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Abstract

The paper reports on a comprehensive mathematical model for simulations of blood-flow under

the presence of strong non-uniform magnetic fields. The model consists of a set of Navier-Stokes

equations accounting for the Lorentz and magnetisation forces, and a simplified set of Maxwell’s

equations (Biot-Savart/Ampere’s law) for treating the imposed magnetic fields. The relevant

hydrodynamic and electro-magnetic properties of human blood were taken from the literature.

The model is then validated for different test cases ranging from a simple cylindrical geometry

to real-life right-coronary arteries in humans. The time-dependency of the wall-shear-stress for

different stenosis growth rates and the effects of the imposed strong non-uniform magnetic fields

on the blood flow pattern are presented and analysed. It is concluded that an imposed non-

uniform magnetic field can create significant changes in the secondary flow patterns, thus making

it possible to use this technique for optimisations of targeted drug delivery.
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1 Introduction

One of the main problems of chemotherapy is often not the lack of efficient drugs, but the inability

to precisely deliver and concentrate these drugs in affected areas. Failure to provide localised

targeting results in an increase of toxic effects on neighbouring organs and tissues. One promising

method to accomplish precise targeting is magnetic drug delivery. Here, a drug is bound to

a magnetic compound injected into the blood stream. The targeted areas are subjected to an

external magnetic field that is able to affect the blood stream by reducing its flow rate. In these

regions the drug is slowly released from the magnetic carriers. Consequently, relatively small

amounts of a drug magnetically targeted to the localised disease site can replace large amounts

of the freely circulating drug. At the same time, drug concentrations at the targeted site will

be significantly higher compared to the ones delivered by standard (systemic) delivery methods.

Very encouraging findings have been recently reported in the clinical application of magnetic drug

targeting including patients with an advanced and unsuccessfully pre-treated cancer or sarcoma,

Alexiou et al. (2000,2002,2003).

The most striking examples have been presented in Alexiou et al. (2005) in experiments with

rabbits with artifically initiated limb tumours. It is demonstrated that treatments using only 20%

of the standard drug amount with an active magnetic targeting showed full recovery of treated

limbs. Drug concentration measurements in different organs 60 min after treatment, showed that

treatment resulted in 26 times higher local concentrations in tumor areas, and significant reduction

of drug presence in healthy organs (liver, heart, brain, kidney). In contrast to that, attempts with

the standard (systemic) approach with reduction of drug dosage of 50% of normal amount were

not successful.

We believe that mathematical modelling and numerical simulations can significantly contribute

to further advancements of this technique. Since the key to success is associated with the possibility

to deliver drugs at particular sites and with precise dosages, personalised parametric numerical

studies can be performed - mimicking individual patient conditions. By specifying initial and

boundary conditions in mathematical models that include the exact size and precise locations

of the affected site, it will be possible to design optimised ways of drug delivery for individual

patient conditions. Different sets of simulations analysing the optimal diameter of the magnetic

particle carriers, can lead to optimal solutions for therapeutic drug preparations. For this purpose,

a very first step is to obtain fundamental insights into underlying physics of the blood flow under
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the presence of a strong non-uniform magnetic field. This is the primary goal of the presented

investigation.

Beside the magnetic drug targeting, a comprehensive mathematical model for analysis of blood

flow when subjected to strong magnetic fields can be very useful in providing insights into effects

of the new generation of a magnetic resonance imaging (MRI) scanners (with a magnetic field

strength between 1.5 and 4 T) onto blood behaviour. Schenck et al. (1992) reported that many

patients exposed to 1.5 - 4 T MRI scanning experienced sensations of nausea, vertigo, metallic

taste or sleepiness during the treatments. In their in vitro experiments, Yamamoto et al. (2004)

observed for the very first time that the blood viscosity (for both oxygenated and de-oxygenated

blood) can be significantly increased even in a 1.5 T MRI scanner - but the underlying mechanism

behind this was not fully understood.

Since we focus on numerical modelling and computer simulations of the blood flow in the

presence of an external magnetic field, a short overview of numerical studies dealing with this

subject is given next. Sud and Sekhon (1989) numerically studied the effects of the interactions

between an imposed magnetic field and blood flow through the human arterial system. Their

simplified model was based on an analytical expression for the flow rate in multi-branching arterial

configuration subjected to a transversal magnetic field. Results demonstrated that the rate of

blood flow through the system was reduced.

