
Faculty of Electrical Engineering, Mathematics and Computer Science

Signals and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

https://sps.ewi.tudelft.nl/

SPS-2024-00

M.Sc. Thesis

3D Microscopy Deconvolution of Very
Large Images with an Adaptive Resolution

Scheme

Chang Ge

Abstract

Microscopy is a crucial tool across various scientific domains. Due
to light diffraction, the images acquired from optical microscopes are
usually blurry and corrupted by noise. For an accurate quantita-
tive analysis, the measured images need to be deconvolved to achieve
higher resolution. Deconvolution processes are computationally ex-
pensive, due to the large data size. This leads to out-of-memory
issues and extended computation time.

To address these problems, this project aims to develop a novel
convolution scheme. It utilizes the special structure of the Point
Spread Function, which in conventional microscopy techniques has
most of its energy concentrated in the center. And implement multi-
resolution signal processing methods. This approach enhances com-
putational efficiency while retaining computational accuracy.

3D Microscopy Deconvolution of Very Large Images
with an Adaptive Resolution Scheme

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Electrical Engineering

by

Chang Ge
born in Jinan, China

This work was performed in:

Signals and Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright © 2024 Signals and Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “3D Microscopy Deconvolution of Very Large Images with an Adap-
tive Resolution Scheme ” by Chang Ge in partial fulfillment of the requirements
for the degree of Master of Science.

Dated: 18 October 2024

Chairman:
prof.dr.ir. Alle-Jan van der Veen

Advisor:

Committee Members:

iv

Abstract

Microscopy is a crucial tool across various scientific domains. Due to light diffraction,
the images acquired from optical microscopes are usually blurry and corrupted by noise.
For an accurate quantitative analysis, the measured images need to be deconvolved to
achieve higher resolution. Deconvolution processes are computationally expensive, due
to the large data size. This leads to out-of-memory issues and extended computation
time.

To address these problems, this project aims to develop a novel convolution scheme. It
utilizes the special structure of the Point Spread Function, which in conventional mi-
croscopy techniques has most of its energy concentrated in the center. And implement
multi-resolution signal processing methods. This approach enhances computational
efficiency while retaining computational accuracy.

v

vi

Acknowledgments

I would like to express my sincere gratitude to my supervisors, Dr. Daniel Sage, Dr.
Joan Rué Queralt, Dr. Vasiliki Stergiopoulou, and Prof. Alle-Jan van der Veen, for
their support and guidance throughout this journey.

Chang Ge
Delft, The Netherlands
18 October 2024

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1

1.1 Microscope imaging . 1

1.2 Motivations for deconvolution . 2

1.3 Point Spread Function . 4

1.4 Outline . 4

2 Problem formulation 7

2.1 Forward model . 7

2.2 Deconvolution methods . 8

2.2.1 Direct inversion . 8

2.2.2 Iterative deconvolution . 9

2.3 Efficient Convolution . 10

2.3.1 Convolution algorithms for 1D signal 10

2.3.2 Convolution methods with d-dimensional signal 14

3 Method 19

3.1 Presentation of the main idea . 19

3.2 Multi-resolution convolution scheme . 20

3.2.1 Steps of the Multi-resolution convolution scheme 20

3.2.2 Further reduce the computational cost through the polyphase
decomposition . 24

3.2.3 Generalization to d-Dimensional Data 26

3.3 Computational cost of the three convolution schemes 26

3.3.1 Computational cost of yref . 27

3.3.2 Computational cost of yc . 27

3.3.3 Computational cost of ymulti . 27

4 Results 31

ix

4.1 Performance metrics . 31

4.1.1 Normalized Mean Squared Error (NMSE) 31

4.1.2 Peak Signal-to-Noise Ratio (PSNR) 31

4.1.3 Structural Similarity Index (SSIM) 32

4.2 Convolution results . 32

4.2.1 Convolution with 2D images . 32

4.2.2 Convolution with 3D image . 36

4.3 Deconvolution . 38

4.3.1 3D simulation data . 39

4.3.2 Deconvolution with real data 39

5 Conclusions and Future work 43

5.1 Convolution . 43

5.2 Future work . 44

x

List of Figures

1.1 Schematic of a fluorescence microscope[1] 1

1.2 Comparison of fluorescence illumination in widefield and confocal fluo-
rescence microscopy. [2] . 2

1.3 A schematic representation of 3D image formation in microscopy [3] . . 3

1.4 Comparison of theoretical and experimental PSF. [13] 4

2.1 Microscope imaging system . 7

2.2 FFT-based convolution . 11

2.3 Memory estimation of FFT-based convolution 12

2.4 Overlap add convolution . 13

2.5 Memory estimation of overlap add convolution 14

3.1 1D PSF . 19

3.2 Flow diagram of multi-resolution convolution method 20

3.3 Window wc with different α values . 22

3.4 Frequency response of g1 and the spectrum of hs 23

3.5 Polyphase representation of decimation on x 24

4.1 Results of 2D convolution . 33

4.2 Energy of hc over r . 34

4.3 Performance metrics of ymulti for different decimation factors M 34

4.4 Accuracy of convolutions schemes over r 35

4.5 Computation cost over r . 36

4.6 Peak memory results with different data size 36

4.7 3D hollow bar data and PSF . 37

4.8 Convolution results of 3D hollow bar data 37

4.9 Accuracies of convolution schemes with 3D images,varying r and rz = αr 38

4.10 Computation cost of 3D image data over r 39

4.11 Comparison of y, x̂ref, and x̂multi . 39

4.12 Deconvolution results with 3D real data 40

4.13 Peak memory usage and NMSE for different convolution methods . . . 41

xi

xii

List of Tables

4.1 Performances with different convolution parameters 33

4.2 R-L deconvolution results . 39

xiii

xiv

Introduction 1
1.1 Microscope imaging

A microscope is an optical instrument used to magnify small objects, and it is widely
employed in various fields, particularly in biological studies to observe and analyze live
specimens. Among the different types of light microscopes, fluorescence microscopy has
emerged as a powerful technique, largely due to advancements in fluorescent labeling
methods.

Fluorescence microscopy utilizes the phenomenon of fluorescence to highlight specific
structures within biological specimens. Figure 1.1 shows a schematic plot of a fluores-
cence microscope, it typically consists of magnifying optical lenses, optical filters, and
a dichroic mirror to reflect and transmit certain wavelengths.

Figure 1.1: Schematic of a fluorescence microscope[1]

Biological specimens are first dyed with fluorescent dyes. Lights of specific wavelengths
illuminate and excite the fluorophores in the samples, which then emit fluorescent light
under another wavelength. Only the emitted light passes through the dichroic mirror

1

and the filter. The optical sensor detects the light and forms an image. These tech-
niques enable detailed visualization of cellular components, providing high specificity
and contrast, and have thus become widely used in biological research.

Two of the most common fluorescent microscopes are the widefield and the confocal
ones. Figure 1.2 compares the different illumination schemes of widefield and confocal
fluorescence microscopes. In wide-field microscopy, the entire specimen is evenly illu-
minated by the light source. In confocal microscopy, the light is focused on a limited
spot of the specimen, sequentially illuminating different parts of the object. It contains
a small pinhole in the conjugate focus plane to block out-of-focus light. This scanning
method is more complex and time-consuming but contributes to improved resolution
and contrast.

Figure 1.2: Comparison of fluorescence illumination in widefield and confocal fluorescence
microscopy. [2]

As shown in Figure 1.3, by adjusting the focal plane through the sample, a series of
2D images can be obtained. These z-stack images are then compiled to form a 3D
microscope image. Each 2D image is considered a projection of the 3D object along
the optical axis. 3D information outside the focal plane appears as a blurry background.

1.2 Motivations for deconvolution

However, images measured with fluorescence microscopes often suffer from degradation.
This becomes problematic for the quantitative analysis of the images. The image
degradations are caused by optical blur and sensor shot noise [4].

The blurry effect is caused by optical diffraction. The optical blur effect is inherent to
the optical system and can be characterized by the Point Spread Function (PSF). Due
to the diffraction property of light waves, a single point will appear as a Point Spread
Function in microscopy images. For 3D microscopy, it has the shape of a double cone.

Noise in microscopy images includes non-additive signal-dependent shot noise. It fol-
lows a Poisson distribution with the mean of the detected light. Additionally, the
camera sensors bring thermal and background noise. Moreover, for each 2D image at
a certain focal plane, out-of-focus information from other planes is also projected onto

2

Figure 1.3: A schematic representation of 3D image formation in microscopy [3]

the same plane. This also contributes to background noise. They can be modeled as
additive Gaussian noise.

To retrieve desired 3D microscope images from degraded measurement images, de-
convolution methods need to be performed. Deconvolution methods typically involve
iterative convolution operations with a PSF as shown in Section 2.2. However, these
convolutions are computationally expensive in both time and memory due to the large
data sizes of both measurement data and PSF. Iterative deconvolution algorithms such
as the Richardson-Lucy algorithm are usually slow to converge. This often leads to
out-of-memory issues and extended computation times. For example, convolving an
image of voxels of size 128× 128× 100 with a PSF of the same size requires 6.8 GB of
memory[5]. In other cases, the size of PSF would be 1024 × 1024 × 100. In extreme
cases, data size can reach to 4096 × 4096 × 1000 = 16′777′216′000 voxels. This will
cause more computational burden. To perform deconvolution algorithms would take
hours[6].

