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Network-on-Chip (NoC) is established as the most scalable and effi-
cient solution for the on-chip communication challenges in the multi-
core era, since it guarantees scalable high-speed communication with
minimal wiring overhead and physical routing issues. However, ef-
ficiency of the NoC depends on its design decisions, which must be
made considering the performance requirements and the cost bud-
gets, specific to the target application. In the NoC design flow,
merely verifying and validating the design for its adherence to the ap-
plication’s average communication requirements may be insufficient,
when the need is to get the best performance within tight power and
area budgets. This calls for NoC design validation and optimization
under real-time congestions and contentions imposed by the target
application. However, application availability issues (due to Intellec-
tual Property restrictions), force us to look at alternative solutions
to mimic the target application behavior and help us arrive at an
efficient and optimal NoC design. This thesis is a step in the said
direction, and proposes a performance analysis and validation tool
(infrastructure) that employs synthetic and application trace-based
traffic generators, to efficiently emulate the expected communication
behavior of the target application. Novel methods are suggested to

model and generate deterministic and random traffic patterns and to port reference application traces from
and to different interconnect architectures (from buses to NoCs or vice versa). Further, these traffic gen-
erators are supported by efficient traffic management/scheduling schemes, that aid in effective analysis of
the NoC’s performance. The proposed tool, also includes a statistics collection and performance valida-
tion module that checks the designed network for adherence to the performance requirements of the target
application and explores trade-offs in performance and area/power costs to arrive at optimal architectural
solutions. The significance of this tool, lies in its ability to comprehensively validate a given NoC design and
suggest optimizations, in the light of the target applications expected run-time communication behavior.
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Introduction 1
1.1 Why Networks On Chip?

The ever increasing demand for processor performance countered by the power con-
sumption barrier has lead computer architects to design multi-processor and multi-core
single chip architectures [26] [1]. As technology scales beyond deep sub-micron and
offers increasing integration density, the assembling of a complete system consisting of a
large number of IP blocks (e.g. processors, accelerators, memories, I/O controllers) on
the same silicon die has become technically feasible.

Today, chips comprise of tens or even hundreds of these building blocks, often
very heterogeneous in pin-out, performance, geometric size and shape, clocking require-
ments, etc. As the complexity of such MPSoC designs skyrockets, one of the crucial
bottlenecks has been identified as the on-chip interconnection infrastructure [23].

Most current SoC designs are based on shared buses due to their low cost. Un-
fortunately, scalability is limited on shared buses due to the serialization of multiple
access requests. Among the key design challenges for an efficient communication
infrastructure, some of the most prominent ones include, bandwidth scalability, efficient
wiring and accurate routing of data.

A solution to these challenges has been identified in Networks-on-Chip (NoC) [15],
where the communication is always point-to-point and packet-switched and messages
are transferred from source to destination across several links and switches (routers).
While this allows unlimited bandwidth scalability (i.e. by adding more on-chip routers
and links), it also ensures that the wiring is kept tidy and length bounded.

NoCs are now being considered by many, as a viable alternative to design scal-
able communication architecture for present and future generation SoCs [32]. In
multimedia processors, inter-core communication demands often scale up to the range
of GB/s and this demand is expected to peak with the integration of several heteroge-
neous high performance cores into a single chip. To meet such increasing bandwidth
demands, state-of-the-art buses such as STBus and AMBA, instantiate multiple buses
operating in parallel thereby providing a crossbar-like architecture, which however,
still remains inherently non-scalable. To effectively tackle the interconnect complexity
of MPSoCs, a scalable and high performance interconnect architecture is needed and
hence, NoCs [24] [16].

1



2 CHAPTER 1. INTRODUCTION

1.2 Network on Chip Architecture

Emerging System-on-Chip (SoC) designs consist of a number of interconnected hetero-
geneous devices. NoCs can be described as the on-chip interconnect that connects up
these heterogeneous IP blocks, provides support for multiple clock domains on a single
chip and facilitates communication across the IP blocks based on predefined protocols
and routing schemes. For efficient functioning of NoCs, the three components: the
Network Interfaces, the Routers and the Links play very significant roles. A conceptual
view of the Network on Chip architecture is depicted in Figure 1.1.

Figure 1.1: Conceptual view of Network on Chip

As can be seen in the figure above, the different IP cores such as CPU, Accelerators,
DMAs, I/O etc., are connected to the NoC infrastructure through the Network
Interfaces, which in turn connect to a port on any of the Routers which then connect
among themselves, forming the NoC.

The Network Interface is employed to provide protocol-specific communication, by con-
verting core-specific signals into a common packet format, performing packetization/de-
packetization of data and implementing the service level protocols associated with each
transaction in the NoC. In simple terms, a Network Interface translates messages from
its IP core to a standard protocol when its IP core sends messages into the network
and from the standard protocol to that of its IP core when it receives messages,
thus supporting SoCs that accommodate heterogeneous IP cores and coordinating the
transmission and reception of packets from/to the core.
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The Routers are used to establish the links across the IPs, such that the data
packets can be transferred from any source to any destination while making routing
decisions at the switches. The routers can be arbitrarily connected to each other and
to NIs, based on a specified topology. They include routing, switching and flow control
logic. Routing schemes help in finding a path between any source and destination
IP block, while minimizing the number of hops to transport packets across the NoC
infrastructure in a parallel and pipelined fashion.

The connecting links are also a critical component of NoCs. They connect NIs
and routers and help in transmitting data packets over the network. The routers are
used to route the packets from source to destination, while links are used to connect the
various cores and routers together.

Besides these three main components, the flow control techniques also play a sig-
nificant role in the working of NoCs by defining how packets should be moved through
the network while providing performance guarantees in Quality of Service (QoS). Flow
control techniques also help in dealing with situations where two packets arrive at the
same link at the same time (contention).

1.3 Network on Chip Design Flow

Designing NoCs to meet the functional specification is a complex task and it involves lot
of design trade-offs. As a consequence, the entire design process [27] [18] is categorized
into several phases. The design choices made at each phase have a significant impact
on the overall performance of the NoC and the following phases as well. For instance, a
design choice made during topology selection phase will have an impact on the overall
performance and will also influence the consequent phases like mapping, routing scheme
selection etc. In general, the distinct phases in NoC Design flow can be classified as:

(a) Application Description - It is responsible for providing a unified representation
of the communication patterns. In certain cases these patterns also include communi-
cation types, frequencies etc. The general characterization is done by means of a graph
where each vertex represents a computational module in the application referred to
as task and the edge denotes the dependencies between the tasks. All the entities are
annotated with additional information specifying other communication characteristics.
Alternatively a spreadsheet can also be used, wherein each worksheet can give a
description of the applications communication requirement for a particular use case.

(b) Topology Selection - It involves exploring various design objectives such as
average communication delay, area, power consumption etc. While advantages of
resorting to regular topologies hold for homogeneous SoCs, this is no longer true in the
case of heterogeneous SoCs. The design choices span between full custom topologies
and standard regular topology. The designer could even adopt a hierarchical topology
scheme to satisfy the system requirements. Also, the floorplan information can aid in
topology design/selection process.
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(c) IP Mapping - It is the process of determining how to map the selected IPs on
the communication architecture and also satisfy the design requirements. Different
approaches have been proposed to achieve efficient mapping involving branch and bound
algorithm, multi-objective mapping etc.

(d) Architecture Configuration - It involves fixing up of buffer sizes, routing and
switching schemes etc. Different strategies are adopted by various design flows to
select values that suit the architecture’s communication requirements. Here, since the
design space considered is fairly large and complex, some heuristic based exploration
techniques are employed to arrive at near-optimum solution.

(e) Design Synthesis - It involves description of the network components in hardware
modeling language and this is achieved by using tools, in the synthesis phase. Also,
standard network component libraries for switches, routers and network interfaces can
be used.

(f) Design Validation and Simulation - Validation of the implementation of the
NoC architecture is useful in verifying the design against the initial requirements in
terms of communication latencies, throughput, area and power.

The cost and performance numbers are obtained by simulations and depend on
the selected network components and the topology, and the setting of their correspond-
ing parameters. This final phase of the design flow also helps tune the NoC parameters
to suit the target application’s behavior.

In the next section, we specifically look into the design flow of the Xpipes NoC [22] [17],
which is the case study NoC being used in this thesis, for simulation purposes.

1.4 Xpipes NoC Design Flow

The Xpipes NoC Design Flow [13] is used to generate efficient NoCs using Xpipes ar-
chitecture [17] with custom topology to satisfy the design constraints of the application.
The objective is of the design flow is to minimize network’s power consumption and the
number of hops.

The Xpipes design flow also uses a floor-planner to estimate design area and wire
lengths for selecting topologies that meet the requirements both in terms of power
consumption and target frequency of operation. This helps achieve fewer design re-spins,
as accurate floor-plan information is made available early in the design cycle. Also
deadlock free routing methods are considered to ensure proper NoC operation.

In the first phase of the design flow, the constraints and objectives to be satisfied by the
NoC architecture are specified. Information on application traffic characteristics, area
delay and power models etc are also obtained.
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In the second phase, the NoC which satisfies all the constraints is automatically
synthesized. There are different steps involved in this phase. Firstly, frequency and
link width are varied between a set of suitable values. Then the synthesis step is
performed for each set of architectural parameters thereby exploring the various design
choices. This step involves establishing connectivity between the switches and cores and
finding deadlock free routes for the different traffic flows. In the last phase, RTL code
required for the various network components instantiated in the design is automatically
generated. It uses Xpipes library [35], which comprises of soft macros of the components
and Xpipes Compiler [29]to interconnect network elements with the core. The design
flow of the Xpipes NoC is shown in Figure 1.2 and is based on the Xpipes design flow
suggested in Figure 1.5 in [12] and Figure 3.1 in [33].

Figure 1.2: Xpipes Network on Chip Design Flow

As can be seen in the figure above, performance goals and power and area budgets
are obtained from the user and the NoC components in different configurations and their
corresponding power and area models are obtained from the Xpipes NoC library. Based
on these requirements and constraints, a suitable architecture and topology is generated
and using optimization heuristics, a set of feasible architectural solutions is obtained.
The Xpipes compiler then generates the RTL for one of the design solutions.

1.5 Motivation and Objective

As mentioned in the previous section, in the Xpipes NoC Design Flow, all the perfor-
mance objectives (in terms of average throughput and latency requirements) and design
constraints (in terms of power and area budgets) are specified in the first phase itself
and proper adherence to the same is verified throughout, with the aim to guarantee
high performance and low power and area costs.
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However, the design process is yet incomplete, since there is still a need to verify
the network design for performance and efficiency against real-time constraints (conges-
tions and contentions) imposed by a real application/benchmark, so as to arrive at a
concrete and optimal NoC design for a given application.

It is well established that parallel injection of traffic from different IP cores or
processors in an MPSoC environment, causes contention for network’s resources.
Although, links are designed to provide adequate bandwidth to meet the average
requirements of the application, traffic injection instances with high levels of contention,
lead to congestion, due to the design choices for network components, thus affecting the
network’s performance. To overcome or subside this issue, network’s designers tend to
over-design the NoC, such that despite the congestions and contentions, the throughput
and latency requirements of the application are met. However, such over-design
adversely impacts the power and area costs and hence, calls for an additional effort
to validate and optimize the design such that the performance objectives and cost
constraints are met.

In order to arrive at efficient and optimal network design solutions, it becomes
essential to verify the same against the run-time behavior of the target application, since
that would present a very realistic picture of the network’s performance at run-time and
thereby, an accurate estimate of the required over-design. Hence, it becomes extremely
crucial to incorporate such a phase in the design process to arrive at an efficient and
optimal design of the NoC, as can be seen in Figure 1.2.

This can be done with adequate information about the target application from
the user, though it may well be very restricted due to application’s Intellectual Property
issues. What may be available could be information such as, expected traffic pattern or
a trace obtained from a reference system, which uses a different existing interconnect
such as a shared bus. Hence, it is suggested to instead employ synthetic or application
trace-based traffic generators, that effectively emulate the expected behavior of the
target application.

The synthetic traffic generators produce traffic based on given probability distri-
butions or traffic shapes or patterns that can be expected for the given application in
the given system setup. This description may be specified by the user, as a substitute
for application details such as source code or scheduling information.

The application trace-based traffic generators re-produce traffic from a reference
application trace (obtained from a reference system), by modeling and porting the
same to the NoC-based simulated system. The reference trace may be made available
from a cycle-accurate reference simulator system or a functional simulator system, with
unknown or constant reference interconnect delays, which needs to be filtered out when
porting the trace.
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Modeling and porting of traces also involves deriving of application’s realistic
schedule, which helps maintain transaction ordering and application control flow. Such
measures, assure that the process of modeling and porting the reference trace, yield a
more accurate estimate of the application’s expected run-time behavior, when compared
to the synthetic traffic generation mechanism, by estimating and reproducing complex
dependencies in the application such as during synchronization.

In comparison to a relevant recent effort in this direction in [31] where there is
a need to use system-level information such as knowledge of semaphore variables
and pre-defined memory address map to detect synchronization events, the suggested
approach provides a more generic approach with the ability to automatically detect
dependencies across all the transactions in the application, without using any such
system-dependant information.

In this thesis, we address both the scenario’s (synthetic and trace-based traffic
generation) assuming availability of application information in both the formats (as
traffic patterns/distributions and reference application traces), and can expect efficient
validation and optimization. While the former method, is meant to give a direction
for validation and optimization, the latter provides more accurate estimates of the
network’s performance and design issues.

The objective of this thesis is to come up with a performance validation
tool/infrastructure which incorporates such traffic generators that help in perfor-
mance validation and optimization of the NoC design. The thesis aims to addresses the
following major challenges:

• Using traffic generators to model and re-generate target application’s expected
run-time behavior.

• Validation of the NoC design to meet the application’s requirements.

• Suggest optimizations arriving at the best tradeoffs among performance and
area/power constraints.

