

Delft University of Technology

Automatically Repairing Web Application Firewalls Based on Successful SQL Injection
Attacks

Appelt, Dennis; Panichella, Annibale; Briand, Lionel

DOI
10.1109/ISSRE.2017.28
Publication date
2017
Document Version
Submitted manuscript
Published in
2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE)

Citation (APA)
Appelt, D., Panichella, A., & Briand, L. (2017). Automatically Repairing Web Application Firewalls Based on
Successful SQL Injection Attacks. In 2017 IEEE 28th International Symposium on Software Reliability
Engineering (ISSRE) (pp. 1-12). IEEE. https://doi.org/10.1109/ISSRE.2017.28

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ISSRE.2017.28
https://doi.org/10.1109/ISSRE.2017.28

Automatically Repairing Web Application Firewalls
Based on Successful SQL Injection Attacks

Dennis Appelt, Annibale Panichella, Lionel Briand
Interdisciplinary Centre for Security, Reliability and Trust (SnT)

University of Luxembourg
dennis.appelt@gmail.com, annibale.panichella@uni.lu, lionel.briand@uni.lu

Abstract—Testing and fixing Web Application Firewalls
(WAFs) are two relevant and complementary challenges for
security analysts. Automated testing helps to cost-effectively
detect vulnerabilities in a WAF by generating effective test
cases, i.e., attacks. Once vulnerabilities have been identified,
the WAF needs to be fixed by augmenting its rule set to
filter attacks without blocking legitimate requests. However,
existing research suggests that rule sets are very difficult
to understand and too complex to be manually fixed. In
this paper, we formalise the problem of fixing vulnerable
WAFs as a combinatorial optimisation problem. To solve it,
we propose an automated approach that combines machine
learning with multi-objective genetic algorithms. Given a set
of legitimate requests and bypassing SQL injection attacks,
our approach automatically infers regular expressions that,
when added to the WAF’s rule set, prevent many attacks while
letting legitimate requests go through. Our empirical evaluation
based on both open-source and proprietary WAFs shows that
the generated filter rules are effective at blocking previously
identified and successful SQL injection attacks (recall between
54.6% and 98.3%), while triggering in most cases no or few
false positives (false positive rate between 0% and 2%).

Keywords-Web Application Firewalls, Regular Expression
Inference, Web Security

I. INTRODUCTION

Nowadays, IT companies are required to constantly im-
prove their protection mechanisms to cope with the increas-
ing number and complexity of cyber-attacks. A good practice
consists of deploying a stratified protection infrastructure
working at different levels, including application level, net-
work level and communication protocol level [21], [52].

Web Application Firewalls (WAFs) are the most common
application-level mechanisms for mitigating and preventing
specific types of attacks, such as SQL Injection or Cross-
Site scripting. WAFs examine incoming HTTP traffic and
decide whether to accept or to discard each request before
forwarding it to the protected application. The decision
procedure is based on a rule set, i.e., a sequence of regular
expressions designed to detect many forms of attacks.

Defining effective rule sets is extremely important to
reduce the attack surface that can be exploited by attackers.
However, as noticed by Wool [56], corporate firewalls often
enforce poorly written regular expressions in practice. This
is due to the fact that understanding and analysing how a

firewall behaves is notoriously difficult and maintaining a
proper configuration is error-prone [57].

In the context of WAF testing, most of research effort has
been devoted to generating attacks able to bypass WAFs
using various automated testing approaches [1], [2], [4],
[22], [41]. While identifying security flaws helps highlight
the inadequacy of existing configurations, little attention has
been paid to supporting the refinement of inadequate rule
sets. Indeed, once attacks are found, either with automated
tools or by analysing the HTTP traffic, security analysts
have to add additional rules to block the newly discovered
attacks without preventing legitimate traffic. As highlighted
by previous studies [10], [11], the average time required
to fix the WAF configuration is higher than the average
time required by a hacker to find and exploit a vulnerability.
Therefore, there is a need for automated fixing strategies.

In this paper, we focus on the problem of inferring regular
expressions to fix WAFs rule sets in the context of SQL
injection (SQLi) vulnerabilities. According to Clarke [21],
adding new rules to fix WAFs requires to consider two
contrasting goals: (i) maximise the number of known SQLi
attacks blocked by the firewall (recall); and (ii) minimising
the number of legitimate requests improperly blocked (false
positive). The first goal is very intuitive since we want to
fix as many security flaws as possible; the latter goal is less
intuitive but equally critical since, depending on the context,
false positives may render an application unusable [21].
Finally, choosing the most appropriate trade-off between the
two goals strictly depends on the application type and on the
security mechanisms in place to complement WAFs [21].

For these reasons, we recast the derivation of new firewall
rules as a multi-objective search problem, with recall and
false positive rate as objectives to optimise. In particular, we
use a well-known multi-objective genetic algorithm, namely
NSGA-II [23], to derive Pareto efficient rule sets learning
from both past legitimate traffic and SQLi attacks automat-
ically discovered with a black-box testing technique [4].
We evaluated our multi-objective technique on one popular
open-source WAF, namely ModSecurity for Apache HTTP
Server, and one proprietary WAF from a financial service
provider. The results show that the generated rules are
effective at blocking many of the previously bypassing

attacks (recall between 54.6% and 98.3%), while inducing
a very small number of false positives (false positive rate
between 0%, most of the time, and 2%). This suggests that
our solution is promising to help automatically repairing
WAFs based on testing results, though such repair is partial.

As additional benefit, the multi-objective approach pro-
vides multiple Pareto efficient rule-sets representing optimal
trade-offs between the two objectives. This allows security
analysts to choose the rule set that best fit their needs, e.g.,
the rule set able to block all known SQLi attacks (however
with more false positive), the rule set incurring the lowest
false positive rate (however leaving few attacks to block
with other protection mechanisms), or a rule set striking a
compromise between the two objectives.

II. BACKGROUND

SQL Injection (SQLi) attacks have received much atten-
tion from academia and practitioners [3], [5], [17], [19],
[25]–[28], [33], [39], [49], [50]. Yet SQLi incidents occur on
a frequent basis since developers work under pressure and
are not always fully aware of injection issues. The Open
Web Application Security Project (OWASP) ranks injection
attacks as the most dangerous web attacks, while stating that
their impact is severe and their prevalence is common.1

SQLi is a widely-recognised attack technique in which
attackers inject malicious SQL code fragments into input
parameters. When web applications lack proper validation
or sanitisation of input parameters, an attacker might be
able to construct input values that change the behaviour of
the resulting SQL statements. Such SQL queries may result
in arbitrary actions on the application database, possibly
violating its security properties, e.g., exposure of sensitive
data, insertion or alteration of data without authorisation,
loss of data, or even taking control of the database server.

Web applications with high security requirements are pro-
tected by a stratified security infrastructure which commonly
includes WAFs. A WAF is placed in front of the web
application to be protected and it examines every incoming
request before forwarding it to the target application. The
WAF hands over the request to the web application only if
the request complies with the firewall’s rule set.

A common approach to define the WAF’s rule set is using
a black-list. A black-list contains string patterns, typically
defined as regular expressions. Requests recognised by these
patterns are considered to be malicious attacks (e.g., SQLi)
and, therefore, are blocked. For example, the following
regular expression describes the syntax for SQL comments,
e.g., /**/ or #, which are frequently used in SQLi attacks:

/*!?|*/|[’;]--|--[\s\r\n\v\f]
|(?:--[ˆ-]*?-)
|([ˆ\-&])#.*?[\s\r\n\v\f]|;?\\x00

1For details refer to OWASP Top 10 2013

There are several reasons why a WAF may have loopholes
and provide insufficient protection, including an incomplete
rule set, implementation bugs, or misconfiguration. One way
to ensure the resilience of a WAF against attacks is to
rely on an automated testing procedure that thoroughly and
efficiently detects its vulnerabilities.

