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BaSAL: Class Balanced Warm Start Active Learning for LiDAR
Semantic Segmentation

Jiarong Wei

Abstract

Active learning has been proposed as a solution to miti-
gate the expensive and time-consuming process of annotat-
ing large-scale autonomous driving datasets. The process
typically involves a model initialization phase, followed by
multiple iterations aiming at selecting the most informative
data based on the initial model. However, we find two prob-
lems that have not explicitly been solved in this process.
First, current large-scale autonomous driving datasets suf-
fer from the class imbalance problem, yet no strategy has
been specifically designed to address this issue. Second,
selecting the initial data from an entirely unlabeled pool
of data, commonly referred to as the cold start problem
of active learning, remains challenging. In this study, we
propose a Class Balanced Warm Start Active Learning for
LiDAR Semantic Segmentation (BaSAL) framework to ad-
dress these problems. Our framework introduces a novel
size-based clustering pipeline that uses a size-based clus-
ter for non-ground points or a grid for ground points as a
basic query unit. The cluster sizes are heavily correlated
with their semantic classes, allowing us to more actively
control the class distribution of the selected data. We also
propose a warm start strategy to alleviate the cold start
problem. Different from the commonly used random point
cloud scan selection for model initialization, our warm start
strategy selects data from the basic query units and can
improve the initial model by a large margin. Experiments
show that our approach can achieve over 95% of the per-
formance of fully supervised learning while using only 5%
of data, outperforming existing active learning methods on
SemanticKITTI [4] and getting on par performance with the
state-of-the-art method on nuScenes [7].

1. Introduction
Autonomous driving has become increasingly popular,

and a robust perception system is crucial for the safe oper-
ation of autonomous vehicles. Among the various sensors
used in the perception system, LiDAR has emerged as a re-

liable and high-resolution tool. To cope with complex driv-
ing conditions, semantic segmentation is a crucial compo-
nent of LiDAR-based perception systems as it allows for the
identification of different classes in a LiDAR point cloud.

Developing an effective LiDAR semantic segmentation
network that can perform well requires access to large-scale
autonomous driving datasets like SemanticKITTI [4] and
nuScenes [7]. The cost to label these datasets is high, and
deep learning networks are data-hungry, making it chal-
lenging to reduce the amount of data required. To address
this problem, researchers have proposed some methods [57]
[24] [30] [42] that leverage active learning to reduce the in-
put data needed while maintaining competitive performance
compared to fully supervised methods. Active learning is an
effective machine learning technique to mitigate the oner-
ous annotation burden. It typically involves an initialization
phase, where a model is trained using the initial data se-
lected from the unlabeled set, and an iterative phase, where
the most informative data is iteratively selected for label ac-
quisition based on the model trained in the previous itera-
tion.

Recent research on active learning [57] [24] [30] [42]
mainly focuses on improving the iterative phase, specifi-
cally the data information metric. However, two problems
remain unsolved. Firstly, none of the methods have ex-
plicitly designed a strategy to address the class imbalance
problem. In large-scale autonomous driving datasets, some
classes are often overrepresented, while others are under-
represented. This problem becomes even more intractable
in the active learning use case where annotation budgets
are limited. Secondly, the cold start problem of selecting
the initial data from an entirely unlabeled pool of data re-
mains a challenge. In the context of active learning applied
in LiDAR semantic segmentation, current works [57] [24]
apply VCCS [38], an over-segmentation algorithm that di-
vides the point cloud according to point connectivity. While
this approach is effective in dividing the point cloud into
connected regions, it does not address the class imbalance
problem. Also, they ignore the cold start problem and sim-
ply randomly select point cloud scans to train the initial



model. The model trained on data selected by cold start
often has low performance, which in turn affects the data
selection process in later iterations.

In response to the aforementioned challenges, we pro-
pose a Class Balanced Warm Start Active Learning for Li-
DAR Semantic Segmentation (BaSAL) framework. Our ap-
proach utilizes a size-based point cloud clustering pipeline
to provide an effective solution to the class imbalance prob-
lem inherent in large-scale autonomous driving datasets.
By implementing a warm start strategy to initialize a high-
performing model and subsequently selecting informative
data combining softmax uncertainty and feature diversity
( [43]), our method achieves competitive performance rel-
ative to fully supervised approaches with only a small
amount of data. Our framework consists of three primary
components: the size-based point cloud clustering pipeline,
the warm start strategy, and the data information measure.

Our size-based point cloud clustering pipeline aims to
achieve greater point cloud granularity in a class balanced
manner. Specifically, we transform the basic query unit
from a point cloud scan to a non-ground size-based clus-
ter (small, medium, and large), corresponding to different
classes of objects with different sizes in the real world, or
a ground grid. By controlling the distribution of these size-
based clusters or grids, the class imbalance problem can be
alleviated.

We also provide a solution for the cold start problem.
Instead of randomly selecting several point cloud scans,
we select a certain amount of data from the non-ground
small, medium, and large cluster sets and the ground grid
set for model initialization. This approach leads to a much
stronger initial model compared to the baseline random se-
lection method. By initializing a more accurate model, sub-
sequent active learning iterations can more effectively select
the most useful information.

For the information measure in later active learning iter-
ations, we combine softmax entropy [53] [54] and feature
diversity (CoreSet) [43]. Softmax entropy is a commonly
used measure in active learning to select the data that the
model is most uncertain of. Feature diversity (CoreSet) [43]
is a method to select data that is diverse in the feature space.
By combining these two measures, we aim to more effec-
tively select the most informative data under a fixed anno-
tation budget.