In their theoretical analysis of the interaction between magnetic field and aortic blood flow,

Kinouchi et al. (1996) included the Lorentz force into the Navier-Stokes equations. A solution

of of these extended Navier-Stokes equations was obtained by the finite element technique for

blood flow through aortic vessels in the presence of a uniform static transversal magnetic field.

Spatial distributions of the magnetically induced voltage and current densities in the aorta and

surrounding tissue structure were calculated. The resulting Lorentz force led to a reduction of

5-10 % blood volume flow at high intensities (larger of equal to 10 T) of applied magnetic fields.

Bali and Awasthi (2007) analysed effects of the imposed magnetic field on the resistance to

blood flow velocities in an idealised stenotic artery. They considered a steady two-dimensional

axisymmetric laminar flow of a non-Newtonian fluid subjected to a transversal magnetic field.

The Lorentz force was included in the momentum equations. Analytical expressions were derived

for velocity and resistance and results were presented for different values of the Hartmann number

(0≤Ha≤1).

3



In analogy with the fluid dynamics of ferrofluids, Haik et al. (1999) proposed a concept for a

model that describes the blood behaviour in presence of gradients of an external magnetic field.

In contrast to previous studies, the Lorentz force was neglected and a magnetisation force was

introduced. The same model was applied in a recent study of Khashan and Haik (2006) where

numerical simulations of laminar blood flow over a two-dimensional eccentric stenotic orifice sub-

jected to a permanent magnet were performed. The authors found that for different locations

of the permanent magnet and different strengths of the imposed magnetic field, different loca-

tions of the reattachment point downstream the orifice were observed. Haik’s model was applied

again in Papadopoulos and Tzirtzilakis (2004) where a blood flow in a curved square duct under

the influence of an applied magnetic field was studied by a finite-difference numerical method.

The numerical simulations demonstrated that both axial velocity and the secondary flow at the

transversal plane were significantly influenced by a strong magnetic field.

Similar results were presented in Tzirtzilakis (2005) where a blood flow in a straight rectangular

duct under the influence of a uniform and a non-uniform magnetic field was numerically studied.

In this model, in addition to the magnetisation force, the Lorentz force was accounted for too. It is

concluded that the spatial distribution of the magnetic field plays an important role in influencing

the underlying flow patterns.

In this paper we will start with an overview of the equations that constitute a comprehensive

mathematical model for blood flow in the presence of strong non-uniform magnetic fields. Then

these equations are discretised and solved by a finite-volume solver for general three-dimensional

non-orthogonal geometries. The detailed numerical validation is started on idealised situations

(horizontal cylinder), then is extended to mimic a realistic artery. For the latter purpose, a

geometrical model of the human right coronary artery is developed similar to the geometrical

structure (diameter, arc-length) of the artery presented in the work of Johnston et al. (2004,2006).

The results for a neutral (no magnetic field) situation are presented and compared to results of

Johnston et al. (2004, 2006). Finally, a non-uniform magnetic field is activated and possible

modulations of the local blood flow patterns will be analysed in detail.
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2 Equations and Mathematical Model

The equations describing a laminar incompressible flow of a Newtonian and electrically conducting

bio-fluid (such as blood), subjected to external electro-magnetic fields consist of the combined set

of extended Navier-Stokes and Maxwell equations:

∇ · V = 0, ∇ · B = 0, ∇ · J = 0 (1)

∂V

∂t
+ (V · ∇)V = ν∇2V +

1

ρ






−∇P + J × B

︸ ︷︷ ︸

FL

+ µ0 (M · ∇)H
︸ ︷︷ ︸

FM







(2)

∇× H = J, J = σ (E + V × B) = σ (−∇Φ + V × B) (3)

∇2Φ = ∇ · (V ×B) (4)

where ρ, σ and ν are density, electric conductivity and kinematic viscosity of the working fluid.

H,J,E,B are the magnetic field intensity, total electric current, electric field and magnetic in-

duction, respectively.