1.6 Contributions

To develop an infrastructure for performance analysis, validation and design optimiza-
tion of NoCs, the tool employs synthetic and trace-based traffic generators, which
effectively produce synthetic traffic and efficiently emulate traffic behavior of real
applications, respectively.

In addition, novel methods are suggested to mimic non-deterministic traffic pat-
terns in synthetic traffic generators and to arrive at traffic models that realistically
capture the application communication behavior and schedule across the IP cores in
trace-based traffic generators.
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In synthetic traffic generation, traffic patterns using relevant probability distribu-
tions/analytical models are generated. In trace-based traffic generation, reference traces
are employed and appropriate methods to migrate and emulate the same to different
environments/interconnect, are suggested.

In order to obtain application traces, a set of benchmarks are executed on a
cycle-accurate MPSoC emulator called MPARM [14], which employs ARM7 [30]
processors.

The process of collecting statistics involves capturing the type and the timestamp
of communication events at the boundary of every IP core in a reference environment.
This opens up the possibility for communication infrastructure exploration and opti-
mization and for the investigation of its impact on system performance at the highest
level of accuracy under realistic workloads and different system configurations.

The performance validation tool/infrastructure proposed in this thesis helps in
validating system level design decisions and verification of the implementation. It
addresses the performance vs area and power tradeoffs and helps validate and optimize
the NoC performance. In short, this thesis proposes a comprehensive infrastructure for
performance analysis and trade-off exploration for on-chip communication architectures.

1.7 Thesis Organization

Chapter 2 of this thesis gives an overview of the Xpipes NoC architecture, the Xpipes
Compiler and the MPARM MPSOC platform and their relevance to this study. Chap-
ter 3 discusses synthetic traffic generation using relevant probability distributions, be-
sides suggesting an efficient ‘peak and valleys’ approach for modeling non-deterministic
distributions/curves in traffic patterns. It also suggests an efficient traffic manage-
ment/scheduling scheme for the traffic generator, that defines the spatial distribution
of the traffic in the network, in order to assure maximum possible stress on all links and
to check for robustness of the NoC. Chapter 4 suggests a methodology for estimating
IP processing times and deriving an application’s static schedule from a reference trace.
It also suggests a method for employing an application’s dynamic schedule for better
representation of the application’s behavior, besides describing the implementation of
the appropriate schedule managers. Chapter 5 describes the methodology involved in
statistics collection and analysis and presents a set of simulation results for a benchmark
application. Chapter 6 concludes the thesis, highlighting the significance of the work
and exploring opportunities for future work.



Xpipes and MPARM 2
2.1 Xpipes NoC

The Xpipes NoC [22] library provides efficient synthesizable, high frequency and low
latency components (such as Network Interfaces, Routers and Links) which can be
parameterized in terms of buffer depth, flit width, arbitration policies, flow control
mechanisms etc. The Xpipes Compiler is employed to interconnect these network
elements with the cores.

Xpipes NoC [17] is fully synchronous and yet supports multiple frequencies in
the NIs. Routing is statically determined in the NIs. Xpipes uses wormhole switching [2]
and best-effort services [3] for data transfers. There is also support for QoS provisions.
Xpipes supports both input and/or output buffering, depending on flow control require-
ments and designer choices. In fact, since Xpipes supports multiple flow controls, the
choice of buffering strategy is entwined with the selection of the flow control protocol.
Xpipes also chooses to employ parallel links over virtual channels to resolve bandwidth
issues, in order to reduce implementation costs.

2.2 Xpipes Building Blocks

The most critical components in any NoC architecture are the Network Interfaces, the
Routers and the Links. An NoC is instantiated by interconnecting these network ele-
ments in different configurations to form a topology, which may either be specific, such
as mesh or ring, or allow for arbitrary connectivity, matching the requirements of the
target application. An overview of the Xpipes NoC architecture is depicted in Figure 2.1.

Figure 2.1: Overview of Xpipes NoC Architecture
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As can be seen in the figure above, the Xpipes NoC has a simple architecture with a
Network Interface for each of the sources and one for each of the targets. The Network
Interface includes separate request and response paths, which include packetizing and
de-packetizing logic. The arbitration happens at the routers, which decides which mas-
ter/source gets priority on the links down stream. The Xpipes NIs also support multiple
clock domains at the sources and targets. The Xpipes NoC building blocks are explained
in detail in the following sub-sections.

2.2.1 Network Interfaces

A Network Interface is needed to connect each core to the NoC. Network Interfaces
convert transaction requests into packets for injection into the network and receiving
packets into transaction responses. When transmitting the packets, they are split into
a sequence of FLITS (Flow Control Units), to minimize the physical wiring. This flit
width in Xpipes is configurable based on the requirements. It can vary from as low as
4 wires to as high as 64-bit buses (up to 200 wires including address bus and control
lines). Network Interfaces also provide buffering at the interface with the network to
improve performance.

In Xpipes, two separate Network Interfaces are defined. One Network Interface
is the initiator NI, which connects to the master/processor core and the other is the
target NI, which connects to the target slaves. Each master and slave device requires
an NI of its type (initiator or target) to be attached to it. The interface between the
IP cores and Network Interfaces is defined by the OCP 2.0 [34] specification, which
supports features such as non-posted and posted writes (i.e. writes with or without
response) and various types of burst transactions, including single request/multiple
response bursts.

Xpipes employs dedicated Look-Up Tables at NIs, which specify the possible pre-
defined paths for the packets to follow to the respective destinations. This reduces
the complexity of the routing logic in the switches. Two different clock frequencies
can be linked to Xpipes Network Interfaces: one is connected to the front-end of the
Network Interface that implements the OCP protocol, while the other is connected to
the back-end of the Network Interface that connects to the Xpipes NoC. It must be
noted that the back-end clock (connected to the Xpipes NoC) must run at a frequency
multiple of that of the front-end (Initiator) clock. This allows the NoC to run at a faster
clock than the IP cores thus keeping transaction latencies low.

2.2.2 Switches

The medium of transportation of packets in the NoC architecture are the switches,
which route packets from sources to destinations. Switches are fully parameterizable in
the number of input and output ports. Switches can be connected arbitrarily and hence
any topology, standard or custom can be configured. A crossbar is used to connect the
input and output ports.
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The switches are also equipped with an arbiter to resolve conflicts among packets
from different sources, when they overlap in time and request access to the same output
link. It is possible to implement either the round-robin or the fixed priority scheduling
policy at the arbiter. It is also possible implement parallel links between switches, thus
providing an inexpensive solution to handle congestion and maintain performance.

Switches are also equipped with input and output buffering solutions to lower
congestion and improve performance. The buffering resources are instantiated depend-
ing on the desired flow control protocol. If credit-based flow control is chosen, only
input buffering is mandatory. In this scenario, Xpipes optionally allows the designer
to do completely without output buffers, reducing the traversal latency of a switch to
a single clock cycle. Output buffers can still be deployed to decouple the propagation
delays within the switch and along the downstream link; the downside is a second cycle
of latency and additional area and power overhead.

2.2.3 Links

Links between switches and Network Interfaces form a critical part of NoCs. In Xpipes,
links are further enhanced by supporting link pipelining, with logical buffers to reduce
propagation delays. Xpipes implements latency insensitive operation using appropriate
flow control protocols to make the link latency transparent to the logic, thereby enabling
faster clock frequencies.

2.3 Xpipes Flow Control Protocols

Flow control allocates network resources to the packets traversing the network and
provide solution to resource allocations and contentions. Flow control in NoCs is
crucial, as it plays a decisive role in the determination of: (a) the number of buffering
resources in the system: efficient flow control protocols will minimize the number
of required buffers and their idling time, (b) the latency that packets incur while
traversing the network, which is useful under heavy traffic conditions, where fast packet
propagation with maximum resource utilization is key and (c) the degree of support for
link pipelining and the associated delay overhead.

In Xpipes, three radically different flow control protocols have been implemented.
They are:

• ACK/NACK, a retransmission-based flow control protocol where a copy of the
transmitted flit is held in an output buffer until an ACK/NACK signal is received.
If an ACK signal is received, the flit is deleted from the buffer and if a NACK
signal is received the flit is re-transmitted.

• STALL/GO, a simple variant of credit-based flow control where a STALL is issued
based on the status of the buffer downstream when there is no buffer space available,
else a GO signal is issued, indicating availability of buffer space to accept the next
transaction.



12 CHAPTER 2. XPIPES AND MPARM

• T-Error, a complex timing-error-tolerant flow control scheme, that enhances per-
formance at the cost of reliability.

Each of these offer different fault tolerance features at different performance/power/area
trade-offs. STALL/GO assumes reliable flit delivery. T-Error provides partial support
in the form of logic to detect timing errors in data transmission. ACK/NACK sup-
ports thorough fault detection and handling, using retransmissions in case of failures.
ACK/NACK and STALL/GO flow control protocols are represented in Figure 2.2.

Figure 2.2: Xpipes pipelined link block diagram

In circuit-switched NoCs or those providing QoS guarantees [28], minimum buffering
flow control can be used: a circuit is formed from source to destination nodes by means
of resource reservation, over which data propagation occurs in a contention-free environ-
ment. Best-effort networks are normally purely packet switched and typically buffering
increases the efficiency of flow control mechanisms.

Figure 2.3: Buffering in Switches
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The amount of buffering resources in the network depends on the target performance
and on the implemented switching technique. The buffering in the switches when using
ACK/NACK and STALL/GO flow control protocols is depicted in Figure 2.3. Switches
need to hold entire packets when store-and-forward switching is chosen, but only flits
when wormhole switching is used. By default, Xpipes uses wormhole and source routing,
which reduces the amount of buffering required besides using STALL/GO flow control.
Further details about the Xpipes flow control protocols, are presented in [12].

2.4 Xpipes Compiler

For an application-specific network on chip, there is a need to design network compo-
nents (e.g. switches, links and network interfaces) with different configurations (e.g.
I/Os, buffers) and interconnecting them with links supporting different bandwidths.
This process requires significant design time and needs design verification of the network
components for every NoC design.

The Xpipes Compiler [29] is employed to instantiate the different components of
an NoC (routers, links, network interfaces) using the Xpipes library of SystemC macros,
for a specific NoC topology. The Xpipes library comprises of high performance, low
power parameterizable components that can be generated for a NoC, tailored to the
specific communication needs of any given application. This helps the Xpipes Compiler
in instantiating optimized NoCs, where significant improvements in area, power and
latency are achieved in comparison to regular NoC architectures.

An overview of the SoC floorplan, including network interfaces, links and switches,
clock speed, possible links and the number of pipeline stages for each link area specified
as input to the Xpipes Compiler. Routing tables for the network interfaces are also
specified. The tool uses the Xpipes SystemC library, which includes all switches, links
and interfaces in different configurations and specifies their connectivity. The final
topology is then compiled and simulated at the cycle-accurate and signal-accurate
level and fed to back-end RTL synthesis tools for silicon implementation. Thus, an
optimal custom network configuration is generated by the Xpipes Compiler based on
the application’s requirements and costs.

2.5 MPARM platform

MPARM [14], a SystemC simulation platform is developed at University of Bologna, to
evaluate the performance of MPSoCs with cycle accuracy. MPARM can incorporate
different platform variables, such as memory hierarchies, interconnects, IP core archi-
tectures, OSes, middleware libraries, etc., making it possible to study the macroscopic
impact of small changes at the architectural or programming level. MPARM can include
a large variety of IP cores, ranging from microprocessors to DSPs, from accelerators
to VLIW blocks. It can also support extremely varied memory hierarchies, including
caches, scratchpad memories, on-chip and off-chip SRAM and DRAM banks.



14 CHAPTER 2. XPIPES AND MPARM

The MPARM platform can also run OS and middleware and real applications to
most efficiently exploit the underlying architecture, besides supporting different com-
munication and synchronization schemes, including message passing, DMA transfers,
interrupts, semaphore polling, etc. MPARM is also an ideal platform to test our
interconnect. It can support a wide range of system interconnects, including shared
buses of several types, bridged and clustered buses, partial and full crossbars, up to
NoCs.

Figure 2.4: The MPARM SystemC virtual platform

The MPARM environment, as shown in Figure 2.4 (Courtesy: [12]), is designed to
investigate the system level architecture of MPSoC platforms. To be able to fully
assess system performance, a cycle-accurate modeling infrastructure is put into place.
MPARM is a plug-and-play platform based upon the SystemC simulation engine, where
multiple IP cores and interconnects can be freely mixed and composed. At its core,
MPARM is a collection of component models, comprising processors, interconnects,
memories and dedicated devices like DMA engines. The user can deploy different system
configuration parameters by means of command line switches.
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A thorough set of statistics, traces and waveforms can be collected to debug
functional issues and analyze performance bottlenecks. MPARM features a choice of
several IP cores to be used as system masters. These span over a range of architectures,
that typically model pre-existing general purpose processors with little to no possibility
of modifying the ISA and the architecture.

On top of the hardware platform, MPARM provides a port of the RTEMS [21]
Operating System, offering good support for multiprocessing with efficient communi-
cation and synchronization primitives. Application code, can be easily compiled with
standard GNU cross-compilers and ported to the platform.

MPARM also has special libraries for development and debugging of new applica-
tions and benchmarks. This is important for establishing a solid and flexible simulation
environment. MPARM includes several benchmarks from domains such as telecommu-
nications and multimedia, and libraries for synchronization and message passing.

Debug functions include a built-in debugger, which allows to set breakpoints, ex-
ecute code step-by-step and inspect memory content; it is additionally capable of
dumping the full internal status of the execution cores. Multiple communication and
synchronization paradigms are possible in MPARM, including plain data sharing on a
shared memory bank, message passing among scratch pad memory resources of each
processor, interrupts and semaphore polling (if OS is not used for synchronization).

MPARM stimulates the communication subsystem with functional traffic gener-
ated by real applications running on top of real processors. This opens up the
possibility for communication infrastructure exploration under real workloads and for
the investigation of its impact on system performance at the highest level of accuracy.

