
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Graph Neural Network
Accelerated Pressure
Poisson Equation
Solver
Master Thesis Aerospace Engineering

Justin Brusche

Graph Neural Network
Accelerated Pressure

Poisson Equation
Solver

Master Thesis Aerospace Engineering

by

Justin Brusche
Student Name Student Number

Justin Brusche 4772571

Instructor: Dr. Anh Khoa Doan

Project Duration: 3, 2024 - 2, 2025

Faculty: Faculty of Aerospace Engineering, Delft

Preface
I want to thank Anh Khoa for his support during my research. Especially the freedom I got to choose my own
path made the research rather enjoyable. Next to that, his help with writing the report made a huge difference.
I hope a future student will continue my work because the results are promising.

Justin Brusche
Delft, February 2025

i

Summary
Solving the incompressible Navier-Stokes equations is computationally heavy, with the pressure Poisson equation
being the most time-consuming step [35]. Iterative linear solvers are typically utilized to solve this equation.
Since most solvers are iterative and rely on an initial guess, an opportunity emerges to use machine learning
to improve this initial guess, such that fewer iterations are needed, consequently saving time. Research has
shown that convolutional neural network (CNN) U-nets perform well at solving the pressure Poisson equation
[14]. However, CNNs cannot handle unstructured meshes, which makes them incompatible with most CFD
meshes. Since graph neural networks (GNNs) are specifically designed to handle unstructured data, they form
a promising framework for solving the pressure Poisson equation on an unstructured mesh. Therefore, this
research aims to apply the working principles of CNN U-nets to graph neural networks to establish a machine
learning model that accelerates fluid simulations.

A novel graph neural network is designed that employs a custom convolution algorithm, message-passing
scheme, and pooling algorithm to maximize its performance. First, a convolution algorithm is proposed that
uses interpolation to make a discrete (3x3) CNN kernel continuous. Then, instead of directly computing the
kernel weight from the function, an integral over specified bounds is applied to account for the geometrical
inhomogeneous distribution of the source nodes. The integral is embedded as the weighted sum of a vector
containing learnable parameters, computed through a dot product with the edge attribute vectors. Next to the
convolution operation, a message-passing scheme is designed that is compatible with the data format of the
finite volume method whilst performing well in terms of the distance information can travel over the mesh. To
conclude the design of the model, a custom pooling algorithm is designed that is equivalent to average pooling
in CNNs.

A normalization procedure is established that ensures consistency in the model’s magnitude. Notably, the
ground truth output pressure is normalized using its standard deviation, which is unknown. To estimate this
normalization factor, a correction model is established that uses the same convolution algorithm but employs
an architecture inspired by classification CNNs.

The model is trained and evaluated on a variety of datasets. The first dataset includes 21 meshes with
samples generated using a type of gradient noise called Perlin noise. The samples in this dataset represent
flow regimes ranging from laminar flow to isotropic turbulence, resulting in a highly diverse set of samples.
The other four datasets involve URANS CFD simulations with increasing levels of complexity. The model’s
performance is evaluated based on the reduction in number of iterations required to reach convergence. This is
done for both the Preconditioned Conjugate Gradient (PCG) solver and the multigrid Geometric Agglomerated
Algebraic Multigrid (GAMG) solver.

Across the various tests conducted, the number of iterations needed to reach convergence is reduced by
approximately 40%, with the PCG solver performing slightly better than the GAMG solver. However, the PCG
solver yields less consistent results, performing very well at samples that closely align with the training data,
leading to a reduction of up to 60%. However, its performance drops significantly when tested on data that does
not closely resemble the training data, sometimes even increasing the number of iterations. The GAMG solver
demonstrates consistent performance, with almost no difference between the training and evaluation data.

In terms of generalization, the model demonstrates promising results, achieving similar performance across
datasets with varying levels of complexity. This is interesting as the root mean square error differs significantly
across the datasets and individual samples. This suggests that there is no direct relationship between the
reduction in the number of iterations and the accuracy of the prediction. Furthermore, the model performs
well on unseen meshes, showing that it can handle the unstructured nature of the meshes used throughout
this research. This demonstrates the model’s ability to be trained on a diverse dataset, after which it can be
applied to unseen cases.

ii

Contents

Preface i

Summary ii

List of tables vi

List of figures vii

Nomenclature x

1 Introduction 1

2 Theoretical background 2
2.1 Pressure Poisson Equation . 2

2.1.1 Incompressible Navier-Stokes Equations . 2
2.1.2 Derivation of the Pressure Poisson Equation . 2

2.2 Application of the Poisson equation . 3
2.2.1 Finite Volume Method . 3
2.2.2 Discretization schemes . 4
2.2.3 Pressure-velocity coupling in OpenFOAM . 4
2.2.4 Linear Solvers . 6
2.2.5 Linearized Pressure Poisson Equation . 6

2.3 Machine Learning for Numerical Simulations . 7
2.3.1 Physics informed neural networks . 7
2.3.2 Convolutional neural networks . 8

2.4 Graph Neural Networks . 10
2.4.1 Introduction to Graph Neural Network . 10
2.4.2 Graph convolutional neural networks . 11
2.4.3 MeshGraphNets . 11
2.4.4 Finite Volume Graph Network . 12
2.4.5 Continuous kernel GNNs . 13
2.4.6 Graph pooling . 14

3 Problem statement 15

4 Design process 16
4.1 CFD procedure . 16
4.2 General design decisions . 17
4.3 Inputs . 18

4.3.1 Inputs to enhance performance . 19
4.3.2 Inputs for CFD cases . 20

4.4 Aggregation scheme . 20
4.5 Pooling . 22

4.5.1 Mesh coarsening . 22
4.5.2 Pooling algorithm . 23

4.6 Convolution algorithm . 24
4.6.1 Proposed model . 25
4.6.2 Solution for irregular node spacing . 27

4.7 Normalization . 30
4.7.1 Normalization of the inputs . 30

iii

Contents iv

4.7.2 Normalization of the output pressure . 31
4.7.3 Pressure correction factor prediction . 32

4.8 Loss function . 33
4.8.1 Pressure field model . 33
4.8.2 Correction model . 34

4.9 Summary . 34

5 Test setup 35
5.1 Data acquisition . 35

5.1.1 CFD datasets . 35
5.1.2 Perlin noise dataset . 37

5.2 Training and Evaluation settings . 41
5.2.1 Training settings . 41
5.2.2 Evaluation settings . 42
5.2.3 Computational resources . 42

5.3 Evaluation Procedure . 43
5.3.1 Foundational parameters . 43
5.3.2 CFD test cases . 45
5.3.3 Practical case studies . 46
5.3.4 Additional tests . 48

5.4 Summary . 49

6 Results 50
6.1 Foundational parameters . 50

6.1.1 Learning rate . 50
6.1.2 Loss function . 51
6.1.3 Kernel complexity . 51

6.2 Number of iterations versus flow characteristics . 52
6.3 Performance on Perlin noise . 53

6.3.1 Performance per flow regime . 54
6.3.2 Performance on training versus evaluation data . 54

6.4 CFD Test cases . 55
6.4.1 Cylinder baseline step . 56
6.4.2 The four-step CFD evaluation procedure . 57
6.4.3 Performance on training versus evaluation data . 59
6.4.4 Performance variability . 60
6.4.5 Time saving . 61

6.5 Practical case study . 62
6.5.1 Time cut-off . 62
6.5.2 Varying number of train cases . 64

6.6 Additional tests . 66
6.6.1 Tolerance . 66
6.6.2 Generalization . 68

6.7 Key findings . 69

7 Conclusion 71

8 Recommendations 74

References 77

A Additional Analysis 80
A.1 Perlin noise performance . 80
A.2 CFD Performance . 80

A.2.1 Performance per flow regime . 81
A.2.2 Performance stagnation . 82
A.2.3 Magnitude prediction . 83

Contents v

B Sample visualization 84
B.1 Perlin Noise . 84
B.2 CFD data . 86

List of tables

4-1 Number of learnable parameters per model size. The size refers to the number of channels in the
refined convolution blocks. 18

4-2 Essential model inputs . 19
4-3 Adjusted input configuration incorporating Dirichlet boundary conditions. 19
4-4 Final input configuration that is boundary-aware and takes Dirichlet boundary conditions into

account. 20
4-5 Simplified input configuration for CFD applications, excluding redundant Dirichlet boundary

condition values to enhance efficiency. 20
4-6 Inputs of the network for time-independent problems. 30
4-7 Model inputs after normalization. 32

5-1 Mesh parameters for the domain and box. 36
5-2 Boundary conditions for the test cases. 37
5-3 Hyperparameter configurations used to generate the Perlin noise fields 38
5-4 Parameters of the meshes without object. 40
5-5 Bounds for the parameters corresponding to the meshes with an object. 40
5-6 Settings for the Scheduler. 42
5-7 Batch size versus the model size . 42
5-8 Default loss function. 43
5-9 Default kernel complexity. 43
5-10 The different loss function configurations will be evaluated. 44
5-11 Kernel complexity configurations with varying first and last steps. 44
5-12 Kernel complexity configurations with varying complexities for the remaining message-passing

steps. 45
5-13 Summary of relevant information for the four-step CFD evaluation procedure. 46
5-14 Setup of the test that Varies the ratio of training and test cases. 48

6-1 Performance of the different loss function configurations. 51
6-2 Performance of the kernel complexity options involving variations in the first and last step. . . 52
6-3 Performance of the kernel complexity options involving the "face-point" and "point-point" steps. 52
6-4 Reference number of PCG and GAMG iterations for each step 58
6-5 Results of the Generalizability test. 68
6-6 Results of the Generalizability test. 69
6-7 The selected loss function. 69
6-8 The selected kernel complexity. 69

7-1 Model inputs for CFD applications. 71
7-2 Model inputs after normalization. 72

vi

List of figures

2-1 Conventional neural networks versus physics-informed neural networks [21]. 7
2-2 Convolution operation of convolutional neural networks [25]. 8
2-3 Monoscale convolutional neural network [14]. 8
2-4 Max-pooling operation in convolutional neural networks [41]. 9
2-5 The U-net [14]. 9
2-6 Illustration of a graph neural network [10]. 10
2-7 Architecture of MeshGraphNets [30]. 11
2-8 Aggregation scheme of FVGN. [19] . 13
2-9 Edge contraction mechanism [7]. 14

4-1 Information propagation distance of the U-net. The source node corresponds to the red dot. The
dark blue color corresponds to the regions that do not receive any information from the source cell. 17

4-2 The designed U-net with the number of channels per layer for each of the four model sizes. . . 18
4-3 Propagation distance of information after three steps for different aggregation schemes. 21
4-4 Proposed aggregation scheme. 21
4-5 The main mesh with its pooled version at each pooling level. 23
4-6 The primal (gray) and dual mesh (blue) of a refined and coarse mesh. 24
4-7 CNN kernel. 25
4-8 Discrete CNN kernel. 26
4-9 Interpolated CNN kernel. 26
4-10 The pooled mesh at the coarsest level. Zoomed in on the bad-quality cells around the object. . 27
4-11 Message-passing scheme from the cell centers to the cell faces. 28
4-12 Message-passing scheme from the cell faces to the mesh points, including indicators of the integral

bounds (the green lines). 28
4-13 Message-passing scheme between the mesh points, including indicators of the integral bounds

(the green lines). 28
4-14 Illustration of a convolution integral from α1 = 7π

12 till α2 = 11π
12 29

4-15 Illustration of the influence of the distance between the two integral bounds on the attention
weight. 30

4-16 Weight function normalized with regards to the block width, illustrating how the function
averages out with increasing width. 30

4-17 The architecture of the pressure correction model. 33

5-1 Mesh bounds illustrated using GMSH [12] [31]. 36
5-2 Perlin noise field. 38
5-3 Perlin noise fields for different hyperparameter configurations. 39
5-4 The 21 meshes used for the Perlin noise dataset. 41
5-5 Pressure field after 100 seconds for the cylinder baseline step [2]. 46
5-6 Pressure fields after x seconds for the cylinder baseline step [2]. 47
5-7 Illustration of the training and testing angle of attacks for each level. 48

6-1 Training log for the learning rate options. 51
6-2 The number of iterations by the PCG solver as a function of the number of iterations required

by the GAMG solver. 53
6-3 Perlin noise field corresponding to a low number of iterations required to reach convergence. . . 53
6-4 Perlin noise field corresponding to many iterations required to reach convergence. 53

vii

List of figures viii

6-5 Fractional reduction of the number of iterations as a function of the reference number of iterations
for the Perlin noise dataset test case. The blue bars indicate the average value, and the red bars
indicate the corresponding standard deviations. The numbers at the bottom of the bars refer to
the number of data points per bar. 54

6-6 Comparison of the fractional reduction in the number of iterations required for the PCG and
GAMG solvers on the Perlin noise dataset. The blue bars correspond to the performance of
training data, while the orange bars represent the performance on evaluation data. 55

6-7 Reduction in the number of iterations for the PCG and GAMG solvers as a function of the
pressure field model size for the cylinder baseline step. The envelopes represent the performance
for different correction model sizes and the ground truth pressure correction factor. 57

6-8 Fractional reduction in iterations for the PCG and GAMG solvers as a function of the pressure
field model size for the cylinder baseline step. The envelopes represent the performance for
different correction model sizes and the ground truth pressure correction factor. 57

6-9 performance of the four-step CFD evaluation procedure for the PCG and GAMG solvers, as a
function of the pressure field model size for the cylinder baseline step. For each step, the ground
truth correction factor and a correction model of size 8 are utilized. 59

6-10 Fractional reduction in the number of iterations for the PCG and GAMG across the training
and evaluation simulations. A pressure field model of size 16 is used, while for the correction
factor, the ground truth value and a correction model of size 8 are utilized. 60

6-11 Scatter plots showing the reduction in the number of iterations as a function of the reference
number of iterations for the cylinder mesh impact and airfoil AoA steps. The PCG solver is
used for this. Each color represents an evaluation simulation. 61

6-12 The net fractional reduction in processing time for the PCG and GAMG solvers as a function
of the pressure field model size for the cylinder baseline step. The envelopes represent the
performance for different correction model sizes and the ground truth pressure correction factor. 62

6-13 Fractional reduction in the number of iterations as a function of the cut-off time for the GAMG
and PCG solver. For this, the simulation of the cylinder baseline step is used. For the correction
factor, the ground truth value and a correction model of size 8 are utilized. 63

6-14 The reduction in the number of iterations required to reach convergence for the PCG and GAMG
solver throughout the simulation of the cylinder baseline step. The different colors indicate the
cut-off times used for the training data of the models. For the correction factor, the ground
truth value and a correction model of size 8 are utilized. 64

6-15 The Reduction in the number of iterations for the PCG and GAMG solvers as a function of the
angle of attack for the test involving a varying number of training angles of attack. The colors
indicate the simulation configuration. The dotted data points correspond to the test cases, while
the data points without dots correspond to training data. For the correction factor, the ground
truth value and a correction model of size 8 are utilized. 65

6-16 The fractional reduction for the PCG and GAMG solvers as a function of the angle of attack
for the test involving a varying number of training angles of attack. The colors indicate the
simulation configuration. The dotted data points correspond to the test cases, while the data
points without dots correspond to training data. For the correction factor, the ground truth
value and a correction model of size 8 are utilized. 65

6-17 The reduction in the number of iterations as a function of the target tolerance of the linear
solvers involving the test case of the cylinder mesh impact step. For the correction factor, the
ground truth value and a correction model of size 8 are utilized. 66

6-18 The fractional reduction in the number of iterations as a function of the target tolerance of the
linear solvers involving the test case of the cylinder mesh impact step. For the correction factor,
the ground truth value and a correction model of size 8 are utilized. 67

6-19 The reduction in the number of iterations as a function of the target tolerance of the linear
solvers involving the test case of the Perlin noise dataset. 67

6-20 The fractional reduction in the number of iterations as a function of the target tolerance of the
linear solvers involving the test case of the Perlin noise dataset. 68

8-1 Example architecture for a merged pressure field and correction model. 75

List of figures ix

A-1 Scatter plot showing the reduction in the number of iterations as a function of the reference
number of iterations for the PCG solver on the Perlin noise dataset. Each color represents an
evaluation simulation. 80

A-2 Fractional reduction of the number of iterations as a function of the reference number of iterations
for the cylinder mesh impact step. The blue bars indicate the average value, and the red bars
indicate the corresponding standard deviations. The numbers at the bottom of the bars refer to
the number of data points per bar. 81

A-3 Fractional reduction of the number of iterations as a function of the reference number of iterations
for the airfoil AoA step. The blue bars indicate the average value, and the red bars indicate the
corresponding standard deviations. The numbers at the bottom of the bars refer to the number
of data points per bar. 82

A-4 Number of iterations saved by the linear solvers for larger models. The envelopes represent the
performance for different correction model sizes and the ground truth pressure correction factor. 82

A-5 The performance of the correction models for the CFD test cases. 83

B-1 Perlin noise sample. Reference number of iterations: PCG = 103, GAMG = 4. Number of
iterations after applying the model: PCG = 32, GAMG = 2. 84

B-2 Perlin noise sample. Reference number of iterations: PCG = 196, GAMG = 7. Number of
iterations after applying the model: PCG = 122, GAMG = 4. 85

B-3 Perlin noise sample. Reference number of iterations: PCG = 40, GAMG = 4. Number of
iterations after applying the model: PCG = 22, GAMG = 2. 85

B-4 Sample involving flow around a cylinder at Re=1000. Reference number of iterations: PCG =
17, GAMG = 3. Number of iterations after applying the model: PCG = 3, GAMG = 1. 86

B-5 Sample involving the NACA 2412 airfoil at an angle of attack of 10 degrees. Reference number
of iterations: PCG = 10, GAMG = 7. Number of iterations after applying the model: PCG = 2,
GAMG = 1. 86

B-6 Sample involving the NACA 2412 airfoil at an angle of attack of 10 degrees. Reference number
of iterations: PCG = 89, GAMG = 52. Number of iterations after applying the model: PCG =
7, GAMG = 5. 87

Nomenclature

Abbreviations

Abbreviation Definition

ABS Absolute Value
ADAM Adaptive Moment Estimation
AoA Angle of Attack
AVG Average
CFD Computational Fluid Dynamics
CNN Convolutional Neural Network
DNS Direct Numerical Simulation
FVM Finite Volume Method
FVGN Finite Volume Graph Network
GAMG Geometric Agglomerated Algebraic Multigrid
GANN Graph Attentional Neural Network
GCN Graph Convolutional Network
GNN Graph Neural Network
GPU Graphics Processing Unit
LES Large Eddy Simulation
MLP Multi-Layer Perceptron
NN Neural Network
PDE Partial Differential Equation
PCG Preconditioned Conjugate Gradient
PINN Physics-Informed Neural Network
Re Reynolds Number
ReLU Rectified Linear Unit
RMSE Root Mean Square Error
STD Standard Deviation
URANS Unsteady Reynolds-Averaged Navier-Stokes
VRAM Video Random Access Memory

Symbols

Symbol Definition

A Coefficient matrix
Aadj Adjacency matrix for GCNs
ABC Coefficients corresponding to the Dirichlet boundary

terms

x

List of figures xi

Symbol Definition

ABCnorm Normalized coefficients corresponding to the Dirichlet
boundary terms

Anorm Normalized coefficient matrix
b Source term
b(l) Bias vector at layer l of a graph convolutional network
best Estimated source term
bnorm Normalized source term
D Degree matrix
d Distance between cell centers
e Edge attributes
f External force
fA Normalization factor for the A matrix
fb Normalization factor for b

fnetto Net fractional reduction in processing time
fp Pressure correction factor
fp Ground truth correction factor
fplog Logarithmic output of the correction model
fpmodel Predicted correction factor from the correction model
H Explicit term of the momentum equation
HF Feature vector of GCN
imodel Reduction in the number of iterations after the model

is applied
iref Reference number of iterations
k Turbulent kinetic energy
L Total loss
Lcorrection Loss function for the correction model
LFVM Finite volume method-specific loss term
LP Supervised loss term
LPINN Physics-informed loss term
M Coefficient matrix for momentum equation
Mdiagonal Diagonal part of M matrix
n Alignment vector
p Pressure
pmodel Model output pressure
pnorm Normalized pressure
PDirichlet Dirichlet boundary contribution
PDirichletIndicator Indicator for Dirichlet boundary faces
PNeumannIndicator Indicator for Neumann boundary faces
S Face area
t Time
titer Processing time of one iteration by the linear solver
tmodel Processing time of the neural network
U(a, b) Uniform distribution between a and b

u Velocity
V Cell volume

List of figures xii

Symbol Definition

W Weight matrix of GCN
x Vector of unknowns
ϕ Flux through cell faces
σ Activation function
θ Orientation between nodes angle
θstep Angular step between two consecutive data points
∇ Gradient
∇2 Laplacian
ν Kinematic viscosity
ω Specific dissipation rate
τ Diffusion term

Subscript Meaning

i, j Cell indices
x, y, z Spatial directions
f Implies that data is stored at the cell faces
l Neural network layer

1
Introduction

With the rising demand for more sustainable transportation, everlasting efforts are required to make aircraft
and cars more aerodynamically efficient. To achieve this, computationally heavy fluid simulations are utilized to
solve the Navier-Stokes equations and gain insight into the governing flow. However, significant simplifications
must made for these simulations as current computers lack the computational power to compute the exact
solution [38]. Since these simplifications result in less accurate outputs, there is a demand for more efficient
methods such that fewer simplifications are required, and more accurate results can be generated. The rise of
machine learning raises the question of whether it can be applied to solve the Navier-Stokes equations more
efficiently. This research focuses on the incompressible navier-stokes equations used for low-speed simulations,
such as on cars.

Research has shown that completely replacing the original solver with a machine learning model signifi-
cantly reduces the processing time [30]. However, a considerable drawback of this approach is the low reliability
of the results. For traditional solvers, the margins of uncertainty and the areas where the solver does not
perform well are well understood. For machine learning models, this is not the case. Here, no margin of
uncertainty is known, and if the test data does not match the training data, the outputs may be far from the
correct result.

This research uses an approach that does not affect the model’s accuracy. It focuses on the solver’s most
time-consuming step: the pressure Poisson equation, which is depicted in Equation 1-1 [35]. This step involves
solving the pressure field. To do so, iterative linear solvers are typically utilized. These solvers refine an
initial guess through looping until convergence is achieved. However, one must understand that the number of
iterations required depends heavily on the accuracy of the initial guess. The proposed method utilizes this idea.
A machine learning model will be designed to predict the solution. Then, the model output will serve as the
initial guess of the linear solver, thereby reducing the number of iterations. This way, solving the Navier-Stokes
equations can be accelerated while the accuracy of the solution is preserved.

∇ · (τ∇p) = b (1-1)

To establish the machine learning model, graph neural networks will be used due to their compatibility with
unstructured data, like unstructured meshes [43]. For the message-passing algorithm, the algorithm used
by convolutional neural networks (CNNs) serves as inspiration. This is because research has demonstrated
promising results in solving the pressure Poisson equation for these networks [14]. CNNs utilize small discrete
kernels that move over an orthogonal grid and use edge detection to process information. This research explores
how this mechanism can be adjusted for unstructured data. For simplicity, the focus lies on 2D cases with
unstructured triangular meshes.

The report is structured as follows. Chapter 2 provides relevant background information required to un-
derstand this research. The research question and sub-questions are presented in Chapter 3. Then, Chapter 4
explains the complete design process of the model. After this, Chapter 5 details the test setup used to evaluate
the model. Then, Chapter 6 presents the results. Chapter 7 provides the conclusion and addresses the research
questions. Finally, Chapter 8 offers recommendations for future research.

1

2
Theoretical background

This chapter provides relevant theoretical background required to understand this research. In Section 2.1, the
pressure Poisson equation is derived, after which its implementation in OpenFOAM is discussed in Section 2.2.
Then, in Section 2.3, different machine learning theories are discussed, including physics-informed neural
networks and convolutional neural networks. Finally, Section 2.4 treats graph neural networks.

2.1 Pressure Poisson Equation

This section focuses on the equations central to this research. First, the incompressible Navier-Stokes equations
are discussed, followed by the derivation of the pressure Poisson equation.

2.1.1 Incompressible Navier-Stokes Equations

To simulate incompressible flow, fluid solvers utilize the incompressible Navier-Stokes equations [15]. This
system of equations consists of two parts: the momentum equation and the continuity equation. The momentum
equation in differential form is given in Equation 2-1 [34]. The left side of this equation describes the acceleration
and advection term, while the right side represents the forces acting on the continuum. Here, ρ is the density,
ν is the kinetic viscosity, and f corresponds to the term representing external forces such as gravity. Note that
the momentum equation is defined along all axes. Therefore, in the case of a 3D problem, three momentum
equations are established. Equation 2-2 is the continuity equation.

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+ f (2-1)

∇ · u = 0 (2-2)

Since the number of velocity components equals the number of momentum equations and the continuity
equation is present to account for one more variable, p, the number of unknowns equals the number of equations.
Therefore, a solution can be calculated in the case of well-defined boundary conditions and an initial condition.
However, solving the incompressible Navier-Stokes equations is not as straightforward as one may think.
The fact that no explicit expression for the pressure is present makes solving the system of equations more
challenging. The gas law can be utilized for compressible flow, but this equation does not hold due to the
assumption of incompressible flow. Therefore, a workaround employing the Pressure Poisson Equation is used.

2.1.2 Derivation of the Pressure Poisson Equation

The pressure Poisson equation can be derived from the momentum equation equation [16]. The first step of the
derivation is to take the divergence at both sides of the momentum equation:

∇ ·
(
∂u

∂t
+ (u · ∇)u

)
= ∇ ·

(
−1

ρ
∇p+ ν∇2u+ f

)
(2-3)

2

2.2. Application of the Poisson equation 3

Now, breaking down the equation gives:

∂

∂t
(∇ · u) +∇ · ((u · ∇)u) = −1

ρ
∇2p+ ν∇ · ∇2u+∇ · f (2-4)

Given that the continuity equation prescribes that the divergence of the velocity field is zero, it follows that
the time derivative of this divergence is zero as well (∂

∂t (∇ · u) = 0). Furthermore, since the divergence of the
Laplacian of a divergence-free field is zero (∇ · ∇2u = 0), the diffusion term also drops out. Now, the equation
simplifies to:

∇ · ((u · ∇)u) = −1

ρ
∇2p+∇ · f (2-5)

Rewriting the equation gives:

∇2p = −ρ∇ · ((u · ∇)u) + ρ∇ · f (2-6)

Finally, since f typically represents gravity, which can be assumed to be divergence-free, this term can also be
dropped. This simplification yields the final form of the pressure Poisson equation:

∇2p = −ρ∇ · ((u · ∇)u) (2-7)

Now, an explicit equation for the Laplacian of the pressure is defined. By applying the boundary conditions,
the pressure can be calculated up to a constant term or exactly, based on those conditions.