In the momentum equation (Eq. 2) there are two kinds of body forces caused by imposed elec-

tromagnetic fields which act on the bio-magnetic fluid (blood): the Lorentz force (FL, caused by

electric conductivity of the fluid moving through an imposed magnetic field) and the magnetisation

force (FM, bio-fluid magnetisation response- attraction or repulsion - due to the non-uniformity of

the imposed magnetic field), Tzirtzilakis (2005). In blood vessels with diameters exceeding 10−4

m blood can be regarded as practically homogeneous because the scales of the microstructures

(with typical diameters of 8×10−6 m for red and white cells and 2-4×10−6 m for platelets) are

much smaller than that of flow, Pedley (1980), Ku (1997). It is generally accepted that blood

behaves as a Newtonian fluid at shear rates above 100 1/s, Pedley (1980), Berger and Jou (2000).

However, in time-dependent studies mimicking an entire cardiac cycle, there are periods of time

where the shear rate is below this 100 1/s limit, implying that non-Newtonian effects start to be

important. In a recent study on simulations of a steady blood flow in coronary arteries, Johnston

et al. (2004), have compared five different non-Newtonian blood viscosity models (Newtonian,

Carreau, Walburn-Schneck, Power Law, Casson and Generalised Power Law models) and found

out that the non-Newtonian effects were important only for low inlet velocities (Re<50). In
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a follow-up study, addressing non-Newtonian effects in transient simulations, the same authors

concluded that the non-Newtonian model is only significant for approximately 30% of the cardiac

cycle, Johnston et al. (2006). These periods with non-Newtonian effects have been based on

simulations with heart beat rate for a person at rest with relatively low inlet velocities - so these

periods will be significantly reduced with further elevation of the heart beat rate. Based on

these findings, we will use a Newtonian viscosity based blood model that represents a good first

approximation for practical applications since our primary target is to focus on the magnetic

field effects. Simulations using more advanced non-Newtonian models will be reported in a later

publication.

Under the assumption that the magnetisation (M) and the magnetic field (H) are parallel,

the magnetisation force can be written as FM = µ0M∇H , where M = |M| and H = |H|. The

intensity of magnetisation in a bio-fluid generally depends on its temperature and density as well

as on the magnetic field intensity. Accordingly, different magnetisation models are proposed in

literature in order to take into account these parameters. The most elaborate mathematical model

of the magnetisation is expressed by the Langevian function, L (ξ):

M = n · m · L (ξ) = n · m

(

coth ξ −
1

ξ

)

, ξ =
µ0mH

κBT
(5)

where n, m, κB, T are the number of particles per unit volume, the magnetic moment of a

particle, the Boltzmann constant and the absolute temperature, respectively, Berkovsky et al.

(1993), Odenbach (2002). Here, we adopted a simplified model for the magnetisation since the

considered problem does not involve any temperature changes:

M = χH (6)

where χ is the magnetic susceptibility, Berkovsky et al. (1993), Rosensweig (1997). It is experi-

mentally determined that in the presence of static magnetic fields the magnetic susceptibility of

blood strongly depends of its local conditions, i.e. oxygenated blood behaves as a diamagnetic

(χoxyg = −6.6 × 10−7) and de-oxygenated blood behaves as a paramagnetic (χdeoxyg = 3.5× 10−6)

material, Haik et al. (1999). The change in the magnetic susceptibility for de-oxygenated and

oxygenated blood is caused by the binding of oxygen to the blood protein hemoglobin, which is

responsible for transport of oxygen within a human body.

Similarly, the electrical conductivity of blood in animals and humans (in contrast to other

tissues of body) has a significant value and the effects of Lorentz force caused by blood stream

6



through an imposed magnetic field should be taken into account. Experiments presented in lit-

erature demonstrated that the electrical conductivity of blood depends on its velocity, i.e. the

electrical conductivity of moving blood is higher than for the stationary one, Hoetink et al. (2004),

Balan et al. (2004). This increase of the electrical conductivity is caused by reorientation of ery-

throcytes (red blood cells) influenced by the viscous forces, Fujii et al. (1999). Visser (1989) ex-

perimentally determined that compared to stationary blood, the electrical conductivity of flowing

blood increased by 10, 15 and 20% (averaged) for packed cell values (or hematrocit) of 36.4, 47.5

and 53.7%, respectively. The measured electrical conductivity of flowing blood was in 0.7≤σ≤0.9

S/m range. This implies that the Lorentz force in the momentum equation should be included

as demonstrated in Tzirtzilakis (2005). However, in the model of Tzirtzilakis (2005), the electric

potential term was not taken into account in the expression for the total current density, i.e. the