Experiments show that by using only 5% of points, our
method can achieve over 95% of the performance of fully
supervised learning, outperforming existing active learning
methods on SemanticKITTI [4] and matching the state-of-
the-art method LiDAL [24] on nuScenes [7] dataset. Our
ablation studies also verify the effectiveness of each com-
ponent in our method.

In summary, our contribution can be outlined as follows:

• We propose a novel size-based point cloud clustering
pipeline that increases the granularity of the dataset
and enables the alleviation of the class imbalance
problem.

• We propose a warm start strategy for initializing a
high-performance model, which is proven to con-
tribute to the overall model improvement.

• Experiments show that our framework can achieve
competitive results compared to the fully supervised
approach with significantly reduced data input,
outperforming existing active learning methods on
SemanticKITTI [4] and getting on par performance
with the state-of-the-art method on nuScenes [7].

2. Related work
2.1. LiDAR Semantic Segmentation

LiDAR semantic segmentation is a task to allocate a la-
bel for each point in the point cloud. Current LiDAR se-
mantic segmentation methods can be divided into four cat-
egories: point-based, voxel-based, projection-based, and
fusion-based. Mainstream point-based methods directly
read from the raw point cloud to learn the point features
following the design of the pioneering PointNet [40]. Later
work improves the PointNet baseline by improving the effi-
ciency [23], learning the local neighborhood features [41],
or designing a new convolution kernel [51]. Typical voxel-
based methods represent the point cloud by assigning each
point to a corresponding voxel. Except for dividing the
point cloud into regular grids, some methods propose dif-
ferent ways of point cloud partition and design new 3D
convolution methods. PolarNet [63] applies polar parti-
tioning replacing Cartesian partitioning, making the points
more evenly distributed. Cylinder3d [64] represents the
point cloud using cylinder partition and designs an asym-
metrical 3d convolution to extract features from the cylin-
ders. Projection-based methods transform point clouds to
a 2d representation in either Bird-Eye-View (BEV) [1] or
Range-View (RV) [11] [34] [55] [56] [58], then apply the
highly optimized 2D convolution to make their network effi-
cient. Fusion-based methods try to combine the advantages
of point-based, voxel-based, and projection-based meth-
ods while avoiding their shortcomings. Although some-
times computationally expensive, these methods generally
can produce competitive results [62] [19] [32] [50] [59].

2.2. Active Learning

Active learning is a subfield of machine learning that
aims at minimizing the cost of obtaining data labels. Active



learning algorithms mainly vary in their query strategies.
According to [44], active learning has three typical scenar-
ios, including membership query synthesis, stream-based
selective sampling, and pool-based active learning. Recent
research about active learning mainly focuses on pool-based
active learning, which assumes that there is a small set of la-
beled data and a large pool of unlabeled data available and
iteratively draws queries from the unlabeled pool.

2.2.1 Query Strategies for Active Learning

Pool-based active learning typically uses uncertainty-based
methods, diversity-based methods, or their combination as
the query strategy. Uncertainty-based strategies charac-
terize model uncertainty, measured by entropy measure-
ment [22], ensemble methods [5], Gaussian process [25],
Bayesian approach [17], a learned loss prediction [60], or
a discriminator score [48]. Diversity-based methods claim
that while uncertainty-based strategies are often effective,
they can also be prone to selecting similar items to appear
in the same querying batch. [43] converts batch selection
into a core-set construction problem to ensure diversity in
the labeled data. [26] [2] consider model uncertainty and
diversity at the same time. [36] selects the most representa-
tive samples while avoiding repeatedly labeling samples in
the same cluster.

Recent active learning research stands on the shoulder of
previous work and has more task-specific designs. ReDAL
[57] is the pioneering work to apply active learning on
LiDAR semantic segmentation for large-scale autonomous
driving datasets. ReDAL divides the point cloud into re-
gions and selects those regions with high uncertainty and
diversity. Following ReDAL, LiDAL [24] selects the in-
formative point cloud by exploiting inter-frame uncertainty
among LiDAR frames. [30] proposes a diversity-based ac-
tive learning method that enforces spatial diversity and tem-
poral diversity for 3D object detection. [42] combines de-
tection entropy and prediction entropy as the selection cri-
teria for P&P tasks. [47] considers divergence score as
their information measure and proves that inconsistencies
in model predictions across viewpoints can provide a re-
liable measure of uncertainty. All the work mentioned in
various directions aims at a more efficient active learning
framework design.

2.2.2 Class imbalance problem

Class imbalance is a natural problem for datasets. A com-
mon solution is resampling, typically undersampling the
overrepresented classes and oversampling the underrepre-
sented classes or other more specific resampling techniques.
Undersampling is one method to address the class imbal-
ance problem by removing examples from the majority
class and is reported in [15] to be effective in learning on

large imbalanced datasets. Oversampling is another method
to address the class imbalance problem by resampling the
small class through random sampling or duplication until it
is not underrepresented. [8] combines the method of over-
sampling the minority class and under-sampling the major-
ity class and achieves better classifier performance. One-
sided sampling is another resampling method similar to un-
dersampling, in which redundant and borderline training ex-
amples are identified and removed from training data. [27]
reports that one-sided sampling is effective in learning with
two-class large imbalanced datasets.

Except for resampling techniques, active learning also
provides solutions to the class imbalance problem. [3]
summarizes two kinds of active learning techniques to
cope with the class imbalance problem: Density-Sensitive
Active Learning (information density [45], pre-clustering
[37], alternate density-sensitive heuristics [12]) and Skew-
Specialized Active Learning [52]. [14] argues that their
proposed Support Vector Machine (SVM) active learning
strategy, which queries a small pool of data at each iter-
ative step, can be a more efficient alternative solution to
the class imbalance problem compared to traditional resam-
pling methods. [65] also analyzes the effect of the common
resampling techniques including under-sampling and over-
sampling, and proposes a bootstrap-based over-sampling
(BootOS) method that works better than ordinary over-
sampling in active learning for Word Sense Disambigua-
tion (WSD) task. [6] alleviates the class imbalance problem
in image classification tasks by proposing a general opti-
mization framework. CBAL [13] proposes a class balance
active learning framework, which adds equal numbers of in-
stances from both object classes (cancer and non-cancer) to
solve the class imbalance problem in histopathology. From
our knowledge, there is no solution explicitly proposed for
the class imbalance problem in active learning use case for
large-scale autonomous driving datasets.