2.6 Using Xpipes Compiler and MPARM

As indicated above, the Xpipes Compiler is used to instantiate network components
(routers, links, network interfaces) with different configurations for a specific NoC topol-
ogy, using the Xpipes library. When employing synthetic traffic generators, the Xpipes
NoC is generated this way and used directly for testing and performance validation as
will be shown in Chapter 3. When there is a need to use trace-based traffic generators,
the MPARM simulation platform is used. The MPARM platform is used to run bench-
mark applications for different interconnects and obtain the traces. Then employing the
methodology proposed in Chapter 4, we model the traces and derive the application
schedule, to re-generate and port the application traces for validation of the designed
NoC, which is generated by the Xpipes Compiler for that application.
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Synthetic Traffic Modeling and
Generation 3
3.1 Need for Traffic Models

The on-chip interconnection in a Multi Processor System on Chip has a significant impact
on the overall performance of the system and this necessitates the need to analyze the
same. The interconnect can span over a huge variety of architectures and topologies,
ranging from traditional shared buses up to packet-switching Networks-on-Chip. To
evaluate design choices for a particular interconnect, the MPSoC designer needs synthetic
traffic models that are realistic and representative of real-world embedded applications,
to verify and validate the interconnect’s performance and suggest optimizations.

3.2 Modeling Traffic Injection

In an embedded environment, a traffic source such as an IP or a processor, generates
data traffic either periodically or at irregular intervals. Hence, it becomes essential to
characterize the traffic injection process (traffic arrival into the network), to effectively
replicate the application traffic, wherein the variation in the inter-arrival/inter-injection
times between two transactions becomes the most significant component. This variation
in inter-injection times may be either correlated by certain standard probability
distribution or be completely non-deterministic, depicting a random pattern (curve)
when plotted in time.

Figure 3.1: Traffic Injection Histogram
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In the former scenario, these inter-injection times can be defined as randomly
generated variables distributed in time, correlated to each other by a probability
distribution function. In other words, the random variables (timings) generated by
a given probability distribution function, in an unspecified order, will ascertain the
inter-injection times in a traffic. The best way of representing such a behavior, is by
plotting appropriate histograms, with the non-overlapping injection intervals on the
X-axis and the number of transactions for the corresponding injection interval on the
Y-axis, as shown in Figure 3.1. For traffic modeling and generation, the probability
density functions of the distributions are employed to get the inter-injection times. This
method is discussed in further detail in Section 3.4.

In the latter scenario, since the correlation in the inter-injection times is non-
deterministic and when plotted in time represents a particular (random or familiar)
pattern, there must be a way of modeling such a behavior in time as well. It must be
noted that when representing such traffic shaping in time, using a histogram (frequency
domain representation) is inappropriate, since the behavior is temporally and relatively
defined and cannot be randomly generated. Hence, to maintain a similar temporal
relevance, a time domain representation is certainly more suitable, with the transaction
number on the X-axis and its corresponding injection-interval on the Y-axis, as shown
in Figure 3.2. For traffic modeling and generation, a novel ‘peaks and valleys’ approach
is suggested and later this model is employed to generate the appropriate inter-injection
times. This method is further explained in Section 3.5.

Figure 3.2: Traffic Injection Timeline
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3.3 Modeling Synthetic Traffic

It must be noted that the primary purpose of using synthetic traffic generators
which employ probability distributions or timing information (in the form of traffic
patterns/curves) for traffic injection, is to speed up the validation process and generate
flows to strain the interconnection network. It must also be noted that such distributions
(observed or derived) assume a degree of correlation within the inter-injection intervals,
which may not always be true in an SoC environment. Also the inherent probabilistic
nature of the statistical approach itself, makes it less accurate, as each traffic generator
injects traffic in complete isolation from every other. However, the simplicity and
simulation speed of such stochastic models make them valuable during preliminary
stages of NoC validation, but, since the characteristics (functionality and timing) of the
IP core are not captured (due to lack of knowledge of the application/IP behavior),
such models can only serve as a direction for analyzing and validating the performance
of interconnect/NoC and not for its design optimization.

In our approach to generate synthetic traffic, as stated in the previous section,
we use both standard probability distributions and traffic injection patterns (curves) to
estimate the inter-injection times. The motivation for employing the former method,
is that traffic behavior in certain applications are found to exhibit partial (or full)
adherence to specific probability distributions. For instance, in variable-bit-rate video
traffic [25], self-similar traffic pattern is observed due to longrange dependence. A
heavytailed distribution such as Pareto that exhibits extreme variability, may lead to
such longrange dependence and hence, self similar pattern in network traffic. Besides
such specific probability distributions, we also employ certain standard probability
distributions, such as Normal (Gaussian), Poisson and Exponential Distributions, to
generate synthetic traffic to validate the interconnect performance. In case of the latter
method, a novel ‘peaks and valleys’ approach is suggested, to model the random traffic
patterns and to generate the appropriate inter-injection times.

Besides, when there is little IP information or knowledge of the application be-
havior, the best an interconnect validation infrastructure can do, is to model the traffic
arrival/injection process on the basis of such distributions and models.

Another aspect very crucial to interconnect performance analysis and validation
studies is efficient traffic management/scheduling by the traffic generator. Such traffic
management/scheduling defines the spatial distribution of the traffic in the network.
While the temporal distribution obtained using the probability distributions or injection
patterns, determines how traffic is generated over time, the spatial distribution defines
which master communicates with which slave at a particular instance in time. The
significance of defining the spatial distribution of traffic is that, it helps in exploring
different avenues for validation such as instances when the traffic is localized to a
particular slave or evaluating hot-spot patterns in the network which can be useful in
representing the application’s characteristics. The spatial distribution of traffic defines
traffic distribution in amongst all slaves for each of the traffic generators.



20 CHAPTER 3. SYNTHETIC TRAFFIC MODELING AND GENERATION

When multiple masters simultaneously inject traffic into the network, this leads to
contention and hence congestion, which adversely impacts its performance. A crude way
to work around this issue, is to over-design the interconnect (NoC), such that despite
the congestions and contentions, the throughput (bandwidth) and latency requirements
(QoS) of the application are met.

It can be said, that to a good extent, the amount of over-design depends on the
accuracy of the application traffic model in replicating the application behavior and
the management/scheduling of traffic on the network, since together they dictates the
temporal and spatial usage of the network resources and hence, the required over-design.
In other words, arriving at an optimal network design depends on the efficiency of
the traffic generator in mimicing the application and the effectiveness of the traffic
management/scheduling policy of the traffic generator and its efficient scheduling of
loads on different links in the network.

Having addressed the issue of temporal distribution of traffic using probability
distributions/ traffic patterns, traffic management/scheduling becomes the key in
effective network validation. Hence, it becomes essential that every traffic generator
while scheduling the traffic, gives appropriate priorities to its connected slaves, based
on individual instantaneous and overall average injection bandwidth requirements.
Towards this, an approach to dynamically re-schedule transactions across the slaves is
suggested and described in detail, later in this chapter.

In a nutshell, this chapter suggests the following solutions for a successful simula-
tion study:

• A traffic generator employing probability distributions to get injection intervals.

• A traffic generator using the ‘peaks and valleys’ approach to model traffic patterns.

• An efficient traffic management/scheduling scheme for appropriate load distribu-
tion and effective validation.

3.4 Modeling Traffic using Probability Distributions

While employing standard probability distributions to characterize the traffic injection
process (temporal behavior), the inter-injection times can be estimated using the
corresponding probability density function (pdf). In general, employing such probability
density functions, is made feasible by plotting appropriate histograms, as suggested in
Section 3.2.

The probability distributions discussed in the previous section, are analyzed in
this section and are employed by the traffic model to determine inter-injection intervals.
Their corresponding continuous probability density functions and the generated discrete
representations are depicted in Figure 3.3.
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Figure 3.3: Probability Distributions



22 CHAPTER 3. SYNTHETIC TRAFFIC MODELING AND GENERATION

The different probability distributions used to generate synthetic traffic include the
following:

(a) Exponential Distribution - In an exponential distribution [4], the inter-injection
times represent a Poisson process, i.e. a process in which events occur at a constant
average rate, continuously and independently.

(b) Poisson Distribution - In a Poisson distribution [6], the injection intervals are
calculated using the probability of the number of packets to be injected in that fixed
period of time independently of the time since the last event.

(c) Normal (Gaussian) Distribution - In a Normal (Gaussian) distribution [5], most
of the inter-injection intervals cluster around the mean or average. The probability
density function has its peak at the mean and is known as the Gaussian (or bell) curve.

(d) Pareto Distribution - The Pareto distribution [7], is a heavytailed distribution
that exhibits extreme variability and can be used to represent self similar pattern in
traffic, as shown in [25].

(e) Cauchy Distribution - The Cauchy distribution [8], is observed in GPRS networks
as shown in [20], in text traffic, where the maximum number of transactions are injected
at the mean interval.

(f) Weibull Distribution - The Weibull distribution [9], is used to represent the
ON/OFF process in a bursty VoIP traffic, as shown in [19] and [36].

(g) Combination of Probability Distributions - Besides using different prob-
ability distributions for the entire duration of the simulation, it may be useful to
support a configurable combination of such probability distributions, to generate
multi-dimensional traffic. This feature is incorporated in the proposed synthetic traffic
generator and a sample histogram is presented in Figure 3.4.

Figure 3.4: Combination of Probability Distributions
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As can be observed in Figure 3.4, a combination of different probability distributions
including as Exponential, Gaussian and Poisson can also be employed. Besides these
special distributions (or combination of distributions), it is also possible to inject traffic
uniformly in time, where all injection intervals are of the same length/duration, for
instance to represent a uniformly generated sequence of transactions.

3.5 Modeling Traffic using Traffic Patterns

Modeling traffic injection behavior, that exhibits non-deterministic patterns (curves) in
time and does not follow a standard probability distribution, calls for a time-domain
based approach, that preserves the relative temporal correlation. In comparison to the
probability-distributions based approach, where histograms are used to indicate possible
injection intervals, for non-deterministic traffic injection patterns/shapes, it becomes
essential to preserve the relative temporal spacing between successive injections for all
transactions to maintain transaction ordering and sequence.

When employing such detailed patterns of injection intervals for all transactions,
it becomes crucial to model such patterns to speed up traffic generation, while maintain-
ing accuracy (in terms of adherence to the original pattern) as well. A naive solution
to this can be, sampling of injection intervals using a time-window based approach,
although, that would have a noticeable impact on the accuracy of traffic regeneration.
Instead, a novel and simple ‘peaks and valleys’ approach is suggested for this purpose,
where the key effort in modeling the pattern, is to store all the local peaks and local
valleys along the injection pattern curve, as depicted in Figure 3.5. In other words, when
plotting the traffic injection pattern in time (i.e. injection intervals between successive
transactions), one needs to identify all the local peaks and local valleys, to re-generate
a similar looking curve or injection pattern. This approach would significantly reduce
the amount of information that needs to be stored for generating such traffic patterns.

Figure 3.5: Peaks and Valleys Approach
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Once, all the local peaks and valleys are obtained, this information can then be used to
re-generate the curve (traffic injection pattern), by employing appropriate exponential
curves between peaks and subsequent valleys and reverse exponential curves between
valleys and subsequent peaks. Employing such a simple modeling technique by using
exponential curves between peaks and valleys make sense, since it is safe to assume that
all injection intervals between a local peak and a subsequent local valley, will always
decrease or stay stable and never increase. The same logic can be applied to the usage
of reverse-exponential curves between valleys and subsequent peaks, where injection
intervals tend to keep increasing.

To observe the accuracy of this modeling, we use a synthetic traffic trace to get
a reference injection pattern and model and re-generate the same using the ‘peaks and
valleys’ approach. A comparison of the original and re-generated plots of the injection
intervals is depicted in Figure 3.6 (a) and (b).

Figure 3.6: Application Traffic (Original and Regenerated)
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As can be seen in the figure, there is only a marginal difference between the original
and the re-generated curves. The efficiency of this method can be clearly observed,
since this approach re-generated a very similar pattern (curve) and at the same time,
significantly reduced the memory required to store the curve info to about 15% of the
original (though this gain cannot be assured on all curves).

Another interesting, yet not so-successful extension to this approach was tested,
where the obtained ‘peaks and valleys’ curve was subjected to another iteration of the
‘peaks and valleys’ optimization. In this approach, all the local peaks were considered
together in a ‘peaks only’ curve and all the local valleys in a ‘valleys only’ curve.
These two curves where then subjected to another iteration of the ‘peaks and valleys’
approach, and all the peaks and valleys in both the ‘peaks only’ and ‘valleys only’ curves
were stored. Again, as specified earlier, using the exponential and reverse-exponential
models, the ‘peaks only’ and ‘valleys only’ curves were re-generated and were further
used to re-generate the original traffic pattern. However, this approach was not so
successful, since it was off the mark (from the original traffic injection intervals), by
plus or minus 20%, and is hence not reported with results in this report.

3.6 Traffic Management/Scheduling Scheme

As mentioned in Section 3.3, efficient traffic management/scheduling by the traffic gen-
erators is also extremely crucial for interconnect/NoC performance validation. Traffic
management or scheduling by the traffic generator defines the spatial distribution of
the traffic on the network and helps in validating the network’s performance in different
scenarios such as when the traffic is localized to a particular slave or hot-spots exist in
the network. It must be noted, that this traffic management method implemented by
the traffic generator is very different from the traffic management policies implemented
by the network on chip. While the former gives a spatial distribution of traffic across
the NoC, the latter addresses network issues such as handling flow control, queuing of
transactions or traffic regulation.