−∇Φ term was neglected in Eq.3. It is experimentally observed that an imposed magnetic field

alternated the electrocardiogram (ECG) of the human cardiac rhythm, indicating the significance

of the induced voltages, Jehenson et al. (1988), Tenforde (1992). It is also numerically demon-

strated that the flow of blood in the presence of a magnetic field gives rise to electric currents

in the major arteries of the central circulatory system, Kinouchi et al. (1996). In order to make

the mathematical model for the blood flow behaviour in the presence of an external magnetic

field as general as possible, we included both conductive and inductive currents into our model

in accordance with our previous research dealing with magnetohydrodynamics (MHD) phenom-

ena, Kenjereš and Hanjalić (2000), Hanjalić and Kenjereš (2001), Kenjereš and Hanjalić (2004),

Kenjereš et al. (2004).

When a magnetic field is applied to flowing blood, additional reorientation of the erythrocytes

(red blood cells, RBC) takes place. Higashi et al. (1993) found that within the magnetic field

the erythrocytes are oriented with their disk plane parallel to the magnetic field direction while

outside the magnetic field they show no particular orientation. As a result of this reorientation

the viscosity of blood changes. Haik et al. (2001) experimentally determined that the blood flow

rate decreased by 30% when subjected to a high magnetic field of 10 T. They connected this

decrease in the blood flow rate with an increase in the apparent viscosity caused by the applied

magnetic field. A qualitative interpretation is provided in terms of the apparent viscosity (µ∗)

as µ∗/µ ∝ L4 (ξ) /ξ1/7 due to the magnetic torques exerted on the erythrocytes. In the present

study, we used the values of the apparent viscosity increase as proposed by Haik et al. (2001). A

short summary of all blood properties is given in Table 1.

7



In addition to all blood properties and the magnetisation force, the Lorentz force should be

calculated too. In this work we solved a simplified set of Maxwell’s equations by solving a single

equation for the electric potential (induction-less assumption), originating from Ohm’s law for

a moving conductive medium, Eq. 4, Kenjereš and Hanjalić (2000,2004), Hanjalić and Kenjereš

(2001). In order to impose magnetic field distributions, a simple procedure is used for the generated

magnetic field around a series of infinitely long straight wires (Biot-Savart/Ampere’s laws):

B =
µ0I

2πR
→ Bx = −µ0

N∑

i=1

Ii (y − yc
i )

(x − xc
i )

2 + (y − yc
i )

2
, By = µ0

N∑

i=1

Ii (x − xc
i)

(x − xc
i)

2 + (y − yc
i )

2
, Bz = 0 (7)

Then, the modulus of the magnetic field intensity is calculated as:

B(x, y, z) =
√

B2
x + B2

y + B2
z (8)

where N is the number of wires, R is the distance from the wire centre, I is the current intensity

and µ0 is the magnetic permeability in vacuum (4π · 10−7 H/m). It is noted that any other

magnetic field distribution (permanent magnets, superconducting magnets, realistic MRI scanner

fields) can be easily incorporated in the here presented mathematical model. A complete overview

of the mathematical model is given in Appendix (I).

3 Numerical Method

The model equations presented in the previous section are solved using an in-house developed fi-

nite volume second-order Navier-Stokes / Maxwell solver for three-dimensional flows in structured

multi-block non-orthogonal geometries, Kenjereš and Hanjalić (2001,2004,2007a,2007b). The par-

allel execution is based on the domain-decomposition technique utilising MPI directives. Cartesian

vectors and tensors components in collocated grid arrangement are applied for all variables. The

second-order QUICK scheme is applied for the discretisation of the convective terms in the mo-

mentum equations. A second-order central difference scheme is applied for the diffusive terms.

A fully implicit time integration, based on three-consecutive time step values, is used for the

time-dependent terms.
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4 Results and Discussion of Numerical Simulations

4.1 Steady blood flow through a cylinder subjected to strong non-

uniform magnetic fields

In order to validate our implementation of the extended set of Navier-Stokes equations with

additional electromagnetic forcing and to demonstrate principles behind fluid flow reorganisation,

a simplified flow through an infinitely long cylinder with a diameter corresponding to a typical

artery size (Re≈500) is considered first, Figs. 1,2. The numerical mesh in the vertical plane

consists of 82×82 CVs strongly clustered in the near-wall region in order to properly resolve

velocity gradients. Different configurations of imposed magnetic field are analysed for both de-

oxygenated and oxygenated blood. The cylinder wall is treated as a non-moving electrically

insulated boundary (i.e. ∂Φ/∂xn=0, where xn is the normal to the cylinder wall).