Regarding the generation of bypassing attacks, our pre-
vious papers [4], [6] addressed this challenge for SQL
injections, one of the main types of vulnerabilities observed
in practice. In particular, we proposed a black-box approach
that iteratively generates new candidate attacks learning from
past test execution results [4]. The approach starts with an
initial set of potential attacks that are generated using a BNF
grammar suitably defined to cover various type of SQLi
attacks. These tests are then executed against the WAF under
test and they are labeled as “P” or “B” depending on whether
they bypass or they are blocked by the firewall, respectively.
Tests and corresponding labels are used as training dataset to
learn Decision Tree (DT) models [29], [47] with the purpose
of determining which string patterns are associated with
bypassing attacks. The string patterns that are more likely
to lead to actual SQLi attacks (according to a DT) are then
used to create new test cases to execute against the WAF in
the next iterations of the generation process. Periodically, the
DT model is re-trained with bypassing and blocked attacks
that have been generated since the latest training process.

While this testing technique is able to effectively find
bypassing SQLi attacks, it does not help security analysts in
fixing a vulnerable WAF. Indeed, newly discovered attacks
only represent a starting point for the analysts who are in
charge of manually improving the WAF’s rule set. Bypassing
attacks found with automated testing techniques, together
with legitimate traffic, represent the input for the approach
proposed in this paper, which aims to fix vulnerable WAFs
to the maximum extent possible.

III. APPROACH

Consider the task of inferring some WAF filter rule, i.e. a
regex, from a set of known bypassing attacks. The problem
by itself can be viewed as a search problem where the goal is
to find, among the set of all possible regular expressions, the
regex that matches all bypassing attacks without matching
any legitimate request. However, such a trivial formulation
leads to an extremely large space of regexes to consider.

In our previous paper on SQLi attack generation [4],
[6], we found that machine learning approaches, and DT
in particular, can be used to determine string patterns that
are more likely to characterise attacks bypassing the WAF.
We argue that these string patterns are natural candidates to
be translated into regular expressions since they will match
most of the attacks in the DT learning set. In other words,
these string patterns help focusing the search on sub-regions
of the regex space that are more likely to contain “good”
candidate solutions. Starting from this observation, in this

Table I
AN EXAMPLE OF ATTACK DECOMPOSITIONS AND THEIR ENCODING.

t.id vector label
1 〈s1, s2, s3〉 B
2 〈s1, s2, s4〉 B
3 〈s4, s5〉 P

t.id s1 s2 s3 s4 s5 clz
1 1 1 1 0 0 B
2 1 1 0 1 0 B
3 0 0 0 1 1 P

P B

S5

01

1 0
B

S3

Figure 1. An example of a DT obtained from the data in Table I.

paper we propose a two-step approach: we first use DT
models to derive string patterns from SQLi attacks; then,
starting from the regexes matching these string patterns,
we apply genetic algorithms to optimize them to block as
many attacks as possible while blocking as few legitimate
requests as possible. The two steps are described in the next
subsections.

A. Extracting Attack Patterns with Decision Tree

In the first step, we build DT models starting from the
set of SQLi attacks that either are blocked by or bypass the
WAF under test. To this aim, we first decompose the attacks
into slices using the procedure we introduced in our previous
paper on SQLi attack generation [4], [6]. In particular, each
attack can be viewed as a parse tree and its slices are sub-
trees that correspond to attack sub-strings [4]. Then, we form
a dataset in which each instance encodes an attack, which
is characterised by the presence and absence of slices and a
label indicating whether the attack bypassed or was blocked.

As a concrete example, let us assume we have three
attacks t1, t2, t3; the first two are blocked while the last one
bypasses a WAF. Their decompositions into slices and labels
are shown on the left side of Table I, and their encoded
presentation on the right side of the table. In total, there
are five unique slices from all the attacks and they become
attributes of the training data set fed to a machine learning
algorithm. If a slice appears in an attack, its corresponding
attribute value in the training data is “1”, and otherwise “0”.

Based on the obtained dataset, we train a DT model to
derive which slices or combinations of slices are associated
with attacks bypassing or being blocked by the WAF. In a
DT, a node represents an attribute from a data set, each
branch represents a possible value of an attribute, and a
leaf node represents a classification for all instances that
reach this node. In the context of SQLi attack generation,
each node represents a slice and the branches from the node
can be “0” or “1”, indicating whether the slice is absent
or present. A leaf node classifies instances into blocked or
bypassing and is labelled accordingly with “B” or “P”.

Figure 1 presents a decision tree learned from the example
data set in Table I. It has three leaf nodes and two interme-

diate ones associated with slices s3 and s5. The paths from
the root node of a decision tree to its leaf nodes embody the
combinations of slices which are likely to be determining
conditions for attacks to bypass or be blocked. We define
the concept of path condition as [4]:

Definition 1 (Path Condition). A path condition represents
a set of slices that the machine learning technique identifies
as good predictors of the attack’s classification into blocked
or bypassing. The path condition is represented as a con-
junction

∧k
i (si = val), in which val = 1 | 0, and k is the

number of relevant slices.

Considering the decision tree in Figure 1 again, for the
attack t1, the attribute s3 is present in its slice vector
〈s1, s2, s3〉, and thus t1 follows the left branch and the path
condition is simply (s3 = 1). Similarly, for the attack t3
with slice vector 〈s4, s5〉, since attribute s3 is not present,
the right branch is followed leading to attribute s5, which
is present in the slice vector. Therefore, the resulting path
condition for t3 is (s3 = 0 ∧ s5 = 1).

B. Defining WAF Rules: A Search Problem

Given the results of the DT models, our search space is
defined by path conditions as follows:

Definition 2 (Search Space). Let P = {p1, . . . , pn} be a
set of path conditions and let Si = {si1, . . . , sim} be the
set of slices that appear as terms in some path condition
pi = si1 ∧ . . . ∧ sim, pi ∈ P . The search space S for
the WAF fixing problem is defined by the Cartesian product
S = P (S1)×. . .×P (Sn) , where P (Si) denotes the power
set of Si.

According to Definition 2, a candidate solution in the
search space S is a n-tuple, which has one element per path
condition p ∈ P and each element in the tuple represents a
combination of slices from the corresponding path condition.

For example, let us consider the three path conditions
and their corresponding power sets shown in Table II.
A candidate solution in this example is a 3-tuple, e.g.
c1 = ({s11, s12}, {s21}, {s33}). The first element of the
tuple represents a combination of slices of p1, the second
element a combination of slices of p2, and the third element
a combination of slices p3. The first element of c1 can be
translated into regex r0, which identifies any attacks that
contain the slices s11 and s12. Similarly, the second and third
element can be translated into regex r1 and r2 that identify
attacks containing the slices s21 and s33, respectively. In
other words, each regex r0, r1, or r2 matches a distinct
set of attacks. The final regular expression able to block all
attacks can be defined as r = r0 | r1 | r2, i.e., r matches
the attacks that are matched by either r0, r1, or r2.

Given the final regex r, the problem consists of selecting
the subset of slices composing each regular expression ri in
r such as to block as many as possible known SQLi attacks.

Table II
AN EXAMPLE OF THREE PATH CONDITIONS AND THEIR POWER SETS.