2.2 Application of the Poisson equation

To perform CFD simulations, a software called OpenFOAM will be utilized throughout this research [27].
This section discusses multiple computational methods of interest that OpenFOAM utilizes. First, the finite
volume method is explained, after which discretization techniques used to apply this method will be discussed.
Next, the implementation of the pressure Poisson equation in OpenFOAM, including data formatting, will be
explained. Finally, linear solvers and the linearized pressure Poisson equation are examined in more detail.

2.2.1 Finite Volume Method

To solve the Navier-Stokes equations, OpenFOAM employs the finite volume method [15]. This method takes
the volume integral of the governing partial differential equation to determine the solution. This is achieved by
discretizing the domain into cells using a mesh, followed by applying the integral to each cell. To do this, the
integral form of the momentum equation should be defined. Looking at the vector notation of the Navier-Stokes
equations (Equation 2-1 and Equation 2-2), the integral form can be derived by taking the volume integral over
each term. The momentum equation in integral form is depicted in Equation 2-8, while Equation 2-9 shows the
continuity equation in integral form [9].∫

V

∂u

∂t
dV +

∫
V

(u · ∇)u dV = −1

ρ

∫
V

∇p dV + ν

∫
V

∇2u dV +

∫
V

f dV (2-8)

∫
V

∇ · u dV = 0 (2-9)

To understand how this equation is solved for each cell, one must look at the underlying mesh architecture.
The variables are stored at the cell centers, and interpolation schemes are employed to compute the flow
characteristics across the whole cell. Given that volume integrals often require either significant simplifications
or become computationally expensive, Gauss’s theorem (Equation 2-10) is commonly utilized to simplify these
integrals [3]. Using this theorem, volume integrals can be reduced to surface integrals if a divergence operation
is present in the governing term. In essence, the Gauss theorem states that the total flux of a vector field
across a closed surface equals the integral of the divergence of the field throughout the volume enclosed by that
surface. Note that n corresponds to a unit vector normal to the cell face.∫

V

(∇ · F) dV =

∫
S

(F · n) dS (2-10)

2.2. Application of the Poisson equation 4

By applying Gauss’s theorem, the advection, pressure gradient, and diffusion terms can be simplified to a
surface integral. Equation 2-11 shows the momentum equation in this more straightforward form. Next to this,
the continuity equation can also be rewritten to a surface integral as presented in Equation 2-12.

d

dt

∫
V

u dV +

∫
S

(u · n)u dS = −1

ρ

∫
S

pn dS + ν

∫
S

∇u · n dS +

∫
V

f dV (2-11)

∫
S

u · n dS = 0 (2-12)

2.2.2 Discretization schemes

Flow solvers do not solve the integral form of the Navier-Stokes equations analytically. Instead, discretization
is applied. By linearizing the equations at each time step, the problem can be represented in matrix form, as
shown in Equation 2-13. Here, A is a coefficients matrix, x represents the vector of unknowns, and b is the
source terms. The discretization process involves treating each term in the momentum equation independently,
followed by summing them to form the final matrix system.

Ax = b (2-13)

Before applying discretization, one should be familiar with the discretization scheme options. These schemes
can be divided into time and spatial schemes, which treat the time and spatial derivatives, respectively. The
two approaches differ regarding the data available to compute a gradient. Time derivative schemes rely on
data from previous time steps, which is already available, but they cannot use future data. In contrast, spatial
derivative schemes utilize data from all spatial directions. The integrals to be solved can be categorized into
two types: volume integrals and surface integrals. Since performing a volume integral can be quite complex
and computationally heavy, these integrals are commonly approximated by the product of the cell volume and
the value at the cell center, as depicted in Equation 2-14. Surface integrals are simplified as well. The values at
the cell centers are interpolated to all cell faces by employing a specified interpolation scheme. Then, each
interpolated value is multiplied by the corresponding face area and summed to yield the solution of the surface
integral (Equation 2-15) [22]. ∫

V

u dV ≈ ucell center · Vcell (2-14)

∫
S

u · n dS ≈
N∑
i=1

(ui · ni) | Si | (2-15)

2.2.3 Pressure-velocity coupling in OpenFOAM

In Section 2.1.2, the pressure Poisson equation was derived analytically. CFD solvers usually do not solve
equations analytically but represent the momentum equation as a matrix system. Consequently, the pressure-
velocity coupling method that CFD solvers employ differs slightly from the analytical approach. Typically, two
steps are involved: the predictor and corrector step [15]. During the predictor step, an initial prediction of the
velocity field is made while assuming a specific pressure field, often the state of the previous iteration. Then, in
the corrector step, the pressure field is determined under the constraint that the velocity field should satisfy
the continuity equation. Both steps and the mathematics involved are described below.

The momentum equation is discretized using the finite volume method, yielding the matrix system depicted
in Equation 2-16 [28]. Here, M is a coefficient matrix, u the velocity vector, b the source term, V a vector
containing the cell volumes, and ∇p the pressure gradient. An interesting remark about the dimensions of the
matrices and vectors used in OpenFOAM should be made. In the case of a three-dimensional problem, there
are 3n unknown velocity components, where n corresponds to the number of cells. Therefore, one would expect
that the M matrix has shape (3n × 3n). However, this is not the case. OpenFOAM splits the momentum
equation across the three dimensions, Leaving us with three M matrices of shape (n× n). In addition, the
source and pressure gradient terms are represented as matrices with dimensions (n× 3). As a result, the matrix
system can be written in more detail, as shown in Equation 2-17 [27]. This setup is designed to optimize

2.2. Application of the Poisson equation 5

memory usage. Due to the discretization method applied to the momentum equations, the three M matrices
have a similar structure and content. The obtained matrix systems are solved one after the other, with each M
matrix adjusted to the governing axis system to account for factors like boundary conditions. This way, only
one matrix system must be stored at a time, thereby saving memory.

Mu = −b−V∇p (2-16)

Mu =

Mxux

Myuy

Mzuz

 = −

bx

by

bz

−V

∇px

∇py

∇pz

 (2-17)

Equation 2-17 is solved using a linear solver that utilizes the pressure field from the previous iteration to
compute the uncorrected velocity. This is called the predictor step. To perform the corrector step, the velocity
term needs to be isolated. After this, the expression can be substituted into the continuity equation, yielding
the pressure Poisson equation. One could multiply both sides of the equation by M−1. However, computing the
inverse of the coefficient matrix is computationally expensive and should be avoided if possible. Therefore, a
workaround is used, which uses the principle that inverting a diagonal matrix is significantly less computationally
heavy than inverting M as a whole. This is done by splitting M[u] in an explicit and implicit term as stated in
Equation 2-18. Here, Mdiagonal represents the diagonal part of the "base" M matrix. Then, to compute Hi,
where i refers to each governing axis, Mdiagonal is subtracted from each Mi matrix, after which the matrix is
multiplied with the velocity field obtained from the predictor step. This operation is shown in Equation 2-19
for clarity. Mxux

Myuy

Mzuz

 = Mdiagonal

ux

uy

uz

−
Hx

Hy

Hz

 (2-18)

Hx = (Mx −Mdiagonal)u
predictor
x (2-19)

By substituting Equation 2-18 in Equation 2-17, Equation 2-20 is obtained. Now, the velocity vector can be
isolated by multiplying both sides of the equation with the inverse of Mdiagonal, denoted as τ . Since Mdiagonal

is a diagonal matrix, its inverse is straightforward to compute, as shown in Equation 2-21. The final explicit
expression for the velocity field is depicted in Equation 2-22, which concludes the predictor step.

Mdiagonal

ux

uy

uz

 =

Hx

Hy

Hz

−
bx

by

bz

−V

∇px

∇py

∇pz

 (2-20)

Mdiagonal
−1 = τ =



1
M1,1

0 0 · · · 0

0 1
M2,2

0 · · · 0

0 0 1
M3,3

· · · 0
...

...
...

. . .
...

0 0 0 · · · 1
Mn,n


(2-21)

ux

uy

uz

 = τ


Hx

Hy

Hz

−
bx

by

bz


−Vτ

∇px

∇py

∇pz

 (2-22)

Now that an explicit expression for the velocity term is defined, the correct step can be applied to ensure that
the velocity field satisfies the continuity equation. This is achieved by substituting the expression of the velocity
field into the continuity equation. As discussed previously, since Gauss’ theorem is applied, the surface integral
over the cell faces is taken to compute the divergence of the velocity field. Therefore, an interpolation scheme
is employed to map Equation 2-22 onto the cell faces. The corresponding expression is shown in Equation 2-23.
Here, the subscript f refers to data stored on the cell faces.

2.2. Application of the Poisson equation 6

ux

uy

uz


f

=

τ


Hx

Hy

Hz

−
bx

by

bz





f

−V

τ

∇px

∇py

∇pz




f

(2-23)

The substitution of Equation 2-23 into the continuity equation, yields Equation 2-24. This equation can be
expressed in a matrix system, which can be solved to compute the pressure. After solving the matrix system,
the velocity field is corrected using Equation 2-23. This time, the velocity field satisfies the continuity equation.
However, one must note that the pressure is a function of H. This vector is computed using the velocity field
determined by the predictor step, which is outdated by now and does not hold for the continuity equation.
Therefore, H must be updated using the new pressure and velocity data. Consequently, a loop is introduced to
subsequently update H and the velocity and pressure fields until convergence is reached. Different algorithms
can be employed for these loops. However, because this research focuses on solving the pressure Poisson
equation itself, these algorithms are not explained in detail. [27]

∇ ·

V

τ

∇px∇py
∇pz




f

 = ∇ ·


τ


Hx

Hy

Hz

−
bx

by

bz





f

 (2-24)

2.2.4 Linear Solvers

Once the pressure Poisson equation in the form of a matrix system (Equation 2-25) is set up, a linear solver
is employed to solve it. Linear solvers can be divided into two categories: direct solvers and iterative solvers.
Direct solvers compute the exact solution directly. However, these solvers require a lot of memory and become
computationally inefficient when handling large matrices [1]. Therefore, iterative solvers are commonly used.
These solvers start with an initial guess of the solution, after which they adjust the solution until convergence
is reached. Iterative solvers do not produce the exact solution but assume convergence once the error becomes
smaller than a specified value. Since this project does not focus on the linear solvers themselves, details about
different solvers are not covered. However, to evaluate how well machine learning models perform in accelerating
the solution of the pressure Poisson equation. Since the number of iterations needed to reach convergence
corresponds to the processing time of the linear solver, the performance of a machine learning model could be
expressed in the reduction of these number of iterations. In literature, the Jacobi solver is often selected due to
its simplicity [14]. Faster but more complex solvers exist as well, such as multigrid solvers. These solvers first
solve the solution on a coarse grid, after which they iteratively compute it onto an increasingly finer mesh [27].
It is important to note that a good first guess for the Jacobi solver does not automatically mean that this first
guess also works well for a multigrid solver and vice versa. Therefore, to investigate if machine learning models
can be used to improve the first guess, one should examine the model on multiple types of solvers.

Ap = b (2-25)

2.2.5 Linearized Pressure Poisson Equation

Since the matrix system will serve as the input to the machine learning network that will predict the first guess
of the solution, it is important to examine it in more detail. The source term is defined by the right-hand side
of Equation 2-24 and is stated in Equation 2-26. The source term here is a vector of length n and prescribes a
specific value to each cell. Here, n represents the number of nodes.

b = ∇ ·


τ


Hx

Hy

Hz

−
bx

by

bz





f

 (2-26)

The coefficient matrix A is more interesting to analyze. When multiplied with a certain pressure vector,
this matrix computes the sum of the fluxes through the cell faces to determine the divergence at each cell.
Equation 2-27 gives the equation used to compute the inwards fluxes through the faces. Here, pj−pi

dij
represents

the spatial pressure gradient between the neighboring cell, pj, and the owner cell pi. dij denotes the spatial

2.3. Machine Learning for Numerical Simulations 7

distance between the two cell centers. The local flux per unit area of the pressure gradient is calculated by
multiplying this gradient with the alignment vector (ñij) of the cell face and the vector connecting the cell
centers. Finally, this value is multiplied by the face area, S, and the interpolated diffusion term τf . The fluxes
are computed and added by multiplying the pressure vector with the A matrix. Hence, the off-diagonal part of
the A matrix, corresponding to the neighboring cells, is computed using Equation 2-28. Note that the same
values will be subtracted from the matrix diagonal, which corresponds to the owner cell. Typically, the diagonal
corresponds to the negative sum of the off-diagonal elements of each row. However, this is not always the case,
as more advanced discretization schemes may operate differently [27].

ϕ = S · τf · ñij ·
pj − pi

dij
(2-27)

Aoff−diagonal = S · τf ·
ñij

dij
(2-28)

2.3 Machine Learning for Numerical Simulations

This section provides an overview of relevant information regarding various machine learning techniques
applicable to numerical simulations. First, physics-informed neural networks (PINNs) are discussed, followed
by an in-depth explanation of convolutional neural networks (CNNs).

2.3.1 Physics informed neural networks

When it comes to solving partial differential equations (PDEs) using machine learning, one must be aware of
physics-informed neural networks [32]. Instead of directly comparing the model output with the ground truth,
called supervised learning, the governing PDE is incorporated into the loss function. This way, the model
learns the underlying mechanics of the PDE. Figure 2-1 illustrates the difference between conventional neural
networks and PINNs. This research focused on training a model to reconstruct the oscillations of dynamic
systems [21]. An ordinary neural network is not trained on the PDE. Therefore, it lacks information on how to
predict the oscillation at future time instants. In contrast, PINNs learn the underlying mechanics and can
accurately reconstruct the oscillation.

Figure 2-1 Conventional neural networks versus physics-informed neural networks [21].

To explain how the loss function of a PINN can be defined, let us consider the pressure Poisson equation
(Equation 2-29). Ordinary neural networks apply a loss function as stated in Equation 2-30, where the prediction
is directly compared with ground truth pressure. In contrast, PINNs utilize the PDE to define the loss function.
To set up the loss function, all terms in the PDE are moved to one side. The obtained expression is equal to
zero. By substituting the predicted pressure in the equation, an offset can be calculated between the ground
truth and the prediction. Then, to prevent negative numbers, the result is squared to form the final loss
function as shown in Equation 2-31 [32].

∇ · (τ∇p) = b (2-29)

LP = ∥pmodel − pGT∥2 (2-30)

LPINN = ∥b−∇ · (τ∇pmodel)∥2 = ∥b−Apmodel∥2 (2-31)

2.3. Machine Learning for Numerical Simulations 8

2.3.2 Convolutional neural networks

Now, Convolutional Neural Networks (CNNs) will be explained. CNNs are a special type of network designed
to process data on orthogonal grids, such as images [41]. First, the key concept of CNNs will be discussed,
after which different model architectures will be examined.

2.3.2.1 Working principle

Convolutional Neural Networks are specifically designed to preserve the geometric properties of data, making
them well-suited for solving partial differential equations on structured grids. This is a significant advantage
compared to fully connected neural networks, which cannot directly process structured data. The conservation
of spatial information is attributed to the working principle of its message-passing scheme, which will now be
explained.

The input of each convolution layer consists of nc input channels, where a channel is essentially a 2D matrix of
arbitrary shape. The convolution operation slides a kernel, a learnable 3D matrix typically of shape (3,3,nc),
across the domain in its spatial dimensions. It is important to note that the depth of the kernel must match the
number of input layers in the channel. At every position on the grid, the dot product is applied with the local
content of the input layer. Then, a learnable bias is added to the output, after which an activation function is
applied. Typically, a ReLU function is used, which outputs zero for negative inputs and the input value itself
for non-negative inputs. Following this algorithm, a new 2D matrix is defined, which forms one output channel.
Various convolution operations can be applied in parallel to generate multiple output channels. Figure 2-2
illustrates the convolution operation for one input channel [26].

Figure 2-2 Convolution operation of convolutional neural networks [25].

CNNs operate through edge detection, where each kernel is designed to identify specific edges within the input
data. By placing multiple layers in series, the network can learn complex tasks such as image recognition or
solving partial differential equations. Figure 2-3 shows a CNN consisting of an input layer, eight hidden layers,
and one output layer. The network can process inputs, such as the source term of the Poisson equation, to
predict the solution of the PDE [26].

Figure 2-3 Monoscale convolutional neural network [14].

2.3. Machine Learning for Numerical Simulations 9

2.3.2.2 Pooling

In convolutional neural networks, pooling can be applied to decrease the dimensions of the field. This way,
information can travel over large distances without having to use a lot of hidden layers. Next to this, pooling
allows for capturing information across different spatial scales. Pooling is performed by sliding a small window
over a channel. The maximum value is selected at every position, as seen in Figure 2-4. This is called max
pooling. Another method, known as average pooling, computes the average value at each location. Note that
in the case of a (2x2) pooling kernel, each block of 4 cells is merged into one cell, effectively reducing the
dimensions of the field [26].

Figure 2-4 Max-pooling operation in convolutional neural networks [41].

2.3.2.3 Network architectures

The distance information can travel over the domain is limited for monoscale CNNs. In the case of a 3x3 kernel,
information can only travel nl cells, where nl is the number of layers in the network. Since the domain is
usually much larger than the number of layers, network architectures have been designed to pass information
more quickly over the domain.

First, looking at Figure 2-3, a monoscale architecture, where no pooling is applied, is shown with eight
hidden layers. Therefore, the complete analysis is performed at one spatial resolution. The relative simplicity
of this model is considered as an advantage. However, information cannot travel effectively over the mesh for
monoscale networks. This often leads to inaccurate results. The U-net, which is depicted in Figure 2-5, is a
network architecture that tackles this issue. This network is relatively complex and originates from research
on biomedical image segmentation [33]. Using the pooling algorithm described above, multiple spatial layers
are constructed to process information on different spatial scales. This enables information to travel larger
distances over the mesh than for the monoscale network. Since boundary conditions play a considerable role
when solving PDEs, it is important that information about the boundary conditions can travel sufficiently far
across the domain.

Figure 2-5 The U-net [14].

2.4. Graph Neural Networks 10

2.3.2.4 Performance

Illarramendi et al. [14] demonstrated that the U-net performs well at solving the pressure Poisson equation.
The model performed well at predicting the pressure field of viscid flows while it was trained on inviscid flow.
This implies good generalizability properties. Interesting results were observed for the hybrid case. In this
case, the output pressure of the network served as the input of a Jacobi linear solver. The hybrid system
turned out to be around 10 times faster than just using the Jacobi solver. The U-net’s performance in solving
the Pressure Poisson equation can be confirmed by looking at other research that addresses similar problems.
Cheng et al. [5] proposed to use U-nets to solve the 2D Poisson equation for electric field computations in
plasma fluid simulations. Overall, the research found a significant reduction in processing time compared to the
Jacobi solver. However, they also found that in the case of utilizing the hybrid method, the processing time can
significantly increase if low-frequency errors are present in the solution. In that case, many Jacobi iterations
are needed to compensate for this error. Low-frequency errors arise when the resolution of the solution domain
is increased. They also found that the U-net consumes much more memory than traditional linear solvers. This
could be another limitation when dealing with large meshes.

2.4 Graph Neural Networks

In this section, graph neural networks are treated. As discussed in the previous section, CNNs demonstrated
strong performance in predicting the solution of the pressure Poisson projection on a uniform Cartesian
mesh. However, the fact that CNNs cannot handle unstructured data, which most meshes require, limits the
practical application of CNNs. Therefore, it is essential to explore whether graph neural networks (GNNs),
designed to process unstructured data, can be used instead. First, graph convolutional neural networks will
be discussed. Then, the most widely used GNN framework for mesh-based applications, MeshGraphsNets,
will be discussed. After this, a custom GNN that is specifically designed for the finite volume method will be
examined. Subsequently, special types of GNNs whose convolution operation is equivalent to CNNs are treated.
Finally, Graph pooling will be discussed.

2.4.1 Introduction to Graph Neural Network

Graph neural networks consist of a number of nodes interconnected by edges. Then, a message-passing algorithm
is utilized to process the features of each subsequent layer, just as with CNNs. Figure 2-6 illustrates a simple
GNN. Here, the three graphs located in each hidden layer resemble the number of channels. Actually, only one
graph is present, with each node containing a so-called feature vector of length three. Moreover, GNNs can
also store information at their edges, which is called edge attributes. These attributes play an important role
during the message-passing step between connected nodes. Graph neural networks differ from each other by the
message-passing algorithms they employ. Next to this, one must be aware of the aggregation scheme. These
schemes define the order in which information is propagated over the graph. Each aggregation step consists of
a source, which is the origin of the feature vectors, and a target, which corresponds to the location to which
the vectors are aggregated and will be processed. For instance, the feature vectors can be aggregated from the
cell centers to another position on the mesh, such as the mesh points [43].

Figure 2-6 Illustration of a graph neural network [10].

2.4. Graph Neural Networks 11

2.4.2 Graph convolutional neural networks

Now, graph convolutional networks (GCNs) will be discussed. The message-passing algorithm of GCNs is
divided into two steps [18]. The first step involves aggregating the features from neighboring nodes to the
target node, where all the governing feature vectors are concatenated. Then, the average value per feature is
calculated, resulting in a vector with a length equal to the number of input channels. To finish the convolution
operation, Equation 2-32 is applied. In this equation, W(l) and b(l) are the weight matrix and bias vector,
respectively. Furthermore, HF represents the feature vector and A the adjacency matrix. Finally, D denotes
the degree matrix.

HF
(l) = σ

[
D− 1

2 (A+ I)D− 1
2HF

(l−1)W(l)
]

(2-32)

Evaluating this message-passing algorithm, it is important to note that it differs significantly from CNNs.
First, the geometric orientation, which serves as a critical foundation for CNNs, does not play any role in the
convolution algorithm in GCNs. Moreover, since GCNs compute an average across the input features, all source
nodes are treated with the same weight. This contrasts with CNNs, where the kernel values correspond to each
cell’s weights.

Chen et al. [4] proposed a GCN U-net to solve the pressure poison equation. They applied the hybrid
approach, where the model output served as input for the PCG linear solver. Evaluated on Kolmogorov flow at
different Reynolds numbers, the number of iterations required to reach convergence reduced between 10% and
70%.

2.4.3 MeshGraphNets

Now, the most widely used framework for mesh-based simulations will be discussed. Pfaff et al. [30] introduced
this framework, MeshGraphNets. The network consists of an encode-process-decode architecture as depicted in
Figure 2-7. This example involves a ball hitting a flag. The model learns how the flag reacted upon impact.
This network uses information about the current state to predict the state at the next time instant.

Figure 2-7 Architecture of MeshGraphNets [30].

The encoder of the model transforms the input mesh and current state into a multigraph G = (V,EM , EW).
Here, V represented the graph nodes, EM the edges between the nodes, and EW the edges between nodes in
the case of a Lagrangian system. MeshGraphNets stores its features at the nodes and edges. The nodes can
represent data such as temperature or pressure, while the edges provide information like the distance between
the connected nodes. In cases where the governing application, such as CFD simulations, stores data at the cell
centers, the input data must be interpolated and mapped onto the nodes.

Next, the processor consists of L identical message-passing layers. Note that MeshGraphNets is a monoscale
framework, so no pooling is applied. Therefore, a significant number of layers is required to pass information

2.4. Graph Neural Networks 12

over a sufficient distance over the graph. In each layer, three operations are performed. The first operation is
shown in Equation 2-33 and updates the Eulerian edge features based on the current edge features and the
node features of the connected nodes. Here, the function fM consists of an MLP with a residual connection to
pass information through. The second operation is similar to the first one but treats the Lagrangian edges
(Equation 2-34). Finally, the node features are updated using the up-to-date edge features and the current state
of the node features (Equation 2-35). In this step, the function fV also consists of an MLP with a residual
connection.

e
′M
ij ← fM

(
eMij ,vi,vj

)
(2-33)

e
′W
ij ← fW

(
eWij ,vi,vj

)
(2-34)

v
′

i ← fV

vi,
∑
j

e
′M
ij ,

∑
j

e
′W
ij

 (2-35)

The research established multiple test cases to evaluate the model’s performance. Interesting is the one that
solved the incompressible Navier-Stokes equations around an airfoil and cylinder. Here, the root mean square
error (RMSE) was compared to other models, including GCNs. MeshGraphNets outperformed the other
models significantly, achieving an RMSE approximately three times smaller than that of the GCNs. A side
note on the results is the fact that time-dependent problems are used as test cases. Therefore, low-frequency
spatial oscillations in the solution are unlikely. This implies that information does not need to propagate
over large distances across the graph. A monoscale architecture, such as MeshGraphNets, may struggle with
time-independent problems because information may not be able to propagate far enough. Moreover, it
is important to note that aggregation schemes propagating directly between the mesh points yield higher
information propagation distances, thereby reducing this issue [30].

2.4.4 Finite Volume Graph Network

For MeshGraphNets, embedding the data forms an obstacle since the finite volume method stores information
at the cell centers and the cell faces. Li et al. [19] proposed a graph neural network called Finite Volume
Graph Network (FVGN) that solves this issue. In their model, the features are stored at the cell center,
while information regarding the discretization is stored at the cell faces. By doing this, all information about
the governing problem is preserved and stored in the correct position on the mesh. FVGN also employs an
encode-processor-decode monoscale architecture, which is similar to MeshGraphNets’. As a result, the processor
consisted of multiple identical message-passing layers. However, the difference lies in the aggregation scheme.
Figure 2-8 shows the aggregation scheme utilized by FVGN from left to right. Here, the red dots correspond
to the source position, whereas the arrows point to the target position of the message-passing steps. First,
the edge attributes are mapped onto the mesh points, illustrated in Figure 2-8a, by taking the average of the
feature vectors of all connected edges (Equation 2-36). Next, the feature vectors at the mesh points are mapped
onto the cell centers, as shown in (Figure 2-8b). For this, Equation 2-37 is applied to update the cell attributes
by passing the mapped data and the current state through an MLP. Finally, the edge attributes are updated by
passing its current state and the cell attributes of the neighboring cells through another MLP (Equation 2-38).
The corresponding message-passing scheme is illustrated in Figure 2-8c.

v′i ←
1

N

(∑
e′cij

)
(2-36)

c′i ← ϕcp

(
c′i,

∑
v∈celli

v′i

)
(2-37)

e′cij ← ϕep
(
e′cij , c

′
i, c

′
j

)
(2-38)

2.4. Graph Neural Networks 13

(a) Cell faces to mesh points. (b) Mesh points to cell centers. (c) Cell centers to cell faces.

Figure 2-8 Aggregation scheme of FVGN. [19]

To evaluate the model, the researchers compared its performance with MeshGraphNets. It turned out that
FVGN consequently outperforms MeshGraphNets despite having 200,000 fewer parameters (2.2 over 2.4 million).
On top of this, the training time was reduced by a factor of around two. However, the processing time of
FVGN is around twice as long, which is poor considering that MeshGraphNets is significantly slower than CNN
U-nets.