For efficient traffic management, an approach for enabling dynamic re-scheduling
of transactions is suggested in this section. The rationale behind using a traffic man-
agement/scheduling system with dynamic re-scheduling, is that, since the instantaneous
bandwidth (throughput) requirements of the slaves keep varying, to maximize the link
utilization, the priorities need to keep changing online as well. Such changing priorities
rule out using a uniform random spatial traffic distribution. From the implementation
point of view, in order to perform dynamic re-scheduling, one needs to monitor the
injected bandwidth from a traffic generator to each of the slaves and compare it
against the expected instantaneous injection bandwidth. To check for adherence to the
inter-injection intervals, a Bandwidth (throughput) Satisfaction Monitor is proposed,
which monitors the injected transactions and evaluates overall average bandwidth
(throughput) satisfaction levels. It must be noted, that this metric gives an unbiased
comparison of the status of all links, by normalizing the usage against the individual
bandwidth requirements.
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Such dynamic re-scheduling of transactions across slaves would help in perfor-
mance analysis of the network under different traffic conditions. One possible condition,
could be when the traffic exhibits spatial locality (many masters communicating to the
same slave) or a hot-spot traffic pattern. This can be handled by stressing the busiest
links (hot-spots) to the limits determined by the bandwidth requirements. Another
possible condition, could be a possible yet realistic worst-case traffic injection, which
will help test the interconnect’s performance and robustness. This can be handled by
stressing all the links heavily and proportionally. Such performance analyses of the
network will help in validating the network’s performance and also in figuring out the
optimal (over)design for the target application.

Existing simulation studies employing synthetic simulation traffic models, targeted
towards NoC design, build either a worst-case or an optimistic traffic model, which
unfortunately, have highly over or under-specified constraints often leading to awkward
over or under-design of the NoC.

An obvious improvement to such worst-case or optimistic models, is using online
re-scheduling schemes, which to a certain extent make sure that the system is not
significantly under or over-designed, though under acceptable performance penalties.
The suggested solution of equipping the synthetic traffic generator with a bandwidth
(throughput) satisfaction monitor, coupled with online re-scheduling algorithms, is an
effort in this direction and aids in reducing the over-design expected with existing traffic
generators.

In order to perform the analyses suggested above, appropriate dynamic schedul-
ing algorithms are employed as suggested below:

(a) To perform the first analysis, an adaptation of the ‘maximum throughput’
scheduling algorithm [11] is employed, with a view to maximize the total throughput
of the network. This algorithm would prioritize data injection to the links with high
bandwidth demands (hot-spots) and stress them more than the others thereby increasing
the overall system throughput.

(b)To perform the second analysis, an adaptation of the ‘weighted fairness’ scheduling
algorithm [10] is employed to appropriate priorities to links based on fair (weighted)
sharing of load across all links, to check for robustness of the NoC. This algorithm would
give fair (weighted) priorities to all links, by constantly re-evaluating priorities based
on the bandwidth (throughput) satisfaction levels of all links since they last received
transactions.

The bandwidth (throughput) satisfaction monitor plays a significant role in facili-
tating the evaluation of the cost-functions associated with the two online scheduling
algorithms.
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3.6.1 Maximum Throughput Scheduling

The maximum throughput algorithm [11] is adapted to incorporate a cost function that
determines the expected throughput gains by scheduling transactions on particular links.
It employs the logic that a slave/link needing data at higher bandwidth (to exhibit
hot-spots or spatial locality) should get more priority over the other slaves with lower
bandwidth requirements, provided this slave/link has a bandwidth (throughput) satis-
faction level of less than 100%. Hence, this policy of dynamic re-scheduling, checks for
bandwidth (throughput) satisfaction levels across all slaves/associated links and then
amongst those with less than 100% bandwidth (throughput) satisfaction, selects the one
with highest bandwidth requirement at that instant in time and sends the next trans-
action to it. This method gives priorities to high bandwidth links with hot-spots and
while ensuring maximum network throughput, checks for robustness of specific links.

3.6.2 Weighted Fairness Scheduling

The drawback of the maximum throughput algorithm is that, a comprehensive view
of the network’s performance is not observed. In order to stress all the links to their
limits, to analyze the entire network’s performance under realistic worst-case scenario’s,
by being fair to all links (though under lower network throughput), an adaptation of
the proportional (weighted) fairness algorithm [10] is employed. This algorithm re-
evaluates scheduling priorities to users that have achieved lowest bandwidth (throughput)
satisfaction levels since they became active or were last answered. The cost function used
in the proportional (weighted) fairness algorithm calculates the cost per data bit of data
flow and in effect estimates the expected loss of not scheduling traffic on a particular
link. Using this cost function to re-evaluate priorities dynamically, would lead to higher
bandwidth (throughput) satisfaction levels of all links, thus achieving a realistic depiction
of a scenario, when all links are heavily loaded.

3.6.3 Analyzing Scheduling Impact

To evaluate the proposed solutions, we employ the topology suggested in Section 2.6
and inject synthetic traffic into the network with the pre-defined characteristics. Over
several runs of the simulations, we observed the following:

(a) The traffic generator employing an adaptation of the ‘maximum throughput’
scheduling algorithm, was able to inject up to a maximum of around 92% of the
required bandwidth (throughput) on the link with the highest bandwidth demand. On
the link with the lowest bandwidth (throughput) requirement, it was able to inject at
approximately 80% of the required bandwidth (throughput).

(b) The traffic generator employing an adaptation of the ‘weighted fairness’ scheduling
algorithm, was able to inject up to a maximum of around 87% of the required bandwidth
on the link with the highest bandwidth (throughput) demand. On the link with the
lowest bandwidth (throughput) requirement, it was able to inject at approximately 84%
of the required bandwidth.
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The exact bandwidth (throughput) satisfaction levels on all links from Master 0, while
employing the modified online re-scheduling algorithms is shown in Figure 3.7. As
expected, the ‘maximum throughput’ algorithm injects stresses particular high demand
links to the possible limits (under conditions of congestion), while the ‘weighted fairness’
fairly distributes the traffic over all links.

Figure 3.7: Efficient Traffic Management Schemes

These bandwidth injection values, give an idea of the required over-design of the links,
based on how real-time congestion impacts the network’s performance. It must be noted
that the proposed solutions adhere to the traffic injection pattern as specified by the
probability distributions, to the extent that the injections intervals are at least as long
as the ones specified and the traffic distribution and characteristics are maintained as
indicated by the user/application. This is to highlight that the injection intervals were
not compromised upon, by simply allowing traffic to overflow, since that would provide
an incorrect validation of the NoC.

3.7 Challenges in Synthetic Traffic Generation

In the proposed synthetic traffic generation, the IP traffic injection behavior is statis-
tically represented by means of Exponential, Normal, Poisson or relevant probability
distributions or by models of non-deterministic traffic patterns obtained by using the
‘peaks and valleys’ approach. It must also be noted, that the inter-injection times
obtained from these distributions and models,indirectly represent the instantaneous
injection bandwidth requirements and the traffic generator must check for adherence to
these bandwidth (throughput) and latency requirements at all times. The traffic gener-
ator must also take into account the nature of MPSoC traffic such as short-data access,
bursty, etc., while employing the injection rates governed by these distributions/models.
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The traffic generator must also address the following set of issues:

(a) Handling Transactions

It is imperative that the generated traffic is representative of real IP core in terms of
the characteristics and the mix of the transactions injected into the network. The traffic
generator must maintain multiple traffic threads and combinations which can be in-
voked/employed based on the expected traffic characteristics. For instance, using traffic
information such as ‘x’ number or percentage of transactions are 2 word burst Reads etc.

It is also important to keep in mind, that the transactions such as Reads and
Non-posted Writes expect a response and the traffic generator must block subsequent
transaction injection until such a response is received.

(b) Injection Intervals

The traffic generator must be capable of issuing conditional sequences of traffic
composed of different communication transactions separated by co-related or indepen-
dent wait-periods as indicated by the probability distributions (or derived models for
non-deterministic distributions), thus emulating a typical (blocking) processor.

(c) Buffering to avoid Data loss

Once it is established that the traffic generator can replicate a blocking IP core
and can inject different combinations of the transactions into the network separated
by varying wait-periods, it may be claimed that the traffic generator can emulate an
IP with similar properties and features. However, the real test of a traffic generator is
when such an IP/Traffic generator is plugged into the network and is made to work
in real-time under the restrictions of the network in the presence of congestions and
contentions, which do not help in the ‘ideal’ working of the traffic generator. A typical
processor in such a situation would halt injection of data into the network (and buffer it
instead) to avoid data loss. When designing a traffic generator as a replacement of such
a processor, it must be kept in mind that adequate buffering of transactions is provided
to avoid loss of data (due to congestion in the network) whilst the processor is able to
inject the transactions at intervals as closely as possible to the ones indicated by the
probability distributions.

Given the fact that this traffic generator only emulates a processor and does not
replicate its exact architecture, it gives us enough scope for handling the buffering
issues. For instance, instead of storing entire transactions, only possible transaction
types are stored in the transaction buffer, which makes it defined and limited. However,
in order to avoid the network’s influence on traffic injection, theoretically, an indefinitely
long outstanding request buffer is employed at the output of the traffic generator. This
buffer holds the transaction injection requests till the master receives a response of its
previous injected transaction in the form of a ‘Send Next’ signal.
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3.8 Synthetic Traffic Generator Architecture

The architecture of the synthetic traffic generator is developed taking into account all
the requirements, restrictions, traffic management schemes and traffic injection methods
specified in this chapter and is designed to be robust and IP protocol independent.

The traffic characteristics are obtained from the user in terms of the bursts and
transactions supported and their distribution and composition in the traffic. Other
details including the address space of the masters and slaves are also obtained from
the user. This information is used to setup the traffic injection module, which includes
separate queues (transaction buffers) of traffic from the particular master traffic genera-
tor to all the connected slaves, that hold the possible transactions types. The injection
intervals characterizing the temporal behavior of the traffic, are specified through an
input file which is generated either by employing the probability distributions or by
the ‘peaks and valleys’ approach for traffic pattern modeling. Average bandwidth
requirements for all slaves are also obtained as input from the user, and using both
the injection intervals and the average bandwidth requirements, dynamic throughput
requirement estimates are calculated. This is forwarded as input to the Bandwidth
(Throughput) Satisfaction Monitor and Slave Scheduler module. The former module
captures injected transactions, which serve as the subsequent control input, at the
output of the traffic generator and reports the same to the latter. The latter in turn,
employs an adaptation of either the ‘maximum throughput’ algorithm or the ‘weighted
fairness’ algorithm and using the dynamic throughout requirements, schedules the
transactions across the slaves, thus defining the spatial distribution of traffic.

The slave scheduler module employs the dynamic bandwidth (throughput) re-
quirements of the individual slaves, checks out the current bandwidth satisfaction
metrics, re-calculates appropriate priorities using the re-scheduling algorithms and
schedules the next transaction for injection at the appropriate time, using the injection
intervals. This triggers the transaction selector to select a transaction type from one
of the transaction queues, with the help of the randomizer and load the appropriate
transaction into the outstanding transaction request buffer. This buffer is used to
control the injection of the transaction into the network based on the status of the
network and the response of the previous injected transaction. As soon as it gets a
go-ahead (Send Next) to inject the next transaction, it injects the transaction at head of
the outstanding transaction requests queue into the network, while this is monitored by
the bandwidth satisfaction monitor. As stated before, for simulation purposes, in order
to avoid the network’s influence on traffic injection, this outstanding request buffer is
indefinitely long. The FSM defined outside the traffic generator, acts as a middle-man
between a Network Interface (which may implement any standard protocol) and the
protocol-independent traffic generator and is used to translate the traffic generator’s
output to the description of the protocol. It is designed to keep track of the status of the
transactions and the response from the network, for injecting the next transaction and
converting the output of the traffic generator to OCP 2.0 protocol. The architecture of
the synthetic traffic generator as described above, is depicted in Figure 3.8.
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Figure 3.8: Synthetic Traffic Generator Architecture
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Application Trace Modeling
and Regeneration 4
4.1 Why model application traces?

The most important aspect of traffic generation is that the generated traffic should
be a realistic representation of real-world embedded applications and hence, modeling
application traces for traffic generation makes sense. In developing such a traffic
model, there is a need to address the random IP requests for network resources, inter-
spersed by randomly varying wait-periods. In short, traffic modeling must be able to
re-generate the chaos in the network due the randomness, in the traffic generated by IPs.

One method of modeling the traces, can be by capturing the correlation in the
injection times between successive transactions and then analytically modeling these
inter-injection times with known probability distributions, besides storing information
about the transaction types. However, this approach will be effective only for a
few applications and simulation platform/interconnect architecture and cannot be
generalized to all cases.

Therefore, it is suggested to use the given application traces (obtained from a
simulator or a real-system with an existing interconnect) and model them with support
for future porting and re-generation, on different platforms for different interconnects.
For such modeling and porting of the trace, it becomes essential to derive the applica-
tion’s realistic flow and schedule which can help in reproducing complex dependencies
and timing-sensitive events such as synchronization. Such a modeling must also ensure
that the re-generated traffic adheres to the bandwidth and latency requirements, relative
temporal behavior of the transactions, application schedule and transaction ordering
and thereby, being a realistic representation of an application.

4.2 Issues in Modeling Traces

The modeling of IP traces can be handled at varying levels of complexities. At the
most basic level, a trace with timestamps and inter-injection timings can be collected
from the reference system and then be independently replayed. This approach is clearly
inadequate due to the following reasons:

(a) When collecting traces from the reference system, the timings obtained in-
clude the delays associated with the base interconnect employed in the reference system,
which may not reflect in the NoC being validated. This necessitates the need to filter
out the base interconnect delays and employ the IP processing times alone as depicted
in Figure 4.1.

33
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Figure 4.1: IP processing times and Interconnect Delays

As can be observed in the figure above, the reference interconnect delay is re-
flected on the inter-injection intervals obtained from a reference trace. This needs
to be filtered out and only the IP processing delays (indicated in blue) must be employed.

(b) When observing the transaction injection times from all the masters in a global
timescale, for an application comprising of cross-IP dependencies and timing-sensitive
events such as synchronization, it is easy to incorrectly assume that a certain set of
transactions across masters may be dependent on another, as depicted in Figure 4.2.