2.2.3 Cold start problem

The problem of how to choose the initial set of data for an-
notation from an entirely unlabeled pool of data is known
as the cold start problem for active learning. The cold start
problem is first observed in recommender systems, where
solutions to remedy the insufficient information due to the
lack of user history are needed. This concept is then used
in other fields. In natural language processing (NLP), [61]
seeks a solution for the cold start problem by pre-training
models using self-supervision and it attributes the cold start
problem to model instability and data scarcity. [9] attributes
the possible causes of the cold start problem to a biased and
outlier initial query and applies contrastive learning as a so-
lution. [28] explores the effectiveness of the K-center algo-
rithm to select the initial queries. Similarly, [39] shows that



Figure 1. Overview of BaSAL. Our framework consists of a size-based clustering module and the active learning process. The size-based
clustering module transforms all the point clouds in the dataset into non-ground size-based clusters (small, medium, and large clusters)
and ground grids. For the active learning process, we first use our warm start strategy to initialize a model. All the unlabeled data is then
passed through the model, and the most informative data is selected by our data information measure (softmax entropy, feature diversity
(CoreSet) [43]). The selected data is then labeled and the labeled data is used to train a new model. The labeled data and the unlabeled
data are updated accordingly.

a simple K-means clustering algorithm works fairly well at
the beginning of active learning, as it is capable of covering
diverse classes and selecting a similar number of data per
class. Most recently, a series of studies [20] [21] [49] [35]
continue to propose new strategies for selecting the initial
query from the entire unlabeled data and highlight that typi-
cal data (defined in varying ways) can significantly improve
the learning efficiency of active learning at a low budget.
However, for active learning applied in LiDAR semantic
segmentation, as far as we know, there is no study dis-
cussing how to select the initial data for label acquisition.

3. Method

3.1. Overview

Our BaSAL framework aims to solve the class imbal-
ance problem and the cold start problem of active learn-
ing. The overview of our BaSAL framework is shown in
Figure 1. We introduce a size-based point cloud cluster-
ing pipeline to partition the dataset into non-ground small,
medium, large cluster sets and a ground grid set as basic
query sets. As the cluster sizes are heavily correlated with
their semantic classes, by setting the amount of data se-
lected from these sets, we can have a more precise control of
class balance. For the active learning process, we first im-
plement a warm start strategy to improve the performance
of the initial model to cope with the cold start problem. For

iterations after the initialization, we combine softmax en-
tropy and feature diversity (CoreSet [43]) to measure the
information of all the unlabeled data. We select the highly
informative data, query their label and retrain the model.
Then the labeled, unlabeled basic query sets are updated
accordingly.

3.2. Size-based Point Cloud Clustering

Our size-based point cloud clustering pipeline is shown
in Algorithm 1. The input of Algorithm 1 includes the raw
point cloud dataset D and the boundary lengths L1, L2.
The output is non-ground size-based cluster sets (Dcs,Dcm,
Dcl), and a ground grid set Dgg . There are in total four pro-
cedures in our algorithm, including ground plane removal,
ground partition, clustering, and size division.

The main target of our size-based point cloud cluster-
ing pipeline is to better control the class distribution in the
data used for model training. Specifically, we need to de-
velop a method to separate different classes in a point cloud
based solely on their geometric features. Real-world au-
tonomous driving environments typically consist of the road
class (road, sidewalk, parking area, etc.) and the object
class (tree, person, bicyclist, etc.). To first separate these
two classes, we use a ground plane removal algorithm to
divide all the point clouds in the dataset into ground points
Dg consisting of road classes and non-ground points Dng

consisting of object classes. The ground points Dg are then



(a) Small clusters (b) Medium clusters

(c) Large clusters (d) Ground grids

Figure 2. This figure shows an example of our basic query units
consisting of small, medium, large clusters, and ground grids.
Small clusters normally contain small, thin, or occluded structures,
e.g., pedestrians, road signs, poles, trunks, occluded cars. Medium
clusters typically consist of vehicles. Large clusters mainly have
buildings and vegetation. Ground grids mostly consist of road,
sidewalk, terrain, and other-ground.

divided into grids Dgg for greater granularity.
For the non-ground points Dng representing object

classes, we use a clustering algorithm to divide them into
clusters Dcng . Given the significant variability of point
cloud geometric features both within and across classes, we
select size as the criterion to further separate the clusters.
The size l of a cluster is defined by the sum of the length,
width, and height of its bounding box. The cluster size l
is then classified according to the boundary lengths L1, L2.
Clusters with size 0 < l < L1, L1 <= l < L2, and l > L2

are classified into small cluster set Dcs, medium cluster set
Dcm, and large cluster set Dcl respectively.

An example of our size-based clusters is shown in Figure
2. Without knowing the labels of any point in the dataset,
the minimum query unit for a dataset becomes a non-ground
size-based cluster or a ground grid, corresponding to differ-
ent classes of objects with different sizes in the real world.
The class component of the size-based clusters is shown in
Table 4 in the Supplementary Material, and it shows that our
size-based clusters are heavily correlated with their seman-
tic classes. By properly controlling the amount of different
size-based clusters, we can effectively mitigate the class im-
balance problem.