2.4.5 Continuous kernel GNNs

Due to the strong performance of CNNs, research has been conducted to design a GNN that operated equiva-
lently [6] [24]. A potential solution is to use continuous kernels. Continuous kernels rely on trainable functions
that take geometric data as input and generate corresponding attention weights. There are two main types of
continuous kernels, which are discussed below.

The first and most straightforward method is to replace the CNN kernels with a multilayer perceptron
(MLP). Here, the input of the network contains governing geometric information, and the output layer corre-
sponds to the attention weight. This methodology is applied by Coscia et al. [6]. Although its performance
turned out to be relatively good, the number of operations to compute one attention weight is high. Therefore,
other options are explored to mitigate this issue. The second approach is to replace the traditional kernel with
an attention weight function that contains learnable parameters. Monti et al. [24] proposed a Gaussian kernel

function that is shown in Equation 2-39. Here, δ is a vector containing the coordinates (
(
d θ

)T
), and β is

a learnable parameter. Furthermore, Σ and µ are the learnable covariance matrix and the mean vector of a
Gaussian kernel, respectively.

ωattention = β · e− 1
2 (δ−µ)TΣ−1(δ−µ) (2-39)

The research discovered that the weight function performed similarly to graph convolutional neural networks
[24]. However, this function has two main disadvantages. The first one is that trainable parameters are present
in the exponent, which makes training relatively hard. Secondly, the function does not include any sinusoids,
making it more difficult to capture nonlinearities across different angles. With these disadvantages in mind, Xu
et al. [40] proposed the weight function shown in Equation 2-40. Here, θ is the angle, and d is the distance to
the connected node. Polar coordinates are used because they provide clearer insights into the nodes’ orientation
compared to Cartesian coordinates. β and γ are all learnable parameters.

ωattention = β · sin(γθ + γ) · (γd+ γ)e−d (2-40)

The function proposed by Xu et al. [40] does not include learnable parameters in the exponent and includes a
sinusoid to capture nonlinearities more efficiently. The researchers concluded that the attention weight function
performed significantly better than MLP-based algorithms that used the same message-passing scheme.

2.4. Graph Neural Networks 14

2.4.6 Graph pooling

As for CNNs, GNNs can utilize pooling layers to propagate information further over the graph. To employ the
U-net architecture in GNNs, an appropriate pooling algorithm must be developed. Although these algorithms
are straightforward for CNNs, they are considerably more complex for GNNs due to their unstructured nature.
Moreover, since GNNs are not typically used for mesh-based analysis, most existing algorithms are not suited
for this research [20]. However, the most promising approach is called edge-contraction, which is proposed
by N. Kipf & Welling [18]. Edge contraction works by merging two points in the graph, as illustrated in
Figure 2-9. Here, it is clearly visible that the points are merged by contracting their corresponding edge. Scores
are assigned to each edge based on a specified function to decide which edge should be contracted. In this
case, the inverse of the distance between the two corresponding nodes may serve as a score. After the scores
are determined, the edge with the highest score is contracted, followed by a re-calculation of the scores. This
process is repeated until the mesh is sufficiently coarse.

Figure 2-9 Edge contraction mechanism [7].

3
Problem statement

Research has shown promising results with CNNs solving the pressure Poisson equation on an orthogonal mesh.
Unfortunately, most meshes are not orthogonal. Therefore, it is interesting to investigate how the underlying
mechanisms of CNNs can be adapted to create a model for unstructured meshes. Given that graph neural
networks (GNNs) are designed to handle unstructured data, they form a promising framework. There are
multiple GNN message-passing algorithms. However, an effective model equivalent to CNNs does not exist yet.
Therefore, exploring the possibilities of designing a GNN that effectively mimics the convolution algorithm of
CNNs is a promising step toward more efficient solvers for the pressure Poisson equation. The main advantage
is that for CNN-like message-passing algorithms, the attention weight solely depends on geometric data, which
remain constant throughout the simulation in the case of a static grid. Consequently, these weights only have to
be computed once, after which they can be re-used throughout the simulation. This enhances the computational
efficiency of the model.

This results in the following research question:

• How can Graph Neural Networks be utilized to accelerate solving the pressure Poisson equation in CFD
on unstructured grids?

Five sub-questions have been defined, which are stated below.

1. What graph neural network architecture integrates most effectively with finite volume method problems?

(a) What model inputs result in the greatest reduction in the number of iterations required by the linear
solvers?

(b) Which aggregation scheme yields a maximum reduction in iterations while maintaining compatibility
with the data structure of the finite volume method?

2. What adaptations to convolutional neural network (CNN) kernels can be made to be compatible with
unstructured data?

3. Which loss function yields the most accurate results?
4. How can the GNN model be integrated into practical, real-world CFD applications?

(a) How can input data be preprocessed to ensure compatibility with the training dataset?

5. How does the model perform regarding the reduction in the number of iterations for the linear solvers?

The first sub-question involves the network architecture, including the aggregation scheme. Here, one must
account for the input data format of the finite volume method, which includes information from both the cell
centers and cell faces. Furthermore, the output of the model should predict the pressure at the cell centers.
Next, CNN kernels will be adapted to cope with unstructured data. Then, a loss function that yields maximum
performance in terms of iterations saved by the linear solver must be defined. Here, evaluating the performance
of the physics-informed loss functions is of particular interest. After this, strategies must be developed to
ensure that the model can handle real-world applications where data may vary significantly in scale. Finally,
the model’s performance must be evaluated to see if it can be used to accelerate the solution of the pressure
Poisson equation.

15

4
Design process

In this chapter, the design process of the graph neural network is discussed. In Section 4.1, the integration of the
graph neural network in solving the pressure Poisson equation is explained. Then, Section 4.2 considers general
design decisions such as the network architecture. After this, the network inputs are selected in Section 4.3.
In addition to the inputs, the positions on the mesh at which this information is stored are also considered.
Next, an appropriate aggregation scheme is developed to handle the input format without compromising overall
performance (Section 4.4). Subsequently, the pooling and mesh coarsening algorithm is discussed in Section 4.5.
Then, the design process of the message-passing algorithm is treated in Section 4.6. Section 4.7 treats the
normalization procedure to maximize the model’s performance, and Section 4.8 discusses the selection of the
loss function. Finally, Section 4.9 provides a summary of the chapter.

4.1 CFD procedure

In this section, the implementation of the graph neural network in the procedure of solving the pressure Poisson
equation is discussed. In essence, the pressure Poison equation is expressed as a matrix system, which is shown
in Equation 4-1. However, directly using this system as input for the graph neural network is not recommended.
Instead, a method is employed that uses the solution from the previous iteration alongside the neural network
to improve the accuracy of the first guess.

Ap = b (4-1)
The first step of this method involves splitting the pressure vector into two components, as shown in Equation 4-2.
Here, pi−1 corresponds to the pressure from the previous iteration, while ∆p represents the difference between
the two pressure states. Substituting this expression in the matrix system yields Equation 4-3. Here, the
pressure field of the previous iteration is multiplied with the A matrix and subtracted from the source vector.
This yields a new source vector corresponding to the pressure step between the two iterations. Hence, by
solving this matrix system, the step in pressure can be determined. Then, by adding the pressure from the
previous iteration, the final solution can be computed.

pi = pi−1 +∆p (4-2)

A∆pi = b−Api−1 (4-3)
This procedure solves two problems at once. First, predicting the entire pressure field directly is likely to
produce a less accurate result compared to using the solution from the previous iteration as a starting point
since predicting the pressure field from scratch would require extremely high precision to match the accuracy of
the previous iteration. However, predicting only the pressure difference mitigates this issue, as the previous
solution serves as a base. The second problem solved addresses the fact that information cannot propagate over
the whole mesh in the network. Therefore, crucial information might not be available at all positions on the
graph, leading to poor performance. However, since pressure gradients with respect to time are relatively small,
the region of influence for the source terms is relatively small when predicting the pressure step instead. Hence,
information should be able to propagate sufficiently far across the graph when using this approach.

16

4.2. General design decisions 17

4.2 General design decisions

In this section, general design decisions are discussed. First, the model architecture is defined, after which the
number of pooling layers is selected. Finally, the model size in terms of channels per layer is treated. To do this,
the research done by Illarramendi et al. [14] is used as a starting point, as they proposed a CNN architecture
that performed well at solving the pressure Poisson equation.

In Section 2.3.2.3, different architectures were discussed, such as the monoscale design and the U-net. The
U-net is selected due to its superior properties regarding the distance information can travel over the mesh and
computational efficiency [5] [14]. Furthermore, it is designed to identify structures at different spatial scales.
Therefore, although this network is more complex and requires a pooling and mesh coarsening algorithm, it is
the preferred option.

Looking at the U-net, different hyperparameters can be tuned to optimize the performance. The first one is
the number of pooling layers. It has been decided to use 4 layers to ensure that information is not able to
propagate over the complete mesh, just as for large meshes that are used in real-world cases. Figure 4-1 shows
the aggregation distance for one of the test cases used in this research. Here, the red cross refers to the position
of the source cell. In the domain, yellow indicates regions that not only receive information from the source cell
but can also process it extensively, while green represents areas that receive the information but cannot process
it extensively. Finally, dark blue marks the region that receives no information from the source cell. The fact
that information can aggregate to the upper and lower bounds but not throughout the entire wake is logical, as
the mesh density in the wake is more refined.

Figure 4-1 Information propagation distance of the U-net. The source node corresponds to the red dot. The dark
blue color corresponds to the regions that do not receive any information from the source cell.

Besides the number of pooling layers, the number of channels on each layer is another important design decision
that has to be made. Since individually optimizing each layer takes a lot of time and the ideal setup is likely
dependent on the specific test case, four size configurations are evaluated for each scenario. These four models
contain 16, 12, 8, and 6 channels in the top layer. The number of channels across the other convolution blocks
in the U-net is scaled proportionally with respect to the architecture implemented by Illarramendi et al. [14].
Figure 4-2 shows the designed U-net architecture, including the number of channels for the different models at
each convolution block. To improve the training process, instance normalization is applied after each blue block.
Unlike batch normalization, this approach is independent of the data it receives, allowing for small batch sizes
during training. Note that in the final step of the network, the feature vectors are reduced to a single output
layer. Instead of applying the message-passing algorithm, this step utilizes a simple multilayer perceptron that
functions as a single self-loop layer. The number of learnable parameters for each of the configurations is listed
in Table 4-1. Note that the model contains significantly fewer parameters compared to MeshGraphNets and
the Finite Volume Graph Network, which contain 2.4 and 2.2 million parameters, respectively [19].

4.3. Inputs 18

Figure 4-2 The designed U-net with the number of channels per layer for each of the four model sizes.

Table 4-1 Number of learnable parameters per model size. The size refers to the number of channels in the refined
convolution blocks.

Model size N learnable parameters
6 9418
8 16678
12 37366
16 66278

4.3 Inputs

In this section, the inputs of the graph neural networks are selected. In addition to the choice of inputs,
the positions on the mesh where this information is stored are also considered. First, the essential inputs
are discussed, after which additional inputs are added to enhance the model’s performance. Finally, special
treatment for time-dependent applications, such as fluid simulations, is discussed.

Looking at Section 2.2, the problem that needs to be solved is a matrix system (Equation 4-4) with a
dimensionality of n, where n corresponds to the number of cells present in the mesh. Here, the goal is to embed
the A matrix and the source term b into the graph neural network. The source term is the most straightforward
to embed. The vector corresponds to the net flux into each cell. Therefore, this vector can be embedded into
the graph by storing each net flux at its corresponding cell center. Embedding A requires more effort. For the
matrix diagonal, this vector is multiplied by the pressure at the owner cells in the matrix system. Therefore,
this information should be stored at the cell centers as well. Looking at the off-diagonal part of the matrix, the
nonzero cells correspond to the values with which pressures of neighboring cells should be multiplied. Therefore,
this input should be stored at the cell faces. This approach yields an input configuration with two numbers
stored at each cell center and one number at each cell face, as shown in Table 4-2.

Ap = b (4-4)

4.3. Inputs 19

Table 4-2 Essential model inputs

Cell Center Cell Face
Adiagonal Aoff−diagonal

b

4.3.1 Inputs to enhance performance

Additional inputs are incorporated to enhance the performance of the model. The first one involves information
regarding the Dirichlet boundary condition. By explicitly providing the Dirichlet boundary values to the
network, the accuracy of predictions near these boundaries is expected to improve significantly. To implement
this, a channel is added to the inputs at the cell faces containing corresponding values, with zeros at faces
where no Dirichlet boundary conditions apply. To provide the model with information on whether a zero
represents the boundary conditions or is used as filament, an additional channel is added that contains ones
at the Dirichlet boundaries and zeros at the other faces. The current inputs of the model are presented in
Table 4-3.

Table 4-3 Adjusted input configuration incorporating Dirichlet boundary conditions.

Cell Center Cell Face
Adiagonal Aoff−diagonal

b PDirichlet

PDirichletIndicator

Now, an issue regarding the magnitude of the source term must be solved. Note that the magnitude of the
source term is proportional to local differences in the pressure gradient. The magnitude of the source term
is relatively small, as the pressure difference between two neighboring cells is relatively small compared to
the absolute pressure magnitude. However, this does not apply to boundary cells with a Dirichlet boundary
condition. To explain this, it is important to understand how the source term is defined. Equation 4-5
shows the discretized expression used for a non-boundary cell. As discussed in Section 2.2.5, the last term,
(Aii −Aij1 −Aij2 −Aij3)pi, is either exactly zero or relatively small. Therefore, the equation can be simplified
to Equation 4-6. Here, it is clear that the source term depends on the summation of three pressure differences.
However, when dealing with a Dirichlet boundary condition, one of the pressures is known and should be
transferred to the other side of the equation, yielding Equation 4-7. Now, instead of local pressure differences,
the pressure specified by the Dirichlet boundary condition defines the scale of the source term, as this value can
be several orders of magnitude higher than the pressure difference between two neighboring cells. Therefore,
the corresponding source terms can be several orders of magnitude higher than the source terms of other cells.
This poses challenges for the network since it has to cope with these significant differences in scale in the input
data. Therefore, a workaround is implemented to avoid this phenomenon.

bi = Aij1 (pj1 − pi) +Aij2 (pj2 − pi) +Aij3 (pj3 − pi) + (Aii −Aij1 −Aij2 −Aij3)pi (4-5)

bi = Aij1 (pj1 − pi) +Aij2 (pj2 − pi) +Aij3 (pj3 − pi) (4-6)

bi −ABCPBC = −Aij1pi +Aij2 (pj2 − pi) +Aij3 (pj3 − pi) (4-7)

The issue is solved by isolating the influence of the boundary condition on the source term from the other
terms. By subtracting the boundary term from the source term as shown in Equation 4-8, the source term
is made independent from the Dirichlet boundary conditions, thereby solving the posed issue. However, the
model still needs the boundary term to accurately predict the pressure. Looking at the inputs at the faces,
one must note that since the pressure boundary conditions are already provided, both terms of ABCPBC are
already fed to the network. Therefore, incorporating the Dirichlet boundary condition values enhances the
accuracy of predictions near the boundaries and provides sufficient information regarding the term subtracted
from the source term.

4.4. Aggregation scheme 20

bi −ABCPBC − (−ABCPBC) = bi (4-8)

Finally, the Neumann conditions indicators are incorporated into the face inputs, following the same method
used for Dirichlet boundary conditions. This ensures that the model is informed about all boundaries, enabling
it to account for these boundaries. The distinction between the Dirichlet and Neumann boundary conditions is
not chosen but a consequence of other design choices instead. However, due to the difference between these two
conditions, this distinction is expected to enhance the model’s performance. The final input configuration is
listed in Table 4-6.

Table 4-4 Final input configuration that is boundary-aware and takes Dirichlet boundary conditions into account.

Cell Center Cell Face
Adiagonal Aoff−diagonal

b−ABCPDirichlet PDirichlet

PDirichletIndicator

PNeumannIndicator

4.3.2 Inputs for CFD cases

The procedure used for CFD applications described in Section 4.1, impacts the inputs of the neural network.
Considering the choice of predicting the difference in pressure between two iterations and that Dirichlet
boundary conditions are usually time-independent, one will commonly deal with Dirichlet boundary conditions
specifying a value of zero to the governing cells. This implies that this input channel would become a zero
vector, contributing no additional information to the system while occupying an input channel. Therefore, to
enhance efficiency, it is opted to delete this boundary condition if the model is only used for CFD applications.
The model inputs used for CFD purposes are presented in Table 4-5.

Table 4-5 Simplified input configuration for CFD applications, excluding redundant Dirichlet boundary condition
values to enhance efficiency.

Cell Center Cell Face
Adiagonal Aoff−diagonal

b PDirichletIndicator

PNeumannIndicator

4.4 Aggregation scheme

In this section, the design process of the aggregation scheme is discussed. Before making the design decisions,
the objectives must be defined:

1. Information must aggregate as far as possible over the graph without increasing the number of hidden
layers.

2. The presence of self-loops is preferred. This increases the kernel complexity, allowing for more detailed
edge-detection mechanisms.

3. The network must be able to process the input data in its given format. Hence, it should process inputs
at the cell centers and faces.

4. The network output must predict the pressure at the cell centers.

To design an aggregation scheme that meets all design objectives, the finite volume graph neural network
(FVMG) is used as a starting point. The main advantage of this approach is that it can handle the input
format. However, in terms of how far information can travel over the mesh, this design does not perform
well. Alternatively, one could also opt to aggregate between the mesh-points. The difference in propagation
distance is illustrated in Figure 4-3, with the left figure representing the finite volume graph and the right

4.4. Aggregation scheme 21

figure, the alternative that aggregates between the mesh points. Here, the blue dot represents the source node,
the green nodes indicate nodes that receive information, and the red nodes represent those that do not receive
information from the source node. Three steps are taken for both schemes. Note that the aggregation distance
within these steps is significantly larger for the scheme that aggregates between the mesh points than for the
FVMG scheme, enhancing its performance. However, one must note that this scheme cannot handle the data
format used in the finite volume method. Therefore, the two schemes are combined to leverage their advantages
while addressing their limitations.

(a) FVMG model. (b) Mesh point approach.

Figure 4-3 Propagation distance of information after three steps for different aggregation schemes.

The aggregation scheme is shown in Figure 4-4 from left to right. Here, the red dots correspond to the
source nodes, whereas the arrows point to the target nodes of the message-passing steps. The first and final
message-passing steps of the finite volume graph (FVMG) are employed to map the input data to the mesh
points. The final step is used first, which maps the data from the cell centers to the cell faces. Then, the first
step of the FVMG scheme is utilized to map the data onto the mesh points. Now, the data can be aggregated
between the mesh points, which is done throughout the remainder of the network until the second to last step.
This way, information can be propagated over the mesh effectively. Furthermore, the presence of a self-loop in
this step allows for more complex kernels. Finally, the data is mapped to the mesh points using the second
step of the FVMG scheme. By doing this, an aggregation scheme is set up that performs well on aggregation
distance and matches the in- and output data formats. Note that the vast majority of the layers aggregate
between the mesh points. The other steps are only used once.

(a) Cell centers to cell faces.
ALIGN FIGURES

(b) Cell faces to mesh points.
ALIGN FIGURES

(c) Mesh points to mesh
points.

(d) Mesh points to cell centers.
ALIGN FIGURES

Figure 4-4 Proposed aggregation scheme.

4.5. Pooling 22

4.5 Pooling

This section addresses the design decisions related to pooling. First, mesh coarsening is treated, after which
the pooling algorithm utilized by the graph neural network is explained.

4.5.1 Mesh coarsening

Before selecting the appropriate mesh coarsening algorithm, its design criteria must be stated:

1. The graph in the pooled layers should consist of triangles, just like the main mesh. This ensures that the
same convolution algorithm can be applied across both the pooled and refined convolution blocks.

2. The mesh quality of the pooling layers should be high, which implies that the angles of the cells should
be around 60 degrees. It is expected that this will have a beneficial effect on the performance because
data will be distributed more equally.

3. The bounds of the mesh should retain their shape as much as possible. For example, the domain
boundaries should remain in the same position. This is done to effectively apply the pooling algorithm,
which will be discussed in Section 4.5.2.

First, it is investigated if the most widely used approach, edge contraction, can be utilized. As discussed in
Chapter 2, the edge contraction algorithm merges two points in the graph. However, since the edge contraction
function of PyTorch does not allow for constraints regarding the direction in which nodes can move, the third
design objective cannot be satisfied. Therefore, another method is proposed [11].

To satisfy all design objectives, a method has been developed that utilizes the script that generates the
mesh. Relevant code snippets of such a script can be seen below. This script generates a simple square mesh.
Here, the mesh density is defined by the variables nx and ny in lines 4 and 5. To create the pooled mesh, these
variables are divided by 2. This process is repeated till all pooling layers are defined. Using this approach,
creating the pooled meshes is very simple. However, this approach has a drawback: the minimum value for
these variables in the main mesh. Note that integers can only be divided by two up to a finite number of times,
as each division must result in another integer. However, since the mesh density at the main mesh is relatively
dense, the parameters are commonly high enough to be divided by two at least 3 times, corresponding to the
number of pooling layers used during this research.

1 // Gmsh project created on Sun May 19 18:32:31 2024
2 SetFactory (" OpenCASCADE ");
3

4 // Mesh density parameters
5 nx = 64;
6 ny = 64;
7

8 // Definition of points and lines
9 // ...

10

11 // Set mesh density on transfinite curves
12 Transfinite Curve {1} = ny Using Progression 1;
13 Transfinite Curve {2} = nx Using Progression 1;
14 Transfinite Curve {3} = ny Using Progression 1;
15 Transfinite Curve {4} = nx Using Progression 1;
16

17 // Physical definitions and mesh generation algorithm
18 // ...

Figure 4-5 shows a mesh with its pooled layers generated using the method described above. Note that the
bounds of the mesh retain their shape. Next to this, the quality of the mesh is relatively good, except for the
area around the cylinder in the pooled layers. Here, high aspect ratio cells are present due to a relatively high
mesh density specified at the cylinder. This could be solved by dividing the corresponding variable by a larger
value than 2 for each subsequent pooling layer. However, this would demand either custom treatment for each
mesh or a complex automatic algorithm. A factor of 2 is chosen for every variable to keep the algorithm simple
and to automate the graph generation process. Therefore, when designing the convolution integral algorithm,
one must be aware of these bad-quality cells and try to account for the irregular spacing of the source nodes
when aggregating between the mesh points.

4.5. Pooling 23

(a) Main mesh (b) Level 1

(c) Level 2 (d) Level 3

Figure 4-5 The main mesh with its pooled version at each pooling level.

4.5.2 Pooling algorithm

Now the pooling layers are defined, the pooling algorithm must be established. It is worth noting that informa-
tion should be aggregated between the mesh points, not between the cell centers. Therefore, it is convenient to
utilize the duel mesh instead of the primal mesh for the pooling algorithm because the node features are stored at
the cell centers of the dual mesh. Figure 4-6 illustrates two dual meshes, a refined mesh at the left and its corre-
sponding pooled mesh at the right. At the boundaries, the face centers are used to enclose the cells. Now, to set
up the pooling algorithm, the working principle of the pooling algorithm used by CNNs serves as a starting point.

First, down-pooling is discussed. Using CNNs, four cells are merged into one cell to coarsen the mesh.
However, looking at the dual meshes below, this approach is not feasible since the cells in the finer mesh do
not directly correspond to one cell in the coarser mesh. Therefore, an overlap factor is introduced, which is
depicted in Equation 4-9. This equation represents the fractional overlap of the refined cell with respect to
the coarser cell. Here, Ps is the source (refined) cell, Pt is the target (coarse) cell, and Area(Ps ∩ Pt) is the
area of the part that overlaps. To follow the analogy with CNNs, this overlap ratio would be 0.25 for cells
corresponding to each other and 0 for combinations that do not.

Overlap(Ps, Pt) =
Area(Ps ∩ Pt)

Area(Ps)
(4-9)

4.6. Convolution algorithm 24

(a) Refined mesh. (b) Coarse mesh.

Figure 4-6 The primal (gray) and dual mesh (blue) of a refined and coarse mesh.

The overlap ratios are used to pool the features. Note that the sum of the overlap ratios corresponding to a
specific target cell is equal to 1. Therefore, by multiplying the features of the source cells by their respective
overlap ratios and summing the results, the target cell will contain the weighted average of the input features.
In practice, for all overlap ratios greater than zero, an edge is created between the source and target node,
with the assigned edge attribute corresponding to the overlap ratio. Using this approach, a pooling algorithm
equivalent to average pooling in CNNs is established. Note that max-pooling, commonly used for down-pooling,
is not feasible in this case, as the target cell could be assigned the value of a cell with only a minimal overlap,
leading to inconsistent results.

For up-pooling, the same approach is used to keep the GNN as simple and consistent as possible. The
overlap ratios are still calculated using Equation 4-9. The only difference compared to down-pooling is that the
shared area will be divided by the area of the cell corresponding to the refined mesh instead of the cell related
to the coarse mesh.

4.6 Convolution algorithm

This section treats the design procedure of the convolution algorithm. First, existing models are examined,
after which a novel algorithm is presented that outperforms existing work. Then, the approach is optimized to
account for the irregular node distributions present in unstructured meshes. The design objectives are:

1. The convolution algorithm must be equivalent to the algorithm utilized by CNNs. This means that the
algorithm should solely use geometric data to compute the attention weights.

2. Since the problem that needs to be solved is dimensionless, the kernel must be dimensionless as well. This
implies that the kernel value should be invariant for the distance between governing nodes.

3. The algorithm should be computationally efficient. This means that while maintaining the complexity of
kernels used by CNNs, the number of operations and learnable parameters should be minimized.

4. To improve fitting, the function should allow for isolated control over the attention weights at specific
angles without influencing the weights at other angles. This aligns with CNNs, where each learnable
parameter in the kernel corresponds to a particular position in the kernel.

5. The weight function should be highly adaptable and capable of being fitted to any desired shape.
6. The algorithm should account for the irregular spacing of the neighboring nodes in the kernel.
7. After the convolution operation is applied, a ReLU function must be used.

First, the existing methods treated in Section 2.4.5 are evaluated. The first method involves using an MLP.
The main advantage of this architecture is that the kernel can adapt to any shape possible depending on the

4.6. Convolution algorithm 25

number of learnable parameters present in the neural network. However, this design performs poorly in terms
of the number of operations required to compute a single attention weight. A more efficient approach is by
employing a weight function. However, these functions typically do not allow for isolated control over the
attention weights at specific angles without influencing the weights at other angles (objective 4). Therefore, a
novel convolution algorithm is proposed to solve this issue.

