria. FEMS Microbiology Letters 360, 70–5.

Lameiras, F., Heijnen, J.J., van Gulik, W.M., **2015**. Development of tools for quantitative intracellular metabolomics of *Aspergillus niger* chemostat cultures. Metabolomics 11, 1253–1264.

Lameiras, F., Ras, C., ten Pierick, A., Heijnen, J.J., van Gulik, W.M., **2017**. Stoichiometry and kinetics of single and mixed substrate uptake in *Aspergillus niger*. Bioprocess and Biosystems Engineering 41, 157-170.

**Lameiras, F.**, Ras, C., Heijnen, J.J., van Gulik, W.M., **2018**. Metabolic network analysis and transport mechanism of lignocellulosic substrates in *Aspergillus niger*. (manuscript under preparation).

Lameiras, F., Heijnen, J.J., van Gulik, W.M., **2018**. Transport insights on citric and itaconic acid in *Aspergillus niger*. (manuscript under preparation).

## ✓ Oral Presentations

Lameiras, F., Heijnen, J.J., van Gulik, W.M., **2014**. Development of tools for quantitative metabolomics in *Aspergillus niger*. BE-BASIC symposium. Noordwijkerhout, The Netherlands.

Lameiras, F., Heijnen, J.J., van Gulik, W.M., **2015**. Sugar uptake in *Aspergillus niger*. 3<sup>rd</sup> Delft Process Technology Institute annual event. Kijkduin, The Netherlands.

#### Poster Presentations

**Lameiras, F.**, Heijnen, J.J., van Gulik, W.M., **2013**. Transport processes in the production of organic acids by *Aspergillus niger*. 1<sup>st</sup> Delft Process Technology Institute annual event. Kijkduin, The Netherlands.

**Lameiras, F.**, Heijnen, J.J., van Gulik, W.M., **2014**. Development of tools for quantitative metabolomics in *Aspergillus niger*. 12<sup>th</sup> European Conference on Fungal Genetics. Seville, Spain.

**Lameiras, F.**, Heijnen, J.J., van Gulik, W.M., **2014**. Transport processes in the production of organic acids by *Aspergillus niger*. 2<sup>nd</sup> Delft Process Technology Institute annual event. Rotterdam, The Netherlands.

Lameiras, F., Heijnen, J.J., van Gulik, W.M., **2014**. Development of tools for quantitative metabolomics in *Aspergillus niger*. BIOPRO World Talent Campus. Sorø, Denmark.

Lameiras, F., Heijnen, J.J., van Gulik, W.M., **2015**. Sugar uptake in *Aspergillus niger*. BE-BASIC symposium. Noordwijkerhout, The Netherlands.

Lameiras, F., Heijnen, J.J., van Gulik, W.M., **2016**. Stoichiometry and kinetics of single and mixed substrate uptake in *Aspergillus niger*. 11<sup>th</sup> Metabolic Engineering conference. Awaji, Japan.

Copyright © 2018 by Francisca Lameiras

ISBN: 978-94-6299-902-2