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Abstract: This article presents a soft pneumatic bending actuator using a magnetically assisted
bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites
were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and
asymmetrically distributed them by applying a strong non-uniform magnetic field to one side
of the mold during the curing process. The biased magnetic field induces sedimentation of the
ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the
particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the
composite. The bilayer composites were then characterized with a scanning electron microscopy
and thermogravimetric analysis. The bending performance and the axial expansion of the actuator
were discussed for manipulation applications in soft robotics and bioengineering. The magnetically
assisted manufacturing process for the soft bending actuator is a promising technique for various
applications in soft robotics.

Keywords: soft actuator; pneumatic bending actuator; bilayer composite; non-uniform magnetic
field; ferromagnetic particles

1. Introduction

Soft actuators have been widely used in many areas, such as robotics and biomedical engineering,
due to their simple structures with flexibility and relatively high power density [1–4]. Bending motions
in soft actuators generally can be achieved by changing the geometry and/or material properties
by adding heterogeneous materials with different stiffness to the base polymer structure [5–9].
Niiyama et al. have developed pouch motors that could contract or bend by thermally bonding
non-stretchable polymer films [10,11]. Gong et al. have used individually inflatable multiple air
chambers embedded in a soft robotic arm for multi-directional bending [12]. Chang et al. have
proposed a fluidic bending actuator by bonding two materials with different mechanical properties [13].
Gorissen et al. have developed a bending microactuator based on an asymmetric geometry of a thin
film structure [14]. Udupa et al. have tried to maximize the bending performance by introducing
an asymmetric structure with a bellow [15]. Paek et al. have developed soft bending tentacles made
of elastomeric microtubes that have non-uniform wall thicknesses [16]. However, these approaches
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require tedious manual steps in fabrication and also complex designs. Moreover, it sometimes induces
high stress concentrations at the interface between two different materials when bonded together [14].

A magnetically assisted fabrication is a promising method for enhancing mechanical properties
and electrical and thermal conductivities of the base material by introducing ferromagnetic particles in
the base structure [17–21]. An external magnetic field makes the particles move to specific directions
through either attractive or repulsive interactions between the particles. When a non-uniform magnetic
field is applied, it attracts ferromagnetic particles based on the gradient of the magnetic field. Especially,
in a prepolymer state, magnetic particles can easily move with a relatively weak magnetic field because
of the low viscosity of the polymer [22,23]. Thus, varied gradients of a magnetic field can achieve
a stiffness gradient in a composite, which can be the main mechanism for a bending actuator. Also,
the magnetically assisted technique enables simple fabrication of bilayer composites, alleviating stress
concentrations between thermally or chemically bonded layers, frequently introduced in traditional
fabrication methods.

In this study, we propose a pneumatic soft bending actuator composed of a bilayer composite
fabricated using a non-uniform magnetic field. The bilayer composite concentrated with nickel particles
was prepared and characterized using an optical microscope and a scanning electron microscope (SEM)
and then thermogravimetrically analyzed. The bending performance of the bilayer composite was
tested in terms of bending angle and axial expansion by applying varied air pressures into the chamber
of the actuator.

2. Materials and Methods

2.1. Actuator Materials

A highly stretchable silicone elastomer (Dragon Skin 10, Smooth-On, Easton, PA, USA) was
obtained. Its density is approximately 1.05 g/cm3 and the curing time is about 24 h at room temperature.
Nickel particles and ferromagnetic particles, were purchased from NOVAMET (Wyckoff, NJ, USA).
Their average diameters and density were 12.0 µm and 8.5 g/cm3, respectively. Note that the density
of nickel particle is approximately eight times larger than that of the silicone polymer.