Path Cond. Slices P (Si)

p1 {s11, s12} ∅, {s11}, {s12}, {s11, s12}
p2 {s21} ∅, {s21}
p3 {s31, s32, s33} ∅, {s31}, {s32}, {s33}, {s31, s32},

{s31, s33}, {s32, s33}, {s31, s32, s33}

However, some slices appearing in SQLi attacks (i.e., be-
longing to one or more path conditions) may also appear in
legitimate requests. As a consequence, the selection of some
slices to form the final regex r may result into a WAF rule
which blocks some legitimate requests as well. As pointed
out by Clarke [21], false positives must be avoided since they
can critically compromise normal web application behaviour
(e.g. the WAF blocks the authentication of legitimate users).
Therefore, to assess the quality of a solution, both SQLi
attacks and legitimate traffic should be taken into account.

Let R denote a set of requests that are processed by a
WAF such that A ⊂ R is a subset of malicious requests
and L ⊂ R is a subset of benign requests. Note that each
request is either malicious or benign and, thus, A∩L = ∅ and
A ∪ L = R. Let M(c,R) denote a set of matched requests
by applying a regex c to R, let Mtp(c,R) = {x | x ∈
A ∧ x ∈ M(c,R)} denote the set of true positive matches
and Mfp(c,R) = {x | x ∈ L ∧ x ∈ M(c,R)} the set of
false positive matches.

To assess the quality of a candidate solution we use
two well-known measures, false positive rate and recall,
that fit our security concerns: the former quantifies blocked
legitimate traffic while the latter measures how well we
detect attacks.

Definition 3 (Objective Functions). Given a solution c ∈ S
and a set R of request, we assess the quality of c with:

fpr(c,R) =
|Mfp(c,R)|
|L| rec(c,R) =

|Mtp(c,R)|
|A| (1)

A solution candidate is evaluated with respect to both
objective functions: optimal solutions maximise recall and
minimise the false positive rate. For the WAF Fixing
Problem, recall and false positive rate are two conflicting
objectives [21], because regular expressions that improve
recall may also increase the number of legitimate requests
being blocked. Therefore, solving this bi-objective search
problem consists of finding optimal trade-offs between recall
and false positive rate, which may lead to several solutions
forming a Pareto front [23]. To compare the quality of two
candidate solutions, we use the dominance ≺ relation:

Definition 4 (Dominated and non-dominated Solutions).
Given a candidate solution c ∈ S and a set R of requests,
c is said to be non-dominated if:

@ c′ ∈ S : (fpr(c, R) > fpr(c′, R) ∧ rec(c, R) ≤ rec(c′, R))

∨(fpr(c, R) ≥ fpr(c′, R) ∧ rec(c, R) < rec(c′, R))
(2)

Accordingly, c is said to be dominated if there is a c′ ∈ S
that satisfies Equation 2. In this case, we use the notation
c ≺ c′ to indicate that c’ dominates c.

In our problem context, the severity of both unblocked
SQLi attacks (false negatives) and blocked legitimate re-
quests (false positives) depends on the web application func-
tionality and on the security infrastructure in place to protect
it [21]. In general, false positives are more critical than
true negatives because they affect the interactions between
legitimate users and the application under protection [21]
and therefore affect the business or functional viability of
the application. For example, false positives may mean
that registered users cannot access a web application or
legitimate bank transfers are not allowed anymore after
fixing the WAF. On the other hand, to some extent, it may
be tolerable to let some SQLi attacks bypass the WAF if
other mechanisms of the infrastructure adequately protect
the application or are strengthened [21], e.g., by adding new
checks in the vulnerable source code.

Before accepting a solution candidate, the security analyst
has to consider how each false positive caused by the solu-
tion candidate impacts the functionality of the system under
test and possibly choose the next best solution candidate.
Therefore, we introduce a constraint on the number of false
positives to limit the required manual effort:

Definition 5 (Feasible Candidate Solution). We say c ∈ S
is a feasible candidate solution if it satisfies the constraint
|fpr(c,R)| < t , where t is a user-defined threshold for an
acceptable false positive rate. Additionally, X ⊆ S denotes
the set of all feasible candidate solutions. Based on the
constraint we define a function g that measures the degree
of constraint violation:

g(c) =

{
0 if c ∈ X
|Mfp(c,R)| − t if c /∈ X

(3)

The problem addressed in this paper can now formally be
defined as a constrained optimisation problem.

Definition 6 (WAF Fixing Problem). Given a set L ⊂ R
of benign requests, a set A ⊂ R of malicious requests, a
set of path conditions defining the search space S , and a
set X ⊆ S of feasible candidate solutions, then the WAF
Fixing Problem is to compute a set Copt :

Copt = {c | c ∈ X ∧ @ c′ ∈ X : c ≺ c′} (4)

According to Definition 6, the WAF Fixing Problem
consists of finding a set Copt of non-dominated solutions
in the space of feasible solutions.

C. Tailoring NSGA-II to the WAF Fixing Problem

To solve the WAF Fixing Problem, in this section we in-
troduce an approach based on a well-known multi-objective
genetic algorithm, namely NSGA-II [23]. We selected

Table III
AN EXAMPLE OF TWO CANDIDATE SOLUTIONS ENCODED AS

CHROMOSOMES BASED ON THE PATH CONDITIONS AND SLICES
DEPICTED IN TABLE II.

id Candidate Solution
c1 ({s11, s12}, {s21}, {s33})
c2 ({s12}, ∅, {s31, s33})

id p1 p2 p3
s11 s12 s21 s31 s32 s33

c1 1 1 1 0 0 1
c2 0 1 0 1 0 1

NSGA-II because it has been widely used in the software
engineering community to address problems with multiple
objectives [55], e.g., regression testing [30]. In addition, it is
applicable to multi-objective optimisation problems with a
constrained search space like the WAF Fixing Problem [23].

NSGA-II is a search heuristic that is inspired by the
evolutionary process in nature, where the fittest individuals
of a population prevail and pass their genes to their offspring.
Starting from a randomly generated initial population of
candidate solutions, NSGA-II generates an offspring pop-
ulation by performing crossover and mutation operations
on the individuals and by selecting the best candidate
solutions according to the dominance relation (Definition 4)
and crowding distance. The former mechanism reflects the
degree with which a candidate solution achieves the desired
objectives; the latter is in charge for maintaining diversity
between solutions. In the following, we describe how the
essential components of NSGA-II, i.e., chromosomes, se-
lection, crossover, mutation, and constraint handling, are
tailored to our context.

Chromosomes. A fundamental decision when using Ge-
netic Algorithms (GAs) is how to encode a candidate
solution and its properties. In the terminology of GAs, a
solution candidate is called a chromosome. A chromosome
is composed of several genes, each representing a possible
value of a decision variable in the candidate solution. In our
context, each path condition that is used to define the search
space is a gene of the chromosome and each slice that is
part of a path condition is encoded as a bit in the gene.

Table III shows an example of two candidate solutions
and their corresponding encoding as chromosomes. The path
conditions and slices used in this example are from the
previous example in Table II. As before, there are in total
three path conditions and, hence, the candidate solutions c1
and c2 are triplets. The first element of c1 and c2 represents
a combination of slices of path condition p1. For c1, the first
element is {s11, s12} and, thus, the chromosome encoding
of p1 is s11 = 1 and s12 = 1. For c2, the first element is
{s12} and, thus, the chromosome encoding of p1 is s11 = 0
and s12 = 1. The second and third element of c1 and c2 are
encoded in the same fashion.

Selection, Crossover, and Mutation. To efficiently sam-
ple the search space, NSGA-II creates new solution candi-
dates (children) by crossovering and mutating the chromo-
somes of candidates (parents) from the current population.
First, for each individual in the current population, a fitness
vector is calculated using our objective functions (Defini-

tion 3). Then, two parents are selected using a standard
binary tournament selection [40] and their chromosomes are
swapped starting from a randomly chosen gene in the chro-
mosome, i.e. single-point crossover [42]. Subsequently, each
child is mutated with a certain probability. We implement
the mutation operator as a bit-flip mutation, where each bit
of the chromosome is flipped with a certain probability.