To address these issues, various methods have been proposed through accelerated de-
convolution algorithms and enhanced convolution efficiency. D.S. Biggs accelerated
the Richardson-Lucy algorithm by adjusting the step size, improving its convergence
speed[7]. M. Guo et al. utilized an unmatched back projector to reduce the number of
iterations needed, enhancing deconvolution speed by 10-100 times through CPU pro-
cessing[8]. D. Svoboda reduced memory overhead and achieved faster convolutions by
implementing image and kernel tiling techniques[5].

This project aims to develop a faster and more efficient method to deconvolve mi-
croscopy images. Leveraging the special structure of PSF, we design a multiscale con-
volution algorithm with faster computing time, lower memory overhead, and small
accuracy loss.

3

1.3 Point Spread Function

PSF serves as the convolution kernel in the forward model and thus plays a key role in
microscopy image deconvolution. With prior knowledge of the microscope, the PSF is
typically assumed to be known. It can be obtained through experimental approaches
or theoretical simulations [9]. In experimental approaches, images of point-like objects
or beads are measured to estimate the PSF. This method better captures the actual
characteristics of the optical system. However, these experimentally acquired PSF
images often contain noise and have a low signal-to-noise ratio (SNR). Figure ?? shows
an example of theoretical and experimental PSFs. Compared to the theoretical PSF,
the experimental PSF has an irregular shape and contains noise.

There are several types of PSF models used to obtain theoretical PSFs. The Born and
Wolf model is a scalar-based diffraction model that derives the PSF from the Fourier
transform of the optical system’s apertures [10], [11]. The Gibson and Lanni model
further considers variations in the refractive index for thick specimens, allowing for a
more accurate representation of the PSF in three dimensions [12]. Other PSF models
simulate the blurring effect through a 2D Gaussian function, either in the Fourier
domain or in the spatial domain. Software such as PSF Generator [13] can be used to
generate PSFs with various simulation models based on the parameters of the optical
system.

Figure 1.4: Comparison of theoretical and experimental PSF. [13]

1.4 Outline

The outline of this thesis report is as follows:

• Chapter 2: This chapter includes the forward model, the deconvolution algo-
rithms, and convolution methods.

• Chapter 3: The proposed convolution methods will be described in detail. The
computational complexity of the proposed algorithm will also be analyzed.

4

• Chapter 4: This chapter will present the convolution and deconvolution results
using different types of data.

• Chapter 5: Discuss the limitations of the algorithm and suggest potential direc-
tions for further research.

References

[1] W. Commons, File:fluoreszenzmikroskopie 2008-09-28.svg — wikimedia com-
mons, the free media repository, [Online; accessed 22-July-2024], 2023. [Online].
Available: https://commons.wikimedia.org/w/index.php?title=File:
Fluoreszenzmikroskopie_2008-09-28.svg&oldid=796566148.

[2] J. Chatton, “Ionic homeostasis in glia: A fluorescence microscopy approach,” in
Reference Module in Biomedical Sciences, Elsevier, 2015, isbn: 978-0-12-801238-
3. doi: https://doi.org/10.1016/B978-0-12-801238-3.04624-9. [On-
line]. Available: https://www.sciencedirect.com/science/article/pii/
B9780128012383046249.

[3] F. A. Merchant and A. Diaspro, “Chapter eleven - three-dimensional imaging,”
in Microscope Image Processing (Second Edition), F. A. Merchant and K. R.
Castleman, Eds., Second Edition, Academic Press, 2023, pp. 247–317, isbn: 978-
0-12-821049-9. doi: https://doi.org/10.1016/B978-0-12-821049-9.00009-
5. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/B9780128210499000095.

[4] J.-B. Sibarita, “Deconvolution microscopy,” Advances in biochemical engineer-
ing/biotechnology, vol. 95, pp. 201–43, Feb. 2005. doi: 10.1007/b102215.

[5] D. Svoboda, “Efficient computation of convolution of huge images,” in Image
Analysis and Processing–ICIAP 2011: 16th International Conference, Ravenna,
Italy, September 14-16, 2011, Proceedings, Part I 16, Springer, 2011, pp. 453–462.

[6] P. Sarder and A. Nehorai, “Deconvolution methods for 3-d fluorescence mi-
croscopy images,” IEEE signal processing magazine, vol. 23, no. 3, pp. 32–45,
2006.

[7] D. S. Biggs and M. Andrews, “Acceleration of iterative image restoration algo-
rithms,” Applied optics, vol. 36, no. 8, pp. 1766–1775, 1997.

[8] M. Guo, Y. Li, Y. Su, et al., “Rapid image deconvolution and multiview fusion
for optical microscopy,” en, Nature Biotechnology, vol. 38, no. 11, pp. 1337–1346,
Nov. 2020, issn: 1087-0156, 1546-1696. doi: 10.1038/s41587- 020- 0560- x.
[Online]. Available: https://www.nature.com/articles/s41587-020-0560-x
(visited on 05/15/2024).

[9] J. Markham and J.-A. Conchello, “Parametric blind deconvolution: A robust
method for the simultaneous estimation of image and blur,” JOSA A, vol. 16,
no. 10, pp. 2377–2391, 1999.

[10] F. Aguet, D. Van De Ville, and M. Unser, “Model-based 2.5-d deconvolution for
extended depth of field in brightfield microscopy,” IEEE Transactions on Image
Processing, vol. 17, no. 7, pp. 1144–1153, 2008.

5

https://commons.wikimedia.org/w/index.php?title=File:Fluoreszenzmikroskopie_2008-09-28.svg&oldid=796566148
https://commons.wikimedia.org/w/index.php?title=File:Fluoreszenzmikroskopie_2008-09-28.svg&oldid=796566148
https://doi.org/https://doi.org/10.1016/B978-0-12-801238-3.04624-9
https://www.sciencedirect.com/science/article/pii/B9780128012383046249
https://www.sciencedirect.com/science/article/pii/B9780128012383046249
https://doi.org/https://doi.org/10.1016/B978-0-12-821049-9.00009-5
https://doi.org/https://doi.org/10.1016/B978-0-12-821049-9.00009-5
https://www.sciencedirect.com/science/article/pii/B9780128210499000095
https://www.sciencedirect.com/science/article/pii/B9780128210499000095
https://doi.org/10.1007/b102215
https://doi.org/10.1038/s41587-020-0560-x
https://www.nature.com/articles/s41587-020-0560-x

[11] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation,
interference and diffraction of light. Elsevier, 2013.

[12] S. F. Gibson and F. Lanni, “Diffraction by a circular aperture as a model for
three-dimensional optical microscopy,” JOSA A, vol. 6, no. 9, pp. 1357–1367,
1989.

[13] H. Kirshner, D. Sage, and M. Unser, “3d psf models for fluorescence microscopy
in ImageJ,” in Proceedings of the Twelfth International Conference on Methods
and Applications of Fluorescence Spectroscopy, Imaging and Probes (MAF’11),
Strasbourg French Republic, vol. 154, 2011.

6

Problem formulation 2
2.1 Forward model

The microscopy imaging process can be modeled as a linear shift-invariant system,
where the Point Spread Function (PSF) serves as the impulse response. For simplicity,
the model is first explained in 1D and later extended to the d-dimensional case, where
d ∈ {1, 2, 3}. Figure 2.1 shows an example of the 1D microscope imaging system.

Figure 2.1: Microscope imaging system

Under the assumption of a noise-free environment, the measured signal is a blurry im-
age, denoted as ỹ. This can be described as the target image x convolved with the PSF
h of the microscope. The PSF represents the diffraction pattern of an infinitesimally
small point source within the microscope. The forward model is represented as:

ỹ = h ∗ x,

where ∗ denotes the convolution operation, and ỹ,x,h ∈ RN represent the measured
blurry image vector, the target image vector, and the PSF vector, respectively. This
model can also be written in matrix form as:

ỹ = Hx,

where H is the linear operator representing the convolution with the PSF. For 1D
data, H takes the form of a circular matrix. Additionally, H can be expressed using
the Discrete Fourier Transform (DFT) matrix F and its complex conjugate FH as:

H = FHΛF, where Λ = diag(Fh).

7

Here, H is of size N × N , which makes it impractical to store directly in memory.
Instead, H is often implemented in a matrix-free manner, where its elements are com-
puted as needed during operations.

Performing this convolution with microscope data is computationally expensive due to
the large size of both the image data and PSF. With the image size proposed above, the
direct convolution method involves computing each output element as a sum of element-
wise products of the input signal and the kernel. This requires N multiplications
and N additions for each of the N output elements, leading to a total computational
complexity of O(N2).

Fourier-based convolution includes transforming the input signal and kernel to the fre-
quency domain using Fast Fourier Transform (FFT), performing element-wise multi-
plication in the frequency domain, and then transforming the result back to the spatial
domain using inverse FFT. FFT transform has a complexity of O(N logN), and the
element-wise multiplication has a complexity of O(N), leading to an overall compu-
tational complexity of O(N logN). For large N , the FFT-based method is generally
more efficient than the direct method due to its lower computational complexity.