4.6.1 Proposed model

To develop an approach that outperforms current models, a discrete CNN kernel of size (3x3) (Figure 4-7)
serves as a starting point. When adapting this kernel to work on graph neural networks, the kernel is divided
into two parts. The first part is the element corresponding to the owner cell in CNNs and can be used as a
(1x1) kernel for the self-loops in graph neural networks. The remaining elements cannot be applied directly to
GNNs due to the unstructured nature of the meshes.

Figure 4-7 CNN kernel.

The remaining elements can be represented as a function of their orientation relative to the owner cell, as
illustrated in Figure 4-8. Here, the discrete weights are plotted with fixed angular steps of 45 degrees. However,
since this research involves unstructured meshes, the orientations are not quantized and can be of any value
between 0 and 2π. As a result, a continuous function must be defined. A straightforward method to achieve
this is by interpolating between the learnable parameters as demonstrated in Figure 4-9. This kernel is highly
flexible and capable of adopting any desired shape depending on the kernel complexity. The kernel complexity
can be adjusted by varying the number of learnable parameters in the kernel, which effectively changes the
angular step between two data points. Additionally, the attention weight at a specific angle is influenced solely
by the corresponding learnable parameters, demonstrating an improvement over the weight function proposed
by Xu et al. [40].

4.6. Convolution algorithm 26

Figure 4-8 Discrete CNN kernel. Figure 4-9 Interpolated CNN kernel.

Implementing this weight function requires additional work compared to other methods. Instead of using the
angle directly as the edge attribute, the angle is encoded as a vector. To clarify this, an example involving a
kernel with eight learnable parameters will be used, resulting in angular steps of π

4 between the data points.
First, a zero-vector of length eight is initialized. Then, the vector indices of the two closest data points are
identified. After this, the factors used to calculate the interpolated weights are computed using Equation 4-10
and Equation 4-11. Here, θstep represents the angular step between the governing data points and θn, their
angular positions. Hence, for an angle of π

3 , the weights would be 2
3 for e1 and 1

3 for e2. After the factors
are determined, they are inserted in the zero-vector at their corresponding indices. In this example, these
indices refer to the second and third elements. To define the (1x1) kernel in case a self-loop is present in the
message-passing step, an additional element is added to the vector, which contains a 1 in the case of a self-loop
and a 0 otherwise. The obtained vectors will be embedded in the graph as edge attributes.

e1 = 1− θ − θ1
θstep

(4-10)

e2 = 1− θ2 − θ

θstep
(4-11)

To compute the attention weights, the dot product of the edge attributes and a vector containing the learnable
parameters are computed, as illustrated in Equation 4-12. In essence, a weighted average is computed of
the learnable parameters. The use of a single dot product to compute the weights significantly improves
computational efficiency compared to existing approaches. Furthermore, adapting the kernels to their desired
shape is more straightforward since the model can independently adjust the weights across different angles.

wattention =
[
0 2

3
1
3 0 0 0 0 0

]
·



p1

p2

p3

p4

p5

p6

p7

p8


(4-12)

4.6. Convolution algorithm 27

4.6.2 Solution for irregular node spacing

Up to this point, the attention weights are directly computed from the weight function. However, this approach
has certain drawbacks related to the inhomogeneous distribution of the source nodes in the kernel, which arises
from the use of unstructured meshes. An example of this can be observed around the cylinder at the coarsest
pooling level, as illustrated in Figure 4-10. Here, if the attention weights are just computed as described above,
the kernel would return a distorted result due to the unequal distribution of the source nodes. When source
nodes are clustered around certain angles, their corresponding kernel value is amplified, whereas areas without
source nodes are completely ignored. This distortion can result in poor performance. Drawing the analogy
with CNNs, if one of the nine elements of a kernel is suddenly not taken into account, while another element
is taken into account twice, the convolution operation will produce inaccurate results, as the edge detection
mechanism would no longer function as intended.

There is also another issue with the proposed weight function. The function contains sharp edges, as can be
seen in Figure 4-9. These abrupt transitions make the function highly sensitive to variations in the angle
between two nodes, introducing unwanted random variations during the computation of the weights. To address
this issue, employing a smoother function is desired.

Figure 4-10 The pooled mesh at the coarsest level. Zoomed in on the bad-quality cells around the object.

To tackle these challenges, the integral over the weight function is utilized instead of the function itself. Before
taking this integral, the bounds must be defined for each message-passing step. The goal of these bounds is
that the integrals govern the complete kernel. This implies that two neighboring source nodes share a bound in
between them. The first step involves aggregating from the cell centers to the cell faces, as shown in Figure 4-11.
Here, the red dots correspond to the source position, whereas the arrows point to the target position of the
message-passing steps. The bounds are calculated by adding and subtracting π

2 from the angles between
the two source nodes. This ensures that both source nodes have an equal integral width. In cases where an
edge points to a boundary face, the edge center is used to compute the orientation. However, the bounds are
calculated similarly, implying that half of the kernel is not used when performing the convolution algorithm.
This approach is analogous to zero-padding in CNNs.

4.6. Convolution algorithm 28

Figure 4-11 Message-passing scheme from the cell centers to the cell faces.

For the message-passing step from the cell faces to the mesh points, the cell centers are utilized to select the
bounds. Note that each edge corresponds to its neighboring cells. The angle between their centers and the
target mesh point serves as bounds. This method is illustrated in Figure 4-12, where the green lines represent
the edges from the cell centers to the points. The main benefit of this approach is that two neighboring edges
share a cell center and, therefore, a bound. This ensures that the bounds between two neighboring edges are
shared, preventing overlaps or gaps between the integrals. Again, the boundary edges require special attention
due to the missing cell at one side of the edge. In this case, the angle between the source and target nodes is
used to compute the second bound. As with the message-passing step from the cell centers to the cell faces,
the part of the kernel outside of the mesh is analogous to zero-padding in CNNs. The same approach can be
followed for aggregating between the mesh points. Figure 4-13 illustrates the method in this case. As with
aggregating from the faces to the points, the edges follow the primal mesh. The only difference is the origin of
the edge, either a mesh point or the midway point between that node and the target node. Therefore, the same
approach can be used.

Figure 4-12 Message-passing scheme from the cell
faces to the mesh points, including indicators of the

integral bounds (the green lines).

Figure 4-13 Message-passing scheme between the
mesh points, including indicators of the integral bounds

(the green lines).

Selecting the bounds for the message-passing step from the mesh points to the cell centers is similar to the
strategy used at the step from the centers to the faces. However, in this case, the angular step between two
edges is not a constant value of π but depends on the shape of the cell. Therefore, the bounds are defined as

4.6. Convolution algorithm 29

the midway angle between the two corresponding edges connecting the mesh points to the cell centers. For
boundary cells, no special treatment is required.

Once all bounds are defined, the integral over the weight function can be taken. Figure 4-14 illustrates
an integral taken from α1 = 7π

12 till α2 = 11π
12 . To embed the integral, the same approach is used as in the

method where the weights are directly calculated from the weight function. The integral is computed by taking
the dot product of the edge attribute, defining the integral as the weighted sum of the learnable parameters,
and the vector containing these learnable parameters. Finally, the weights are multiplied by 1

2π to ensure that
the result of the convolution operation is of the same order of magnitude as the input features. This is done to
accelerate the training process.

Figure 4-14 Illustration of a convolution integral from α1 = 7π
12

till α2 = 11π
12

Figure 4-15 illustrates the convolution operation over the weight function for different block widths. These
widths refer to the angular step between the two bounds. The integral increases with larger block widths. Note
that a greater width corresponds to larger angular steps to neighboring nodes in the mesh. Therefore, they cover
a larger part of the kernel, leading to a higher attention weight. On the other side, low block widths correspond
to nodes positioned close to each other. Consequently, the attention weight must be smaller so that this part
of the kernel is not disproportionally amplified. Next to correcting for the node distribution, integrating the
weight function also mitigates the undesired sharp edges mentioned earlier. The integral smoothens these edges.
Figure 4-16 shows the weight function normalized with regards to the block width, illustrating how the function
averages out with increasing width. For larger block widths, local fluctuations in the weight function become
less prominent. However, this implies that the kernel loses some of its complexity, which may have a detrimental
effect on the performance since the kernel might not be able to identify specific details. Nevertheless, it is
assumed that the advantages of correcting the attention weights for irregular node spacing and the mitigation
of the sharp edges outweigh this potential drawback.

4.7. Normalization 30

Figure 4-15 Illustration of the influence of the
distance between the two integral bounds on the attention

weight.

Figure 4-16 Weight function normalized with regards
to the block width, illustrating how the function averages

out with increasing width.

Now that the attention weights are determined, the convolution operation can be performed. This is done
by multiplying all feature vectors of the source nodes with their corresponding attention weights. Then, all
resulting vectors are summed at the target node, after which a ReLU function is applied. This procedure is
analogous to the algorithm used by CNNs.

4.7 Normalization

In this section, the pre-processing and post-processing procedure is set up to maximize the performance of
the designed GNN. This process aims to reduce the variance in scale for both the inputs and outputs of the
neural network. The conditions in CFD simulations can range across multiple orders of magnitude. This poses
challenges for the model as it struggles to produce high outputs for certain inputs while maintaining accuracy
for significantly lower outputs. Therefore, the inputs should be normalized before being passed to the network.
First, the normalization procedure of the inputs is discussed. Then, the ground truth output pressure will
be normalized, which also has implications for the inputs. Finally, two methods are proposed to predict the
proposed normalization factor for the output pressure.

4.7.1 Normalization of the inputs

Before starting the normalization procedure, one must look at the model inputs shown in Table 4-6. Note
that the PDirichlet is only implemented for time-independent problems, while ABCPDirichlet is zero for CFD
applications. PDirichletIndicator

and PNeumannIndicator
consist of ones and zeros. Hence, no normalization is

required for these inputs. The magnitudes of the other inputs can vary across different orders of magnitude
depending on the governing problem being solved. Therefore, normalization is required for these inputs.

Table 4-6 Inputs of the network for time-independent problems.

Cell Center Cell Face
Adiagonal Aoff−diagonal

b−ABCPDirichlet PDirichlet

PDirichletIndicator

PNeumannIndicator

First, the A matrix is treated. Since this matrix is well-structured, where the diagonal elements correspond to
the negative sum of the off-diagonal elements of each row, these two inputs are normalized following the same

4.7. Normalization 31

procedure. The matrix is normalized based on the mean magnitude of the diagonal elements. The standard
deviation cannot be used since the data is not centered around zero. The operation is shown in Equation 4-13.
Note that a normalization factor fA is introduced, which will later be used to de-normalize the output of the
neural network.

Anorm =
A

∥AVG (Adiagonal) ∥
=

A

fA
(4-13)

To normalize the input source term, the vector is divided by its standard deviation as depicted in Equation 4-14.
This is done since the source term is typically centered around zero. Note that a normalization factor is
introduced again: fb.

bnorm =
b−ABCPDirichlet

STD (b−ABCPDirichlet)
=

b−ABCPDirichlet

fb
(4-14)

By rewriting and substituting Equation 4-13 and Equation 4-14 in the to be solved matrix system (Equation 4-15),
Equation 4-17 is obtained. Here, fA

fb
represents the normalization factor of the matrix system.

Ap = b (4-15)

Anorm

(
fA
fb

p

)
= bnorm +

ABCPDirichlet

fb
(4-16)

Note that ABC is directly proportional to the content of the A matrix. Therefore, this input is also normalized
using fa, yielding the final equation:

Anorm

(
fA
fb

p

)
= bnorm +ABCnorm

(
fA
fb

PDirichlet

)
(4-17)

4.7.2 Normalization of the output pressure

Despite the A matrix and the source term being normalized, the pressure can still range across multiple scales.
This is because the characteristics of the pressure field have a significant impact on the standard deviation of
the source term. Here, laminar pressure fields correspond to relatively small values in the source term, whereas
turbulent flow corresponds to high values in the source term. Therefore, after normalization, pressure fields
corresponding to laminar flow are magnified significantly compared to turbulent flow fields. In the datasets
used throughout this research, it turned out that this deviation can be up to around seven orders of magnitude,
which is too large. Therefore, measures must be taken to ensure the network’s output remains within the same
scale across all flow conditions.

The ground truth pressure of the model is normalized by its standard deviation, as depicted in Equation 4-18.
Note that the pressure correction factor, fp, is introduced. Besides the output pressure, the input corresponding
to the Dirichlet boundary condition should also be normalized to match the ground-truth output. This is done
using Equation 4-19. However, the pressure correction factor (fp) is unknown, which implies that a method must
be established to calculate this factor. In Section 4.7.3, different options will be presented. However, it must be
noted that methods that rely on the network’s output are unsuitable for time-independent problems because
the Dirichlet boundary condition is included in the network’s inputs. The final inputs after normalization are
presented in Table 4-7.

pnorm =

fA
fb
p

STD
(

fA
fb
p
) =

fA
fb
p

fp
(4-18)

PDirichletValuenorm
=

fA
fb
PDirichletValue

fp
(4-19)

4.7. Normalization 32

Table 4-7 Model inputs after normalization.

Cell Center Cell Face
Adiagonal

fA

Aoff−diagonal

fA

b−ABCPDirichlet

fb

fA
fb

PDirichlet

fp

PDirichletIndicator

PNeumannIndicator

4.7.3 Pressure correction factor prediction

Now that the normalization procedure is established, the only missing link is the pressure correction factor, fp.
In this section, two methods to estimate this factor are proposed. The first one is very computationally efficient.
However, this method utilizes the output of the network and can, therefore, not be used for time-independent
problems. Next to this, one will note that the method only works for specific flow characteristics. After this, a
more robust method will be introduced.

4.7.3.1 Least squares method

Estimating the pressure factor coefficient can be reduced to a simple least-squares problem. The first step
involves substituting equation Equation 4-18 in Equation 4-17. This operation yields Equation 4-20. Here,
Anorm and bnorm are known and pnorm is the ground truth output of the network.

Anorm (fppnorm) = bnorm +ABCnorm

(
fA
fb

PDirichlet

)
(4-20)

Now, the ground truth pressure is replaced by the output of the model, pmodel and the pressure factor is moved
to the front of the equation (Equation 4-21). The multiplication Anormpmodel yields an estimated source term,
best.

fp (Anormpmodel) = fpbest ≈ bnorm +ABCnorm

(
fA
fb

PDirichlet

)
(4-21)

Note that best and bnorm are both known. Hence, fp is the only unknown in the equation and corresponds to
the factor in magnitude between the two source vectors. This constant can be estimated using the least-squares
method. Although this procedure works in theory, it does not perform well in every scenario. In fact, as the
ground truth factor increases, the estimated value becomes significantly underestimated. For ground truth
factors higher than 20, the estimated value stagnates, leaving no opportunities to apply corrections. The reason
why the performance is bad for large values is due to the signal-to-noise ratio of best, which decreases when the
correction factor is increased.

4.7.3.2 Correction model

To accurately estimate the pressure correction factor under any condition, an additional graph neural network
is established that is derived from the pressure field model, which is used to predict the normalized pressure.
Figure 4-17 illustrates the architecture of this correction model. One can see that the right side of the U-net is
deleted. However, the four layers at the lowest pooling level are kept to preserve the propagation distance of
the network. After the last convolution layer, the data is flattened using global pooling. Since the network
aims to estimate the standard deviation of the pressure field, the standard deviation across each layer is taken
to flatten the data. After flattening, an MLP is utilized to process the data of the different layers to produce
the final output. This architecture is inspired by classification CNNs [37]. The MLP contains one hidden layer
with a length of 3 times the length of the vector after flattening the layers. This MLP design is selected by
trial and error.

4.8. Loss function 33

Figure 4-17 The architecture of the pressure correction model.

To predict the standard deviation of the pressure field for different flow conditions, the network must be
able to produce accurate results over different orders of magnitude. However, as with the GNN that predicts
the normalized pressure field, the architecture described above struggles to handle this range of magnitudes
effectively. To solve this, the logarithm of the pressure correction factor is used as the ground truth value
instead. This way, the magnitude of the output of the model does not range across different orders of magnitude.
The pressure correction factor is computed using Equation 4-22, where fplog

corresponds to the output of the
neural network.

fp = 10fplog (4-22)

4.8 Loss function

Before the model can be trained, the loss function should be defined. First, the loss function of the pressure
field model, which predicts the normalized pressure, will be discussed. After this, the loss function of the
correction model is presented.

4.8.1 Pressure field model

For the model that predicts the normalized pressure field, it is decided to employ a combination of three loss
functions. To compute the total loss, hyperparameters will be utilized to compute the weighted sum. Different
hyperparameter configurations will be tested to find the best-performing function. The first two-loss functions
are discussed in Section 2.3.1. Equation 4-23 shows the supervised loss term, while Equation 4-24 depicts the
physics-informed loss function. Note that the normalized pressure is used for all terms to retain the same order
of magnitude across the samples.

LP = ∥pmodel − pnorm∥2 (4-23)

LPINN = ∥A
fA

(pmodel − pnorm) ∥2 (4-24)

In addition to the standard physics-informed loss function, an additional loss function is designed specifically for
the finite volume method. Instead of comparing the explicit computed source terms of the matrix system, the
fluxes through the cell faces will be compared directly. This way, local pressure gradients are incorporated into
the loss function in more detail. The loss function is derived from Equation 2-27 and shown in Equation 4-25.
Here, j denotes the pressure vector corresponding to the neighboring cells, and i is the owner cells.

LFVM = ∥Aoff−diagonal

fA

((
pnormj

− pnormi

)
−
(
pmodelj − pmodeli

))
∥2 (4-25)

4.9. Summary 34

The expression for the complete loss function is shown in Equation 4-26. Here, a, b, and c represent the
hyperparameters of the corresponding loss terms. Here, The supervised term directly compares pressure values,
the finite volume method term considers the pressure gradient, and the default physics-informed term accounts
for the Laplacian of the pressure.

L = a · LP + b · LPINN + c · LFVM (4-26)

4.8.2 Correction model

Next to the pressure field model, a loss function must be defined for the correction model discussed in
Section 4.7.3.2. For this, instead of the model output, which is the logarithm of the correction factor, the
correction factor itself is utilized. However, since this factor can range across different orders of magnitude, the
loss is normalized with respect to the ground truth factor. This yields the loss function shown in Equation 4-27.

Lcorrection =

(
fpmodel

− fpGT

fpGT

)2

(4-27)

4.9 Summary

In this chapter, the design process of the model was discussed. First, its implementation in the solution of the
pressure Poisson equation was treated. Instead of predicting the pressure directly, the GNN will predict the
step in pressure between two iterations to improve its accuracy. Considering the design, U-net is chosen for its
strong performance in CNN applications. Regarding the model size, four different configurations are used with
varying numbers of channels.

After these general design decisions, the inputs were selected. The inputs contain the A matrix and source
term b. Furthermore, additional information is provided about whether a face corresponds to a boundary
with a specific condition, either Neumann or Dirichlet. For the Dirichlet boundary conditions, its values are
provided explicitly to enhance the performance. It is important to note that the inputs govern information at
both the cell centers and the cell faces.

For the aggregation scheme, a combination of the finite volume method graph (FVMG) and a standard
but fast approach, which aggregates directly between the mesh points, is utilized. First, information aggregates
from the cell centers to the cell faces, after which it is aggregated to the mesh points. Then, until the second
to last step, information is aggregated between the mesh points to maximize the distance information can
propagate over the mesh. Finally, the features are aggregated to the cell centers to match the output format.
This scheme implies that there must be pooled between the mesh points of the pooling layers. This is done by
designing an algorithm equivalent to average pooling in CNNs. This is achieved by calculating the overlap
fraction between two cells of the dual meshes, which have the mesh points as cell centers. Using this factor, a
weighted average is calculated to map the data onto the next pooling layer.

To conclude the model’s design, a message-passing algorithm is established that closely mimics the algo-
rithm employed by CNNs. A CNN kernel of size (3x3) has been adapted to work on unstructured data. Its
center element, which corresponds to the owner cell, is applied directly for the self-loops. The remaining
elements are plotted as a function of the orientation towards the owner cell. After this, the data points
are interpolated to create a continuous function. Instead of directly applying this function, the integral
is taken between specified bounds to account for the irregular distribution of the source nodes. The inte-
gral is expressed as the dot product of the governing edge attribute and a vector containing learnable parameters.

Finally, a normalization procedure is established to ensure that the scale of the inputs and the output
remains consistent. Notable is the ground truth output of the network, which is normalized using its standard
deviation. However, since this factor is unknown, measures must be taken to predict it. Two methods are
proposed, of which one is very computationally efficient but not robust. Therefore, a second graph neural
network is designed, which works similarly to the pressure field model but uses an architecture inspired by
classification CNNs instead.

5
Test setup

This chapter discusses the test setups used to evaluate the model. It is structured as follows. In Section 5.1,
the generation of the datasets used to train and test the models will be discussed. Using these datasets, test
cases will be defined that vary the training and test data of the models to evaluate their performance. Then,
Section 5.2 provides general information for training and evaluating the models. This section also presents the
approach used to measure the model’s performance in terms of iterations saved by the linear solvers. Next to
that, the computational resources used throughout this research are discussed. Section 5.3 presents the test
cases used to assess the model’s performance. Here, the procedure used to select parameters that will be used
throughout the remainder of this research is also presented. These foundational parameters include the learning
rate, hyperparameters of the loss function, and the kernel complexity. Finally, Section 5.4 provides a summary
of this chapter.

5.1 Data acquisition

In this section, the establishment of the datasets will be discussed. First, Section 5.1.1 treats datasets governing
real CFD data. This involves 2D URANS simulations around cylinders and airfoils at low Reynolds numbers.
However, since these simulations are relatively similar and govern a limited set of flow regimes, it desired to
establish a dataset that includes a wider variety of flow regimes. Therefore, an additional dataset is presented
in Section 5.1.2, which contains a much wider variety of samples, representing both laminar and turbulent flow.
Establishing such a dataset using CFD simulations would require computationally heavy DNS simulations.
Since this is not feasible for this research, a type of gradient noise called Perlin noise will be used instead. This
section will also elaborate on what this type of noise exactly is.

5.1.1 CFD datasets

Now, the establishment of the CFD dataset will be discussed. First, different general settings are treated, such
as the turbulent model. Next, a baseline mesh is established, which will later be customized for specific CFD
cases involving different objects. After this, the boundary conditions are presented.

General settings must be specified for the CFD simulations. A solver part of OpenFOAM called pimple-
FOAM is utilized [27]. This solver is selected since it automatically adjusts the time step. During this research,
two orthogonal corrections are applied to increase the quality of the data. As a result, the pressure Poisson
equation is solved three times at each time step. However, only the first one is included in the dataset as it
requires significantly more iterations for a given target tolerance, allowing for a more precise evaluation of the
model’s performance. Regarding the target tolerance, 10−8 will be used for the pressure Poisson equation,
which is two orders of magnitude lower than the tolerance used during model evaluation. This is done to ensure
that the samples are sufficiently accurate.

The turbulence model is another important aspect that needs to be defined. URANS is selected since
LES is unsuited for 2D cases and DNS is too computationally heavy [42] [13]. Considering this model, the

35

5.1. Data acquisition 36

decision is made to perform only low Reynolds-number simulations since URANS simulations tend to converge
to a stable solution at high Reynolds numbers. At low Reynolds numbers, the presence of a Kármán vortex
street prevents this convergence. Unsteady simulations are more valuable, as the model is likely to be applied
to such cases in real-world applications. The k-omega SST turbulence model is selected due to its widespread
use and good performance in near-wall regions [23].

Now that the turbulence model and solver are selected, the mesh is treated. Although the mesh differs
from case to case, the dimensions of the domain and position of the object remain constant. Figure 5-1 shows
the bounds, including the dimensions of the base mesh. In this case, it is equipped with a cylinder. The
characteristic length of the object is 1 meter for all test cases. To increase the mesh density in the wake of the
object, a box is positioned around the object.

The mesh density remains constant along the edges of the domain and box throughout all test cases. Variations
in the mesh density are only applied to the object itself. The standard mesh density settings are stated in
Table 5-1, and the corresponding parameters are shown in Figure 5-1.

Table 5-1 Mesh parameters for the domain and box.

Parameter n [-]
nx 32
ny 32

nx,box 200
ny,box 25

Figure 5-1 Mesh bounds illustrated using GMSH [12] [31].

The mesh density near the object is defined based on the thickness of the laminar boundary layer, which
depends on the Reynolds number (Equation 5-1). Here, L corresponds to the characteristic length of the object.
The boundary layer is resolved with approximately 20 layers of cells [27]. The Reynolds number is adjusted by
varying the kinematic viscosity using Equation 5-2. Here, U is the free-stream velocity of the fluid, which is set
to 1 throughout this research.

t =
5L√
Re

(5-1)

5.1. Data acquisition 37

ν =
UL

Re
(5-2)

Finally, the boundary conditions are defined, which remain consistent across all test cases. The conditions
are listed in Table 5-2. A point of interest is that no wall functions are applied to the object, except for ω, as
no alternative is available for that variable. No wall functions are required since the mesh is refined near the
object due to the relatively low Reynolds numbers used throughout this research. Moreover, wall functions
are designed to simulate turbulent boundary layers, while for this research, all boundary layers are laminar.
The primary objective for the velocity and pressure boundary conditions is to ensure stability throughout the
simulation. Lastly, the boundary condition for the "Side" boundary is defined as "empty" to simplify the
problem from 3D to 2D. This is necessary because the mesh is technically a 3D mesh with only one layer of
cells in the third dimension.

Table 5-2 Boundary conditions for the test cases.

Variable Property Inlet Outlet Upper/lower bound Object Side

k Type inletOutlet zeroGradient inletOutlet fixedValue empty
Value uniform 9.6e-08 - uniform 9.6e-08 uniform 1e-11 -

nut Type calculated zeroGradient calculated calculated empty
Value uniform 0 - uniform 0 uniform 0 -

omega Type fixedValue inletOutlet fixedValue omegaWallFunction empty
Value 5 5 5 $internalField -

p Type zeroGradient fixedValue zeroGradient zeroGradient empty
Value - uniform 0 - - -

U Type fixedValue zeroGradient fixedValue noSlip empty
Value uniform (1 0 0) - uniform (1 0 0) - -

5.1.2 Perlin noise dataset

This section discussed the dataset that includes a wider variety of flow characteristics. This dataset is established
due to the desire to evaluate the model on more flow regimes than involved in low Reynolds number URANS
simulations. Additionally, investigating the model’s performance when trained on a more diverse dataset
provides valuable insights into its generalization capabilities. A gradient noise called Perlin noise is used to set
up this dataset.

The dataset established consists of 21 meshes, each with 1,000 samples. This results in a total number
of 21,000 matrix systems representing the pressure Poisson equation. To explain how this is done, one will first
be introduced to Perlin noise. Then, it will be explained how this noise is tuned to achieve a diverse dataset.
After this, the procedure to use the established Perlin noise fields to generate samples of the pressure Poisson
equation is discussed. Finally, the 21 meshes will be presented.