3.3. Warm start initialization

Recent work [57] [24] that applies active learning in
LiDAR semantic segmentation randomly selects 1% total
frames for model initialization and subsequently selecting
informative data based on the initialized model, which is a
cold start. Although this approach is straightforward, the
cold start model often yields low performance and the se-
lected informative data by this model will also be affected.

Algorithm 1 Size-based Point Cloud Clustering
Input: The raw point cloud dataset D; The boundary

length L1, L2 to divide the small, medium, and large
size-based clusters.

1: procedure GROUND PLANE REMOVAL
2: Dg,Dng ← Ground plane removal on D
3: procedure GROUND PARTITION
4: Dgg ← Normal grid partition on Dg

5: procedure CLUSTERING
6: Dcng ← Clustering on Dng

7: procedure SIZE DIVISION
8: N ← Number of clusters in Dcng

9: for i← 0, 1, 2, . . . , N do
10: l← Cluster bounding box size
11: if l > 0 and l < L1 then
12: Dcs ← Dcng[i]

13: if l >= L1 and l < L2 then
14: Dcm ← Dcng[i]

15: if l >= L2 then
16: Dcl ← Dcng[i]

Output: Non-ground small, medium, large size-based
cluster sets Dcs, Dcm, Dcl, and a ground grid set Dgg

To improve the traditional frame-level cold start, we de-
velop a warm start strategy that improves the initialization
model by a large margin.

Our warm start strategy is straightforward: we allocate a
budget x% for selecting a proportion of data from the basic
query sets. As shown in Equation 1, we divide the warm
start budget x% to pcs, pcm, pcl, and pgg . Then we ran-
domly select data from Dcs, Dcm, Dcl, and Dgg according
to these budgets. Note that the budget here refers to the pro-
portion of the number of points selected relative to the total
number of points in a dataset. We denote the resulting se-
lected data as Dsmall, Dmedium, Dlarge, and Dground. The
∗ operator here refers to the process of selecting p propor-
tion of data from a basic query set D.

x = pcs+pcm + pcl + pgg

Dsmall = pcs ∗ Dcs

Dmedium = pcm ∗ Dcm

Dlarge = pcl ∗ Dcl

Dground = pgg ∗ Dgg

(1)

We then combine these four parts of data as our warm
start data Dinit to train the initial model, as shown in Equa-
tion 2. The warm start data, compared to the randomly
selected frames, balances the class distribution and im-
proves the initial model performance. With a stronger initial



model, the active learning algorithm can more effectively
select informative data in later iterations.

Dinit =Dsmall ∪ Dmedium ∪ Dlarge ∪ Dground (2)

3.4. Information measure

We combine softmax entropy [22] and feature diversity
(Coreset) [43] to select the most informative data for label
acquisition. Softmax entropy aims to select the data that
the model is most uncertain of, as these points are likely
to contain useful information. Feature diversity (Coreset)
prioritizes unlabeled data that is far from the labeled data to
ensure diversity. By combining these two methods, we aim
at a balance between uncertainty and diversity.

3.4.1 Softmax entropy

To compute the softmax entropy, we pass all the unla-
beled data through the model trained in the previous iter-
ation and obtain the per-point prediction probability p. As-
suming there are Nu unlabeled basic query units qj (j =
1, 2, 3, . . . , Nu), each containing n points, we compute the
average entropy of a point k (k = 1, 2, 3, . . . , n) in a basic
unit qj using Equation 3.

s(u)qj = − 1

n

n∑
k=1

pk log(pk) (3)

This yields a ranking for uncertainty, denoted as r
(u)
q .

r
(u)
q = rank(s

(u)
qj ) = {r(u)q1 , r

(u)
q2 , . . . , r

(u)
qj }, where r

(u)
qj

represents the uncertainty score ranking of qj .

3.4.2 Feature diversity

We apply the Coreset [43] approach as the feature diver-
sity measure. Its main idea is to condense the information
of the whole dataset into a small subset so that the model
trained on the subset can have on par performance with the
fully supervised network. To achieve this, CoreSet selects
the samples from the unlabeled dataset that are the furthest
away from the labeled dataset in the feature space. In our
implementation, we choose the output of the layer before
the last classification layer of the encoder-decoder network
as point features. Specifically, we denote h(xl; θ), h(xu; θ)
as the prediction output of the labeled data and the unla-
beled data. h(xl; θ) has shape (Nl, K) and h(xu; θ) has
shape (Nu, K), where Nl, Nu denote the number of sam-
ples in the labeled set and the unlabeled set, and K denotes
the feature dimension. The steps to calculate the feature di-
versity score are shown in Equation 4. We first compute the
Euclidean distance between the samples in the unlabeled set
and those in the labeled set Dqj ,qi . Then, for each sample

in the unlabeled set, its diversity score is computed by sum-
ming up the feature space distance between it and all the
samples in the labeled set.

Dqj ,qi = ||h(xu; θ)j − h(xl; θ)i||2

s(d)qj =

Nu∑
j=1

Dqj ,qi

(4)

Then we have a ranking for feature diversity, denoted as
r
(d)
q . r

(d)
q = rank(s

(d)
qj ) = {r(d)q1 , r

(d)
q2 , . . . , r

(d)
qj }, where

r
(d)
qj represents the diversity score ranking of qj .

3.4.3 Combination

The selected data from the unlabeled set for label acquisi-
tion is determined by the uncertainty ranking r

(u)
q and the

diversity ranking r
(d)
q . We acquire the combined rankings

as shown in Equation 5.

Q∗ = argsortq

(
1

r
(u)
q

+
1

r
(d)
q

)
1:K

(5)

With the combined ranking of all the basic units in the un-
labeled set, we select the top K basic units as the query set
Q∗ until the labeling budget is exhausted.