Figure 4.2: Dependencies between transactions

However, for re-generating a traffic pattern that gives an accurate representation of the
application, such incorrect assumptions must be avoided. Hence, it becomes necessary
to understand the application schedule and data dependencies across transactions and
only then employ its schedule and transaction ordering information, to re-generate
traffic that has similar temporal behavior of the transactions as the original application.
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As can be seen in figure 4.2, when observing all the transactions on a global timescale, it
becomes almost impossible to determine the dependencies across transactions and any
false assumption of dependencies may impact the transaction ordering and application
schedule and hence, lead to incorrect analysis.

As depicted in figure 4.2, transaction 2 from Master 1 to Slave 4 is injected after
the responses for transaction 1 from Master 1 to Slave 1 and transaction 1 from Master
0 to Slave 4 are received. This gives rise to the confusion in assuming dependencies
between transaction 2 for Master 1 and transactions 1 of Masters 0 and 1. It is nearly
impossible to determine this dependency merely using information from the traces and
hence calls for resolving the same at run-time.

In the figure, it must be noted that dependencies between transactions generated
from the same master are characterized by pure-IP processing times, while those be-
tween transactions generated from different masters to the same slaves are characterized
by cross-IP processing times.

To handle these issues in porting a trace from the reference system to the one
being validated, a method for deriving an application’s approximate static schedule,
along with extracting IP processing times, from the reference trace is suggested.
Solutions for effective modeling and porting of the traces, are addressed in detail in this
chapter.

4.3 Trace Modeling Methodology

When the inter-injection times from a reference trace are considered, they do not reflect
the IP processing times alone, instead they also add up the latencies associated with
the base interconnect employed in the reference system, as indicated before. This
factor is unwelcome, especially when there is a need to model only the inter-injection
IP processing times. This implicitly means that we first have to filter out the base
interconnect delays and employ the IP processing times, to analyze the behavior and
latencies associated with the NoC being validated.

A deeper look into the transaction request-response times in the reference trace
on a global time-scale, gives rise to the assumptions that a transaction (or a sequence of
transactions) may be dependent on another (issued by the same master or by another)
and can be issued only after a certain delay (pure-IP time or cross-IP time) after the
completion of the previous sequence of transactions.

However, this assumption may be incorrect, since the observation may be due to
congestion on the reference interconnect, thus hiding the actual dependencies in the
application. However, resolving this dependency by merely employing the application’s
traces, is not be easy and hence, there is a need to arrive at a method to identify the
application’s approximate static schedule from the reference trace and thereby, address
the issue of identifying true dependencies.
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4.3.1 Estimating IP processing times

In order to successfully identify IP processing/wait times from the reference trace, one
must read timestamps both for injections of processor-generated transactions and for
their corresponding responses. The essential point is to capture the delay between the
response for a transaction and the injection of the subsequent transaction, which reflects
the IP processing times (within the same master or across masters). This can then be
modeled by explicit idle waits in the traffic generator, while the network latencies will
depend on the NoC model being validated.

Another way to obtain IP times, is when the reference simulation is performed in
the presence of an ideal interconnect, which has zero or constant delay (in case of
functional simulators).

4.3.2 Deriving Application’s Approximate Static Schedule

In order to derive an approximate static schedule of a given application, from its
reference trace, the following approach is suggested:

(a) The injection and response times of all the transactions in the system recorded at
the masters, are observed together in a global timescale.

(b) Transactions generated from the same processor are considered to be depen-
dent on each other, if the pure-IP processing/wait time between them is more than
one clock cycle, else they are considered to be a part of a sequence of transactions.
Subsequently, such a sequence of similar transactions from the given master to the same
slave are clubbed together as one transaction set.

(c) Using the timescale analysis in step (a), a dependency between a transaction
‘x’ from master ‘i’ and transaction ‘y’ from master ‘j’ is assumed, if ‘x’ and ‘y’ refer to
the same slave/destination and the response for transaction ‘x’ is received by master
‘i’ before transaction ‘y’ is issued by master ‘j’. In such a case, the IP time for ‘y’
is expressed as the maximum of the cross-IP processing time (between reception of
response for ‘x’ at ‘i’ and injection of ‘y’ and ‘j’) and the pure-IP processing time
(between the response for ‘y-1’ and injection of ‘y’ at ‘j’) [max(cross-IP, pure-IP)].
However, this dependency is not assumed, if under similar conditions, response for ‘x’
is received by ‘i’ before the response for ‘y-1’ is received by ‘j’ and in this case, the IP
time for ‘y’ is expressed as the pure-IP time from ‘j’.

(d) Using the analysis in steps (a), (b) and (c), all transactions (or transaction
sets) are allotted global sequence numbers, idle wait times (IP processing times) and
dependency information.

It must be noted that by using the proposed heuristics (especially steps (c) and
(d)), all existing data dependencies are recorded by default, although some dependencies
may also be falsely assumed.
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If the assumptions of dependencies are accurate, they are reflected when re-generating
the traffic. However, if these assumptions are incorrect (falsely assumed cross-IP
dependencies), appropriate measures must be taken to make sure that they are not
used. To solve this issue, lets analyze the two circumstances under which the data
dependencies may be falsely assumed and provide solutions to handle them:

The first scenario is when unwarranted delays (due to congestion on the reference
interconnect) may incorrectly project a particular transaction ordering in the reference
trace and hence, may lead to incorrect assumption of dependencies. As a solution, when
porting such reference traces to another interconnect, in order to maintain transaction
ordering, it is suggested to evaluate the dependencies at run-time and not when
modeling the traces. In other words, for dependencies that are unclear while modeling
the traces, for instance, when cross-dependencies exist, instead of trying to resolve the
dependencies then and there, this information can be forwarded to a schedule manager,
which at run-time can re-evaluate the dependency based on the responses from the
NoC.

To support this solution and to provide the schedule manager with sufficient in-
formation for resolving such dependencies at run-time, the max(cross-IP, pure-IP) delay
function suggested in step(c) can be used, which accommodates both the expected
cross-IP and pure-IP processing times. By employing this max() delay function, if
the cross-IP dependencies are true, they would be used as wait times for subsequent
transaction injection. If the cross-IP dependencies are falsely assumed, the pure-IP
times would be greater than the cross-IP times on the NoC and hence, the pure-IP
times will be used to determine the next transaction injection.

It must be noted, that by using this max(cross-IP, pure-IP) delay function, there
exists little scope for incorrect transaction ordering and execution, since, the next
transaction is not issued unless both the previous transactions get their respective
responses. This method also assures, that in case of synchronization events or cross-IP
dependencies across masters, the dependencies are not over-looked and are respected
while maintaining the transaction ordering.

The second scenario is when, the very existence of certain transactions is based
on the performance of interconnect. These may refer to transactions, which depend
on how long, another set of transactions take for completion, when using a given
interconnect. In other words, a sequence of transactions may take longer time for
completion on one interconnect when compared to the other and when the duration of
the execution of those transactions, define the number of transactions of another type,
this number would vary based on the interconnect being used. Hence, when porting
from one interconnect to another, merely using the same number of transactions would
carry no semantic meaning and hence, such transactions must be uniquely defined and
addressed.
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For instance, in a synchronization process, when a master is polling a semaphore
slave to check for the status of the semaphore variable, the number of transactions
to the slave, depends on how long another master takes to finish its operation and
unlocks the semaphore variable. This duration depends on the reference interconnect’s
performance and the polling master generates an appropriate number of transactions
that would not necessarily reflect on the new interconnect. Although the transaction
ordering and dependencies are respected by the aforementioned method, the scenario of
handling time(duration) dependent number of transactions, can be addressed only by
using the application’s original dynamic schedule, which simply cannot be derived by
employing the application traces and will need application schedule information from
the user. Such cases (scheduling with user assistance) are discussed with implementation
details in the next sub-section.

However, it must be noted, that the previously suggested method of deriving the
application’s static schedule, gives an approximate yet almost accurate estimation
of application’s expected behavior and holds its share of significance in modeling
traces. It must also be noted that the suggested method is more generic than the one
suggested in [31] due to its ability to automatically detect dependencies across all the
transactions in the application, without using any system-dependant information. The
trace-derived approximate static application schedule and the heuristics to calculate IP
processing times, prove efficient enough, since they maintain the transaction ordering,
relative inter-injection times and satisfy both the pure-IP and cross-IP processing
times, although, they do allow a few additional transactions that may not hold any
semantic meaning to slip through. It must be noted, that porting and employing
derived application schedules, result in very different looking transaction patterns, when
compared to the reference traces.

4.3.3 Employing Application’s Dynamic Schedule

Modeling traffic re-generation, by employing the application’s schedule along with
the IP processing times and transaction description, will result in a very accurate
representation (model) of the application. Towards this, in the previous sub-section, an
approach for deriving the application’s approximate static schedule from the reference
trace was suggested. Further, it was analyzed that the suggested heuristics, though
effective, would still not handle synchronization events with 100% accuracy, since the
number of transactions vary based on the interconnect being used and hence, it was
suggested to obtain the application’s original dynamic schedule from the user.

It can be claimed, that a dynamic schedule would give a better and more accu-
rate representation of the application than a derived approximation of the static
schedule. Under the assumption, that the application’s dynamic schedule is available
(not being a restricted Intellectual Property), some of the inherent advantages include
the ability to correlate the application’s behavior to specific sets of transactions and
the ability to efficiently and accurately reproduce dynamic traffic patterns such as
synchronization.
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An illustration of a sample synchronization process, where the transaction count for the
polling events is time (duration) dependent on another set of transactions, is presented
below. Also, the significance of employing an application’s dynamic schedule versus
static schedule to handle such an event, is highlighted.

In a synchronization event, let’s consider two master devices attempting to gain
access to a shared slave and in the process, polling a semaphore variable. If master 1
arrives first and locks the resource; the attempt by master 2 will fail. Hence, master
2 will regularly issue read transactions to poll the semaphore till it is granted. Only
after unlocking of the semaphore variable by master 1, will master 2 be granted the
semaphore and additional polling events will not be required. The unlock event issued
by master 1 and the last poll event by master 2 are dependent. Such synchronization
events (depicted in Figure 4.3) are dependent on the network properties and hence,
variable amount of transactions might be observed based on the interconnect in use.

Figure 4.3: Synchronization Event

Another example of unpredictable events are the system-initiated interrupts towards
a processor, will typically happen by means of writing to the interrupt device, can
also be handled with the application’s dynamic schedule. The concept of ‘barriers’ in
multi-threaded architectures, where each thread waits upon completion until all of the
other threads of a group reach the barrier point, is another example of such events.
The ability to handle such synchronization events more accurately and to re-create
unpredictable traffic patterns is, as established, one of the advantages of employing the
application’s dynamic schedule versus static schedule.
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4.4 The Schedule Manager

As has been established in the previous section, employing a derived static schedule or a
user-provided dynamic schedule presents an almost realistic depiction of an application’s
behavior. In both cases, an appropriate schedule manager is required, to make use of
the schedule information and efficiently handle the transaction injections across masters.

The architecture and organization of the schedule manager depends on the type
of schedule (static or dynamic) it is meant to handle. The key difference between the
two types of schedule managers essentially lies in the representation of the schedule
information available from the two solutions and the appropriate logic that is needed to
handle the same.

To highlight this difference, let us consider scheduling a synchronization event,
where the process of checking the status of the semaphore variable is characterized by a
sequence of polling events.

In case of a derived static schedule, the polling event is seen as a set of fixed
number of transactions without any semantic value and although appropriate cross-IP
dependencies are handled effectively. However, such an event is clearly defined in a
dynamic schedule, where the number of the polling event transactions is considered
dependent on the duration of another parallel sequence of transactions, that ends in
unlocking the semaphore variable.

As can be seen in this example, the difference in implementation of the schedule
manager, varies from handling merely a number and order of transactions, to handling
a time (duration) dependent relation between two sets of transactions. The detailed
implementation of the two schedule managers is described in the following sub-sections.

4.4.1 Static schedule manager

The static schedule manager, in order to handle derived static schedules, holds the
injection order of all the transactions in the system, to be injected by any of the
masters to its corresponding slaves. Based on the temporal ordering of the transaction
sets/sequences made available by the static schedule, it maintains them as records in
as many transaction tables as the number of masters, sorted by the injection order,
according for every master.

Each of these records are stored in the transaction table with the description de-
picted in Figure 4.4:

Figure 4.4: Static Record Description
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In the figure 4.4, ‘Global Trans ID’ corresponds to the global sequence number allotted
by the procedure used to derive the static schedule specified in section 4.3.2. ‘Master’
corresponds to the master that injects the transaction and ‘Slave’ corresponds to the
destination of the transaction. ‘Trans Type’ corresponds to the type/characteristic of
this transaction out of all the possible types of transactions that can be injected from
the master and ‘Trans Count’ defines the number of transactions of this same type to be
injected as a set/sequence. ‘Dependency’ corresponds to the number of transactions, the
current transaction may be dependent on (1 or 2). Accordingly, appropriate Dependency
ID(s) (I and/or II) are read, and these indicate(s) the transactions on which the current
transaction is derived to be dependent on. Wait(s) (I and II) correspond to the pure-IP
and cross-IP processing times, that this transaction is supposed to wait before being
injected into the network upon reception of the appropriate responses.

Besides maintaining these records to handle application schedules, as can be seen
in Figure 4.5, a transaction status table is also maintained in the schedule manager
for the purpose of checking for responses, resolving dependencies and scheduling
transactions for injection. If dependency exists from the previous transaction of
the same master alone (Dependency = 1), when the response for the corresponding
transaction is received (Status = 1), the schedule manager transfers control to the
transaction injection logic, which starts a down counter with initial value from the
‘Wait I’ field (pure-IP processing time) and sends the transaction for injection when the
counter reaches zero. It must be noted that the status of transactions is updated by a
transaction status update handler, which acts based on the responses received from the
traffic generators.