Under the influence of a uniformly distributed (in the vertical direction) strong magnetic field

(|B|= 10 T) the flow of de-oxygenated blood is just slightly affected by the Lorentz force (in

analogy with standard Hartmann flow), since the magnetisation force is equal to zero, Fig. 1-left.

This is expected since the simulated working regime (Re=525) is characterised by relatively small

values of Ha = 4 and N = 0.03. The absence of any secondary motion is clearly shown. This

situation dramatically changes when non-uniform magnetic field distributions are imposed. A

characteristic situation with a magnetic field created from a single current carrying wire located

in the central vertical plane (under an angle of 00) at a distance of 5 mm from the blood vessel

wall is shown in Fig. 1-right. Now, the magnetisation force takes over the Lorentz force and strong

secondary motions are generated. For this particular configuration and Re = 525, the intensity

of these secondary motions (horizontal and velocity components) is 3% of the bulk streamwise

velocity. Also imprints in streamwise velocity contours are clearly visible. It is important to note

that these effects are significantly smaller for oxygenated blood since the magnetic susceptibility

is smaller than for de-oxygenated state (not shown here). Interesting secondary flow patterns

emerge when multiple wire fields are imposed, Fig. 2. For the situation with two wires located

under angles of ±450, two outwardly directed jets are created (as clearly visible from the stream-

traces patterns in the middle left of Fig. 2). Along these directions, a strong deformation of the

streamwise velocity contours is observed. By adding an additional third wire (at 00), the number

of the secondary vortices significantly increases, but their intensity decreases, Fig. 2-right. For
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the two and three wire cases, the intensity of the secondary motion reaches 6% and 3.5% of the

bulk streamwise velocity. It is obvious that numerical simulations are the only way to estimate

the precise details of modulation of the blood flow subjected to non-uniform magnetic fields.

Simply adding more wires (more magnetic field sources) does not automatically lead to a more

affected blood flow, since the magnetic field gradients are the main driving mechanism behind the

magnetisation forces. It can be seen from the distributions of the magnetic flux lines (middle row

in Fig. 2), that by adding the third wire, the magnetic field lines became more uniform in the

central regions, resulting in reducing the intensity of the secondary motions. At the same time, the

gradients in the proximity of the walls generate additional smaller scale secondary vortices, Fig. 2-

middle and below. A summary of all studied cases for de-oxygenated blood with focus on profiles

of the streamwise velocity component along various cross-sections positions is shown in Fig. 3. The

uniform magnetic field (B||y) configuration reduces the maximum velocity by 10%. This flattening

of the streamwise velocity profile corresponds to classical Hartmann solution. With non-uniform

magnetic fields significant deviations from both the standard Poiseuille and Hartmann solutions

are observed, Fig. 3. Particularly significant changes are occurring along all intersections (A-A,

B-B, C-C) when a two wires configuration (±450) is applied.

In this section we clearly demonstrated that a non-uniform magnetic field can significantly

affect the steady state blood flow in a long horizontal cylinder. The magnetisation force plays a

major role in the dynamics of the secondary vortices, while the Lorentz force simply reduces the

streamwise velocity component. Now, we move to more anatomically realistic geometries in order

to see how these fluid-flow/magnetic field interactions will modulate blood flow when only parts

of the blood vessels will be subjected to an external magnetic field. Before proceeding with fully

coupled phenomena, we first present the pulsating blood flow in a geometry closely resembling the

human right coronary artery in order to validate numerical results with available data in literature.