The measurement model considering the shot noise and additive Gaussian noise is
illustrated as follows. The intensity of shot noise depends on the light intensity and is
non-additive. It can be modeled using an independent Poisson process [1], [2]. Denote
P(·) as the Poisson distribution. Additionally, n denotes independent and identically
distributed (i.i.d.) Gaussian noise.

Thus, the measurement model can be written as:

y = P(Hx) + n

2.2 Deconvolution methods

To recover x from noisy measurement y, deconvolution algorithms can be applied.
They can be characterized into direct inversion and iterative deconvolution methods.

2.2.1 Direct inversion

Direct inversion aims to recover the original signal x from the measured signal y by
inverting the PSF in the Fourier domain. By the convolution theorem, the forward
model is equal to multiplying h and x in Fourier domain, thus the inversion can be
implemented through division. This is mathematically expressed as:

x̂[k] =

{
F−1

(
Fy
Fh

)
[k] if Fh[k] ≥ ϵ

0 if Fh[k] < ϵ
.

Here, x̂ represents the estimated signal in the spatial domain, while F and F−1 de-
note the Discrete Fourier Transform (DFT) matrix and its inverse, respectively. The

8

term Fy refers to the DFT of the measured signal y, and Fh represents the DFT of
the point spread function (PSF) h. The element-wise division Fy

Fh
is used to perform

the deconvolution in the frequency domain. The threshold ϵ is introduced to prevent
division by values that are close to zero.

Although this method is fast and does not require any additional parameters, it per-
forms poorly in practice when applied to noisy measurements, particularly in the pres-
ence of dominant Poisson noise. Direct inversion in such cases often results in significant
noise amplification, which in turn degrades the quality of the estimated signal x̂.

2.2.2 Iterative deconvolution

One of the widely used iterative deconvolution methods is the Richardson-Lucy algo-
rithm [2]–[4]. It is a maximum likelihood algorithm based on the Poisson noise model,
which makes it well-suited for our purposes, as microscopy data are mainly corrupted
by Poisson noise. It assumes that there is no additive Gaussian noise, which leads to
the measurement model:

y = P(Hx), x,y ∈ RN .

Let x[i], y[i] denote the i-th elements of x and y, respectively, for i = 1, 2, . . . , N . The
Poisson likelihood function is given by:

p(y | Hx) =
N∏
i=1

((Hx)[i])y[i]e−(Hx)[i]

y[i]!

Define × as element-wise multiplication, HT is the adjoint operator of H and can be
viewed as the convolution with reversed PSF h and 1 is an N by 1 all one vector. Thus
we can write:

p(y | Hx) = exp
(
−(Hx)⊤1

)
· exp

(
log(Hx)⊤y

)
·

N∏
i=1

1

y[i]!
.

Taking the log-likelihood function of y, we can write:

L(x) = log(p(y | Hx)) = −(Hx)⊤1+ log(Hx)⊤y −
N∑
i=1

log(y[i]!).

The gradient of the log-likelihood function with respect to x is :

∇L(x) = H⊤ y

Hx
−H⊤1,

where y
Hx

is an element-wise division. Let xk represent the k-th iteration of the al-
gorithm. Then an iterative update rule can be formulated using a gradient ascent
approach to maximize the log-likelihood:

xk+1 = xk + λ∇L(xk).

9

The step size λ is chosen such that: λ = xk

HT 1
. This leads to an iterative update rule:

xk+1 = xk +
xk

H⊤1
×
(
H⊤ y

Hxk
−H⊤1

)
= xk +

xk

H⊤1
×H⊤

(y

Hxk

)
− xk

=
xk

H⊤1
×H⊤

(y

Hxk

)
Note that, if h is normalized, i.e.

∑i=N
i=1 h[i] = 1 , H⊤1 is an N × 1 all one vector. The

equation above can be simplified as:

xk+1 = xk ×H⊤
(y

Hxk

)
,

To deal with the noisy measurement with Gaussian noise, iterative algorithms such as
Landweber algorithm [5] and fast iterative soft-thresholding (FISTA) can be applied.

As we can see in the algorithm above, the deconvolution is performed through im-
plementing two convolution operations in each iteration. However, the convolution is
computationally expensive partially because the convolution kernel h and the image x
have the same size and are big. To decrease the cost of deconvolution, it is essential to
find a more efficient way to perform convolution.

2.3 Efficient Convolution

2.3.1 Convolution algorithms for 1D signal

2.3.1.1 Direct convolution

For direct 1D convolution with signal x with sizeN and kernel h of sizeK, the operation
is defined as:

(x ∗ h)[n] =
K−1∑
m=0

x[m−m]h[m],

where each output sample requires K multiplications and additions, the computational
complexity is O(NK). If not considering the intermediate storage, direct convolution
requires C(N +K) of memory storage. Here C is the memory taken for each pixel. It
is a constant that depends on the required precision (e.g., single, double precision).

2.3.1.2 FFT-based convolution

FFT-based convolution is an efficient method for performing convolution by leveraging
the properties of the Fourier transform. According to the convolution theorem, convo-
lution in the spatial domain can be transformed into element-wise multiplication in the
frequency domain. Given a signal x and a filter h, the convolution can be computed as

y = F−1 (Fx× Fh) .

10

This approach significantly reduces the computational complexity, especially for large
datasets, compared to direct convolution in the spatial domain.

The steps for FFT-based convolution are as follows:

1. x and h are first padded to size Np = N +K−1. At this step, it requires memory
to store x, h, and 2 zero-padded variable with size Np. In total, it requires
C(N +K + 2Np) of memory.

2. FFT is applied to the 2 zero-padded data, with a complexity ofO(Np logNp). Each
Np-point FFT result requires 2CNp of storage for complex value. Combining the
memory required for storing variables from the earlier step, the total memory
required at this step is:

C(N +K + 2Np) + 2CNp × 2 = C(N +K + 6Np).

3. Element-wise multiplication is performed in the frequency domain, with a com-
plexity of O(Np). The previous storage from step 1 for the two zero-padded results,
2CNp, can be released, and the result of the complex multiplication requires an
additional 2CNp of storage. Thus, the total memory requirement at this step is

C(N +K + 6Np) + 2CNp − 2CNp = C(N +K + 6Np).

4. Apply IFFT to the multiplication result, with a complexity of O(Np logNp). It
requires an additional CNp of memory to store the IFFT results, and the previous
storage of 4CNp for the two FFT results from the previous step can be released.
Therefore, the memory requirement at this step becomes

C(N +K + 6Np)− 4CNp + CN = C(2N +K + 2Np).

Figure 2.2: FFT-based convolution

This process is illustrated in Figure 2.2, and the memory estimation is shown in Figure
2.3. Combining these steps, the total complexity of FFT-based convolution is:

O(Np logNp) +O(Np logNp) +O(Np) +O(Np logNp) ≈ O(Np logNp).

Peak memory refers to the maximum amount of memory an algorithm uses at any
point during its execution. Understanding peak memory usage helps identify potential
memory bottlenecks and prevent crashes due to out-of-memory errors.

11

Figure 2.3: Memory estimation of FFT-based convolution

The theoretical peak memory usage is given by:

C(N +K + 6Np) ≈ 7CNp.

2.3.1.3 Overlap-add convolution

The overlap-add method is a technique used to efficiently perform convolution on large
signals by breaking the input signal into smaller segments. Each segment is convolved
with the kernel, and the resulting outputs are combined by overlapping and adding the
partial results. This method reduces computational complexity for long signals. By
processing the signal in blocks, overlap-add is particularly useful in applications where
memory and speed are critical, such as real-time signal processing. The detailed steps
for overlap and add convolution is shown in Figure 2.4 and its memory estimation is
shown in Figure 2.5. The detailed steps are as follows:

1. The input signal x is segmented into smaller blocks of length L. L is chosen such
that Np ≥ L + K − 1, where Np is the next higher number composed of small
prime factors 2, 3, 5, 7 for optimally sized FFT transform [6].

The initial memory storage required is C(N +K) to store x and h.

2. Both the signal block and the kernel are zero-padded to length Nopt. Nopt is
defined as:

Nopt = min{Np | Np ≥ L+K−1 and Np is the next higher number with prime factors 2, 3, 5, 7}.

The memory required to store the zero-padded results for both the signal block
and the kernel is 2CNopt. Therefore, the memory usage at this step is:

C(N +K) + 2CNopt = C(N +K + 2Nopt).

12

3. Compute the Nopt-point FFT on the two zero-padded blocks. The compu-
tational complexity of performing the FFT on the two zero-padded blocks is
O(2Nopt logNopt). This step requires 4CNopt to store the results of the FFT
of the two blocks. Thus, the memory usage at this step is:

C(N +K + 2Nopt) + 4CNopt = C(N +K + 6Nopt).