In case of unresolved dependencies, where the dependency may be due to the
previous transaction of the same master or some other master and can be determined
only at run-time, the schedule manager starts appropriate down counters upon reception
of either of the responses, initialized with appropriate wait times. The transaction
injection logic then checks for the start/init signals of both the counters to be 1 and both
the counter values to be down to 0, before forwarding the next transaction information
to the corresponding master for injection into the network.

This assures adherence to the max(pure-IP, cross-IP) wait function, derived in
step(c) of the process defined in subsection 4.3.2, to resolve dependencies at run-time.
The transaction information which is forwarded to the traffic generator, includes details
about the target slave, the transaction type and the number of transactions in that
sequence. This helps the traffic generator in injected an appropriate sequence of
transactions to the specified slave. The architecture of the static schedule manager
presented above, is depicted in Figure 4.5. The static schedule manager proposed here,
effectively manages derived static schedules and injects transactions across the masters
based on the schedule, thus maintaining the transaction ordering.
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Figure 4.5: Static Schedule Manager
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4.4.2 Dynamic schedule manager

The dynamic schedule manager, has a simpler transaction description and injection logic
when compared to the static schedule manager, due to the fact that in a user-provided
dynamic schedule, the dependencies are clearly defined. The dynamic schedule manager
also holds the injection order of all the transactions in the system, based on the
temporal ordering of the transaction sets/sequences defined in the dynamic schedule. It
also maintains the transactions as records in as many transaction tables as the number
of masters, sorted by the injection order, according for every master. Each of these
records are stored in the transaction table with the description depicted in Figure 4.6.
Compared to the static transaction description, here, the dependency is clearly defined

Figure 4.6: Dynamic Record Description

and appropriate wait time (pure-IP or cross-IP processing time) is provided. The
‘Trans Limit’ defines a limit on the number of transactions in that sequence, however,
for synchronization events, this limit is undefined (set as 0). It is well established,
that employing the application’s dynamic schedule almost precisely represents its
run-time behavior and efficiently reproduces dynamic traffic patterns such as during
synchronization events. The transactions resulting from these events are very hard to
predict in advance, since they are dependent on the interconnect’s performance and
hence, giving a limit to the transactions for such events makes little sense.

In the case of static schedule manager, subsequent transactions for a given mas-
ter were scheduled for injection only after receiving the response/transaction complete
signal for the previous transaction. This still holds true for the dynamic schedule
manager, when the transaction limit is defined. However, as stated earlier, for synchro-
nization events, the transaction limit is undefined and hence, such a response for the
previous transaction injected by the same master is not awaited. This is due to the fact
that the subsequent transactions are dependent on a sequence of transactions initiated
by another master and not the same master.

As an illustration, looking back into the synchronization example in section 4.3.3,
the ‘unlocking’ of the semaphore variable by master 1, grants master 2 the semaphore
and brings an end to the ‘polling’ events of master 2 on the semaphore slave. This
implies that the subsequent transactions of master 2 can be seen as being dependent on
the response of the ‘unlocking’ event by master 1. Hence, to handle transactions when
the transaction limit is undefined, the schedule manager enables the traffic generator to
keep injecting transactions, till it receives a response for the defining event (transaction)
at another master. In the example, this refers to receiving a response for ‘unlocking’
transaction from master 1. This causes the dynamic schedule manager to update the
transaction status table entry for the ‘polling’ transaction to 1 and interrupt the current
master to start its next set of transactions.
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Figure 4.7: Dynamic Schedule Manager
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To initiate a new sequence of transactions, details about the slave, the transaction type
and the limit of transactions are forwarded to the traffic generator. This also applies
when interrupting the traffic generator to halt its current sequence of transactions. The
schedule manager merely sends in new transaction information to replace the current as
input to the traffic generator. This helps the traffic generator in injected an appropriate
sequence of transactions to the specified slave. The architecture of the dynamic schedule
manager, is depicted in Figure 4.7.

4.5 Challenges in Traffic Generation from Traces

In the proposed trace-based traffic generation, the inter-injection times are collected
from the reference system and modeled to be ported to any platform or interconnect
by, deriving an approximate static schedule of the application. The challenges in
implementing the same are discussed below:

(a) Handling Transactions

The traffic composition must be representative of real IP core and hence, the
traffic generator must maintain all possible transaction types which can be employed
based on the schedule manager’s request. The transaction limit indicated by the
schedule manager, must be verified every time a transaction is injected into the network
and when the given transaction sequence is completed, an appropriate response must
be sent back to the schedule manager.

(b) Portability

The inter-injection times obtained from the reference trace must be scanned, to
filter out the latencies associated with the base interconnect employed in the reference
system and the IP processing times must be obtained. This would make the trace
portable to any interconnect validation tool.

(c) Handling Dependencies

The application’s schedule (static or dynamic) presents dependencies across transactions
and this must be handled efficiently. The schedule manager is employed for this purpose,
which requires responses from the traffic generator for proper scheduling of transactions.
In the case of dynamic schedule, when the transaction limit is not mentioned or set
to 0, the traffic generator must continue injecting the transaction till it receives an
interrupt from the schedule manager. Also it must be noted that for such transactions
no response is sent back to the schedule manager. It must be noted that unlike the
probability distributions based traffic generator, the trace-based traffic generator, does
not have to handle injection intervals on its own, instead it is handled by the schedule
manager. Besides, since the schedule is pre-defined or derived, there is no need to
employ re-scheduling algorithms or to monitor bandwidth (throughput) satisfaction
levels.
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4.6 Trace-based Traffic Generator Architecture

The trace-based traffic generator, employs application schedules (static or dynamic)
with the aid of appropriate schedule managers, which indicate to the traffic generator,
when and what type of transaction needs to be injected next into the network. The
trace-based traffic generator is much simpler, when compared to the synthetic traffic
generator, since all the schedule handling, injection-interval adherence and bandwidth
monitoring issues are moved out of the traffic generator architecture to the schedule
manager.

The trace-based traffic generator obtains traffic composition in terms of the bursts and
transactions supported and the address space of the masters and slaves to setup the
traffic injection module, which includes holds transactions types in separate transaction
buffers for all the connected slaves. When the schedule manager requests the traffic
generator for injection of a particular transaction type, in a sequence of transactions,
this module selects the appropriate transaction for injection and forwards it to the
transaction selector.

The transaction manager is in charge of monitoring the state of the network and
triggers the transaction selector to forward the next transaction for injection, when
the ‘send next’ signal is set by the network, indicating the possibility of the net-
work accepting the next transaction. Every time a transaction is injected into the
network, the transaction manager increments the transaction counter and checks for
the transaction limit indicated by the schedule manager. When the given transac-
tion sequence is completed, an appropriate response is sent back to the schedule manager.

If the transaction limit is not defined or set to 0, the transaction limit check is
disabled and so is the response to the schedule manager. The traffic generator is inter-
ruptable, and hence, when a new set of transactions are scheduled to it by the schedule
manager, the transaction manager resets the transaction counter and re-initializes
the transaction limit check with the new limit, indicated by the schedule manager in
the transaction information. The transaction selector forwards the transaction to the
outstanding request queue, which is then injected into the network by the transaction
generator. For simulation purposes, in order to avoid the network’s influence on traffic
injection, this outstanding request buffer is indefinitely long.

The FSM defined outside the traffic generator, connects a Network Interface (which may
implement any standard protocol) and the protocol-independent traffic generator and is
used to convert the traffic generator’s output to the format defined by the protocol. It
is designed to handle keep track of the status of the transactions, the response from the
network for injecting the next transaction.

As stated before, this traffic generator architecture is also independent of any IP
protocol and hence acts like a plug and play module that can be employed with any
architecture. The design of the traffic generator is depicted in Figure 4.8.
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Figure 4.8: Trace-based Traffic Generator
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Performance Validation and
Simulation Results 5
5.1 Why Performance Validation?

With the ever increasing number of IP cores in MPSoCs, the communication inter-
connect must be able to keep up with the increasing performance demands due to the
additional bandwidth requirements and yet stay within the area and power budget.
Hence, while designing NoCs, it becomes absolutely essential to arrive at optimal
architectural solutions. It must be noted that most optimizations depend on the target
application and merely checking for adherence to objectives and constraints of the
application does not suffice.

There still exists a need to verify the network design against real-time constraints
imposed by the application, so as to arrive at a concrete and optimal NoC design for
the given application. This necessitates the need to check for adherence to performance
requirements against the application and guaranteeing low cost in terms power and
area and hence, calls for performance validation and design optimization of NoC
architectures. The objective of this thesis is to come up with such an infrastructure for
validating the NoC design and implementation.

5.2 Challenges in Statistics Collection

The process of statistics collection is the most crucial aspect of the performance
validation tool, since any bug or error or incompleteness or any form of incorrect
reporting of statistics and latency information, will give rise to inaccurate conclusions.
Reporting such erroneous results will not only fail to address the objective of design
validation and optimization, but also mess up the design process (flow) and result
in inappropriate network design and configuration, thereby affecting the working of
the MPSoC. Hence, in order to design an efficient and accurate statistics collection
framework, the following primary challenges must be addressed:

(a) System Understanding - It is absolutely essential to have a perfect under-
standing of the system, the behavior of its IPs, slaves and the network configuration
(including switch design, buffers, flow control etc.) to get accurate measurements and
statistics. It is also important to obtain appropriate statistics which can prove helpful
in analyzing the system’s performance. Care must be taken to note the different clock
domains in the system to read the timings accurately. An easy way out is to use the
appropriate clock periods from the masters and slaves and obtain the relevant times in
nanoseconds.

49
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(b) Robustness - As indicated earlier, any bug or error in reporting of statistics
can lead to the failure of the validation tool, it becomes essential to maintain accurate
numbers in spite of unwarranted events such as clock glitches. It must also be made sure
that all values are recorded independent of parameters such as flit width and buffering.

(c) Distributed Observation and Centralized Calculation - More the statistics,
more the accuracy, more the useful observations and more the validation tool complexity.
For small NoCs, a centralized monitoring service is possible, however, it may become a
bottleneck in large NoCs. In a distributed monitoring service, the observations are made
in a distributed fashion at the different NoC components. While recording all of the
events across the NoC at different locations can be extremely useful, there is also a need
to report the numbers to a central data structure which continuously updates all the rele-
vant timings and latency information between the transmission and reception of a packet.

(d) Availability - As indicated above, all the latency and buffer occupancy ob-
servations need to monitored and reported continuously. The latency and performance
values must be constantly updated and numbers such as average, minimum and
maximum latency, composition of the traffic in terms of number of reads/writes and
burstiness etc., must be made available during the entire length of the simulation.

The information/statistics collected from the network to analyze its performance,
gives us useful numbers which in effect, reflect the expected performance of the network
in the presence of realistic load. Besides, it must be possible to have different loads in
the network at different points in time to characterize the latencies versus the load and
to observe the effects of varying buffer-depths on latencies, for a complete validation of
the system.

5.3 Performance Metrics

Performance metrics that may be useful for network performance benchmark-
ing/validation are bandwidth, throughput, latency, buffer usage, power dissipation,
silicon area, etc.

To collect statistics and estimate metrics, the type and the timestamp of commu-
nication events are captured at the boundary of an IP core in a reference environment.
Such an approach would ensure that the statistics are independent of the overheads
in the master and slave cores and reflect the true NoC performance. This can also
help model resource contention in a system which is dependent on the interconnect
architecture, decoupling the effects of IP cores on latencies.

This opens up the possibility for communication infrastructure optimization and
for the investigation of its impact on system performance under realistic workloads and
different architecture configurations. To calculate these metrics, a set of statistics needs
to be collected across the NoC at all times and simultaneously reported to a central
metrics evaluation module.
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An example of statistics collected at a Network Interface (NI) in the form of
time-stamped events is shown below:

Master : 04
Slave : 01
CMD : RD
Data : 0xdeadbeef
Addr : 0x01001010
Burst : 4
Time : 180ns (Time of Injection/Reception at NI)

Statistics can also be collected individually for different sections of the applica-
tion execution identifying for instance critical sections and synchronization patterns
within the application.

Performance monitoring and validation requires effective metrics for distinguish-
ing congested links from normal or underutilized connections. The two significant
measures of performance viz., latency and buffer occupancy and their impact on NoC
performance are discussed in the following sub-sections.

5.3.1 Latency Measures

One of the most significant metrics being measured is the network latency, which
represents the delay between the initiation of a packet transmission by a sender and the
receipt of that transmission by a receiver. When accuracy is the key, one-way latency
for a link can be defined as the time from the start of packet transmission to the start
of packet reception. This makes it independent of the link’s throughput and the size of
the packet, and is the absolute minimum delay possible with that link. The time from
the start of packet reception to the end is measured as serialization delay.

In practice, this is further augmented by queuing and processing delays. Queu-
ing delay occurs when a router receives multiple packets from different sources heading
towards the same destination and needs to queue the packets for transmission. Process-
ing delays are incurred while a router determines what to do with a newly received packet.

In a two-way communication, the network latency may be measured as the time
from the transmission of a request for a message, to the time when the message is
successfully received by the requester. While measuring the round trip latency, one
generally excludes the amount of time that a destination spends processing the packet.

For simulation purposes, the slave is modeled with no packet processing and merely
sending a response back when it receives a packet, to get a relatively accurate measure
of the network latency.



52 CHAPTER 5. PERFORMANCE VALIDATION AND SIMULATION RESULTS

Though measuring network latency gives us an idea of the network’s performance,
the end-to-end-latency measure evaluates the network taking elements beyond pure
networking into account while evaluating the network’s performance. End-to-end
latency defines the difference between the time at which the first word of a message
has been offered to the network and the time the last word has been delivered to the
destination. Such a latency generally takes into account the IP processing (wait) times
at all masters.

Analyzing end-to-end latency gives us a comprehensive picture of the performance of the
network in a real working environment. Such an analysis would evaluate and validate
the network’s performance under the expected real-time spatial and temporal behavior
of the system as the injected traffic would reflect the application schedule, transaction
ordering and IP processing times.