5.1.2.1 Concept of Perlin noise

Perlin noise is a type of gradient noise. These types of noise randomly define the gradients of the field instead
of the field itself. This approach introduces a correlation between the values of neighboring nodes, thereby
generating pseudo-random synthetic landscapes [39]. The most important reason to use specifically Perlin noise
is that the obtained noise fields closely mimic isotropic turbulence flow fields, as can be seen in Figure 5-2.
Therefore, training and testing a model on Perlin noise indicates how well the model can perform on real CFD
data. The second reason to use Perlin noise is that the noise generation process can be customized to produce
fields with various flow characteristics, from laminar flow regimes to isotropic turbulence.

5.1. Data acquisition 38

Figure 5-2 Perlin noise field.

To generate Perlin-noise fields that resemble different flow regimes, specific hyperparameters can be adjusted.
To understand this, one must note that the working principle of Perlin noise is equivalent to the Fourier series.
Hence, the total signal is the sum of a specified number of harmonics. The hyperparameters are listed below.

• Scale: This corresponds to the largest wavelength in the noise field.
• Octaves: This refers to the number of harmonics in the signal. Increasing the number of octaves adds

more complexity to the noise.
• Persistence: This controls the amplitude of each octave relative to the previous one.
• Lacunarity: This prescribes how the frequency scales between layers.
• Seed: This defines what random field to create by the noise generator, ensuring that the same noise field

is not produced twice.

5.1.2.2 Perlin noise generation for the dataset

To achieve a diverse dataset, six hyperparameter configurations are set up to define the characteristics of the
Perlin noise. These configurations are shown in Table 5-3. Each pressure Poisson equation sample is assigned
a specific configuration. Then, the hyperparameters are subjected to random perturbations to increase the
variation in the dataset. On top of this, the scale is varied randomly between 0.3 and 4 meters.

Table 5-3 Hyperparameter configurations used to generate the Perlin noise fields

Hyperparameter Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

Octaves 1 2 4 6 8 10

Persistences 0.3 0.45 0.6 0.7 0.8 0.9

Lacunarities 2.0 2.2 2.2 2.2 2.2 3.3

Perlin noise fields corresponding to the defined hyperparameter configurations are shown in Figure 5-3. Here, a
scale of 4 meters is used, and all samples are defined using the same seed. From these figures, a clear increase
in complexity can be observed. The upper-left figure corresponds to laminar flow, and the lower-right one
corresponds to isotropic turbulence.

5.1. Data acquisition 39

Figure 5-3 Perlin noise fields for different hyperparameter configurations.

5.1.2.3 Pressure Poisson equation

Now that it is clear what Perlin noise is and how it is generated during this research, the procedure to
establish samples of the pressure Poisson equation will be explained. Looking at the pressure Poisson equation
(Equation 5-3), τ , p and b have to be defined including corresponding boundary conditions. Two of the three
terms must be generated, after which the third one can be calculated. It is decided to generate τ and p using
Perlin noise. This is done since the source term is not directly proportional to the velocity or pressure field but
corresponds to the Laplacian of these fields instead. Therefore, Perlin noise is not suitable to generate this
term.

∇ · (τ∇p) = b (5-3)

The generated Perlin noise fields are not directly used as τ and p but must be processed first. Initially,
normalization is applied to achieve a mean of 0 and a standard deviation of 1. Then, to define the pressure
using the generated Perlin noise field, Equation 5-4 is applied. Here, pn represents the normalized Perlin noise
field and U(−1.5, 1.5), a uniform distribution used to offset the data. After this, the diffusion term is computed
using Equation 5-5. An offset of 4 is used, and mirroring is applied to make sure all values are above 1. This is
done to match the properties of the diffusion term in real CFD data.

p = pn + U(−1.5, 1.5) (5-4)

τ =

{
2− pn), if 4 + pn < 1

4 + pn, otherwise
(5-5)

Now, the boundary boundary conditions must be defined. The values of these conditions are predefined by the
Perlin noise fields. Therefore, the only decision to be made regarding the boundary conditions is to choose
between Dirichlet and Neumann conditions. However, the implemented algorithm also allows for zero-gradient
boundary conditions, which will be used for the objects. One of the two boundary conditions must be selected
for each of the four sides of the meshes, which will be presented in the next section. This yields 24 = 16 possible
combination. Selecting only Neumann conditions is ruled out since additional measures would be required to
define the supervised loss term. The remaining 15 boundary condition combinations are randomly distributed
over the dataset. Once the boundary conditions are defined, the source term is computed explicitly.

5.1. Data acquisition 40

5.1.2.4 Mesh generation

In this section, the 21 meshes used for the Perlin noise dataset are presented. First, three meshes without objects
are defined. Their dimensions and corresponding mesh densities are stated in Table 5-4. Two square-shaped
meshes with varying mesh densities are established. Furthermore, a third mesh is defined with an aspect ratio
of 2. The three meshes without objects are included to increase variation in the dataset and are illustrated
from Figure 5-4a until Figure 5-4c.

Table 5-4 Parameters of the meshes without object.

Mesh x [m] y [m] nx [1/m] ny [1/m]

0 4 4 16 16

1 4 4 24 24

2 8 4 16 16

Since fluid simulations typically involve flow around objects, 18 meshes containing ellipses are established.
Ellipses are chosen since they are easy to implement, and the thickness and angle of attack can be varied. The
parameters that will be varied between the meshes are stated in Table 5-5. The parameters are linearly scaled
between their corresponding lower and upper bounds.

Table 5-5 Bounds for the parameters corresponding to the meshes with an object.

Variable Lower Bound Upper Bound

x [m] 4.0 8.0

y [m] 4.0 4.0

nx [1/m] 8 12.25

ny [1/m] 8 12.25

xobject/x [−] 0.3 0.7

yobject/y [−] 0.3 0.7

α [deg] -90 80

tellips [t] 0.05 0.9

ncyl [−] 120 290

The order of the parameters is randomized to prevent unwanted correlations, such as a direct relationship
between the angles of attack and the aspect ratio of the domain. However, parameters regarding the mesh
density are grouped to ensure that a single parameter controls the mesh density. Figure 5-4d till Figure 5-4u
show the 18 meshes that contain ellipses. The meshes differ due to the variations in mesh density, object shape,
object placement, and aspect ratio of the domain. In total, 21 meshes are defined. For this, python is utilized
to automatically generate so-called geo files, after which GMSH is used to produce the meshes [12].

5.2. Training and Evaluation settings 41

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u)

Figure 5-4 The 21 meshes used for the Perlin noise dataset.

5.2 Training and Evaluation settings

In this section, settings regarding training and evaluating the models are selected. First, important information
is given regarding the model’s training process. After this, the linear solvers that will be used to evaluate
the model’s performance are selected, and the target tolerances are defined. Finally, relevant computational
resources used during this research are discussed.

5.2.1 Training settings

To train the models, training settings must be selected. From these settings, the initial learning rate is the only
parameter that will be evaluated. The other settings are selected and not changed throughout this research.
First, the ADAM optimizer is selected to fit the models. This optimizer is selected due to its widespread use
and good performance [17]. To adapt the learning rate throughout the training process, a scheduler is used, of
which its properties are listed in Table 5-6. These settings are copied from Illarramendi et al. [14]. In short, if

5.2. Training and Evaluation settings 42

the evaluation loss has not decreased significantly in the past 10 training epochs, the current learning rate is
multiplied by a factor of 0.6 to allow for more detailed fitting.

Table 5-6 Settings for the Scheduler.

Parameter Value

Scheduler ReduceLROnPlateau

Mode min

Factor 0.6

Patience 10

Threshold 3× 10−4

Threshold Mode rel

Next, the batch size during training must be defined. Since graph neural networks require a lot of VRAM,
the batch sizes are relatively small. Table 5-7 lists the batch size used for every model size. For simplicity,
the same batch size is utilized for the pressure field and correction models. Regarding the number of training
epochs, models that are only used to select the foundational parameters will be trained for 100 epochs, while
the other models will be trained for 200 epochs.

Table 5-7 Batch size versus the model size

Model size
32 24 16 12 8 6

Batch size 2 3 5 8 10 12

5.2.2 Evaluation settings

After the models are trained, their performance will be evaluated. Note that the goal is to accelerate CFD
simulations by reducing the number of iterations performed by the linear solver for the pressure Poisson
equation. Therefore, an evaluation procedure is established to measure this number of iterations. First, it
must be decided what linear solvers will be used. In Section 2.2.4, it was mentioned that iterative solvers can
be either monoscale or multiscale. One linear solver will be selected from each category to investigate the
differences in performance between these types. State-of-the-art solvers that are commonly used in practice are
selected to explore the potential of the neural network in real-world applications. For the monoscale solver, the
Preconditioned Conjugate Gradient (PCG) solver is selected, while the Geometric Agglomerated Algebraic
Multigrid (GAMG) solver is employed as the multiscale solver [8].

Besides the linear solver, the target tolerance must be selected. For the CFD cases, a tolerance of 10−6

is chosen since it is generally used in practical applications. For the Perlin noise dataset, a tolerance of 10−3

was selected. This tolerance is selected such that the ratio between the initial residual and target tolerance is
similar for the Perlin noise and CFD data. Note that the pressure field has a standard deviation of 1 for the
Perlin noise fields. Starting with a zero-vector as the initial guess implies that the error must be lowered by
a factor of around 1,000. For the CFD cases, the pressure of the previous iteration is employed as the first
guess. Since this pressure is already close to the target value, lower tolerances can be achieved within the same
number of iterations.

5.2.3 Computational resources

Throughout this research, Python is utilized as the main programming language. Specifically, PyTorch
Geometric is used to establish the graph neural networks [11]. Furthermore, custom OpenFOAM scripts are set
up to generate the datasets and to evaluate the model’s performance [27]. Although OpenFOAM is written in
C++, all scripts are executed from the Ubuntu command line using Python scripts, ensuring a streamlined

5.3. Evaluation Procedure 43

training and evaluation process. The models are trained and tested on a server provided by TU Delft, equipped
with an Nvidia RTX A4500 GPU with 20 GB of VRAM.

5.3 Evaluation Procedure

In this section, the evaluation procedure to assess the model’s performance is presented. The evaluation
procedure can be divided into four phases. In the first phase, foundational parameters are defined that will be
used throughout the rest of the evaluation process. The foundational parameters include the learning rate,
hyperparameters of the loss function, and the kernel complexity of the model. For this phase, the Perlin noise
dataset is utilized. The second phase will serve to evaluate the performance of the model on real CFD data.
The third phase governs practical case studies regarding how engineers could use this model in practice. Finally,
in the fourth phase, additional tests are performed involving the effect of the target tolerance of the linear
solvers and the generalization capabilities of the model.

5.3.1 Foundational parameters

In this section, the procedure used to select the foundational parameters is discussed. During this phase,
the Perlin noise dataset will be used. The first step is to divide the dataset into training data, test data
during training, and evaluation data that will be subjected to the evaluation procedure explained in Sec-
tion 5.3. The data used during training and evaluation do not share samples with the same meshes to
incorporate the model’s generalization capabilities regarding mesh variability in the analysis. Figure 5-4l and
Figure 5-4m are selected as evaluation meshes since their objects differ significantly, while the meshes have
relatively average properties regarding mesh density and object position. The other 19 meshes are used during
training. Here, the first 900 samples of each mesh are used to train the model, and the last 100 are used for vali-
dation. The data is divided into 17,100 training samples, 1,900 validation samples, and 2,000 evaluation samples.

Next to the dataset, some general settings for the network design must be selected. Hence, as the learning rate
will be evaluated first, the correct loss function and kernel complexity are unknown. Some average settings are
chosen for the foundational parameters until their analysis has been conducted. The default hyperparameters
for the learning rate are shown in Table 5-8, while the information regarding kernel complexity is listed in
Table 5-9. As discussed in Section 4.6, the value for the kernel complexity corresponds to the number of
parameters present in the continuous kernel.

Regarding the pressure field model size, the configuration of size 16 is used. This refers to the model
with 16 channels in the refined convolution blocks of the U-net. Regarding the pressure correction factor, the
ground truth values are utilized.

Table 5-8 Default loss function.

Supervised PINN FVM

1 5 5

Table 5-9 Default kernel complexity.

center-face face-point point-point point-center

4 6 6 3

5.3.1.1 Learning rate

First, the initial learning rate will be defined. This is done by training the default model using four learning
rates: 10−2, 10−3, 10−4, and 10−5. Then, using the training log, the best option will be selected.

5.3. Evaluation Procedure 44

5.3.1.2 Loss function

Once the learning rate is established, the loss function will be chosen. At first, models are trained using the
five hyperparameter configurations stated in Table 5-10. Note that the supervised loss compares the predicted
and ground truth pressure directly, whereas the other losses are based on local pressure gradients. Since these
gradients are typically smaller than the pressure itself, the hyperparameters for the physics-informed loss
terms are relatively high to balance the contribution of each term in the total loss function. The first three
cases measure the impact of the hyperparameters related to the two physics-informed losses on the overall
performance. The last 2 cases treat these two losses individually to evaluate their individual contribution.
Depending on the conclusions drawn from the obtained results, additional configurations may be evaluated to
optimize the loss function further. The performance will be evaluated using the reduction in the number of
iterations required to reach convergence for the linear solvers, as described in Section 5.3. In addition, the root
mean square error of the pressure will be used to give additional information about the performance of the loss
functions.

Table 5-10 The different loss function configurations will be evaluated.

Option Supervised PINN FVM

1 1 0 0

2 1 5 5

3 1 10 10

4 1 5 0

5 1 0 5

5.3.1.3 Kernel complexity

The process of identifying the best-performing kernel complexity involves two stages. First, the complexities
of the "center-face" (the first step) and "point-center" (the last step) steps will be investigated. Once this is
done, the complexities of the "face-point" and "point-point" steps will be defined. By default, the number of
nodes part of a kernel operation serves as a guideline for the number of learnable parameters present in the
kernel. This is similar to CNNs, where each parameter in the kernel corresponds to a single data point in the
convolution operation. For unstructured meshes, each node is connected to 6 neighboring nodes on average.
Therefore, 6 parameters are used for the "face-point" and "point-point" steps. Note that an additional element
is added to the "point-point" step to account for the self-loop. Therefore, the corresponding edge attributes
have a length of 7 by default.

Table 5-11 lists the kernel configurations tested in the first stage. Note that for the "center-face" step,
two source nodes are part of the kernel operation, while the "point-center" step involves three source nodes.
However, with only 2 or 3 learnable parameters in the kernel, the edge detection capabilities are very limited.
Therefore, it will be investigated if higher kernel complexities can enhance the performance. As with the loss
function, the performance is evaluated on the reduction in the number of iterations and the root mean square
error of the pressure.

Table 5-11 Kernel complexity configurations with varying first and last steps.

Option center-face face-point point-point point-center

1 2 6 6 3

2 4 6 6 3

3 4 6 6 6

4 6 6 6 6

After the first stage is finished, the "face-point" and "point-point" steps will be investigated. Initially, three
options are tested for these steps: a kernel with one parameter fewer than the number of nodes, a kernel

5.3. Evaluation Procedure 45

containing a similar amount of parameters as the number of nodes, and a kernel with one additional parameter.
These configurations are listed in Table 5-12. After these options are evaluated, additional configurations may
be tested if the best-performing configuration lies at the upper or lower limit.

Table 5-12 Kernel complexity configurations with varying complexities for the remaining message-passing steps.

Option center-face face-point point-point point-center

1 x 5 5 x

2 x 6 6 x

3 x 7 7 x

5.3.2 CFD test cases

In this section, the CFD test cases are discussed. This involves four steps of increasing complexity. During each
step, a set of models will be trained and evaluated on the corresponding dataset. After setting the foundational
parameters, the model’s size is the only parameter left that can be varied. This also applies to the model used
to predict the pressure correction factor since the defined foundational parameters will also be used for these
models. As described in Section 4.2, four different model sizes will be used. These models contain 6, 8, 12,
and 16 channels in the top layer. During evaluation, additional analysis is performed using the ground truth
pressure correction factor, effectively measuring the raw performance of the pressure field model that predicts
the normalized pressure field. The four models used for the pressure field and the five used for the correction
factor (including the ground truth) lead to 4 · 5 = 20 different combinations to be evaluated. This way, the
effect of the size of both models can be investigated separately. For all upcoming tests, the models will be
evaluated following the procedure explained in Section 5.2.2.

5.3.2.1 The four-step CFD evaluation procedure

This section discusses the CFD datasets and their division into training, testing, and evaluation sets. The
datasets are structured into four steps of increasing complexity. This approach allows for a detailed analysis of
the model’s performance by examining the differences in results across the steps.

The dataset of the first step, called the cylinder baseline step , consists of a single simulation involving
flow around a cylinder. Relevant information is stated in Table 5-13, which groups information about all test
cases. The simulation time is 100 seconds, and the test data is collected from every 10th sample. This is
done since the wake is not fully developed for a significant proportion of the simulation, and it is desired that
this formation is part of the test data. Figure 5-5 gives an impression of the governing pressure field. This
snapshot is taken after 100 seconds and contains the fully developed wake. The dataset consists of 18,000
training samples and 2,000 evaluation samples.

In the second step, called the cylinder Reynolds variation step, the number of simulations is increased
from 1 to 22. The Reynolds number will be varied from 250 to 1300 with steps of 50, as stated in Table 5-13.
All other parameters remain constant and similar to the cylinder baseline step. Note that the same mesh is
employed for all simulations since a reference Reynolds number of 1,000 is used to define the mesh density
around the cylinder. Furthermore, instead of using each 10th sample as both validation and evaluation data,
the simulations at Reynolds numbers of 500 and 1,000 will be used as evaluation data. Next to that, each
10th sample will still be used as validation data during training. It is particularly interesting to evaluate how
well the model performs on data with a Reynolds number that it is not trained on. Each simulation generates
1,000 samples. Therefore, 18,000 training samples, 2,000 validation samples, and 2,000 evaluation samples are
defined.

The third step, called the cylinder mesh impact step, is similar to the second step. However, in this step, the
mesh densities are adjusted according to the Reynolds numbers used during the particular simulations. Here,
it is interesting to investigate the impact of varying meshes on the performance. Since the flow field will be

5.3. Evaluation Procedure 46

similar to the simulations performed in the cylinder Reynolds variation step, this effect can be measured by
comparing the results.

Step 4, called the airfoil AoA step, differs significantly from the first three steps. This test case involves flow
around the NACA 2412 airfoil instead of a cylinder. Next to that, instead of varying the Reynolds number,
the angle of attack will be adjusted across 22 simulations. Compared to the previous step, the flow and the
meshes differ considerably more between the simulations. At a high angle of attack, laminar flow separation
occurs, and a Karman street is formed in the wake. In contrast, at a low angle of attack, the flow remains
attached, and the flow converges to a relatively stable solution. The angle of attack will be varied between -5
and 17 degrees with steps of 1 degree. The evaluation data consists of the simulations at 0 and 10 degrees.
These angles of attack are selected because the lower angle corresponds to attached flow, while the higher angle
represents separated flow. Samples corresponding to more or less converged flow, typically observed in attached
flow, require only a small number of iterations to achieve convergence. Consequently, the performance of the
neural network is measured with less precision. To address this issue, the simulation time is reduced from 100
to 40 seconds.

Table 5-13 Summary of relevant information for the four-step CFD evaluation procedure.

1: Cylinder
baseline step

2: Cylinder Reynolds
variation step

3: Cylinder mesh
impact step

4: Airfoil
AoA step

N simulations 1 22 22 22

N samples (total) 20,000 22,000 22,000 22,000

Simulation time [s] 100 100 100 40

Constant mesh Yes Yes (use Re=1000) No No

Object Cylinder Cylinder Cylinder Airfoil (NACA 2412)

Re (Range) 1000 [250;1300], step = 50 [250;1300], step = 50 1000

AoA (range) - - - [-5;17], step = 1

Test data Each 10th sample Re = [500,1000] Re = [500,1000] AoA = [0,10]

Figure 5-5 Pressure field after 100 seconds for the cylinder baseline step [2].

5.3.3 Practical case studies

In this section, tests are established to investigate how engineers could use the model in real-world applications.
First, a test called "time cut-off" will be introduced. After this, a test is presented to investigate the impact of

5.3. Evaluation Procedure 47

the ratio between the number of training and evaluation simulations in the airfoil AoA step dataset. Regarding
the model sizes, a pressure field model size of 12 is utilized, while the correction model is of size 8. Note that
the sizes correspond to the number of channels in the refined convolution blocks.

5.3.3.1 Time cut-off

In this test, the model is trained on the first x% of the simulation and tested on the remaining part. In
practice, one could run a simulation and train the model during the same time. Then, after a certain part
of the simulation, the trained model could be used to decrease the simulation time of the remaining part of
the simulation. For this test, the simulation of the cylinder baseline step will be used, which is explained in
Section 5.3.2.1. The model is trained on the first 10%, 20%, 30%, and 40% of the simulation. However, the
number of samples used during training remains constant at 20,000. Figure 5-6 illustrates the state of the
pressure field at the cut-off times. After 10 seconds, the wake is just starting to develop. As a result, the
training data differs significantly from the test data, which consists of the remainder of the simulation. Looking
at the velocity field after 20 seconds, a short wake, including a Kármán street, is present. However, the shape
of the wake differs significantly from the developed wake illustrated in Figure 5-5. After 30 seconds, the wake
directly behind the object is developed. Here, it is interesting to see if the part of the wake that is developed
supplies the model with enough information to predict the pressure fields at other positions in the domain,
such as near the outlet. Finally, after 40 seconds, the wake is fully developed till around halfway through the
downstream domain.

(a) t=10s (b) t=20s

(c) t=30s (d) t=40s

Figure 5-6 Pressure fields after x seconds for the cylinder baseline step [2].

5.3.3.2 Varying Ratio of training and test cases.

The second practical case study is similar to the airfoil AoA step described in Section 5.3.2.1. However, instead
of using 20 simulations for training and 2 for evaluation, the ratio between the number of training and evaluation
simulations will be varied. Ideally, an engineer could use the first couple of simulations to train the model and,
subsequently, apply the model during a maximum number of simulations to reduce the total processing time.
Four levels of complexity are set up with varying numbers of training simulations. The levels are illustrated

5.3. Evaluation Procedure 48

in Figure 5-7. Here, the blue dots correspond to training simulations, and the orange dots correspond to
evaluation simulations. The first level is identical to the airfoil AoA step. Important information regarding each
level is stated in Table 5-14. Note that the number of training simulations is reduced by a factor of around 2
for each level. Therefore, to keep the number of training samples more or less constant, the number of training
samples per angle of attack is adjusted accordingly. Since the model is evaluated on several angles of attack at
four different levels, the number of evaluation samples is reduced from 1,000 to 500 per angle of attack. This is
done by selecting each 2nd sample from the dataset of the airfoil AoA step.

Table 5-14 Setup of the test that Varies the ratio of training and test cases.

Level 0 1 2 3

N train cases 20 11 6 3

N test cases 2 11 16 19

N samples 20,000 22,000 19,200 19,200

N samples per case 1,000 2,000 3,200 6,400

Figure 5-7 Illustration of the training and testing angle of attacks for each level.

5.3.4 Additional tests

Additional tests are performed to get more insight into the performance of the model. The tests are listed
below. For the models trained on CFD data, the pressure field model of size 16 is used, while for the correction
model, a size of 8 is used.

• Tolerance: Up till now, the error at which convergence is assumed has remained constant. However,
this parameter has a significant impact on the number of iterations required to reach convergence by the
linear solvers. Therefore, it is interesting to investigate how this tolerance impacts the performance of the
model. This will be investigated using the Perlin noise model with its corresponding dataset and the test
case of the cylinder mesh impact step.

• Generalization: To test the Generalization capabilities of the model, a model that is trained on the
Perlin noise dataset will be evaluated on the CFD test cases of the last two steps (the cylinder mesh
impact step and airfoil AoA step). For the pressure correction factor, the ground truth value is employed
to simplify the setup and allow for easier interpretation of the results.

5.4. Summary 49

5.4 Summary

In this chapter, the test setups were presented. The procedure to evaluate the model’s performance consists of
four phases. The performance will be measured in terms of the reduction in the number of iterations required
to reach convergence for two linear solvers: the monoscale Preconditioned Conjugate Gradient (PCG) solver
and the faster, multiscale Geometric Agglomerated Algebraic Multigrid (GAMG) solver.

In the first phase, the learning rate, loss function, and kernel complexity will be defined. For this, a dataset is
established using Perlin noise. This type of gradient noise can be tuned to resemble laminar flow to isotropic
turbulence. Hence, the dataset, which contains 21 meshes containing ellipses with varying thickness and angle
of attack, includes a diverse set of samples compared to the CFD datasets.

Next, four CFD datasets are established in four steps of increasing complexity. These datasets involve
URANS simulations around a cylinder for the first three steps and the NACA 2412 airfoil for the last step.
Notably, the first step, the cylinder baseline step, consists of only one simulation, while the other three steps
have 22 simulations to increase complexity. Next to that, the first two steps use only one mesh, while the last
two steps use a different mesh for each simulation. By analyzing and comparing the model’s performance on
the four datasets, factors that drive the performance of the model can be identified.

After this, two practical case studies are performed to investigate how engineers could just the model in
real-world applications. First, the model will be trained on the first x% of a simulation involving flow around
a cylinder, after which it is evaluated on the remainder of the simulation. The second test involves the 22
simulations of the airfoil AoA step (the 4th step) of the CFD datasets, which involves flow around an airfoil
at different angles of attack. However, the ratio between the number of training and evaluation simulations
will be varied to investigate if the model can be trained on a limited number of simulations, after which it is
applied during the other simulations.

The last phase involves additional tests to gain more insight into the model’s performance. This includes the
impact of the target tolerance of the linear solvers. Furthermore, generalization is assessed by testing the model
trained using the Perlin noise data on CFD data.

6
Results

In this chapter, the results are presented and discussed. First, the selection of the foundational parameters will
be treated in Section 6.1. Then, to understand the results in more detail, the main driving factor behind the
iterations required to reach convergence is identified in Section 6.2. Since the Perlin noise dataset deviates
significantly from the CFD datasets in terms of diversity, the model’s performance on this dataset will be
evaluated in Section 6.3. After the Perlin noise dataset is analyzed, the results of the CFD test cases are
discussed in Section 6.4. Then, the results of the practical case studies are treated in Section 6.5. Subsequently,
additional tests regarding the tolerance and generalizability capabilities of the model are discussed in Section 6.6.
Finally, Section 6.7 depicts a wrap-up with the key findings of this chapter

6.1 Foundational parameters

In this section, the results used to select the appropriate foundational parameters are discussed. First, the
learning rate will be evaluated, after which the loss function is selected. Finally, the kernel complexity is
treated.