4. Perform complex-valued multiplication in the frequency domain. The computa-
tional complexity of this operation is O(Nopt). It requires an additional 2CNopt of
memory to store the multiplication results. Since the memory for the zero-padded
blocks from step 2 can be released, the memory usage at this step remains:

C(N +K + 6Nopt) + 2CNopt − 2CNopt = C(N +K + 6Nopt).

5. Perform an IFFT on the multiplication result. The computational complexity is
O(Nopt logNopt). The IFFT result requires CNopt of storage, and the memory
used for storing the FFT results from step 3 can be released. Therefore, the
memory usage at this step becomes:

C(N +K + 6Nopt) + CNopt − 4CNopt = C(N +K + 3Nopt).

6. Perform overlap-add with the previous convolution block. The computational
complexity is O(Nopt). It requires CN of memory to store the overlap-add results,
and the memory for storing the multiplication results for step 3 can be released.
The memory usage at this step is:

C(N +K + 3Nopt) + CN − 2CNopt = C(2N +K +Nopt).

Figure 2.4: Overlap add convolution

Repeat the convolutions with segment blocks ⌈N
L
⌉ times. Combining the steps above

and assuming that Nopt ≈ L ≈ K, the computational complexity of overlap and add
convolution is:

O(⌈N
L
⌉Nopt log(Nopt) + ⌈N

L
⌉Nopt) ≈ O(N(log(Nopt) + 1)) ≈ O(N log(K)).

And the peak memory is: C(2N +K +Nopt) ≈ 2C(N +K)

Comparing the three convolution algorithms, it is more efficient to use overlap and add
convolution method when K ≪ N .

13

Figure 2.5: Memory estimation of overlap add convolution

2.3.2 Convolution methods with d-dimensional signal

Similar to the 1D case, the convolution methods discussed in Section 2.3.1 can
be extended to d-dimensional signals [7]. Consider d-dimensional signals x, y, h ∈
Rn1×n2×···×nd , with N =

∏d
i=1 ni. Let [i1, i2, . . . , id] represent the indices of a d-

dimensional array. The formula for d-dimensional convolution between a d-dimensional
signal x and a d-dimensional kernel h is given by:

y[i1, i2, . . . , id] =

n1∑
j1=1

n2∑
j2=1

· · ·
nd∑

jd=1

x[i1 − j1, i2 − j2, . . . , id − jd] · h[j1, j2, . . . , jd]

2.3.2.1 FFT-based convolution for d-dimensional signals

The Discrete Fourier Transform of a d-dimensional signal x ∈ Rn1×n2×···×nd is given by
[8]:

X[l1, l2, . . . , ld] =

n1−1∑
i1=0

n2−1∑
i2=0

· · ·
nd−1∑
id=0

x[i1, i2, . . . , id]·exp
(
−2πj

(
l1i1
n1

+
l2i2
n2

+ · · ·+ ldid
nd

))

The inverse DFT is given by:

x[i1, i2, . . . , id] =
1

N

n1−1∑
l1=0

n2−1∑
l2=0

· · ·
nd−1∑
ld=0

X[l1, l2, . . . , ld]·exp
(
2πj

(
l1i1
n1

+
l2i2
n2

+ · · ·+ ldid
nd

))
.

14

The convolution of two d-dimensional signals x and h is defined as:

y[i1, i2, . . . , id] =

n1−1∑
j1=0

n2−1∑
j2=0

· · ·
nd−1∑
jd=0

x[i1 − j1, i2 − j2, . . . , id − jd] · h[j1, j2, . . . , jd]

We now show that convolution theorem for d-dimensional case. Denote X[l1, . . . , ld],
H[l1, . . . , ld], and Y [l1, . . . , ld] the DFTs of x[i1, . . . , id], h[i1, . . . , id], and y[i1, . . . , id],
respectively. By applying the DFT to y[i1, i2, . . . , id], the convolution theorem for d-
dimensional signal is derived as follows:

Y [l1, . . . , ld] =

n1−1∑
i1=0

· · ·
nd−1∑
id=0

(
n1−1∑
j1=0

· · ·
nd−1∑
jd=0

·[i1 − j1, . . . , id − jd] · h[j1, . . . , jd]

)

× exp

(
2πj

(
l1i1
n1

+ · · ·+ ldid
nd

))
=

n1−1∑
j1=0

· · ·
nd−1∑
jd=0

h[j1, . . . , jd]

n1−1∑
i1=0

· · ·
nd−1∑
id=0

x[i1 − j1, . . . , id − jd]

· exp
(
−2πj

(
l1i1
n1

+ · · ·+ ldid
nd

))
=

n1−1∑
j1=0

· · ·
nd−1∑
jd=0

h[j1, . . . , jd] ·X[l1, l2, . . . , ld] · exp
(
−2πj

(
l1j1
n1

+ · · ·+ ldjd
nd

))
(Shift Theorem)

= X[l1, . . . , ld]

n1−1∑
j1=0

· · ·
nd−1∑
jd=0

h[j1, . . . , jd] · exp
(
−2πj

(
l1j1
n1

+ · · ·+ ldjd
nd

))
= X[l1, . . . , ld]H[l1, . . . , ld]

Based on the d-dimensional convolution theorem, FFT-based convolution can be
extended to d-dimensions. The steps for convolving a d-dimensional input signal
x[i1, . . . , id] ∈ Rn1×···×nd with a kernel h[i1, . . . , id] ∈ Rk1×···×kd are as follows:

1. Zero padded the x[i1, · · · , id] and h[i1, · · · , id] to size (n1+k1−1)×· · · (nd+kd−1).

2. Perform d-dimensional FFT on the zero-padded signals x[i1, · · · , id] and
h[i1, · · · , id] to obtain X[l1, · · · , ld] and H[l1, · · · , ld], respectively.

3. Multiply the Fourier transforms element-wise:

Y [l1, l2, · · · , ld] = X[l1, l2, · · · , ld] ·H[l1, l2, · · · , ld]

4. Perform the inverse d-dimensional FFT on Y [l1, · · · , ld] to obtain y[i1, · · · , id], and
trim the result to size n1 × n2 × · · · × nd, discarding the padded regions.

15

We define Npi = ni + ki − 1 as the size of zero-padding in ith dimension, and let

Np =
∏d

i=1 ni+ki−1, then the computational complexity for d-dimensional convolution

is O(
∏d

i=1Npi log(
∏d

i=1Npi)) = O(Np logNp). And theoretical peak memory is 7CNp.

2.3.2.2 Overlap-add convolution for d-dimensional data

Similarly, the overlap-add method can also be extended to d-dimensional signals. The
steps are as follows:

1. The input signal x[i1, i2, . . . , id] is segmented into smaller blocks of size L1 ×L2 ×
· · ·×Ld. Each Li is chosen such that Npi ≥ Li+Ki−1 is the next higher number
comprised of small prime factors 2, 3, 5, 7 for each dimension.

2. Both the signal block and the kernel are zero-padded to size Nopt1×Nopt2× · · ·×
Noptd, where Nopti is defined as:

Nopti = min{Npi | Npi ≥ Li+Ki−1 and Npi is the next higher number with prime factors 2, 3, 5, 7}

3. Compute the d-dimensional Nopt1 × Nopt2 × · · · × Noptd-point FFT on the two
zero-padded blocks (input and kernel).

4. Perform complex-valued multiplication in the frequency domain.

5. Perform inverse FFT (IFFT) on the multiplication result to bring it back to the
spatial domain.

6. Perform the overlap-add operation with the previous convolution blocks.

2.3.2.3 Separable convolution

For d-dimensional convolution, the convolution cost can be further reduced if the mul-
tidimensional filter can be decomposed into multiple lower-dimensional filters. This
reduces the computational cost significantly, as it allows the d-dimensional convolution
to be performed as a series of 1D convolutions along each dimension.

In separable convolution, the d-dimensional kernel h is decomposed into d 1D kernels
h1, h2, . . . , hd. h is separable if:

h[j1, j2, . . . , jd] = h1[j1] · h2[j2] · · · · · hd[jd]

The separable convolution is computed as:

Using the separability of h, the convolution of x with h becomes:

y[i1, i2, . . . , id] =

n1−1∑
j1=0

n2−1∑
j2=0

· · ·
nd−1∑
jd=0

x[i1 − j1, i2 − j2, . . . , id − jd] · h1[j1] · h2[j2] · · · · · hd[jd]

= (((x ∗ h1) ∗ h2) ∗ · · · ∗ hd) [i1, i2, . . . , id]

16

This means that instead of performing a full d-dimensional convolution, the operation
performs d times 1D convolutions along each dimension. It has computational com-
plexity of O(

∑d
i=1 ni · ki) for direct convolution, O(

∑d
i=1 Npi logNpi) for FFT-based

convolution, and O(
∑d

i=1 ni log ki) for overlap-add convolution.

References

[1] G. M. van Kempen and L. J. van Vliet, “Background estimation in nonlinear
image restoration,” JOSA A, vol. 17, no. 3, pp. 425–433, 2000.

[2] N. Dey, L. Blanc-Feraud, C. Zimmer, et al., “Richardson-Lucy algorithm with to-
tal variation regularization for 3d confocal microscope deconvolution,”Microscopy
research and technique, vol. 69, no. 4, pp. 260–266, 2006.