Constraint Handling. To guide the search process to-
wards feasible solutions, we introduce a constraint in the
search space (Definition 5). We integrate the constraint
handling mechanism into the standard binary tournament
selection as suggested by the authors of NSGA-II [23].
Given two solutions i and j, which are selected to compete
in a binary tournament, there are three possible situations:
1) i and j are both feasible; 2) either i or j is feasible;
and 3) i and j are infeasible. For case 1), the usual binary
tournament is performed. For case 2), the feasible solution
is selected. For case 3), the solution with a lower constraint
violation degree is selected.

IV. EMPIRICAL EVALUATION

This section details the research questions and the case
studies used in this evaluation, and reports on results.

A. Subject Applications

We evaluate our multi-objective approach in two different
case studies: the first case study involves a widely-used,
open source WAF while the second one targets a proprietary
application with a WAF from a financial service provider that
processes several thousand transactions daily.

In the first case study, we assess ModSecurity2, which is
a popular open source WAF for the Apache HTTP Server.
The rule set used to detect malicious requests is the OWASP
Core Rule Set, which can detect a large number of common
web attacks like SQL Injection (SQLi) and is actively
developed by a community of security experts. Configuring
ModSecurity with the OWASP Core Rule Set is a popular
choice in practice [21]. In this study, ModSecurity is used
to protect Cyclos3, a popular online and mobile banking
software.

In the second case study, we assess a proprietary WAF
from a financial service provider. The WAF is configured to
protect a complex SOA system, which processes financial
transactions. To provide protection from malicious requests,
the WAF validates incoming requests in two steps. In the
first step, the values of each incoming request are validated
with respect to data types (e.g. string or numeric) and
boundary constraints, e.g. a credit card number is expected
to be a sequence of 16 to 19 digits. In a second step,
each value is checked to make sure that it does not contain
known malicious string patterns (i.e., using a SQLi blacklist)

2https://modsecurity.org
3http://www.cyclos.org

commonly used in attacks. Only when the request passes
both validation steps it is forwarded to the web services.

For both case studies, we collected SQLi attacks that are
not correctly identified by the WAF, i.e. bypassing attacks,
and a sample of benign requests. The benign requests rep-
resent the legitimate usage of the protected web application
and, thus, the evaluated WAF is expected to let these requests
pass. We collected the benign requests by executing the
functional test suite of the respective web application and
logging each HTTP request sent to the web application.
In general, legitimate requests can be easily collected by
monitoring and mining the daily HTTP traffic of the web
application being protected by WAFs. Instead, collecting
malicious requests is more difficult: they are smaller in
number and difficult to detect in advance. Therefore, we
executed the automated WAF testing strategy from our
previous work [4] (and briefly summarized in Section II) to
collect them. Notice that our attack generation approach is
not mandatory and therefore other tools (e.g., SqlMap4) can
be used to this aim. We used the approach in [4] because it
finds more SQLi attacks able to pass through the target WAF
(more effective) and in less amount of time (more efficient)
than random testing.

Computation time required for such experiments is po-
tentially extensive because of (i) a large number of web
service operations, (ii) a large number of attacks, (iii) a
large number of legitimate requests, (iv) a large number of
repetitions to evaluate randomised search algorithms (100
runs for each operation). As a result, we randomly selected
a subset of web service operations for the target applications
(and their WAFs). For the open source case study, we
selected three operations (doPayment, expireTicket,
simulatePayment) since we found that the number of
bypassing attacks does not vary significantly across the
tested web service operations. For the industrial case study,
on the contrary, we found that the number of bypassing
attacks does vary significantly depending on the tested
web service operation [6]. Therefore, we grouped the test
results into four groups having a similar number of by-
passing attacks. Then, for this experiment we randomly
selected one web service operation from each group (re-
ferred to as Operation1, Operation2, Operation3,
Operation4).

Table IV lists, for each selected operation, the total
number of benign requests, the total number of bypassing
attacks, and the number of path conditions learned from the
bypassing attacks as detailed in Section III-A. For brevity,
we refer to each of the seven combinations of operation,
benign requests, attacks, and path conditions as a dataset.

B. Research Questions
The two case studies aim at answering the following

research questions:

4https://sqlmap.org

Table IV
OVERVIEW OF THE CASE STUDIES.

Case Study Benign Operation #Bypassing #Path
Requests Attacks Conditions

Open Source 1567 doPayment 1234 84
expireTicket 1127 82
simulatePayment 1265 88

Industrial 2600 Operation 1 943 49
Operation 2 19957 103
Operation 3 169 39
Operation 4 11462 92

• RQ1: How effective are the found regular expressions
in identifying bypassing attacks?

• RQ2: To which extent do the found regular expressions
misclassify legitimate traffic as attacks?

• RQ3: How does NSGA-II compare to random search?
The goal of the proposed approach is repairing vulnerable

WAFs, i.e. to find regular expressions that block the bypass-
ing malicious requests without affecting legitimate requests.
Therefore, RQ1 investigates how many malicious requests
the generated regular expressions identify, i.e. recall. RQ2
investigates if the regular expressions misclassify legitimate
requests as attacks, i.e. false positive rate.

The last research question (RQ3) aims at evaluating the
benefits produced by our multi-objective approach (based on
NSGA-II) compared to Random Search (RS). There are var-
ious reasons for considering RS as baseline. First, according
to the guidelines in search-based software engineering [7],
[46], RS is necessary to check whether new problems being
addressed are sufficiently difficult to require sophisticated
search strategies. Second, RS has turned out to be more
effective and more efficient than evolutionary algorithms for
automated software repair [46] in other contexts, as well as
for other problems (e.g., [15]).

In our context, the implementation of RS is straightfor-
ward: it randomly generates individuals from the search
space defined by the WAF Fixing Problem. As for NSGA-
II, in RS individuals are binary vectors that are evaluated
according to our two objectives, i.e., recall and false positive
rate. Among all randomly generated solutions, the non-
dominated ones (see Definition 4) satisfying the constraint
(Definition 5) form the final Pareto front.

C. Experimental Procedure and Parameter Settings

We executed each search algorithm (i.e., NSGA-II and
RS) on each of the three datasets from the open source
case study and each of the four datasets from the industrial
case study. At the end of each run, we collected the set of
non-dominated solutions (i.e., the Pareto set) produced by
a given algorithm as well as the corresponding recall and
false positive scores (i.e., the Pareto frontier) for comparison.
In each run, the algorithm is terminated after 10K fitness
evaluations, which correspond to a maximum search timeout
of 240 minutes on average. To account for the randomised
nature of NSGA-II and RS, each run is repeated 100 times.

Consequently, we performed a total of 2 (algorithms) × 7
(datasets) × 100 (repetitions) = 1,400 executions.

Evaluation metric. To compare the Pareto fronts pro-
duced by NSGA-II and RS, we followed the guidelines by
Wang et al. [55] to select a suitable quality indicator. Since
our goal is to evaluate the convergence of the search as
well as the diversity of the found solutions, we selected the
well-known quality indicator hypervolume (HV) [34]. HV
takes a value within the interval [0; 1] and it measures the
volume in the objective space that is dominated by a set
of non-dominated solutions. The higher the HV value, the
better the quality of the Pareto front. We also analyse the
variability of the HV scores achieved by an algorithm across
multiple runs using the interquartile range (IQR), which is
a standard measure of statistical dispersion. It is defined as
the difference between the first quartile and the third quartile
of the HV distribution. A zero IQR value indicates that the
algorithm produces the same HV score across different runs,
while larger IQR values indicate that the results change over
the runs. Finally, to check whether the difference between
the HV values produced by NSGA-II and RS are statistically
significant or not, we use the non-parametric Wilcoxon test
with p-value = 0.05 as threshold for significance [7]. The
Wilcoxon test does not make any assumption on the nature
of the distributions.