6.1.1 Learning rate

The appropriate learning rate is selected using the training log, which is visualized in Figure 6-1. Here, the
dotted curves refer to the train losses, and the continuous curves refer to the validation losses. The graph shows
that the losses corresponding to the learning rates of 10−5 and 10−4 drop significantly slower than the other two
options. Therefore, the learning rate must be 10−3 or 10−2. Comparing the training and validation losses of
both options, it is clear that the losses corresponding to a learning rate of 10−2 drop quicker initially. However,
after around 30 epochs, the training loss of 10−3 surpasses 10−2, which indicates that an initial learning rate of
10−2 is too high. In this case, the adjustments to the model are too rough, causing the optimizer to overshoot
the minimum. Therefore, a learning rate of 10−3 is selected.

50

6.1. Foundational parameters 51

Figure 6-1 Training log for the learning rate options.

6.1.2 Loss function

Now, the loss function will be selected. The results of the different hyperparameter configurations are listed
in Table 6-1. Here, the RMSE refers to the root mean square error of the pressure. Furthermore, PCG
and GAMG refer to their respective reduction in the number of iterations needed to reach convergence. In
the first three cases, the physics-informed terms (PINN and FVM) share one hyperparameter. From this,
it is clear that the configuration that only employs the supervised loss performs best across all evaluation
metrics. Notably, the performance of options 2 and 3 shows no significant difference. This indicates that
the specific hyperparameter values chosen (5 and 10) are unlikely to affect the outcome of the selection procedure.

The last two options evaluate the individual performance of the two physics-informed loss terms. Tak-
ing these options into account, the option solely using the supervised loss still performs best at the two most
important metrics, PCG and GAMG. For the RMSE, the configuration utilizing the finite volume loss function
performs best, but only by a slight margin. Moreover, it is notable that both physics-informed loss functions
lead to a comparable reduction in iterations for both linear solvers. Overall, option 1 performs the best and
has been selected.

Table 6-1 Performance of the different loss function configurations.

Option Supervised PINN FVM RMSE PCG GAMG

1 1 0 0 0.386 48.170 2.147

2 1 5 5 0.401 37.888 1.844

3 1 10 10 0.393 39.411 1.860

4 1 5 0 0.399 43.674 2.090

5 1 0 5 0.385 43.808 2.050

6.1.3 Kernel complexity

To select the kernel complexity of the model, the first phase involves selecting the number of parameters of
the steps called "center-face" and "point-center". These steps form the first and last layers in the network,
respectively. The results are listed in Table 6-2. For all three evaluation criteria, the configuration with 4
parameters for the "center-face" step and 6 parameters for the "point-center" step performs best. Therefore,
it is convenient to select this option. Interestingly, adding 2 additional parameters in the "center-face" step
does not lead to a performance increment. This is due to overfitting, considering the relatively low number
of meshes in the training dataset. This step is more sensitive to overfitting because only two data points are

6.2. Number of iterations versus flow characteristics 52

present in each kernel operation. Although the dataset used likely impacts the selection procedure, it is decided
to select option 3. This is because the datasets used to evaluate the model’s performance on CFD data do not
include a more diverse set of meshes, which would allow for more complex kernels. Moreover, reducing the
number of parameters to either 2 in the first step or 3 in the final step would lead to overly simplistic kernels
that fail to effectively perform edge detection.

Table 6-2 Performance of the kernel complexity options involving variations in the first and last step.

Option center-face face-point point-point point-center RMSE PCG GAMG

1 2 6 6 3 0.399 46.901 2.122

2 4 6 6 3 0.386 48.170 2.147

3 4 6 6 6 0.375 50.713 2.180

4 6 6 6 6 0.380 49.937 2.179

Now that the kernel complexities for the first and last steps are defined, the remaining ones ("face-point"
and "point-point") will be determined. Note that the "point-point" step includes a self-loop. Therefore, its
corresponding edge attributes contain one additional element. Table 6-3 shows the performance of the three
configurations tested. In contrast to the previous phase, the results are less clear now. Looking at the RMSE,
option 2 outperforms option 3. As for the "center-face" step, this is due to overfitting. However, considering
that the RMSEs do not differ by a great margin, incorporating more meshes in the dataset will not likely
enhance the performance drastically. Looking at the criteria involving the linear solvers, option 2 performs best
for the PCG solver, while option 3 performs best for the GAMG solver. However, the differences in the results
are so minor that they can be assumed to be negligible. In the end, option 2 is selected over option 3 due to its
lower number of parameters in the kernel, which reduces the computational resources required during training.
Additionally, using six parameters in the kernel corresponds to the average number of source nodes involved in
each kernel operation, similar to the design principles of CNN kernels.

Table 6-3 Performance of the kernel complexity options involving the "face-point" and "point-point" steps.

Option center-face face-point point-point point-center RMSE PCG GAMG

1 4 5 5 6 0.377 48.290 2.14

2 4 6 6 6 0.375 50.713 2.180

3 4 7 7 6 0.388 50.586 2.188

6.2 Number of iterations versus flow characteristics

Before discussing the results of the test cases, it is worth investigating what factors drive the number of
iterations required to reach convergence. To do this, the Perlin noise dataset is utilized due to its diverse
set of samples representing various flow characteristics. Samples with a very low and a very high number of
reference iterations are compared. This is done for both linear solvers, which utilize a zero-vector as the first guess.

While analyzing the samples, it turned out that the number of iterations required by both solvers corre-
lates strongly. The histogram shown in Figure 6-2 is employed to check this. This figure depicts the iterations
needed for the PCG solver as a function of the iterations required by the GAMG solver. Here, the red error
bars correspond to the standard deviation. Due to its strong correlation and relatively small standard deviation
compared to the magnitude of the bars, it is assumed that the main iteration driver is identical for both solvers.

6.3. Performance on Perlin noise 53

Figure 6-2 The number of iterations by the PCG solver as a function of the number of iterations required by the
GAMG solver.

Now, two samples that require different numbers of iterations are compared. Figure 6-3 shows a pressure field
requiring a relatively low number of iterations: 24 for the PCG solver and 4 for the GAMG solver. In contrast,
Figure 6-4 corresponds to a field that requires a relatively high number of iterations, 191 for the PCG solver and 7
for the GAMG solver. The difference between the two fields is clear. Fields containing prominent high-frequency
oscillations require significantly fewer iterations than fields with dominant low-frequency oscillations. This
observation is confirmed by checking additional samples. At first, this phenomenon seems counter-intuitive. A
complex Perlin-noise field, consisting of a mix of harmonics corresponding to turbulent flow, would require more
iterations than a simpler field consisting of a single low-frequency oscillation corresponding to laminar flow.
However, this observation implies that it is the other way around. The reason for this is that for laminar-like
flow, small differences in individual fluxes through the faces have a relatively big impact on the total fluxes into
the cells. This implies that the matrix system is ill-conditioned. Linear solvers typically have more difficulties
with solving these ill-conditioned problems, resulting in more iterations required to reach convergence [29].

Figure 6-3 Perlin noise field corresponding to a low
number of iterations required to reach convergence.

Figure 6-4 Perlin noise field corresponding to many
iterations required to reach convergence.

6.3 Performance on Perlin noise

Considering that the Perlin noise dataset governs a much more diverse set of samples than the CFD datasets,
it is worth analyzing the model’s performance on this dataset in more detail. First, the performance across
different flow regimes will be examined. After this, the performance on training versus evaluation data will be
examined to investigate the generalization capabilities of the model.

6.3. Performance on Perlin noise 54

6.3.1 Performance per flow regime

In this section, the performance across different flow regimes will be investigated. However, one must first be
introduced to the metric that will be used to examine the model’s performance throughout this chapter. The
performance will evaluated in terms of the fractional reduction in the number of iterations, which is shown
in Equation 6-1. Here, iref refers to the number of iterations required to reach convergence without using
the neural network, while imodel represents the number of iterations when the neural network is utilized. For
instance, a fractional reduction of 0.4 implies that the number of iterations is reduced by 40%.

f =
iref − imodel

iref
(6-1)

Histograms are created to plot the fractional reductions as a function of the reference number of iterations. Here,
high reference values correspond to laminar-like flow, whereas low reference values correspond to turbulent-like
flow. Figure 6-5a depicts the PCG solver and Figure 6-5b the GAMG solver. The blue bars indicate the
average fractional reductions, and the red bars show their corresponding standard deviations. Additionally, the
values at the base of each bar represent its corresponding number of samples. Looking at the PCG solver, it
is interesting that the fractions first decrease with increasing reference iterations, after which they start to
increase from around 150 reference iterations. Although the standard deviations are relatively high compared
to the observed trend, it is obvious that no real outliers are present in the trend.

Looking at the GAMG solver, the observed trend is more pronounced. This implies that the model yields
better performance for laminar-like flow cases than for turbulent-like cases, although by a slight margin. This
is likely attributed to the simpler nature of laminar flow fields, which are probably easier to predict. When
comparing the two linear solvers, it is worth looking at the standard deviations. The standard deviations of the
GAMG solver are significantly smaller compared to the PCG solver. This implies that the performance of the
GAMG solver is more consistent. Interestingly, the performance is significantly better than one would expect
from the reduction in the RMSE. In fact, the average RMSE across the dataset is 0.34. Considering that the
initial residual is in the order of magnitude of 1, and the target tolerance is 10−3, the fractional decrease in the
number of iterations is significantly greater than the corresponding fractional reduction in RMSE.

(a) Fractional reduction for the PCG solver. (b) Fractional reduction for the GAMG solver.

Figure 6-5 Fractional reduction of the number of iterations as a function of the reference number of iterations for
the Perlin noise dataset test case. The blue bars indicate the average value, and the red bars indicate the corresponding

standard deviations. The numbers at the bottom of the bars refer to the number of data points per bar.

6.3.2 Performance on training versus evaluation data

Now, the generalization capabilities of the model are examined by evaluating its performance on the training
data and the evaluation data. Figure 6-6a and Figure 6-6b present histograms illustrating the fractional
reductions obtained from the individual meshes for the PCG and GAMG solvers, respectively. Here, the

6.4. CFD Test cases 55

blue bars represent the performance on training data, whereas the orange bars represent the performance on
evaluation data. Note that no training data is present for the evaluation meshes. Furthermore, it is important to
note that for the meshes part of the training data, only 100 samples could be used to measure the performance
of unseen samples, making the individual performance per mesh less reliable.

Looking at the PCG solver, the results are very interesting. A significant difference in performance be-
tween the training and evaluation data is observed. Considering that the performance on the evaluation meshes
is similar to the performance on the evaluation data of the training meshes, the difference in performance is
due to the samples and not due to the variation in meshes. This implies that the model can adapt effectively
to unseen meshes, while it has more difficulties with unseen samples.

Considering the GAMG solver, the performance is remarkably constant across all test cases. In fact, no
performance drop is observed when testing on evaluation data instead of training data. Furthermore, no
performance difference is observed between training and evaluation meshes. This implies that the generalizability
properties of the model are better for the GAMG solver. However, it should be said that the performance of
the PCG solver on training data is remarkably good. Therefore, although the GAMG solver demonstrates
better generalizability properties, both solvers achieve similar performance on the evaluation data, with the
PCG solver performing slightly better.

Finally, it is notable that the performance on the first three meshes, which contain no object, does not
differ significantly from the other meshes, which do include objects. This is interesting as the meshes with
objects contain a wide range of cell sizes, while for the first three meshes, the sizes of the cells are all of similar
size. Considering that the source term is directly proportional to the circumference of each cell, the source
terms of the first three meshes should vary considerably less in scale than the source terms corresponding to
the other meshes. The fact that this does not lead to a performance drop for the meshes containing objects
implies that the model copes well with these differences in scale. Additionally, the node distribution on the first
three meshes is more homogeneous than those with objects. The fact that this does not affect the performance
indicates that the model copes well with irregular node distributions.

(a) Fractional reduction for the PCG solver. (b) Fractional reduction for the GAMG solver.

Figure 6-6 Comparison of the fractional reduction in the number of iterations required for the PCG and GAMG
solvers on the Perlin noise dataset. The blue bars correspond to the performance of training data, while the orange bars

represent the performance on evaluation data.

6.4 CFD Test cases

In this section, the results of the four-step CFD evaluation procedure are discussed. In short, the cylinder
baseline step (step 1) involves a single simulation around a cylinder. Then, the cylinder Reynolds variation step
(step 2) involves 22 simulations around a cylinder for different Reynolds numbers but using the same mesh for
every simulation. Step 3, called the cylinder mesh impact step, is identical to the previous step but variates the

6.4. CFD Test cases 56

mesh density around the object based on the Reynolds number. Finally, the airfoil AoA step (step 4) governs
22 simulations involving flow around the NACA 2412 airfoil at different angles of attack but with a constant
Reynolds number.

The section is structured as follows. First, the results of the cylinder baseline step are presented, after
which the performance of all four steps will be examined and compared. After this, the difference in perfor-
mance between testing the model on training and evaluation data is discussed. Finally, the performance in
terms of time-saving, taking the processing time of the model into account, will be presented.

6.4.1 Cylinder baseline step

First, the results of the cylinder baseline step are discussed. Figure 6-7a and Figure 6-7b show the reduction
in number of iterations for the PCG and GAMG solvers, respectively. The results are plotted as a function
of the size of the pressure field model (the model that predicts the normalized pressure field). Note that the
model sizes are expressed in the number of channels present in the refined convolution blocks of the graph
neural network, as discussed in Section 4.2. The different envelopes correspond to the correction models, which
predict the pressure correction factor. The configuration that utilizes the ground truth value is also included
to evaluate the performance of the correction model. Looking at the configurations that employ this ground
truth pressure correction factor, the reduction in the number of iterations ranges between 80 and 108 for the
PCG solver and 2.1 and 3.05 for the GAMG solver. Although this implies that larger models perform better,
one must understand that large models require significantly more computational resources. The number of
operations per convolution layer is proportional to the model size squared, as depicted in Equation 6-2. This
means the largest model requires 16

6

2
= 7.11 times as many operations per layer as the smallest one. Since the

goal is to accelerate fluid simulations, the question arises of where the optimum lies between computational
efficiency and the model’s accuracy. However, this optimum is system-dependent as the processing time of the
CFD simulation and the neural network differs from computer to computer. The netto time saved by using the
neural network will be discussed in Section 6.4.5.

noperations = nchannelsin · nkernel · nchannelsout
(6-2)

Looking at the envelopes, it is clear that the performance tapers off with increasing model size. This is as
expected since the root mean square error (RMSE) does not decrease by orders of magnitude for larger model
sizes. Consequently, only a fraction of the total factor between the initial and target residual is reduced
additionally. Regarding the correction model, its size has only a minor effect on the performance. Only for the
PCG solver does the correction model with a size of 6 perform slightly worse. Notably, the performance drop
using the correction model instead of the ground truth value is less for the GAMG solver. This implies that
the GAMG solver is less sensitive to the overall magnitude of the predicted field than the PCG solver. The
difference between the ground truth and the correction models becomes larger with increasing pressure field
model size for both solvers. This phenomenon can be attributed to the fact that as the size of the pressure field
model increases, its output becomes increasingly accurate. Therefore, the inaccuracy of the correction model
takes up a larger proportion of the total error of the predicted pressure field.

6.4. CFD Test cases 57

(a) Number of iterations saved for the PCG solver. (b) Number of iterations saved for the GAMG solver.

Figure 6-7 Reduction in the number of iterations for the PCG and GAMG solvers as a function of the pressure
field model size for the cylinder baseline step. The envelopes represent the performance for different correction model

sizes and the ground truth pressure correction factor.

Figure 6-8a and Figure 6-8b show the fractional reduction for the PCG and GAMG solvers, respectively. By
comparing the two graphs, it is interesting that the network yields better performance for the PCG solver. The
PCG solver achieves a reduction of up to 61%, whereas the GAMG solver yields a maximum decrease of around
39%. Additionally, the performance varies by about 15% across the pressure field model sizes for both solvers.
Finally, from these graphs, it is even more clear that the impact of the correction model size is very small.

(a) Fractional reduction for the PCG solver. (b) Fractional reduction for the GAMG solver.

Figure 6-8 Fractional reduction in iterations for the PCG and GAMG solvers as a function of the pressure field
model size for the cylinder baseline step. The envelopes represent the performance for different correction model sizes

and the ground truth pressure correction factor.

6.4.2 The four-step CFD evaluation procedure

Since the results across the four steps follow similar trends, they will not be examined in detail separately.
Instead, they are presented together and compared. Because the correction model size has a marginal impact
on performance, it has been decided to use the ground truth correction value and one correction model with
a size of 8. This size is selected because a size of 6 yields slightly less accurate and consistent results, while
increasing the size further does not significantly enhance performance.

Regarding the results involving the reduction in the number of iterations, one must be aware that the

6.4. CFD Test cases 58

reference iterations differ between the steps. Table 6-4 depicts these reference values. Looking at the first three
steps, the reference iterations are relatively constant, although they are a bit lower for the cylinder baseline
step. The airfoil AoA step requires significantly fewer iterations. This is due to the attached flow at an angle
of attack of 0 degrees, resulting in less flow dynamics in the wake of the field and, therefore, fewer iterations
required to reach convergence.

Step PCG GAMG

1: Cylinder baseline step 175.78 7.74

2: Cylinder Reynolds variation step 187.12 8.00

3: Cylinder mesh impact step 186.54 8.10

4: Airfoil AoA step 68.72 4.92
Table 6-4 Reference number of PCG and GAMG iterations for each step

Figure 6-9a and Figure 6-9b illustrate the reduction in the number of iterations by the PCG and GAMG solvers,
respectively, for all four test cases. From a general perspective, it is interesting to see that the performance
difference between using the ground truth pressure correction factor and the correction model is relatively
constant for both linear solvers across all test cases. This implies that the performance of the correction
model is consistent. Next, a consistent performance improvement is observed for increasing pressure field
model size. However, as for the cylinder baseline step, the performance gain for the other test cases also
tapers off for larger models. Furthermore, it is important to note that the envelopes are not very smooth and
contain some slight inconsistencies. These inconsistencies are likely attributed to the fact that the model is
trained to predict the pressure field and not directly to reduce the number of iterations. This reduction can be
interpreted as an indirect consequence of the improved prediction of the pressure field. Given that the linear
solvers are sensitive to specific properties of the initial guess, some models might accidentally align better with
these properties than others. As a result, it is important to look at the whole trend instead of a single data point.

To compare the results across the different steps in more detail, it is essential to also consider the frac-
tional reduction in the number of iterations. These fractions are illustrated in Figure 6-9c and Figure 6-9d for
the PCG and GAMG solvers, respectively. In essence, the reduction in the number of iterations is normalized
with respect to the reference number of iterations depicted in Table 6-4. From this, it is of particular interest
that the performance difference across the steps is considerably smaller for the GAMG solver compared to the
PCG solver. This implies that the performance of the GAMG solver is less sensitive to its specific test case,
which is in line with the results regarding the Perlin noise dataset.

First, the performance difference between the cylinder baseline step (step 1) and the cylinder Reynolds
variation step (step 2) is discussed. The only difference between the two steps is that the second one includes
multiple simulations with varying Reynolds numbers. Looking at the PCG solver, the performance regarding
the fractional reduction in the number of iterations is consistently worse for the second step. This is logical
since this step involves a more complex dataset, resulting in a slight performance drop. However, one must note
that the difference in performance is not significant. This is probably because the same mesh is used for all test
cases. Furthermore, since the inlet velocity is constant across all simulations (the kinematic viscosity controls
the Reynolds number), the frequency of the Kármán vortex street remains unchanged, yielding relatively similar
wakes. A similar result is observed for the GAMG solver. However, the difference in performance between the
two steps is less pronounced than for the PCG solver.

Now, the cylinder Reynolds variation step (step 2) will be compared to the cylinder mesh impact step
(step 3). The only difference between these steps is that for the third step, the mesh density at the object is
adjusted to the Reynolds number. For the PCG solver, A significant performance drop, larger than between
the first two steps, is observed. This implies that varying the mesh affects the performance more than changing
the Reynolds number. For the GAMG solver, a similar trend is observed, although less pronounced.

Finally, looking at the airfoil AoA step (step 4), a significant decrease in the number of iterations saved
is observed for both solvers. Since the number of iterations saved is directly proportional to the potential drop
in processing time, flow around an airfoil is less suited to be accelerated by the neural network than flow around

6.4. CFD Test cases 59

a cylinder. Not only with respect to this criterion but also in terms of the fractional reduction, the airfoil AoA
step performs significantly worse compared to the other three steps. The performance drop between the last
two steps is also considerably larger than between the 2nd and 3rd steps. The reason behind this phenomenon
will be discussed in the next section.

(a) Fractional reduction of the number of iterations for the
PCG solver.

(b) Fractional reduction of the number of iterations for the
GAMG solver.

(c) Fractional reduction for the PCG solver. (d) Fractional reduction for the GAMG solver.

Figure 6-9 performance of the four-step CFD evaluation procedure for the PCG and GAMG solvers, as a function
of the pressure field model size for the cylinder baseline step. For each step, the ground truth correction factor and a

correction model of size 8 are utilized.

6.4.3 Performance on training versus evaluation data

To examine the results in more detail, the models of the last three steps are also evaluated on their training
data. This is done for the pressure field model with a size of 16. Figure 6-10a and Figure 6-10b show the results
for the PCG and GAMG solvers, respectively. Here, the fractional reductions are plotted against the Reynolds
number for the cylinder steps and against the angle of attack for the airfoil AoA step. Furthermore, the two
vertical lines indicate the evaluation simulations. Note that for the training simulations, the first 90% of each
simulation is used to evaluate the model, such that the samples used for the validation loss are not used. Next
to this, since the cylinder baseline step involves just one simulation, this step is not present in the figures.

First, the results of the PCG solver are discussed. The cylinder Reynolds variation step (step 2) and
cylinder mesh impact step (step 3) show only a slight drop in performance between the training data and
evaluation data. This implies that the training and evaluation data match closely. Furthermore, the drop
in performance between the two steps, which was observed in the previous section, is also observed for the

6.4. CFD Test cases 60

training data. This is reasonable because the unstructured nature of the meshes requires the model to adapt
to an increasing number of irregularities in the node distributions across the entire mesh, making the fitting
process more complex. For the airfoil AoA step, a significant drop in performance is observed when the
model is tested on evaluation data compared to its performance on the training cases. This is probably due
to the fact that the training and evaluation data differ considerably in this step. When changing the angle
of attack, the flow field changes significantly. Therefore, while the model is trained on the other angles of
attack, the training data does not resemble the evaluation data to the same extent as it does for the other
steps. This has a particularly strong impact on the PCG solver. As discussed in Section 6.3.2, the PCG solver
performs better on training data than on evaluation data. However, in the first three steps of the CFD test
cases, the evaluation data closely aligns with the training data, leading to very strong performance, which
aligns with the performance of the Perlin noise model on its training data. This is not the case for the airfoil
AoA step. For this step, the discrepancy between the training and evaluation data results in a performance drop.

Looking at the GAMG solver, the performance on the cylinder Reynolds variation step and cylinder mesh
impact step does also not differ between the training and evaluation data. Furthermore, as for the Perlin noise
results discussed in Section 6.3.2, the performance on training data is considerably lower than for the PCG
solver. Next to that, the first two steps also demonstrate no difference in performance between the evaluation
and training data. This is convenient since the evaluation and training data closely align, as follows from the
observation that the PCG solver also performs equally well on training and evaluation data. Looking at the
airfoil AoA step, the results are more interesting since the performance differs significantly across the angles of
attack. This is due to the fact that the angle of attack has a significant impact on the flow field around the
airfoil. However, it is interesting that for an angle of attack of 10 degrees, the performance is almost as good as
for the other steps. At this angle, the airfoil experiences laminar flow separation, which implies that a Kármán
vortex street is present in the wake. Therefore, the pressure field that must be solved is relatively similar to
that of the steps involving a cylinder. The performance is significantly worse at an angle of attack of 0 degrees,
which involves attached flow. Other low angles of attacks, which are part of the training data, also demonstrate
poor performance. This implies that the model does not perform well on these relatively simple, attached flows.

(a) Fractional reduction for the PCG solver. (b) Fractional reduction for the GAMG solver.

Figure 6-10 Fractional reduction in the number of iterations for the PCG and GAMG across the training and
evaluation simulations. A pressure field model of size 16 is used, while for the correction factor, the ground truth value

and a correction model of size 8 are utilized.

6.4.4 Performance variability

In this section, individual samples are considered to get insight into the consistency of the model. The reduction
in number of iterations of individual samples is plotted in Figure A-2a and Figure A-3a for the cylinder mesh
impact step (step 3) and airfoil AoA step (step 4), respectively. For this, the pressure field model of size 16 is
utilized. The ground truth correction factor is used for the normalization factor to allow for a more precise

6.4. CFD Test cases 61

interpretation of the results. Only the PCG solver is treated since the GAMG solver requires too few iterations
to perform this analysis. The colors indicate the particular test simulation. Looking at the cylinder mesh
impact, the results differ quite significantly between the two Reynolds numbers. For the case with a Reynolds
number of 500, two trends are present, one overlapping with the data corresponding to a Reynolds number of
1000, yielding good performance, and one with rather bad performance. The latter one shows an increase in
iterations required to reach convergence for a low number of reference iterations. This observation, along with
the weak correlation between the reference iterations and iterations saved, implies that the performance of the
PCG solver is relatively inconsistent. the airfoil AoA step confirms this image. Here, the correlation is weak as
well. Note that the test case at an angle of attack of 10 degrees includes more flow dynamics than at 0 degrees,
yielding a wider variety of reference iterations.

(a) Number of iterations reduced for the cylinder mesh impact
step.

(b) Number of iterations reduced for the airfoil AoA step.
figure on one line

Figure 6-11 Scatter plots showing the reduction in the number of iterations as a function of the reference number
of iterations for the cylinder mesh impact and airfoil AoA steps. The PCG solver is used for this. Each color represents

an evaluation simulation.

6.4.5 Time saving

In this section, the performance in terms of actual time saving to solve the pressure Poisson equation is discussed.
To speed up solving this equation, both the number of iterations reduced by the linear solver and the processing
time of the neural network must be considered. If the iterations saved outweigh the processing time, time is
saved, and the fluid simulation is accelerated. To measure this, the processing time of the network is expressed
in an equivalent number of iterations. This can be interpreted as the number of iterations that the linear solver
can perform at the same time as the processing time of the neural network. By subtracting this value from the
number of iterations reduced, the net fractional reduction in processing time can be determined, as depicted in
Equation 6-3. Here, imodel refers to the reduction in number of iterations after the model is applied, iref to
the reference iterations, tmodel to the processing time of the network, and titer to the processing time of one
iteration by the linear solver. If the net reduction is above 0, time is saved.

fnetto =
iref − imodel − tmodel

titer

iref
(6-3)

Figure 6-12a and Figure 6-12b show the net fractional reduction as a function of the pressure field model size
for the PCG and GAMG solvers, respectively. The results of the cylinder mesh impact step are used due
to the extra large models available. The results are plotted versus the size of the pressure field model, and
the individual envelopes represent different correction model configurations. It is clear that using the ground
truth correction value yields better performance than using the correction model, which requires additional
processing time. However, for use cases where the least-square method, which is discussed in Section 4.7.3.1,
can be applied, the performance will be similar to the ground truth value.