4.2 Pulsating flow in arteries with different stenosis growth rates

The numerical mesh for an anatomically realistic model of a human right-coronary artery with

different stenosis growth rates is created by closely mimicking the X-ray angiograms presented in

Johnston et al. (2004,2006) (similar artery diameters and arc-lengths are selected) and consists

from 192×236 CVs, Fig.4. Different stenosis growth rates are created to occupy from 0 to 75

% of the artery cross-section. These growth rates are indicated as phase0,..., phase3 - where

10



phase0 corresponds to healthy and phase3 to 75% clothed artery at stenosis location. A separate

simulation is performed in order to obtain fully developed velocity profile at the inlet, starting

from a uniform distribution of 0.1 m/s. Then, in order to mimic a realistic pulsating cycle, this

fully developed profile is multiplied with a time varying forcing function. This function is obtained

from recorded velocity signals in the right coronary artery of a normal 56 year old female and is

presented in work of Matsuo et al. (1988), Fig. 5-above. It can be seen that the velocity signal

exhibits cycles of strong acceleration and deceleration with a characteristic maximum of 0.2 m/s

at 0.85 sec and an almost fully stagnant flow at 0.16 sec. Instantaneous distributions (at 1 sec) of

the pressure and wall-shear-stress (WSS)2 along the artery walls for different stenosis growth rates

are shown in Fig. 6. It is important to report that results are shown for a fully developed pulsating

flow regimes, i.e. it was necessary to perform at least 5 cycles in order to get flow fields independent

from the initial velocity input profile. It can be seen that the gradual pressure distribution along

the artery wall for a neutral case changes into one with more pronounced pressure differences for

the stenosis case, Fig. 6-right. This is due to an increase in blood flow resistance, caused by a

smaller effective flow area that requires a higher pressure gradient in order to pump the same

amount of blood as in the neutral case, Fig. 6-left.

It can be seen that the stenosis drastically changes both local flow patterns and pressure

distributions and consequently wall-shear-stress distributions along the artery wall. Compared to

the healthy artery, the maximum of the WSS at 0.85 sec shows an increase of 5 to 40 times for

50% and 75% stenosis growth rates, respectively, Fig. 5. This illustrates the strongly increasing

risks in the latter stage of the stenosis growth where a relatively small increase of stenosis area can

lead to the critical rupture of the artery walls, Lasheras (2007). It is also interesting to note the

strong time-dependency of the circumferentially averaged WSS along the artery wall, Fig. 5. The

obtained values of WSS for the healthy artery show an excellent agreement with values presented

in Johnston et al. (2004, 2006). As the majority of studies dealing with blood flow simulations,

Johnston et al. (2004, 2006) used a commercial CFD code and only stenosis-free situations have

been considered. The good agreement in WSS distributions between the data of Johnston et al.

(2004, 2006) and data results obtained with our solver proved its numerical accuracy.

The velocity vectors in a plane crossing the stenosis location for maximal (0.85 sec) and minimal

(0.16 sec) peaks during the pulsating cycle for neutral case and for case with 50% stenosis growth

rate are shown in Figs. 7,8. These figures nicely illustrate the richness of the flow patterns despite

2where the wall-shear stress (WSS) is calculated as τW = µ (∂V/∂y) |y=0
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the laminar flow regime. Regions with strong flow acceleration, decelerations, stagnant zones,

recirculation, inner jets, strong reversals, 3D helical patterns- all simultaneously co-exist during a

pulsating cycle. It can be seen that the stenosed artery shows more intensive flow velocity caused

by reduction in characteristic artery diameter. This intensive jet-like flow changes recirculative

pattern downstream of the stenosis location - especially during the maximum peak in pulsating

cycle. It is interesting to observe that during the minimum peak instants the velocity vectors show

reversal along the walls, Figs. 7,8 - below. This is caused by adverse pressure gradients followed

by a strong flow deceleration.

After performing these preliminary simulations, verifying that the obtained WSS values dur-

ing pulsating cycles were in good agreement with similar results presented by Johnston et al.

(2004,2006), new set of simulations is performed with active magnetic fields.

4.3 Arterial blood flow subjected to the external strong non-uniform

magnetic fields

In the previous sections we have demonstrated the effects of an imposed non-uniform magnetic

field on blood in a simple cylinder geometry, and simulations of pulsating blood flow in realistic

arteries without external magnetic field. The question is now to what extent the influence of a

magnetic field will be effective in a real artery geometry with a magnetic field imposed over a

finite length. We performed a new series of simulation where both Lorentz and magnetisation

force are activated. In addition, corrections of the blood apparent viscosity in magnetic fields are

taken into account in accordance with correlations of Haik et al.(2001).

The spatial distributions of the magnetic field components (Bx and Bz) are shown in Fig. 9.