[3] W. H. Richardson, “Bayesian-based iterative method of image restoration,” JoSA,
vol. 62, no. 1, pp. 55–59, 1972.

[4] L. B. Lucy, “An iterative technique for the rectification of observed distributions,”
Astronomical Journal, Vol. 79, p. 745 (1974), vol. 79, p. 745, 1974.

[5] L. Landweber, “An iteration formula for fredholm integral equations of the first
kind,” American Journal of Mathematics, vol. 73, no. 3, pp. 615–624, 1951, issn:
00029327, 10806377. [Online]. Available: http : / / www . jstor . org / stable /
2372313.

[6] F. Wefers, Partitioned convolution algorithms for real-time auralization. Logos
Verlag Berlin GmbH, 2015, vol. 20.

[7] D. E. Dudgeon, “Multidimensional digital signal processing,” Engewood Cliffs,
1983.

[8] R. Bracewell, “The two-dimensional convolution theorem,” in Fourier Analysis
and Imaging. Boston, MA: Springer US, 2003, pp. 204–221, isbn: 978-1-4419-
8963-5. doi: 10.1007/978- 1- 4419- 8963- 5_6. [Online]. Available: https:
//doi.org/10.1007/978-1-4419-8963-5_6.

17

http://www.jstor.org/stable/2372313
http://www.jstor.org/stable/2372313
https://doi.org/10.1007/978-1-4419-8963-5_6
https://doi.org/10.1007/978-1-4419-8963-5_6
https://doi.org/10.1007/978-1-4419-8963-5_6

18

Method 3
In this chapter, we propose a multiresolution convolution scheme. Our method utilizes
the special structure of the PSF and applies the multi-rate signal processing methods
[1]. Briefly, it retains the center part of the PSF, which contains the majority of the
PSF energy and downsamples the sidelobes. Section 3.2 provides a detailed explanation
of the algorithm. For simplicity, the models are explained first in 1D, then generalized
to the d-dimensional case. In Section 3.3, the theoretical computational cost of the
algorithm is estimated and compared with other schemes.

3.1 Presentation of the main idea

The proposed convolution method leverages the special structure of the PSF in con-
ventional microscopy modalities (e.g., confocal, wide field, etc.). As seen in Figure 3.1,
the central part of the PSF, denoted as hc, is relatively narrow and contains the largest
part of the energy, while the two sidelobes, denoted as hs, spread out wide and contain
less energy. In general, the PSF can be decomposed as h = hc + hs.

Figure 3.1: 1D PSF

19

The reference forward model, using the full PSF as the convolution kernel, is defined
as yref. It can be written as:

yref = x ∗ (hc + hs) = x ∗ hc + x ∗ hs,

In linear operator form, this becomes:

yref = Hcx+Hsx.

Here, Hc and Hs are the linear operators that model convolution with hc and hs,
respectively.

Since convolution is a linear operation, we can separate the PSF and perform the
convolution independently. This separation involves two convolutions: one with a much
smaller kernel hc and another with the original kernel hs. The kernel hc, with size
Kc = 2r + 1 ≪ N , contains most of the PSF’s energy. In practice, due to a lack
of user-friendly efficient tools, scientists are limited to using only the central part as
the convolution kernel, to be able to have a memory-wise feasible convolution with
reasonable deconvolution time. In other words, these forward models approximate yref

using Hcx, denoted as yc:

yc = Hcx

3.2 Multi-resolution convolution scheme

The convolution scheme yc discards the two sidelobes of the PSF, which impacts the
accuracy of the convolution. To achieve high precision while reducing computational
costs, we implemented decimation methods [1] on hs and x, then performed convolution
with the decimated data. The detailed process is shown in Figure 3.2.

Figure 3.2: Flow diagram of multi-resolution convolution method

3.2.1 Steps of the Multi-resolution convolution scheme

1. Decompose PSF

20

First, separate the PSF h into components hc and hs. To avoid artifacts caused by
edges, a window is applied to smooth the edges. Here, Tukey window, also known
as the tapered cosine window, is chosen because of its flexibility in adjusting the
shape of the window. For 1D PSF, we assume that h reaches the maximum
intensity at location c, and r is a radius parameter. The Tukey window with
length Kc = 2r + 1, denoted as w, is defined as [2]:

w[n] =


1
2

[
1 + cos

(
π
(

2n
α(Kc−1)

− 1
))]

0 ≤ n < α(Kc−1)
2

1 α(Kc−1)
2

≤ n ≤ (Kc − 1)
(
1− α

2

)
1
2

[
1 + cos

(
π
(

2n
α(Kc−1)

− 2
α
+ 1
))]

(Kc − 1)
(
1− α

2

)
< n ≤ (Kc − 1)

Here, α is the shape parameter of the window, ranging from 0 to 1. When α = 0
w becomes a rectangular window, and when α = 1 it is a Hanning window as
shown in Figure 3.3.

Define window wc ∈ RN and ws ∈ RN as:

wc[k] =

{
w[k] if c− r ≤ k ≤ c+ r,

0 otherwise.

ws[k] =

{
1−w[k] if c− r ≤ k ≤ c+ r,

1 otherwise.

Let × denote the element-wise multiplication. Then, hc and hs are calculated as
follows:

hc = h×wc,

hs = h×ws.

2. Decimation on x and hs

The computational cost of convolution with sidelobes hs can be significantly re-
duced by downsampling. Since hs contains a limited amount of energy, and hs is
typically band-limited lowpass, downsampling in this region will not cause a huge
reduction in accuracy.

Thus, the next step is to decimate x and hs by a factor of M . To avoid aliasing
artifacts caused by downsampling, a low-pass filter g1 with cutoff frequency ωc =
π
M

should be applied before downsampling.

Here, the low-pass filter g1 is implemented as a Finite Impulse Response (FIR)
filter, and it is designed using the window method with Kaiser window. Define its
transition width ∆ω = 0.2π rad/sample, and stopband attenuation A = 40 dB.
Then the filter length Ng1 is calculated by [1]:

Ng1 = ⌈ A− 8

2.285∆ω
+ 1⌉ = 23,

21

Figure 3.3: Window wc with different α values

The Kaiser window’s shape is controlled by the parameter β, which depends on
the desired stopband attenuation A. The empirical formula for β is given by:

β =


0.1102(A− 8.7), if A > 50 dB

0.5842(A− 21)0.4 + 0.07886(A− 21), if 21 ≤ A ≤ 50 dB

0, if A < 21 dB

For A = 40 dB,

β = 0.5842(A− 21)0.4 + 0.07886(A− 21) ≈ 3.395.

Let α =
Ng1−1

2
, and I0(β) is the modified zeroth-order Bessel function of the first

kind, g1 is obtained through:

g1[n] =

 sin(ωc(n−α))
π(n−α)

·
I0

(
β
√

1−(n−α
α)

2
)

I0(β)
, 0 ≤ n ≤ Ng1 − 1

0, otherwise.

The frequency response of g1 with cutoff frequency ωc =
pi
2
and the spectrum of

an example hs are shown in Figure 3.4. From the Figure, hs is a band-limited
signal, and the loss of hs caused by applying low-pass filter is negligible.

The filtering process with g1 process can be written as a linear operator in matrix
form G1.

Let xl and hsl denote the image data after applying low-pass filter.

xl = G1x, hsl = G1hs

22

Figure 3.4: Frequency response of g1 and the spectrum of hs

xl and hsl are then downsampled by factor of M. The downsampling byM operator
can be written as matrix form DM . Assuming that N is a multiplier of M , DM

is an N
M

×N matrix, For example, when M = 2, D2 has this form:

D2 =


· ·
· · · 1 0 0 0 0 0 · · ·
· · · 0 0 1 0 0 0 · · ·
· · · 0 0 0 0 1 0 · · ·
· ·


Let xd and hsd denote the signals after downsampling. Both xd and hsd are of the
size N

M
and can be written as:

xd = DMxl, xd[n] = xl[Mn],

hsd = DMhsl, hsd[n] = hsl[Mn].

3. Convolve the decimated data

Next, the decimated data xd is convolved with hsd, producing output ysd. We
define the N

M
× N

M
matrixHsd, which models the convolution with hsd. This process

is expressed by:

ysd = Hsdxd.

4. Upsample the convolution output data

Next, ysd is upsampled by a factor of M . The upsampling by M operation can
be written as a N × N

M
matrix UM . UM is the adjoint of DM , UM = DT

M .

23

Then an interpolation filter g2 is implemented to smooth out the discontinuities
caused by the inserted zeros [3]. g2 is a low-pass filter with cutoff frequency π

M
.

Here, g2 is implemented as a FIR Kaiser window. It has order 2a ∗M , where a is
the number of the neighbor terms that will be taken into the interpolation. If we
take a = 2, the length of g2 is Ng2 = 4M +1. The linear operator for convolution
with the filter g2 is defined as G2. We define the interpolation output as ŷs, and
it is calculated as:

ŷs = G2UMysd

In conclusion, combining the steps described above, the multi-resolution convolution
scheme is written as:

ymulti = yc + ŷs = Hcx+G2UM(Hsdxd) = Hcx+ Ĥsx.