Parameter settings. We adopt the default parameter
settings defined in jMetal [44] for NSGA-II. In particular,
we use the standard single-point crossover with a probability
of pc = 0.9, the bit-flip mutation with probability pm = 1/l,
where l is the length of the chromosome, and the population
size is set to 100. For a fair comparison, both NSGA-II
and RS were configured with 10K as maximum number of
fitness evaluations. We use the number of fitness evaluations
as a measure of computational cost (time) for the search
algorithms since the overhead due the genetic operators is
negligible compared to the cost required to evaluate each
generated individual. While different results may be obtained
with different settings, we opted for the default parameter
values because previous empirical results [8] showed that
such default settings give acceptable results.

Another parameter that can affect our results is the choice
of the threshold t for the constraint (Definition 5). If t is
too low, the search prematurely converges, since individuals
violating the constraint are likely to be abandoned and
their genetic information is lost. On the other hand, if the
threshold is too high, the algorithm performs expensive
fitness evaluations on infeasible solutions. In a series of pilot
experiments, we found that NSGA-II performs well with
t = 9/10∗ | L |, where L is the set of benign requests.

D. Implementation

We used the implementations of NSGA-II, RS, and the
performance metric (HV) available in JMetal [44], a popular
Java framework for search problems. Within the same frame-

work, we implemented the instances of the WAF Fixing
Problem for the seven datasets selected for our case study.

In our search problem, the fitness evaluation consumes a
large majority of the computation time and its efficient im-
plementation is of high importance. A naive way to compute
false positive rate and recall consists in translating a solution
candidate (binary chromosome) into a regular expression,
adding it to the rule set of the subject WAF, and sending
a HTTP request for each legitimate and attack request.
Since updating the rule set frequently and sending a large
quantity of HTTP requests induces a high computational
overhead, our fitness evaluation procedure uses an embedded
version of a regular expression engine of the subject firewall.
Thereby, we avoid sending HTTP requests and skip other
irrelevant operations related to the WAF, while still obtaining
precise measures for recall and false positive rate. The
regular expression engine used by the subject WAFs and our
implementation is PCRE5, version 8.33. Our implementation
uses the command-line tool pcregrep to match a given
regular expression against the legitimate and attack requests.

The total computation time of our experiments and the
processing of results is equivalent to ≈ 97 days on a single
CPU core of a typical notebook (i.e. 2.26 GHz).

E. Results

Figure 2 plots the average HV scores achieved for each
dataset by NSGA-II and RS over the number of fitness
evaluations. Recall that, in our context, computational time
is mostly driven by fitness evaluations as explained in
Section IV-C. The curves in Figure 2 are augmented with
boxplots showing the variation of the HV scores across 100
independent runs at 300, 1000, 1700 and 2400 fitness evalu-
ations. Note that the x-axis is truncated at 2400 evaluations
although we terminate the algorithms after 10K evaluations.
However, we note that the HV values do not vary after this
point in all the datasets.

As we can observe, when reaching 2400 fitness
evaluations, NSGA-II produces Pareto fronts with a
median HV value above 0.99 for doPayment and
simulatePayment (from the open source case study) as
well as for Operation2, and Operation4 (from the in-
dustrial case study). For the dataset expireTicket (open
source case study) we observe a median HV value of 0.82.
Finally, for the remaining two datasets from the industrial
case study (i.e., Operation1, and Operation3), the
median HV values at 2400 fitness evaluations are 0.92, and
0.98, respectively.

Looking at the variability of HV values produced by
NSGA-II (see the boxplots in Figure 2), we observe that
the IQR is large (0.06 on average) at 300 fitness evaluations
but tends to decrease quickly and become very small (< 0.01
on average) at 2400 fitness evaluations. The only exception

5http://pcre.org

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00
doPayment

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90
expireTicket

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
simulatePayment

NSGA-II
Random Search (RS)

300 1000 1700 2400
0.50

0.60

0.70

0.80

0.90

1.00
Operation 1

300 1000 1700 2400
0.40

0.50

0.60

0.70

0.80

0.90

1.00
Operation 2

300 1000 1700 2400
0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Operation 3

300 1000 1700 2400
0.70

0.75

0.80

0.85

0.90

0.95

1.00
Operation 4

0.0 0.2 0.4 0.6 0.8 1.0

#Fitness Evaluation

0.0

0.2

0.4

0.6

0.8

1.0

H
y
p
e
rv

o
lu

m
e

Figure 2. Comparison of the hypervolume over fitness evaluations for NSGA-II (blue) and RS (red).

is the dataset Operation1, for which the IQR remains
high and slightly decreases in the range up to 10K fitness
evaluations. One possible explanation is that the dataset
Operation1 contains fewer bypassing attacks (< 1000)
to be blocked and 2600 legitimate requests to handle.
Thus, solutions slightly improving recall (e.g., one additional
attack being blocked) are likely to result in a large increase
of the false positive rate. Instead, datasets with better (lower)
IQR scores are characterised by a better balance between
attacks and legitimate requests. For example, Operation2
is the dataset with the best IQR score (0.02) at 300 fitness
evaluations. In this dataset, the number of SQLi bypassing
attacks is 19000 while the number of benign requests is
2600. This analysis suggests that when the number of attacks
to block increases, it becomes easier for NSGA-II to find
slices (string patterns) that block attacks without preventing
legitimate traffic, thus helping to lower variability of the HV
scores over the runs.

Comparing NSGA-II and RS, we find that the former is
consistently better than the latter in terms of HV. Indeed,
for RS on most datasets, we observe that HR quickly
converges to sub-optimal HV values and no considerable
further improvement is made after 300 fitness evaluations.
Only for expireTicket and simulatePayment, the
HV scores of RS increase after 300 fitness evaluations.
However, even in these cases, RS converges to sub-optimal
fronts at 2400 and 1700 function evaluations, respectively.
The difference in terms of HV scores between NSGA-II
and RS ranges between 0.05 (for simulatePayment) and
0.40 (for Operation1) at 2400 fitness evaluations. The
fact that RS cannot close the large HV gap with NSGA-
II after 10K fitness evaluations indicates that the solutions
found by NSGA-II are widely distributed in the Pareto
front and unlikely to be found randomly. According to the

Table V
COMPARISON OF THE RECALL SCORES ACHIEVED BY NSGA-II AND RS

WHEN SELECTING THE NON-DOMINATED SOLUTION WITH THE
MINIMUM FALSE POSITIVE RATE.

Operation NSGA-II RS
FPR(%) Recall(%) FPR(%) Recall(%)

doPayment 0.0 84.05 0.0 73.12
expireTicket 1.0 54.61 0.7 42.64
simulatePayment 0.0 75.43 0.0 73.06
Operation 1 0.0 52.54 0.0 52.54
Operation 2 0.0 98.28 0.0 91.46
Operation 3 0.0 97.06 0.0 59.15
Operation 4 0.0 98.16 0.0 84.91

Wilcoxon test, the differences between NSGA-II and RS in
terms of HV scores are always statistical significant with
p-values < 0.01.

The presented experiments were executed on a high-
performance cluster [54]. The average running time on a
single CPU core for a test run with 10K fitness evalua-
tions is 63.7 minutes for NSGA-II and 58.58 minutes for
RS. The fact that the difference in average running time
between NSGA-II and RS is small confirms that the fitness
evaluations consume a large part of the running time. Note
that our results suggest that less than 3K fitness evaluations
are sufficient to reach an optimal Pareto front and that, in
practice, fitness evaluations can be performed in parallel on
multiple CPU cores to reduce the effective running time.