6.5. Practical case study 62

Looking at the performance of the PCG solver, a performance peak is observed for a pressure field model size
of 16. Here, the net fractional reduction is around 40% for the ground truth correction factor and around 33%
for the correction models. It is interesting to see that the size of the correction models does not impact the
fractions and, therefore, the processing time of the two combined neural networks. This is because the GPU
memory is not fully utilized during testing. Therefore, the processing time is invariant of the model sizes for
most configurations. Only the two largest pressure field model sizes required a higher processing time. It is
very important to note that these results are system-dependent. Looking at the GAMG solver, the performance
is worse. The performance peak is still observed at a pressure field model size of 16, but the fraction is slightly
below 0 for the configurations that use the correction model. This implies that using the neural network does
not result in a reduction of simulation time.

The significant difference in performance between the PCG and GAMG solver is partly due to the larger
fractional reduction for the PCG solver. The processing time of the linear solvers plays another important role.
It is important to note that the GAMG solver is approximately twice as fast as the PCG solver. Consequently,
the processing time required by the neural network corresponds to relatively more GAMG iterations than PCG
iterations, leading to relatively worse performance for the GAMG solver.

(a) Net fractional reduction for the PCG solver. (b) Net fractional reduction for the GAMG solver.

Figure 6-12 The net fractional reduction in processing time for the PCG and GAMG solvers as a function of the
pressure field model size for the cylinder baseline step. The envelopes represent the performance for different correction

model sizes and the ground truth pressure correction factor.

6.5 Practical case study

In this section, the results of the practical case studies are discussed. First, the time cut-off test is treated,
where models trained on the initial x% of the simulation are evaluated on the remaining portion. For this, the
simulation of the cylinder baseline step is used. After this, the test involving a varying number of training
simulations is examined. For this, the simulations of the airfoil AoA step are used, which govern multiple
simulations of the NACA 2412 airfoil at different angles of attack. For both tests, a pressure field model of size
12 is used. For the pressure correction factor, the ground truth value and the correction model with a size of 8
are utilized.

6.5.1 Time cut-off

First, the time cut-off test is discussed. This test involves a procedure where an engineer uses the first part of a
simulation as training data, after which the model accelerates the remaining part of the simulation.

Figure 6-13 shows the fractional reduction in the number of iterations as a function of the time cut-off,
where only test samples beyond the cut-off time are used to evaluate the performance. For a cut-off time of 100
seconds, the complete dataset is utilized as a reference. Note that this test case is identical to the test setup

6.5. Practical case study 63

of the cylinder baseline step, which involves a single simulation around a cylinder. Looking at Figure 6-13a,
which shows the reduction in number of iterations for the PCG solver, it is interesting to see that for a cut-off
time of 10 seconds, the model performs worse compared to the reference data. The GAMG solver shows an
improvement, although it is substantially lower than for higher cut-off times. Both solvers demonstrate a strong
initial improvement in performance when increasing the cut-off time, after which the trend stagnates. This is
logical as the wake is fully formed after around 60 seconds. Therefore, after 40 seconds, most properties of the
fully formed wake are more or less present in the training data.

(a) Fractional reduction for the PCG solver. (b) Fractional reduction for the GAMG solver.

Figure 6-13 Fractional reduction in the number of iterations as a function of the cut-off time for the GAMG and
PCG solver. For this, the simulation of the cylinder baseline step is used. For the correction factor, the ground truth

value and a correction model of size 8 are utilized.

Next, it is interesting to see how the performance evolves in the simulation. For instance, the model with a
time cut-off of 10 seconds may generate accurate results just after this instant, but its performance drops as
time progresses. Figure 6-14a shows the iterations saved over time for the PCG solver, whereas Figure 6-14b
shows the performance for the GAMG solver. Subsequent data points may differ significantly from each other,
reducing the readability of the graph. To address this, the average of the 51 closest data points is used for
plotting, corresponding to a time window of 2.55 seconds. Overall, it is interesting that the performance
remains constant throughout the simulation. Next to that, time-wise oscillations are present for all models.
The oscillations all have the same frequency, which corresponds to the frequency of the Kármán vortex street.
Hence, this phenomenon is due to the flow characteristics instead of the cut-off times. Finally, looking at the
difference between the ground truth correction factor and the correction model, it is notable that the difference
is less pronounced for the PCG solver than for the GAMG solver.

6.5. Practical case study 64

(a) Number of iterations saved for the PCG solver. (b) Number of iterations saved for the GAMG solver.

Figure 6-14 The reduction in the number of iterations required to reach convergence for the PCG and GAMG
solver throughout the simulation of the cylinder baseline step. The different colors indicate the cut-off times used for
the training data of the models. For the correction factor, the ground truth value and a correction model of size 8 are

utilized.

6.5.2 Varying number of train cases

The second practical case study involves the test where the number of training angles of attack is varied for flow
around an airfoil. This test is explained in Section 5.3.3.2. In short, let us consider a case where an engineer
must perform multiple simulations involving flow around an airfoil at different angles of attack. In that case,
the model could be trained on the first couple of simulations, after which it can accelerate the remaining simu-
lations. This section discusses how the number of training simulations impacts the performance of this procedure.

Figure 6-15a and Figure 6-15b show the reduction in the number of iterations for the PCG and GAMG
solvers, respectively. The results are plotted as a function of the angle of attack. The dotted data points
correspond to the test cases, while angles of attack without dots correspond to training data. Looking at the
PCG solver, the performance seems relatively similar for the different test cases, except for the case with only
three training cases. For this case, a significant performance drop is observed at an angle of attack of around 10
degrees. The number of iterations increases significantly compared to the reference data. This behavior is logical,
as it occurs around this angle of attack where the flow transitions from attached to separated. Consequently,
the flow characteristics of the training angles of attack may differ significantly from those of the test cases.
This phenomenon is not observed for the GAMG solver, as the performance is relatively constant across all
models. The fact that the PCG solver is more sensitive to the model’s output aligns with the observations
made in the time cut-off test, where a cut-off time of 10 seconds yielded significantly worse performance for the
PCG solver compared to the GAMG solver.

6.5. Practical case study 65

(a) Number of iterations saved for the PCG solver. (b) Number of iterations saved for the GAMG solver.

Figure 6-15 The Reduction in the number of iterations for the PCG and GAMG solvers as a function of the angle
of attack for the test involving a varying number of training angles of attack. The colors indicate the simulation

configuration. The dotted data points correspond to the test cases, while the data points without dots correspond to
training data. For the correction factor, the ground truth value and a correction model of size 8 are utilized.

Figure 6-16a shows the fractional reduction in the number of iterations for the PCG solver. From this graph, it
is clear that the performance is not as constant across the models as it seemed in Figure 6-15a. The model
with the most training cases has an average fractional reduction of around 0.4. In contrast, the green line,
corresponding to the case with only six training cases, has an average fraction of around 0.2. This implies a
significant difference in potential time-saving. Furthermore, it is notable that the performance gap between
using the ground truth correction factor and the model increases when the number of training cases decreases,
which is as expected. Looking at Figure 6-16b, which shows the fractional reductions for the GAMG solver, the
difference in performance between the models is smaller compared to the PCG solver, particularly at higher
angles of attack. This is interesting as the flow at high angles of attack is separated, while the flow at low
angles of attack remains attached. This implies that the model’s performance is more stable for separated flows,
requiring more reference iterations.

(a) Fractional reduction for the PCG solver. (b) Fractional reduction for the GAMG solver.

Figure 6-16 The fractional reduction for the PCG and GAMG solvers as a function of the angle of attack for the
test involving a varying number of training angles of attack. The colors indicate the simulation configuration. The

dotted data points correspond to the test cases, while the data points without dots correspond to training data. For the
correction factor, the ground truth value and a correction model of size 8 are utilized.

6.6. Additional tests 66

6.6 Additional tests

This section treats the additional tests. First, the effect of the target tolerance is discussed. Then, the
generalization capabilities of the model are analyzed in more depth by evaluating a model trained on the Perlin
noise dataset using CFD data.

6.6.1 Tolerance

Now, the effect of the linear solver’s target tolerance on the model’s performance will be discussed. First, the
model used during step 3 of the CFD test cases is analyzed, after which the model trained on Perlin noise is
treated. For the pressure field model, a size of 16 is used.

6.6.1.1 CFD data

First, the model used during the cylinder mesh impact step is analyzed. Figure 6-17a depicts the average
reduction in the number of iterations by the PCG solver as a function of the target tolerance. The results
are surprising since the graph shows a pronounced peak for a tolerance of 10−6. For smaller tolerances, the
number of iterations is significantly lower. This is remarkable, as the total number of iterations increases when
the tolerance decreases. Intuitively, one would expect that the neural network lowers the initial residual by
a certain factor, equivalent to a specific number of iterations. Then, the linear solver is used to reduce the
error further till convergence is reached. However, the graph implies that more complex dynamics are present
that define the reduction in the number of iterations. This aligns with the observation made in Section 6.3.1,
where the fractional reduction in the number of iterations was significantly higher than the reduction in RMSE.
Looking at Figure 6-17b, which depicts the reduction in the number of iterations by the GAMG solver, this
phenomenon is less pronounced. In this case, the performance peaks at a tolerance of 10−7. However, the peak
is significantly less strong, and the number of iterations saved is relatively constant for tolerances between 10−8

and 10−6. Fewer iterations are saved for higher tolerances, which is logical considering the smaller decrement
in overall error that must be achieved.

(a) Number of iterations saved for the PCG solver. (b) Number of iterations saved for the GAMG solver.

Figure 6-17 The reduction in the number of iterations as a function of the target tolerance of the linear solvers
involving the test case of the cylinder mesh impact step. For the correction factor, the ground truth value and a

correction model of size 8 are utilized.

Figure 6-18a and Figure 6-18b show the fractional reduction in the number of iterations as a function of the
tolerance. As expected, this fraction increases with increasing target tolerances. This is due to the decreasing
number of reference iterations. Looking at the difference between the ground truth correction factor and the
correction model, it is notable that the fraction is invariant with the tolerance for the GAMG solver. However,
in the absolute number of iterations saved, the correction model works less well for smaller tolerances. Looking
at the PCG solver, the difference in fraction increases for increasing tolerances.

6.6. Additional tests 67

(a) Fractional reduction for the PCG solver. (b) Fractional reduction for the GAMG solver.

Figure 6-18 The fractional reduction in the number of iterations as a function of the target tolerance of the linear
solvers involving the test case of the cylinder mesh impact step. For the correction factor, the ground truth value and a

correction model of size 8 are utilized.

6.6.1.2 Perlin noise data

Now, the effect of the target tolerance will be discussed for the model trained on Perlin noise. Due to the
relatively large and constant initial error, a wider range of tolerances could be tested. Figure 6-19a shows the
number of iterations saved by the PCG solver. Here, the same phenomenon as observed for the CFD data is
present. However, the peak is shifted around 2 to 3 orders of magnitudes, which is similar to the difference in
the initial error between both datasets. This implies that the performance of the PCG solver depends greatly
on the ratio between the initial error and the target error. Figure 6-19b shows the reduction in the number of
iterations for the GAMG solver. Here, the performance is relatively constant for low target tolerances, after
which it starts to drop from a target tolerance of around 10−3. This is in line with the results involving the
CFD data. Note that for a target tolerance of 10−1, the number of iterations saved is very low. This is because
the reference number of iterations is often only 1. However, it turns out that the model is not capable of
reducing the overall error far enough to replace this single iteration. In fact, at least one iteration by the linear
solver is required to reach convergence for all test samples throughout this research. This is probably because
the target tolerance is based on the maximum error in the field instead of the average. Although the model can
significantly reduce the average error, the maximum error is higher than this value.

(a) Number of iterations saved for the PCG solver. (b) Number of iterations saved for the GAMG solver.

Figure 6-19 The reduction in the number of iterations as a function of the target tolerance of the linear solvers
involving the test case of the Perlin noise dataset.

6.6. Additional tests 68

Figure 6-20a and Figure 6-20b depict the fractional reductions as a function of the tolerance for the PCG
and GAMG solvers, respectively. Looking at the PCG solver, it is notable that the number of iterations is
reduced by 75% for a tolerance of 10−1. This implies that in the case of a very low processing time of the
neural network, significant improvements can be made in terms of the processing time if relatively large target
tolerances are used. Looking at the GAMG solver, the same trend is observed as with the CFD case. However,
due to the samples requiring a single iteration by the reference data, the fraction is relatively high for a target
tolerance of 10−1. Therefore, the neural network should not be utilized if the GAMG solver is combined with a
target tolerance that is just below the initial tolerance.

(a) Fractional reduction for the PCG solver. (b) Fractional reduction for the GAMG solver.

Figure 6-20 The fractional reduction in the number of iterations as a function of the target tolerance of the linear
solvers involving the test case of the Perlin noise dataset.

6.6.2 Generalization

To test the generalization capabilities of the graph neural network in more depth, the model trained on
Perlin-noise is evaluated on the CFD test cases of the cylinder mesh impact step (step 3) and the airfoil AoA
step (step 4). For this, the ground truth correction factor is utilized. Table 6-5 lists the average reduction in
the number of iterations for both solvers and the corresponding fractional reductions. From these results, it is
clear that the Perlin noise model performs very poorly on the CFD test cases, especially for the PCG solver. A
significant increase in iterations is observed for this solver. Looking at the fractional reductions, this increment
is between 21% to 57% of the reference number of iterations, depending on the test case. For the cylinder mesh
impact step, a slight performance gain is observed for the GAMG solver, accounting for only 6.3% of the total
number of iterations. Considering the processing time of the neural network, this would likely result in an
increase in processing time. It is interesting to note that the model performs better for flow around a cylinder
than flow around an airfoil.

Table 6-5 Results of the Generalizability test.

Fractional
reduction PCG

Fractional
reduction GAMG

cylinder mesh impact step -0.217 0.063

Airfoil AoA step -0.574 -0.052

It is interesting to investigate why the performance of the Perlin noise model on the CFD data is so bad. To
do this, two Perlin noise datasets are established using the mesh of the cylinder baseline step and the mesh
from the Airfoil AoA step with an angle of attack of 10 degrees. The model trained on the main Perlin noise
dataset is evaluated on these datasets to investigate if the discrepancy between the meshes is the reason behind
the disappointing performance. The results of the test are presented in Table 6-6. The performance turns out
to be good. The performance of the cylinder mesh is similar to that of the evaluation meshes of the primary

6.7. Key findings 69

Perlin noise dataset. The results for the airfoil test case are slightly worse, with the GAMG solver performing
approximately 5% worse compared to the Perlin noise dataset discussed in Section 6.3.2. However, one must
note that the training dataset does not include airfoils. Furthermore, the dense mesh region in the wake of the
object, which is present in the CFD meshes, is not represented in the training dataset. Therefore, these results
demonstrate that the model has good generalization capabilities when applied to unseen meshes. Moreover,
this implies that the model’s poor performance on the CFD data is due to a mismatch between the Perlin noise
fields and the 2D URANS simulations.

Table 6-6 Results of the Generalizability test.

Fractional
reduction PCG

Fractional
reduction GAMG

cylinder mesh 0.459 0.375

Airfoil mesh 0.438 0.343

6.7 Key findings

In this section, the key findings of this chapter are presented. The first step involved selecting the foundational
parameters. Since the physics-informed loss functions yield worse performance, the loss function only consists
of the supervised term, as depicted in Table 6-7. Finally, the kernel complexity shown in Table 6-8 is selected.

Table 6-7 The selected loss function.

Supervised PINN FVM

1 0 0

Table 6-8 The selected kernel complexity.

center-face face-point point-point point-center

4 6 6 6

After the foundational parameters were selected, the model’s performance was examined, which turned out to
be promising. Looking at the fractional reduction in the number of iterations required to reach convergence,
the number of iterations is generally reduced by around 40%, where the PCG solver performs slightly better
than the GAMG solver. However, since the PCG solver yields considerably higher reductions when evaluated
on its training data, up to 60% of the iterations can be saved if the evaluation data closely aligns with the
training data. This is the case of the CFD test cases involving flow around a cylinder. In contrast, when the
training does not represent the evaluation very closely, such as for the practical case studies, the PCG solver
tends to perform worse than the GAMG solver. In some cases, even an increase in the number of iterations is
observed. Therefore, the performance of the GAMG solver seems to be more consistent.

To understand the model’s performance in more detail, it is interesting to compare the results of the CFD test
cases with the Perlin noise test case. Although the ratio between the initial residual and the target tolerance
significantly impacts the fractional reduction in the number of iterations, an accurate comparison is still possible.
This is because this ratio aligns relatively well between the test cases. Interestingly, the performance on the
much more diverse and complex Perlin noise dataset is similar compared to the CFD test cases. The fact that
the model’s performance does not drop when more complex samples are included in the training and evaluation
data suggests that the diversity of the samples in the training dataset is not the primary factor driving the
model’s performance. This implies good generalization capacities for the model regarding the variety of flow
regimes the model is trained on. Considering this and the fact that a performance drop is observed when
increasing the complexity of the CFD dataset, it is likely that the meshes used in the training set have a more
significant impact on the model’s performance. For instance, the cylinder baseline step and cylinder Reynolds
variation step utilize the same mesh, while their performance is relatively similar. Then, a more pronounced

6.7. Key findings 70

performance drop, although still relatively small, is observed between the cylinder Reynolds variation step and
the cylinder mesh impact step, which uses different meshes. Notably, the RMSE, which differs significantly
across the test cases, does not correlate directly with the performance in terms of the reduction in the number
of iterations.

When analyzing at which flow simulations the model performs best, it is crucial to consider its performance
as a function of the reference number of iterations. The reduction in the number of iterations increases with
increasing reference number of iterations, indicating greater time savings. Considering this, the model performs
best at ill-conditioned problems, such as low Reynolds-number URANS simulations. These problems typically
feature dominant low-frequency oscillations in the solution. Considering that the frequency of these oscillations
is measured in terms of the number of cells, turbulent DNS simulations with a dense mesh might also perform well.

To evaluate the model’s generalization capabilities, the model trained on Perlin noise was evaluated on
CFD data. The performance turned out to be very disappointing. However, the model performed well when
evaluated on a Perlin noise dataset using the same CFD meshes. Therefore, it is concluded that the poor
performance is due to the Perlin noise fields not representing the 2D URANS simulations. Furthermore, the
generalization capabilities of the model with regard to the variability in meshes turned out to be good. Hence,
it is likely feasible to develop a model that can operate effectively on any mesh.

Finally, it is worth comparing the model’s performance with existing work. Chen et al. [4] applied a
similar approach, using the model’s output as input for the PCG solver. They evaluated a graph convolutional
neural network with a U-net architecture on Kolmogorov flow and observed a reduction in the number of
iterations ranging from 10% to 70%. Although this variability aligns with the results of this research, it does
not give any insight into how the two models compare in terms of performance. Additionally, the discrepancy
between the RMSE and the reduction in iterations makes it difficult to compare the designed model with
other studies, which typically express the performance in terms of the RMSE. Furthermore, the RMSE is
case-specific, and most papers do not normalize the RMSE for the magnitude of the solution field. Therefore,
further research must be conducted to compare the model’s performance with existing work, ensuring similar
model sizes and test cases.

7
Conclusion

Solving the incompressible Navier-Stokes equations is computationally expensive, with the pressure Poisson
equation being the most time-consuming step. Linear solvers typically solve this equation iteratively. Given
that the accuracy of the initial guess significantly impacts the number of iterations required for convergence,
the question arises of whether machine learning can be utilized to improve this guess. Then, if the reduction in
the number of iterations outweighs the processing time of the network, time is saved.

Research has shown promising results for CNN U-nets solving the pressure Poisson equation on an orthogonal
mesh. However, most meshes are not orthogonal. To address this issue, it is explored how the algorithms
used by CNNs can be adapted to work on unstructured meshes. Given that graph neural networks (GNNs)
are designed to handle unstructured data, they form a promising foundation to develop the desired model.
Therefore, this work aimed to explore how graph neural networks can be utilized to accelerate solving the
pressure Poisson equation in fluid simulations on unstructured grids. This was done using the sub-questions
defined in Chapter 3. The questions are treated below.

• What graph neural network architecture integrates most effectively with finite volume
method problems?

1. What model inputs result in the greatest reduction in the number of iterations required by the linear
solvers?

2. Which aggregation scheme yields a maximum reduction in iterations while maintaining compatibility
with the data structure of the finite volume method?

From all architectures, the U-net stands out as the most promising choice and has, therefore, been selected.
Looking at the inputs, the configuration depicted in Table 7-1 is chosen for models applied for CFD simulations.
Here, the diagonal of the A matrix and b are stored at the cell centers and provide information about the
matrix system that needs to be solved. At the cell faces, the off-diagonal part of the A matrix complements
the information required to solve the system. However, two additional inputs are implemented to provide the
model information about the domain boundaries, thereby enhancing the performance.

Table 7-1 Model inputs for CFD applications.

Cell Center Cell Face

Adiagonal Aoff−diagonal

b PDirichletIndicator

PNeumannIndicator

Considering that the model inputs are stored at the cell centers and the cell faces, a message-passing scheme is
defined to match this format. The first step involves aggregating the information stored at the cell centers to
the cell faces, followed by mapping it to the mesh points. Now, all subsequent message-passing steps up to

71

72

the second to last step aggregate information between the mesh points. This is advantageous for two reasons.
The first reason is that a relatively complex kernel can be defined due to the presence of a self-loop. This is
because the edge detection mechanism receives additional information from the origin of the local axis system.
The second reason is that information can propagate relatively far over the mesh. The last message-passing
step involves aggregating from the mesh points to the cell centers to match the output format. For pooling,
a custom algorithm is established that is equivalent to average pooling in CNNs. This involves aggregating
information between the mesh points of two subsequent pooling meshes. The dual mesh is utilized to achieve
this since the mesh points correspond to the cell centers of the dual mesh. The overlap between two governing
cells corresponds to the weight used to compute the weighted average of the target node.

• What adaptations to convolutional neural network (CNN) kernels can be made to be
compatible with unstructured data?

To adapt the CNN kernel to handle unstructured data, the following method is utilized. The first measure
is to split the (3x3) into two parts: the central element corresponding to the self-loop and the surrounding
elements that correspond to neighboring cells. The central element can be interpreted as a (1x1) kernel and is
applied to process the self-loops in the graph neural network. The surrounding elements are plotted versus their
orientation towards the owner cell. Then, the learnable parameters are interpolated to obtain a continuous
kernel. Instead of directly using the output of this weight function, the attention weights are computed by
taking the integral between two specified bounds. This integral is set up to account for the irregular distribution
of the source nodes. The integral is expressed as the weighted sum of a set of learnable parameters, where the
weights depend on the bounds of the integral. To effectively train the model, the weighted sum is expressed as
the dot product of a vector containing learnable parameters and the edge attribute, which consists of a vector
of the same length containing the weights. The main advantage of this approach is that when a trained model
is applied to a static grid, the attention weights remain constant throughout the simulation. Therefore, the
weights only have to be computed once, after which they can be re-used throughout the simulation. This makes
this model very computationally efficient, resulting in a low processing time.

• Which loss function yields the most accurate results?

It turns out that applying a physics-informed loss function has a detrimental effect on the model’s performance.
Therefore, the loss function only consists of the supervised term that compares the predicted pressure directly
with the ground truth pressure.

• How can the GNN model be integrated into practical, real-world CFD applications?

– How can input data be preprocessed to ensure compatibility with the training dataset?

To ensure the model’s compatibility with real-world applications, a normalization procedure is utilized. This
method ensures that the model’s inputs and outputs remain within the same order of magnitude. Table 7-2
shows the model’s inputs after normalization. Here, fA and fb are normalization factors defined in Equation 7-1.

fA = ∥AVG (Adiagonal) ∥, fb = STD (b) (7-1)

Table 7-2 Model inputs after normalization.

Cell Center Cell Face
Adiagonal

fA

Aoff−diagonal

fA
b
fb

PDirichletIndicator

PNeumannIndicator

Next to the inputs, the ground truth output of the model is also normalized (Equation 7-2). Here, fp represents
an unknown correction factor.

pnorm =

fA
fb
p

STD
(

fA
fb
p
) =

fA
fb
p

fp
(7-2)

73

To determine fp, two methods are proposed. The first method is highly computationally efficient but does
not produce accurate results under all conditions. It uses the model’s output and computes its corresponding
source term. The difference in magnitude between this computed source term and the actual source term
corresponds to the pressure correction factor. This factor is estimated using the least squares method. However,
for large correction factors, the signal-to-noise ratio of the explicit computed source term is too low, yielding
inaccurate results. Therefore, a correction model is proposed whose working principle is identical to that of the
pressure field model, but its architecture is inspired by classification CNNs. This model is very robust and
yields accurate results.

• How does the model perform regarding the reduction in the number of iterations for the
linear solvers?

The model is evaluated using two linear solvers: the monoscale Preconditioned Conjugate Gradient (PCG) solver
and the multiscale Geometric Agglomerated Algebraic Multigrid (GAMG) solver. Regarding the fractional
reduction, which corresponds to the fractional decrease in the number of iterations required to reach convergence,
both solvers achieve a reduction of approximately 40%, with the PCG solver performing slightly better than the
GAMG solver. The PCG solver yields less consistent performance, performing significantly better on training
data, achieving reductions of up to 60%, but struggles when tested on data that deviates from the training
set. Notably, the correction model used to de-normalize the network’s output performs well, yielding only a
slight drop in performance compared to configurations where the ground truth correction factor is employed.
Interestingly, the performance of the models stagnates with increasing model size. Considering that larger
models require higher processing time, the best-performing models are not necessarily large models but smaller
models instead.

Regarding the model’s generalization capabilities, it is important to assess its ability to handle a diverse
set of flow regimes and its performance on unseen meshes. Its performance regarding the flow regimes turns out
to be very good, considering that the fractional reduction does not drop with increasing diversity in the training
and evaluation data. Interestingly, the root mean square error (RMSE) of the pressure increases significantly
with increasing dataset complexity. This implies that there is no direct relationship between the RMSE and
the reduction in the number of iterations. Furthermore, the model demonstrates strong performance on unseen
meshes, showing its ability to cope with irregular node spacing present in unstructured meshes. However, it is
important to note that its performance increases when the model is trained and evaluated on a single mesh.
This indicates a trade-off between generalization to different meshes and overall accuracy. Nevertheless, the
performance difference is relatively small for the GAMG solver, which is the fastest solver. Considering this,
training the model on various meshes and samples, after which it can be applied effectively on any test case,
appears to be a feasible approach.