And we can see it schematically in Figure 3.2.

3.2.2 Further reduce the computational cost through the polyphase de-
composition

To further reduce the computation cost, in step 2 above, instead of first lowpass filtering
and then downsampling on x and hs, we implement the polyphase representation of
decimation[4]. This process is illustrated in Figure 3.5.

Figure 3.5: Polyphase representation of decimation on x

Note that in theory, the computation cost can be further reduced through the polyphase
representation of the interpolation step. However, it is not employed in this project,
because it increased the error.

Denote the low-pass-filtered and downsampled sequence of x as xd. We perform
polyphase decomposition on g1[n], and divide it into M sub-filters, g1,m, for m =
0, 1, . . . ,M − 1. For each m, the polyphase component gi,m of g1 is obtained through

24

first left shifting g1 by m, then downsampling by M .

g1,m[n] = g1[nM +m]

Similarly, the polyphase component xm of x is obtained through right shifting x by m
then downsampling by M .

xm[n] = x[nM −m]

Then the decimation output xd can be written as:

xd[n] =

Ng1−1∑
i=1

g1[i]x[nM − i]

=
M−1∑
m=0

⌈Ng1
M

⌉−1∑
j=0

g1[jM +m]x[nM − (jM +m)]

=
M−1∑
m=0

⌈Ng1
M

⌉−1∑
j=0

g1,m[j]xm[n− j]


Define the shifted and downsampled linear operator as DM,m, m = 0, 1, · · ·M − 1. For
M = 2, D2,0 and D2,1 have the following form:

D2,0 =


1 0 0 · · · 0 0 0
0 0 1 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0

 ,

D2,1 =


0 1 0 0 · · · 0 0
0 0 0 1 · · · 0 0
...

...
...

...
. . .

...
0 0 0 · · · 0 0 1

 .

Define the operator for convolution with polyphase components of g1 as G1,m, m =
0, 1, · · ·M − 1. Then xd is calculated as:

xd =
M−1∑
m=0

G1,mDM,mx

Similarly, perform polyphase decimination on hs, and the decimination out put hsd is
calculated as:

hsd =
M−1∑
m=0

G1,mDM,mhs

Instead of filtering at the original high sampling rate followed by downsampling,
polyphase decomposition performs M convolutions with downsampled data and subfil-
ters. For the 1D case, consider the convolution between x and the filter ≫1. Polyphase

25

decomposition reduces the cost of direct convolution from O(N · Kg1) to O(N · Kg1

M
),

where M is the decimation factor. In FFT-based convolution, it reduces the input
size to smaller FFTs of length N/M , lowering the complexity from O(N logN) to
O(N log(N/M)). Similarly, in overlap-and-add convolution, polyphase decomposition
reduces segment sizes, thereby lowering the computation cost from O(N logKg1) to

O(N log
Kg1

M
). In all cases, computation is accelerated by breaking the original problem

into multiple smaller convolutions on downsampled signals.

3.2.3 Generalization to d-Dimensional Data

The models above can be generalized to d-dimensional data, where x, y ∈ Rn1×···×nd

with
∏d

i=1 ni = N , and h ∈ Rk1×···×kd with
∏d

i=1 ki = K. The vectorized data is denoted
as x,y,h.

The linear operators for 1D data can be generalized into vectorized d-dimensional data
when the operation is separable across dimensions[5]. In this project, the linear oper-
ators for upsampling, downsampling, and separable convolution with lowpass filter g1

and g2 can be generalized to d-dimensional data. For vectorized d-dimensional data,
the extended operator can be constructed using the Kronecker product of the original
1D operator.

Consider linear operators A1,A2, . . . ,Ad that act on 1D vector z1 ∈ Rn
1 , z2 ∈

Rn
1 , . . . , zd ∈ Rn

d respectively. Denote the Kronecker product as ⊗. The linear op-
erator A that act on the vectorized d-dimensional data z ∈ Rn1×n2...nd can be written
as:

A = A1 ⊗A2 ⊗ · · · ⊗Ad .

However, this generalization rule does not apply to convolutions with h, hc, hs, and
hsd. These convolutions are not separatable. For 1D data, H, Hc, Hs and Hsd are
circular matrix. For vectorized d-dimensional data, these operators are constructed as
block-circulant matrices with circulant blocks.

3.3 Computational cost of the three convolution schemes

Since we are working with large-sized data, we want to propose algorithms that can
scale down the cost. In the following section, the computational complexity and the
theoretical memory usage of the three convolution schemes are analyzed.

Consider vectorized d-dimensional image data x of size N =
∏d

i=1 ni, vectorized d-

dimensional convolution kernel h denote the of size K, K =
∏d

i=1 ki. ni is the size of
x in the ith dimension. ki is the size of h in the ith dimension. As discussed in section
2.3.1, for direct convolution, it has a computational complexity of O(NK), and peak
memory usage C(N+K), where C represents memory per pixel. Define the size of zero

padding, Np =
∏d

i=1(ni+ ki− 1). The FFT-based convolution achieves a more efficient
complexity of O(Np logNp) but requires a theoretical peak memory of approximately

26

7CNp. The overlap-add method has a complexity of O(N logK), and its peak memory
usage is approximately 2C(N +K).

When comparing the three convolution algorithms, it is more efficient to use the overlap
and add convolution method when K ≪ N . When K ≈ N the overlap and add
convolution are equivalent to FFT-convolution.

Now the costs for three convolution schemes, yref, yc, and ymulti are calculated and
compared.

3.3.1 Computational cost of yref

For the convolution scheme using the full PSF as the convolution kernel, i.e. yref,
the kernel size K is equal to N , using overlap and add convolution will not improve
efficiency. Thus, FFT-based convolution is implemented. The padding size is N ref

p =∏d
i=1(2ni − 1) ≈ 2d

∏d
i=1 ni = 2dN . The computational complexity for yref is:

O(N ref
p log(N ref

p)) ≈ O(2dN log(2dN)).

And the peak memory for yref is:

7CN ref
p ≈ 7 · 2dCN

3.3.2 Computational cost of yc

For the convolution scheme yc, which uses hc as the convolution kernel. Define the size
of hc as Kc, and Kc ≪ N , it is more efficient to use overlap and add convolution. The
computational complexity is O(N log(Kc)). The theoretical peak memory is 2C(N +
Kc).

3.3.3 Computational cost of ymulti

For the multi-resolution convolution scheme ymulti, different types of convolution are
implemented in multiple steps.

1. The convolution of x and hc: as discussed in 3.3.2, overlap and add convolution
is implemented. Define Kc the size of hc. The computational complexity is:
O(N logKc) and the peak memory is 2C(N +Kc)

2. Convolution of polyphase components of lowpass filter g1 and x: the
polyphase components of g1 and x, denoted as as g1,i and xi respectively, where

i = 0, · · · ,M − 1,. The size of xi is
∏d

i=1
ni

M
= N

Md , and the size of g1,i is
Ng1

M
.

There are M convolutions for each polyphase component. The convolutions are
separable and utilize the overlap-add method. The computational cost for con-
volving each polyphase component is given by:

O(
d∑

i=1

ni

M
log(

Ng1

M
)).

27

In total, the M convolutions across polyphase components have computational
complexity of:

M ·O(
d∑

i=1

ni

M
log(

Ng1

M
)) = O(

d∑
i=1

ni log(
Ng1

M
)).

The peak memory required along dimension i is:

2C(ni +
Ng1

M
)

Since we are applying separable convolution, the peak memory usage will be
driven by the largest memory requirement across all dimensions. Typically, the
dimension with the largest size ni will dominate, so the peak memory usage is:

2C(max(n1, · · · , nd) +
Ng

M
)

3. Convolution of polyphase components of lowpass filter g1 and hs: since
hs and x are of the same size, the computational cost is the same as that of the
previous step.

4. Convolution of xd and hsd: FFT-convolution is implemented. Both xd and hsd

are of the size
∏d

i=1
ni

M
= N

Md . The zero padding size for FFT-convolution is

Nmulti
p =

d∏
i=1

(
ni

M
+

ni

M
− 1) ≈ (

2

M
)dN.

The computational complexity is:

O(Nmulti
p logNmulti

p) = O((
2

M
)dN log((

2

M
)dN)) ≈ O((

2

M
)dN logN).

The peak memory is 7CNp = 7CN(2
M
)d.

5. Convolution of low-pass filter g2 and ysd: separable overlap and add convolu-
tion is implemented. The size of ysd is

∏d
i=1 ni = N and the size of g2 is Ng2 .

The computational complexity is:
∑d

i=1O(ni logNg2), and the peak memory is
2C(max(n1, · · · , nd) +Ng2).

Combining the steps above, ymulti has computational complexity:

O

(
N logKc + 2

d∑
i=1

ni log(
Ng1

M
) + (

2

M
)dN logN +

d∑
i=1

ni logNg2

)

≈ O

(
(
2

M
)dN logN

)
, since Kc, Ng1 , Ng2 ≪ N.