2.2. Fabrication

Figure 1 shows a schematic of fabrication for the bilayer bending actuator using a non-uniform
magnetic field. First, Part A and Part B of Dragon Skin 10 were mixed with 1:1 by the weight
ratio. Then, nickel particles were uniformly mixed with a centrifugal planetary mixer (ARE 301,
Thinky Corporation, Tokyo, Japan) at 2000 rpm for 3 min. In this study, different concentrations
of nickel particles (0, 0.5, 2.5, 5.0 wt %) were used to investigate their influences on the bending
performance. After full dispersion, the mixture was degassed in a vacuum for 10 min to remove air
bubbles. Then, the mixture was poured into a cylindrical mold and a gradient magnetic field generated
by neodymium magnets (4760 gauss of surface field) was applied only at the bottom of the mold to
attract nickel particles for about 10 min, as shown in Figure 1 (right). The mold was then cured in a
convection oven at 60 ◦C for one hour. This magnetically assisted technique makes the fabrication
simple, since it does not require any additional steps for preparation of multiple materials, bonding of
cured layers, and change of geometries to control structural eccentricity.
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Figure 1. Schematic for fabrication of bilayer composite by using non-uniform magnetic field. 

Figure 2 shows four different actuator samples made of bilayer composites with different 
particle concentrations. All the samples have outer diameters of 12.5 mm, inner diameters of 5 mm, 
and lengths of 120 mm. While one end of each tube was closed, the other end was connected to a tube 
fitting through which compressed air was injected. The overall weights of the bilayer composites 
increased with higher particle concentrations due to the density increase from the nickel particles. 

 
Figure 2. Bilayer composite soft bending actuators with different concentrations of nickel particles:  
0, 0.5, 2.5, and 5.0 wt % (from left to right). The increased nickel particle concentrations are shown 
with color changes. 

2.3. Characterization 

The morphology of the bilayer composite was investigated using a SEM (FEI Sirion 600, JEOL, 
Tokyo, Japan) to observe the distribution of the nickel particles in the polymer matrix. 
Thermogravimetric analysis was also conducted by using a high-resolution analyzer (TGA 2950, TA 
Instruments, New Castle, DE, USA) to measure the weight of the particle sediment in the composite. 
Samples of 20 mg of cured polymer from the composite were heated from 30 to 800 °C at a rate of  
20 °C/min. Although it has been reported that nano-sized nickel particles oxide at high temperature 
and slightly increase the weight [24,25], the weight change from high temperature oxidation was 
negligible in our experiment, and the oxidation effect was not taken into account in calculating the 
particle concentrations. For actuation performance, the bilayer composites were inflated by injecting 
air into the chambers. The air pressure was increased until the actuator mechanically failed. During 
actuation, the bending angles and axial expansions were measured using an open source image-
processing program (Image J 1.48, Bethesda, MD, USA). 

3. Results and Discussion 

3.1. Microstructure of Bilayer Composite 

The influence of the non-uniform magnetic field on the particle sedimentation of the bilayer 
composites was investigated by a SEM. Figure 3 shows the cross-section of a bilayer composite 
containing 2.5 wt % of nickel particles. It is clearly seen that the composite is divided into two 

Figure 1. Schematic for fabrication of bilayer composite by using non-uniform magnetic field.

Figure 2 shows four different actuator samples made of bilayer composites with different particle
concentrations. All the samples have outer diameters of 12.5 mm, inner diameters of 5 mm, and lengths
of 120 mm. While one end of each tube was closed, the other end was connected to a tube fitting
through which compressed air was injected. The overall weights of the bilayer composites increased
with higher particle concentrations due to the density increase from the nickel particles.
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Figure 2. Bilayer composite soft bending actuators with different concentrations of nickel particles: 0,
0.5, 2.5, and 5.0 wt % (from left to right). The increased nickel particle concentrations are shown with
color changes.