4. Experiments

4.1. Datasets and Evaluation Metric

SemanticKITTI [4] SemanticKITTI is a large-scale
autonomous driving dataset based on the KITTI Vision
Odometry Benchmark [18] recorded in Germany. It con-
tains 22 sequences (seq 00 - 07, seq 09 - 10 for training, seq
08 for validation, and seq 11-22 for test). We perform our
active learning framework on the training sequences and
test the model performance on the validation sequences.
nuScenes [7] nuScenes is the first large-scale autonomous
driving dataset containing the full sensor suite, which was
recorded in Boston and Singapore. It contains 1000 scenes
(700 scenes for training, 150 scenes for validation, and
150 scenes for testing). We perform our active learning
framework on the training scenes and test the model
performance on the validation scenes.
Metrics Following the typical LiDAR semantic segmenta-
tion settings, we also use the mean intersection over union
(mIoU) metric to measure the model performance. 19
classes are used to evaluate SemanticKITTI and 16 classes
are used to evaluate nuScenes.



Figure 3. Experiment results of different active learning strategies on SemanticKITTI [4], nuScenes [7] using SPVCNN [50],
Minkowski [10] network. We compare our BaSAL strategy with other existing works. Our method outperforms all existing active
selection approaches on SemanticKITTI and gets on par performance with the state-of-the-art active learning method LiDAL [24] on
nuScenes.

4.2. Implementation Details

4.2.1 Network Architectures

Following ReDAL [57] and LiDAL [24], for better compar-
ison, we also use SPVCNN [50] based on point-voxel CNN,
and MinkowskiNet [10] based on sparse convolution, as our
backbone networks.

4.2.2 Baseline Active Learning Methods

We select nine baseline methods for comparison, includ-
ing random point cloud selection (RAND), softmax confi-
dence (CONF) [53], softmax margin (MAR) [53], softmax
entropy (ENT) [53], MC-dropout (MCDR) [16], core-set
selection (CSET) [43], segment-entropy (SEGENT) [31],
ReDAL [57] and LiDAL [24].

4.2.3 Active Learning Protocol

Our active learning protocol follows part of the settings of
ReDAL [57] and LiDAL [24]. For the model initialization
step, different from their random selection, we apply our
warm start strategy to select pcs, pcm, pcl, pgg of points
from the small, medium, large cluster sets and the ground
grid set, in total xinit of data. The selected data is then la-
beled and trained as model initialization. The active learn-
ing process after initialization consists of K rounds of the
following actions: 1. Train the model on the current labeled
set 2. Select xactive of data from the current unlabeled set
for label acquisition according to our information measure.
3. Update the labeled set and the unlabeled set.

The labeling budget here is measured by the percent-
age of the labeled points. For both SemanticKITTI [4]
and nuScenes [7], we set xinit = 1%, pcs = 0.25%,
pcm = 0.25%, pcl = 0.25%, pgg = 0.25%, K = 4, and
xactive = 1%. To ensure the reliability of the results, all

the experiments are performed three times and the average
results are reported.

4.2.4 Size-based Point Cloud Clustering

We implement our size-based point cloud clustering
pipeline following Algorithm 1 introduced in Section 3.2.
The input of the Algorithm 1 includes the raw point cloud
dataset D and boundary lengths L1, L2. We choose
L1 = 5m, L2 = 10m for both datasets. For Ground
Plane Removal, we apply Patchwork++ [29], a fast and
robust state-of-the-art ground segmentation algorithm on
3D point clouds. For Clustering, we apply HDBSCAN
[33], a density-based clustering algorithm that is effec-
tive at discovering clusters of varying densities. We use
it to divide the non-ground points into clusters, setting
the ’min cluster size’, the parameter representing the min-
imum number of points required to form a cluster, and
’min sample’, the parameter to control the density of clus-
ters, to 50, 1 for SemanticKITTI [4] and 50, 10 for nuScenes
[7] respectively, because nuScenes is generally sparser than
SemanticKITTI. The clusters with l smaller than L1 = 5m,
between L1 = 5m and L2 = 10m, and larger than L2 =
10m are classified to small cluster set Ds, medium cluster
set Dm, and large cluster set Ds respectively. For Ground
Division, the ground points are divided into grids with size
10m by 10m.

4.3. Main Results

4.3.1 Comparisons among different active selection
strategies

We verify our method compared with 9 other active selec-
tion strategies mentioned in Section 4.2.2. The implemen-
tation details of these methods are shown in the Supplemen-
tary Material.



(a) Input (b) Ground Truth (c) Fully Supervised (d) BaSAL (5%)

(e) Input (f) Ground Truth (g) Fully Supervised (h) BaSAL (5%)

Figure 4. Visualization for the inference results on SemanticKITTI [4] validation set with SPVNAS [50] network architecture. With our
active learning strategy, the model can recognize different classes (person, bicycle, car, trunk, road sign, vegetation, sidewalk, road, etc.).
For the bicycle on the sidewalk ((b), (c), (d)), our model performs even better than the fully supervised model.

The experiment results are shown in Figure 3. The data
of all the baseline experiments including ReDAL and Li-
DAL is taken from LiDAL [24]. In each subplot, the x-axis
means the percentage of the labeled points and the y-axis
represents the mIoU achieved by the network. Our pro-
posed BaSAL method outperforms all the methods on Se-
manticKITTI dataset and gets on par performance with Li-
DAL [24] on nuScenes dataset.

For SemanticKITTI, we can achieve 98% performance
of fully supervised learning on SPVCNN and 100% perfor-
mance of fully supervised learning on MinkowskiNet using
only 5% of labels, outperforming all existing methods. For
nuScenes, we can achieve 95% performance of fully super-
vised learning on both networks, with on par performance
as the state-of-the-art method LiDAL [24].