In this validation tool, both these latencies are measured effectively with addi-
tional information from the proposed traffic generators, which are capable of handling
application schedules, ordering and IP processing times.

Another significant performance metric is the throughput offered at the NI ports
which is measured by the bandwidth satisfaction metric proposed in section 3.6. This
measure of throughput is an indication of the average amount of data accepted by the
network on that port in a certain amount of time.

5.3.2 Buffering

Buffers are employed in Switches and Network Interfaces to handle data and address
flow-control policies.

Switches have buffers at their input and output ports. The size of these buffers
impact the delay at the switch, as packets may have to wait for the output buffer to
become available downstream. The simulation also collects information on latency
measures and buffer utilization by varying the buffer sizes.

In general, the average latencies decreases as the buffer size increases. This is
because as the buffer size increases, less packets have to wait for the output buffers to
become available. The decrease is significant since higher loads show higher sensitivity
in packet delay as the buffer size change. Although an increase in buffer size improves
the performance, after certain point (as the load increases), further increasing the buffer
size does not improve the response time of the network. This means, that from response
time point of view, buffer delay is not a bottleneck. The percentage of delayed packets
depends on the size of the output buffers. Hence, the output buffer of a switch should
be larger than the input buffer. Larger buffer sizes at each port add to the cost of the
switch. Hence, when designing a network, one should consider the appropriate buffer
size and delay of the switch for the offered traffic load of every port of the switch.
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In other words, the tradeoff between buffer size, switching delay, and number of
ports must be considered when designing or reconfiguring a network in order to come
up with the most cost-effective switch that fits the needs of the network.

Another set of buffers, used at the NIs, are useful in providing latency and throughput
guarantees. Buffering in NIs is required to hide the end-to-end latency for the flow
control mechanism and to provide full throughput operation. If the buffers are too small,
then the throughput and latency are affected and no end-to-end guarantees can be given.

Buffers in the NIs absorb differences in speed and burstiness between the IP and
the NoC and hide network internals, such as packetization. If the NI buffers are not
sufficiently large, the guarantees are violated. The size must, however, be minimized,
as the buffers are a major contributor to NoC power and silicon area. Approaches to
dimension NI buffers in the design flow give an estimate of the expected buffer sizes,
but is further verified and optimized in this work, since we dimension the buffers given
the spatio-temporal behavior of the application.

5.4 Benchmarks Description

A couple of micro-benchmarks (asm-matrixdep and asm-matrixind) developed at the
University of Bologna and a synthetic benchmark, are considered to verify the proposed
performance validation tool. The first two benchmarks are executed on the MPARM
platform to generate reference traces, which are then modeled using the heuristics sug-
gested in Chapter 4 and appropriate set of transactions are re-generated. The synthetic
benchmark, is generated employing the synthetic traffic generator proposed in Chapter 3.

These benchmarks vary in terms of the communication behavior across the cores
and are useful in reflecting different communication events such as synchronization,
parallel traffic injection to shared slaves etc., and complex network behavior due to
congestions, thus, aiding in a comprehensive analysis of the network’s performance.

The first two benchmarks are used to highlight synchronization events (such as
polling, due to dependency between transactions) and parallel injections to private
memory (independent of other processors). Complementing these two benchmarks,
a synthetic benchmark generated using a combination of standard probability distri-
butions is employed to inject transactions in parallel to shared slaves (assuming no
inter-processor dependency), to analyze the impact of arbitration policies and buffering.

Since these simulations are used to analyze the impact of the benchmarks on the
performance of the network, the system does not use OS synchronization techniques.
Synchronization is instead handled by the application, using a pre-defined semaphore
memory and semaphore checking is performed by polling. Also, all the benchmarks are
designed for a topology with four masters/processors each having its private memory,
besides, a shared memory, a semaphore memory and an interrupt module.



54 CHAPTER 5. PERFORMANCE VALIDATION AND SIMULATION RESULTS

Below is the description of the benchmarks (source code is attached in appendix):

(a) asm-matrixdep : This benchmark implements a pipeline of matrix multi-
plications. Each processor executes a matrix multiplication between an input matrix
from the shared memory and another matrix from its private memory, then feeds its
output to the logically following processor (via the shared memory). Every core follows
a fixed execution pattern: (i) copies an input matrix from shared space to private space;
(ii) multiplies it with a matrix already in private space; (iii) copies the resulting matrix
back to shared space. During all of the process, semaphore and/or interrupt slaves are
queried to maintain synchronization.

Each matrix is of dimensions 8x8 and the simulation runs for 100 iterations,
with each iteration involving execution of one 8x8 matrix multiplication at each of the
processors (i.e. 400 pipelined 8x8 matrix multiplications in all). Initially, an input
matrix is stored in the shared memory at a defined location with a fixed offset from
the base address of the shared memory. Subsequently, the output matrix from the first
processor is stored with a constant offset from the input matrix, required to hold 64
integer elements of the matrix. This new address being at a constant offset, is accessed
by the logically following processor to receive its input, and upon completion of its
processing, the output is stored with the same constant offset, from its input location.
This goes in cycles and each processor is required to access a fixed set of memory
locations based on its logical ID. Polling is handled using a dedicated semaphore memory.

(b) asm-matrixind : This benchmark implements a set of matrix multiplica-
tions in parallel. Each processor executes a matrix multiplication between two input
matrices, both stored in its private memory. It then stores its output back in its
private memory with a standard offset. In this benchmark, since all processors act
independently of each other, there is no use of a semaphore and/or interrupt slave.
Again, as in case of the previous benchmark, each matrix is of dimensions 8x8 and
the simulation runs for 100 iterations, with each iteration involving execution of one
8x8 matrix multiplication at each of the processors (i.e. 400 parallel 8x8 matrix
multiplications in all). Both the input matrices are stored in the private memory at
a defined location with pre-defined offsets from the base-address and the output ma-
trix is also stored with a constant offset required to hold 64 integer elements of the matrix.

Both of these benchmarks are executed on the MPARM platform with ARM7
processors and the corresponding traces are obtained. These traces are further modeled
and the application schedule is derived and used to re-generate the transactions. It must
be noted that the 32-bit ARM7 processors can only generate single bursts and 4-word
bursts, for reads and writes (posted) alike, which does not significantly impact the
network’s performance, when there is congestion. Also, these two micro-benchmarks,
do not reflect the scenario, where multiple masters/processors inject traffic to the same
slave at the same time (independent of each other). Hence, to address these two issues,
a synthetic benchmark is employed, which injects bursty traffic from all masters to a
shared slave with equal priority.
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(c) synthetic : The synthetic benchmark employed here, generates traffic in par-
allel using four different probability distributions from the four masters, to a shared
memory, with similar average bandwidth requirements and equal priorities at the routers.

Further, the traffic is bursty (including 8 and 16 word bursts) and assumes no
dependency across processors. The synthetic traffic generator with its bandwidth
monitoring and slave scheduling policies is employed. This benchmark generates
sufficient bursty traffic that significantly impacts the network’s performance due to
congestion and contention and helps analyze the impact of buffer depths.

For the purpose of traffic generation, Poisson, Gaussian, Exponential and Pareto
distributions are employed respectively at the four masters and average bandwidth
requirement of 50 MBps is assumed and injected towards the shared slave from each of
the masters. All masters initiate transactions at the same time and access the shared
slave with equal priority and hence, their transactions are interspersed.

5.5 Topology Specification and Simulation Setup

For simulation purposes, the architecture and topology considered, comprises of: (i) four
master cores (32-bit ARM7 [30] processors in MPARM and equivalent traffic generators
in the proposed validation infrastructure), (ii) their private memories, (iii) a shared
memory, (iv) a hardware interrupt module, (v) a hardware semaphore module and (vi)
the 32-bit interconnection network (NoC). Routers are used to connect the masters to
their private slaves, the shared slave and the synchronization slaves.

To evaluate the network, memories are kept as simple as possible and do not fea-
ture any kind of internal buffering: every access, even when part of a burst, requires the
same number of cycles to get a response. The interrupt device is used as a medium for
processors to send interrupt signals to each other. This hardware primitive is needed
for inter-processor communication and is mapped in the global addressing space. To
generate an interrupt, a write is issued to a proper address of the interrupt device. A
semaphore device is employed for synchronization among the processors; it implements
test-and-set (locking/unlocking) operations for this purpose. This topology and the
corresponding simulation setup is depicted in Figure 5.1.

As can be seen in the figure, statistics are collected from across the network at
the Network Interfaces and Buffers. Every event/transaction that is generated and
initiated from a master and received at the slaves is recorded. The statistics from the
masters is collected at the ‘initiator stats’ module, while those from the slaves are
collected at the ‘target stats’ module. These along with the occupancy information from
all the buffers in the network are forwarded to the centralized evaluation module, which
analyzes the data and reports the different latencies in the network and the average
buffer occupancies. These results help in validating the network’s performance and
suggest possible optimizations by trading-off performance for area and power.
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Figure 5.1: Simulation Setup
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5.6 Simulations

The simulation results give us the expected performance and buffer occupancy values for
the given network design under the traffic characteristics specified. The steps involved
in the simulation process are as follows:

(a) Employ traffic generators, to inject the network with the specified application
traffic (synthetic or application/benchmark trace). In case of application trace-based
traffic generation, the traces need to be made available prior to this step, i.e. the
benchmarks have to be executed on the MPARM platform first.

(b) Record all events (i.e. description for all transactions) and the relevant times, across
the NoC using the independent statistics collection modules and simultaneously report
them to the centralized metrics evaluation module.

(c) Calculate the metrics using a centralized data-structure to observe the latency
measures and the buffer occupancies and with appropriate post-processing evaluate and
report the metrics continuously.

The network latencies are obtained from the proposed validation tool, using sim-
ulations of the modeled benchmarks, on the topology described in the previous section.
Such validation helps in effectively identifying link utilizations and performance num-
bers and suggesting design optimizations. The corresponding results and analysis are
presented in detail in the following sub-sections.

5.6.1 Latency Observations

The performance numbers presented in this sub-section, give the average one-way
and round-trip latency numbers on all the possible paths between all the masters and
slaves for all the three benchmarks. Besides, these average latency metrics, additional
post-processing yields minimum and maximum latency values, end-to-end latency
values, network throughput etc., which can also be useful in validating the network.
It must be noted that in tables 5.1, 5.2 and 5.3, SR corresponds to Single Reads, BR
to Burst Reads, SWP to Single Writes (Posted) and BWP to Burst Writes (Posted).
The table presents average one-way and round-trip latencies for the corresponding
transaction types. The simulations were performed at a clock of 200 Mhz and the
observed latency measures are reported in nanoseconds (ns).

Table 5.1 lists the observed latencies for the modeled asm-matrixdep benchmark,
while Table 5.2 lists the same for the modeled asm-matrixind benchmark and Table 5.3
lists the same for the synthetic benchmark. In the first benchmark, all masters
communicate with their private slaves, the shared slave and the semaphore slave. In the
second benchmark all masters communicate only to their private slaves and in the third
benchmark, all masters communicate only to the shared slave.
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Transaction Type SR BR SWP BWP
Packets - Master 0 To Slave 0 (Private) 0 81 65001 0
1-way Request Latency Avg (ns) 0.00 37.28 35.02 0.00
R-Trip Network Latency Avg (ns) 0.00 137.28 0.00 0.00
Packets - Master 0 To Slave 4 (Shared) 6400 0 6400 0
1-way Request Latency Avg (ns) 36.34 0.00 36.58 0.00
R-Trip Network Latency Avg (ns) 76.58 0.00 0.00 0.00
Packets - Master 0 To Slave 5 (Semaphore) 1547 0 100 0
1-way Request Latency Avg (ns) 35.96 0.00 35.55 0.00
R-Trip Network Latency Avg (ns) 75.96 0.00 0.00 0.00
Packets - Master 1 To Slave 1 (Private) 0 77 63815 0
1-way Request Latency Avg (ns) 0.00 37.21 35.03 0.00
R-Trip Network Latency Avg (ns) 0.00 137.21 0.00 0.00
Packets - Master 1 To Slave 4 (Shared) 6336 0 6272 0
1-way Request Latency Avg (ns) 35.14 0.00 37.03 0.00
R-Trip Network Latency Avg (ns) 75.14 0.00 0.00 0.00
Packets - Master 1 To Slave 5 (Semaphore) 2350 0 197 0
1-way Request Latency Avg (ns) 35.17 0.00 35.48 0.00
R-Trip Network Latency Avg (ns) 75.17 0.00 0.00 0.00
Packets - Master 2 To Slave 2 (Private) 0 77 62660 0
1-way Request Latency Avg (ns) 0.00 37.21 35.03 0.00
R-Trip Network Latency Avg (ns) 0.00 137.21 0.00 0.00
Packets - Master 2 To Slave 4 (Shared) 6208 0 6144 0
1-way Request Latency Avg (ns) 35.31 0.00 36.28 0.00
R-Trip Network Latency Avg (ns) 75.31 0.00 0.00 0.00
Packets - Master 2 To Slave 5 (Semaphore) 1991 0 193 0
1-way Request Latency Avg (ns) 35.59 0.00 36.48 0.00
R-Trip Network Latency Avg (ns) 75.59 0.00 0.00 0.00
Packets - Master 3 To Slave 3 (Private) 0 75 61494 0
1-way Request Latency Avg (ns) 0.00 37.20 35.02 0.00
R-Trip Network Latency Avg (ns) 0.00 137.20 0.00 0.00
Packets - Master 3 To Slave 4 (Shared) 6080 0 6016 0
1-way Request Latency Avg (ns) 35.52 0.00 37.55 0.00
R-Trip Network Latency Avg (ns) 75.52 0.00 0.00 0.00
Packets - Master 3 To Slave 5 (Semaphore) 1689 0 95 0
1-way Request Latency Avg (ns) 35.08 0.00 35.00 0.00
R-Trip Network Latency Avg (ns) 75.08 0.00 0.00 0.00

Table 5.1: Latency measures for asm-matrixdep

As can be seen in the table above, in all iterations, all masters ‘Read’ an input
matrix from the share slave and multiply it with the one ‘Read’ from the private slave.
After the execution is completed, they ‘Write’ the output to the shared slave.
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Transaction Type SR BR SWP BWP
Packets - Master 0 To Slave 0 (Private) 0 61 58601 0
1-way Request Latency Avg (ns) 0.00 39.84 35.07 0.00
R-Trip Network Latency Avg (ns) 0.00 139.84 0.00 0.00
Packets - Master 1 To Slave 1 (Private) 0 61 58601 0
1-way Request Latency Avg (ns) 0.00 39.84 35.07 0.00
R-Trip Network Latency Avg (ns) 0.00 139.84 0.00 0.00
Packets - Master 2 To Slave 2 (Private) 0 61 58601 0
1-way Request Latency Avg (ns) 0.00 39.84 35.07 0.00
R-Trip Network Latency Avg (ns) 0.00 139.84 0.00 0.00
Packets - Master 3 To Slave 3 (Private) 0 61 58601 0
1-way Request Latency Avg (ns) 0.00 39.84 35.07 0.00
R-Trip Network Latency Avg (ns) 0.00 139.84 0.00 0.00

Table 5.2: Latency measures for asm-matrixind

As can be seen in the table above, in all iterations, all masters ‘Read’ both input
matrices from the private slave and multiply them ‘Write’ the output back to the private
slave. In both the above benchmarks, all the other transactions correspond to those in
the initialization phase and those used for storing the temporary computations.