2.3. Characterization

The morphology of the bilayer composite was investigated using a SEM (FEI Sirion 600,
JEOL, Tokyo, Japan) to observe the distribution of the nickel particles in the polymer matrix.
Thermogravimetric analysis was also conducted by using a high-resolution analyzer (TGA 2950,
TA Instruments, New Castle, DE, USA) to measure the weight of the particle sediment in the composite.
Samples of 20 mg of cured polymer from the composite were heated from 30 to 800 ◦C at a rate of
20 ◦C/min. Although it has been reported that nano-sized nickel particles oxide at high temperature
and slightly increase the weight [24,25], the weight change from high temperature oxidation was
negligible in our experiment, and the oxidation effect was not taken into account in calculating
the particle concentrations. For actuation performance, the bilayer composites were inflated by
injecting air into the chambers. The air pressure was increased until the actuator mechanically failed.
During actuation, the bending angles and axial expansions were measured using an open source
image-processing program (Image J 1.48, Bethesda, MD, USA).
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3. Results and Discussion

3.1. Microstructure of Bilayer Composite

The influence of the non-uniform magnetic field on the particle sedimentation of the bilayer
composites was investigated by a SEM. Figure 3 shows the cross-section of a bilayer composite
containing 2.5 wt % of nickel particles. It is clearly seen that the composite is divided into two different
sections. This is because most of the nickel particles in a prepolymer state moved to the region with the
stronger magnetic field due to the gradient in the field, that is that is Fmag = µ0V(M · ∇)H, where µ0

is the permeability in vacuum, V is the volume of the particle, and M is the magnetization in a given
magnetic field H [26,27]. When particles are attracted by a magnetic field, they not only randomly
aggregate but also align, making particle chains, as shown in the zoomed-in area in Figure 3. It is
generally known that a composite with aligned particles show higher stiffness than one with randomly
dispersed particles even though the particle concentrations of the two are the same [28,29]. Therefore,
use of a magnetic field during fabrication has advantages of not only expediting and simplifying the
process but also improving material properties in our application.

There are mixtures of aligned and aggregated nickel particles in the bottom area. This particle
rich region shows a higher stiffness than the pure polymer region.

To evaluate the contribution of the magnetic assistance to particle sedimentation, degrees of
sedimentation were inspected in a prepolymer mixed with nickel particles (5.0 wt %) without
applying a magnetic field. For a clear visual inspection, polydimethylsiloxane (PDMS) (Sylgard
184 Silicone Elastomer Kit, Dow Corning, Midland, MI, USA) was used instead of Dragon Skin 10
in this experiment, since PDMS was optically transparent while showing a similar viscosity in a
prepolymer state. Although sedimentation occurred only by gravity due to the high density difference
between the particles and the polymer, it required a highly prolonged period of time (about eight
hours) compared to the time in the magnetically assisted technique (about 30 s), as shown in Figure 4.
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3.2. Thermogravimetric Analysis of Bilayer Composite

The thermogravimetric analysis was performed for quantitatively analyzing the bilayer
composites on the particle distributions in the polymer matrix. Since the silicone elastomer starts to
degrade at 380 ◦C and the corresponding residue yield is 45% at 600 ◦C, the particle concentrations in
the composites were calculated based on the TGA results of pure elastomer [30]. Figure 5 presents
the result of the thermogravimetric analysis of a bilayer composite with 5.0 wt % nickel particles
with/without a magnetic field. As expected, the composite without a magnetic field showed
homogenous distribution of nickel particles throughout the matrix. However, in the composite
with a non-uniform magnetic field, most of the nickel particles were deposited at the bottom of the
structure, resulting in a clear bilayer structure. The concentration of the nickel particles increased
as the vertical location of the examined area approached the bottom of the structure, as shown in
Figure 5. The concentration of nickel particles in the particle-rich area is three times higher than
that in a randomly dispersed composite. In addition, the composite with a higher concentration of
nickel particles showed higher sediment thickness although a small amount of particle residues still
remaining in the upper part due to the high viscosity of the polymer.
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3.3. Bending Performance of Soft Bilayer Actautor