Trade-off analysis. As discussed in Section III, false
positives are often more critical than true negatives in prac-
tice [21]. Indeed, while bypassing SQLi attacks can still be
handled by strengthening the other protection mechanisms of
the infrastructure, e.g., input sanitization in the application,
blocked legitimate requests (false positives) can have dra-
matic consequences on the viability of the application and
cannot be addressed by other mechanisms. For example, we
can easily imagine the financial consequences of arbitrarily
denied credit card transactions or bank transfers. Therefore,

we focus our analysis on the solutions (i.e., rule set) in
the Pareto fronts that produces the lowest number of false
positives. For the sake of analysis, we pick Pareto fronts
among 100 runs, which correspond to the median HV values
depicted in Figure 2. The results are reported in Table V.

We notice that using NSGA-II, with the same false
positive rate, recall increases between 2.37% (+30 blocked
attacks) and 37.91% when compared to RS. We observe only
one case, namely Operation1, for which both NSGA-
II and RS achieve the same recall when the false positive
rate is fixed to zero. However, RS produces only one non-
dominated solution (the one reported in Table V) while
it fails to produce alternative (near) optimal trade-offs for
the security analysts (see the HV scores produced for this
dataset in Figure 2). On the other hand, NSGA-II produces
additional non-dominated solutions that the analysts can
consider to make a more appropriate decision in context.

Validation. To further assess the regexes generated by our
approach, we test the fixed WAFs against previously unseen
requests. For this analysis, we consider the proprietary WAF
from the industrial case study and the solutions (fixes) in the
Pareto fronts that produce the lowest number of false posi-
tives. In particular, we first augmented (fixed) the WAF’s rule
set with the regular expressions automatically generated by
NSGA-II and that correspond to the Pareto optimal solutions
reported in Table V. Then, we tested the fixed WAF against
a new set of HTTP requests. In total, we collected 575 new
legitimate requests by executing additional functional test
suites, and 222 additional bypassing attacks by executing the
open-source penetration testing SqlMap6. Notice that these
legitimate requests and bypassing SQLi attacks were not part
of the learning set used to fix the WAF.

Our results show that the fixed WAF successfully blocks
203 bypassing attacks out of 222, with a recall rang-
ing between 91.5% for Operation 2 and 100% for
Operation 4. Regarding legitimate requests, the false
positive rate ranges between 0.86% for Operation 4 and
1.91% for Operation 1. Therefore, our technique is able
to generate regular expressions that are also effective for
new requests that were not previously used for generating
new firewall rules.

Summary. Based on the above results we can answer
RQ1 (Recall) and RQ2 (False Positive Rate): For the
datasets used in our experiments, there are solutions with
a high recall and low or null false positive rate for the
WAF Fixing Problem. NSGA-II finds these solutions auto-
matically within 100 generations. Regarding RQ3 (Compar-
ison NSGA-II and RS), we find that NSGA-II statistically
outperforms RS, thus motivating the usage of evolutionary
algorithms for the WAF Fixing Problem. In most cases,
differences are also practically significant.

6http://sqlmap.org/

V. THREATS TO VALIDITY

To limit the threats to the construct validity, we use the
HV indicator to compare different search algorithms. Such
an indicator is a standard performance metric in multi-
objective optimisation because it gives reasonable estimation
of both convergence of the search as well as the diversity
of the solutions in the generated Pareto fronts [34].

A potential factor that could influence our results (internal
validity) is the randomised nature of the search algorithms
being compared. To address such a threat, we run NSGA-II
and RS 100 times and we reported the median results and
distribution quantiles. Another potential threat regards the
parameters setting used for NSGA-II. We configured NSGA-
II with default parameter values since previous work [8]
showed that such default configurations produce acceptable
results in comparison to fine-tuned settings.

To address potential threats to conclusion validity, we
followed the guidelines by Arcuri and Briand [7] by using
the non-parametric Wilcoxon test to check the statistical
significance of differences in HV distributions. We drew our
conclusions exclusively from statistically significant results.

To improve the generalizability of our results (external
validity), we conducted two case studies: a first study with
a widely-used, open source WAF (i.e., ModSecurity) and a
second study involving a proprietary, industrial WAF. These
are real-world WAFs (one from a large financial service
provider) protecting web applications with thousands of
users. Moreover, we consider thousands of legitimate HTTP
messages and attacks for each single web operation.

VI. RELATED WORK

This section discusses the related literature on anomaly
detection techniques for application firewalls, regex infer-
ence and automated software repair.

Anomaly detection techniques. There are several works
in the literature that propose anomaly detection techniques
for firewall policies [1], [2], [22], [41]. However, these works
consider network firewall policies and do not repair WAFs
regex rules. For example, Basile et al. [14] proposed a
formal model to detect anomalies in application firewall filter
policies by identifying conflicting rules, i.e. rules that are
activated simultaneously but enforce different actions, and
unnecessary rules, i.e. rules that can be removed without
affecting the WAF decision. In contrast, our approach aims
at improving the decision procedure of a WAF by fixing its
rule set based on the set of observed bypassing SQLi attacks.

Kruegel et al. [35], [36], [48] proposed multiple anomaly
detectors based on several characteristics of HTTP requests,
e.g. parameter length, parameter value, and character dis-
tribution. Similarly, Kiani et al. [32] proposed a character
distribution model that is specifically designed for the de-
tection of SQLi attacks. Valeur et al. [53] proposed a reverse
HTTP proxy that mitigates the impact of legitimate requests
being misclassified as attacks by routing them to sibling web

applications that have only limited access to sensitive data.
Kruger et al. [37] introduced TokDoc, a self-healing WAF
that analyses HTTP requests and replaces suspicious parts
of a request with benign parts observed in the past. Other
approaches learn normal HTTP requests using deterministic
finite automata [31] and Markov chains [51]. In our pre-
vious work [20], we propose a machine learning approach
(SOFIA) to automatically detect SQLi vulnerabilities in a
web application under test. We recast the oracle problem for
SQLi vulnerabilities as a one-class classification problem, in
which we learn to characterise legitimate SQL statements to
accurately distinguish them from SQLi attack statements.
There are important differences between our approach and
SOFIA [20]. First, our approach aims at fixing WAF regexes
detecting malicious strings in HTTP messages. Instead,
SOFIA detects SQLi attacks in complete SQL statements
once they are generated by the web application and they
reach the database layer. Thus, SOFIA is not applicable at
the WAF layer where the inputs are HTTP messages. Sec-
ond, our approach combines machine learning with multi-
objective algorithms to find regular expressions representing
(near) optimal trade-offs in fixing the WAF. Instead, SOFIA
uses clustering techniques to automatically classify SQL
statements (and not HTTP messages) as attacks or legitimate
queries.

Attacks that are identified by anomaly detection tech-
niques or generated by automated testing techniques can be
used in input for the approach presented in this paper: given
a set of attacks (SQLi attacks) and legitimate requests, we
want to fix the WAF’s rule set such as to block the former
while forwarding the latter to the application.

Regex Inference. Inferring regular expression from la-
belled samples is the subject of a large body of research.
Li et al. [38] formulated the task of learning a regular
expression from “positive” (to match) and “negative” (not
to match) samples as a search problem. The authors apply
a set of transformation operators to refine an existing regex
with the goal of minimising the false positive matches and
maintaining the true positive matches of the initial regular
expression. Murthy et al. [43] proposed a human-assisted
approach to refine existing regexes such as to maximise
true positive matches. Instead, Babbar et al. [9] suggest to
use clustering methods to refine the initial regex. Bex et
al. [16] infer a Document Type Definition for a given set of
XML-documents. The authors recast the problem of learning
a regex from positive samples using automata inference.
Similarly, Brauer et al. [18] learn regular expressions to
match entity types (e.g., identifiers) by selecting suitable
entity features and creating prefix and suffix automata.
Bartoli et al. [12], [13] generate regular expressions from
positive samples using genetic programming (GP).