28

The theoretical peak memory storage is computed by taking the maximum peak mem-
ory from each step:

max{2C(N +Kc),
2C

Md
(N +Ng1), 7CN(

2

M
)d, 2C(N + (4M + 1))} = 7CN(

2

M
)d

Compared to the cost of yref, ymulti decreases the computational complexity and peak
memory by Md.

In summary, the proposed multiresolution convolution scheme efficiently reduces com-
putational cost by leveraging the special structure of the PSF. By retaining the central
part of the PSF and downsampling the sidelobes, the method balances accuracy and
computational efficiency. This approach is particularly useful for large-scale image
data, where direct convolutions are computationally expensive. Typical decimation
factors M range from 2 to 8, with higher values of M offering greater reductions in
memory and computation, though at the cost of some accuracy. The use of polyphase
decomposition further reduces computational cost by enabling smaller convolutions on
downsampled data. This scheme significantly improves performance, particularly when
combined with FFT-based and overlap-and-add convolutions.

29

References

[1] A. Oppenheim, “Discrete-time signal processing,” Prentice Hall google schola,
vol. 3, pp. 804–809, 1999.

[2] F. J. Harris, “On the use of windows for harmonic analysis with the discrete
fourier transform,” Proceedings of the IEEE, vol. 66, no. 1, pp. 51–83, 1978.

[3] F. J. Harris, Multirate signal processing for communication systems. River Pub-
lishers, 2022.

[4] B. Porat, A Course in Digital Signal Processing, 1st. USA: John Wiley & Sons,
Inc., 1996, isbn: 0471149616.

[5] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,” SIAM
review, vol. 51, no. 3, pp. 455–500, 2009.

30

Results 4
4.1 Performance metrics

In this project, we assess the computational cost and accuracy of each convolution
algorithm. To assess computational cost, we use peak memory usage and computation
time. To evaluate accuracy performances, three metrics are implemented: Normalized
Mean Squared Error (NMSE), Peak Signal-to-Noise Ratio (PSNR), and Structural
Similarity Index (SSIM).

4.1.1 Normalized Mean Squared Error (NMSE)

Normalized Mean Squared Error (NMSE) is a metric used to quantify the difference
between the original image and the reconstructed image. It is defined as:

NMSE =

∑
i,j (xij − x̂ij)

2∑
i,j x

2
ij

(4.1)

where xij represents the intensity value of the original image at pixel (i, j), and x̂ij

represents the intensity value of the reconstructed image at the same pixel. NMSE
provides a measure of the approximaion error, normalized by the energy of the origi-
nal image, making it useful for comparing the performance of different deconvolution
methods regardless of the image’s absolute intensity values.

4.1.2 Peak Signal-to-Noise Ratio (PSNR)

Peak Signal-to-Noise Ratio (PSNR) is another metric used to measure the quality of
the reconstructed image. PSNR is defined as:

PSNR = 20 log10

(
xmax√
MSE

)
(4.2)

where xmax is the maximum pixel value of the image, and MSE is the Mean Squared
Error between the original and reconstructed images given by:

MSE =
1

mn

m∑
i=1

n∑
j=1

(xij − x̂ij)
2 (4.3)

31

A higher PSNR value indicates better image quality and lower reconstruction error.
PSNR is effective in measuring the fidelity of the reconstruction in terms of the pixel
intensity levels.

4.1.3 Structural Similarity Index (SSIM)

Structural Similarity Index (SSIM) [1] is a perceptual metric that assesses the visual
impact of differences between the original and reconstructed images. Unlike NMSE
and PSNR, SSIM considers changes in structural information, luminance, and contrast.
SSIM is defined as:

SSIM(x, x̂) =
(2µxµx̂ + C1)(2σxx̂ + C2)

(µ2
x + µ2

x̂ + C1)(σ2
x + σ2

x̂ + C2)

(4.4)

where µx and µx̂ are the mean intensities, σ2
x and σ2

x̂ are the variances, and σxx̂ is
the covariance of the original and reconstructed images, respectively. C1 and C2 are
constants to stabilize the division. SSIM values range from 0 to 1, with 1 indicating
best structural similarity.

4.2 Convolution results

In this section, we analyze the results of three convolution schemes to validate the accu-
racy of the proposed convolution scheme using different dataset scenarios, specifically
2D and 3D image data. The schemes are implanted on Pyxu [2]. Furthermore, we
investigate the relationship between the accuracy of the convolution schemes, compu-
tational cost, and the energy of the PSF. Based on this analysis, we aim to develop a
method to select optimal parameters for the convolution scheme, balancing accuracy
and computational efficiency.

4.2.1 Convolution with 2D images

We performed 3 convolution schemes using a 2D sinusoidal Siemens star image of size
1024 × 1024 and a 2D simulated PSF of the same size [3].

Figure 4.1 shows the separated PSF components hc and hs, and the results of the
convolution yref and ymulti for r = 21 and M = 2. From the results, there are no
aliasing effects or artifacts present in ymulti. Numerical results of yref, yc, and ymulti are
shown in Table 4.1

From the table, although yc achieved the lowest peak memory requirement and time
usage, it is not accurate, with an NMSE of 10.99%. With downsampling parameter

32

Figure 4.1: Results of 2D convolution

Method r M Energy[%] Time[s] Peak Memory[Mb] NMSE[%] SSIM PSNR[dB]

yref - - 100.000 0.226 405.156 - - -

yc 21 - 92.349 0.030 278.08 10.99 0.936 20.194

ymulti 21 4 92.349 0.092 229.922 0.0087 0.996 51.323

ymulti 21 2 92.349 0.111 230.109 5.6×10−5 0.999 73.120

Table 4.1: Performances with different convolution parameters

M=2, ymulti decreases the cost of computation by approximately half while maintain-
ing high accuracy. Additionally, using a larger downsampling factor does not bring
significant improvement in computational cost.

Figure 4.2 shows the energy contained in hc as r increases. It further demonstrates
that most of the energy on PFS is concentrated in a small portion of the PSF. In this
case, when r = 50, Kc = 101 and hc takes approximately 9.86% of the size of PSF but
contains 99.99% of the energy.

To determine an appropriate range for the decimation factor M , the accuracy of ymulti

as a function of M is illustrated in Figure 4.3. Here r = 20, and hc contains 90% of
PSF’s energy. As M increases, the accuracy of ymulti declines. However, for M = 2 and
M = 4, high accuracy is still maintained, with NMSE remaining below 0.0023% and
SSIM approaching 1.

Figure 4.4 shows the accuracy metrics of 3 convolution schemes over r and energy
contained in hc. Results of NMSE and SSIM are shown in log scale. Accuracy increases
significantly when the energy of hc is between 80% to 100%. Thus, choosing r such
that the energy of hc is between 80% to 100%, as shown in Figure 4.2, suggests that
selecting r between 15 to 30 would achieve high accuracy. Since ymulti schemes exhibit
better accuracy compared to yc, this highlights the performance gains achieved by

33

Figure 4.2: Energy of hc over r

Figure 4.3: Performance metrics of ymulti for different decimation factors M

incorporating information from the sidelobes hs.

34

(a) (b)

(c) (d)

(e) (f)

Figure 4.4: Accuracy of convolutions schemes over r

Figure 4.5 shows the computation time and the peak memory over r. These results align
with the theoretical analysis in Section 2.3.1. Both time and memory requirements
decreased significantly compared to yref. However the reduction is less than Md folds,
which could be due to the computation overhead.

Additionally, with yc and ymulti both computation time and peak memory do not vary
much with changes in r. This matches the theoretical estimation of the complexity and
peak memory. Both of them depend on the size of the image N and the downsampling
factor M , but not on r.

35

(a) (b)

Figure 4.5: Computation cost over r

The theoretical and real peak memory results with different data sizes N are shown in
Figure 4.6. From the Figure, the theoretical results and the experimental ones follow
a similar trend, but there is an overhead for experimental peak memory results.

Figure 4.6: Peak memory results with different data size

4.2.2 Convolution with 3D image

The dataset is shown in Figure 4.7a. It consists of synthetic 3D data featuring six
parallel hollow bars, and a theoretical microscopic PSF (Figure 4.7c). The image size
is 256x256 pixels with 128 z-slices.

The convolution results are shown Figure 4.8. According to the result, it shows no
aliasing or artifacts.

36

(a) 3D hollow bars data
(b) Maximum intensity projec-
tion of 3D hollow bar

(c) Maximum intensity projec-
tion of 3D PSF

Figure 4.7: 3D hollow bar data and PSF

Figure 4.8: Convolution results of 3D hollow bar data

To simplify the analysis, set α = FWHMx

FWHMz
and rx = αrz. Here, FWHMz and FWHMx

represent the full width at half maximum of the PSF along the z and x directions,
respectively. Based on this setting, when r is increased in the x and y directions,
rz in the z direction increases simultaneously. The performance with varying r is
shown in Figure 4.9. The overall results align with the 2D performance results. They
also demonstrate that by keeping the side slopes part hs, the ymulti achieves higher
performance increases.

The computational cost is illustrated in Figure 4.10. Both ymulti and yc reduced the
computational cost by approximately threefold in terms of both time and memory.
However, this reduction is less than the theoretical prediction. One possible explanation
for this discrepancy is memory overhead, suggesting that there is still potential for
further optimization to minimize memory usage.