It can be seen that the magnetic field is localised in such a way that the potential stenosed region

will be influenced most effectively. The non-uniform magnetic field is generated from a single

wire located parallel to the short straight segment at a distance of 2 cm from the artery walls.

A comparison between the pressure fields without and with imposed magnetic field is shown in

Fig. 10. It can be seen that significant local pressure changes are occurring at locations with a

significant magnitude of the imposed magnetic field. In order to better illustrate local changes

in the flow pattern caused by the imposed non-uniform magnetic field, two vertical cross-sections

are selected and contours of the velocity components are plotted, Figs. 11, 12.
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At both cross-sections (located at the beginning and at the end of the relatively short straight

segment of the stenotic artery) significant changes in secondary flow patterns can be observed

when the magnetic field is activated (despite the relatively short effective length: the distance

between these two locations is only 2-3 cm). It is interesting to observe that the flow pattern

is already altered at the first location and is additionally enhanced at the second location. The

appearance of an additional vortical structure in the proximity of the artery wall created by

the magnetisation force is clearly visible. These results confirm our previous conclusions in the

idealised configurations, i.e. that an imposed non-uniform magnetic field can significantly effect

and modulate blood-flow patterns under realistic conditions.

5 Conclusions and outlook

In this paper we presented a comprehensive mathematical model for description of blood flow in

the presence of a strong non-uniform magnetic field. Both the Lorentz and magnetisation forces

are taken into account in the momentum equations. A simplified set of Maxwell’s equations (a

combination of the Biot-Savart and Ampere’s laws) is used to calculate imposed magnetic field

distributions. The electric current distributions are calculated from the Ohm’s law for electrically

conductive moving media. Together with equations for conservation of mass and momentum, this

makes a fully closed system of equations.

The results presented in this paper can be used to study new strategies for optimisation of

strong non-uniform magnetic fields for localised cancer therapy. It is important to note that signif-

icantly weaker magnetic field can be used for magnetic drug targeting in practical circumstances.

This is because of the fact that the magnetic particles enhance the magnetic suspectability by

a few orders of magnitude, and in turn the magnetisation force effects will be stronger. In such

cases, magnetic field strength between 1 and 1.5 T can be very effective. Novel drug delivery

systems based on strong superconducting magnets are currently under development, Takeda et

al. (2007), and our mathematical model can be useful for design and further optimisation of such

systems.

Additional important applications can be associated with new generation of the MRI scanners

that operate in strong magnetic field regimes (1 - 4 T). Similar numerical simulations can be

performed by including multi-branching blood vessels and realistic magnetic field distributions
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that can be easily incorporated in our model.

Numerical simulations with the multi-branching blood vessels with flexible walls (the fluid-

structure interactions), magnetic particles and non-Newtonian viscosity behaviour will be subject

of our future investigations.
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Appendix I

The final version of the model used in this study (in index notation) is given next. The following

assumptions are used: the flow is laminar, incompressible and isothermal. The working fluid is

homogeneous and Newtonian. The molecular viscosity of blood in the presence of a magnetic field

is calculated in accordance with Haik et al. (2001). The divergency-free condition is imposed for

velocity, magnetic fields and electric current density:

∂Vi

∂xi

= 0,
∂Bi

∂xi

= 0,
∂Ji

∂xi

= 0 (9)

The momentum equations extended by the Lorentz (F L
i ) and the magnetisation (F M

i ) forces.

∂Vi

∂t
+ Vj

∂Vi

∂xj

=
∂

∂xj

(

ν
∂Vi

∂xj

)

+
1

ρ











−∂P

∂xi

+ εijkJjBk
︸ ︷︷ ︸

F L
i

+ µ0χ|Hi|
∂|Hi|

∂xi
︸ ︷︷ ︸

F M
i











(10)

The full set of the Maxwell’s equations for the one-way coupled fluid flow and electromagnetic

fields interactions reduces to a simple (scalar) electric potential equation:

∂2Φ

∂x2
i

=
∂

∂xi
(εijkVjBk) (11)

The electric current density and magnetic field intensity are calculated from following expressions:

Ji = σ

(

−
∂Φ

∂xi
+ εijkVjBk

)

, |Hi| =
1

µ0

|Bi| (12)
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Nomenclature

Re =
UD

ν
Reynolds number (-)

Ha = B0D

√
σ

ρν
Hartmann number (-)