Furthermore, looking at potential use cases for the model, it performs best at ill-conditioned problems,
which require a lot of iterations to reach convergence. Considering that the fractional reduction achieved
by the model is relatively consistent across all flow regimes, a maximum number of iterations is saved for
these problems, leading to the greatest time savings. Ill-conditioned problems correspond to flow fields with
dominant low-frequency oscillation, such as URANS simulations and, potentially, DNS simulations on a dense
mesh. To evaluate the reduction in processing time of the linear solvers, tests were conducted on a server
equipped with an RTX 4500 GPU. The model reduces the processing time by approximately 33% for the PCG
solver. In contrast, the GAMG solver shows a slight increase in the processing time of around 2%. Considering
that the current design is just a first iteration and leaves room for improvements, the graph neural network
demonstrates promising results for utilizing machine learning models to accelerate the solution of the pressure
Poisson equation.

8
Recommendations

This research showed that graph neural networks can be used to accelerate the solution of the pressure Poisson
equation in fluid simulations. However, some questions remain related to the design and emerging from the
results. Recommendations for future research are set up to address this, which are discussed below.

Variation in mesh complexity

During this research, the model demonstrated strong generalization performance regarding variability in
the meshes. However, increasing the number of meshes in the training dataset resulted in a slight drop in
performance due to the irregular node spacing over the graphs. Considering that the ultimate goal would be to
apply a trained model directly on a test case without any additional training, it would be required to train
the model using a rather diverse set of meshes. Therefore, it is recommended to train and evaluate the model
on Perlin noise datasets with progressively increasing mesh complexity. This way, the impact of the mesh
complexity can be evaluated in greater detail.

Sample generalization

In this research, Perlin noise was used to create a dataset that represented a wide variety of flow char-
acteristics. However, the performance was very disappointing when a model trained on this dataset was
evaluated on real CFD data. If a model trained on synthetic data can be applied on CFD data, it would show
very strong generalization abilities for the graph neural network. Therefore, it would be valuable to investigate
how the dataset can be adjusted to perform effectively on CFD data. For instance, samples that correspond
to the free-stream region could be incorporated. Furthermore, individual samples could be manipulated to
represent multiple flow regimes. Currently, each sample governs only one particular flow regime, which forms a
fundamental discrepancy with most CFD simulations.

Scaling

It is important to consider the impact of the mesh size on the reduction in processing time. The meshes used
during this research are significantly smaller than those used for industrial applications, especially considering
that extending the problems from 2D to 3D would lead to a massive increment in the number of cells. Therefore,
it would be interesting to measure the reduction in the number of iterations as a function of the mesh size for
CFD applications. If more iterations can be saved for larger meshes, greater time savings can be achieved for
industrial applications.

Loss function

The results showed that the root mean square error (RMSE) does not directly correlate with the reduc-
tion in the number of iterations required to reach convergence. However, the loss function is defined to minimize
the RMSE. This raises the question of whether a loss function can be defined that directly correlates with the
primary objective of maximizing the reduction in the number of iterations, thereby improving the model’s

74

75

performance.

Comparison with other models

Due to the specific test cases and evaluation procedures used across different studies, comparing the model’s
performance with existing models like MeshGraphNets and the Finite Volume Method Network is not possible.
Therefore, it would be valuable to train and evaluate these state-of-the-art models alongside the proposed
model on the same dataset using a consistent evaluation procedure, ensuring a fair and accurate comparison.

Flattening in the correction model

In the correction model used to predict the standard deviation of the pressure field, the field is flattened by
taking the standard deviation of each channel. However, while its performance is good, it is probably a good
option to replace it with average pooling. When analyzing the training log, it turned out that it takes a couple
of epochs before the loss starts to drop significantly. This implies that the ADAM optimizer has difficulties
with fitting the underlying dynamics of this operation. Using average pooling, this issue should be solved, and
the training process should become more streamlined.

Merging the correction and main model

Currently, two graph neural networks are used to predict the pressure field. To save processing time, the
networks could be merged to predict the normalized pressure field and the correction factor with only one
model. A potential architecture is shown in Figure 8-1. Here, predicting the correction factor requires only 2
extra convolution layers at the lowest pooling layer followed by an MLP. This is significantly more efficient than
the two models utilized currently. However, the main challenge is not in the architecture design but in the loss
function. Note that a loss function that includes the loss of the normalized pressure field and the correction
factor should be defined. Here, the challenge is to optimize the weights of these terms to maximize the number
of iterations saved by the linear solver.

Figure 8-1 Example architecture for a merged pressure field and correction model.

Normalization of the ouput pressure

The main benefit of using the normalized pressure as ground truth is that the network output remains

76

within the same order of magnitude. In fact, the standard deviation of the output should equal 1. Therefore, the
issue regarding high deviations in the order of magnitude of the pressure field is solved. However, this approach
also poses a challenge, which has to do with the standard deviation of the pressure field. The ground truth
output of the network is the pressure field divided by its standard deviation. To calculate this normalization
factor, all information in the domain is required. However, using a relatively large mesh, information cannot
propagate over the whole graph. Therefore, the network has insufficient information to correct the output for
the standard deviation. This may cause issues if the flow characteristics deviate significantly over the mesh. In
such cases, the normalization factor may be underestimated on one side of the mesh and overestimated on the
other side. Therefore, it would be interesting to explore possibilities to mitigate this effect.

Extending the model to 3D

To use the model for real-world applications, it is required to extend the design from 2D to 3D. Here,
the biggest challenge lies in defining the 3D kernel, including an algorithm to express the convolution in-
tegral as the weighted sum of the parameters present in the kernel. The same aggregation scheme can be
used. The only difference is that the message-passing step from the cell faces to the mesh points will differ
from the step between the mesh points since the cell faces no longer align with the edges between the mesh
points. However, besides defining new integral bounds, no significant challenges will arise. Finally, extending
the pooling algorithm to 3D is relatively straightforward, given the existence of 3D mesh coarsening software [36].

Additional applications

The established graph neural network (GNN) is specifically designed to solve the pressure Poisson equa-
tion. However, the particular partial differential equation did not play a role in the design process. Therefore,
the model can potentially also be used for other applications. In essence, the model can predict the solution of
partial differential equations that are discretized using a mesh and expressed as a matrix system. The main
constraint here is that the non-zero off-diagonal elements of the coefficient matrix must correspond to two
neighboring cells. For instance, if the content of a specific cell influences the content of a cell that is not a
neighboring cell, the model cannot be used because the matrix system would be incompatible with the required
input format of the GNN. Some potential applications for the model include:

• Structural analysis
• Heat transfer problems
• Electromagnetic simulations

References

[1] David Pardo A, Nathan Collier D, and Victor M Calo. “A SURVEY ON DIRECT SOLVERS FOR
GALERKIN METHODS”. In: SeMA Journal 57 (2012), pp. 107–134. doi: 10.1007/BF03322602.

[2] James Ahrens, Berk Geveci, and Charles Law. The ParaView Guide: A Parallel Visualization Application.
2nd. Clifton Park, NY: Kitware, Inc., 2005. url: https://www.paraview.org.

[3] Vieri Benci and Lorenzo Luperi Baglini. A generalization of Gauss’ divergence theorem. 2015. arXiv:
1406.4349 [math.AP].

[4] Ruilin Chen, Xiaowei Jin, and Hui Li. “A machine learning based solver for pressure Poisson equations”.
In: Theoretical and Applied Mechanics Letters 12 (5 Sept. 2022). issn: 20950349. doi: 10.1016/j.taml.
2022.100362.

[5] Lionel Cheng et al. Using neural networks to solve the 2D Poisson equation for electric field computation
in plasma fluid simulations. Sept. 2021. doi: 10.48550/arXiv.2109.13076.

[6] Dario Coscia et al. “A continuous convolutional trainable filter for modelling unstructured data”. In:
Computational Mechanics 72 (2 Aug. 2023), pp. 253–265. issn: 14320924. doi: 10.1007/s00466-023-02291-1.

[7] Kengo Enami and Shun-ichi Maezawa. “Characterization of (m, n)-Linked Planar Graphs”. In: Graphs
and Combinatorics 38 (Aug. 2022). doi: 10.1007/s00373-022-02537-4.

[8] Richard E. Ewing. “Preconditioned Conjugate Gradient Methods for Large-Scale Fluid Flow Applications”.
In: BIT 29.4 (Mar. 1989), pp. 850–866.

[9] Robert Eymard, Thierry Gallouët, and Raphaèle Herbin. “Finite volume methods”. In: Solution of
Equation in n (Part 3), Techniques of Scientific Computing (Part 3). Vol. 7. Handbook of Numerical
Analysis. Elsevier, 2000, pp. 713–1018. doi: https://doi.org/10.1016/S1570-8659(00)07005-8.

[10] Hang Fan et al. “M2gsnet: Multi-modal multi-task graph spatiotemporal network for ultra-short-term
wind farm cluster power prediction”. In: Applied Sciences (Switzerland) 10 (21 Nov. 2020), pp. 1–15. issn:
20763417. doi: 10.3390/app10217915.

[11] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric. 2019.
arXiv: 1903.02428 [cs.LG].

[12] Christophe Geuzaine and Jean-François Remacle. “Gmsh: a three-dimensional finite element mesh
generator with built-in pre- and post-processing facilities”. In: International Journal for Numerical
Methods in Engineering 79.11 (2009), pp. 1309–1331. doi: 10.1002/nme.2579.

[13] K. Hami. “Turbulence Modeling a Review for Different Used Methods”. In: International Journal of Heat
and Technology 39 (Feb. 2021), pp. 227–234. doi: 10.18280/ijht.390125.

[14] Ekhi Ajuria Illarramendi, Michaël Bauerheim, and Bénédicte Cuenot. “Performance and accuracy assess-
ments of an incompressible fluid solver coupled with a deep convolutional neural network”. In: Data-Centric
Engineering 3 (8 Feb. 2022). issn: 26326736. doi: 10.1017/dce.2022.2.

[15] R. I. Issa et al. “Solution of the implicitly discretised reacting flow equations by operator-splitting”. In:
Journal of Computational Physics 93 (2 Apr. 1991), pp. 388–410. issn: 0021-9991. doi: 10.1016/0021-
9991(91)90191-M.

[16] Hans Johnston and Jian Guo Liu. “Accurate, stable and efficient Navier-Stokes solvers based on explicit
treatment of the pressure term”. In: Journal of Computational Physics 199 (1 Sept. 2004), pp. 221–259.
issn: 00219991. doi: 10.1016/j.jcp.2004.02.009.

[17] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv: 1412.6980
[cs.LG].

[18] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Networks.
2017. arXiv: 1609.02907 [cs.LG].

77

https://doi.org/10.1007/BF03322602
https://www.paraview.org
https://arxiv.org/abs/1406.4349
https://doi.org/10.1016/j.taml.2022.100362
https://doi.org/10.1016/j.taml.2022.100362
https://doi.org/10.48550/arXiv.2109.13076
https://doi.org/10.1007/s00466-023-02291-1
https://doi.org/10.1007/s00373-022-02537-4
https://doi.org/https://doi.org/10.1016/S1570-8659(00)07005-8
https://doi.org/10.3390/app10217915
https://arxiv.org/abs/1903.02428
https://doi.org/10.1002/nme.2579
https://doi.org/10.18280/ijht.390125
https://doi.org/10.1017/dce.2022.2
https://doi.org/10.1016/0021-9991(91)90191-M
https://doi.org/10.1016/0021-9991(91)90191-M
https://doi.org/10.1016/j.jcp.2004.02.009
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1609.02907

References 78

[19] Tianyu Li et al. “Predicting unsteady incompressible fluid dynamics with finite volume informed neural
network”. In: Physics of Fluids 36.4 (Apr. 2024). issn: 1089-7666. doi: 10.1063/5.0197425.

[20] Zhi Peng Li et al. “Graph pooling for graph-level representation learning: a survey”. In: Artificial
Intelligence Review 58 (2 Feb. 2025). issn: 15737462. doi: 10.1007/s10462-024-10949-2.

[21] Kevin Linka et al. “Bayesian Physics-Informed Neural Networks for real-world nonlinear dynamical
systems”. In: (May 2022). doi: 10.1016/j.cma.2022.115346.

[22] G. Maragkos et al. “Evaluation of OpenFOAM’s discretization schemes used for the convective terms
in the context of fire simulations”. In: Computers Fluids 232 (2022), p. 105208. issn: 0045-7930. doi:
https://doi.org/10.1016/j.compfluid.2021.105208.

[23] F. R. Menter. “Two-equation eddy-viscosity turbulence models for engineering applications”. In: AIAA
Journal 32.8 (1994), pp. 1598–1605. doi: 10.2514/3.12149. eprint: https://doi.org/10.2514/3.12149. url:
https://doi.org/10.2514/3.12149.

[24] Federico Monti et al. Geometric deep learning on graphs and manifolds using mixture model CNNs. 2016.
arXiv: 1611.08402 [cs.CV].

[25] ML Notebook. Visualization of Convolutional Neural Network (CNN) Kernels. Accessed: 29-01-2025.
2025. url: https://mlnotebook.github.io/post/CNN1/?ref=tothepowerofn.io.

[26] Keiron O’Shea and Ryan Nash. An Introduction to Convolutional Neural Networks. 2015. arXiv: 1511.08458
[cs.NE].

[27] OpenCFD Ltd. OpenFOAM User Guide. Accessed: 29-01-2025. 2025. url: https://www.openfoam.com/
documentation/guides/latest/doc/.

[28] OpenCFD Ltd. OpenFOAM User Guide Pressure-velocity algorithms. Accessed: 29-01-2025. 2025. url:
https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-pressure-
velocity-intro.html.

[29] M. Papadrakakis and N. Bitoulas. “Accuracy and effectiveness of preconditioned conjugate gradient
algorithms for large and ill-conditioned problems”. In: Computer Methods in Applied Mechanics and
Engineering 109.3 (1993), pp. 219–232. issn: 0045-7825. doi: https://doi.org/10.1016/0045-7825(93)90079-
D.

[30] Tobias Pfaff et al. Learning Mesh-Based Simulation with Graph Networks. 2021. arXiv: 2010.03409
[cs.LG].

[31] Prof.dr.ir. S. Hickel. AE4202 CFD for Aerospace Engineers. Course material. 2022.

[32] M. Raissi, P. Perdikaris, and G. E. Karniadakis. “Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations”. In:
Journal of Computational Physics 378 (Feb. 2019), pp. 686–707. issn: 10902716. doi: 10.1016/j.jcp.2018.
10.045.

[33] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical
Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV].

[34] W.Y Soh and John W Goodrich. “Unsteady solution of incompressible Navier-Stokes equations”. In: Journal
of Computational Physics 79.1 (1988), pp. 113–134. issn: 0021-9991. doi: https://doi.org/10.1016/0021-
9991(88)90007-1.

[35] Paulo Sousa, Alexandre Afonso, and Carlos Veiga Rodrigues. “Application of machine learning to model
the pressure poisson equation for fluid flow on generic geometries”. In: Neural Computing and Applications
36 (26 Sept. 2024), pp. 16581–16606. issn: 14333058. doi: 10.1007/s00521-024-09935-0.

[36] Matthew L. Staten, Steven Benzley, and Michael Scott. “A methodology for quadrilateral finite element
mesh coarsening”. In: Engineering with Computers. Vol. 24. Sept. 2008, pp. 241–251. doi: 10.1007/s00366-
008-0097-y.

[37] Farhana Sultana, Abu Sufian, and Paramartha Dutta. “Advancements in Image Classification using
Convolutional Neural Network”. In: 2018 Fourth International Conference on Research in Computational
Intelligence and Communication Networks (ICRCICN). IEEE, Nov. 2018, pp. 122–129. doi: 10.1109/
icrcicn.2018.8718718.

https://doi.org/10.1063/5.0197425
https://doi.org/10.1007/s10462-024-10949-2
https://doi.org/10.1016/j.cma.2022.115346
https://doi.org/https://doi.org/10.1016/j.compfluid.2021.105208
https://doi.org/10.2514/3.12149
https://doi.org/10.2514/3.12149
https://doi.org/10.2514/3.12149
https://arxiv.org/abs/1611.08402
https://mlnotebook.github.io/post/CNN1/?ref=tothepowerofn.io
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1511.08458
https://www.openfoam.com/documentation/guides/latest/doc/
https://www.openfoam.com/documentation/guides/latest/doc/
https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-pressure-velocity-intro.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-pressure-velocity-intro.html
https://doi.org/https://doi.org/10.1016/0045-7825(93)90079-D
https://doi.org/https://doi.org/10.1016/0045-7825(93)90079-D
https://arxiv.org/abs/2010.03409
https://arxiv.org/abs/2010.03409
https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/10.1016/j.jcp.2018.10.045
https://arxiv.org/abs/1505.04597
https://doi.org/https://doi.org/10.1016/0021-9991(88)90007-1
https://doi.org/https://doi.org/10.1016/0021-9991(88)90007-1
https://doi.org/10.1007/s00521-024-09935-0
https://doi.org/10.1007/s00366-008-0097-y
https://doi.org/10.1007/s00366-008-0097-y
https://doi.org/10.1109/icrcicn.2018.8718718
https://doi.org/10.1109/icrcicn.2018.8718718

References 79

[38] David Wilcox. “Turbulence modeling - An overview”. In: 39th Aerospace Sciences Meeting and Exhibit.
doi: 10.2514/6.2001-724.

[39] Ziqian Wu and Jiahao Liu. “Perlin noise and its improvements: A literature review”. In: (2024). doi:
10.54254/2755-2721/77/20240437.

[40] Mengfei Xu et al. “A convolutional strategy on unstructured mesh for the adjoint vector modeling”. In:
Physics of Fluids 33 (3 Mar. 2021). issn: 10897666. doi: 10.1063/5.0044093.

[41] Aston Zhang et al. Dive into Deep Learning. 2023. arXiv: 2106.11342 [cs.LG].

[42] Yang Zhiyin. Large-eddy simulation: Past, present and the future. Feb. 2015. doi: 10.1016/j.cja.2014.12.007.

[43] Jie Zhou et al. Graph Neural Networks: A Review of Methods and Applications. 2021. arXiv: 1812.08434
[cs.LG].

https://doi.org/10.2514/6.2001-724
https://doi.org/10.54254/2755-2721/77/20240437
https://doi.org/10.1063/5.0044093
https://arxiv.org/abs/2106.11342
https://doi.org/10.1016/j.cja.2014.12.007
https://arxiv.org/abs/1812.08434
https://arxiv.org/abs/1812.08434

A
Additional Analysis

This appendix provides additional analysis of the model’s performance. First, tests involving the Perlin noise
dataset are treated, after which tests regarding the CFD test cases are discussed.

A.1 Perlin noise performance

In this section, the performance on the Perlin noise dataset will be discussed in more detail. This is done by
evaluating the performance of individual samples. Figure A-1 shows the iterations saved plotted versus their
corresponding reference number of iterations. This is only done for the PCG solver since the GAMG solver
requires too few iterations to perform this analysis. Here, the color indicates the test mesh used. From the
graph, it is clear that the correlation between the two factors is not very strong. Especially for high reference
values, the iterations saved differ significantly. This implies that the models’ performance is not consistent. The
same trend is observed for both meshes, which implies that this phenomenon is not due to the mesh. Notably,
using the model does not always reduce the number of iterations, as some data points indicate a negative
number of iterations saved.

Figure A-1 Scatter plot showing the reduction in the number of iterations as a function of the reference number of
iterations for the PCG solver on the Perlin noise dataset. Each color represents an evaluation simulation.

A.2 CFD Performance

In this section, the performance on the CFD test cases will be examined in greater detail. First, the performance
on different flow regimes will be discussed, after which the performance on larger model sizes will be investigated.
Finally, the performance of the correction model is examined in more detail. For clarity, this model predicts

80

A.2. CFD Performance 81

the standard deviation of the pressure field, which is used to normalize the ground truth output of the pressure
field model.

A.2.1 Performance per flow regime

To investigate the model’s performance in more depth, the performance is plotted as a function of the reference
number of iterations using histograms. Here, Figure A-2a and Figure A-2b depict the results of step 3, while
Figure A-3a and Figure A-3b present the results of step 4 for the PCG and GAMG solver respectively. Here,
the red bars indicate the standard deviations, and the values at the base of each bar represent its corresponding
number of samples. As for the Perlin noise results, the standard deviations are significantly lower for the GAMG
solver, implying more consistent performance. Furthermore, it is interesting that the fractional reductions
increase with increasing reference iterations for both solvers and test cases. This implies that the difference
between low and high reference number of iterations is even larger regarding the total number of iterations
saved. Since the total number of iterations saved is directly proportional to the reduction in processing time,
significantly more time will be saved for samples with many reference iterations.

(a) Fractional reduction for the PCG solver. (b) Fractional reduction for the GAMG solver.

Figure A-2 Fractional reduction of the number of iterations as a function of the reference number of iterations for
the cylinder mesh impact step. The blue bars indicate the average value, and the red bars indicate the corresponding

standard deviations. The numbers at the bottom of the bars refer to the number of data points per bar.

A.2. CFD Performance 82

(a) Fractional reduction for the PCG solver. (b) Fractional reduction for the GAMG solver.

Figure A-3 Fractional reduction of the number of iterations as a function of the reference number of iterations for
the airfoil AoA step. The blue bars indicate the average value, and the red bars indicate the corresponding standard

deviations. The numbers at the bottom of the bars refer to the number of data points per bar.

A.2.2 Performance stagnation

To investigate the effect of increasing the pressure field model size, two additional models with a size of 24 and
32 have been trained on the cylinder mesh impact step. Figure A-4a and Figure A-4b show the number of
iterations saved by the PCG and GAMG solver, respectively. Here, it is clear that the stagnating trend that is
observed in Section 6.4.1 continues when the model size is increased further. In fact, the number of iterations
saved increases marginally between model sizes of 16 and 32, even though the number of operations per layer
increases by a factor of 4. Only around 5 iterations for the PCG solver and 0.2 for the GAMG solver are saved
additionally.

(a) Number of iterations saved by the PCG solver. (b) Number of iterations saved by the GAMG solver.

Figure A-4 Number of iterations saved by the linear solvers for larger models. The envelopes represent the
performance for different correction model sizes and the ground truth pressure correction factor.

A.2. CFD Performance 83

A.2.3 Magnitude prediction

This section presents the performance of the correction models for the four steps. The ground truth values are
plotted against the predicted values for the four model sizes. Figure A-5 shows the results. Overall, a clear
difference in performance is observed between the models of size 6 compared to the ones of size 8. However,
from these figures, the performance does not seem to increase for larger models. This aligns with the results
presented in Chapter 6.

(a) Performance of the correction models for the cylinder baseline step.

(b) Performance of the correction models for the cylinder Reynolds variation step.

(c) Performance of the correction models for the cylinder mesh impact step.

(d) Performance of the correction models for the airfoil AoA step.

Figure A-5 The performance of the correction models for the CFD test cases.

B
Sample visualization

In this appendix, individual samples are visualized to give a better impression of the governing test data. For
each sample, the ground truth pressure, the output pressure, the difference between these fields, and the source
term are illustrated. The model’s performance on the samples is mentioned in the captions of the figures. First,
samples of the Perlin noise dataset will be treated, after which samples of the CFD test cases are presented.
Note that for the CFD test cases, a pressure field model size of 16 and a correction model of size 8 are used.
Additionally, to improve the clarity of the CFD test case figures, the 1% of cells with the highest magnitude
values are excluded.

B.1 Perlin Noise

Figure B-1 Perlin noise sample. Reference number of iterations: PCG = 103, GAMG = 4. Number of iterations
after applying the model: PCG = 32, GAMG = 2.

84

B.1. Perlin Noise 85

Figure B-2 Perlin noise sample. Reference number of iterations: PCG = 196, GAMG = 7. Number of iterations
after applying the model: PCG = 122, GAMG = 4.

Figure B-3 Perlin noise sample. Reference number of iterations: PCG = 40, GAMG = 4. Number of iterations
after applying the model: PCG = 22, GAMG = 2.

B.2. CFD data 86

B.2 CFD data

Figure B-4 Sample involving flow around a cylinder at Re=1000. Reference number of iterations: PCG = 17,
GAMG = 3. Number of iterations after applying the model: PCG = 3, GAMG = 1.

Figure B-5 Sample involving the NACA 2412 airfoil at an angle of attack of 10 degrees. Reference number of
iterations: PCG = 10, GAMG = 7. Number of iterations after applying the model: PCG = 2, GAMG = 1.

B.2. CFD data 87

Figure B-6 Sample involving the NACA 2412 airfoil at an angle of attack of 10 degrees. Reference number of
iterations: PCG = 89, GAMG = 52. Number of iterations after applying the model: PCG = 7, GAMG = 5.

	Preface
	Summary
	List of tables
	List of figures
	Nomenclature
	Introduction
	Theoretical background
	Pressure Poisson Equation
	Incompressible Navier-Stokes Equations
	Derivation of the Pressure Poisson Equation

	Application of the Poisson equation
	Finite Volume Method
	Discretization schemes
	Pressure-velocity coupling in OpenFOAM
	Linear Solvers
	Linearized Pressure Poisson Equation

	Machine Learning for Numerical Simulations
	Physics informed neural networks
	Convolutional neural networks

	Graph Neural Networks
	Introduction to Graph Neural Network
	Graph convolutional neural networks
	MeshGraphNets
	Finite Volume Graph Network
	Continuous kernel GNNs
	Graph pooling

	Problem statement
	Design process
	CFD procedure
	General design decisions
	Inputs
	Inputs to enhance performance
	Inputs for CFD cases

	Aggregation scheme
	Pooling
	Mesh coarsening
	Pooling algorithm

	Convolution algorithm
	Proposed model
	Solution for irregular node spacing

	Normalization
	Normalization of the inputs
	Normalization of the output pressure
	Pressure correction factor prediction

	Loss function
	Pressure field model
	Correction model

	Summary

	Test setup
	Data acquisition
	CFD datasets
	Perlin noise dataset

	Training and Evaluation settings
	Training settings
	Evaluation settings
	Computational resources

	Evaluation Procedure
	Foundational parameters
	CFD test cases
	Practical case studies
	Additional tests

	Summary

	Results
	Foundational parameters
	Learning rate
	Loss function
	Kernel complexity

	Number of iterations versus flow characteristics
	Performance on Perlin noise
	Performance per flow regime
	Performance on training versus evaluation data

	CFD Test cases
	Cylinder baseline step
	The four-step CFD evaluation procedure
	Performance on training versus evaluation data
	Performance variability
	Time saving

	Practical case study
	Time cut-off
	Varying number of train cases

	Additional tests
	Tolerance
	Generalization

	Key findings

	Conclusion
	Recommendations
	References
	Additional Analysis
	Perlin noise performance
	CFD Performance
	Performance per flow regime
	Performance stagnation
	Magnitude prediction

	Sample visualization
	Perlin Noise
	CFD data