Transaction Type SR BR SWP BWP
Packets - Master 0 To Slave 4 (Shared) 0 8155 0 11863
1-way Request Latency Avg (ns) 0.00 75.21 0.00 73.56
R-Trip Network Latency Avg (ns) 0.00 235.21 0.00 0.00
Packets - Master 0 To Slave 4 (Shared) 0 8153 0 11866
1-way Request Latency Avg (ns) 0.00 78.16 0.00 78.43
R-Trip Network Latency Avg (ns) 0.00 238.16 0.00 0.00
Packets - Master 0 To Slave 4 (Shared) 0 8146 0 11794
1-way Request Latency Avg (ns) 0.00 82.74 0.00 79.69
R-Trip Network Latency Avg (ns) 0.00 242.74 0.00 0.00
Packets - Master 0 To Slave 4 (Shared) 0 8149 0 11852
1-way Request Latency Avg (ns) 0.00 79.64 0.00 78.13
R-Trip Network Latency Avg (ns) 0.00 239.64 0.00 0.00

Table 5.3: Latency measures for synthetic benchmark

As can be seen in the table above, all masters simultaneously inject several bursty
transactions only to the shared slave. These can be single or bursty ‘Reads’ or ’Writes’.
A detailed analysis of the impact of varying buffer depths on the network’s performance,
when employing this synthetic benchmark, is presented in the next sub-section.
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5.6.2 Performance Validation and Optimization

A detailed analysis of the performance measures presented in the previous sub-section
proves helpful, not only in validating the network against the initial latency and
throughput requirements, but also in identifying modifications and possible optimiza-
tions to the network design.

For instance, if a particular link is found to be heavily loaded, a parallel link
may be suggested. By increasing the buffer depths in the routers, if latencies can be
brought down (within power and area budgets), suitable changes to buffer depths may
be suggested. Alternatively, if excess buffer depths are observed on light-weight links,
buffer depth optimizations may be suggested.

By employing the synthetic benchmark presented in Section 5.4, where all mas-
ters simultaneously inject several bursty transactions to the shared slave, it is possible
to analyze the impact of varying the buffer depths on links with heavy loads and
thereby, suggest optimizations.

Table 5.4 presents the observed average buffer occupancy numbers of the input
buffers at the ports 0 and 2 in Router 2, in the topology described in Section 5.5, by
changing the buffer depths (2, 6 and 10), when implementing the suggested synthetic
benchmark. It also presents the power and area values for the different buffers depths
(obtained from appropriate synthesis tools).

Buffer depth 2 6 10
Area (sq. um) 7934 24891 40988
Power (mw) 3.4 3.9 6.0
Avg. Buffer Occupancy (Port 0) 1.92 5.42 6.89
Avg. Buffer Occupancy (Port 2) 1.96 5.73 7.04

Table 5.4: Buffer Occupancy and Buffer Area and Power

Table 5.5 presents the performance values (average round-trip latencies) from all masters
to the shared slave (Slave 4), when employing different buffer depths (2, 6 and 10) using
the synthetic benchmark. These buffers are heavily occupied due to the continuous
injection of traffic through them by the four masters. Hence, changing buffer depths
improves the performance of the paths between the masters and the shared slave.

Buffer depth/Performance 2 6 10
Avg. RT Latency (ns) - Master 0 to Slave 4 235.21 201.12 192.91
Avg. RT Latency (ns) - Master 1 to Slave 4 238.16 201.83 193.64
Avg. RT Latency (ns) - Master 2 to Slave 4 242.74 203.37 197.35
Avg. RT Latency (ns) - Master 3 to Slave 4 239.64 203.20 196.92

Table 5.5: Impact of Buffer Depth on Performance
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Power and area values for the different buffers are obtained from appropriate synthesis
tools and are employed to find optimal trade-off points, taking into consideration, the
performance benefits and the corresponding increase in area and power.

The graph depicted in Figure 5.2, shows the performance gains (based on round-
trip latency measures between Master 0 and Slave 4) and the corresponding increase in
power and area (all normalized to those of the 2-Deep buffers), when employing 6-deep
and 10-deep buffers, as against 2-deep buffers, using values from table 5.5.

Figure 5.2: Performance Gains, Area Increase and Power Increase

The graph in Figure 5.3, shows the proportional decrease in round-trip latency (between
Master 0 and Slave 4), when increasing buffer depths (normalized to that of 6-deep
buffers), along with relative power and area increase.

Figure 5.3: Performance vs Area and Power
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As can be observed from the Table 5.5, there is a noticeable impact of using different
buffer depths, on the round-trip latencies between the different masters and the shared
slave (Slave 4). It must be noted in the graph in Figure 5.2, that though there is a
difference in performance when using a 6-deep buffer instead of a 2-deep buffer, there
does not seem to be a significant performance gain (or reduction in latency), when using
a 10-deep buffer instead of a 6-deep buffer.

Now shifting focus on to the graph in Figure 5.3 and the Table 5.4, the power
consumed by a 10-deep buffer is significantly more than that by a 6-deep buffer or a
2-deep buffer. Interestingly, a 6-deep buffer does not seem to consume a lot more power
than a 2-deep buffer. When comparing the area occupied by these three buffers, there
is an almost proportional increase in the area when we move from a 2-deep buffer to a
6-deep buffer and through to a 10-deep buffer.

Reflecting on these observations, one may suggest that selecting a 6-deep buffer,
would serve the purpose by providing good performance gains, within acceptable area
and power costs. Analyzing such trade-offs in performance versus buffer area and
power, is useful in suggesting optimizations, for instance, increasing or decreasing
buffer depths, etc., for the given application, based on the real-time congestions and
contentions imposed.

In a nutshell, the infrastructure suggested in this thesis, proves very useful in
validating the NoC design and optimizing its architecture for a given application, under
real operating conditions.
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This thesis addresses ‘Validation of NoC designs’, for performance and efficiency against
real-time constraints, by designing an infrastructure for performance analysis, validation
and design optimization of NoCs.

6.1 Conclusion

With the technology scaling into tens of nanometers, chips comprising of hundreds of
heterogeneous IP cores with complex functionalities, are now realizable. With the data
bandwidth demands within the chip, shooting up drastically, Networks-on-Chip have
been identified to provide a scalable and efficient routing alternative, promising high
communication performance within area and power bounds.

As the technology matures, NoC designers are evolving newer and more efficient
design flows, to arrive at accurate architectural solutions and to optimize design
trade-offs. One of the factors that limits these goals, is that, most design choices and
optimizations depend on the target application and merely checking for adherence to
objectives and constraints of the application do not suffice. There still exists a need
to verify the network design against real-time constraints imposed by the application,
so as to arrive at a concrete and optimal NoC design for the given application. This
calls for a comprehensive validation infrastructure that evaluates and verifies the design
choices and aids in optimizing the architectural parameters.

The architecture of the proposed infrastructure comprises of three distinct phases:
(a) Traffic Modeling and Generation (b) Traffic Scheduling and Management (c)
Statistics Collection, Performance Validation and Optimization. For traffic modeling
and generation, on one hand, synthetic traffic generators are developed to employ
probability distributions and random traffic patterns, while on the other, trace-based
traffic generators model and port application traces from a reference system and emulate
the expected application behavior. For traffic scheduling and management, synthetic
traffic generators are supported by efficient online re-scheduling algorithms, while
trace-based traffic generators are supported by distinct schedule handlers, that maintain
application schedules. In the last phase, an efficient methodology for statistics collection
and performance validation is presented, besides exploring trade-offs in performance
under area and power constraints, for design optimization.

Although this tool, does not provide 100% accurate design solutions, it plays a
significant role in validating and optimizing the NoC design, since it takes into account
the the target application’s expected communication behavior.
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6.2 Future Work

Though the proposed infrastructure gives a comprehensive performance analysis of the
NoC design, it does leave scope for future extensions and improvements. For instance,
tweaking the schedule manager to provide dedicated priority on certain links, can
extend the analysis to understand the impact of architectural modifications to NoC
such as Quality of Service (QoS). Further, in principle, the suggested trace modeling
methodology can be employed to study the impact of the arbitration policy, topology
etc., on the performance of the NoC and appropriate optimizations may be suggested.

In the tool, it is also possible to extend the applicability of the schedule manager
to define dependencies/schedules for synthetic traffic generators. A possible improve-
ment can be optimizing the implementation of this infrastructure, to move it from the
design phase to provide on-line NoC monitoring to support online routing schemes.
An extension to this, can be using the NoC itself to collect statistics and update the
centralized analysis data-structure.
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Micro-Benchmarks - Source A
The presented micro-benchmarks are developed at the University of Bologna and are
executed on the MPARM platform to generate reference traces.

A.1 asm-matrixind

#define LINES 8
#define ITERATIONS 100
#define MAT SIZE (LINES*LINES*sizeof(int));
#define PRIVATE (PRIVATE BASE + 0x00020000)
typedef int matrix[LINES][LINES];

void main()
{
NODE NUMBER = get proc id();
NNODES = get proc num();
int dummy, cycles, i, j, k, row, column;
char *dummy mat private = (char *)PRIVATE;
char *dummy mat input = (char *)PRIVATE + MAT SIZE;
char *dummy mat output = (char *)PRIVATE + 2 * MAT SIZE;
matrix *mat private = (matrix *)dummy mat private;
matrix *mat input = (matrix *)dummy mat input;
matrix *mat output = (matrix *)dummy mat output;
end boot();

for (row = 0; row ¡ LINES; row ++)
for (column = 0; column ¡ LINES; column ++)
{(*mat private)[row][column] = row + column;
(*mat input)[row][column] = 1; }

for (cycles = 0; cycles ¡ ITERATIONS; cycles ++)
{for (i = 0; i ¡ LINES; i ++)
for (k = 0; k ¡ LINES; k ++)
{(*mat output)[i][k] = 0;
for (j = 0; j ¡ LINES; j ++)
(*mat output)[i][k] += (*mat input)[i][j] * (*mat private)[j][k]; }}
stop simulation();
}}
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A.2 asm-matrixdep

#define LINES 8
#define ITERATIONS 100
#define MAT SIZE (LINES * LINES * sizeof(int));
#define PRIVATE (PRIVATE BASE + 0x00020000)
typedef int matrix[LINES][LINES];

void main()
{
NODE NUMBER = get proc id();
NNODES = get proc num();
int cycles, i, j, k, row, column;
char *dummy mat private = (char *)PRIVATE;
char *dummy mat input = (char *)PRIVATE + MAT SIZE;
char *dummy mat output = (char *)PRIVATE + 2 * MAT SIZE;
char *dummy shared input = (char *)SHARED BASE + (NODE NUMBER - 1) *
MAT SIZE;
char *dummy shared output = (char *)SHARED BASE + NODE NUMBER *
MAT SIZE;
matrix *mat private = (matrix *)dummy mat private;
matrix *mat input = (matrix *)dummy mat input;
matrix *mat output = (matrix *)dummy mat output;
matrix *shared input = (matrix *)dummy shared input;
matrix *shared output = (matrix *)dummy shared output;
end boot();

for (i = 0; i ¡ NNODES; i ++)
semaphores[i] = 1;

for (i = NNODES; i ¡ 2 * NNODES; i ++)
semaphores[i] = 0;

for (row = 0; row ¡ LINES; row ++)
for (column = 0; column ¡ LINES; column ++)
(*mat private)[row][column] = row + column;

if (NODE NUMBER == 1)
{
for (row = 0; row ¡ LINES; row ++)
for (column = 0; column ¡ LINES; column ++)
(*shared input)[row][column] = 1;
}
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for (cycles = 0; cycles ¡ ITERATIONS; cycles ++)
{
for (row = 0; row ¡ LINES; row ++)
for (column = 0; column ¡ LINES; column ++)
(*mat input)[row][column] = (*shared input)[row][column];

if (NODE NUMBER != 1)
semaphores[NODE NUMBER + NNODES - 2] = 0;

for (i = 0; i ¡ LINES; i ++)
for (k = 0; k ¡ LINES; k ++)
{
(*mat output)[i][k] = 0;
for (j = 0; j ¡ LINES; j ++)
(*mat output)[i][k] += (*mat input)[i][j] * (*mat private)[j][k]; }

for (row = 0; row ¡ LINES; row ++)
for (column = 0; column ¡ LINES; column ++)
(*shared output)[row][column] = (*mat output)[row][column];

if (NODE NUMBER != (NNODES))
semaphores[NODE NUMBER] = 0;
}
stop simulation();
}
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