37

(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Accuracies of convolution schemes with 3D images,varying r and rz = αr

4.3 Deconvolution

After validating the proposed convolution scheme’s ability to achieve high accuracy and
reduce computational costs, we aim to evaluate its performance within a deconvolu-
tion algorithm. For this purpose, we implemented the Richardson-Lucy deconvolution
algorithm using the ymulti convolution scheme. The method was initially tested on
simulated 3D data, followed by real-world data.

38

(a) (b)

Figure 4.10: Computation cost of 3D image data over r

4.3.1 3D simulation data

Figure 4.11 and Table 4.2 show deconvolution results after 30 iterations of Richardson-
Lucy algorithm. Performance with similar NMSE and PSNR values was achieved with
half of the time.

(a) y (b) x̂ref (c) x̂multi

Figure 4.11: Comparison of y, x̂ref, and x̂multi

Methods Iterations Computation Time (s) NMSE (%) PSNR (dB)

x̂ref 30 129.17 68.5204 26.69

x̂multi 30 54.63 68.4197 26.60

Table 4.2: R-L deconvolution results

4.3.2 Deconvolution with real data

The deconvolution test dataset from [4] consists of HeLa cells stained for action, ac-
quired on a confocal Zeiss LSM710 with a theoretical PSF generated with a PSF gen-

39

erator. The image size is 1024× 1024 with 41 z-stacks.

Since no ground truth is available, we cannot apply the metrics mentioned above.
Instead, we compare the results visually and consider the deconvolution result x̂ref as
reference. The results are shown in Figure 4.12. After 30 iterations, the resolution of
the images increases, with sharpened details. The NMSE between x̂ref and x̂multi is
0.13%.

(a)

(b)

Figure 4.12: Deconvolution results with 3D real data

To further examine the computational cost, the peak memory usage for a single con-
volution operation with this dataset across different convolution methods is presented
alongside the accuracy metrics (NMSE) in Figure 4.13. For convolution using the full
PSF, the peak memory reaches approximately 16.14 GB, which exceeds the memory
limit of many laptops, making it impractical to run the deconvolution algorithms in
such environments.

In contrast, multiresolution methods offer a significant reduction in memory usage. For

40

instance, with a decimation factor of M = 2, the peak memory drops to around 6.93
GB, while still achieving a very low NMSE of 0.013%.

As the decimation factor increases, the memory consumption continues to decrease. For
M = 4, the peak memory usage is further reduced to 5.82 GB, with a minor increase
in NMSE to 0.026%. When M = 8, the peak memory is minimized to 5.67 GB, but
this reduction comes at the cost of a noticeable drop in accuracy, with NMSE rising to
0.505%. Additionally, the convolution using hc requires even less memory, at 4.90 GB,
but suffers from reduced accuracy, with NMSE reaching 0.987%.

These results highlight the benefits of our multiresolution convolution scheme. It sig-
nificantly reduces peak memory consumption while maintaining high accuracy, demon-
strating its practicality for memory-constrained environments.

Figure 4.13: Peak memory usage and NMSE for different convolution methods

41

References

[1] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assess-
ment: From error visibility to structural similarity,” IEEE transactions on image
processing, vol. 13, no. 4, pp. 600–612, 2004.

[2] M. Simeoni, S. Kashani, J. Rué-Queralt, and P. Developers, Pyxu-org/pyxu: Pyxu.
doi: 10.5281/zenodo.4486431. [Online]. Available: https://doi.org/10.
5281/zenodo.4486431.

[3] D. Sage, L. Donati, F. Soulez, et al., “Deconvolutionlab2: An open-source software
for deconvolution microscopy,” Methods, vol. 115, pp. 28–41, 2017.

[4] R. Guiet, Deconvolution test dataset, version v0, Zenodo, Jul. 2021. doi: 10.5281/
zenodo.5101351. [Online]. Available: https://doi.org/10.5281/zenodo.
5101351.

42

https://doi.org/10.5281/zenodo.4486431
https://doi.org/10.5281/zenodo.4486431
https://doi.org/10.5281/zenodo.4486431
https://doi.org/10.5281/zenodo.5101351
https://doi.org/10.5281/zenodo.5101351
https://doi.org/10.5281/zenodo.5101351
https://doi.org/10.5281/zenodo.5101351

Conclusions and Future work 5
5.1 Convolution

This project introduced a multi-resolution convolution scheme that addresses the com-
putational challenges in microscopy image processing, particularly for large-scale 3D
data. The motivation for this approach stems from the significant computational load
imposed by convolutions, which are essential for iterative deconvolution algorithms
used in microscopy. By leveraging the structure of the Point Spread Function (PSF),
our method segments the PSF into a central, energy-dense part and its sidelobes, and
implements multi-resolution signal processing methods. This allows for downsampling
of the latter to reduce computational complexity.

The main conclusions of the study are as follows:

The proposed multi-resolution convolution method achieves a significant reduction in
memory usage and computation time without sacrificing accuracy. The technique is
highly effective even for large datasets, both in 2D and 3D imaging. The method
exploits the fact that most of the PSF energy is concentrated in a small central region,
enabling efficient downsampling of the sidelobes while maintaining overall image quality.

In comparative performance tests, the multi-resolution convolution consistently out-
performed traditional full PSF-based convolution methods, offering similar levels of
accuracy (based on NMSE, PSNR, and SSIM metrics) while halving computational
costs. When optimally chosen, M = 2 or M = 4, the scheme delivered significant
improvements in efficiency with minimal loss of precision.

The versatility of the approach was demonstrated across different microscopy modali-
ties, making it broadly applicable to various imaging techniques where the PSF struc-
ture allows for similar segmentation. By separating the central, high-energy part of the
PSF from the less critical sidelobes, the method can be extended to higher-dimensional
datasets and other imaging systems beyond microscopy.

The effectiveness of this approach was further demonstrated in its integration into
the Richardson-Lucy deconvolution algorithm. Both synthetic and real microscopy
data showed enhanced image quality, with faster processing times, making this method
particularly suitable for practical applications in biological imaging where large datasets
and iterative deconvolution are common.

43

5.2 Future work

There are several promising directions for future research and improvement of the
multi-resolution convolution method:

First, implementing polyphase decomposition during the upsampling and interpolation
steps can bring further improvement. This could reduce computational cost even fur-
ther by optimizing the multiresolution scheme, leading to more efficient convolution
operations.

Another important potential improvement is optimizing memory usage. Although the
current method achieves reductions in memory consumption, there is still a gap be-
tween the experimental results and the theoretical minimum. Further refinement of
the algorithm could bridge this gap. Additionally, hardware acceleration could be im-
plemented by leveraging GPUs and parallelizing the convolutions, which would further
enhance processing speeds and efficiency.

Enhancing the PSF segmentation strategy is another potential improvement. Currently,
a fixed radius is used to separate the central part of the PSF from its sidelobes. The
PSF could be divided into multiple regions and downsampled with varying decimation
factors, depending on the energy distribution in each section, further optimizing the
process.

Additionally, establishing a theoretical lower bound for the errors in the multiresolution
convolution scheme would be valuable. Determining such a bound would not only serve
as a benchmark for the algorithm’s accuracy but also offer insights on choosing the
parameters based on the hardware’s memory condition and the desired accuracy.

Finally, extending the multiresolution convolution scheme beyond deconvolution to
other algorithms and application domains represents an exciting direction for future
research. For other microscopy deconvolution algorithms that require convolution as
part of their implementation, the multiresolution scheme can be applied to reduce
computational costs. Additionally, this approach could be adapted to benefit other
areas of image processing where convolution is used, particularly when the kernel has
a structure similar to the PSF.

In summary, this project presents a solution to the out-of-memory challenges in mi-
croscopy image processing by providing a convolution scheme that balances computa-
tional efficiency with high accuracy. With further optimization and development, the
multi-resolution convolution scheme holds promise for a wide range of applications in
both microscopy imaging and broader image processing fields.

44

	Abstract
	Acknowledgments
	Introduction
	Microscope imaging
	Motivations for deconvolution
	Point Spread Function
	Outline

	Problem formulation
	Forward model
	Deconvolution methods
	Direct inversion
	Iterative deconvolution

	Efficient Convolution
	Convolution algorithms for 1D signal
	Convolution methods with d-dimensional signal

	Method
	Presentation of the main idea
	Multi-resolution convolution scheme
	Steps of the Multi-resolution convolution scheme
	Further reduce the computational cost through the polyphase decomposition
	Generalization to d -Dimensional Data

	Computational cost of the three convolution schemes
	Computational cost of yref
	Computational cost of yc
	Computational cost of ymulti

	Results
	Performance metrics
	Normalized Mean Squared Error (NMSE)
	Peak Signal-to-Noise Ratio (PSNR)
	Structural Similarity Index (SSIM)

	Convolution results
	Convolution with 2D images
	Convolution with 3D image

	Deconvolution
	3D simulation data
	Deconvolution with real data

	Conclusions and Future work
	Convolution
	Future work