The qualitative results are shown in Figure 4. Compared
to the fully supervised model, our model can also recog-
nize most of the object classes and ground classes. For the
small classes (e.g., the bicycle on the sidewalk), our model
performs even better than the fully supervised model.

4.3.2 Warm start

As shown in Figure 3, our warm start strategy far outper-
forms the random selection baseline when using 1% of data.
We explain why our warm start is much more effective than
the cold start random initialization in Table 2. The ’Class
distribution’ row in the table reveals that SemanticKITTI [4]
has a highly imbalanced class distribution. For example,
the ’road’ and ’vegetation’ classes account for 22.01% and
23.18% of the whole dataset, while the ’bicyclist’ and ’mo-
torcyclist’ classes only have 0.013% and 0.0037%. The data
selected by our warm start strategy, compared to that by the
cold start random initialization, scales the amount of data of
the underrepresented classes by a large margin (motorcycle,
person, bicyclist, motorcyclist, etc.). While some classes

may be slightly sacrificed (road), the overall performance
of all the classes is considerably improved.

4.4. Ablation study

4.4.1 Component analysis

In this section, we conduct a series of controlled experi-
ments to prove the effectiveness of our components. All our
experiments are conducted on the SemanticKITTI [4] val-
idation set evaluating the model trained on SPVCNN [50]
network with 5% data. The results are shown in Table 1.

FL SC WS ENT FD mIoU(%)
✓ 57.2

✓ 60.8
✓ ✓ 61.4
✓ ✓ ✓ 61.8
✓ ✓ ✓ ✓ 62.1

Table 1. Ablation study. FL: Frame Level strategy; SC: Size-
based Point Cloud Clustering; WS: Warm Start; ENT: Entropy-
based Uncertainty; FD: Feature Diversity [43].

For FL, we randomly select 1% of total points based on
a frame level and randomly increase 1% of data in each
iteration (the same process as the random selection base-
line). Changing from FL to SC, we implement our size-
based point cloud clustering framework, but using the tradi-
tional frame-level model as 1% initialization (without warm
start), and randomly select data from non-ground size-based
cluster sets and ground grid sets. This brings the largest
improvement (3.6%) for our model compared to the ran-
dom selection baseline. For SC+WS, we use our warm start
strategy as 1% model initialization, keeping other settings
the same as SC, and it contributes to 0.6% improvement for
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Class distribution(1e-2) 4.23 0.017 0.040 0.20 0.23 0.035 0.013 0.0037 19.88 1.47 14.39 0.39 13.27 7.24 26.69 0.60 7.81 0.29 0.061
1% Cold Start(1e-4) 4.23 0.017 0.040 0.20 0.23 0.035 0.013 0.0037 19.88 1.47 14.39 0.39 13.27 7.24 26.69 0.60 7.81 0.29 0.061
1% Warm Start(1e-4) 13.63 0.030 0.49 0.11 0.39 0.27 0.12 0.050 10.59 0.79 7.35 0.24 13.31 5.67 29.69 3.86 5.51 1.42 0.33

Ratio Warm / Cold (data) 3.22 1.80 12.29 0.55 1.66 7.83 9.77 13.13 0.53 0.54 0.51 0.61 1.00 0.78 1.11 6.39 0.71 4.98 5.32
1% Cold Start mIoU(%) 93.10 12.09 15.26 54.89 22.20 6.66 48.85 0.29 89.08 25.28 72.40 0.27 86.56 48.57 86.61 55.93 73.56 60.15 35.23
1% Warm Start mIoU(%) 94.08 29.33 64.09 43.28 22.99 68.83 85.20 2.59 85.58 19.07 69.76 1.94 85.94 42.82 83.58 66.44 63.67 57.26 43.46

Ratio Warm / Cold (mIoU) 1.01 2.43 4.20 0.79 1.04 10.33 1.74 8.93 0.96 0.75 0.96 7.18 0.99 0.88 0.97 1.19 0.87 0.95 1.23

Table 2. This table explains why our warm start strategy far outperforms the random selection baseline. ’Class distribution’ shows the
class distribution of SemanticKITTI. Note that the class distribution here is defined by the number of points of a class relative to the total
number of points of this class in the dataset. ’1% Cold Start’ and ’1% Warm Start’ show the class distribution of 1% cold start and 1%
warm start initialization. ’1% Cold Start mIoU’ and ’1% Warm Start mIoU’ show the per class mIoU of the model trained using the cold
start strategy and the warm start strategy. ’Scaling factor (data)’ and ’Scaling factor (mIoU)’ compares the scaling of the class distribution
and the mIoU value between 1% cold start and 1% warm start.

our model. For SC+WS+ENT, we use softmax entropy as
our information measure to select data for label acquisition
and improve our model by 0.4%. For SC+WS+ENT+FD,
we combine softmax entropy and feature diversity (Core-
Set) [43] as our information measure, and it brings 0.3%
improvement to our model.

4.4.2 Warm Start with different proportion

Strategy WS1+4IT WS2+3IT WS3+2IT WS4+1IT WS5
WS mIoU(%) 56.1 58.9 59.8 60.0 61.0

WS+IT mIoU(%) 62.1 62.4 60.8 61.4 61.6

Table 3. Performance of using different proportion of data as
warm start with SPVCNN [50] network on SemanticKITTI [4].
WSn+(5-n)IT ((n = 1, 2, 3, 4, 5)) means applying the warm start
strategy with n percent of data and continuing (5-n) active learn-
ing iterations. WS mIoU(%) means the model performance of us-
ing the warm start strategy only, without looking at later active
learning iterations; WS+IT mIoU(%) means the resulted model
performance of the whole process including warm start and later
iterations.