N =
σB2

0
D

ρU
Stuart (interactive) number (-)

D characteristic diameter (m)

I electric current intensity (A)

N number of wires (-)

P Pressure (Pa)

R radial distance from a wire with current (m)

T temperature (K)

WSS wall-shear-stress (Pa)

B magnetic flux density (magnetic induction) (T)

E electric field intensity (V/m)

FL Lorentz force (N/m3)

FM magnetisation force (N/m3)

H magnetic field intensity (A/m)

J total current density (A/m2)

M magnetisation (A/m)

Φ electric potential (V)

Greek symbols

ρ fluid density (kg/m3)

ν kinematic viscosity (m2/s)

σ electric conductivity (S/m)

µ0 magnetic permeability in vacuum (H/m)

κB Boltzmann constant (J/K)

χ magnetic susceptability (-)
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Table Captions

Tab.1 Properties of the bio-magnetic fluid (blood) used for numerical simulations.
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Figure Captions

Fig. 1. Blood flow in a long horizontal cylinder under the presence of a non-uniform magnetic

field, Re=525, Ha=4, N=0.03: First row- contours of W/Wm and streamlines; Second row-

contours of V/Wm and magnetic flux lines; Third row- contours of U/Wm and |B0|). Left- neutral

case (no-magnetic field); Right- a magnetic field (|B0|max=10 T) created by a single wire located

5mm from the cylinder wall at an angle of 00.

Fig. 2. See caption in previous figure: A magnetic field (|B0|max=10 T) created by: left- two

wires located 5mm from the cylinder wall under angles of ±450, right- three wires located 5mm

from the cylinder wall under angles of +450, 00,−450.

Fig. 3. Profiles of the non-dimensional streamwise velocity (W/Wm) in a vertical plane along

the different angles 00, 900,−450, respectively, Re = 525. The α angle indicates location of the

magnetic sources (wires) in the vertical plane.

Fig. 4. The numerical mesh (19×19×236 CVs) used for simulations of blood flow through a

model of a human right coronary artery with different stages of the stenosis growth: left- healthy

artery, right- stenotic arthery (with 50% artery diameter reduction).

Fig. 5. Above- the time-dependency of the inlet velocity closely mimicking recorded velocity

signal in the right-coronary artery of a real patient (56 years old healthy female), Matsuo et al.

(1988). Below- the time-dependency of the circumferentialy averaged wall-shear-stress (WSS)

distributions along the artery walls (the axial coordinate cooresponds to the non-dimensional

artery arc-length value defined as Larc/Ltot) for different stages of the stenosis growth (0%, 50%

and 75%) respectively.

Fig. 6. Distributions of the pressure (-left) and the wall-shear-stress (WSS) (-right) along the

artery walls for different stages of stenosis growth: a healthy artery (-above) and 50% stenosis

(-below). Steady solutions obtained with an uniform inlet velocity of Uin = 0.1 m/s, Re = 500.

Fig. 7. Velocity vectors in a plane crossing the potential stenosis location for maximal (t = 0.85

sec, -above) and minimal (t = 0.16 sec, -below) peaks during a pylsating cycle shown in previous

Fig. - the healthy artery case.
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Fig. 8. Velocity vectors in a plane crossing the stenosis location (a case with 50% stenosis

growth) for maximal (t = 0.85 sec, -above) and minimal (t = 0.16 sec, -below) peaks during a

pulsating cycle.

Fig. 9. Contours of the magnetic field components originating from a line wire source located

at 2 cm distance from the right coronary artery, (Bx - above, Bz - below, |B0|=10 T) along the

artery walls.

Fig. 10. Contours of the local pressure distribution along the artery walls without (-above)

and and with a magnetic field originating from a line wire source located at 2 cm distance from

the right coronary artery, (|B0|=10 T, -below).

Fig. 11. Contours of the local pressure along the artery wall (-above) and contours of the W

velocity indicating changes in the secondary flow patterns due to presence of an external magnetic

field (with identical specification as in previous figure).

Fig. 12. Similar as in the previous figure, only now at different location (2 cm upstream from

the previous location) and U velocity components are shown.
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Table 1:

ρ ν σ χoxyg χdeoxyg

1050 kg/m3 4 × 10−6 m2/s 0.7 − 0.9 S/m −6.6 × 10−7 3.5 × 10−6
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