A bilayer composite bends from the combined effect of an end moment that develops at a free end
due to the eccentricity and the differential expansion of the top and bottom layers [3,15,31]. The torque
equilibrium can be obtained from Ma = Mθ , where Ma is the bending moment by the internal air
pressure, and Mθ is the combined moment of the stresses on the top and the bottom layers. Before
testing the actuators, three-dimensional finite element analysis (FEA) was conducted to simulate the
bending behavior using a commercial FEA software package (ABAQUS/Standard, Simulia, Dassault
Systemes, Providence, RI, USA). The material properties of a pure polymer tube and a polymer tube
with embedded nickel particles were used for the characterizing both experimentally and in simulation.
The pure polymer was simulated based on an incompressible hyperelastic model (neo-Hookean model)
for its nonlinear behavior. For the particle embedded composite, we assumed that the composite
was homogenous although the actual composite showed non-homogeneity of particle distribution for
simplicity in simulation and simulated it based on a general rule of mixtures using an elastic model.
One end of the actuator was fixed and air pressure in the chamber was increased. Figure 6 shows
the behavior of the bilayer composite for bending performance. In the composite with homogenous
particle distribution, shown in Figure 6a, only axial expansion was observed under the applied air
pressure due to the uniform stiffness of the composite. However, both the bending and expansion were
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observed in the bilayer composite, as shown in Figure 6b. Figure 7 shows the bending performance of
the bilayer composite under different air pressure levels, obtained from the FEM analysis. The actuator
bent in the direction of the nickel particle composite layer due to the stiffness difference.Materials 2017, 10, 646  6 of 10 
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Figure 7. Bending performance of soft bilayer actuator under applied air pressure.

For experimentally analyzing the bending performance, the bending angles of the actuator were
measured using the images taken during actuation, as shown in Figure 8. In this analysis, the bending
angle θ was defined as the angle between the vertical line of the original shape of the actuator and
the straight line that connected the base and the end point of the bent actuator. Figure 8 compares
the bending behaviors of the actuators made of bilayer composites with two different nickel particle
concentrations, 0.5 wt % and 5 wt %, with varied air pressure levels. It is noticed that the soft
actuator with a lower particle concentration bends and axially expands more than that with a higher
concentration. This is because the actuator with higher density requires additional force for both
bending and expansion.
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(bottom) nickel particle concentrations.

Figure 9 shows the representative bending angle changes with different particle concentrations for
varied air pressure levels. The actuator with neat polymer showed lowest angle changes in bending,
since the air chamber is located along the neutral axis and also the material is homogenous. Although
small bending was observed in this actuator at a high air pressure, it is mainly from asymmetry of the
structure caused by imperfection in manufacturing. All the composites with nickel particles showed
relatively large bending angle changes. The actuation mechanism is to utilize an asymmetric structure
based on the stiffness difference in a bilayer composite made by a non-uniform magnetic field during
fabrication. It was also observed, in Figure 9, that the composites with low particle concentrations
made larger bending angles than those with high concentrations. Although the asymmetric particle
distribution in the composite enabled bending of the structure, increase of particle concentration also
increased the overall weight of the structure, resulting in less bending of the actuator in the upward
direction due to gravity. Figure 10 shows expansions in length of the composites under different air
pressure levels. The composite with low particle concentration expanded substantially due to the low
structural stiffness as expected, whereas the composite with a high particle concentration changed its
length little from the original length during actuation.
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expansion. The result showed that the behavior was mainly dominated by the concentration of nickel 
particles. The proposed magnetically assisted fabrication for bilayer bending actuators will be a very 
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4. Conclusions

We propose bilayer composites made of metal particles and elastomer and the manufacturing
method based on a non-uniform magnetic field for soft bending actuators. The proposed method
significantly simplifies fabrication of multi-layered composite structures, neither requiring complex
design of the structure nor involving multiple steps of bonding of different materials. In this study,
we fabricated bending actuators with different concentrations of nickel particles. During the curing
process, a non-uniform magnetic field was applied to one side of the mold. The nickel particles were
attracted toward the magnetic field, resulting in a bilayer composite. The actuation performance of
the bilayer composite was characterized both in simulation and experimentally for bending and axial
expansion. The result showed that the behavior was mainly dominated by the concentration of nickel
particles. The proposed magnetically assisted fabrication for bilayer bending actuators will be a very
useful technique for fast and robust manufacturing for various soft robotics applications.
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