With 5% of the labeling budget, a common active learning
practice is to use 1% data for model initialization and per-
form active learning for four iterations. However, this may
not be the optimal solution. With the same budget, we carry
on some experiments with different proportion of initializa-
tion. We test using 1%, 2%, 3%, 4% of data for warm start
initialization, then train the model for 4, 3, 2, 1 iterations,
and directly using 5% of data without any active learning it-
eration. Our experiment result is shown in Table 3. We find
that for SemanticKITTI [4] using SPVCNN [50] network,
the optimal solution in our setting is using 2% of warm start
and training the model for 3 iterations. This warm start
strategy has the highest performance because it can reach
a relatively high performance (58.9%) for model initializa-
tion, which can help to improve the efficiency to select use-

ful data in further active learning iterations. At the same
time, it also leaves 3% of the annotation budget for active
learning iterations, which allows the model to iteratively se-
lect informative data that benefits the model.

5. Conclusion
In this paper, we present a Class Balanced Warm

Start Active Learning for LiDAR Semantic Segmentation
(BaSAL) framework. Aiming at mitigating the class imbal-
ance problem in large-scale autonomous driving datasets,
we propose a size-based clustering pipeline that divides the
non-ground point cloud into clusters and classifies them ac-
cording to the cluster size. As the cluster sizes are heav-
ily correlated with their semantic classes, by controlling the
amount of the size-based clusters used for model training,
our active learning scheme can effectively mitigate the class
imbalance problem. To solve the cold start problem in ac-
tive learning, we propose a warm start strategy and explore
the effect of using different proportion of data for model
initialization. We also combine model uncertainty and fea-
ture diversity (CoreSet [43]) in the iterations after the warm
start initialization to select informative data for label acqui-
sition. Experiments show that our framework can outper-
form existing methods on SemanticKITTI and get on par
performance with the state-of-the-art method LiDAL [24]
on nuScenes. For future work, we believe that our hand-
crafted ground-plane removal and clustering steps can be
improved, e.g. via a learning-based approach. Also, our ab-
lation studies show that there should be an optimal point to
switch from the warm start initialization to the active learn-
ing iterations. Relevant experiments can be done to explore
this optimal point to further improve our model.
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Supplementary Material for BaSAL: Class Balanced Warm Start
Active Learning for LiDAR Semantic Segmentation

1. Baseline methods
1.1 Random selection (RAND)

Random selection method randomly selects a portion of
point cloud scans from the unlabeled dataset for label acqui-
sition. It is commonly used as a baseline for active learning
methods.

1.2 Core-set (CSET)

Core-set [43] is a diversity-based active learning strategy
aiming to select a small subset so that a model trained on the
selected subset has a similar performance to that trained on
the whole dataset. This method first extracts the feature of
each sample. Then, it selects a small number of samples
from the unlabeled dataset that is the furthest away from
the labeled dataset in the feature space for label acquisition.
In the implementation, we choose the middle layer of the
encoder-decoder network as the feature.

1.3 Least confidence sampling (CONF)

Least confidence sampling methods [54] query the sam-
ple whose prediction has the least confidence. As shown
in Equation 6, they first pass all the unlabeled point cloud
scans X with N through the model θ, then calculate the
confidence of predicted class label (ŷ1n) for all points and
produce the score for a point cloud scan (SCONF ) by aver-
aging the value of all points in a scan. After that, the point
cloud scans with the least confidence score in the unlabeled
set are selected for label acquisition.

SCONF =
1

N

N∑
i=1

P (ŷ1n|X; θ) (6)

1.4 Softmax Entropy (ENT)

Entropy is an indicator to measure the information of
a probability distribution in the information theory [46].
Some previous active learning approaches query samples
with the highest entropy value in the predicted probabil-
ity [53]. As shown in Equation 7, given a point cloud scan
X with N points and a model θ, we calculate the softmax
entropy value for all points and produce the score for a point

cloud scan (SENT ) by averaging the value of all points in
a scan. After that, we select a portion of point cloud scans
with the largest entropy in the unlabeled dataset for label
acquisition.

ENT = −
∑

P p(c)log(P p(c)) (7)

where P p(c) is the probability of point p belonging to class
c.

1.5 Softmax Margin (MAR)

Some previous active learning methods [53] query in-
stances with the smallest model decision margin, which
is the predicted probability difference between two most
likely class labels. As shown in Equation, given a point
cloud scan X with N points and a model θ, we calculate the
difference between the two most likely class labels for all
points and produce the score for a point cloud scan (SMAR)
by averaging the value of all points in a scan. After that, we
select a portion of point cloud scans with the largest score
in the unlabeled dataset for label acquisition.

SMAR =
1

N

N∑
i=1

P ((̂y1n)|X; θ)− P ((̂y2n)|X; θ) (8)

where (̂y1n) is the first most probable label class and (̂y2n) is
the second most probable label class.

1.6 Segment-entropy (SEGMENT)

Lin [31] proposes segment entropy to measure the point
cloud information in the deep active learning pipeline. This
method assumes that each geometrically related area should
share similar semantic annotations. Therefore, it calculates
the entropy of the distribution of predicted labels in a small
area to estimate model uncertainty.