The work discussed above differs from our paper in
several ways. First, previous papers aim at inferring regular
expressions from documents written in natural language

(e.g., web pages) while we focus on WAF rule sets. In our
context, the structure (i.e., chromosome in NSGA-II) of the
regex to infer is fixed and known a priori: it is the disjunc-
tions of the slices (string patterns) that appear in bypassing
SQLi attacks. Instead, for the traditional inference problem
the structure of the regular expression to infer is unknown,
motivating the usage of GP to address this challenge [12],
[13]. Finally, in our paper we address the WAF Fixing
Problem with multi-objective genetic algorithms producing
(near) optimal trade-offs between recall and false positive
rate. Our multi-objective reformulation differs from the one
proposed by Bartoli et al. [12], [13] for the traditional regex
inference problem. In our paper, recall and false positive
rate are addressed as two contrasting objectives to optimise
whereas Bartoli et al. [12], [13] combine them into one
single objective: the F-measure. The second objective used
in [12], [13] is the size of the regular expression inferred by
GP. As explained in Section III, for the WAF Fixing Problem
the structure of the regular expression to infer is fixed and
there is no need to minimise its size.

Automated program repair. Researchers have proposed
several techniques to automatically fix source code by using
existing test cases and their execution information. Such
techniques include GP [24], random search [46], and sym-
bolic execution [45]. Recently, Qi et al. [46] showed that,
for the program repair problem, random search outperforms
evolutionary algorithms in terms of both effectiveness and
efficiency. In this paper, we address a different repair prob-
lem since our goal is to fix regular expressions (WAF rule
sets) instead of web application source code. We assess the
quality of the generated fixes using both bypassing attacks
(test cases) and legitimate traffic. However, we strictly
followed the guidelines provided by Qi et al. [46] in the
context of program repair by comparing our many-objective
approach with random search.

VII. CONCLUSION

This paper proposes an approach to automatically repair
vulnerable WAFs by generating rule sets based on an
analysis of test results, using machine learning and meta-
heuristics. We formalised the WAF fixing problem as a
combinatorial optimisation problem and addressed it using
a multi-objective genetic algorithm (NSGA-II). Given a
set of bypassing attacks and corresponding path conditions
extracted from learnt classifiers [4], our approach infers a
regular expression that, when added to the WAF’s rule set,
prevents as many attacks as possible from bypassing, while
letting legitimate requests go through.

Experimental results show that with our approach, ana-
lysts can always pick solutions among a range of (near)
optimal trade-offs such that, for example, the WAF does not
prevent legitimate traffic. A WAF is only one component of
a protection infrastructure but our results suggest that it can
significantly contribute to blocking bypassing attacks with

a recall ranging between 54.6% and 98.3%, for both open
source and industrial WAFs, and no or few false positives
(false positive rate between 0% and 2%). In realistic condi-
tions, the automated process of fixing the WAF would not
take more than a few hours and can be run on a daily basis.
As proof of concept, our approach is currently used by our
industrial partner (whose proprietary WAF is repaired in our
study) within their verification workflow.

Currently, our approach focuses only on augmenting WAF
rule sets. The repair is therefore partial as it does not address
incorrect rules. Because the root cause for attacks bypassing
a WAF is the incompleteness of its rule set, our objective
is to add regexes to enhance incomplete rules. Nevertheless,
false positives can be due to existing rule sets and their
regexes that should be deleted. We will investigate this
aspect in our future work although our empirical results
indicate that this scenario never applies for the applications
in our case studies. Moreover, as part of our future agenda,
we will assess our approach in combination with other
automated testing techniques.

ACKNOWLEDGMENTS

The authors were supported by the National Research
Fund, Luxembourg (grant FNR/P10/03 and FNR4800382).
The work was carried out in collaboration with Six Payment
Services. The authors would also like to thank Cu D. Nguyen
for his feedback on a preliminary draft of this paper.

REFERENCES

[1] E. Al-Shaer, H. Hamed, R. Boutaba, and M. Hasan. Con-
flict classification and analysis of distributed firewall poli-
cies. IEEE journal on Selected Areas in Communications,
23(10):2069–2084, 2005.

[2] E. S. Al-Shaer and H. H. Hamed. Modeling and management
of firewall policies. IEEE Transactions on Network and
Service Management, 1(1):2–10, 2004.

[3] D. Appelt, N. Alshahwan, and L. Briand. Assessing the
impact of firewalls and database proxies on sql injection
testing. In Proceedings of the 1st International Workshop
on Future Internet Testing, 2013.

[4] D. Appelt, C. Nguyen, and L. Briand. Behind an application
firewall, are we safe from sql injection attacks? In Software
Testing, Verification and Validation (ICST), 2015 IEEE 8th
International Conference on, pages 1–10, April 2015.

[5] D. Appelt, C. D. Nguyen, L. C. Briand, and N. Alshahwan.
Automated testing for sql injection vulnerabilities: An input
mutation approach. In Proceedings of the 2014 International
Symposium on Software Testing and Analysis, ISSTA 2014,
pages 259–269, New York, NY, USA, 2014. ACM.

[6] D. Appelt, D. C. Nguyen, and L. Briand. Automated testing
of web application firewalls. Technical report, 2016.

[7] A. Arcuri and L. Briand. A practical guide for using statistical
tests to assess randomized algorithms in software engineering.
In 2011 33rd International Conference on Software Engineer-
ing (ICSE), pages 1–10. IEEE, 2011.

[8] A. Arcuri and G. Fraser. On parameter tuning in search based
software engineering. In International Symposium on Search
Based Software Engineering, pages 33–47. Springer, 2011.

[9] R. Babbar and N. Singh. Clustering based approach to
learning regular expressions over large alphabet for noisy
unstructured text. In Proceedings of the fourth workshop
on Analytics for noisy unstructured text data, pages 43–50.
ACM, 2010.

[10] R. Barnett. Dynamic DAST/WAF integration: Realtime
virtual patching.

[11] R. Barnett. Owasp virtual patching survey results.
[12] A. Bartoli, G. Davanzo, A. De Lorenzo, M. Mauri, E. Medvet,

and E. Sorio. Automatic generation of regular expressions
from examples with genetic programming. In Proceedings
of the 14th annual conference companion on Genetic and
evolutionary computation, pages 1477–1478. ACM, 2012.

[13] A. Bartoli, A. De Lorenzo, E. Medvet, and F. Tarlao. Infer-
ence of regular expressions for text extraction from examples.
IEEE Transactions on Knowledge and Data Engineering,
28(5):1217–1230, 2016.

[14] C. Basile and A. Lioy. Analysis of application-layer filtering
policies with application to http. IEEE/ACM Transactions on
Networking (TON), 23(1):28–41, 2015.

[15] J. Bergstra and Y. Bengio. Random search for hyper-
parameter optimization. J. Mach. Learn. Res., 13:281–305,
Feb. 2012.

[16] G. J. Bex, F. Neven, T. Schwentick, and K. Tuyls. Inference
of concise dtds from xml data. In Proceedings of the 32nd
international conference on Very large data bases, pages 115–
126. VLDB Endowment, 2006.

[17] S. W. Boyd and A. D. Keromytis. Sqlrand: Preventing sql
injection attacks. In Applied Cryptography and Network
Security, pages 292–302. Springer, 2004.

[18] F. Brauer, R. Rieger, A. Mocan, and W. M. Barczynski.
Enabling information extraction by inference of regular ex-
pressions from sample entities. In Proceedings of the 20th
ACM international conference on Information and knowledge
management, pages 1285–1294. ACM, 2011.