1.7 ReDAL

Region-based and diversity-aware active learning
(ReDAL) [57] is the pioneer to apply active learning to
LiDAR semantic segmentation. It divides a 3D scene
into sub-scene regions and then estimates the region
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Small 1.93, 4.04, 65.35, 0.64, 3.69, 39.61, 50.86, 67.68, 0.03, 0.04, 0.12, 0.52, 1.31, 0.61, 1.65, 27.86, 0.39, 23.68, 29.17
Medium 79.44, 13.66, 14.29, 13.97, 37.01, 22.89, 26.92, 23.51, 0.1, 0.24, 0.18, 1.45, 4.93, 2.34, 7.51, 39.04, 1.58, 16.57, 27.55

Large 15.85, 69.5, 15.36, 81.57, 57.34, 33.0, 20.39, 3.96, 0.22, 0.19, 1.1, 8.34, 88.53, 82.55, 79.53, 29.87, 7.91, 55.43, 43.11
Ground 2.79, 12.81, 5.0, 3.82, 1.95, 4.5, 1.83, 4.86, 99.65, 99.53, 98.6, 89.7, 5.23, 14.51, 11.31, 3.24, 90.12, 4.33, 0.18

Table 4. This table shows the component of our non-ground small, medium, large cluster sets, and the ground grid set. Note that the
component here refers to the proportion of the number of points of a class relative to the total number of points of this class in the dataset.

information utilizing three metrics: softmax entropy, color
discontinuity, and structural complexity. With the estimated
region information scores, this method further designs a
diversity-aware selection algorithm to avoid visually
similar regions appearing in a querying batch for labeling.
The results in our work about ReDAL are all taken from
their official paper.

1.8 LiDAL

Following the footsteps of ReDAL, LiDAL [24] is the
recent state-of-the-art work that applies active learning to
LiDAR semantic segmentation. Their core idea is that a
well-trained model should generate robust results irrespec-
tive of viewpoints for scene scanning and thus the inconsis-
tencies in model predictions across frames provide a very
reliable measure of uncertainty for active sample selection.
The results in our work about LiDAL are all taken from
their official paper.

2. More results
2.1 The class distribution of the size-based clusters

Our size-based point cloud clustering pipeline divides
the whole dataset into non-ground size-based cluster sets
and a ground grid set. The components of these sets are
shown in Table 4. The small cluster set contains most of the
motorcycle, bicyclist, and motorcyclist class. The medium
cluster set contains most of the car class. The large cluster
set contains most of the bicycle, truck, other-vehicle, build-
ing, fence, vegetation, and pole class. The ground grid set
contains most of the road, parking, sidewalk, other-ground,
and terrain class. The bicycle class here is mostly classi-
fied into large cluster sets mainly because in the real world,
the still bicycles are often parked together in a group or laid
around other structures. Another bicycle class ’bicyclist’
that is typically small in the real world is mostly classified
into small cluster sets.

2.2 Training results

This section shows the detailed training results. For Se-
manticKITTI [4], we set the train batch size to 10. We first
train the warm start data for 100 epochs, then finetune the
model for 30 epochs for each iteration. For nuScenes [7],

we set the train batch size to 30. The warm start data is first
trained for 200 epochs and then finetuned for 150 epochs
for each iteration.

Methods Init (1%) 2% 3% 4% 5%
RAND 48.8 52.1 53.6 55.6 57.2
MAR 48.8 49.4 50.0 48.7 49.3
CONF 48.8 48.0 48.9 50.4 51.6
ENT 48.8 49.6 48.5 50.1 49.9

CSET 48.8 53.1 52.9 53.2 52.6
SEGMENT 48.8 49.8 48.3 49.1 48.2

ReDAL 48.8 51.3 54.0 58.6 58.1
LiDAL 48.8 57.1 58.7 59.3 59.5
BaSAL 56.1 58.6 59.5 61.6 62.1

Table 5. Mean intersection over union scores on SemanticKITTI
[4] validation set with SPVCNN [50].

Methods Init (1%) 2% 3% 4% 5%
RAND 47.3 51.4 55.8 57.7 56.6
MAR 47.3 50.2 49.8 49.4 50.1
CONF 47.3 48.5 48.5 51.4 51.7
ENT 47.3 49.9 48.8 49.0 50.2

CSET 47.3 52.6 55.9 56.4 57.6
SEGMENT 47.3 49.8 48.8 49.5 47.7

ReDAL 47.3 56.7 58.7 59.5 60.1
LiDAL 47.3 51.4 55.8 57.7 56.6
BaSAL 55.6 58.5 60.3 60.8 61.3

Table 6. Mean intersection over union scores on SemanticKITTI
[4] validation set with MinkowskiNet [10].



Methods Init (1%) 2% 3% 4% 5%
RAND 51.8 58.4 60.5 60.6 63.2
MAR 51.8 55.2 56.4 57.0 57.7
CONF 51.8 55.1 54.9 55.4 56.0
ENT 51.8 55.4 56.7 56.6 57.2

CSET 51.8 59.4 62.3 62.9 63.0
SEGMENT 51.8 55.5 56.1 55.0 57.8

ReDAL 51.8 54.3 57.0 57.2 58.3
LiDAL 51.8 60.8 65.6 67.6 68.2
BaSAL 59.2 63.6 66.7 68.2 68.5

Table 7. Mean intersection over union scores on nuScenes [7] val-
idation set with SPVCNN [50].

Methods Init (1%) 2% 3% 4% 5%
RAND 49.7 57.9 60.5 61.8 61.7
MAR 49.7 53.9 55.0 56.7 59.1
CONF 49.7 54.4 55.7 56.8 55.5
ENT 49.7 54.9 56.4 57.2 57.6

CSET 49.7 58.5 62.0 63.2 63.6
SEGMENT 49.7 54.8 55.3 56.5 58.5

ReDAL 49.7 54.5 53.9 56.7 57.2
LiDAL 49.7 62.3 64.7 66.5 67.0
BaSAL 56.7 64.2 65.8 67.0 67.4

Table 8. Mean intersection over union scores on nuScenes [7] val-
idation set with MinkowskiNet [10].