[19] G. Buehrer, B. W. Weide, and P. A. Sivilotti. Using parse tree
validation to prevent sql injection attacks. In Proceedings of
the 5th international workshop on Software engineering and
middleware, pages 106–113. ACM, 2005.

[20] M. Ceccato, C. D. Nguyen, D. Appelt, and L. C. Briand.
Sofia: an automated security oracle for black-box testing
of sql-injection vulnerabilities. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software
Engineering, pages 167–177. ACM, 2016.

[21] J. Clarke. SQL injection attacks and defense. Elsevier, 2009.
[22] F. Cuppens, N. Cuppens-Boulahia, J. Garcia-Alfaro,

T. Moataz, and X. Rimasson. Handling stateful firewall
anomalies. In IFIP International Information Security
Conference, pages 174–186. Springer, 2012.

[23] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and
elitist multiobjective genetic algorithm: Nsga-ii. Evolutionary
Computation, IEEE Transactions on, 6(2):182–197, 2002.

[24] C. L. Goues, T. Nguyen, S. Forrest, and W. Weimer. Genprog:
A generic method for automatic software repair. IEEE Trans-
actions on Software Engineering, 38(1):54–72, Jan 2012.

[25] W. Halfond, J. Viegas, and A. Orso. A classification of
sql-injection attacks and countermeasures. In Proceedings
of the IEEE International Symposium on Secure Software
Engineering, volume 1, pages 13–15. IEEE, 2006.

[26] W. G. Halfond, S. Anand, and A. Orso. Precise interface
identification to improve testing and analysis of web applica-
tions. In Proceedings of the 18th International Symposium on
Software Testing and Analysis (ISSTA ’09), pages 285–296,
2009.

[27] W. G. Halfond and A. Orso. Amnesia: analysis and monitor-
ing for neutralizing sql-injection attacks. In Proceedings of
the 20th IEEE/ACM international Conference on Automated
software engineering, pages 174–183. ACM, 2005.

[28] W. G. J. Halfond and A. Orso. Preventing SQL injection
attacks using AMNESIA. In Proceedings of the 28th In-
ternational Conference on Software Engineering (ICSE’ 06),
pages 795–798, 2006.

[29] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The weka data mining software: An update.
SIGKDD Explor. Newsl., 11(1):10–18, Nov. 2009.

[30] M. Harman, S. A. Mansouri, and Y. Zhang. Search-based
software engineering: Trends, techniques and applications.
ACM Comput. Surv., 45(1):11:1–11:61, Dec. 2012.

[31] K. L. Ingham, A. Somayaji, J. Burge, and S. Forrest. Learning
dfa representations of http for protecting web applications.
Computer Networks, 51(5):1239–1255, 2007.

[32] M. Kiani, A. Clark, and G. Mohay. Evaluation of anomaly
based character distribution models in the detection of sql
injection attacks. In Availability, Reliability and Security,
2008. ARES 08. Third International Conference on, pages
47–55. IEEE, 2008.

[33] A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst.
Automatic creation of SQL injection and cross-site scripting
attacks. In Proceedings of the 31st International Conference
on Software Engineering (ICSE ’09), pages 199–209, 2009.

[34] J. Knowles, L. Thiele, and E. Zitzler. A Tutorial on
the Performance Assessment of Stochastic Multiobjective
Optimizers. TIK Report 214, Computer Engineering and
Networks Laboratory (TIK), ETH Zurich, Feb. 2006.

[35] C. Kruegel and G. Vigna. Anomaly detection of web-
based attacks. In Proceedings of the 10th ACM conference
on Computer and communications security, pages 251–261.
ACM, 2003.

[36] C. Kruegel, G. Vigna, and W. Robertson. A multi-model
approach to the detection of web-based attacks. Computer
Networks, 48(5):717–738, 2005.

[37] T. Krueger, C. Gehl, K. Rieck, and P. Laskov. Tokdoc: A self-
healing web application firewall. In Proceedings of the 2010
ACM Symposium on Applied Computing, pages 1846–1853.
ACM, 2010.

[38] Y. Li, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and
H. Jagadish. Regular expression learning for information
extraction. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, pages 21–30. As-
sociation for Computational Linguistics, 2008.

[39] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou. Sqlprob:
A proxy-based architecture towards preventing sql injection
attacks. In Proceedings of the 2009 ACM Symposium on
Applied Computing, SAC ’09, pages 2054–2061, New York,
NY, USA, 2009. ACM.

[40] S. Luke. Essentials of metaheuristics. Lulu Com, 2013.
[41] A. Mayer, A. Wool, and E. Ziskind. Offline firewall analysis.

International Journal of Information Security, 5(3):125–144,
2006.

[42] M. Mitchell. An introduction to genetic algorithms. MIT
press, 1998.

[43] K. Murthy, P. Deepak, and P. M. Deshpande. Improving recall
of regular expressions for information extraction. In Interna-
tional Conference on Web Information Systems Engineering,
pages 455–467. Springer, 2012.

[44] A. J. Nebro, J. J. Durillo, and M. Vergne. Redesigning the
jmetal multi-objective optimization framework. In Proceed-
ings of the Companion Publication of the 2015 Annual Con-
ference on Genetic and Evolutionary Computation, GECCO
Companion ’15, pages 1093–1100, New York, NY, USA,
2015. ACM.

[45] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra.
Semfix: Program repair via semantic analysis. In Proceedings
of the 2013 International Conference on Software Engineer-
ing, ICSE ’13, pages 772–781, Piscataway, NJ, USA, 2013.
IEEE Press.

[46] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The strength of
random search on automated program repair. In Proceedings
of the 36th International Conference on Software Engineer-
ing, ICSE 2014, pages 254–265, New York, NY, USA, 2014.
ACM.

[47] J. R. Quinlan. Induction of decision trees. Mach. Learn.,
1(1):81–106, Mar. 1986.

[48] W. Robertson, G. Vigna, C. Kruegel, R. A. Kemmerer, et al.
Using generalization and characterization techniques in the
anomaly-based detection of web attacks. In NDSS, 2006.

[49] L. K. Shar and H. B. K. Tan. Defeating sql injection.
Computer, (3):69–77, 2013.

[50] L. K. Shar, H. B. K. Tan, and L. Briand. Mining sql
injection and cross site scripting vulnerabilities using hybrid
program analysis. In Software Engineering (ICSE), 2013 35th
International Conference on, pages 642–651, 2013.

[51] Y. Song, A. D. Keromytis, and S. J. Stolfo. Spectrogram:
A mixture-of-markov-chains model for anomaly detection in
web traffic. In NDSS, volume 9, pages 1–15. Citeseer, 2009.

[52] D. Stuttard and M. Pinto. The Web Application Hacker’s
Handbook: Finding and Exploiting Security Flaws. John
Wiley & Sons, 2011.

[53] F. Valeur, G. Vigna, C. Kruegel, and E. Kirda. An anomaly-
driven reverse proxy for web applications. In Proceedings
of the 2006 ACM symposium on Applied computing, pages
361–368. ACM, 2006.

[54] S. Varrette, P. Bouvry, H. Cartiaux, and F. Georgatos. Man-
agement of an Academic HPC Cluster: The UL Experience.
In Proc. of the 2014 Intl. Conf. on High Performance Com-
puting & Simulation (HPCS 2014), pages 959–967, Bologna,
Italy, July 2014. IEEE.

[55] S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen. A practical
guide to select quality indicators for assessing pareto-based
search algorithms in search-based software engineering. In
Proceedings of the 38th International Conference on Software
Engineering, pages 631–642. ACM, 2016.

[56] A. Wool. A quantitative study of firewall configuration errors.
Computer, 37(6):62–67, 2004.

[57] A. Wool. Trends in firewall configuration errors: Measur-
ing the holes in swiss cheese. Internet Computing, IEEE,
14(4):58–65, 2010.

